WO2011148664A1 - アクティブマトリクス基板及び液晶表示装置 - Google Patents

アクティブマトリクス基板及び液晶表示装置 Download PDF

Info

Publication number
WO2011148664A1
WO2011148664A1 PCT/JP2011/051316 JP2011051316W WO2011148664A1 WO 2011148664 A1 WO2011148664 A1 WO 2011148664A1 JP 2011051316 W JP2011051316 W JP 2011051316W WO 2011148664 A1 WO2011148664 A1 WO 2011148664A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel electrodes
liquid crystal
pixel
matrix substrate
pixel electrode
Prior art date
Application number
PCT/JP2011/051316
Other languages
English (en)
French (fr)
Inventor
裕宣 澤田
森永 潤一
訓子 前野
勝滋 浅田
勝広 三雲
藤川 徹也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to BR112012025436A priority Critical patent/BR112012025436A2/pt
Priority to RU2012155901/28A priority patent/RU2516578C1/ru
Priority to KR1020127027178A priority patent/KR101404874B1/ko
Priority to EP11786364.7A priority patent/EP2579093A4/en
Priority to CN201180018465.4A priority patent/CN102844704B/zh
Priority to US13/643,379 priority patent/US9405160B2/en
Priority to JP2012517159A priority patent/JP5486085B2/ja
Publication of WO2011148664A1 publication Critical patent/WO2011148664A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance

Definitions

  • the present invention relates to an active matrix substrate and a liquid crystal display device. More specifically, the present invention relates to an active matrix substrate and a liquid crystal display device that are preferably used when polarity inversion driving is performed.
  • Liquid crystal display devices have been used in a wide range of fields such as televisions, personal computers, mobile phones, and digital cameras in recent years, taking advantage of their thinness, light weight, and low power consumption.
  • the liquid crystal display is a display system that controls the light used for display by utilizing various optical properties such as birefringence, optical rotation, dichroism, optical rotatory dispersion, etc. accompanying the change in the molecular arrangement of the liquid crystal by the application of voltage Further, it can be further divided into various methods depending on the liquid crystal drive control method.
  • the matrix display method is a method in which electrodes are arranged in a specific pattern and driving is controlled for each electrode, and high-definition display is possible.
  • the matrix type display method is further classified into a passive matrix type and an active matrix type.
  • the active matrix type a plurality of wires extending in the row direction and the column direction are provided so as to surround the electrodes arranged in a matrix, and a switching element is provided at each intersection where these intersect.
  • Each electrode is individually driven and controlled by a plurality of wirings, and high-quality liquid crystal display can be performed even with a large capacity.
  • a pixel electrode or a signal wiring has a bent portion, and adjacent pixel electrodes are covered with the bent portion as a boundary. Even when dot inversion driving is performed to invert the polarity of the source signal for each gate line by bending the pixel electrode or the signal wiring in this way, the pixel electrode or the signal wiring (source wiring) is not connected. It is possible to suppress the capacitance generated in step 1 from pixel to pixel due to misalignment between layers.
  • JP 2001-281682 A International Publication No. 2009/104346 Pamphlet JP 2008-3557 A JP 2004-310105 A Japanese Patent Laid-Open No. 10-104664 US Pat. No. 7,436,479 JP 2004-4875 A
  • the electrodes and wirings formed in the liquid crystal display device can be formed, for example, by forming a conductive film over the entire surface of the substrate using a sputtering method and then patterning it into a desired shape using a photolithography method. it can.
  • a sputtering method a sputtering method
  • a photolithography method a photolithography method
  • FIG. 26 and FIG. 27 are schematic plan views showing the arrangement relationship between the source wiring and the pixel electrode when the exposure range causes an alignment shift.
  • FIG. 26 shows a case where the alignment of the pixel electrode is shifted to the left
  • FIG. 27 shows a case where the alignment of the pixel electrode is shifted to the right.
  • the source wirings 112 and 122 are usually arranged so as to overlap the gap between the pixel electrodes 111 and 121.
  • the source wirings 112 and 122 and the pixel electrodes 111 and 121 are provided in different layers with an insulating film interposed therebetween, and a part of the source wirings 112 and 122 and a part of the pixel electrodes 111 and 121 are arranged to overlap each other.
  • the aperture ratio can be improved as compared with the case where they are arranged in the same layer and are provided with a certain interval between the pixel electrode and the source wiring so that they are not electrically connected to each other.
  • a certain amount of parasitic capacitance is generated in a region where the source wirings 112 and 122 and the pixel electrodes 111 and 121 overlap with each other through the insulating film.
  • the size of the parasitic capacitance is proportional to the area where they overlap.
  • FIG. 27 As shown in FIG. 27, an alignment shift occurs between the source wirings 112 and 122 and the pixel electrodes 111 and 121, and an area where the source wiring 112 a formed along one side of a certain pixel electrode 111 overlaps the pixel electrode 111.
  • the area where the source wiring 122 a formed along one side of the other pixel electrode 121 overlaps the pixel electrode 121 is different from each other.
  • the source wiring 112b formed along the other side of a certain pixel electrode 111 overlaps with the pixel electrode 111 and the source wiring formed along the other side of the other pixel electrode 121.
  • the area where 122b overlaps with the pixel electrode 121 is different from each other.
  • the wiring for supplying a signal for writing to the pixel electrode is arranged so as to overlap with the left side of the pixel electrode in FIGS.
  • the source lines 112a and 122a overlapping the left sides of the pixel electrodes 111 and 121 are also referred to as “own pixel source lines”
  • the source lines 112b and 122b overlapping the right sides of the pixel electrodes 111 and 121 are also referred to as “neighboring pixel source lines”.
  • the parasitic capacitance formed between the pixel electrodes 111 and 121 and the own pixel source wirings 112a and 122a is Csd1
  • the parasitic capacitance formed between the pixel electrodes 111 and 121 and the adjacent pixel source wirings 112b and 122b is Csd2.
  • the value indicated by Csd1-Csd2 when the alignment deviation as shown in FIG. 26 occurs and the value indicated by Csd1-Csd2 when the alignment deviation as shown in FIG. Will be different. Since the magnitude of the writing potential to each pixel electrode varies depending on the size of the parasitic capacitance, it is assumed that the writing potential having the same effective value is applied to the pixel electrode shown in FIG. 26 and the pixel electrode shown in FIG. However, since the magnitudes of the pixel potentials varying based on the magnitudes of Csd1 and Csd2 are different from each other, the effective voltages applied between the liquid crystal layers by the pixel electrodes become different values as a result.
  • Such a difference in effective voltage appears as a difference in brightness when applied to a display device, and the display area is visually recognized as block unevenness.
  • the present invention has been made in view of the above-described situation, and an active matrix substrate that can suppress variations in pixel potential even when alignment misalignment occurs, and a pixel potential without reducing the aperture ratio.
  • An object of the present invention is to provide a liquid crystal display device in which deterioration of display quality due to variation is suppressed.
