WO2011148877A1 - Hybrid construction machine - Google Patents

Hybrid construction machine Download PDF

Info

Publication number
WO2011148877A1
WO2011148877A1 PCT/JP2011/061689 JP2011061689W WO2011148877A1 WO 2011148877 A1 WO2011148877 A1 WO 2011148877A1 JP 2011061689 W JP2011061689 W JP 2011061689W WO 2011148877 A1 WO2011148877 A1 WO 2011148877A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
hydraulic pump
motor
hydraulic
construction machine
Prior art date
Application number
PCT/JP2011/061689
Other languages
French (fr)
Japanese (ja)
Inventor
肇 吉田
元 石井
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201180004261.5A priority Critical patent/CN102575458B/en
Priority to EP11786576.6A priority patent/EP2578756A4/en
Priority to IN1916DEN2012 priority patent/IN2012DN01916A/en
Priority to KR1020127010368A priority patent/KR101747466B1/en
Priority to US13/496,395 priority patent/US8651219B2/en
Publication of WO2011148877A1 publication Critical patent/WO2011148877A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • E02F3/325Backhoes of the miniature type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/16Cabins, platforms, or the like, for drivers
    • E02F9/166Cabins, platforms, or the like, for drivers movable, tiltable or pivoting, e.g. movable seats, dampening arrangements of cabins
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid construction machine provided with a generator / motor connected to an engine and a hydraulic pump, and more particularly to a hybrid construction machine of a rear ultra-small turning type or an ultra-small turning type.
  • a hydraulic excavator which is one of construction machines, is generally provided with a lower traveling body, an upper revolving body provided on the lower traveling body so as to be able to swivel, and an upper revolving body that can be raised and lowered. And an articulated working machine including a bucket.
  • the hydraulic drive device of this hydraulic excavator includes, for example, a hydraulic pump driven by an engine and a plurality of hydraulic actuators driven by pressure oil from the hydraulic pump (specifically, a traveling hydraulic motor, a boom hydraulic cylinder, an arm And a control valve for controlling the flow of pressure oil from the hydraulic pump to the hydraulic actuator in accordance with the operation of the operating device.
  • the engine type hydraulic excavator is equipped with only the engine as the power source of the hydraulic pump.
  • This engine-type hydraulic excavator is suitable for work in a narrow work site and is known as a rear ultra-small turning type or an ultra-small turning type (for example, see Patent Documents 1 and 2).
  • the work machine is connected to the front part of the upper turning body via a swing post, and the turning radius at the rear end of the upper turning body is the lower traveling body. It is configured to fit within the full width.
  • the working machine is connected to the upper turning body near the turning center of the upper turning body, and the upper turning body provided with the working machine is substantially within the full width of the lower traveling body. It is configured to be able to turn.
  • the upper swing body includes a swing frame that forms the lower basic structure thereof, and a rear side of the engine that is provided on the rear end of the swing frame and disposed on the swing frame.
  • a counterweight that covers the front and rear sides of the revolving frame, and a driver's seat base that covers the front and upper sides of the engine that is raised from the rear of the floorboard and extends to the rear.
  • a support member that is provided on the revolving frame so as to straddle the engine or the like and supports the rear portion of the floor member.
  • a driver's cab is formed on the floor member and is separated from the driver's cab by a driver seat base of the floor member (in other words, after the floor member).
  • An engine room (machine room) is formed so as to enter the subordinates, and an engine or the like is arranged in the engine room.
  • the engine is placed horizontally so as to extend in the left-right direction, and is supported via a support bracket and an anti-vibration mount.
  • the left end portion of the engine output shaft is coaxially connected to the input shaft of the hydraulic pump, and is attached so that the hydraulic pump is integrated with the engine.
  • the rotating shaft of the cooling fan is connected to the right end of the engine output shaft via a power transmission mechanism (specifically, a pulley, a fan belt, etc.), and a radiator, an oil cooler, etc. are connected to the right side of the cooling fan.
  • a heat exchanger is arranged.
  • tanks such as a fuel tank and a hydraulic oil tank are disposed on the front side of the heat exchanger or the like (in other words, on the right side of the floor member).
  • a control valve (control valve unit) is disposed below the floor plate of the floor member.
  • the conventional hybrid hydraulic excavator is a medium- or large-sized hydraulic excavator with an operating mass of 6 tons or more, or a mini excavator with an operating mass of less than 6 tons is also called a standard machine type. It is intended for hydraulic excavators with a large radius, and it was easy to mount a power unit consisting of an engine, a hydraulic pump, and a generator / motor on the swivel frame. However, it is difficult to mount the power unit described above in a hydraulic excavator that is a rear ultra-small turning type or ultra-small turning type excavator with a small turning radius of the upper turning body.
  • the rear ultra-small turning type and ultra-small turning type hybrid hydraulic excavator is originally a dedicated model (in other words, completely different from the backward ultra-small turning type and ultra-small turning type engine type hydraulic excavator). It is desirable to develop. However, in order to provide hybrid hydraulic excavators to the market at an early stage, equipment is arranged so that it can be easily hybridized by utilizing the current rear ultra-small turning and ultra-small turning engine-type hydraulic excavators. It is preferable to do. This is because not only the development cost and manufacturing cost can be reduced, but also the existing engine-type hydraulic excavator can be easily modified.
  • the present invention has been made in view of the above-described matters, and an object of the present invention is to provide a hybrid construction machine that can easily realize hybridization even if it is a rear ultra-small turning type or ultra-small turning type construction machine. Is to provide.
  • the present invention includes a lower traveling body, an upper revolving body that is turnable on the lower traveling body, and a work machine that is provided on the upper revolving body so as to be able to rise and fall.
  • a plurality of hydraulic actuators including a traveling hydraulic motor, an engine, a hydraulic pump whose input shaft is coaxially connected to the output shaft of the engine, and supplying pressure oil to the plurality of hydraulic actuators, and a rotary shaft via a gear mechanism
  • a generator / motor connected to the output shaft of the engine and an input shaft of the hydraulic pump; and a power storage device for transferring power to the generator / motor; and the upper swing structure forms a lower basic structure.
  • a rear ultra-small turning type or ultra-small turning type hybrid construction machine provided with a support member that supports the rear part of the floor member, wherein the generator / motor has a lowermost shaft serving as an input shaft of the hydraulic pump. It is arranged at a vertical position that is located above the center, and at a horizontal position that overlaps the hydraulic pump when viewed from above.
  • a rear ultra-small turning or ultra-small turning engine-type construction machine that is, a construction machine equipped only with an engine as a power source of a hydraulic pump
  • the rear end of the upper turning body or the entire turning radius is equal to that of the lower traveling body. Since the support member that is configured to fit within the entire width and that supports the rear portion of the floor member is provided across the engine, a dead space is generated on the upper side of the hydraulic pump. A part of the space above the pump is an arrangement space for exhaust mufflers and the like).
  • the hybrid construction machine of the present invention (that is, a construction machine equipped with a generator / motor connected to an engine and a hydraulic pump) is based on an engine construction machine of a rear ultra-small turning type or an ultra-small turning type,
  • the generator / motor is arranged by effectively using the space above the hydraulic pump described above. More specifically, the generator / motor is arranged at a vertical position where the lowermost portion is located above the input shaft of the hydraulic pump, and at a horizontal position where it overlaps the hydraulic pump when viewed from above.
  • the generator / motor assists the hydraulic pump, the engine and its auxiliary equipment (for example, an exhaust muffler) are reduced by reducing the output horsepower of the engine compared to the engine construction machine.
  • a traveling speed changeover switch capable of instructing switching of the traveling hydraulic motor between a low speed large capacity mode and a high speed small capacity mode, and a high speed small capacity mode instructed by the traveling speed changeover switch.
  • the generator / motor is driven by electric power from the power storage device to operate as an electric motor so as to compensate for an insufficient output torque of the engine.
  • a control device for controlling the engine, and the output horsepower of the engine is set to a magnitude that cannot provide the hydraulic horsepower required for the hydraulic pump at the high traveling speed.
  • the engine is provided with a gear box for housing the gear mechanism and supporting the hydraulic pump and the generator / motor, and a plurality of support brackets are provided on the engine.
  • a power unit provided integrally with the engine, the hydraulic pump, and the generator / motor via the gear box and supported by the swivel frame via the plurality of support brackets.
  • a plurality of support brackets are provided only on the engine, and a power unit in which the engine and the hydraulic pump are integrally configured is supported on a swivel frame via the plurality of support brackets.
  • the engine is downsized by reducing the output horsepower of the engine as compared with the engine construction machine. Therefore, if a plurality of support brackets are provided only in the engine, the arrangement of the support brackets (that is, the support position of the power unit) is different from that of the engine-type construction machine.
  • the support position of the power unit can be made the same as that of the engine-type construction machine, and the swivel frame can be made common.
  • the development cost and the manufacturing cost can be reduced, and the existing engine type hydraulic excavator can be easily modified.
  • the generator / motor does not overlap with the support bracket or the like provided in the gear box so that it does not overlap with the hydraulic pump when viewed from the rear. Place in position.
  • the figure which shows the relationship between the limit value of engine output horsepower, the PQ characteristic (horsepower characteristic) of a hydraulic pump, and an output use range in the hybrid type mini excavator of one embodiment of the present invention, and an engine output horsepower characteristic and an output use range It is a figure which shows a relationship. It is a side view showing the appearance of the hybrid type mini excavator of one embodiment of the present invention, and shows the tilt down state of the cab unit. It is a top view showing the appearance of the hybrid type mini excavator of one embodiment of the present invention. It is a top view showing the structure of the turning frame in one Embodiment of this invention. It is a perspective view showing the structure of the turning frame in one Embodiment of this invention.
  • FIG. 19 is a rear sectional view taken along section XIX-XIX in FIG. It is a top view showing equipment arrangement on a turning frame in an engine type mini excavator of a comparative example. It is a rear sectional view showing device arrangement on a turning frame in an engine type mini excavator of a comparative example.
  • FIG. 1 is a schematic diagram showing the configuration of a drive system in the hybrid mini-excavator of this embodiment.
  • 1 is an engine system
  • 2 is a hydraulic system
  • 3 is a generator motor system
  • 4 is a control system.
  • the engine system 1 includes a diesel engine 11, an engine control dial 12, an engine controller 13, and an electronic governor 14.
  • the engine 11 is downsized (smaller output) than that mounted on the engine type mini excavator.
  • the engine control dial 12 instructs the target engine speed by an operator's operation.
  • the engine controller 13 inputs a target rotational speed signal from the engine control dial 12, performs a predetermined calculation process to obtain a target fuel injection amount, and controls the electronic governor 14 to control the fuel injected into each cylinder of the engine.
  • the injection amount is controlled, and the engine output torque and the rotational speed are controlled.
  • the engine controller 13 calculates an engine load factor and generates engine load factor information.
  • the engine load factor is obtained, for example, by calculating the ratio of the target fuel injection amount to the maximum fuel injection amount.
  • the hydraulic system 2 includes a hydraulic pump 21, a pilot pump 22, a control valve 23, a plurality of hydraulic actuators (specifically, for example, left and right traveling hydraulic motors 24a and 24b, a boom hydraulic cylinder 24c, and an arm Hydraulic cylinder 24d, bucket hydraulic cylinder 24e, swing hydraulic motor 24f, swing hydraulic cylinder 24g, blade hydraulic cylinder 24h, etc.
  • the swing hydraulic motor 24f may be replaced with a swing electric motor.
  • a plurality of operating devices 25 and 26 The operating device 25 is representative of left and right traveling operating devices, and the operating device 26 is representative of operating devices other than traveling.
  • the input shaft 21 a of the hydraulic pump 21 is coaxially connected to the output shaft 11 a of the engine 11, and the hydraulic pump 21 and the pilot pump 22 are driven by the engine 11.
  • the variable displacement hydraulic pump 21 includes a displacement displacement variable mechanism (for example, a swash plate) 21b and a pump regulator 27 that adjusts the tilt position of the displacement displacement mechanism 21b to control the displacement of the hydraulic pump.
  • the control valve 23 incorporates a plurality of main spools corresponding to the plurality of hydraulic actuators 24a to 24h, and these main spools output hydraulic signals (operation pilot pressures) output from the operation devices 25 and 26. Is switched by. As a result, the pressure oil from the hydraulic pump 21 is supplied to the plurality of hydraulic actuators 24a to 24h via the plurality of main spools to drive the driven bodies.
  • the generator motor system 3 includes a generator / motor 31, an inverter 32, a battery (power storage device) 33, a battery controller 34, and an operation panel 35.
  • the rotating shaft 31a of the generator / motor 31 is connected to the output shaft 11a of the engine 11 and the input shaft 21a of the hydraulic pump 21 via a gear mechanism 6 including a large diameter gear 6a and a small diameter gear 6b.
  • the generator / motor 31 is driven by the surplus torque and operates as a generator.
  • the electric power generated by the generator / motor 31 is stored in the battery 33 via the inverter 32.
  • the generator / motor 31 is supplied with the power of the battery 33 via the inverter 32 and operates as a motor.
  • the battery controller 34 monitors the amount of electricity stored in the battery 33, and the operation panel 35 displays information related to the amount of electricity stored (electricity storage information).
  • the control system 4 includes a travel speed changeover switch 41, a travel operation pilot pressure sensor 42, a non-travel operation pilot pressure sensor 43, a torque control solenoid valve 44, a travel speed switching solenoid valve 45, a vehicle body controller 46 ( Control device).
  • the vehicle body controller 46 is electrically connected to the travel speed switching switch 41, the operation pilot pressure sensors 42 and 43, the torque control electromagnetic valve 44, and the travel speed switching electromagnetic valve 45.
  • the vehicle body controller 46 is also electrically connected to the inverter 32, the battery controller 34, and the engine controller 13. Then, the vehicle body controller 46 inputs the instruction signal of the travel speed changeover switch 41, the detection signals of the operation pilot pressure sensors 42 and 43, the storage information of the battery controller 34, and the engine load factor information of the engine controller 13, and performs a predetermined calculation process.
  • the control signal is output to the inverter 32, the torque control solenoid valve 44, and the travel speed switching solenoid valve 45.
  • FIG. 2 is a diagram showing details of a hydraulic circuit related to the left and right traveling hydraulic motors 24 a and 24 b together with a traveling speed switching electromagnetic valve 45.
  • reference numerals 23 a and 23 b indicate left and right traveling main spools built in the control valve 23.
  • These main spools 23 a and 23 b are hydraulic signals output from the traveling operating device 25 ( Switching operation is performed by operating pilot pressure).
  • the pressure oil from the hydraulic pump 21 is supplied to the left and right traveling hydraulic motors 24a and 24b via the main spools 23a and 23b, and drives the left and right drive wheels.
  • the variable displacement travel hydraulic motor 24a includes a displacement displacement mechanism (swash plate) 24a1 and a control piston 24a2 for driving the displacement displacement mechanism 24a1, and a pressure receiving portion 24a3 is provided on one side of the control piston 24a2. And a spring 24a4 is arranged on the opposite side.
  • the variable displacement travel hydraulic motor 24b includes a displacement displacement variable mechanism (swash plate) 24b1 and a control piston 24b2 that drives the displacement displacement variable mechanism 24b1, and is provided on one side of the control piston 24b2.
  • a pressure receiving portion 24b3 is formed, and a spring 24b4 is disposed on the opposite side.
  • the traveling speed switching electromagnetic valve 45 when the traveling speed switching electromagnetic valve 45 is in the illustrated OFF position, the pressure receiving portion 24a3 of the control piston 24a2 and the pressure receiving portion 24b3 of the control piston 24b communicate with the tank. As a result, the control pistons 24a2 and 24b2 are pushed by the force of the springs 24a4 and 24b4 and are at the illustrated positions, and the displacement displacement mechanisms 24a1 and 24b1 are held at the large tilt positions (large capacity positions). In this large tilt position, the traveling hydraulic motors 24a and 24b can rotate at a low speed, and are in a state suitable for a traveling low speed. This state is referred to as a low speed and large capacity mode of the traveling hydraulic motors 24a and 24b.
  • the traveling speed switching electromagnetic valve 45 when the traveling speed switching electromagnetic valve 45 is switched to the ON position, the discharge pressure of the pilot pump 22 is led as the control pressure to the pressure receiving portion 24a3 of the control piston 24a2 and the pressure receiving portion 24b3 of the control piston 24b2.
  • the control pistons 24a2 and 24b2 are operated, and the displacement displacement mechanisms 24a1 and 24b1 are switched from the large tilt position (large capacity position) to the small tilt position (small capacity position).
  • the hydraulic motors 24a and 24b can rotate at high speed, and are in a state suitable for high traveling speed. This state is referred to as a high speed and small capacity mode of the traveling hydraulic motors 24a and 24b.
  • the discharge pressure of the pilot pump 22 is maintained at a constant value (for example, 4 Mpa) by the pilot relief valve 28.
  • FIG. 3 is a diagram showing details of the torque control unit of the pump regulator 27 together with the torque control solenoid valve 44 (however, the gear mechanism 6 is not shown for convenience).
  • the pump regulator 27 controls the tilt position of the displacement displacement variable mechanism 21b of the hydraulic pump 21 so as to discharge a flow rate corresponding to the required flow rate based on the operation amounts of the plurality of operation devices 25 and 26 (therefore, the capacity of the hydraulic pump is reduced).
  • the hydraulic pump 21 according to the discharge pressure of the hydraulic pump 21 so as not to exceed a predetermined value with the required flow rate response control unit (not shown) such as the LS control unit and the maximum absorption torque of the hydraulic pump 21 And a torque control section (see FIG. 3) for controlling the maximum tilt position of the variable displacement mechanism 21a (and thus controlling the maximum capacity of the hydraulic pump).
  • the torque controller of the pump regulator 27 includes a control spool 27a operatively connected to the displacement displacement variable mechanism 21b of the hydraulic pump 21, and a first spring acting on the control spool 27a in the direction of increasing the capacity of the hydraulic pump 21. 27b and a second spring 27c, and a first pressure receiving portion 27d and a second pressure receiving portion 27e that act on the spool 27a in the direction of decreasing the capacity of the hydraulic pump 21.
  • the discharge pressure of the hydraulic pump 21 is introduced to the first pressure receiving portion 27d via the pilot line 27f, and the control pressure from the torque control electromagnetic valve 44 is introduced to the second pressure receiving portion 27e via the control oil passage 27g. .
  • the first spring 27b and the second spring 27c are for setting the maximum absorption torque of the hydraulic pump 21.
  • the first spring 27b is longer than the second spring 27c, and when the control spool 27a is at the initial position shown in the figure, only the first spring 27b acts on the control spool 27a to urge the control spool 27a in the right direction in the figure. .
  • the second spring 27c also acts on the control spool 27a, and both the first spring 27b and the second spring 27c urge the control spool 27a in the right direction in the drawing.
  • the second pressure receiving portion 27e adjusts the maximum absorption torque of the hydraulic pump 21 (controls torque reduction). That is, for example, when the torque control electromagnetic valve 44 is in the illustrated OFF position, the second pressure receiving portion 27e of the pump regulator 27 communicates with the tank. On the other hand, for example, when the torque control solenoid valve 44 is switched to the ON position, the discharge pressure of the pilot pump 22 is guided to the second pressure receiving portion 27e of the pump regulator 27 as the control pressure. Thereby, torque reduction control is performed (details will be described later).
  • FIG. 4 is a pump torque characteristic diagram showing the function of the torque control unit of the pump regulator 27, where the horizontal axis shows the discharge pressure of the hydraulic pump 21 and the vertical axis shows the capacity of the hydraulic pump 21.
  • a bent line composed of two straight lines (solid lines) TP1 and TP2 is a maximum absorption torque characteristic set by the first spring 27b and the second spring 27c.
  • a bent line composed of two straight lines (dashed lines) TP3, TP4 is a maximum absorption torque characteristic in which torque reduction is controlled by a control pressure from the torque control electromagnetic valve 44.
  • a curve TEL is a limit torque of the engine 11 set so as to be smaller by a predetermined margin than the maximum output torque TEmax of the engine 11 as a reference.
  • the second pressure receiving portion 27e of the pump regulator 27 communicates with the tank, and the maximum absorption torque characteristic is linear TP1 by the first spring 27b and the second spring 27c. , TP2 is set as a bent line.
  • the oil pressure of the first pressure receiving portion 27d to which the discharge pressure of the hydraulic pump 21 is guided is the urging force of the first spring 27b.
  • the maximum capacity of the hydraulic pump 21 is maintained at qmax. That is, the capacity of the hydraulic pump 21 can be increased to qmax under the control of the required flow rate response control unit.
  • the control spring 27c also acts on the second spring 27c.
  • the ratio of the moving amount of the control spool 27a to the increasing amount of the discharge pressure of the hydraulic pump 21 decreases, and the maximum capacity of the hydraulic pump 21 is a straight line having a smaller slope than the straight line TP1. Decrease along TP2. Also in this case, the absorption torque of the hydraulic pump 21 is controlled so as not to exceed the limit torque TEL of the engine 11.
  • the control pressure is guided to the second pressure receiving portion 27e, and the oil pressure of the second pressure receiving portion 27e is supplied to the control spool 27a by the first and second springs 27b and 27c. It acts against the urging force of.
  • the setting of the maximum absorption torque by the first spring 27b and the second spring 27c is adjusted so as to decrease by the amount of the oil pressure of the second pressure receiving portion 27e, and the maximum absorption torque characteristic is a bending formed by the straight lines TP1 and TP2.
  • the line shifts to a bent line composed of straight lines TP3 and TP4.
  • FIG. 5 (A) is a diagram showing the relationship between the engine output horsepower limit value, the hydraulic pump PQ characteristic (horsepower characteristic), and the output usage range in an engine-type mini-excavator as a comparative example. It is a figure which shows the relationship between the engine output horsepower characteristic of the same mini excavator, and an output use range.
  • the horizontal axis indicates the discharge pressure of the hydraulic pump
  • the vertical axis indicates the discharge flow rate of the hydraulic pump.
  • the horizontal axis in FIG. 5B indicates the engine speed
  • the vertical axis indicates the engine output horsepower.
  • the PQ characteristic of the hydraulic pump is an output horsepower characteristic of the hydraulic pump obtained when the hydraulic pump having a certain maximum absorption torque characteristic is driven and rotated by the engine.
  • the PQ characteristic of the hydraulic pump shown in FIG. 5 (A) is that in the case of the hydraulic pump 21 having the maximum absorption torque characteristic shown in FIG. 4, and the engine speed is at the rated maximum speed. Is.
  • the limit value of the engine output horsepower shown in FIG. 5A and the engine output horsepower characteristic shown in FIG. 5B are those when the engine speed is at the rated maximum speed.
  • the working state of the engine-type mini excavator is traveling high speed, traveling low speed, and normal work.
  • A indicates an output use range at a traveling high speed
  • B indicates an output use range at a traveling low speed
  • C indicates an output use range at a normal operation.
  • the traveling high speed means a state in which the traveling hydraulic motors 24a and 24b are in the high speed and small capacity mode and the traveling operation device 25 is operated to travel.
  • the traveling low speed refers to a state in which the traveling hydraulic motors 24a and 24b are in the low speed and large capacity mode and the traveling operation device 25 is operated to travel.
  • the normal work refers to work performed by operating an operation device 26 other than traveling (in particular, an operation device related to any of the boom hydraulic cylinder 24c, the arm hydraulic cylinder 24d, the bucket hydraulic cylinder 24e, and the turning motor). The state of going.
  • HELc is a limit value of engine output horsepower