  • the inventors of the present invention have studied various methods for balancing the area where the source wiring overlaps with the pixel electrode by bending a part of the source wiring, and have focused on how the source wiring is bent.
  • Patent Document 2 By using the method described in Patent Document 2 described above, it is possible to prevent display quality from being deteriorated due to a difference in parasitic capacitance. However, since most of the source wirings are formed in the openings, the aperture ratio is reduced. Will do.
  • the present inventors have intensively studied how to bend the source wiring. As a result, the portion where the source wiring is bent is not arranged so as to cross the gap between the pixel electrodes adjacent in the row direction.
  • the electrode is arranged so as to cross the electrode itself, and the other part is arranged so as to overlap with the gap between the pixel electrodes adjacent in the row direction, thereby suppressing the decrease in the aperture ratio and the writing potential between the pixel electrodes. It has been found that the variation of the can be suppressed.
  • a cross section that crosses the pixel electrode in the row direction is provided, and one source wiring extending in the column direction is arranged along one side of the pixel electrode in the column direction with respect to one pixel electrode.
  • the self-pixel source wiring and the adjacent pixel source wirings are arranged with respect to one side of the pixel electrode. Since both overlap, the variation in write potential between pixel electrodes adjacent in the row direction is suppressed. In addition, since most of the source wiring overlaps with the gap between pixel electrodes adjacent in the row direction, a decrease in the aperture ratio is suppressed.
  • the crossing portion is provided so as to overlap with the pixel electrode itself rather than the gap between the pixel electrodes adjacent in the column direction, even if the alignment deviation in the column direction occurs, the crossing portion is not connected between the pixels adjacent in the column direction. Variation in the write potential is less likely to occur.
  • the present invention is an active matrix substrate including a plurality of pixel electrodes arranged in a matrix and a source wiring extending in a column direction, wherein the source wiring is included in at least the plurality of pixel electrodes.
  • a first side portion extending along one side in the column direction of one pixel electrode, a transverse portion traversing the pixel electrode, and a second side extending along the other side in the column direction of the pixel electrode.
  • the first side portion and the second side portion are connected to each other via the transverse portion, and the transverse portion is arranged in the column direction of a plurality of pixel electrodes.
  • at least one active matrix substrate for each of at least two pixel electrodes.
  • An active matrix substrate of the present invention includes a plurality of pixel electrodes arranged in a matrix and source wirings extending in the column direction.
  • the source wiring is a wiring for supplying a data signal (writing potential) to the pixel electrode, and the pixel electrode is charged according to the magnitude of the writing potential supplied from the source wiring.
  • the source wiring includes a first side portion extending along one column direction side of at least one pixel electrode included in the plurality of pixel electrodes, a transverse portion traversing the pixel electrode, and the pixel electrode A second side portion extending along the other side in the column direction, and the first side portion and the second side portion are connected to each other via the transverse portion.
  • at least one transverse portion is provided for each of at least two pixel electrodes arranged in the column direction of the plurality of pixel electrodes.
  • two pixel portions along the side of the pixel electrode and a portion crossing the pixel electrode are formed for each pixel electrode by a single source wiring line. It is possible to obtain an active matrix substrate that is resistant to both the alignment deviation in the direction and the column direction and has a small decrease in the aperture ratio.
  • the configuration of the active matrix substrate of the present invention is not particularly limited by other components as long as such components are essential. A preferred embodiment of the active matrix substrate of the present invention will be described in detail below.
  • Two pixel electrodes adjacent to each other in the row direction of the pixel electrode group arranged in the row direction of the plurality of pixel electrodes preferably have different polarities.
  • the active matrix substrate of the present invention when the active matrix substrate of the present invention is applied to a display device, it is possible to prevent the display from causing flicker, burn-in, or the like.
  • the feature of the active matrix substrate of the present invention eliminates the problem of polarity reversal that the parasitic capacitance varies among the pixel electrodes arranged in the row direction when an alignment shift occurs.
  • the two pixel electrodes adjacent to each other in the column direction of the group of pixel electrodes arranged in the column direction of the plurality of pixel electrodes preferably have different polarities.
  • the active matrix substrate of the present invention when applied to a display device, it is possible to prevent the display from causing flicker, burn-in, or the like.
  • the feature of the active matrix substrate of the present invention eliminates the problem of polarity reversal that the parasitic capacitance varies among the pixel electrodes arranged in the column direction when alignment misalignment occurs. Applies to
  • Two pixel electrodes of at least two pixel electrodes arranged in the column direction are adjacent to each other, and the second pixel electrode extends along one side in the column direction of one of the two pixel electrodes. It is preferable that the side portion of each other and the first side portion extended along one side in the column direction of the other pixel electrode are connected to each other without passing through a transverse portion that crosses the pixel electrode. Further, two pixel electrodes of at least two pixel electrodes arranged in the column direction are adjacent to each other, and are extended along one side in the column direction of one of the two pixel electrodes.
  • the first side portion and the second side portion extended along one side in the column direction of the other pixel electrode are connected to each other without passing through a transverse portion that crosses the pixel electrode.
  • the bent pattern of the source wiring has a repetitive pattern in units of two pixel electrodes, so that it is possible to make it difficult to cause variations in pixel potential between two pixel electrodes adjacent in the column direction and Since the number of parts can be reduced to the minimum, the pattern is not complicated and the yield is improved.
  • one transverse portion is provided for each of at least two pixel electrodes adjacent in the column direction among the plurality of pixel electrodes.
  • the first side part, the second side part, and at least one transverse part connecting the first side part and the second side part are provided. Is provided as an indispensable component, but by providing one crossing portion for each of the pixel electrodes arranged in the column direction, it is possible to reduce the capacity and minimize the decrease in the aperture ratio.
  • an even number of the transverse portions is provided for each of at least two pixel electrodes adjacent in the column direction among the plurality of pixel electrodes.
  • the first side part, the second side part, and at least one transverse part connecting the first side part and the second side part are provided.
  • the crossing portion is at a position that substantially equally divides one side of the pixel electrode in the column direction.
  • the length of the first side portion and the length of the second side portion of the source wiring coincide with each other, which makes it easier to suppress variations in pixel potential.
  • the crossing part is composed of a transparent electrode.
  • a material used for the wiring aluminum, copper, chromium, titanium, tantalum, molybdenum, or the like having a low specific resistance is generally preferable.
  • a light-transmitting material such as indium tin oxide (ITO: Indium Tin Oxide) or indium zinc oxide (IZO: Indium Zinc Oxide) is preferably used.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • preferable shapes of the at least one pixel electrode include a substantially rectangular shape, a substantially V-shaped shape, and a substantially W-shaped shape.
  • first side portion is branched into two at a branch point, and each branched first side portion overlaps with a pixel electrode adjacent in the row direction.
  • second side portion is branched into two at a branch point, and each branched second side portion is overlapped with a pixel electrode adjacent in the row direction.
  • Alignment in the row direction by providing a branch point on the first and / or second side of the source wiring, providing a shape that creates a loop in part of the source wiring, and making the entire source wiring a ladder shape Even if a misalignment occurs, each branched side is not easily overlapped with the gap between two pixel electrodes adjacent in the row direction, so that it is easy to suppress variations in pixel potential between pixel electrodes adjacent in the row direction. Become.
  • the active matrix substrate further includes a gate wiring extending in the row direction, and the gate wiring preferably crosses the pixel electrode. Since the gate wiring is provided so as to overlap with the pixel electrode, it is not necessary to shield the region where the liquid crystal molecules are disturbed by the gate electric field, so that the pattern is simplified and contributes to the yield. Also, compared to a configuration in which the pixel electrodes are adjacent to each other in the column direction, the parasitic capacitance formed between the pixel electrode and the gate wiring varies when alignment deviation in the column direction occurs. This can be suppressed and fluctuations in the pixel potential can be suppressed.
  • the active matrix substrate further includes a gate wiring extending in the row direction, and the gate wiring is preferably formed so as to overlap a gap between pixel electrodes adjacent in the column direction.
  • the active matrix substrate further includes a thin film transistor connected to each of the source wiring and the gate wiring, and the thin film transistor preferably overlaps a bisector on one side in the row direction of the pixel electrode.
  • TFTs Thin Film ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Transistors
  • the present invention is also a liquid crystal display device having the above-described active matrix substrate, liquid crystal layer, and counter substrate stacked in this order. According to the structure of the active matrix substrate of the present invention, it is possible to suppress a decrease in the aperture ratio and suppress variations in pixel potential, so that high quality display can be obtained.
  • the alignment modes of the liquid crystal suitably used in the liquid crystal display device of the present invention include TN (TwistedistNematic) mode, VA (Vertical Alignment) mode, IPS (In-plane Switching) mode, TBA (Transverse Bend Alignment) mode, CPA. (Continuous / Pinwheel / Alignment) mode and MVA (Multi-domain / Vertical / Alignment) mode.
  • TN TransmissionistNematic
  • VA Very Alignment
  • IPS In-plane Switching
  • TBA Transverse Bend Alignment
  • CPA Continuous / Pinwheel / Alignment
  • MVA Multi-domain / Vertical / Alignment
  • the active matrix substrate of the present invention variations in pixel potential can be suppressed. Further, according to the liquid crystal display device of the present invention, it is possible to suppress a decrease in the aperture ratio and to suppress variations in pixel potential, so that high quality display can be obtained.
  • FIG. 2 is a schematic plan view illustrating a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 1. It is a plane schematic diagram which shows the polarity which the pixel electrode with which the liquid crystal display device of Embodiment 1 is provided, and shows the time of dot inversion drive.
  • FIG. 3 is a schematic plan view showing polarities of pixel electrodes included in the liquid crystal display device of Embodiment 1, and shows a case of line inversion driving in which polarities are switched between adjacent columns.
  • FIG. 3 is a schematic plan view showing polarities of pixel electrodes included in the liquid crystal display device of Embodiment 1, and shows a case of line inversion driving in which the polarity is switched between adjacent rows.
  • FIG. 6 is a schematic plan view illustrating an example (Example 1) of an active matrix substrate included in the liquid crystal display device of Embodiment 1.
  • FIG. 3 is a schematic plan view illustrating an example (Example 2) of an active matrix substrate included in the liquid crystal display device of Embodiment 1.
  • FIG. 6 is a schematic plan view illustrating an example (Example 3) of an active matrix substrate included in the liquid crystal display device of Embodiment 1.
  • FIG. 3 is a schematic perspective view of the TN mode liquid crystal display device according to the first embodiment, showing alignment of liquid crystal molecules in a state in which no voltage is applied.
  • FIG. 3 is a schematic perspective view of the TN mode liquid crystal display device according to the first embodiment, showing the alignment of liquid crystal molecules in a voltage application state that is equal to or higher than a threshold value.
  • FIG. 3 is a schematic perspective view of the VA mode liquid crystal display device according to the first embodiment, showing alignment of liquid crystal molecules in a state in which no voltage is applied.
  • FIG. 3 is a schematic perspective view of the VA mode liquid crystal display device according to the first embodiment, showing the alignment of liquid crystal molecules in a voltage application state of a threshold value or more.
  • FIG. 3 is a schematic perspective view of the IPS mode liquid crystal display device according to the first embodiment, showing alignment of liquid crystal molecules in a state in which no voltage is applied.
  • FIG. 3 is a schematic perspective view of the IPS mode liquid crystal display device according to the first embodiment, and shows the alignment of liquid crystal molecules in a voltage application state of a threshold value or more.
  • FIG. 3 is a schematic perspective view of the TBA mode liquid crystal display device according to the first embodiment, showing alignment of liquid crystal molecules in a state in which no voltage is applied.
  • FIG. 3 is a schematic perspective view of the TBA mode liquid crystal display device of Embodiment 1 and shows the alignment of liquid crystal molecules in a voltage application state that is equal to or higher than a threshold value.
  • FIG. 3 is a schematic perspective view of the CPA mode liquid crystal display device according to the first embodiment, showing the alignment of liquid crystal molecules when no voltage is applied.
  • FIG. 3 is a schematic perspective view of the CPA mode liquid crystal display device according to the first embodiment, showing the alignment of liquid crystal molecules in a voltage application state of a threshold value or more.
  • FIG. 3 is a schematic perspective view of the MVA mode liquid crystal display device of Embodiment 1 and shows the alignment of liquid crystal molecules in a state in which no voltage is applied.
  • FIG. 3 is a schematic perspective view of the MVA mode liquid crystal display device according to the first embodiment, showing the alignment of liquid crystal molecules in a voltage application state that is equal to or higher than a threshold value.
  • FIG. 6 is a schematic plan view illustrating an arrangement relationship between pixel electrodes and source wirings of an active matrix substrate included in the liquid crystal display device of Embodiment 2.
  • FIG. 10 is a schematic plan view illustrating a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 3.
  • FIG. 10 is a schematic plan view showing a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 4.
  • FIG. 10 is a schematic plan view showing a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 5.
  • FIG. 10 is a schematic plan view illustrating an arrangement relationship between pixel electrodes and source wirings of an active matrix substrate included in the liquid crystal display device of Embodiment 2.
  • FIG. 10 is a schematic plan view illustrating a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Em
  • FIG. 17 is a schematic plan view illustrating a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 6.
  • FIG. 16 is a schematic plan view illustrating a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device according to the seventh embodiment. It is a plane schematic diagram which shows the arrangement
  • the shape when expressed using “substantially”, it means that the object substantially represents the shape.
  • the entire object is substantially the whole. What is necessary is just to be a rectangle, and it means that the overhang
  • the “pixel” refers to a range corresponding to one pixel electrode.
  • Embodiment 1 is an example of the liquid crystal display device of the present invention to which the active matrix substrate of the present invention is applied.
  • the liquid crystal display device of Embodiment 1 includes an active matrix substrate including pixel electrodes, TFTs, and the like.