  • HEmaxc is a maximum output horsepower of the engine.
  • the engine output horsepower limit value HELc is set to be smaller than the engine maximum output horsepower HEmaxc by a predetermined margin. More specifically, since the speed (flow rate) is required at high traveling speed, the output of the hydraulic pump 21 at that time is the largest, and the limit value HELc of the engine output horsepower is the output usage range of the hydraulic pump 21 at the high traveling speed. It is set with a certain margin X1 with respect to A.
  • the maximum absorption torque characteristic of the pump regulator 27 is set by the first spring 27b and the second spring 27c as a bent line composed of straight lines TP1 and TP2, and FIG.
  • the PQ characteristic D of the hydraulic pump 21 shown in A) also has a bent line shape. Therefore, during normal work, the output use range B of the hydraulic pump 21 is far away from X2 with respect to the limit value HELc of the engine output horsepower, and there is too much room. This means that the engine output horsepower is not fully used.
  • FIG. 6A is a diagram showing the relationship between the engine output horsepower, the PQ characteristic (horsepower characteristic) of the hydraulic pump, and the output use range in the hybrid mini-excavator of the present embodiment
  • FIG. It is a figure which shows the relationship between the engine output horsepower characteristic of a mini excavator, and an output use range.
  • the maximum output horsepower HEmaxe of the engine 11 is made smaller than the engine maximum output horsepower HEmaxc (see FIG. 5B described above) in the engine-type mini-excavator of the comparative example, and the engine output horsepower is reduced.
  • the limit value HELe is set closer to the PQ characteristic D of the hydraulic pump 21.
  • the maximum output horsepower HEmaxe of the engine 11 can cover the hydraulic horsepower required for the hydraulic pump 21 during normal work and traveling low speed (in other words, in an operating state other than during traveling high speed).
  • the size is set so that the hydraulic horsepower required for the hydraulic pump 21 sometimes cannot be provided.
  • the output use range C at the time of normal work is ensured by utilizing the margin X3 generated by the bent line-shaped concave portion of the PQ characteristic D of the hydraulic pump 21.
  • the dotted line HELe + HM in FIGS. 6A and 6B is the total output horsepower of the engine output horsepower HELe and the motor output horsepower HM.
  • the output horsepower of the engine 11 is made smaller than when mounted on the engine-type mini excavator, and the limit value HELe of the engine output horsepower is brought close to the PQ characteristic D of the hydraulic pump 21, thereby making the output horsepower of the engine 11 full.
  • the engine 11 can be downsized (small engine). By downsizing the engine 11, fuel consumption can be reduced, the amount of harmful gas discharged from the engine 11 can be reduced, and noise can be reduced. Further, the auxiliary equipment of the engine 11 can be reduced in size or simplified, and the cost for manufacturing the engine 11 can be reduced in combination with the cost reduction by downsizing the engine 11, and the price of the entire machine can be reduced.
  • the engine 11 is preferably an engine of less than 19 kW, which is an output that does not apply to exhaust gas regulations, for example, an engine with an output of 18 kW.
  • the engine output is not necessary to mount an expensive and complicated exhaust gas aftertreatment device, and the price of the entire machine can be greatly reduced.
  • a mechanism for charging the battery 33 is secured as follows.
  • the vehicle body controller 46 instructs the traveling speed changeover switch 41 to indicate a traveling high speed based on the instruction signal of the traveling speed changeover switch 41, the detection signal of the operation pilot pressure sensor 42, and the storage information of the battery controller 34.
  • a control signal is output to the traveling speed switching electromagnetic valve 45 to
  • the hydraulic motors 24a and 24b are controlled to the low speed and large capacity mode (running high speed). Further, at the time of traveling at high speed, output assist is performed by operating the generator / motor 31 as a motor.
  • the traveling speed changeover switch 41 indicates a traveling high speed and the traveling operating device 25 is operated, the state of charge of the battery 33 is insufficient (for example, the charging rate is less than 30%). If it is determined, the traveling high speed instruction is invalidated and the traveling hydraulic motors 24a, 24b are controlled to the low speed large capacity mode (traveling low speed), and the battery 33 is charged.
  • the battery 33 When it is determined that the state of charge of the battery 33 is inadequate, the battery 33 is charged in an operating state other than during traveling at high speed (specifically, during traveling at low speed, during normal work, or during non-operation). For example, it is performed until the charging rate reaches 70%. More specifically, for example, when it is determined that the operating devices 25 and 26 are not being operated, or for example, when the vehicle is running at low speed or during normal work, the engine 11 is redundant based on the load factor information of the engine 11. When it is determined that there is torque (for example, the engine load factor is 70% or less), the battery 33 is charged without performing torque reduction control.
  • torque for example, the engine load factor is 70% or less
  • the control signal is output to the torque control solenoid valve 44 and reduced.
  • Perform torque control That is, the maximum absorption torque characteristic is shifted from the bending curve composed of the straight lines TP1 and TP2 to the folding curve composed of the straight lines TP3 and TP4 (see FIG. 4 described above), and the PQ characteristic is shifted from D to Dr (refer to FIG. 6 described above).
  • the output of the hydraulic pump 21 is reduced to forcibly produce surplus torque or surplus horsepower of the engine 11 and the battery 33 is charged.
  • FIG. 7 is a side view showing the appearance of the hybrid mini-excavator of the present embodiment
  • FIG. 8 is a plan view (however, for convenience, a plan view showing a state where a swing post 70 and a front work machine 71 described later are removed).
  • the front side left side in FIG. 7
  • rear side right side in FIG. 7
  • left side paper surface in FIG. 7
  • Front side and right side back side in FIG. 7 are simply referred to as front side, rear side, left side, and right side.
  • the hybrid mini-excavator includes a crawler type lower traveling body 50, an upper revolving body 60 that is turnable on the lower traveling body 50, and a swing to the front of the upper revolving body 60. It is connected via a post 70, and is provided with a front work machine 71 provided so as to be pivotable (can be raised and lowered) in the vertical direction.
  • This mini excavator is called a rear ultra-small turning type, and has a turning radius R at the rear end of the upper turning body 60 (specifically, as shown in FIG. 8, the upper turning body 60 is centered on the turning center O).
  • the radius R) of the locus drawn by the rear surface of the counterweight 64 which will be described later, is configured to be substantially within the width dimension of the lower traveling body 50.
  • the lower traveling body 50 includes a substantially H-shaped track frame 51 as viewed from above, left and right drive wheels 52 rotatably supported near the rear ends of the left and right sides of the track frame 51, and left and right sides of the track frame 51.
  • Left and right driven wheels (idlers) 53 rotatably supported in the vicinity of the front ends on both sides, and left and right crawler tracks (crawlers) 54 wound around the left and right drive wheels 52 and the driven wheels 53 are provided.
  • the left and right drive wheels 52 are rotated by the traveling hydraulic motors 24a and 24b.
  • a soil removal blade 55 is provided on the front side of the track frame 52 so as to be movable up and down. The blade 55 is moved up and down by a blade hydraulic cylinder 24h.
  • a turning wheel 56 is provided at the center of the track frame 51, and an upper turning body 60 is turnable through the turning wheel 56.
  • the upper turning body 60 is turned by a turning motor. .
  • the swing post 70 is provided on the front portion of the upper swing body 60 (specifically, a swing bracket 80F of the swing frame 61 described later) so as to be horizontally rotatable, and is rotated horizontally by the swing hydraulic cylinder 24g. It is like that. Thereby, the front work machine 71 swings to the left and right.
  • the front work machine 71 includes a boom 72 coupled to the swing post 70 so as to be pivotable in the vertical direction, an arm 73 coupled to the boom 72 so as to be pivotable in the vertical direction, and the arm 73 rotating in the vertical direction. And a bucket (attachment) 74 that is movably connected.
  • the boom 72, the arm 73, and the bucket 74 are rotated in the vertical direction by the boom hydraulic cylinder 24c, the arm hydraulic cylinder 24d, and the bucket hydraulic cylinder 24e.
  • the upper revolving structure 60 is a revolving frame 61 that forms the lower basic structure thereof, a driver's cab unit 62 that is disposed on the front left side of the revolving frame 61 and is tiltable with the front side as a fulcrum.
  • a counterweight 63 provided at the rear end and a plurality of exterior covers 64 attached to the periphery of the cab unit 62 on the turning frame 61 and the opening of the counterweight 63 are provided.
  • FIG. 9 is a top view showing the structure of the revolving frame 61
  • FIG. 10 is a perspective view.
  • the revolving frame 61 is roughly divided into a center frame 80, a left side frame 81 provided on the left side (lower side in FIG. 9, left side in FIG. 10) of the center frame 80, and a center frame. And a right side frame 82 provided on the right side of 80 (upper side in FIG. 9, right side in FIG. 10).
  • the center frame 80 includes a bottom plate 80A, a left front vertical plate 80B and a rear vertical plate 80C which are provided on the bottom plate 80A and extend in the front-rear direction, a right front vertical plate 80D and a rear vertical plate 80E, and a bottom plate.
  • the swing bracket 80F joined to the front end side of 80A and the front vertical plates 80B, 80D, and the rear end of the front vertical plates 80B, 80D standing on the bottom plate 80A and the front ends of the rear vertical plates 80C, 80E are joined.
  • a horizontal plate 80G extending in the left-right direction (specifically, extending between the left and right vertical plates and between the left vertical plate and the left side frame 81), and rear vertical plates 80C and 80E on the bottom plate 80A.
  • a weight support portion 80H provided on the rear end side.
  • an engine support portion 80I and a support fitting 80J are provided between the rear vertical plates 81C and 81E so as to be separated in the front-rear direction.
  • support brackets 80K and 80L are provided on the left side of the left rear vertical plate 80C so as to be separated in the front-rear direction.
  • the right side frame 82 is formed using, for example, a pipe material having a D-shaped cross section.
  • the right side frame 82 is joined to the right side of the swing bracket 80F and extends in the left-right direction, and an end portion of the front frame 82A.
  • an arcuate bending frame 82C connected to each other through a joint 82B.
  • the bending frame 82C has an intermediate portion connected to the bottom plate 80A via an overhanging beam 82D and a rear end portion connected to the bottom plate 80A via a connecting fitting 82E.
  • a mounting plate 82F is joined between the bending frame 82C and the right front vertical plate 80D so as to be positioned on the front side of the protruding beam 82D, and between the bending frame 82C and the right rear vertical plate 80E.
  • the mounting plate 82G is joined to the rear side of the overhanging beam 82D.
  • the mounting plates 82F and 82G are bent in a crank shape in order to secure an arrangement space for the swing hydraulic cylinder 24g.
  • the left side frame 81 is formed using, for example, a pipe material having a D-shaped cross section, and is joined to the left side of the swing bracket 80F and extends in the left-right direction.
  • An arc-shaped bending frame 81C connected to the end of the front frame 81A via a joint 81B is provided.
  • the bending frame 81C has an intermediate portion connected to the bottom plate 80A via a protruding beam 81D and a horizontal plate 80G, and a rear end portion connected to the bottom plate 80A via a connecting fitting 81E.
  • a leg plate 81F is erected in the vicinity of the joint 82B in the left side frame 82, and a mounting seat 80M is provided on the upper part of the swing bracket 80F.
  • a front support plate 81G that is supported by the leg plate 82F and the mounting seat 80M and extends in the left-right direction is provided.
  • the front support plate 81G rotatably supports the front portion of the cab unit 62 via a hinge mechanism 83 (see FIG. 12) described later.
  • FIG. 11 is a perspective view showing the structure of the cab unit 62.
  • FIG. 12 is a perspective view illustrating the structure of the floor member that constitutes the cab unit 62.
  • the cab unit 62 is provided on the revolving frame 61 so as to be tiltable with the front side as a fulcrum, and on the floor member 65.
  • the floor member 65 is roughly divided into a floor plate 84 that serves as a scaffold for the driver, a driver seat base 85 raised from the rear of the floor plate 84 and projecting to the rear side, and a right side plate 86 raised to the right side of the floor plate 84. And have.
  • a sleeve 86 ⁇ / b> A for attaching a moving member 96 (see FIG. 14) of the tilt holding mechanism 91 described later is provided on the right side plate 86.
  • the front part of the floor board 84 is a lever / pedal attachment part 84A for attaching the operating device 25 for traveling. Further, left and right hinge mechanisms 83 are provided between the front end portion of the floor plate 84 and the front support plate 81G of the revolving frame 61 described above.
  • the hinge mechanism 83 includes a bracket 83A attached to the front support plate 81G of the revolving frame 61, a bracket 83B provided at the front end of the floor plate 84, and a connecting pin 83C that rotatably connects the brackets 83A and 83B. , And rubber (not shown) inserted between the bracket 83A and the connecting pin.
  • the driver seat pedestal 85 includes a rising plate portion 85A that is vertically raised from the rear portion of the floor plate 84, a seat support plate portion 85B that extends rearward from the upper portion of the rising plate portion 85A, and the seat support plate portion.
  • a front pedestal 86 is attached to the rising plate portion 85 A of the driver seat pedestal 85, and the driver seat 66 is installed on the front pedestal 86 and the seat support plate portion 85 B of the driver seat pedestal 85.
  • a switch box 67 is attached to the box attachment portion 85D of the driver seat base 85.
  • a two-post canopy 68 is attached to the building attachment plate portion 85E of the driver seat pedestal 85 using bolts or the like.
  • the floor member 65 (that is, the cab unit 62) can be tilted via the front hinge mechanism 83, and the rear portion of the floor member 65 (that is, the cab unit 62) is lowered as shown in FIG. In the (tilted down) state, the rear portion (specifically, the building mounting plate portion 85E) is supported by the support member 69 and the like.
  • FIG. 13 is a perspective view showing the structure of the support member 69.
  • the support member 69 includes a rectangular tube-shaped pedestal 87 extending in the left-right direction, and a left front support 88A, a left rear support 88B, a right front support 88C, and a right rear support 88D that support the base 87.
  • the supports 88A to 88D of the support member 69 are bent so as to straddle the engine 11 disposed on the revolving frame 61 and attached to the revolving frame 61 (see FIGS. 17 to 19 and the like described later).
  • the lower ends of the left front column 88A and the right front column 88C are attached to the front side of the horizontal plate 80G of the revolving frame 61 using bolts or the like, and the lower end of the left rear column 88B is attached to the connecting bracket 81E of the revolving frame 61. It is attached to the front side using a bolt or the like, and the lower end portion of the right rear column 88D is attached to the front side of the support fitting 80J of the turning frame 61 using a bolt or the like.
  • a mounting base 89 (see FIG. 19 described later) extending in the left-right direction is attached via two anti-vibration mounts.
  • the rear portion of the cab unit 62 in the tilt-down state (specifically, the building mounting plate portion 85E of the floor member 65 described above) is supported on the mounting table 89 and can be attached to and detached from the mounting table 89 using bolts or the like. It is supposed to be fixed to.
  • a bracket (not shown) having an L-shaped cross section is provided on the rear side of the base 87 of the support member 68 so as to close the gap between the rear portion of the cab unit 62 in the tilted down state and the upper portion of the counterweight 63.
  • a plate cover 90 (see FIG. 16 described later) is attached.
  • FIG. 14 is a perspective view showing the structure of the tilt holding mechanism 91.
  • the tilt holding mechanism 91 includes a bracket 92 attached to the inclined surface portion 88C1 of the right front support 88C of the support member 69, a guide rail 94 rotatably provided to the bracket 92 via a connecting pin 93,
  • the guide rail 94 includes a screw shaft 95 rotatably provided, and a moving member 96 screwed to the screw shaft 95.
  • the guide rail 94 includes a base end portion 94A rotatably connected to the bracket 92 via a connecting pin 93, a pair of rail portions 94B extending in parallel from the base end portion 94A, and the pair of rail portions 94B. It is comprised with the front-end
  • the screw shaft 95 is disposed in the gap of the rail portion 94B of the guide rail 94, and the tip side thereof penetrates the tip portion 94C of the guide rail 94 and can be rotated by a thrust bearing (not shown) provided on the tip portion 94C.
  • the base end side is a free end separated from the base end portion 94A of the guide rail 94 by a predetermined distance.
  • a hexagonal tool connecting portion 95A is joined to the tip of the screw shaft 95 protruding from the tip 94C of the guide rail 94.
  • the moving member 96 includes a cylindrical shaft body 96A having a diameter smaller than the gap between the rail portions 94B of the guide rail 94 and a flange portion 96B having a diameter larger than the gap between the rail portions 94B.
  • a screw hole penetrating in the radial direction is formed in the shaft body 96A of the moving member 96, and a screw shaft 95 is screwed into the screw hole.
  • the end portion of the shaft body 96A of the moving member 96 is rotatably inserted into the sleeve 66A of the floor member 65, and is secured with a bolt.
  • FIG. 16 is a plan view showing the arrangement of the floor member 65 on the revolving frame 61 in this embodiment.
  • FIG. 17 shows the revolving frame by removing the floor member 65, the support member 69, the exterior cover 64, and the like from FIG.
  • FIG. 18 is a side view showing the arrangement of devices on the revolving frame 61 in the present embodiment (however, for convenience, a side view showing a state in which the exterior cover 64 has been removed), and
  • FIG. 19 is a cross section XIX-XIX in FIG. FIG. In FIG.
  • the support member 69 (specifically, the base 87, the left front column 88A, the left rear column 88B, the right front column 88C, and the right rear column 88D) is indicated by a two-dot chain line.
  • the axis positions of the output shaft 11 a of the engine 11 and the input shaft 21 a of the hydraulic pump 21 are indicated by a one-dot chain line A
  • the axis positions of the rotating shaft 31 a of the generator / motor 31 are indicated by a one-dot chain line. This is indicated by B.
  • an engine room (machine room) is formed on the rear portion of the revolving frame 61 and between the driver seat base 85 of the floor member 65 and the counterweight 63.
  • the engine room is formed in the engine room. 11 etc. are arranged. That is, the driver seat base 85 of the floor member 65 covers the front side and the upper side of the engine 11, and the counterweight 63 covers the rear side of the engine 11.
  • the engine 11 is disposed in a horizontally placed state between the rear vertical plates 80C and 80E on the revolving frame 61 so as to extend in the left-right direction.
  • the right end of the output shaft 11a of the engine 11 is connected to the rotating shaft of the cooling fan 100 via a power transmission mechanism (specifically, a pulley, a fan belt, etc.).
  • a radiator 101, an oil cooler 102, and the like are disposed on the attachment plate 82G of the frame 61.
  • a fuel tank 103, a hydraulic oil tank 104, and the like are disposed on the front side of the radiator 101, the oil cooler 102, and the like (in other words, the right side of the floor member 65).
  • the control valve 23 is disposed on the lower side of the floor plate 84 of the floor member 65 (specifically, on the under cover positioned on the front side of the overhanging beam 81 ⁇ / b> D of the revolving frame 61).
  • the left end portion of the output shaft 11a of the engine 11 is coaxially connected to the input shaft 21a of the hydraulic pump 21, and the input shaft 11a of the engine 11 and the input of the hydraulic pump 21 are connected.
  • the shaft 21 a and the rotating shaft 31 a of the generator / motor 31 are connected via the gear mechanism 6, and a gear box 105 that houses the gear mechanism 6 is provided.
  • the gear box 105 is configured such that the right side portion is connected to the engine 11 and the left side portion supports the hydraulic pump 21 and the generator / motor 31. That is, the engine 11, the hydraulic pump 21, and the generator / motor 31 are integrally configured via the gear box 105 to constitute a power unit.
  • the engine 11 is provided with two support brackets 106A and 106B spaced apart in the front-rear direction
  • the gear box 105 is provided with two support brackets 106C and 106D spaced apart in the front-rear direction.
  • the support bracket 106 ⁇ / b> A is attached to the engine support portion 80 ⁇ / b> I of the revolving frame 61 via the vibration isolation mount 107
  • the support bracket 106 ⁇ / b> B is attached to the support fitting 80 ⁇ / b> J of the revolving frame 61 via the vibration isolation mount 107.
  • the support bracket 106 ⁇ / b> C is attached to the support fitting 80 ⁇ / b> K of the revolving frame 61 via the anti-vibration mount 107
  • the support bracket 106 ⁇ / b> D is attached to the support attachment 80 ⁇ / b> L of the revolving frame 61 via the anti-vibration mount 107. That is, the power unit is supported on the turning frame 61 via the support brackets 106A to 106C and the vibration isolation mount 107.
  • the generator / motor 31 has a vertical direction in which the lowermost portion is located above the axis of the input shaft 21a of the hydraulic pump 21 and does not overlap the hydraulic pump 21 when viewed from the rear, as shown in FIG. As shown in FIG. 17, the position is arranged at a horizontal position so as to overlap the hydraulic pump 21 when viewed from above.
  • the generator / motor 31 includes a hydraulic pump 21, a suction-side hydraulic pipe 108 connected to the hydraulic pump 21 (specifically, a hydraulic pipe from the hydraulic oil tank 104), and a discharge-side hydraulic pipe 109 (specifically, the control valve 23. And the support brackets 106 ⁇ / b> C and 106 ⁇ / b> D of the gear box 105, the anti-vibration mount 107, and the support member 69.
  • FIG. 20 is a plan view showing the arrangement of devices on the turning frame 61 in the engine-type mini excavator of the comparative example (however, for convenience, a plan view in which the exhaust muffler 110B is omitted) corresponds to FIG. 17 described above.
  • FIG. 21 is a rear sectional view showing a device arrangement on the turning frame 61 in the engine-type mini excavator of the comparative example, and corresponds to FIG. 19 described above.
  • the generator / motor 31 is arranged using the space above the hydraulic pump 21 effectively.
  • the generator / motor 31 assists the hydraulic pump 21
  • the output horsepower of the engine 11 is reduced compared to the engine-type mini excavator, and the engine 11 and its auxiliary devices ( For example, the exhaust muffler 110A) is downsized.
  • the arrangement space of the gear box 105 can be ensured.
  • the space above the hydraulic pump 21, that is, the arrangement space for the generator / motor 31 can be ensured.
  • the support brackets 106A to 106D are provided only on the engine 11.
  • the power unit in which the engine 11 and the hydraulic pump 21 are integrally configured is supported on the turning frame 61 via the support brackets 106A to 106D and the vibration isolation mount 107.
  • the engine 11 is downsized by reducing the output horsepower of the engine 11. Therefore, if the support brackets 106A to 106D are provided only on the engine 11, the arrangement of the support brackets 106A to 106D (that is, the support position of the power unit) is different from that of the engine type mini excavator.
  • the support brackets 106A and 106B on the engine 11 and the support brackets 106C and 106D on the gear box 105 the support position of the power unit can be made the same as that of the engine type mini excavator, and the swivel frame 61 can be made common. Can be achieved. As a result, the development cost and the manufacturing cost can be reduced, and the existing engine-type mini excavator can be easily modified.
  • the hybrid mini-excavator of the present embodiment can be easily hybridized based on the rear ultra-small turning engine-type mini excavator.
  • the power unit support position is the same as that of the engine type mini excavator has been described as an example.
  • the present invention is not limited to this, and the power unit support position may be different from that of the engine type mini excavator.
  • the engine 11 and its auxiliary equipment are reduced in size by reducing the output horsepower of the engine as compared with the engine type excavator.
  • the output horsepower of the engine 11 may be the same as long as an arrangement space for the gear box 105 and the generator / motor 31 can be secured.
  • the application example of the present invention has been described by taking a rear ultra-small turning type excavator as an example.
  • the present invention is not limited to this, and the present invention may be applied to an ultra-small turning type excavator.
  • the present invention is not limited to the rear ultra-small turning hydraulic excavator and the ultra-small turning hydraulic excavator, and may be applied to a rear ultra-small turning or ultra-small turning hydraulic crane.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Provided is a hybrid construction machine such that hybridization can be easily achieved even in the case of a construction machine with a super-small turning radius ratio at the rear end or a construction machine with super-small turning radius ratios (at the front and rear ends). Said hybrid construction machine is a hybrid mini-excavator with a super-small turning radius ratio at the rear end, and is equipped with an engine (11); a hydraulic pump (21) wherein an input shaft (21a) is coaxially connected to an output shaft (11a) of the engine (11); an electric generator-motor (31) wherein a rotation shaft (31a) is connected to the output shaft (11a) of the engine (11) and to the input shaft (21a) of the hydraulic pump (21), with a gear mechanism (6) therebetween; and a battery (33) which supplies power to, and receives power from, the electric generator-motor (31). The electric generator-motor (31) is disposed at a vertical position such that the lowest portion is located above the shaft center of the input shaft (21a) of the hydraulic pump (21), and at a horizontal position such that, when seen from above, the electric generator-motor (31) overlaps the hydraulic pump (21).