  • the active matrix substrate has a glass substrate as a base, and a plurality of pixel electrodes are arranged in a row direction and a column direction on the glass substrate, and are arranged in a matrix as a whole. Yes. Thereby, alignment control of liquid crystal molecules can be performed for each pixel electrode.
  • FIG. 1 is a schematic plan view showing a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 1.
  • the shape of the pixel electrodes 11a, 11b, 21a, 21b, 31a, and 31b is substantially rectangular.
  • the source wirings 12, 22, and 32 are formed so as to partially overlap a gap between two pixel electrodes adjacent in the row direction. Further, the source wirings 12, 22, and 32 have a bending point, a transverse part is formed at the bending point, and the transverse part crosses the pixel electrodes 11a, 11b, 21a, 21b, 31a, and 31b, respectively. Is formed.
  • the source wirings 12, 22, and 32 have a zigzag shape as a whole.
  • the first source wiring 12 includes first side portions 12a and 12d extending in the column direction along one side of each of the pixel electrodes 11a and 11b, and each of the pixel electrodes 11a and 11b.
  • Each of these parts has a configuration in which one pixel electrode 11a, 11b is provided.
  • the transverse portions 12c and 12f are formed at positions overlapping the bisector of one side in the column direction of the pixel electrodes 11a and 11b, and the total length of the first side portion and the second side The total of the lengths of the side portions is approximately the same.
  • the first side portions 22a, 32a, 22d, 32d and the second side portions 22b, 22e, 32b, 32e are formed in the same pattern.
  • And crossing portions 22c, 22f, 32c, and 32f are formed.
  • the pixel electrodes 11a, 11b, 21a, 21b, 31a, 31b and the source wirings 12, 22, 32 are formed in different layers through insulating films. Although not explicitly shown in FIG. 1, the pixel electrode and the side portion of the source wiring may partially overlap each other. By doing so, light leakage between the pixel electrodes can be prevented and the contrast ratio can be improved. As a result, a parasitic capacitance is formed between the pixel electrode and the source wiring.
  • the source lines in the first embodiment it is particularly advantageous when pixel electrodes adjacent in the row direction have different polarities.
  • the polarities of two pixel electrodes arranged adjacent to each other in the row direction are different from each other and the area where the pixel electrode and the source wiring overlap is greatly different between the pixel electrodes,
  • the size of the parasitic capacitance formed between the pixel electrodes differs between the pixel electrodes, and the voltage held by the pixel electrodes may vary.
  • the edge of one pixel electrode and the source adjacent to the edge is almost equal between the source wiring overlapping with the left side of the pixel electrode (own pixel source wiring) and the source wiring overlapping with the right side of the pixel electrode (adjacent pixel source wiring), or to one pixel electrode
  • a plurality of source wirings overlap each other, and the overlapping area of the source wiring overlapping with the left side of the pixel electrode (own pixel source wiring) and the source wiring overlapping with the right side of the pixel electrode (adjacent pixel source wiring) are almost equal.
  • the parasitic capacitance formed between the pixel electrode and the adjacent pixel source wiring is represented by Csd.
  • Minus i.e., the value represented by Csd1-Csd2 is uniform in each pixel. Since there is no large shift in the magnitude of the potential that varies due to the influence of the source wirings 12, 22, 32 between the pixel electrodes, the pixel electrodes 11a, 21a, 31a adjacent to each other in the row direction, or the pixel electrodes 11b, 21b, The pixel potential is less likely to vary between 31b.
  • the parasitic capacitance formed between the pixel electrode 21a and the second source is small, and the value of Csd1 formed with the second side portion 22b of the second source wiring 22 is large.
  • the value of Csd2 formed between the first source line 12 and the second side part 12b is small, and it is formed between the first side line 32a of the third source line 32. The value of Csd2 increases.
  • the signal voltage supplied from the first source line 12 and the signal voltage supplied from the third source line 32 have the same polarity. Therefore, when viewed in units of one pixel electrode 21a, the total value of Csd1 and the total value of Csd2 are made uniform.
  • the parasitic capacitance formed between the pixel electrode 21a and the first side portion 22a of the second source wiring 22 is as follows.
  • the value of Csd1 formed is large, and the value of Csd1 formed between the second side portion 22b of the second source wiring 22 is small.
  • the value of Csd2 formed between the first source line 12 and the second side part 12b of the first source line 12 is large, and it is formed between the first side part 32a of the third source line 32.
  • the value of Csd2 becomes small.
  • the signal voltage supplied from the first source line 12 and the signal voltage supplied from the third source line 32 have the same polarity. Therefore, when viewed in units of one pixel electrode 21a, the total value of Csd1 and the total value of Csd2 are made uniform.
  • the value of Csd1 and the value of Csd2 are almost equal regardless of whether the pixel electrode 21a is shifted to the right side or the pixel electrode 21a is shifted to the left side. Therefore, even if the pixel electrode is misaligned to the left or right, the pixel potential is less likely to vary.
  • the source line is not arranged so as to overlap the gap between the two pixel electrodes 11a and 11b, the pixel electrodes 21a and 21b, or the pixel electrodes 31a and 31b adjacent in the column direction. Even if the alignment misalignment occurs, the pixel potential is unlikely to vary between the two pixel electrodes 11a and 11b, the pixel electrodes 21a and 21b, or the pixel electrodes 31a and 31b adjacent in the column direction.
  • the pixel potential does not easily vary, so that excellent display quality can be obtained.
  • FIG. 2 to 4 are schematic plan views showing polarities of pixel electrodes included in the liquid crystal display device of Embodiment 1.
  • FIG. 2 shows the case of dot inversion driving
  • FIG. 3-1 shows the case of line inversion driving in which the polarity is switched between adjacent columns
  • FIG. 3-2 shows the polarity between adjacent rows.
  • FIG. 4 shows the case of 2H dot inversion driving.
  • a dot inversion driving method can be cited.
  • the potential (Com potential) of the electrodes provided in the counter substrate located opposite to each other across the liquid crystal layer is DC (direct current) driving
  • the source signal in the active matrix substrate is AC (alternating current) driving.
  • a line inversion driving method in which the polarity of the signal applied to the pixel electrode is switched only in either the row direction or the column direction is used. It may be adopted.
  • 2H dot inversion driving (for example, +, +,-,-) is adopted in which the polarity is switched in units of two pixels in the column direction and the polarity is switched in units of one pixel in the row direction. Also good.
  • the configuration of the first embodiment since display quality can be maintained even when adjacent pixel electrodes 11 have different polarities, the occurrence of flicker is suppressed and the luminance between the pixel electrodes is adjacent. Brightness non-uniformity due to the difference between the pixel electrodes 11a, 21a, 31a or the light leakage that occurs in the gaps between the pixel electrodes 11b, 21b, 31b is prevented, the contrast ratio is improved, and a high-quality display is achieved. Obtainable.
  • FIGS. 5 to 7 are schematic plan views showing examples (Examples 1 to 3) of the active matrix substrate included in the liquid crystal display device of the first embodiment.
  • the active matrix substrate includes gate lines 13a and 13b, storage capacitor lines (CS lines) 14a and 14b, drain lines 15a and 15b, in addition to the pixel electrodes 11a and 11b and the source line 12. It has various wirings and TFTs (Thin Film Transistors) 17a and 17b which are switching elements, and these are provided in different layers through insulating films.
  • TFTs Thin Film Transistors
  • the TFTs 17a and 17b have a semiconductor layer made of silicon or the like and three electrodes, a gate electrode, a source electrode, and a drain electrode.
  • the gate electrode is connected to the gate lines 13 a and 13 b
  • the source electrode is connected to the source line 12.
  • Drain wirings 15a and 15b are drawn out from the drain electrode.
  • Contact holes 16a and 16b are provided at positions overlapping the drain wirings 15a and 15b of the insulating film, and the drain wirings 15a and 15b and the pixel electrodes 11a and 11b are connected through the contact holes 16a and 16b. ing. Note that it is not necessary that all these various wirings be provided in different layers.
  • the gate wirings 13a and 13b and the CS wirings 14a and 14b are formed in the same layer using the same material, or the source wirings. 12 and the drain wirings 15a and 15b can be formed in the same layer using the same material, thereby improving the manufacturing efficiency.
  • Various wirings such as the source wiring 12, the gate wirings 13a and 13b, the CS wirings 14a and 14b, and the configurations of the electrodes of the TFTs 17a and 17b include, for example, aluminum (Al), copper (Cu), chromium (Cr), A material having a low specific resistance such as titanium (Ti), tantalum (Ta), molybdenum (Mo), or the like can be used. More specifically, the layer is made of aluminum (Al) or copper (Cu), and the lower and upper surfaces thereof are made of tantalum nitride (TaN), titanium nitride (TiN), molybdenum (Mo), or the like. For example, a structure in which layers are stacked.
  • Examples of the configuration of the pixel electrodes 11a and 11b include a metal oxide pattern film having translucency such as ITO (indium tin oxide) and IZO (indium zinc oxide).
  • one pixel electrode is disposed in one region surrounded by the source wiring and the gate wiring, and one pixel electrode is controlled for one TFT.
  • One subpixel electrode is arranged in one region surrounded by the source wiring and the gate wiring, and both the subpixel electrodes located on both sides of the gate wiring are controlled by two TFTs with one gate wiring interposed therebetween.
  • a so-called multi-pixel driving method may be used. In this case, it is the same as one pixel electrode divided into a plurality of subpixel electrodes and controlled, but in order to obtain the effect of the present invention, for each of the divided subpixel electrodes, The first side part, the second side part, and the crossing part of the source wiring need to be formed.
  • the distance between the edge of one pixel electrode and the source wiring adjacent to the edge is The source wiring that overlaps the left side of the pixel electrode (own pixel source wiring) and the source wiring that overlaps the right side of the pixel electrode (adjacent pixel source wiring) are almost equal, or a plurality of source wirings for one pixel electrode Are overlapped, and the overlapping area of the source wiring (own pixel source wiring) that overlaps the left side of the pixel electrode and the source wiring (adjacent pixel source wiring) that overlaps the right side of the pixel electrode is almost equal.
  • the parasitic capacitance formed between the pixel electrode and the adjacent pixel source wiring is subtracted from the parasitic capacitance Csd1 formed between the pixel source wiring and Csd2.
  • Value i.e., the value represented by Csd1-Csd2 are equalized with each pixel. Therefore, in the case of gray gradation display, an effect of suppressing a change in luminance can be obtained, and in particular, it can be suitably used in an application having a gray gradation display mode, such as an electronic book.
  • the active matrix substrate of the first embodiment most of the source wirings are arranged between pixel electrodes adjacent in the row direction, and the value of Csd becomes small. Therefore, the luminance due to the influence of Csd in monochromatic or complementary color display Deviation can be suppressed.
  • the number of cross sections of the source wiring formed for one pixel electrode is one, so that a decrease in aperture ratio can be minimized. Furthermore, since the bent pattern of the source wiring is in units of two pixels, the number of cross sections of the source wiring crossing the pixel electrode can be reduced as compared with the case of forming in units of one pixel. The capacity can be reduced.
  • FIG. 5 is a schematic plan view of the active matrix substrate of the first embodiment.
  • each of the pixel electrodes 11a and 11b has a shape in which three slits are formed in the row direction with respect to a rectangle.
  • the pixel electrodes 11a and 11b are each divided into four regions as a whole, but each region is connected to each other through a connection portion.
  • the connecting portion has a portion formed along one side of the pixel electrodes 11a and 11b and a portion formed along the other side of the pixel electrodes 11a and 11b, which are alternately arranged in the column direction. It is formed to be.
  • the present invention is applied to a CPA liquid crystal display device, and columnar or hole-shaped alignment control patterns 18 are arranged at positions overlapping with the four regions. It is configured to be able to.
  • the TFTs 17a and 17b are arranged in the middle slit of the pixel electrodes 11a and 11b. That is, the TFTs 17a and 17b, which are switching elements for driving the pixels, are divided in the vicinity of the center of the pixel electrodes 11a and 11b, that is, the bisector of one side in the row direction of the pixel electrodes 11a and 11b and the bisector of one side in the column direction. It is arranged so as to overlap the position where the line intersects.
  • the first side portions 12a and 12d and the second side portions 12b and 12e of the source wiring 12 are extended in the column direction. That is, the first side portions 12a and 12d and the second side portions 12b and 12e are in a parallel relationship with each other.
  • the gate wirings 13a and 13b are extended in the row direction, and are arranged so as to cross the centers of the pixel electrodes 11a and 11b along the transverse portions 12c and 12f of the source wiring 12. Portions overlapping the semiconductor layers of the gate wirings 13a and 13b serve as gate electrodes of the TFTs 17a and 17b, and the source wiring 12 and the drain wirings 15a and 15b are connected under a certain gate voltage.
  • the timing of applying the signal voltage sent from the source line 12 to the pixel electrodes 11a and 11b can be controlled by the TFTs 17a and 17b according to the timing of the gate voltage sent from the gate lines 13a and 13b. it can.
  • the shape of the edges of the pixel electrodes 11a and 11b around the TFTs 17a and 17b can be made the same in the even rows and the odd rows. It is difficult for the pixel potential parameter fluctuations to occur.
  • the CS wirings 14a and 14b are extended in the row direction at positions overlapping the gaps between the pixel electrodes 11a and 11b adjacent in the column direction.
  • the CS wirings 14a and 14b are arranged so as to overlap the drain wirings 15a and 15b via an insulating film in the center of the pixel, and a certain amount of storage capacitance can be formed between the drain wirings 15a and 15b. it can.
  • the CS wiring also serves to prevent light leakage from the gap between the pixel electrodes 11a and 11b adjacent in the column direction, thereby contributing to an improvement in contrast ratio.
  • FIG. 6 is a schematic plan view of an active matrix substrate according to the second embodiment.