Description

ハイブリッド式建設機械Hybrid construction machine
 本発明は、エンジン及び油圧ポンプに接続した発電・電動機を備えたハイブリッド式建設機械に係わり、特に、後方超小旋回型や超小旋回型のハイブリッド式建設機械に関する。 The present invention relates to a hybrid construction machine provided with a generator / motor connected to an engine and a hydraulic pump, and more particularly to a hybrid construction machine of a rear ultra-small turning type or an ultra-small turning type.
 建設機械の一つである油圧ショベルは、一般に、下部走行体と、この下部走行体上に旋回可能に設けた上部旋回体と、この上部旋回体に俯仰可能に設けられ、ブーム、アーム、及びバケットを含む多関節型の作業機とを備えている。この油圧ショベルの油圧駆動装置は、例えば、エンジンによって駆動する油圧ポンプと、この油圧ポンプからの圧油によって駆動する複数の油圧アクチュエータ(詳細には、走行用油圧モータ、ブーム用油圧シリンダ、アーム用油圧シリンダ、及びバケット用油圧シリンダ等)と、操作装置の操作に応じて油圧ポンプから油圧アクチュエータへの圧油の流れを制御するコントロールバルブとを備えている。 A hydraulic excavator, which is one of construction machines, is generally provided with a lower traveling body, an upper revolving body provided on the lower traveling body so as to be able to swivel, and an upper revolving body that can be raised and lowered. And an articulated working machine including a bucket. The hydraulic drive device of this hydraulic excavator includes, for example, a hydraulic pump driven by an engine and a plurality of hydraulic actuators driven by pressure oil from the hydraulic pump (specifically, a traveling hydraulic motor, a boom hydraulic cylinder, an arm And a control valve for controlling the flow of pressure oil from the hydraulic pump to the hydraulic actuator in accordance with the operation of the operating device.
 エンジン式の油圧ショベルは、油圧ポンプの動力源としてエンジンのみを搭載している。このエンジン式油圧ショベルにおいては、狭い作業現場での作業に適したものであって、後方超小旋回型や超小旋回型と呼ばれるものが知られている(例えば、特許文献1及び2参照)。特許文献1に記載の後方超小旋回型のミニショベルにおいては、作業機がスイングポストを介し上部旋回体の前部に連結されており、上部旋回体の後端の旋回半径が下部走行体の全幅にほぼ収まるように構成されている。特許文献2に記載の超小旋回型のミニショベルにおいては、作業機が上部旋回体の旋回中心寄りに連結されており、作業機を備えた上部旋回体が下部走行体の全幅にほぼ収まって旋回できるように構成されている。 The engine type hydraulic excavator is equipped with only the engine as the power source of the hydraulic pump. This engine-type hydraulic excavator is suitable for work in a narrow work site and is known as a rear ultra-small turning type or an ultra-small turning type (for example, see Patent Documents 1 and 2). . In the rear ultra-small turning type excavator described in Patent Document 1, the work machine is connected to the front part of the upper turning body via a swing post, and the turning radius at the rear end of the upper turning body is the lower traveling body. It is configured to fit within the full width. In the ultra-small turning type excavator described in Patent Document 2, the working machine is connected to the upper turning body near the turning center of the upper turning body, and the upper turning body provided with the working machine is substantially within the full width of the lower traveling body. It is configured to be able to turn.
 特許文献1及び2に記載のミニショベルにおいては、上部旋回体は、その下部基礎構造をなす旋回フレームと、この旋回フレーム上の後端に設けられ、旋回フレーム上に配置されたエンジンの後側を覆うカウンタウェイトと、旋回フレーム上の前後方向ほぼ全長にわたって設けられ、運転者の足場となる床板及びこの床板の後部から立上げられ後側に張出してエンジンの前側及び上側を覆う運転席台座を有するフロア部材と、旋回フレーム上にエンジン等を跨ぐように設けられ、フロア部材の後部を支持するサポート部材(支持部材)とを備えている。すなわち、上部旋回体の水平方向の寸法が制限されていることから、フロア部材上に運転室を形成し、この運転室に対しフロア部材の運転席台座で隔てて(言い換えれば、フロア部材の後部下側に入り込むように)エンジン室(機械室)を形成し、このエンジン室にエンジン等を配置している。 In the mini excavators described in Patent Documents 1 and 2, the upper swing body includes a swing frame that forms the lower basic structure thereof, and a rear side of the engine that is provided on the rear end of the swing frame and disposed on the swing frame. A counterweight that covers the front and rear sides of the revolving frame, and a driver's seat base that covers the front and upper sides of the engine that is raised from the rear of the floorboard and extends to the rear. And a support member (support member) that is provided on the revolving frame so as to straddle the engine or the like and supports the rear portion of the floor member. That is, since the horizontal dimension of the upper swing body is limited, a driver's cab is formed on the floor member and is separated from the driver's cab by a driver seat base of the floor member (in other words, after the floor member). An engine room (machine room) is formed so as to enter the subordinates, and an engine or the like is arranged in the engine room.
 エンジンは、左右方向に延在するように横置き状態で配置され、支持ブラケット及び防振マウントを介し支持されている。エンジンの出力軸の左側端部は油圧ポンプの入力軸が同軸接続されており、油圧ポンプがエンジンに対して一体となるように取付けられている。また、エンジンの出力軸の右側端部は動力伝達機構(詳細には、プーリ及びファンベルト等)を介し冷却ファンの回転軸が接続されており、冷却ファンの右側にはラジエータやオイルクーラ等の熱交換器が配置されている。また、熱交換器等の前側(言い換えれば、フロア部材の右側)には燃料タンクや作動油タンク等のタンク類が配置されている。また、フロア部材の床板の下側にはコントロールバルブ(制御弁ユニット)が配置されている。 The engine is placed horizontally so as to extend in the left-right direction, and is supported via a support bracket and an anti-vibration mount. The left end portion of the engine output shaft is coaxially connected to the input shaft of the hydraulic pump, and is attached so that the hydraulic pump is integrated with the engine. In addition, the rotating shaft of the cooling fan is connected to the right end of the engine output shaft via a power transmission mechanism (specifically, a pulley, a fan belt, etc.), and a radiator, an oil cooler, etc. are connected to the right side of the cooling fan. A heat exchanger is arranged. In addition, tanks such as a fuel tank and a hydraulic oil tank are disposed on the front side of the heat exchanger or the like (in other words, on the right side of the floor member). A control valve (control valve unit) is disposed below the floor plate of the floor member.
 ところで、近年、燃費の向上、排ガス特性の改善及び騒音の低減等の観点から、発電・電動機(回転電機)を搭載したハイブリッド式油圧ショベルが提唱されている(例えば、特許文献3参照)。特許文献3に記載のハイブリッド式油圧ショベルにおいては、発電・電動機は、その回転軸がギヤ機構を介しエンジンの出力軸及び油圧ポンプの入力軸に接続されており、エンジンの動力によって駆動して発電する発電機の機能、及びバッテリの電力によって駆動して油圧ポンプの補助動力源となる電動機の機能を兼ね備えている。 Incidentally, in recent years, a hybrid hydraulic excavator equipped with a generator / motor (rotary electric machine) has been proposed from the viewpoint of improving fuel efficiency, improving exhaust gas characteristics, and reducing noise (see, for example, Patent Document 3). In the hybrid hydraulic excavator described in Patent Literature 3, the rotating shaft of the generator / motor is connected to the output shaft of the engine and the input shaft of the hydraulic pump through a gear mechanism, and is driven by the power of the engine to generate power. It combines the function of a generator that performs power and the function of an electric motor that is driven by battery power and serves as an auxiliary power source for the hydraulic pump.
特開2006-2478号公報JP 2006-2478 A 特開2007-56627号公報JP 2007-56627 A 特開2001-173024号公報JP 2001-173024 A
 上記従来のハイブリット式油圧ショベルは、運転質量6トン以上の中型や大型の油圧ショベルであるか、若しくは運転質量6トン未満のミニショベルでも標準機型と呼ばれるものであって、上部旋回体の旋回半径が大きな油圧ショベルを対象としており、旋回フレーム上にエンジン、油圧ポンプ、及び発電・電動機からなるパワーユニットを搭載することが容易であった。しかし、後方超小旋回型や超小旋回型のミニショベルであって、上部旋回体の旋回半径が小さな油圧ショベルでは、前述したパワーユニットを搭載することが困難となる。すなわち、上部旋回体の左右方向(幅方向)の寸法が制限されるため、エンジン、油圧ポンプ、及び発電・電動機を左右方向に直列配置(直列接続)することが困難である。また、上部旋回体の前後方向(長さ方向)の寸法が制限されるため、エンジンに対して油圧ポンプ及び発電・電動機を前後に並列配置(並列接続)することが困難である。そのため、ハイブリッド化を実現することが容易ではなかった。 The conventional hybrid hydraulic excavator is a medium- or large-sized hydraulic excavator with an operating mass of 6 tons or more, or a mini excavator with an operating mass of less than 6 tons is also called a standard machine type. It is intended for hydraulic excavators with a large radius, and it was easy to mount a power unit consisting of an engine, a hydraulic pump, and a generator / motor on the swivel frame. However, it is difficult to mount the power unit described above in a hydraulic excavator that is a rear ultra-small turning type or ultra-small turning type excavator with a small turning radius of the upper turning body. That is, since the size of the upper swing body in the left-right direction (width direction) is limited, it is difficult to arrange the engine, the hydraulic pump, and the generator / motor in series in the left-right direction (series connection). In addition, since the size of the upper swing body in the front-rear direction (length direction) is limited, it is difficult to arrange the hydraulic pump and the generator / motor in parallel in front and rear (parallel connection) with respect to the engine. Therefore, it has not been easy to realize hybridization.
 なお、後方超小旋回型や超小旋回型のハイブリッド式油圧ショベルは、本来ならば専用機種(言い換えれば、後方超小旋回型や超小旋回型のエンジン式油圧ショベルとは全く異なるもの)として開発することが望ましい。しかし、早期にハイブリッド式油圧ショベルを市場へ提供するためには、現在の後方超小旋回型や超小旋回型のエンジン式油圧ショベルを活用して、ハイブリッド化が容易となるように機器を配置することが好ましい。そうすれば、開発コストや製造コストを低減するばかりか、既存のエンジン式油圧ショベルからの改造を容易に行えるからである。 Note that the rear ultra-small turning type and ultra-small turning type hybrid hydraulic excavator is originally a dedicated model (in other words, completely different from the backward ultra-small turning type and ultra-small turning type engine type hydraulic excavator). It is desirable to develop. However, in order to provide hybrid hydraulic excavators to the market at an early stage, equipment is arranged so that it can be easily hybridized by utilizing the current rear ultra-small turning and ultra-small turning engine-type hydraulic excavators. It is preferable to do. This is because not only the development cost and manufacturing cost can be reduced, but also the existing engine-type hydraulic excavator can be easily modified.
 本発明は、上記事柄に鑑みてなされたものであり、その目的は、後方超小旋回型や超小旋回型の建設機械であってもハイブリッド化を容易に実現することができるハイブリッド式建設機械を提供することにある。 The present invention has been made in view of the above-described matters, and an object of the present invention is to provide a hybrid construction machine that can easily realize hybridization even if it is a rear ultra-small turning type or ultra-small turning type construction machine. Is to provide.
 (1)上記目的を達成するために、本発明は、下部走行体と、前記下部走行体上に旋回可能に設けた上部旋回体と、前記上部旋回体に俯仰可能に設けた作業機と、走行用油圧モータを含む複数の油圧アクチュエータと、エンジンと、入力軸が前記エンジンの出力軸と同軸接続され、前記複数の油圧アクチュエータへ圧油を供給する油圧ポンプと、回転軸がギヤ機構を介し前記エンジンの出力軸及び前記油圧ポンプの入力軸に接続された発電・電動機と、前記発電・電動機に対し電力の授受を行う蓄電装置とを備え、前記上部旋回体は、その下部基礎構造をなす旋回フレームと、前記旋回フレーム上の後端に設けられ、前記旋回フレーム上に配置された前記エンジンの後側を覆うカウンタウェイトと、前記旋回フレーム上に設けられ、運転者の足場となる床板及び前記床板の後部から立上げられ後側に張出して前記エンジンの前側及び上側を覆う運転席台座を有するフロア部材と、前記旋回フレーム上に前記エンジン等を跨ぐように設けられ、前記フロア部材の後部を支持するサポート部材とを備えた後方超小旋回型若しくは超小旋回型のハイブリッド式建設機械であって、前記発電・電動機は、最下部が前記油圧ポンプの入力軸の軸心より上側に位置するような鉛直方向位置に、上方から見た場合に前記油圧ポンプとオーバーラップするような水平方向位置に配置する。 (1) In order to achieve the above object, the present invention includes a lower traveling body, an upper revolving body that is turnable on the lower traveling body, and a work machine that is provided on the upper revolving body so as to be able to rise and fall. A plurality of hydraulic actuators including a traveling hydraulic motor, an engine, a hydraulic pump whose input shaft is coaxially connected to the output shaft of the engine, and supplying pressure oil to the plurality of hydraulic actuators, and a rotary shaft via a gear mechanism A generator / motor connected to the output shaft of the engine and an input shaft of the hydraulic pump; and a power storage device for transferring power to the generator / motor; and the upper swing structure forms a lower basic structure. A swivel frame, a counterweight provided at a rear end on the swivel frame and covering a rear side of the engine disposed on the swivel frame, and provided on the swivel frame; A floor member that is a scaffold and a floor member that is raised from the rear portion of the floor plate and extends to the rear side and covers the front side and the upper side of the engine, and is provided so as to straddle the engine and the like on the turning frame, A rear ultra-small turning type or ultra-small turning type hybrid construction machine provided with a support member that supports the rear part of the floor member, wherein the generator / motor has a lowermost shaft serving as an input shaft of the hydraulic pump. It is arranged at a vertical position that is located above the center, and at a horizontal position that overlaps the hydraulic pump when viewed from above.
 後方超小旋回型若しくは超小旋回型のエンジン式建設機械(すなわち、油圧ポンプの動力源としてエンジンのみを搭載した建設機械)では、上部旋回体の後端若しくは全体の旋回半径が下部走行体の全幅にほぼ収まるように構成され、かつフロア部材の後部を支持するサポート部材がエンジンを跨ぐように設けられているため、油圧ポンプの上側にデッドスペースが生じる(なお、例えば特許文献2では、油圧ポンプの上側のスペースの一部は、排気マフラ等の配置スペースとなっている)。そこで、本発明のハイブリッド式建設機械(すなわち、エンジン及び油圧ポンプに接続された発電・電動機を搭載した建設機械)では、後方超小旋回型若しくは超小旋回型のエンジン式建設機械をベースとし、前述した油圧ポンプの上側のスペースを有効利用して発電・電動機を配置する。詳しく説明すると、発電・電動機は、最下部が油圧ポンプの入力軸より上側に位置するような鉛直方向位置に、上方から見た場合に油圧ポンプとオーバーラップするような水平方向位置に配置する。また、本発明のハイブリッド式建設機械では、発電・電動機が油圧ポンプをアシスト駆動することから、エンジン式建設機械と比べ、エンジンの出力馬力を小さくしてエンジン及びその補器(例えば排気マフラ等)を小型化することが可能である。これにより、ギヤ機構の配置スペースを確保することが可能となり、また油圧ポンプの上側のスペースすなわち発電・電動機の配置スペースを確実に確保することが可能となる。したがって、後方超小旋回型若しくは超小旋回型のエンジン式建設機械をベースとしてハイブリッド化する場合に、旋回フレーム上の他の機器(詳細には、例えば熱交換器やタンク類など)の配置を同じとすることができる。また、パワーユニットに関しても、エンジン式建設機械と同様、エンジンの出力軸と油圧ポンプの入力軸とを同軸接続するので、油圧ポンプの配置を同じとすることが可能であり、油圧ポンプに接続される油圧配管を共通化することが可能となる。以上のようにして、本発明においては、後方超小旋回型や超小旋回型の建設機械であってもハイブリッド化を容易に実現することができる。 In a rear ultra-small turning or ultra-small turning engine-type construction machine (that is, a construction machine equipped only with an engine as a power source of a hydraulic pump), the rear end of the upper turning body or the entire turning radius is equal to that of the lower traveling body. Since the support member that is configured to fit within the entire width and that supports the rear portion of the floor member is provided across the engine, a dead space is generated on the upper side of the hydraulic pump. A part of the space above the pump is an arrangement space for exhaust mufflers and the like). Therefore, the hybrid construction machine of the present invention (that is, a construction machine equipped with a generator / motor connected to an engine and a hydraulic pump) is based on an engine construction machine of a rear ultra-small turning type or an ultra-small turning type, The generator / motor is arranged by effectively using the space above the hydraulic pump described above. More specifically, the generator / motor is arranged at a vertical position where the lowermost portion is located above the input shaft of the hydraulic pump, and at a horizontal position where it overlaps the hydraulic pump when viewed from above. In the hybrid construction machine of the present invention, since the generator / motor assists the hydraulic pump, the engine and its auxiliary equipment (for example, an exhaust muffler) are reduced by reducing the output horsepower of the engine compared to the engine construction machine. Can be miniaturized. As a result, it is possible to secure an arrangement space for the gear mechanism, and it is also possible to ensure an upper space for the hydraulic pump, that is, an arrangement space for the generator / motor. Therefore, when hybridizing on the basis of a rear ultra-small turning type or ultra-small turning type engine-type construction machine, the arrangement of other devices on the turning frame (specifically, for example, heat exchangers and tanks) is arranged. The same can be done. As for the power unit, the engine output shaft and the hydraulic pump input shaft are coaxially connected in the same manner as in the engine-type construction machine, so that the arrangement of the hydraulic pumps can be the same and connected to the hydraulic pump. It becomes possible to share hydraulic piping. As described above, in the present invention, it is possible to easily achieve hybridization even with a backward ultra-small turning type or ultra-small turning type construction machine.
 (2)上記(1)において、好ましくは、前記走行用油圧モータを低速大容量モードと高速小容量モードに切換え指示可能な走行速度切換スイッチと、前記走行速度切換スイッチで高速小容量モードが指示され且つ走行用の操作装置が操作された運転状態である走行高速時に、前記蓄電装置からの電力により前記発電・電動機を駆動して電動機として作動させ、前記エンジンの出力トルク不足分を補うように制御する制御装置とを備え、前記エンジンの出力馬力は、前記走行高速時に前記油圧ポンプに必要とされる油圧馬力を賄うことができない大きさの設定とする。 (2) In the above (1), preferably, a traveling speed changeover switch capable of instructing switching of the traveling hydraulic motor between a low speed large capacity mode and a high speed small capacity mode, and a high speed small capacity mode instructed by the traveling speed changeover switch. In addition, at the time of traveling at high speed, which is an operating state in which the traveling operating device is operated, the generator / motor is driven by electric power from the power storage device to operate as an electric motor so as to compensate for an insufficient output torque of the engine. A control device for controlling the engine, and the output horsepower of the engine is set to a magnitude that cannot provide the hydraulic horsepower required for the hydraulic pump at the high traveling speed.
 (3)上記(2)において、好ましくは、前記エンジンに取付けられて、前記ギヤ機構を収納するととともに、前記油圧ポンプ及び前記発電・電動機を支持するギヤボックスを備え、複数の支持ブラケットを前記エンジン及び前記ギヤボックスに設け、前記ギヤボックスを介して前記エンジン、前記油圧ポンプ、及び前記発電・電動機が一体的に構成されたパワーユニットは、前記複数の支持ブラケットを介し前記旋回フレーム上で支持される。 (3) In the above (2), preferably, the engine is provided with a gear box for housing the gear mechanism and supporting the hydraulic pump and the generator / motor, and a plurality of support brackets are provided on the engine. And a power unit provided integrally with the engine, the hydraulic pump, and the generator / motor via the gear box and supported by the swivel frame via the plurality of support brackets. .
 エンジン式建設機械では、一般的に、複数の支持ブラケットをエンジンのみに設けており、エンジン及び油圧ポンプが一体的に構成されたパワーユニットは、前記複数の支持ブラケットを介し旋回フレーム上で支持されている。一方、本発明のハイブリッド式建設機械では、上記(2)のように、エンジン式建設機械と比べ、エンジンの出力馬力を小さくしてエンジンを小型化している。そのため、仮に、複数の支持ブラケットをエンジンのみに設けると、支持ブラケットの配置(すなわち、パワーユニットの支持位置)がエンジン式建設機械とは異なってしまう。そこで、複数の支持ブラケットをエンジン及びギヤボックスに設けることにより、パワーユニットの支持位置をエンジン式建設機械と同じにすることが可能で、旋回フレームの共通化を図ることが可能である。これにより、開発コストや製造コストを低減するばかりか、既存のエンジン式油圧ショベルからの改造を容易に行うことが可能となる。 In an engine-type construction machine, generally, a plurality of support brackets are provided only on the engine, and a power unit in which the engine and the hydraulic pump are integrally configured is supported on a swivel frame via the plurality of support brackets. Yes. On the other hand, in the hybrid construction machine of the present invention, as described in (2) above, the engine is downsized by reducing the output horsepower of the engine as compared with the engine construction machine. Therefore, if a plurality of support brackets are provided only in the engine, the arrangement of the support brackets (that is, the support position of the power unit) is different from that of the engine-type construction machine. Therefore, by providing a plurality of support brackets on the engine and the gear box, the support position of the power unit can be made the same as that of the engine-type construction machine, and the swivel frame can be made common. As a result, the development cost and the manufacturing cost can be reduced, and the existing engine type hydraulic excavator can be easily modified.
 (4)上記(3)において、好ましくは、前記発電・電動機は、前記ギヤボックスに設けた前記支持ブラケット等と干渉しないよう、後方から見た場合に前記油圧ポンプとオーバーラップしないような鉛直方向位置に配置する。 (4) In the above (3), preferably, the generator / motor does not overlap with the support bracket or the like provided in the gear box so that it does not overlap with the hydraulic pump when viewed from the rear. Place in position.
 本発明によれば、後方超小旋回型や超小旋回型の建設機械であってもハイブリッド化を容易に実現することができる。 According to the present invention, it is possible to easily achieve hybridization even with a backward ultra-small turning type or ultra-small turning type construction machine.
本発明の一実施形態のハイブリッド式ミニショベルにおける駆動システムの構成を表す概略図である。It is the schematic showing the structure of the drive system in the hybrid type mini shovel of one Embodiment of this invention. 左右の走行用油圧モータに係わる油圧回路の詳細を走行速度切替電磁弁と共に表す図である。It is a figure showing the detail of the hydraulic circuit regarding the right and left traveling hydraulic motors together with the traveling speed switching solenoid valve. ポンプレギュレータのトルク制御部の詳細を表す図である。It is a figure showing the detail of the torque control part of a pump regulator. ポンプレギュレータのトルク制御部の機能を示すポンプトルク特性図である。It is a pump torque characteristic figure which shows the function of the torque control part of a pump regulator. 比較例のエンジン式ミニショベルにおけるエンジン出力馬力の制限値と油圧ポンプのPQ特性(馬力特性)と出力使用範囲との関係を示す図、及びエンジン出力馬力特性と出力使用範囲との関係を示す図である。The figure which shows the relationship between the limit value of engine output horsepower, the PQ characteristic (horsepower characteristic) of a hydraulic pump, and an output use range in the engine type mini shovel of a comparative example, and the figure which shows the relationship between an engine output horsepower characteristic and an output use range It is. 本発明の一実施形態のハイブリッド式ミニショベルにおけるエンジン出力馬力の制限値と油圧ポンプのPQ特性(馬力特性)と出力使用範囲との関係を示す図、及びエンジン出力馬力特性と出力使用範囲との関係を示す図である。The figure which shows the relationship between the limit value of engine output horsepower, the PQ characteristic (horsepower characteristic) of a hydraulic pump, and an output use range in the hybrid type mini excavator of one embodiment of the present invention, and an engine output horsepower characteristic and an output use range It is a figure which shows a relationship. 本発明の一実施形態のハイブリッド式ミニショベルの外観を表す側面図であり、運転室ユニットのチルトダウン状態を示す。It is a side view showing the appearance of the hybrid type mini excavator of one embodiment of the present invention, and shows the tilt down state of the cab unit. 本発明の一実施形態のハイブリッド式ミニショベルの外観を表す平面図である。It is a top view showing the appearance of the hybrid type mini excavator of one embodiment of the present invention. 本発明の一実施形態における旋回フレームの構造を表す上面図である。It is a top view showing the structure of the turning frame in one Embodiment of this invention. 本発明の一実施形態における旋回フレームの構造を表す斜視図である。It is a perspective view showing the structure of the turning frame in one Embodiment of this invention. 本発明の一実施形態における運転室ユニットの構造を表す斜視図である。It is a perspective view showing the structure of the cab unit in one Embodiment of this invention. 本発明の一実施形態における運転室ユニットを構成するフロア部材の構造を表す斜視図である。It is a perspective view showing the structure of the floor member which comprises the cab unit in one Embodiment of this invention. 本発明の一実施形態におけるサポート部材の構造を表す斜視図である。It is a perspective view showing the structure of the support member in one Embodiment of this invention. 本発明の一実施形態における傾転保持機構の構造を表す斜視図である。It is a perspective view showing the structure of the tilt holding mechanism in one Embodiment of this invention. 本発明の一実施形態のハイブリッド式ミニショベルの外観を表す側面図であり、運転室ユニットのチルトアップ状態を示す。It is a side view showing the appearance of the hybrid type mini excavator of one embodiment of the present invention, and shows the tilt-up state of the cab unit. 本発明の一実施形態における旋回フレーム上の機器配置を説明するための平面図であり、旋回フレーム上のフロア部材の配置を示す。It is a top view for demonstrating arrangement | positioning of the apparatus on the turning frame in one Embodiment of this invention, and shows arrangement | positioning of the floor member on a turning frame. 本発明の一実施形態における旋回フレーム上の機器配置を表す平面図であり、図16からフロア部材、サポート部材、及び外装カバー等を取外した状態を示す。It is a top view showing apparatus arrangement | positioning on the turning frame in one Embodiment of this invention, and shows the state which removed the floor member, the support member, the exterior cover, etc. from FIG. 本発明の一実施形態における旋回フレーム上の機器配置を表す側面図である。It is a side view showing equipment arrangement on a revolving frame in one embodiment of the present invention. 図18中断面XIX-XIXによる後側断面図である。FIG. 19 is a rear sectional view taken along section XIX-XIX in FIG. 比較例のエンジン式ミニショベルにおける旋回フレーム上の機器配置を表す平面図である。It is a top view showing equipment arrangement on a turning frame in an engine type mini excavator of a comparative example. 比較例のエンジン式ミニショベルにおける旋回フレーム上の機器配置を表す後側断面図である。It is a rear sectional view showing device arrangement on a turning frame in an engine type mini excavator of a comparative example.
 以下、本発明の一実施形態を、図面を参照しつつ説明する。本実施形態は、ハイブリッド式の建設機械の一例としてミニショベルに適用したものである。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. This embodiment is applied to a mini excavator as an example of a hybrid construction machine.