  • each of the pixel electrodes 11a and 11b has a shape in which one slit is formed in the row direction with respect to a rectangle.
  • the pixel electrodes 11a and 11b are each divided into two regions as a whole, but each region is connected to each other via a connecting portion.
  • wiring is drawn out from part of the pixel electrodes 11a and 11b, and is formed wide at positions overlapping the drain wirings 15a and 15b of the TFTs 17a and 17b.
  • the pixel electrodes 11a and 11b and the drain wirings 15a and 15b are connected to each other through contact holes 16a and 16b provided in the insulating film.
  • a dot-like alignment control pattern for example, a columnar dielectric pattern
  • a dot-like alignment control pattern 18 can be arranged.
  • the first side parts 12a and 12d and the second side parts 12b and 12e of the source wiring 12 are extended in the column direction, and the transverse parts 12c and 12f cross the center of the pixel electrodes 11a and 11b.
  • the gate wirings 13a and 13b are arranged to extend in the row direction at positions overlapping the upper ends of the pixel electrodes 11a and 11b. Portions overlapping the semiconductor layers of the gate wirings 13a and 13b serve as gate electrodes of the TFTs 17a and 17b, and the source wiring 12 and the drain wirings 15a and 15b are connected under a certain gate voltage.
  • the timing of applying the signal voltage sent from the source line 12 to the pixel electrodes 11a and 11b can be controlled by the TFTs 17a and 17b according to the timing of the gate voltage sent from the gate lines 13a and 13b. it can.
  • the CS wirings 14a and 14b are extended in the row direction between the rows of the gate wirings 13a and 13b.
  • the CS wirings 14a and 14b are arranged so as to overlap with the drain wirings 15a and 15b through an insulating film, and a certain amount of storage capacitance can be formed between the drain wirings 15a and 15b.
  • the CS lines 14a and 14b are extended in the row direction at positions that overlap with the gaps between the pixel electrodes 11a and 11b adjacent in the column direction and the lead lines from the pixel electrodes 11a and 11b.
  • the CS wirings 14a and 14b are arranged so as to overlap with the drain wirings 15a and 15b through an insulating film at a position overlapping with the gap between the pixel electrodes 11a and 11b adjacent in the column direction, and between the drain wirings 15a and 15b. A certain amount of holding capacity can be formed.
  • the CS wirings 14a and 14b and the drain electrodes 15a and 15b prevent light leakage from the gap between the pixel electrodes 11a and 11b adjacent in the column direction and the lead-out wiring from the pixel electrodes 11a and 11b. Since it also plays a role, it contributes to the improvement of the contrast ratio.
  • FIG. 7 is a schematic plan view of the active matrix substrate of the third embodiment.
  • each of the pixel electrodes 11a and 11b has a shape in which one slit is formed in the row direction with respect to a rectangle.
  • the pixel electrodes 11a and 11b are each divided into two regions as a whole, but each region is connected to each other via a connecting portion.
  • a dot-like alignment control pattern for example, a columnar dielectric pattern
  • a dot-like alignment control pattern for example, a columnar dielectric pattern
  • the TFTs 17a and 17b are arranged in the slits of the pixel electrodes 11a and 11b. That is, the TFTs 17a and 17b, which are switching elements for driving the pixels, are divided in the vicinity of the center of the pixel electrodes 11a and 11b, that is, the bisector of one side in the row direction of the pixel electrodes 11a and 11b It is arranged so as to overlap the position where the line intersects.
  • the first side portions 12a and 12d and the second side portions 12b and 12e of the source wiring 12 are extended in the column direction.
  • the gate wirings 13a and 13b are extended in the row direction, and are arranged so as to cross the centers of the pixel electrodes 11a and 11b along the transverse portions 12c and 12f of the source wiring 12.
  • Portions overlapping the semiconductor layers of the gate wirings 13a and 13b serve as gate electrodes of the TFTs 17a and 17b, and the source wiring 12 and the drain wirings 15a and 15b are connected under a certain gate voltage.
  • the timing of applying the signal voltage sent from the source line 12 to the pixel electrodes 11a and 11b can be controlled by the TFTs 17a and 17b according to the timing of the gate voltage sent from the gate lines 13a and 13b. it can.
  • the CS wirings 14a and 14b are extended in the row direction at positions overlapping the gaps between the pixel electrodes 11a and 11b adjacent in the column direction.
  • the CS wirings 14a and 14b are arranged so as to overlap the drain wirings 15a and 15b via an insulating film in the center of the pixel, and form a certain amount of storage capacitance with the drain wirings 15a and 15b. be able to.
  • the CS wiring also serves to prevent light leakage from the gap between the pixel electrodes 11a and 11b adjacent in the column direction, thereby contributing to an improvement in contrast ratio.
  • FIGS. 8 to 19 are schematic perspective views of the liquid crystal display device according to the first embodiment, which are distinguished by the alignment method of liquid crystal molecules.
  • 8 and 9 are TN mode liquid crystal display devices
  • FIGS. 10 and 11 are VA mode liquid crystal display devices
  • FIGS. 12 and 13 are IPS mode liquid crystal display devices.
  • 15 and 15 are TBA mode liquid crystal display devices
  • FIGS. 16 and 17 are CPA mode liquid crystal display devices
  • FIGS. 18 and 19 are MVA mode liquid crystal display devices.
  • the liquid crystal display device of the present invention can be applied to any of these methods.
  • 8, 10, 12, 14, 16, and 18 respectively show the orientation of liquid crystal molecules in the absence of voltage application
  • FIGS. 9, 11, 13, 15, 17, and 19. Indicates the alignment of the liquid crystal molecules in a voltage application state of a threshold value or more.
  • the liquid crystal display device of Embodiment 1 is sandwiched between a pair of substrates including an active matrix substrate 1 including a pixel electrode, a TFT, and the like, and a counter substrate 2, and the pair of substrates.
  • a liquid crystal display panel having a liquid crystal layer 3 is provided.
  • Polarizers 4 and 5 are respectively attached to the surfaces of the pair of substrates opposite to the liquid crystal layer 3.
  • the direction of the polarization axis of the polarizing plate 4 on the active matrix substrate side and the direction of the polarization axis of the polarizing plate 5 on the counter substrate side are orthogonal to each other, which is a so-called crossed Nicols arrangement.
  • Each of the liquid crystal layers 3 is filled with a positive type (having positive dielectric anisotropy) or negative type (having negative dielectric anisotropy) liquid crystal material 6.
  • the liquid crystal layer 3 is filled with a positive liquid crystal material 6, and the pair of substrates 1 and 2 have electrodes paired with each other. Is formed.
  • the liquid crystal molecules near the substrate surface are aligned in a horizontal direction with respect to the substrate surface due to the influence of the alignment film, and are twisted in the in-plane direction from one substrate 1 to the other substrate 2.
  • the major axis of the liquid crystal molecules adjacent to one substrate 1 and the major axis of the liquid crystal molecules adjacent to the other substrate 2 are substantially the same when viewed from the normal direction with respect to the substrates 1 and 2. Make an angle of 90 °.
  • each liquid crystal molecule 6 is inclined in a direction perpendicular to the surfaces of the substrates 1 and 2.
  • the liquid crystal layer 3 is filled with a negative type liquid crystal material 6, and electrodes that are paired with each other on a pair of substrates 1 and 2. Is formed.
  • the liquid crystal molecules 6 near the surfaces of the substrates 1 and 2 are aligned in a direction perpendicular to the substrate surface due to the influence of the alignment film. It inclines toward the horizontal direction.
  • the liquid crystal layer 3 is filled with a positive liquid crystal material 6, and one of the pair of substrates 1 and 2 is paired with each other.
  • An electrode is formed.
  • the liquid crystal molecules 6 near the surfaces of the substrates 1 and 2 are aligned in a horizontal direction with respect to the substrate surface due to the effect of the alignment film.
  • each liquid crystal molecule 6 rotates in the in-plane direction while maintaining the tilt angle.
  • the liquid crystal layer 3 is filled with a positive type liquid crystal material 6, and one of the pair of substrates 1 and 2 is paired with each other. An electrode is formed. When no voltage is applied, the liquid crystal molecules 6 near the surfaces of the substrates 1 and 2 are aligned in a direction perpendicular to the substrate surface due to the influence of the alignment film. To do.
  • the liquid crystal layer 3 is filled with a negative type liquid crystal material 6, and electrodes that are paired with each other on each of the pair of substrates 1 and 2. Is formed.
  • dot-like orientation control patterns for example, columnar dielectric protrusions, holes, etc.
  • the liquid crystal molecules 6 near the surfaces of the substrates 1 and 2 are aligned in a direction perpendicular to the surfaces of the substrates 1 and 2 due to the effect of the alignment film. Oriented radially as the center.
  • the liquid crystal layer 3 is filled with a negative type liquid crystal material 6, and electrodes that are paired with each other on each of the pair of substrates 1 and 2. Is formed.
  • a linear alignment control pattern (for example, a wall-shaped dielectric protrusion, a slit, or the like) 19 is formed on the surface of one or both of the pair of substrates 1 and 2.
  • the liquid crystal molecules 6 near the substrate surface are aligned in a direction perpendicular to the surfaces of the substrates 1 and 2 due to the effect of the alignment film, and when a voltage is applied, the liquid crystal molecules 6 are aligned side by side toward the alignment control pattern 19.
  • the liquid crystal display device of Embodiment 1 can be applied to any of these alignment modes. However, when the TN mode or the CPA mode is employed, the pixel electrode has a substantially rectangular shape. Used for.
  • Embodiment 2 is an example of the liquid crystal display device of the present invention to which the active matrix substrate of the present invention is applied.
  • the liquid crystal display device according to the second embodiment is the same as the liquid crystal display device according to the first embodiment, except that the shape of the pixel electrode is not substantially rectangular but substantially V-shaped, that is, has a one-fold structure. It is the same.
  • FIG. 20 is a schematic plan view showing a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 2.
  • the shape of the pixel electrodes 11a, 11b, 21a, 21b, 31a, 31b is substantially “ ⁇ ” shape (half-rotated V-shape).
  • the source wirings 12, 22, and 32 are formed so that a part thereof overlaps the gap between two pixel electrodes adjacent in the row direction. Further, the source wirings 12, 22, and 32 have a bending point, a crossing portion is formed at the bending point, and the crossing portion is formed so as to cross the pixel electrodes 11a, 11b, 21a, 21b, 31a, and 31b. Has been.
  • the source wirings 12, 22, and 32 have a zigzag shape as a whole. More specifically, for example, the source wiring 12 includes first side portions 12a and 12d extending in the column direction along one side of the pixel electrodes 11a and 11b, and columns along the other sides of the pixel electrodes 11a and 11b. Second side portions 12b, 12e extended in the direction, and cross portions 12c, 12f connecting the first side portions 12a, 12d and the second side portions 12b, 12e, and these Each part has a configuration in which one pixel electrode 11a and one pixel electrode 11b are provided.
  • the transverse portions 12c and 12f are formed at positions overlapping the bisector of one side in the column direction of the pixel electrodes 11a and 11b, and the length of the first side portion and the length of the second side portion The length is almost the same.
  • the first side portions 12a and 12d and the second side portions 12b and 12e are not parallel, and the extension lines of the first side portions 12a and 12d have an angle.
  • the first side portions 22a, 32a, 22d, 32d and the second side portions 22b, 22e, 32b, 32e are formed in the same pattern.
  • And crossing portions 22c, 22f, 32c, and 32f are formed.
  • the source wirings of the second embodiment there is no large difference in the magnitude of the potential that varies due to the influence of the source wirings 12, 22, and 32 between the pixel electrodes. Therefore, the pixel electrodes 11a adjacent in the row direction are eliminated. , 21a, 31a, or pixel electrodes 11b, 21b, 31b, the pixel potential is less likely to vary.
  • the source wiring is not arranged so as to overlap the gap between the two pixel electrodes 11a and 11b, the pixel electrodes 21a and 21b, or the pixel electrodes 31a and 31b adjacent in the column direction, an alignment shift in the column direction occurs. Even so, the pixel potential is less likely to vary between the two pixel electrodes 11a and 11b, the pixel electrodes 21a and 21b, or the pixel electrodes 31a and 31b adjacent in the column direction.
  • the liquid crystal display device of Embodiment 2 can be applied to any of the above-described alignment modes, the pixel electrode has a substantially “ ⁇ ” shape (half-turned V shape).
  • the IPS mode, VA mode, MVA mode, and TBA mode the viewing angle characteristics can be improved and the high aperture ratio can be further improved.
  • Embodiment 3 is an example of the liquid crystal display device of the present invention to which the active matrix substrate of the present invention is applied.
  • the shape of the pixel electrode is not substantially rectangular but is substantially W-shaped, that is, has a three-folded structure (the shape of the character is two-tiered). These are the same as those of the liquid crystal display device of the first embodiment.
  • FIG. 21 is a schematic plan view showing an arrangement relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 3.
  • the shape of the pixel electrodes 11a, 11b, 21a, 21b, 31a, and 31b is a shape in which approximately two “ ⁇ ” characters are arranged in the column direction (half-rotated W shape).
  • the source wirings 12, 22, and 32 are formed so that a part thereof overlaps the gap between two pixel electrodes adjacent in the row direction. Further, the source wirings 12, 22, and 32 have a bending point, a crossing portion is formed at the bending point, and the crossing portion is formed so as to cross the pixel electrodes 11a, 11b, 21a, 21b, 31a, and 31b.
  • the source wirings 12, 22, and 32 have a zigzag shape as a whole. More specifically, for example, the source wiring 12 includes first side portions 12a and 12d extending in the column direction along one side of the pixel electrodes 11a and 11b, and columns along the other sides of the pixel electrodes 11a and 11b. Second side portions 12b, 12e extended in the direction, and cross portions 12c, 12f connecting the first side portions 12a, 12d and the second side portions 12b, 12e, and these Each part has a configuration in which one pixel electrode 11a and one pixel electrode 11b are provided.