 まず、本実施形態のハイブリッド式ミニショベルにおける駆動システムについて説明する。 First, the drive system in the hybrid mini-excavator of this embodiment will be described.
 図1は、本実施形態のハイブリッド式ミニショベルにおける駆動システムの構成を表す概略図である。 FIG. 1 is a schematic diagram showing the configuration of a drive system in the hybrid mini-excavator of this embodiment.
 この図1において、1はエンジン系であり、2は油圧系であり、3は発電電動系であり、4は制御系である。 In FIG. 1, 1 is an engine system, 2 is a hydraulic system, 3 is a generator motor system, and 4 is a control system.
 エンジン系1は、ディーゼルエンジン11と、エンジンコントロールダイヤル12と、エンジンコントローラ13と、電子ガバナ14とを備えている。 The engine system 1 includes a diesel engine 11, an engine control dial 12, an engine controller 13, and an electronic governor 14.
 エンジン11は、後述する如く、エンジン式ミニショベルに搭載するものよりダウンサイジングした(出力の小さい)ものである。エンジンコントロールダイヤル12は、オペレータの操作によりエンジンの目標回転数を指示する。エンジンコントローラ13は、エンジンコントロールダイヤル12からの目標回転数信号を入力し、所定の演算処理を行って目標燃料噴射量を求め、電子ガバナ14を制御することによりエンジンの各気筒に噴射される燃料噴射量を制御し、エンジン出力トルクと回転数を制御する。また、エンジンコントローラ13は、エンジン負荷率を演算し、エンジン負荷率情報を生成する。エンジン負荷率は、例えば、最大燃料噴射量に対する目標燃料噴射量の割合を演算することにより求められる。 As will be described later, the engine 11 is downsized (smaller output) than that mounted on the engine type mini excavator. The engine control dial 12 instructs the target engine speed by an operator's operation. The engine controller 13 inputs a target rotational speed signal from the engine control dial 12, performs a predetermined calculation process to obtain a target fuel injection amount, and controls the electronic governor 14 to control the fuel injected into each cylinder of the engine. The injection amount is controlled, and the engine output torque and the rotational speed are controlled. The engine controller 13 calculates an engine load factor and generates engine load factor information. The engine load factor is obtained, for example, by calculating the ratio of the target fuel injection amount to the maximum fuel injection amount.
 油圧系2は、油圧ポンプ21と、パイロットポンプ22と、コントロールバルブ23と、複数の油圧アクチュエータ(詳細には、例えば、左右の走行用油圧モータ24a,24bと、ブーム用油圧シリンダ24c、アーム用油圧シリンダ24d、バケット用油圧シリンダ24e、旋回用油圧モータ24f、スイング用油圧シリンダ24g、及びブレード用油圧シリンダ24h等。但し、旋回用油圧モータ24fは、旋回用電動モータに代えてもよい。)と、複数の操作装置25,26とを備えている。なお、操作装置25は左右の走行用の操作装置を代表したものであり、操作装置26は走行以外の操作装置を代表したものである。 The hydraulic system 2 includes a hydraulic pump 21, a pilot pump 22, a control valve 23, a plurality of hydraulic actuators (specifically, for example, left and right traveling hydraulic motors 24a and 24b, a boom hydraulic cylinder 24c, and an arm Hydraulic cylinder 24d, bucket hydraulic cylinder 24e, swing hydraulic motor 24f, swing hydraulic cylinder 24g, blade hydraulic cylinder 24h, etc. However, the swing hydraulic motor 24f may be replaced with a swing electric motor. And a plurality of operating devices 25 and 26. The operating device 25 is representative of left and right traveling operating devices, and the operating device 26 is representative of operating devices other than traveling.
 油圧ポンプ21の入力軸21aはエンジン11の出力軸11aと同軸接続されており、油圧ポンプ21及びパイロットポンプ22はエンジン11により駆動される。可変容量型の油圧ポンプ21は、押しのけ容積可変機構(例えば斜板)21bと、押しのけ容積可変機構21bの傾転位置を調整して油圧ポンプの容量を制御するポンプレギュレータ27とを備えている。コントロールバルブ23は、詳細を図示しないが、複数の油圧アクチュエータ24a~24hに対応する複数のメインスプールを内蔵し、これらのメインスプールが操作装置25,26から出力される油圧信号(操作パイロット圧)により切換操作される。これにより、複数のメインスプールを介して油圧ポンプ21からの圧油が複数の油圧アクチュエータ24a~24hに供給され、それぞれの被駆動体を駆動する。 The input shaft 21 a of the hydraulic pump 21 is coaxially connected to the output shaft 11 a of the engine 11, and the hydraulic pump 21 and the pilot pump 22 are driven by the engine 11. The variable displacement hydraulic pump 21 includes a displacement displacement variable mechanism (for example, a swash plate) 21b and a pump regulator 27 that adjusts the tilt position of the displacement displacement mechanism 21b to control the displacement of the hydraulic pump. Although not shown in detail, the control valve 23 incorporates a plurality of main spools corresponding to the plurality of hydraulic actuators 24a to 24h, and these main spools output hydraulic signals (operation pilot pressures) output from the operation devices 25 and 26. Is switched by. As a result, the pressure oil from the hydraulic pump 21 is supplied to the plurality of hydraulic actuators 24a to 24h via the plurality of main spools to drive the driven bodies.
 発電電動系3は、発電・電動機31と、インバータ32と、バッテリ(蓄電装置)33と、バッテリコントローラ34と、操作パネル35とを備えている。 The generator motor system 3 includes a generator / motor 31, an inverter 32, a battery (power storage device) 33, a battery controller 34, and an operation panel 35.
 発電・電動機31の回転軸31aは、大径ギヤ6a及び小径ギヤ6bからなるギヤ機構6を介してエンジン11の出力軸11a及び油圧ポンプ21の入力軸21aに接続されている。そして、例えばエンジン11に余剰トルクがある場合に、発電・電動機31は、その余剰トルクによって駆動されて発電機として作動する。発電・電動機31が発生した電力はインバータ32を介してバッテリ33に蓄電される。一方、例えばバッテリ33の蓄電量が規定値以上でありかつ油圧ポンプ21をアシスト駆動する必要がある場合に、発電・電動機31は、インバータ32を介してバッテリ33の電力が供給され、電動機として作動する。バッテリコントローラ34はバッテリ33の蓄電量を監視し、操作パネル35はその蓄電量に係わる情報(蓄電情報)を表示する。 The rotating shaft 31a of the generator / motor 31 is connected to the output shaft 11a of the engine 11 and the input shaft 21a of the hydraulic pump 21 via a gear mechanism 6 including a large diameter gear 6a and a small diameter gear 6b. For example, when the engine 11 has surplus torque, the generator / motor 31 is driven by the surplus torque and operates as a generator. The electric power generated by the generator / motor 31 is stored in the battery 33 via the inverter 32. On the other hand, for example, when the amount of power stored in the battery 33 is equal to or greater than a specified value and the hydraulic pump 21 needs to be assisted, the generator / motor 31 is supplied with the power of the battery 33 via the inverter 32 and operates as a motor. To do. The battery controller 34 monitors the amount of electricity stored in the battery 33, and the operation panel 35 displays information related to the amount of electricity stored (electricity storage information).
 制御系4は、走行速度切換スイッチ41と、走行の操作パイロット圧センサ42と、走行以外の操作パイロット圧センサ43と、トルク制御電磁弁44と、走行速度切替電磁弁45と、車体コントローラ46(制御装置)とを備えている。 The control system 4 includes a travel speed changeover switch 41, a travel operation pilot pressure sensor 42, a non-travel operation pilot pressure sensor 43, a torque control solenoid valve 44, a travel speed switching solenoid valve 45, a vehicle body controller 46 ( Control device).
 車体コントローラ46は、走行速度切換スイッチ41、操作パイロット圧センサ42,43、トルク制御電磁弁44、及び走行速度切替電磁弁45と電気的に接続されている。また、車体コントローラ46は、インバータ32、バッテリコントローラ34、及びエンジンコントローラ13とも電気的に接続されている。そして、車体コントローラ46は、走行速度切換スイッチ41の指示信号、操作パイロット圧センサ42,43の検出信号、バッテリコントローラ34の蓄電情報及びエンジンコントローラ13のエンジン負荷率情報を入力し、所定の演算処理を行い、インバータ32、トルク制御電磁弁44及び走行速度切替電磁弁45に制御信号を出力する。 The vehicle body controller 46 is electrically connected to the travel speed switching switch 41, the operation pilot pressure sensors 42 and 43, the torque control electromagnetic valve 44, and the travel speed switching electromagnetic valve 45. The vehicle body controller 46 is also electrically connected to the inverter 32, the battery controller 34, and the engine controller 13. Then, the vehicle body controller 46 inputs the instruction signal of the travel speed changeover switch 41, the detection signals of the operation pilot pressure sensors 42 and 43, the storage information of the battery controller 34, and the engine load factor information of the engine controller 13, and performs a predetermined calculation process. The control signal is output to the inverter 32, the torque control solenoid valve 44, and the travel speed switching solenoid valve 45.
 図2は、左右の走行用油圧モータ24a,24bに係わる油圧回路の詳細を、走行速度切替電磁弁45と共に表す図である。 FIG. 2 is a diagram showing details of a hydraulic circuit related to the left and right traveling hydraulic motors 24 a and 24 b together with a traveling speed switching electromagnetic valve 45.
 この図2において、符号23a,23bはコントロールバルブ23に内蔵された左右の走行用のメインスプールを示しており、これらメインスプール23a,23bは、走行用の操作装置25から出力される油圧信号(操作パイロット圧)により切換操作される。これにより、メインスプール23a,23bを介して油圧ポンプ21からの圧油が左右の走行用油圧モータ24a,24bに供給され、左右の駆動輪を駆動する。 In FIG. 2, reference numerals 23 a and 23 b indicate left and right traveling main spools built in the control valve 23. These main spools 23 a and 23 b are hydraulic signals output from the traveling operating device 25 ( Switching operation is performed by operating pilot pressure). As a result, the pressure oil from the hydraulic pump 21 is supplied to the left and right traveling hydraulic motors 24a and 24b via the main spools 23a and 23b, and drives the left and right drive wheels.
 可変容量型の走行用油圧モータ24aは、押しのけ容積可変機構(斜板)24a1と、押しのけ容積可変機構24a1を駆動する制御ピストン24a2とを備えており、制御ピストン24a2の一側には受圧部24a3が形成され、その反対側にはバネ24a4が配置されている。同様に、可変容量型の走行用油圧モータ24bは、押しのけ容積可変機構(斜板)24b1と、押しのけ容積可変機構24b1を駆動する制御ピストン24b2とを備えており、制御ピストン24b2の一側には受圧部24b3が形成され、その反対側にはバネ24b4が配置されている。 The variable displacement travel hydraulic motor 24a includes a displacement displacement mechanism (swash plate) 24a1 and a control piston 24a2 for driving the displacement displacement mechanism 24a1, and a pressure receiving portion 24a3 is provided on one side of the control piston 24a2. And a spring 24a4 is arranged on the opposite side. Similarly, the variable displacement travel hydraulic motor 24b includes a displacement displacement variable mechanism (swash plate) 24b1 and a control piston 24b2 that drives the displacement displacement variable mechanism 24b1, and is provided on one side of the control piston 24b2. A pressure receiving portion 24b3 is formed, and a spring 24b4 is disposed on the opposite side.
 そして、例えば走行速度切替電磁弁45が図示のOFF位置にあるとき、制御ピストン24a2の受圧部24a3及び制御ピストン24bの受圧部24b3はタンクに連通する。これにより、制御ピストン24a2,24b2はバネ24a4,24b4の力で押されて図示の位置にあって、押しのけ容積可変機構24a1,24b1は大傾転位置(大容量位置)に保持される。この大傾転位置では、走行用油圧モータ24a,24bは低速回転が可能であり、走行低速に適した状態となる。この状態を、走行用油圧モータ24a,24bの低速大容量モードと称す。 For example, when the traveling speed switching electromagnetic valve 45 is in the illustrated OFF position, the pressure receiving portion 24a3 of the control piston 24a2 and the pressure receiving portion 24b3 of the control piston 24b communicate with the tank. As a result, the control pistons 24a2 and 24b2 are pushed by the force of the springs 24a4 and 24b4 and are at the illustrated positions, and the displacement displacement mechanisms 24a1 and 24b1 are held at the large tilt positions (large capacity positions). In this large tilt position, the traveling hydraulic motors 24a and 24b can rotate at a low speed, and are in a state suitable for a traveling low speed. This state is referred to as a low speed and large capacity mode of the traveling hydraulic motors 24a and 24b.
 一方、例えば走行速度切替電磁弁45がON位置に切り換えられると、制御ピストン24a2の受圧部24a3及び制御ピストン24b2の受圧部24b3に制御圧力としてパイロットポンプ22の吐出圧力が導かれる。これにより、制御ピストン24a2,24b2が作動して、押しのけ容積可変機構24a1,24b1は大傾転位置(大容量位置)から小傾転位置(小容量位置)へと切り換えられる。この小傾転位置では、油圧モータ24a,24bは高速回転が可能であり、走行高速に適した状態となる。この状態を、走行用油圧モータ24a,24bの高速小容量モードと称す。なお、パイロットポンプ22の吐出圧力はパイロットリリーフ弁28により一定の値(例えば4Mpa)に保たれている。 On the other hand, for example, when the traveling speed switching electromagnetic valve 45 is switched to the ON position, the discharge pressure of the pilot pump 22 is led as the control pressure to the pressure receiving portion 24a3 of the control piston 24a2 and the pressure receiving portion 24b3 of the control piston 24b2. As a result, the control pistons 24a2 and 24b2 are operated, and the displacement displacement mechanisms 24a1 and 24b1 are switched from the large tilt position (large capacity position) to the small tilt position (small capacity position). In this small tilt position, the hydraulic motors 24a and 24b can rotate at high speed, and are in a state suitable for high traveling speed. This state is referred to as a high speed and small capacity mode of the traveling hydraulic motors 24a and 24b. The discharge pressure of the pilot pump 22 is maintained at a constant value (for example, 4 Mpa) by the pilot relief valve 28.
 図3は、ポンプレギュレータ27のトルク制御部の詳細を、トルク制御電磁弁44と共に表す図(但し、便宜上、ギヤ機構6を示していない)である。 FIG. 3 is a diagram showing details of the torque control unit of the pump regulator 27 together with the torque control solenoid valve 44 (however, the gear mechanism 6 is not shown for convenience).
 ポンプレギュレータ27は、複数の操作装置25,26の操作量に基づく要求流量に応じた流量を吐出するよう油圧ポンプ21の押しのけ容積可変機構21bの傾転位置を制御する(したがって油圧ポンプの容量を制御する)LS制御部等の要求流量応答制御部(図示せず)と、油圧ポンプ21の最大吸収トルクを予め定められた値を超えないように油圧ポンプ21の吐出圧力に応じて油圧ポンプ21の押しのけ容積可変機構21aの最大傾転位置を制御する(したがって油圧ポンプの最大容量を制御する)トルク制御部(図3参照)とを有している。 The pump regulator 27 controls the tilt position of the displacement displacement variable mechanism 21b of the hydraulic pump 21 so as to discharge a flow rate corresponding to the required flow rate based on the operation amounts of the plurality of operation devices 25 and 26 (therefore, the capacity of the hydraulic pump is reduced). The hydraulic pump 21 according to the discharge pressure of the hydraulic pump 21 so as not to exceed a predetermined value with the required flow rate response control unit (not shown) such as the LS control unit and the maximum absorption torque of the hydraulic pump 21 And a torque control section (see FIG. 3) for controlling the maximum tilt position of the variable displacement mechanism 21a (and thus controlling the maximum capacity of the hydraulic pump).
 ポンプレギュレータ27のトルク制御部は、油圧ポンプ21の押しのけ容積可変機構21bに作動的に連結された制御スプール27aと、この制御スプール27aに対して油圧ポンプ21の容量増加方向に作用する第1バネ27b及び第2バネ27cと、スプール27aに対して油圧ポンプ21の容量減少方向に作用する第1受圧部27d及び第2受圧部27eとで構成されている。第1受圧部27dには油圧ポンプ21の吐出圧力がパイロットライン27fを介して導入され、第2受圧部27eにはトルク制御電磁弁44からの制御圧力が制御油路27gを介して導入される。 The torque controller of the pump regulator 27 includes a control spool 27a operatively connected to the displacement displacement variable mechanism 21b of the hydraulic pump 21, and a first spring acting on the control spool 27a in the direction of increasing the capacity of the hydraulic pump 21. 27b and a second spring 27c, and a first pressure receiving portion 27d and a second pressure receiving portion 27e that act on the spool 27a in the direction of decreasing the capacity of the hydraulic pump 21. The discharge pressure of the hydraulic pump 21 is introduced to the first pressure receiving portion 27d via the pilot line 27f, and the control pressure from the torque control electromagnetic valve 44 is introduced to the second pressure receiving portion 27e via the control oil passage 27g. .
 第1バネ27b及び第2バネ27cは、油圧ポンプ21の最大吸収トルクを設定するものである。第1バネ27bは第2バネ27cよりも長く、制御スプール27aが図示の初期位置にあるときは第1バネ27bのみが制御スプール27aに作用して、制御スプール27aを図示右方向に付勢する。制御スプール27aが図示左方向にある程度移動すると第2バネ27cも制御スプール27aに作用して、第1バネ27b及び第2バネ27cの両方が制御スプール27aを図示右方向に付勢する。 The first spring 27b and the second spring 27c are for setting the maximum absorption torque of the hydraulic pump 21. The first spring 27b is longer than the second spring 27c, and when the control spool 27a is at the initial position shown in the figure, only the first spring 27b acts on the control spool 27a to urge the control spool 27a in the right direction in the figure. . When the control spool 27a moves to the left in the drawing to some extent, the second spring 27c also acts on the control spool 27a, and both the first spring 27b and the second spring 27c urge the control spool 27a in the right direction in the drawing.
 第2受圧部27eは、油圧ポンプ21の最大吸収トルクを調整する(減トルク制御する)ものである。すなわち、例えばトルク制御電磁弁44が図示のOFF位置にあるとき、ポンプレギュレータ27の第2受圧部27eはタンクに連通する。一方、例えばトルク制御電磁弁44がON位置に切り換えられると、ポンプレギュレータ27の第2受圧部27eに制御圧力としてパイロットポンプ22の吐出圧力が導かれる。これにより、減トルク制御が行われる(詳細は後述)。 The second pressure receiving portion 27e adjusts the maximum absorption torque of the hydraulic pump 21 (controls torque reduction). That is, for example, when the torque control electromagnetic valve 44 is in the illustrated OFF position, the second pressure receiving portion 27e of the pump regulator 27 communicates with the tank. On the other hand, for example, when the torque control solenoid valve 44 is switched to the ON position, the discharge pressure of the pilot pump 22 is guided to the second pressure receiving portion 27e of the pump regulator 27 as the control pressure. Thereby, torque reduction control is performed (details will be described later).
 図4は、ポンプレギュレータ27のトルク制御部の機能を示すポンプトルク特性図であり、横軸は油圧ポンプ21の吐出圧力を示し、縦軸は油圧ポンプ21の容量を示している。 FIG. 4 is a pump torque characteristic diagram showing the function of the torque control unit of the pump regulator 27, where the horizontal axis shows the discharge pressure of the hydraulic pump 21 and the vertical axis shows the capacity of the hydraulic pump 21.
 この図4において、2つの直線(実線)TP1,TP2からなる折れ曲がり線は、第1バネ27b及び第2バネ27cにより設定される最大吸収トルク特性である。2つの直線(一点鎖線)TP3,TP4からなる折れ曲がり線は、トルク制御電磁弁44からの制御圧力によって減トルク制御された最大吸収トルク特性である。曲線TELは、エンジン11の最大出力トルクTEmaxを基準として、それよりも所定の余裕分だけ小さくなるように設定されたエンジン11の制限トルクである。 In FIG. 4, a bent line composed of two straight lines (solid lines) TP1 and TP2 is a maximum absorption torque characteristic set by the first spring 27b and the second spring 27c. A bent line composed of two straight lines (dashed lines) TP3, TP4 is a maximum absorption torque characteristic in which torque reduction is controlled by a control pressure from the torque control electromagnetic valve 44. A curve TEL is a limit torque of the engine 11 set so as to be smaller by a predetermined margin than the maximum output torque TEmax of the engine 11 as a reference.
 トルク制御電磁弁44が前述の図3に示すOFF位置にあるとき、ポンプレギュレータ27の第2受圧部27eはタンクに連通し、最大吸収トルク特性は第1バネ27b及び第2バネ27cによって直線TP1,TP2からなる折れ曲げ線のように設定される。この場合、油圧ポンプ21の吐出圧力の上昇時に吐出圧力が第1の値P1を超える前は、油圧ポンプ21の吐出圧力が導かれる第1受圧部27dの油圧力は第1バネ27bの付勢力より小さく、油圧ポンプ21の最大容量はqmaxに維持される。すなわち、油圧ポンプ21の容量は、要求流量応答制御部の制御によりqmaxまで上昇することができる。油圧ポンプ21の吐出圧力が更に上昇して第1の値P1を超えると、油圧ポンプ21の吐出圧力が導かれる第1受圧部27dの油圧力は第1バネ27bの付勢力より大きくなり、制御スプール27aは前述の図3中左方向に移動して、油圧ポンプ21の最大容量は折れ曲げ線の直線TP1に沿って減少する。これにより、要求流量応答制御部により制御される油圧ポンプ21の容量は直線TP1が規定する最大容量以下に制限され、油圧ポンプ21の吸収トルク(ポンプ吐出圧力と容量の積)はエンジン11の制限トルクTELを超えないように制御される。 When the torque control solenoid valve 44 is in the OFF position shown in FIG. 3, the second pressure receiving portion 27e of the pump regulator 27 communicates with the tank, and the maximum absorption torque characteristic is linear TP1 by the first spring 27b and the second spring 27c. , TP2 is set as a bent line. In this case, before the discharge pressure exceeds the first value P1 when the discharge pressure of the hydraulic pump 21 increases, the oil pressure of the first pressure receiving portion 27d to which the discharge pressure of the hydraulic pump 21 is guided is the urging force of the first spring 27b. The maximum capacity of the hydraulic pump 21 is maintained at qmax. That is, the capacity of the hydraulic pump 21 can be increased to qmax under the control of the required flow rate response control unit. When the discharge pressure of the hydraulic pump 21 further increases and exceeds the first value P1, the oil pressure of the first pressure receiving portion 27d to which the discharge pressure of the hydraulic pump 21 is guided becomes larger than the urging force of the first spring 27b, and the control The spool 27a moves to the left in FIG. 3, and the maximum capacity of the hydraulic pump 21 decreases along the straight line TP1 of the fold line. As a result, the capacity of the hydraulic pump 21 controlled by the required flow rate response control unit is limited to the maximum capacity defined by the straight line TP1, and the absorption torque (product of pump discharge pressure and capacity) of the hydraulic pump 21 is limited by the engine 11. Control is performed so as not to exceed the torque TEL.
 油圧ポンプ21の吐出圧力が更に上昇して第2の値P2を超えると、制御スプール27aは第2バネ27cも作用する。これにより、油圧ポンプ21の吐出圧力の上昇量に対する制御スプール27aの移動量の割合(油圧ポンプ21の容量の減少割合)は減少し、油圧ポンプ21の最大容量は直線TP1よりも傾きの小さい直線TP2に沿って減少する。この場合も、油圧ポンプ21の吸収トルクはエンジン11の制限トルクTELを超えないように制御される。油圧ポンプ21の吐出圧力がメインリリーフ弁29の設定圧力に達すると、それ以上油圧ポンプ21の吐出圧力の上昇は阻止される。 When the discharge pressure of the hydraulic pump 21 further rises and exceeds the second value P2, the control spring 27c also acts on the second spring 27c. Thereby, the ratio of the moving amount of the control spool 27a to the increasing amount of the discharge pressure of the hydraulic pump 21 (the decreasing ratio of the capacity of the hydraulic pump 21) decreases, and the maximum capacity of the hydraulic pump 21 is a straight line having a smaller slope than the straight line TP1. Decrease along TP2. Also in this case, the absorption torque of the hydraulic pump 21 is controlled so as not to exceed the limit torque TEL of the engine 11. When the discharge pressure of the hydraulic pump 21 reaches the set pressure of the main relief valve 29, further increase in the discharge pressure of the hydraulic pump 21 is prevented.
 一方、トルク制御電磁弁44がON位置に切り換わると、第2受圧部27eに制御圧力が導かれ、制御スプール27aには第2受圧部27eの油圧力が第1及び第2バネ27b,27cの付勢力に対向して作用する。これにより第1バネ27b及び第2バネ27cによる最大吸収トルクの設定は、第2受圧部27eの油圧力の分だけ減少するよう調整され、最大吸収トルク特性は、直線TP1,TP2からなる折れ曲げ線から直線TP3,TP4からなる折れ曲げ線へとシフトする。その結果、油圧ポンプ21の吐出圧力の上昇時、油圧ポンプ21の最大容量は直線TP3,TP4からなる折れ曲げ線に沿って減少する。このときの油圧ポンプ21の最大吸収トルク(ポンプ吐出圧力と最大容量の積)は直線TP1,TP2のときの最大吸収トルクに比べて小さくなり、エンジン11の余剰トルクが強制的に作り出される。このような制御を減トルク制御という。 On the other hand, when the torque control electromagnetic valve 44 is switched to the ON position, the control pressure is guided to the second pressure receiving portion 27e, and the oil pressure of the second pressure receiving portion 27e is supplied to the control spool 27a by the first and second springs 27b and 27c. It acts against the urging force of. Thereby, the setting of the maximum absorption torque by the first spring 27b and the second spring 27c is adjusted so as to decrease by the amount of the oil pressure of the second pressure receiving portion 27e, and the maximum absorption torque characteristic is a bending formed by the straight lines TP1 and TP2. The line shifts to a bent line composed of straight lines TP3 and TP4. As a result, when the discharge pressure of the hydraulic pump 21 rises, the maximum capacity of the hydraulic pump 21 decreases along the bending line formed by the straight lines TP3 and TP4. The maximum absorption torque (product of pump discharge pressure and maximum capacity) of the hydraulic pump 21 at this time is smaller than the maximum absorption torque for the straight lines TP1 and TP2, and surplus torque of the engine 11 is forcibly created. Such control is called reduced torque control.
 次に、エンジン11の出力馬力の設定について、比較例を用いながら説明する。 Next, setting of the output horsepower of the engine 11 will be described using a comparative example.
 図5(A)は、比較例としてエンジン式ミニショベルにおけるエンジン出力馬力の制限値と油圧ポンプのPQ特性(馬力特性)と出力使用範囲との関係を示す図であり、図5(B)は、同ミニショベルのエンジン出力馬力特性と出力使用範囲との関係を示す図である。図5(A)の横軸は油圧ポンプの吐出圧力を示し、縦軸は油圧ポンプの吐出流量を示している。図5(B)の横軸はエンジンの回転数を示し、縦軸はエンジンの出力馬力を示している。 FIG. 5 (A) is a diagram showing the relationship between the engine output horsepower limit value, the hydraulic pump PQ characteristic (horsepower characteristic), and the output usage range in an engine-type mini-excavator as a comparative example. It is a figure which shows the relationship between the engine output horsepower characteristic of the same mini excavator, and an output use range. In FIG. 5A, the horizontal axis indicates the discharge pressure of the hydraulic pump, and the vertical axis indicates the discharge flow rate of the hydraulic pump. The horizontal axis in FIG. 5B indicates the engine speed, and the vertical axis indicates the engine output horsepower.
 油圧ポンプのPQ特性とは、ある最大吸収トルク特性を持つ油圧ポンプをエンジンで駆動して回転させ、作業を行ったときに得られる油圧ポンプの出力馬力特性である。図5(A)に示す油圧ポンプのPQ特性は、前述の図4に示した最大吸収トルク特性を持つ油圧ポンプ21の場合のものであり、かつエンジン回転数が定格最大回転数にある場合のものである。図5(A)に示すエンジン出力馬力の制限値と図5(B)に示すエンジン出力馬力特性も、同様に、エンジン回転数が定格最大回転数にある場合のものである。 The PQ characteristic of the hydraulic pump is an output horsepower characteristic of the hydraulic pump obtained when the hydraulic pump having a certain maximum absorption torque characteristic is driven and rotated by the engine. The PQ characteristic of the hydraulic pump shown in FIG. 5 (A) is that in the case of the hydraulic pump 21 having the maximum absorption torque characteristic shown in FIG. 4, and the engine speed is at the rated maximum speed. Is. Similarly, the limit value of the engine output horsepower shown in FIG. 5A and the engine output horsepower characteristic shown in FIG. 5B are those when the engine speed is at the rated maximum speed.