  • the transverse portions 12c and 12f are formed at positions overlapping the bisector of one side in the column direction of the pixel electrodes 11a and 11b, and the length of the first side portion and the length of the second side portion. Is almost consistent.
  • the first side portions 12a and 12d and the second side portions 12b and 12e are all in a V shape (half-rotated V shape).
  • the second source wiring 22 and the third source wiring 32 the first side portions 22a, 32a, 22d, and 32d, the second side portions 22b, 22e, 32b, and 32e are formed in the same pattern.
  • And crossing portions 22c, 22f, 32c, and 32f are formed.
  • the source wirings of the third embodiment there is no large shift in the magnitude of the potential that varies due to the influence of the source wirings 12, 22, and 32 between the pixel electrodes. Therefore, the pixel electrodes 11a adjacent in the row direction are eliminated. , 21a, 31a, or pixel electrodes 11b, 21b, 31b, the pixel potential is less likely to vary.
  • the source wiring is not arranged so as to overlap the gap between the two pixel electrodes 11a and 11b, the pixel electrodes 21a and 21b, or the pixel electrodes 31a and 31b adjacent in the column direction, an alignment shift in the column direction occurs. Even so, the pixel potential is less likely to vary between the two pixel electrodes 11a and 11b, the pixel electrodes 21a and 21b, or the pixel electrodes 31a and 31b adjacent in the column direction.
  • the liquid crystal display device of Embodiment 3 can be applied to any of the above-described alignment modes, but has a shape in which two substantially “ ⁇ ” characters are arranged in the column direction (half-rotated W shape). Therefore, the viewing angle characteristics can be improved and the high aperture ratio can be further improved by using the IPS mode, VA mode, MVA mode, and TBA mode.
  • Embodiment 4 is an example of the liquid crystal display device of the present invention to which the active matrix substrate of the present invention is applied.
  • the liquid crystal display device according to the fourth embodiment is the same as the liquid crystal display device according to the first embodiment, except that the number of cross sections of the source wiring that crosses the pixel electrode is two instead of one. That is, the shape of the pixel electrode in the fourth embodiment is substantially rectangular.
  • FIG. 22 is a schematic plan view showing an arrangement relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 4.
  • the source wirings 12, 22, and 32 are formed so that a part thereof overlaps the gap between two pixel electrodes adjacent in the row direction. Further, the source wirings 12, 22, and 32 have a bending point, a transverse part is formed at the bending point, and the transverse part is formed so as to cross the pixel electrodes 11a, 21a, and 31a. Thus, the source wirings 12, 22, and 32 have a zigzag shape as a whole.
  • the source wiring 12 includes a first side portion 12a extending in the column direction along one side of the pixel electrode 11a and a first side portion extending in the column direction along the other side of the pixel electrode 11a.
  • Each of which has two side portions 12b and a crossing portion 12c connecting the first side portion 12a and the second side portion 12b, two for each pixel electrode 11a. It has a provided configuration.
  • the transverse portion 12c is formed so that one side in the column direction of each pixel electrode 11a can be divided into three substantially equal parts, and the total length of the first side portion and the second side portion It is almost the same as the total length.
  • the 1st side part 12a and the 2nd side part 12b have a mutually parallel relationship.
  • the first side portions 22a and 32a, the second side portions 22b and 32b, and the crossing portions 22c and 32c have the same pattern. Is formed.
  • the source lines in the fourth embodiment there is no large difference in the magnitude of the potential that varies due to the influence of the source lines 12, 22, and 32 between the pixel electrodes, so that the pixel electrodes 11a adjacent in the row direction are eliminated. , 21a and 31a are less likely to vary in pixel potential.
  • the source wiring is not arranged so as to overlap with the gap between two pixel electrodes adjacent in the column direction, even if alignment misalignment in the column direction occurs, the pixel potential between the two pixel electrodes adjacent in the column direction Are less likely to vary.
  • the aperture ratio is not as good as that of the first embodiment, but the pixel electrode 11a and the first side portion 12a are not. Since the value of the parasitic capacitance Csd1 formed between the pixel source wiring and the pixel source wiring is formed at two locations (first Csd1 + second Csd1 ⁇ Csd2), the value represented by Csd1 ⁇ Csd2 is made almost zero. Can do.
  • the liquid crystal display device of Embodiment 4 can be applied to any of these alignment modes. However, when the TN mode or the CPA mode is adopted, the pixel electrode has a substantially rectangular shape. Used for.
  • Embodiment 5 is an example of the liquid crystal display device of the present invention to which the active matrix substrate of the present invention is applied.
  • the liquid crystal display device according to the fifth embodiment is the same as the liquid crystal display device according to the third embodiment except that the number of crossing portions of the source wiring that crosses the pixel electrode is two instead of one. That is, the shape of the pixel electrode in the fifth embodiment is substantially W-shaped.
  • FIG. 23 is a schematic plan view showing an arrangement relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 5.
  • the source wirings 12, 22, and 32 are formed so that a part thereof overlaps the gap between two pixel electrodes adjacent in the row direction. Further, the source wirings 12, 22, and 32 have a bending point, a transverse part is formed at the bending point, and the transverse part is formed so as to cross the pixel electrodes 11a, 21a, and 31a. Thus, the source wirings 12, 22, and 32 have a zigzag shape as a whole.
  • the source wiring 12 includes a first side portion 12a extending in the column direction along one side of the pixel electrode 11a and a first side portion extending in the column direction along the other side of the pixel electrode 11a. And two transverse sides 12c and 12e that connect the first side 12a and the second side 12b, each of which has two each for one pixel electrode. It is the structure provided one by one.
  • the transverse portions 12c and 12e are formed so that one side in the column direction of each pixel electrode 11a can be divided almost equally into three, and the total length of the first side portion and the second side side The total length of the parts is almost the same.
  • first side portion side portion 12a or the second side portion 12b has a dogleg shape (half-rotated V shape).
  • two first side portions 12a are formed for each pixel electrode 11a.
  • the first side portions 22a and 32a, the second side portions 22b and 32b, and the crossing portions 22c and 22e are formed in the same pattern. 32c and 32e are formed.
  • the source wirings of the fifth embodiment there is no large shift in the magnitude of the potential that varies due to the influence of the source wirings 12, 22, and 32 between the pixel electrodes, so that the pixel electrodes 11a adjacent in the row direction are eliminated. , 21a and 31a are less likely to vary in pixel potential.
  • the source wiring is not arranged so as to overlap with the gap between two pixel electrodes adjacent in the column direction, even if alignment misalignment in the column direction occurs, the pixel potential between the two pixel electrodes adjacent in the column direction Are less likely to vary.
  • the pixel electrode and its own pixel are not as good as the first embodiment in terms of the aperture ratio. Since the value of the parasitic capacitance Csd1 formed with the source wiring is formed at two locations (first Csd