 エンジン式ミニショベルの作業状態として、走行高速と走行低速と通常作業とを考える。図5(A)及び図5(B)中、Aは走行高速時の出力使用範囲、Bは走行低速時の出力使用範囲、Cは通常作業時の出力使用範囲を示している。ここで、走行高速とは、走行用油圧モータ24a,24bが高速小容量モードにありかつ走行用の操作装置25が操作されて走行している状態をいう。走行低速とは、走行用油圧モータ24a,24bが低速大容量モードにありかつ走行用の操作装置25が操作されて走行している状態をいう。通常作業とは、走行以外の操作装置26(特に、ブーム用油圧シリンダ24c、アーム用油圧シリンダ24d、バケット用油圧シリンダ24e、及び旋回用モータのいずれかに係わる操作装置)が操作されて作業を行っている状態をいう。 Suppose that the working state of the engine-type mini excavator is traveling high speed, traveling low speed, and normal work. 5 (A) and 5 (B), A indicates an output use range at a traveling high speed, B indicates an output use range at a traveling low speed, and C indicates an output use range at a normal operation. Here, the traveling high speed means a state in which the traveling hydraulic motors 24a and 24b are in the high speed and small capacity mode and the traveling operation device 25 is operated to travel. The traveling low speed refers to a state in which the traveling hydraulic motors 24a and 24b are in the low speed and large capacity mode and the traveling operation device 25 is operated to travel. The normal work refers to work performed by operating an operation device 26 other than traveling (in particular, an operation device related to any of the boom hydraulic cylinder 24c, the arm hydraulic cylinder 24d, the bucket hydraulic cylinder 24e, and the turning motor). The state of going.
 図中、HELcはエンジン出力馬力の制限値であり、HEmaxcはエンジンの最大出力馬力である。エンジン出力馬力の制限値HELcは、エンジンの最大出力馬力HEmaxcよりも所定の余裕分だけ小さくなるように設定されている。詳しく説明すると、走行高速時はスピード(流量)が必要なため、そのときの油圧ポンプ21の出力が最も大きく、エンジン出力馬力の制限値HELcは、この走行高速時の油圧ポンプ21の出力使用範囲Aに対してある程度の余裕X1を持たせて設定されている。 In the figure, HELc is a limit value of engine output horsepower, and HEmaxc is a maximum output horsepower of the engine. The engine output horsepower limit value HELc is set to be smaller than the engine maximum output horsepower HEmaxc by a predetermined margin. More specifically, since the speed (flow rate) is required at high traveling speed, the output of the hydraulic pump 21 at that time is the largest, and the limit value HELc of the engine output horsepower is the output usage range of the hydraulic pump 21 at the high traveling speed. It is set with a certain margin X1 with respect to A.
 しかし、前述の図4に示したようにポンプレギュレータ27の最大吸収トルク特性は第1バネ27b及び第2バネ27cによって直線TP1,TP2からなる折れ曲げ線のように設定されており、図5(A)に示す油圧ポンプ21のPQ特性Dも折れ曲げ線形状となる。そのため、通常作業時ではエンジン出力馬力の制限値HELcに対して油圧ポンプ21の出力使用範囲BがX2と大きく離れて、余裕がありすぎる状態となる。これは、エンジン出力馬力をフルに使用していないことを意味する。 However, as shown in FIG. 4 described above, the maximum absorption torque characteristic of the pump regulator 27 is set by the first spring 27b and the second spring 27c as a bent line composed of straight lines TP1 and TP2, and FIG. The PQ characteristic D of the hydraulic pump 21 shown in A) also has a bent line shape. Therefore, during normal work, the output use range B of the hydraulic pump 21 is far away from X2 with respect to the limit value HELc of the engine output horsepower, and there is too much room. This means that the engine output horsepower is not fully used.
 図6(A)は、本実施形態のハイブリッド式ミニショベルにおけるエンジン出力馬力と油圧ポンプのPQ特性(馬力特性)と出力使用範囲との関係を示す図であり、図6(B)は、同ミニショベルのエンジン出力馬力特性と出力使用範囲との関係を示す図である。 FIG. 6A is a diagram showing the relationship between the engine output horsepower, the PQ characteristic (horsepower characteristic) of the hydraulic pump, and the output use range in the hybrid mini-excavator of the present embodiment, and FIG. It is a figure which shows the relationship between the engine output horsepower characteristic of a mini excavator, and an output use range.
 本実施形態のハイブリッド式ミニショベルでは、エンジン11の最大出力馬力HEmaxeを、比較例のエンジン式ミニショベルにおけるエンジン最大出力馬力HEmaxc(前述の図5(B)参照)よりも小さくし、エンジン出力馬力の制限値HELeを、油圧ポンプ21のPQ特性Dにより近接した設定とする。更に言えば、エンジン11の最大出力馬力HEmaxeを、通常作業及び走行低速時に(言い換えれば、走行高速時以外の運転状態では)油圧ポンプ21に必要とされる油圧馬力を賄うことができ、走行高速時に油圧ポンプ21に必要とされる油圧馬力を賄うことができない大きさの設定とする。通常作業時の出力使用範囲Cは、油圧ポンプ21のPQ特性Dの曲げ線形状の凹部により生じる余裕X3を利用して確保する。 In the hybrid mini-excavator of this embodiment, the maximum output horsepower HEmaxe of the engine 11 is made smaller than the engine maximum output horsepower HEmaxc (see FIG. 5B described above) in the engine-type mini-excavator of the comparative example, and the engine output horsepower is reduced. The limit value HELe is set closer to the PQ characteristic D of the hydraulic pump 21. Furthermore, the maximum output horsepower HEmaxe of the engine 11 can cover the hydraulic horsepower required for the hydraulic pump 21 during normal work and traveling low speed (in other words, in an operating state other than during traveling high speed). The size is set so that the hydraulic horsepower required for the hydraulic pump 21 sometimes cannot be provided. The output use range C at the time of normal work is ensured by utilizing the margin X3 generated by the bent line-shaped concave portion of the PQ characteristic D of the hydraulic pump 21.
 そして、走行高速時には、バッテリ33からの電力により発電・電動機31を電動機として作動させて出力アシストを行う。図6(A)及び図6(B)の点線HELe+HMはエンジン出力馬力HELeと電動機出力馬力HMの合計の出力馬力である。 And at the time of running high speed, the power is generated from the battery 33 to operate the generator / motor 31 as a motor to perform output assist. The dotted line HELe + HM in FIGS. 6A and 6B is the total output horsepower of the engine output horsepower HELe and the motor output horsepower HM.
 このようにエンジン11の出力馬力をエンジン式ミニショベルに搭載する場合よりも小さくし、エンジン出力馬力の制限値HELeを油圧ポンプ21のPQ特性Dに近接させることにより、エンジン11の出力馬力をフルに使用できるようになり、エンジン11をダウンサイジング(小さいエンジン)することが可能となる。エンジン11をダウンサイジングすることにより低燃費化、エンジン11から排出される有害なガスの量の低減、及び騒音の低減が可能となる。また、エンジン11の補器の小型化或いは簡略化が可能となり、エンジン11のダウンサイジング化によるコスト低減と相まってエンジンの製作コストを低減することができ、機械全体の価格を安くすることができる。 In this way, the output horsepower of the engine 11 is made smaller than when mounted on the engine-type mini excavator, and the limit value HELe of the engine output horsepower is brought close to the PQ characteristic D of the hydraulic pump 21, thereby making the output horsepower of the engine 11 full. The engine 11 can be downsized (small engine). By downsizing the engine 11, fuel consumption can be reduced, the amount of harmful gas discharged from the engine 11 can be reduced, and noise can be reduced. Further, the auxiliary equipment of the engine 11 can be reduced in size or simplified, and the cost for manufacturing the engine 11 can be reduced in combination with the cost reduction by downsizing the engine 11, and the price of the entire machine can be reduced.
 また、エンジン11の出力帯によっては排出ガス後処理装置(ガス浄化装置)をなくすことが可能であり、機械全体の価格を更に安くすることができる。すなわち、現在の作業機械(オフロード車)に対する排出ガス規制は、出力19kW以上のエンジンを搭載した車両に対して適用され、出力19kW未満のエンジンを搭載した車両は適用外となっている。本実施形態では、エンジン11を、好ましくは、排ガス規制適用外の出力である19kW未満のエンジン、例えば出力18kWのエンジンとする。このようにエンジン出力を19kW未満とすることで、高価で複雑な排出ガス後処理装置を搭載する必要がなくなり、機械全体の価格を大きく下げることができる。 Also, depending on the output band of the engine 11, it is possible to eliminate the exhaust gas aftertreatment device (gas purification device), and the price of the entire machine can be further reduced. That is, the current exhaust gas regulations for work machines (off-road vehicles) are applied to vehicles equipped with engines with an output of 19 kW or more, and vehicles with engines with an output of less than 19 kW are not applicable. In the present embodiment, the engine 11 is preferably an engine of less than 19 kW, which is an output that does not apply to exhaust gas regulations, for example, an engine with an output of 18 kW. Thus, by setting the engine output to less than 19 kW, it is not necessary to mount an expensive and complicated exhaust gas aftertreatment device, and the price of the entire machine can be greatly reduced.
 なお、本実施形態のハイブリッド式ミニショベルでは、バッテリ33を充電するための仕組みを以下のようにして確保している。 In the hybrid mini excavator of this embodiment, a mechanism for charging the battery 33 is secured as follows.
 車体コントローラ46は、走行速度切換スイッチ41の指示信号、操作パイロット圧センサ42の検出信号、及びバッテリコントローラ34の蓄電情報に基づき、例えば走行速度切換スイッチ41が走行高速を指示しかつ走行用の操作装置25が操作されているときにバッテリ33の充電状態が十分である(例えば充電率が30%以上である)と判定した場合、走行速度切替電磁弁45に制御信号を出力して、走行用油圧モータ24a,24bを低速大容量モードに制御する(走行高速)。また、この走行高速時に、発電・電動機31を電動機として作動させて出力アシストを行わせる。一方、例えば走行速度切換スイッチ41が走行高速を指示しかつ走行用の操作装置25が操作されているときにバッテリ33の充電状態が不十分である(例えば充電率が30%未満である)と判定した場合、走行高速の指示を無効にして走行用油圧モータ24a,24bを低速大容量モードに制御し(走行低速)、バッテリ33の充電を行う。 The vehicle body controller 46, for example, instructs the traveling speed changeover switch 41 to indicate a traveling high speed based on the instruction signal of the traveling speed changeover switch 41, the detection signal of the operation pilot pressure sensor 42, and the storage information of the battery controller 34. When it is determined that the state of charge of the battery 33 is sufficient when the device 25 is being operated (for example, the charging rate is 30% or more), a control signal is output to the traveling speed switching electromagnetic valve 45 to The hydraulic motors 24a and 24b are controlled to the low speed and large capacity mode (running high speed). Further, at the time of traveling at high speed, output assist is performed by operating the generator / motor 31 as a motor. On the other hand, for example, when the traveling speed changeover switch 41 indicates a traveling high speed and the traveling operating device 25 is operated, the state of charge of the battery 33 is insufficient (for example, the charging rate is less than 30%). If it is determined, the traveling high speed instruction is invalidated and the traveling hydraulic motors 24a, 24b are controlled to the low speed large capacity mode (traveling low speed), and the battery 33 is charged.
 バッテリ33の充電は、バッテリ33の充電状態が不十分であると判定した場合に、走行高速時以外の運転状態で(詳細には、走行低速時、通常作業時、若しくは非操作中に)行われ、例えば充電率が70%に到達するまで行われる。詳しく説明すると、例えば操作装置25,26が操作されていない非操作中であると判定した場合、又は、例えば走行低速時若しくは通常作業時であってエンジン11の負荷率情報に基づきエンジン11に余剰トルクがある(例えばエンジン負荷率が70%以下である)と判定した場合は、減トルク制御を行うことなく、バッテリ33の充電を行う。一方、例えば走行低速時若しくは通常作業時であってエンジン11に余剰トルクがない(例えばエンジン負荷率が70%を超える)と判定した場合は、トルク制御電磁弁44に制御信号を出力して減トルク制御を行う。すなわち、最大吸収トルク特性を直線TP1,TP2からなる折れ曲がり曲線から直線TP3,TP4からなる折れ曲がり曲線にシフトし(前述の図4参照)、PQ特性をDからDrにシフトする(前述の図6参照)。この減トルク制御により油圧ポンプ21の出力を低下させてエンジン11の余剰トルク乃至は余剰馬力を強制的に作り出し、バッテリ33の充電を行う。 When it is determined that the state of charge of the battery 33 is inadequate, the battery 33 is charged in an operating state other than during traveling at high speed (specifically, during traveling at low speed, during normal work, or during non-operation). For example, it is performed until the charging rate reaches 70%. More specifically, for example, when it is determined that the operating devices 25 and 26 are not being operated, or for example, when the vehicle is running at low speed or during normal work, the engine 11 is redundant based on the load factor information of the engine 11. When it is determined that there is torque (for example, the engine load factor is 70% or less), the battery 33 is charged without performing torque reduction control. On the other hand, for example, when it is determined that the engine 11 has no excessive torque (for example, the engine load factor exceeds 70%) at the time of traveling low speed or normal operation, the control signal is output to the torque control solenoid valve 44 and reduced. Perform torque control. That is, the maximum absorption torque characteristic is shifted from the bending curve composed of the straight lines TP1 and TP2 to the folding curve composed of the straight lines TP3 and TP4 (see FIG. 4 described above), and the PQ characteristic is shifted from D to Dr (refer to FIG. 6 described above). ). With this torque reduction control, the output of the hydraulic pump 21 is reduced to forcibly produce surplus torque or surplus horsepower of the engine 11 and the battery 33 is charged.
 次に、本実施形態のハイブリッド式ミニショベルの構造について説明する。 Next, the structure of the hybrid mini-excavator of this embodiment will be described.
 図7は、本実施形態のハイブリッド式ミニショベルの外観を表す側面図であり、図8は、平面図(但し、便宜上、後述するスイングポスト70及びフロント作業機71を取外した状態を示す平面図)である。なお、以降、ミニショベルが図7に示す状態にて運転者が運転席に着座した場合における運転者の前側(図7中左側)、後側(図7中右側)、左側(図7中紙面に向かって手前側)、右側(図7中紙面に向かって奥側)を、単に前側、後側、左側、右側と称する。 FIG. 7 is a side view showing the appearance of the hybrid mini-excavator of the present embodiment, and FIG. 8 is a plan view (however, for convenience, a plan view showing a state where a swing post 70 and a front work machine 71 described later are removed). ). Hereinafter, when the driver is seated in the driver's seat with the mini excavator shown in FIG. 7, the front side (left side in FIG. 7), rear side (right side in FIG. 7), left side (paper surface in FIG. 7). Front side) and right side (back side in FIG. 7) are simply referred to as front side, rear side, left side, and right side.
 図7及び図8において、ハイブリッド式ミニショベルは、クローラ式の下部走行体50と、この下部走行体50上に旋回可能に設けた上部旋回体60と、この上部旋回体60の前部にスイングポスト70を介し連結され、上下方向に回動可能(俯仰可能)に設けたフロント作業機71とを備えている。このミニショベルは、後方超小旋回型と呼ばれるものであって、上部旋回体60の後端の旋回半径R(詳細には、図8に示すように、上部旋回体60が旋回中心Oを中心として旋回したときに、後述するカウンタウェイト64の後面が描く軌跡の半径R)が下部走行体50の幅寸法にほぼ収まるように構成されている。 7 and 8, the hybrid mini-excavator includes a crawler type lower traveling body 50, an upper revolving body 60 that is turnable on the lower traveling body 50, and a swing to the front of the upper revolving body 60. It is connected via a post 70, and is provided with a front work machine 71 provided so as to be pivotable (can be raised and lowered) in the vertical direction. This mini excavator is called a rear ultra-small turning type, and has a turning radius R at the rear end of the upper turning body 60 (specifically, as shown in FIG. 8, the upper turning body 60 is centered on the turning center O). The radius R) of the locus drawn by the rear surface of the counterweight 64, which will be described later, is configured to be substantially within the width dimension of the lower traveling body 50.
 下部走行体50は、上方から見て略H字形状のトラックフレーム51と、このトラックフレーム51の左右両側の後端近傍に回転可能に支持された左右の駆動輪52と、トラックフレーム51の左右両側の前端近傍に回転可能に支持された左右の従動輪(アイドラ)53と、左右の駆動輪52と従動輪53とで掛けまわされた左右の履帯(クローラ)54とを備えており、左右の走行用油圧モータ24a,24bにより左右の駆動輪52が回転するようになっている。トラックフレーム52の前側には排土用のブレード55が上下動可能に設けられており、このブレード55はブレード用油圧シリンダ24hにより上下動するようになっている。トラックフレーム51の中央部には旋回輪56が設けられ、この旋回輪56を介し上部旋回体60が旋回可能に設けられており、上部旋回体60は旋回用モータにより旋回するようになっている。 The lower traveling body 50 includes a substantially H-shaped track frame 51 as viewed from above, left and right drive wheels 52 rotatably supported near the rear ends of the left and right sides of the track frame 51, and left and right sides of the track frame 51. Left and right driven wheels (idlers) 53 rotatably supported in the vicinity of the front ends on both sides, and left and right crawler tracks (crawlers) 54 wound around the left and right drive wheels 52 and the driven wheels 53 are provided. The left and right drive wheels 52 are rotated by the traveling hydraulic motors 24a and 24b. A soil removal blade 55 is provided on the front side of the track frame 52 so as to be movable up and down. The blade 55 is moved up and down by a blade hydraulic cylinder 24h. A turning wheel 56 is provided at the center of the track frame 51, and an upper turning body 60 is turnable through the turning wheel 56. The upper turning body 60 is turned by a turning motor. .
 スイングポスト70は、上部旋回体60の前部(詳細には、後述する旋回フレーム61のスイングブラケット80F)に水平方向に回動可能に設けられ、スイング用油圧シリンダ24gにより水平方向に回動するようになっている。これにより、フロント作業機71が左右にスイングするようになっている。 The swing post 70 is provided on the front portion of the upper swing body 60 (specifically, a swing bracket 80F of the swing frame 61 described later) so as to be horizontally rotatable, and is rotated horizontally by the swing hydraulic cylinder 24g. It is like that. Thereby, the front work machine 71 swings to the left and right.
 フロント作業機71は、スイングポスト70に上下方向に回動可能に連結されたブーム72と、このブーム72に上下方向に回動可能に連結されたアーム73と、このアーム73に上下方向に回動可能に連結されたバケット(アタッチメント)74とを備えている。ブーム72、アーム73、及びバケット74は、ブーム用油圧シリンダ24c、アーム用油圧シリンダ24d、及びバケット用油圧シリンダ24eにより上下方向に回動するようになっている。 The front work machine 71 includes a boom 72 coupled to the swing post 70 so as to be pivotable in the vertical direction, an arm 73 coupled to the boom 72 so as to be pivotable in the vertical direction, and the arm 73 rotating in the vertical direction. And a bucket (attachment) 74 that is movably connected. The boom 72, the arm 73, and the bucket 74 are rotated in the vertical direction by the boom hydraulic cylinder 24c, the arm hydraulic cylinder 24d, and the bucket hydraulic cylinder 24e.
 上部旋回体60は、その下部基礎構造をなす旋回フレーム61と、この旋回フレーム61上の前方左寄りに配置され、前側を支点として傾転可能に設けた運転室ユニット62と、旋回フレーム61上の後端に設けたカウンタウェイト63と、旋回フレーム61上の運転室ユニット62の周囲やカウンタウェイト63の開口に取付けた複数の外装カバー64とを備えている。 The upper revolving structure 60 is a revolving frame 61 that forms the lower basic structure thereof, a driver's cab unit 62 that is disposed on the front left side of the revolving frame 61 and is tiltable with the front side as a fulcrum. A counterweight 63 provided at the rear end and a plurality of exterior covers 64 attached to the periphery of the cab unit 62 on the turning frame 61 and the opening of the counterweight 63 are provided.
 図9は、旋回フレーム61の構造を表す上面図であり、図10は、斜視図である。 FIG. 9 is a top view showing the structure of the revolving frame 61, and FIG. 10 is a perspective view.
 これら図9及び図10において、旋回フレーム61は、大別して、センタフレーム80と、このセンタフレーム80の左側(図9中下側、図10中左側)に設けた左サイドフレーム81と、センタフレーム80の右側(図9中上側、図10中右側)に設けた右サイドフレーム82とで構成されている。 9 and 10, the revolving frame 61 is roughly divided into a center frame 80, a left side frame 81 provided on the left side (lower side in FIG. 9, left side in FIG. 10) of the center frame 80, and a center frame. And a right side frame 82 provided on the right side of 80 (upper side in FIG. 9, right side in FIG. 10).
 センタフレーム80は、底板80Aと、この底板80A上に立設され前後方向にそれぞれ延在する左の前縦板80B及び後縦板80C並びに右の前縦板80D及び後縦板80Eと、底板80A及び前縦板80B,80Dの前端側に接合されたスイングブラケット80Fと、底板80Aに立設され前縦板80B,80Dの後端と後縦板80C,80Eの前端との間で接合され、左右方向に延在する(詳細には、左右の縦板の間、及び左の縦板と左サイドフレーム81との間で延在する)横板80Gと、底板80A上で後縦板80C,80Eの後端側に設けたウェイト支持部80Hとを有している。また、後縦板81C,81Eの間には、前後方向に離間してエンジン支持部80Iと支持金具80Jが設けられている。また、左の後縦板80Cの左側には、前後方向に離間して支持金具80K,80Lが設けられている。 The center frame 80 includes a bottom plate 80A, a left front vertical plate 80B and a rear vertical plate 80C which are provided on the bottom plate 80A and extend in the front-rear direction, a right front vertical plate 80D and a rear vertical plate 80E, and a bottom plate. The swing bracket 80F joined to the front end side of 80A and the front vertical plates 80B, 80D, and the rear end of the front vertical plates 80B, 80D standing on the bottom plate 80A and the front ends of the rear vertical plates 80C, 80E are joined. A horizontal plate 80G extending in the left-right direction (specifically, extending between the left and right vertical plates and between the left vertical plate and the left side frame 81), and rear vertical plates 80C and 80E on the bottom plate 80A. And a weight support portion 80H provided on the rear end side. Further, an engine support portion 80I and a support fitting 80J are provided between the rear vertical plates 81C and 81E so as to be separated in the front-rear direction. Further, support brackets 80K and 80L are provided on the left side of the left rear vertical plate 80C so as to be separated in the front-rear direction.
 右サイドフレーム82は、例えば断面D形状のパイプ材を用いて形成されており、スイングブラケット80Fの右側に接合され左右方向に延在する直線状の前枠82Aと、この前枠82Aの端部に継手82Bを介して連結された円弧状の曲げ枠82Cとを有している。曲げ枠82Cは、中間部が張出ビーム82Dを介して底板80Aに連結され、後端部が連結金具82Eを介して底板80Aに連結されている。 The right side frame 82 is formed using, for example, a pipe material having a D-shaped cross section. The right side frame 82 is joined to the right side of the swing bracket 80F and extends in the left-right direction, and an end portion of the front frame 82A. And an arcuate bending frame 82C connected to each other through a joint 82B. The bending frame 82C has an intermediate portion connected to the bottom plate 80A via an overhanging beam 82D and a rear end portion connected to the bottom plate 80A via a connecting fitting 82E.
 また、曲げ枠82Cと右の前縦板80Dとの間には、張出ビーム82Dの前側に位置して取付板82Fが接合され、曲げ枠82Cと右の後縦板80Eとの間には、張出ビーム82Dの後側に位置して取付板82Gが接合されている。取付板82F,82Gは、スイング用油圧シリンダ24gの配置スペースを確保するために、クランク状に屈曲されている。 Further, a mounting plate 82F is joined between the bending frame 82C and the right front vertical plate 80D so as to be positioned on the front side of the protruding beam 82D, and between the bending frame 82C and the right rear vertical plate 80E. The mounting plate 82G is joined to the rear side of the overhanging beam 82D. The mounting plates 82F and 82G are bent in a crank shape in order to secure an arrangement space for the swing hydraulic cylinder 24g.
 左サイドフレーム81は、右サイドフレーム82と同様、例えば断面D形状のパイプ材を用いて形成されており、スイングブラケット80Fの左側に接合され左右方向に延在する直線状の前枠81Aと、この前枠81Aの端部に継手81Bを介して連結された円弧状の曲げ枠81Cとを有している。曲げ枠81Cは、中間部が張出ビーム81D及び横板80Gを介して底板80Aに連結され、後端部が連結金具81Eを介して底板80Aに連結されている。 Similarly to the right side frame 82, the left side frame 81 is formed using, for example, a pipe material having a D-shaped cross section, and is joined to the left side of the swing bracket 80F and extends in the left-right direction. An arc-shaped bending frame 81C connected to the end of the front frame 81A via a joint 81B is provided. The bending frame 81C has an intermediate portion connected to the bottom plate 80A via a protruding beam 81D and a horizontal plate 80G, and a rear end portion connected to the bottom plate 80A via a connecting fitting 81E.
 また、左サイドフレーム82における継手82Bの近傍には脚板81Fが立設され、スイングブラケット80Fの上部には取付座80Mが設けられている。そして、脚板82F及び取付座80Mで支持され左右方向に延在する前支持板81Gが設けられている。この前支持板81Gは、後述するヒンジ機構83(図12参照)を介し運転室ユニット62の前部を回動可能に支持している。 Further, a leg plate 81F is erected in the vicinity of the joint 82B in the left side frame 82, and a mounting seat 80M is provided on the upper part of the swing bracket 80F. A front support plate 81G that is supported by the leg plate 82F and the mounting seat 80M and extends in the left-right direction is provided. The front support plate 81G rotatably supports the front portion of the cab unit 62 via a hinge mechanism 83 (see FIG. 12) described later.
 図11は、運転室ユニット62の構造を表す斜視図である。図12は、運転室ユニット62を構成するフロア部材の構造を表す斜視図である。 FIG. 11 is a perspective view showing the structure of the cab unit 62. FIG. 12 is a perspective view illustrating the structure of the floor member that constitutes the cab unit 62.
 これら図11及び図12、並びに前述の図7及び図8において、運転室ユニット62は、旋回フレーム61上に前側を支点として傾転可能に設けたフロア部材65と、このフロア部材65上に設けた運転席66と、この運転席66の前側に設けられ、下部走行体50の走行を指示する操作装置25と、運転席66の左側に設けられ、上部旋回体60の旋回及びアーム73の回動を指示する十字操作式の操作装置26aと、運転席66の右側に設けられ、バケット74の回動及びブーム72の回動を指示する十字操作式の操作装置26bと、運転席66の右側に設けたスイッチボックス67と、運転席66等の上方を覆う例えば2柱キャノピ68とを備えている。 In FIGS. 11 and 12 and FIGS. 7 and 8 described above, the cab unit 62 is provided on the revolving frame 61 so as to be tiltable with the front side as a fulcrum, and on the floor member 65. A driver's seat 66, an operating device 25 that is provided on the front side of the driver's seat 66 and directs the traveling of the lower traveling body 50, and is provided on the left side of the driver's seat 66. A cross operation type operation device 26a for instructing movement and a cross operation type operation device 26b provided on the right side of the driver seat 66 for instructing the rotation of the bucket 74 and the rotation of the boom 72, and the right side of the driver seat 66 A switch box 67 provided on the driver's seat 66, for example, and a two-post canopy 68 covering the upper side of the driver's seat 66 and the like.
 フロア部材65は、大別して、運転者の足場となる床板84と、この床板84の後部から立上げられ後側に張出した運転席台座85と、この床板84の右側に立上げた右側面板86とを有している。右側面板86の上部には、後述する傾転保持機構91の移動部材96(図14参照)を取付けるためのスリーブ86Aが設けられている。 The floor member 65 is roughly divided into a floor plate 84 that serves as a scaffold for the driver, a driver seat base 85 raised from the rear of the floor plate 84 and projecting to the rear side, and a right side plate 86 raised to the right side of the floor plate 84. And have. A sleeve 86 </ b> A for attaching a moving member 96 (see FIG. 14) of the tilt holding mechanism 91 described later is provided on the right side plate 86.
 床板84の前部は、走行用の操作装置25等を取付けるためのレバー・ペダル取付部84Aとなっている。また、床板84の前端部と上述した旋回フレーム61の前支持板81Gとの間に左右のヒンジ機構83が設けられている。ヒンジ機構83は、旋回フレーム61の前支持板81Gに取付けられたブラケット83Aと、床板84の前端部に設けられたブラケット83Bと、これらブラケット83A及び83Bを回動可能に連結する連結ピン83Cと、ブラケット83Aと連結ピンとの間に挿入されたゴム(図示せず)とで構成されている。 The front part of the floor board 84 is a lever / pedal attachment part 84A for attaching the operating device 25 for traveling. Further, left and right hinge mechanisms 83 are provided between the front end portion of the floor plate 84 and the front support plate 81G of the revolving frame 61 described above. The hinge mechanism 83 includes a bracket 83A attached to the front support plate 81G of the revolving frame 61, a bracket 83B provided at the front end of the floor plate 84, and a connecting pin 83C that rotatably connects the brackets 83A and 83B. , And rubber (not shown) inserted between the bracket 83A and the connecting pin.
 運転席台座85は、床板84の後部から垂直に立上げた立上げ板部85Aと、この立上げ板部85Aの上部から後側に延在する座席支持板部85Bと、この座席支持板部85Bの後部から後方に傾斜するように立上げた背板部85Cと、座席支持板部85B及び背板部85Cの右側に位置するボックス取付板部85Dと、背板部85C及びボックス取付板部85Dの上部から後側に延在する建屋取付板部85Eとを有している。運転席台座85の立上げ板部85Aには前部台座86が取付けられ、この前部台座86及び運転席台座85の座席支持板部85Bに運転席66が設置されている。また、運転席台座85のボックス取付部85Dにはスイッチボックス67が取付けられている。また、運転席台座85の建屋取付板部85Eには2柱キャノピ68がボルト等を用いて取付けられている。 The driver seat pedestal 85 includes a rising plate portion 85A that is vertically raised from the rear portion of the floor plate 84, a seat support plate portion 85B that extends rearward from the upper portion of the rising plate portion 85A, and the seat support plate portion. A back plate portion 85C raised to be inclined rearward from the rear portion of 85B, a box mounting plate portion 85D positioned on the right side of the seat support plate portion 85B and the back plate portion 85C, and the back plate portion 85C and the box mounting plate portion. It has a building attachment plate 85E extending from the upper part of 85D to the rear side. A front pedestal 86 is attached to the rising plate portion 85 A of the driver seat pedestal 85, and the driver seat 66 is installed on the front pedestal 86 and the seat support plate portion 85 B of the driver seat pedestal 85. A switch box 67 is attached to the box attachment portion 85D of the driver seat base 85. Further, a two-post canopy 68 is attached to the building attachment plate portion 85E of the driver seat pedestal 85 using bolts or the like.
 そして、フロア部材65(すなわち、運転室ユニット62)は前側のヒンジ機構83を介し傾転可能としており、前述の図7に示すようにフロア部材65(すなわち、運転室ユニット62)の後部が下げられた(チルトダウン)状態では、その後部(詳細には、建屋取付板部85E)がサポート部材69等で支持されるようになっている。図13は、サポート部材69の構造を表す斜視図である。 The floor member 65 (that is, the cab unit 62) can be tilted via the front hinge mechanism 83, and the rear portion of the floor member 65 (that is, the cab unit 62) is lowered as shown in FIG. In the (tilted down) state, the rear portion (specifically, the building mounting plate portion 85E) is supported by the support member 69 and the like. FIG. 13 is a perspective view showing the structure of the support member 69.
 図13において、サポート部材69は、左右方向に延在する角筒形状の台座87と、この台座87を支持する左前支柱88A、左後支柱88B、右前支柱88C、及び右後支柱88Dとで構成されている。このサポート部材69の支柱88A~88Dは、旋回フレーム61上に配置されたエンジン11を跨ぐように屈曲されて、旋回フレーム61上に取付けられている(後述の図17~図19等参照)。詳細には、左前支柱88A及び右前支柱88Cの下端部が旋回フレーム61の横板80Gの前面側にボルト等を用いて取付けられ、左後支柱88Bの下端部が旋回フレーム61の連結金具81Eの前面側にボルト等を用いて取付けられ、右後支柱88Dの下端部が旋回フレーム61の支持金具80Jの前面側にボルト等を用いて取付けられている。 In FIG. 13, the support member 69 includes a rectangular tube-shaped pedestal 87 extending in the left-right direction, and a left front support 88A, a left rear support 88B, a right front support 88C, and a right rear support 88D that support the base 87. Has been. The supports 88A to 88D of the support member 69 are bent so as to straddle the engine 11 disposed on the revolving frame 61 and attached to the revolving frame 61 (see FIGS. 17 to 19 and the like described later). Specifically, the lower ends of the left front column 88A and the right front column 88C are attached to the front side of the horizontal plate 80G of the revolving frame 61 using bolts or the like, and the lower end of the left rear column 88B is attached to the connecting bracket 81E of the revolving frame 61. It is attached to the front side using a bolt or the like, and the lower end portion of the right rear column 88D is attached to the front side of the support fitting 80J of the turning frame 61 using a bolt or the like.
 また、サポート部材68の台座87上には、左右方向に延在する載置台89(後述の図19参照)が2つの防振マウントを介し取付けられている。そして、チルトダウン状態の運転室ユニット62の後部(詳細には、上述したフロア部材65の建屋取付板部85E)が載置台89上で支持され、さらにボルト等を用いて載置台89に着脱可能に固定されるようになっている。なお、チルトダウン状態の運転室ユニット62の後部とカウンタウェイト63の上部との隙間を塞ぐように、サポート部材68の台座87の後側には断面L字状の金具(図示せず)を介しプレートカバー90(後述の図16参照)が取付けられている。 Further, on the pedestal 87 of the support member 68, a mounting base 89 (see FIG. 19 described later) extending in the left-right direction is attached via two anti-vibration mounts. The rear portion of the cab unit 62 in the tilt-down state (specifically, the building mounting plate portion 85E of the floor member 65 described above) is supported on the mounting table 89 and can be attached to and detached from the mounting table 89 using bolts or the like. It is supposed to be fixed to. In addition, a bracket (not shown) having an L-shaped cross section is provided on the rear side of the base 87 of the support member 68 so as to close the gap between the rear portion of the cab unit 62 in the tilted down state and the upper portion of the counterweight 63. A plate cover 90 (see FIG. 16 described later) is attached.
 また、サポート部材68の右前支柱88Cの傾斜面部88C1には、運転室ユニット62のチルトアップ状態を保持するための傾転保持機構91がボルト等を用いて取付けられている。図14は、傾転保持機構91の構造を表す斜視図である。 Further, a tilt holding mechanism 91 for holding the cab unit 62 in a tilted up state is attached to the inclined surface portion 88C1 of the right front support 88C of the support member 68 using a bolt or the like. FIG. 14 is a perspective view showing the structure of the tilt holding mechanism 91.
 図14において、傾転保持機構91は、サポート部材69の右前支柱88Cの傾斜面部88C1に取付けたブラケット92と、このブラケット92に連結ピン93を介し回動可能に設けられたガイドレール94と、このガイドレール94に回転可能に設けられたねじ軸95と、このねじ軸95に螺合された移動部材96とで構成されている。 14, the tilt holding mechanism 91 includes a bracket 92 attached to the inclined surface portion 88C1 of the right front support 88C of the support member 69, a guide rail 94 rotatably provided to the bracket 92 via a connecting pin 93, The guide rail 94 includes a screw shaft 95 rotatably provided, and a moving member 96 screwed to the screw shaft 95.
 ガイドレール94は、ブラケット92に連結ピン93を介し回動可能に接続された基端部94Aと、この基端部94Aから平行に延びた一対のレール部94Bと、これら一対のレール部94Bの先端側を連結した先端部94Cとで構成されている。 The guide rail 94 includes a base end portion 94A rotatably connected to the bracket 92 via a connecting pin 93, a pair of rail portions 94B extending in parallel from the base end portion 94A, and the pair of rail portions 94B. It is comprised with the front-end | tip part 94C which connected the front end side.
 ねじ軸95は、ガイドレール94のレール部94Bの間隙に配置され、その先端側はガイドレール94の先端部94Cを貫通しつつ、先端部94Cに設けたスラスト軸受(図示せず)によって回転可能に支持されており、基端側はガイドレール94の基端部94Aより所定の間隔だけ離れて自由端としている。また、ガイドレール94の先端部94Cより突出したねじ軸95の先端部には、例えば六角形状の工具連結部95Aが接合されている。 The screw shaft 95 is disposed in the gap of the rail portion 94B of the guide rail 94, and the tip side thereof penetrates the tip portion 94C of the guide rail 94 and can be rotated by a thrust bearing (not shown) provided on the tip portion 94C. The base end side is a free end separated from the base end portion 94A of the guide rail 94 by a predetermined distance. Further, for example, a hexagonal tool connecting portion 95A is joined to the tip of the screw shaft 95 protruding from the tip 94C of the guide rail 94.
 移動部材96は、ガイドレール94のレール部94Bの間隙より小さい径寸法の円柱状軸体96Aと、レール部94Bの間隙より大きい径寸法の鍔部96Bとで構成されている。移動部材96の軸体96Aには、径方向に貫通したねじ穴が形成されており、このねじ穴にねじ軸95が螺合されている。また、移動部材96の軸体96Aの端部がフロア部材65のスリーブ66Aに回動可能に挿通され、ボルトで抜止めされている。 The moving member 96 includes a cylindrical shaft body 96A having a diameter smaller than the gap between the rail portions 94B of the guide rail 94 and a flange portion 96B having a diameter larger than the gap between the rail portions 94B. A screw hole penetrating in the radial direction is formed in the shaft body 96A of the moving member 96, and a screw shaft 95 is screwed into the screw hole. Further, the end portion of the shaft body 96A of the moving member 96 is rotatably inserted into the sleeve 66A of the floor member 65, and is secured with a bolt.
 そして、例えばねじ軸95の工具連結部95Aにレンチ等の工具を連結し、この工具を用いてねじ軸95を回転させると、移動部材96がガイドレール94のレール部94Bで案内されながらねじ軸95の軸方向に移動し、この移動部材95の移動量に応じてフロア部材65(すなわち、運転室ユニット62)を任意の傾転角度に傾転させるとともに、その状態を保持するようになっている(図15参照)。 For example, when a tool such as a wrench is connected to the tool connecting portion 95A of the screw shaft 95 and the screw shaft 95 is rotated using this tool, the moving member 96 is guided by the rail portion 94B of the guide rail 94 while the screw shaft 95 is being driven. 95, and the floor member 65 (that is, the cab unit 62) is tilted to an arbitrary tilt angle according to the amount of movement of the moving member 95, and the state is maintained. (See FIG. 15).
 次に、本実施形態の最も大きな特徴である旋回フレーム61上の機器配置について説明する。 Next, the device arrangement on the turning frame 61, which is the greatest feature of this embodiment, will be described.
 図16は、本実施形態における旋回フレーム61上のフロア部材65の配置を示す平面図であり、図17は、図16からフロア部材65、サポート部材69、及び外装カバー64等を取外して旋回フレーム61上の機器配置を表す平面図である。図18は、本実施形態における旋回フレーム61上の機器配置を表す側面図(但し、便宜上、外装カバー64を取外した状態を示す側面図)であり、図19は、図18中断面XIX-XIXによる後側断面図である。なお、図17においては、サポート部材69(詳細には、台座87、左前支柱88A、左後支柱88B、右前支柱88C、及び右後支柱88D)を二点鎖線で示している。また、図18及び図19においては、エンジン11の出力軸11a及び油圧ポンプ21の入力軸21aの軸心位置を一点鎖線Aで示し、発電・電動機31の回転軸31aの軸心位置を一点鎖線Bで示している。 FIG. 16 is a plan view showing the arrangement of the floor member 65 on the revolving frame 61 in this embodiment. FIG. 17 shows the revolving frame by removing the floor member 65, the support member 69, the exterior cover 64, and the like from FIG. FIG. 18 is a side view showing the arrangement of devices on the revolving frame 61 in the present embodiment (however, for convenience, a side view showing a state in which the exterior cover 64 has been removed), and FIG. 19 is a cross section XIX-XIX in FIG. FIG. In FIG. 17, the support member 69 (specifically, the base 87, the left front column 88A, the left rear column 88B, the right front column 88C, and the right rear column 88D) is indicated by a two-dot chain line. 18 and 19, the axis positions of the output shaft 11 a of the engine 11 and the input shaft 21 a of the hydraulic pump 21 are indicated by a one-dot chain line A, and the axis positions of the rotating shaft 31 a of the generator / motor 31 are indicated by a one-dot chain line. This is indicated by B.
 図16~図19において、旋回フレーム61上の後部であってフロア部材65の運転席台座85とカウンタウェイト63との間にはエンジン室(機械室)が形成されており、このエンジン室にエンジン11等が配置されている。すなわち、フロア部材65の運転席台座85がエンジン11の前側及び上側を覆い、カウンタウェイト63がエンジン11の後側を覆うようになっている。 16 to 19, an engine room (machine room) is formed on the rear portion of the revolving frame 61 and between the driver seat base 85 of the floor member 65 and the counterweight 63. The engine room is formed in the engine room. 11 etc. are arranged. That is, the driver seat base 85 of the floor member 65 covers the front side and the upper side of the engine 11, and the counterweight 63 covers the rear side of the engine 11.
 エンジン11は、旋回フレーム61上の後縦板80C,80Eの間に、左右方向に延在するように横置き状態で配置されている。エンジン11の出力軸11aの右側端部は動力伝達機構(詳細には、プーリやファンベルト等)を介し冷却ファン100の回転軸に接続されており、冷却ファン100の右側(詳細には、旋回フレーム61の取付板82G上)にはラジエータ101やオイルクーラ102等が配置されている。ラジエータ101やオイルクーラ102等の前側(言い換えれば、フロア部材65の右側)には燃料タンク103や作動油タンク104等が配置されている。図17に示さないものの、フロア部材65の床板84の下側(詳細には、旋回フレーム61の張出ビーム81Dの前側に位置するアンダカバー上)には、コントロールバルブ23が配置されている。 The engine 11 is disposed in a horizontally placed state between the rear vertical plates 80C and 80E on the revolving frame 61 so as to extend in the left-right direction. The right end of the output shaft 11a of the engine 11 is connected to the rotating shaft of the cooling fan 100 via a power transmission mechanism (specifically, a pulley, a fan belt, etc.). On the attachment plate 82G of the frame 61, a radiator 101, an oil cooler 102, and the like are disposed. A fuel tank 103, a hydraulic oil tank 104, and the like are disposed on the front side of the radiator 101, the oil cooler 102, and the like (in other words, the right side of the floor member 65). Although not shown in FIG. 17, the control valve 23 is disposed on the lower side of the floor plate 84 of the floor member 65 (specifically, on the under cover positioned on the front side of the overhanging beam 81 </ b> D of the revolving frame 61).
 また、図19及び前述の図1で示すように、エンジン11の出力軸11aの左側端部は油圧ポンプ21の入力軸21aと同軸接続され、これらエンジン11の出力軸11a及び油圧ポンプ21の入力軸21aと発電・電動機31の回転軸31aとがギヤ機構6を介し接続されており、このギア機構6を収納するギヤボックス105が設けられている。ギヤボックス105は、右側部分がエンジン11に接続されるとともに、左側部分が油圧ポンプ21及び発電・電動機31を支持するように構成されている。すなわち、エンジン11、油圧ポンプ21、及び発電・電動機31がギヤボックス105を介して一体的に構成されて、パワーユニットを構成している。 As shown in FIG. 19 and FIG. 1 described above, the left end portion of the output shaft 11a of the engine 11 is coaxially connected to the input shaft 21a of the hydraulic pump 21, and the input shaft 11a of the engine 11 and the input of the hydraulic pump 21 are connected. The shaft 21 a and the rotating shaft 31 a of the generator / motor 31 are connected via the gear mechanism 6, and a gear box 105 that houses the gear mechanism 6 is provided. The gear box 105 is configured such that the right side portion is connected to the engine 11 and the left side portion supports the hydraulic pump 21 and the generator / motor 31. That is, the engine 11, the hydraulic pump 21, and the generator / motor 31 are integrally configured via the gear box 105 to constitute a power unit.
 また、エンジン11には前後方向に離間して2つの支持ブラケット106A,106Bが設けられ、ギヤボックス105には前後方向に離間して2つの支持ブラケット106C,106Dが設けられている。支持ブラケット106Aは防振マウント107を介し旋回フレーム61のエンジン支持部80Iに取付けられ、支持ブラケット106Bは防振マウント107を介し旋回フレーム61の支持金具80Jに取付けられている。また、支持ブラケット106Cは防振マウント107を介し旋回フレーム61の支持金具80Kに取り付けられ、支持ブラケット106Dは防振マウント107を介し旋回フレーム61の支持金具80Lに取付けられている。すなわち、パワーユニットは、支持ブラケット106A~106C及び防振マウント107を介し旋回フレーム61上で支持されている。 The engine 11 is provided with two support brackets 106A and 106B spaced apart in the front-rear direction, and the gear box 105 is provided with two support brackets 106C and 106D spaced apart in the front-rear direction. The support bracket 106 </ b> A is attached to the engine support portion 80 </ b> I of the revolving frame 61 via the vibration isolation mount 107, and the support bracket 106 </ b> B is attached to the support fitting 80 </ b> J of the revolving frame 61 via the vibration isolation mount 107. The support bracket 106 </ b> C is attached to the support fitting 80 </ b> K of the revolving frame 61 via the anti-vibration mount 107, and the support bracket 106 </ b> D is attached to the support attachment 80 </ b> L of the revolving frame 61 via the anti-vibration mount 107. That is, the power unit is supported on the turning frame 61 via the support brackets 106A to 106C and the vibration isolation mount 107.
 そして、発電・電動機31は、図19に示すように最下部が油圧ポンプ21の入力軸21aの軸心より上側に位置しかつ後方から見た場合に油圧ポンプ21とオーバーラップしないような鉛直方向位置に、図17に示すように上方から見た場合に油圧ポンプ21とオーバーラップするような水平方向位置に配置されている。なお、発電・電動機31は、油圧ポンプ21及びこれに接続された吸入側油圧配管108(詳細には、作動油タンク104からの油圧配管)及び吐出側油圧配管109(詳細には、コントロールバルブ23への油圧配管)、ギヤボックス105の支持ブラケット106C,106D及び防振マウント107、並びにサポート部材69と干渉しないように配置されている。 The generator / motor 31 has a vertical direction in which the lowermost portion is located above the axis of the input shaft 21a of the hydraulic pump 21 and does not overlap the hydraulic pump 21 when viewed from the rear, as shown in FIG. As shown in FIG. 17, the position is arranged at a horizontal position so as to overlap the hydraulic pump 21 when viewed from above. The generator / motor 31 includes a hydraulic pump 21, a suction-side hydraulic pipe 108 connected to the hydraulic pump 21 (specifically, a hydraulic pipe from the hydraulic oil tank 104), and a discharge-side hydraulic pipe 109 (specifically, the control valve 23. And the support brackets 106 </ b> C and 106 </ b> D of the gear box 105, the anti-vibration mount 107, and the support member 69.
 以上のように構成された本実施形態の作用効果を、比較例を用いながら説明する。 The operation and effect of the present embodiment configured as described above will be described using a comparative example.
 図20は、比較例のエンジン式ミニショベルにおける旋回フレーム61上の機器配置を表す平面図(但し、便宜上、排気マフラ110Bの図示を省略した平面図)であり、前述の図17に対応する。図21は、比較例のエンジン式ミニショベルにおける旋回フレーム61上の機器配置を表す後側断面図であり、前述の図19に対応する。 FIG. 20 is a plan view showing the arrangement of devices on the turning frame 61 in the engine-type mini excavator of the comparative example (however, for convenience, a plan view in which the exhaust muffler 110B is omitted) corresponds to FIG. 17 described above. FIG. 21 is a rear sectional view showing a device arrangement on the turning frame 61 in the engine-type mini excavator of the comparative example, and corresponds to FIG. 19 described above.
 エンジン式ミニショベルでは、油圧ポンプ21の上側のスペースの一部が排気マフラ110Bの配置スペースとなっており、残りの一部がデッドスペースとなっている。これに対し、本実施形態のハイブリッド式ミニショベルでは、油圧ポンプ21の上側のスペースを有効利用して発電・電動機31を配置している。特に、本実施形態のハイブリッド式ミニショベルでは、発電・電動機31が油圧ポンプ21をアシスト駆動することから、エンジン式ミニショベルと比べ、エンジン11の出力馬力を小さくしてエンジン11及びその補器(例えば排気マフラ110A等)を小型化している。これにより、ギヤボックス105の配置スペースを確保することができる。また、排気マフラ110Aの小型化及び配置変更により、油圧ポンプ21の上側のスペース、すなわち発電・電動機31の配置スペースを確実に確保することができる。 In the engine-type mini excavator, a part of the space above the hydraulic pump 21 is an arrangement space for the exhaust muffler 110B, and the remaining part is a dead space. On the other hand, in the hybrid mini-excavator of the present embodiment, the generator / motor 31 is arranged using the space above the hydraulic pump 21 effectively. In particular, in the hybrid mini-excavator of this embodiment, since the generator / motor 31 assists the hydraulic pump 21, the output horsepower of the engine 11 is reduced compared to the engine-type mini excavator, and the engine 11 and its auxiliary devices ( For example, the exhaust muffler 110A) is downsized. Thereby, the arrangement space of the gear box 105 can be ensured. Further, by downsizing and changing the arrangement of the exhaust muffler 110A, the space above the hydraulic pump 21, that is, the arrangement space for the generator / motor 31 can be ensured.
 したがって、後方超小旋回型のエンジン式ミニショベルをベースとしてハイブリッド化する場合に、旋回フレーム61上の他の機器(詳細には、ラジエータ101、オイルクーラ102、燃料タンク103、及び作動油タンク104など)の配置を同じとすることができる。また、パワーユニットに関しても、エンジン式ミニショベルと同様、油圧ポンプ21の配置を同じとすることができ、油圧ポンプ21に接続される油圧配管108,109を共通化することができる。 Therefore, when hybridizing based on the rear ultra-small turning type engine-type mini excavator, other devices on the turning frame 61 (specifically, the radiator 101, the oil cooler 102, the fuel tank 103, and the hydraulic oil tank 104). Etc.) can be arranged in the same manner. In addition, regarding the power unit, similarly to the engine-type mini excavator, the arrangement of the hydraulic pump 21 can be the same, and the hydraulic pipes 108 and 109 connected to the hydraulic pump 21 can be shared.
 また、エンジン式ミニショベルでは、支持ブラケット106A~106Dをエンジン11のみに設けている。そして、エンジン11及び油圧ポンプ21が一体的に構成されたパワーユニットは、支持ブラケット106A~106D及び防振マウント107を介し旋回フレーム61上で支持されている。一方、本実施形態のハイブリッド式ミニショベルでは、エンジン11の出力馬力を小さくしてエンジン11を小型化している。そのため、仮に、支持ブラケット106A~106Dをエンジン11のみに設けると、支持ブラケット106A~106Dの配置(すなわち、パワーユニットの支持位置)がエンジン式ミニショベルとは異なってしまう。そこで、支持ブラケット106A,106Bをエンジン11に設け、支持ブラケット106C,106Dをギヤボックス105に設けることにより、パワーユニットの支持位置をエンジン式ミニショベルと同じにすることができ、旋回フレーム61の共通化を図ることができる。その結果、開発コストや製造コストを低減するばかりか、既存のエンジン式ミニショベルからの改造を容易に行うことができる。 Further, in the engine type excavator, the support brackets 106A to 106D are provided only on the engine 11. The power unit in which the engine 11 and the hydraulic pump 21 are integrally configured is supported on the turning frame 61 via the support brackets 106A to 106D and the vibration isolation mount 107. On the other hand, in the hybrid mini-excavator of this embodiment, the engine 11 is downsized by reducing the output horsepower of the engine 11. Therefore, if the support brackets 106A to 106D are provided only on the engine 11, the arrangement of the support brackets 106A to 106D (that is, the support position of the power unit) is different from that of the engine type mini excavator. Therefore, by providing the support brackets 106A and 106B on the engine 11 and the support brackets 106C and 106D on the gear box 105, the support position of the power unit can be made the same as that of the engine type mini excavator, and the swivel frame 61 can be made common. Can be achieved. As a result, the development cost and the manufacturing cost can be reduced, and the existing engine-type mini excavator can be easily modified.
 以上のようにして、本実施形態のハイブリッド式ミニショベルは、後方超小旋回型のエンジン式ミニショベルをベースとしてハイブリッド化を容易に行うことができる。 As described above, the hybrid mini-excavator of the present embodiment can be easily hybridized based on the rear ultra-small turning engine-type mini excavator.
 なお、上記一実施形態においては、パワーユニットの支持位置をエンジン式ミニショベルと同じにする場合を例にとって説明したが、これに限られず、パワーユニットの支持位置をエンジン式ミニショベルと異なるようにしてもよい。また、上記一実施形態においては、エンジン式ミニショベルと比べ、エンジンの出力馬力を小さくしてエンジン11及びその補器(例えば排気マフラ110A等)を小型化する場合を例にとって説明したが、これに限られない。すなわち、ギヤボックス105や発電・電動機31の配置スペースを確保できれば、エンジン11の出力馬力を同じとしてもよい。 In the above-described embodiment, the case where the power unit support position is the same as that of the engine type mini excavator has been described as an example. However, the present invention is not limited to this, and the power unit support position may be different from that of the engine type mini excavator. Good. In the above embodiment, the engine 11 and its auxiliary equipment (for example, the exhaust muffler 110A) are reduced in size by reducing the output horsepower of the engine as compared with the engine type excavator. Not limited to. That is, the output horsepower of the engine 11 may be the same as long as an arrangement space for the gear box 105 and the generator / motor 31 can be secured.
 なお、以上においては、本発明の適用対象として後方超小旋回型のミニショベルを例にとって説明したが、これに限られず、超小旋回型のミニショベルに適用してもよい。また、後方超小旋回型や超小旋回型の油圧ショベルに限られず、後方超小旋回型や超小旋回型の油圧クレーン等に適用してもよい。 In the above description, the application example of the present invention has been described by taking a rear ultra-small turning type excavator as an example. However, the present invention is not limited to this, and the present invention may be applied to an ultra-small turning type excavator. Further, the present invention is not limited to the rear ultra-small turning hydraulic excavator and the ultra-small turning hydraulic excavator, and may be applied to a rear ultra-small turning or ultra-small turning hydraulic crane.
 6    ギヤ機構
 11   エンジン
 11a  出力軸
 21   油圧ポンプ
 21a  入力軸
 24a  走行用油圧モータ
 24b  走行用油圧モータ
 24c  ブーム用油圧シリンダ
 24d  アーム用油圧シリンダ
 24e  バケット用油圧シリンダ
 24f  旋回用油圧モータ
 24g  スイング用油圧シリンダ
 24h  ブレード用油圧シリンダ
 25   走行用の操作装置
 31   発電・電動機
 31a  回転軸
 33   バッテリ(蓄電装置)
 41   走行速度切換スイッチ
 46   車体コントローラ(制御装置)
 50   下部走行体
 60   上部旋回体
 61   旋回フレーム
 63   カウンタウェイト
 65   フロア部材
 69   サポート部材
 71   フロント作業機
 84   床板
 85   運転席支持台
 105  ギヤボックス
 106A~106D 支持ブラケット
6 gear mechanism 11 engine 11a output shaft 21 hydraulic pump 21a input shaft 24a traveling hydraulic motor 24b traveling hydraulic motor 24c boom hydraulic cylinder 24d arm hydraulic cylinder 24e bucket hydraulic cylinder 24f swing hydraulic motor 24g swing hydraulic cylinder 24h Hydraulic cylinder for blade 25 Operating device 31 for traveling 31 Power generator / motor 31a Rotating shaft 33 Battery (power storage device)
41 Traveling speed changeover switch 46 Car body controller (control device)
DESCRIPTION OF SYMBOLS 50 Lower traveling body 60 Upper turning body 61 Turning frame 63 Counterweight 65 Floor member 69 Support member 71 Front work machine 84 Floor board 85 Driver's seat support stand 105 Gear box 106A-106D Support bracket

Claims (4)

  1.  下部走行体(50)と、前記下部走行体(50)上に旋回可能に設けた上部旋回体(60)と、前記上部旋回体(60)に俯仰可能に設けた作業機(71)と、走行用油圧モータ(24a)を含む複数の油圧アクチュエータ(24a~24h)と、エンジン(11)と、入力軸(21a)が前記エンジン(11)の出力軸(11a)と同軸接続され、前記複数の油圧アクチュエータ(24a~24h)へ圧油を供給する油圧ポンプ(21)と、回転軸(31a)がギヤ機構(6)を介し前記エンジン(11)の出力軸(11a)及び前記油圧ポンプ(21)の入力軸(21a)に接続された発電・電動機(31)と、前記発電・電動機(31)に対し電力の授受を行う蓄電装置(33)とを備え、
     前記上部旋回体(60)は、その下部基礎構造をなす旋回フレーム(61)と、前記旋回フレーム(61)上の後端に設けられ、前記旋回フレーム(61)上に配置された前記エンジン(11)の後側を覆うカウンタウェイト(63)と、前記旋回フレーム(61)上に設けられ、運転者の足場となる床板(84)及び前記床板(84)の後部から立上げられ後側に張出して前記エンジン(11)の前側及び上側を覆う運転席台座(85)を有するフロア部材(65)と、前記旋回フレーム(61)上に前記エンジン(11)等を跨ぐように設けられ、前記フロア部材(65)の後部を支持するサポート部材(69)とを備えた後方超小旋回型若しくは超小旋回型のハイブリッド式建設機械であって、
     前記発電・電動機(31)は、最下部が前記油圧ポンプ(21)の入力軸(21a)の軸心より上側に位置するような鉛直方向位置に、上方から見た場合に前記油圧ポンプ(21)とオーバーラップするような水平方向位置に配置したことを特徴とするハイブリッド式建設機械。
    A lower traveling body (50), an upper revolving body (60) provided on the lower traveling body (50) so as to be capable of swiveling, and a working machine (71) provided on the upper revolving body (60) so as to be able to be raised and lowered; A plurality of hydraulic actuators (24a to 24h) including a traveling hydraulic motor (24a), an engine (11), and an input shaft (21a) are coaxially connected to an output shaft (11a) of the engine (11), and the plurality The hydraulic pump (21) for supplying pressure oil to the hydraulic actuators (24a to 24h), and the rotary shaft (31a) via the gear mechanism (6), the output shaft (11a) of the engine (11) and the hydraulic pump ( A generator / motor (31) connected to the input shaft (21a) of 21) and a power storage device (33) for transferring power to the generator / motor (31),
    The upper revolving body (60) includes a revolving frame (61) that forms a lower basic structure thereof, and an engine (on the revolving frame (61) disposed on the rear end of the revolving frame (61) ( 11) A counterweight (63) that covers the rear side, and a floor plate (84) that is provided on the turning frame (61) and serves as a platform for the driver, and is raised from the rear portion of the floor plate (84) to the rear side. A floor member (65) having a driver seat pedestal (85) extending and covering the front side and the upper side of the engine (11), and the engine (11) and the like are provided on the turning frame (61), A rear ultra-small turning type or ultra-small turning type hybrid construction machine comprising a support member (69) for supporting the rear portion of the floor member (65),
    When the generator / motor (31) is viewed from above in a vertical position where the lowermost portion is located above the axis of the input shaft (21a) of the hydraulic pump (21), the hydraulic pump (21 ) Hybrid construction machine characterized by being placed in a horizontal position that overlaps
  2.  請求項1記載のハイブリッド式建設機械において、
     前記走行用油圧モータ(24a)を低速大容量モードと高速小容量モードに切換え指示可能な走行速度切換スイッチ(41)と、
     前記走行速度切換スイッチ(41)で高速小容量モードが指示され且つ走行用の操作装置(25)が操作された運転状態である走行高速時に、前記蓄電装置(33)からの電力により前記発電・電動機(31)を駆動して電動機として作動させ、前記エンジン(11)の出力トルク不足分を補うように制御する制御装置(46)とを備え、
     前記エンジン(11)の出力馬力は、前記走行高速時に前記油圧ポンプ(21)に必要とされる油圧馬力を賄うことができない大きさの設定としたことを特徴とするハイブリッド式建設機械。
    The hybrid construction machine according to claim 1,
    A traveling speed changeover switch (41) capable of instructing switching of the traveling hydraulic motor (24a) between a low speed large capacity mode and a high speed small capacity mode;
    When the high-speed small-capacity mode is instructed by the travel speed changeover switch (41) and the travel operation device (25) is operated, the power generation / A control device (46) for driving the electric motor (31) to operate as an electric motor and controlling so as to compensate for an insufficient output torque of the engine (11),
    The hybrid construction machine according to claim 1, wherein the output horsepower of the engine (11) is set to a size that cannot provide the hydraulic horsepower required for the hydraulic pump (21) at the high speed of travel.
  3.  請求項2記載のハイブリッド式建設機械において、
     前記エンジン(11)に取付けられて、前記ギヤ機構(6)を収納するととともに、前記油圧ポンプ(21)及び前記発電・電動機(31)を支持するギヤボックス(105)を備え、
     複数の支持ブラケット(106A~106D)を前記エンジン(11)及び前記ギヤボックス(105)に設け、
     前記ギヤボックス(105)を介して前記エンジン(11)、前記油圧ポンプ(21)、及び前記発電・電動機(31)が一体的に構成されたパワーユニットは、前記複数の支持ブラケット(106A~106D)を介し前記旋回フレーム(61)上に取付けたことを特徴とするハイブリッド式建設機械。
    The hybrid construction machine according to claim 2,
    A gear box (105) attached to the engine (11) for housing the gear mechanism (6) and supporting the hydraulic pump (21) and the generator / motor (31);
    A plurality of support brackets (106A to 106D) are provided on the engine (11) and the gear box (105),
    The power unit in which the engine (11), the hydraulic pump (21), and the generator / motor (31) are integrally configured via the gear box (105) includes the plurality of support brackets (106A to 106D). A hybrid construction machine, wherein the hybrid construction machine is mounted on the revolving frame (61).
  4.  請求項3記載のハイブリッド式建設機械において、
     前記発電・電動機(31)は、前記ギヤボックス(105)に設けた前記支持ブラケット(106C,106D)等と干渉しないよう、後方から見た場合に前記油圧ポンプ(21)とオーバーラップしないような鉛直方向位置に配置したことを特徴とするハイブリッド式建設機械。
    The hybrid construction machine according to claim 3,
    The generator / motor (31) does not overlap the hydraulic pump (21) when viewed from the rear so as not to interfere with the support brackets (106C, 106D) and the like provided on the gear box (105). A hybrid construction machine that is arranged in a vertical position.
PCT/JP2011/061689 2010-05-26 2011-05-20 Hybrid construction machine WO2011148877A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180004261.5A CN102575458B (en) 2010-05-26 2011-05-20 Hybrid construction machine
EP11786576.6A EP2578756A4 (en) 2010-05-26 2011-05-20 Hybrid construction machine
IN1916DEN2012 IN2012DN01916A (en) 2010-05-26 2011-05-20
KR1020127010368A KR101747466B1 (en) 2010-05-26 2011-05-20 Hybrid construction machine
US13/496,395 US8651219B2 (en) 2010-05-26 2011-05-20 Hybrid construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010120797A JP5228000B2 (en) 2010-05-26 2010-05-26 Hybrid construction machine
JP2010-120797 2010-05-26

Publications (1)

Publication Number Publication Date
WO2011148877A1 true WO2011148877A1 (en) 2011-12-01

Family

ID=45003867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061689 WO2011148877A1 (en) 2010-05-26 2011-05-20 Hybrid construction machine

Country Status (7)

Country Link
US (1) US8651219B2 (en)
EP (1) EP2578756A4 (en)
JP (1) JP5228000B2 (en)
KR (1) KR101747466B1 (en)
CN (1) CN102575458B (en)
IN (1) IN2012DN01916A (en)
WO (1) WO2011148877A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206193A (en) * 2014-04-18 2015-11-19 日立建機株式会社 Hybrid working machine

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128897A1 (en) * 2009-05-07 2010-11-11 Volvo Construction Equipment Ab A working machine and a method for operating a working machine
JP2012082644A (en) * 2010-10-14 2012-04-26 Hitachi Constr Mach Co Ltd Construction machine
EP2722502A4 (en) * 2011-06-14 2015-06-17 Hitachi Construction Machinery Construction machine
JP6109522B2 (en) * 2012-10-19 2017-04-05 株式会社小松製作所 Work vehicle
KR101958026B1 (en) * 2012-12-26 2019-03-13 두산인프라코어 주식회사 hydraulic circuit system for forced regeneration of Diesel Particulate Filter
JP6028588B2 (en) * 2013-01-22 2016-11-16 コベルコ建機株式会社 Work machine
US9622505B2 (en) 2013-03-14 2017-04-18 H2O Innovation Inc. System and method to produce maple syrup
JP5809657B2 (en) * 2013-03-29 2015-11-11 日立建機株式会社 7 ton class hydraulic excavator
NL2011596C2 (en) 2013-10-11 2015-04-14 Hudson Bay Holding B V ELECTRIC DRIVE OF MOBILE DEVICE.
JP5949730B2 (en) * 2013-11-07 2016-07-13 コベルコ建機株式会社 Electrical equipment arrangement structure for construction machinery
JP6106831B2 (en) * 2014-01-09 2017-04-05 株式会社日立建機ティエラ Hybrid compact hydraulic excavator
JP6106832B2 (en) * 2014-01-09 2017-04-05 株式会社日立建機ティエラ Hybrid compact hydraulic excavator
CN104612927B (en) * 2014-12-26 2017-01-18 东莞光洋信息科技有限公司 Center hydraulic pump and drive mechanism thereof
JP6232007B2 (en) 2015-03-02 2017-11-15 株式会社日立建機ティエラ Hybrid work machine
US9708792B2 (en) * 2015-04-27 2017-07-18 Kobelco Construction Machinery Co., Ltd. Construction machine having cooling function
CN105128964A (en) * 2015-08-24 2015-12-09 山西凌志达煤业有限公司 Dual-power multifunctional crawler type underground motor working vehicle
JP6046857B2 (en) * 2015-11-02 2016-12-21 株式会社小松製作所 Work vehicle control system, control method, and work vehicle
JP6361677B2 (en) * 2016-03-11 2018-07-25 コベルコ建機株式会社 Piping structure of construction machinery
CA3060557C (en) 2017-04-19 2024-04-16 Clark Equipment Company Mechanical drive control for loaders
JP2020032752A (en) * 2018-08-27 2020-03-05 ヤンマー株式会社 Hybrid construction machine
JP6955524B2 (en) * 2019-03-26 2021-10-27 株式会社日立建機ティエラ Battery-powered work machine
EP4438821A1 (en) * 2022-03-31 2024-10-02 Hitachi Construction Machinery Tierra Co., Ltd. Electric work machine
JP2024140694A (en) * 2023-03-28 2024-10-10 ヤンマーホールディングス株式会社 Work Machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173024A (en) 1999-12-17 2001-06-26 Shin Caterpillar Mitsubishi Ltd Hybrid system for construction machine
JP2004084470A (en) * 2002-07-31 2004-03-18 Komatsu Ltd Construction machine
JP2004169465A (en) * 2002-11-21 2004-06-17 Komatsu Ltd Device arrangement configuration for hybrid construction equipment
JP2006002478A (en) 2004-06-18 2006-01-05 Hitachi Constr Mach Co Ltd Construction machine
JP2007056627A (en) 2005-08-26 2007-03-08 Hitachi Constr Mach Co Ltd Construction machine
JP2007062506A (en) * 2005-08-30 2007-03-15 Hitachi Constr Mach Co Ltd Construction machine

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323611A (en) * 1989-08-30 1994-06-28 Kabushiki Kaisha Komatsu Seisakusho Speed change controller of running hydraulic motor
JP2600009B2 (en) * 1990-04-25 1997-04-16 株式会社神戸製鋼所 Crane turning control device
JP3674797B2 (en) * 1996-05-07 2005-07-20 小松ゼノア株式会社 Equipment mounting structure of upper swing body in hydraulic excavator
US6009643A (en) * 1996-05-14 2000-01-04 Kabushiki Kaisha Kobe Seiko Sho Hydraulic working machine
JP3709654B2 (en) * 1997-05-21 2005-10-26 日立建機株式会社 Soil improvement machine with excavation means
US6170588B1 (en) * 1997-06-03 2001-01-09 Hitachi Construction Machinery Co., Ltd. Revolving construction machine
JP3354845B2 (en) * 1997-09-04 2002-12-09 株式会社クボタ Turning work machine
JP3681923B2 (en) * 1999-06-18 2005-08-10 株式会社クボタ Swivel work machine
JP2002047693A (en) * 2000-08-02 2002-02-15 Yanmar Diesel Engine Co Ltd Travel warning device for construction machine
EP1338705A1 (en) * 2000-12-01 2003-08-27 Hitachi Construction Machinery Co., Ltd. Construction machinery
CN100354513C (en) * 2002-09-26 2007-12-12 日立建机株式会社 Prime mover controller for construction machine
ATE378533T1 (en) * 2002-12-27 2007-11-15 Hitachi Construction Machinery HYDRAULIC OPERATED VEHICLE
CN100482901C (en) * 2004-03-29 2009-04-29 株式会社久保田 Swiveling utility machine having swivel deck
US7210292B2 (en) * 2005-03-30 2007-05-01 Caterpillar Inc Hydraulic system having variable back pressure control
US7503419B2 (en) * 2005-09-26 2009-03-17 Kubota Corporation Backhoe
US7388301B2 (en) * 2005-10-12 2008-06-17 Kobelco Construction Machinery Co., Ltd. Construction machine
JP4527074B2 (en) * 2006-03-13 2010-08-18 ヤンマー株式会社 Excavator
US8037963B2 (en) * 2006-08-02 2011-10-18 Komatsu Ltd. Hybrid working vehicle
WO2008081856A1 (en) * 2006-12-28 2008-07-10 Hitachi Construction Machinery Co., Ltd. Travel control device for hydraulic traveling vehicle
JPWO2009001587A1 (en) * 2007-06-26 2010-08-26 日立建機株式会社 Self-propelled construction machinery
JP5480847B2 (en) * 2011-06-21 2014-04-23 株式会社クボタ Working machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173024A (en) 1999-12-17 2001-06-26 Shin Caterpillar Mitsubishi Ltd Hybrid system for construction machine
JP2004084470A (en) * 2002-07-31 2004-03-18 Komatsu Ltd Construction machine
JP2004169465A (en) * 2002-11-21 2004-06-17 Komatsu Ltd Device arrangement configuration for hybrid construction equipment
JP2006002478A (en) 2004-06-18 2006-01-05 Hitachi Constr Mach Co Ltd Construction machine
JP2007056627A (en) 2005-08-26 2007-03-08 Hitachi Constr Mach Co Ltd Construction machine
JP2007062506A (en) * 2005-08-30 2007-03-15 Hitachi Constr Mach Co Ltd Construction machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2578756A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206193A (en) * 2014-04-18 2015-11-19 日立建機株式会社 Hybrid working machine

Also Published As

Publication number Publication date
KR101747466B1 (en) 2017-06-14
JP5228000B2 (en) 2013-07-03
KR20130088001A (en) 2013-08-07
US8651219B2 (en) 2014-02-18
IN2012DN01916A (en) 2015-07-24
EP2578756A1 (en) 2013-04-10
EP2578756A4 (en) 2017-05-03
CN102575458B (en) 2015-01-14
CN102575458A (en) 2012-07-11
US20120186889A1 (en) 2012-07-26
JP2011246955A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5228000B2 (en) Hybrid construction machine
JP5227981B2 (en) Hybrid work machine
JP4072898B2 (en) Equipment layout structure for hybrid construction machines
JP5044727B2 (en) Hydraulic excavator and control method of hydraulic excavator
JP4842635B2 (en) Construction machinery
JP4883058B2 (en) Construction machinery
JP6258886B2 (en) Hybrid work machine
JP2014133455A (en) Hydraulic pump drive device of construction machine
JP5625013B2 (en) Construction machinery
JP2018184783A (en) Cable bracket for electrically driven work machine
JP4329844B2 (en) Hybrid construction machinery
JP5389682B2 (en) Construction machinery
US10036136B2 (en) Small-sized hydraulic excavator
JP6106832B2 (en) Hybrid compact hydraulic excavator
JP2006205922A (en) Vehicle mounting type working machine
WO2015199249A1 (en) Work vehicle and method for controlling same
JP2003154856A (en) Swing type construction machine
JP2004116097A (en) Construction machinery
KR20210095134A (en) Power machine with bracket mount for engine with pump package
JP6934837B2 (en) Electric drive type hydraulic excavator
JPH09286341A (en) Steering part structure for running vehicle
JP6106831B2 (en) Hybrid compact hydraulic excavator
KR20240035320A (en) Working machine
JP3489980B2 (en) Industrial vehicles
JP3412577B2 (en) Hydraulic excavator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004261.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786576

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1916/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13496395

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011786576

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127010368

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE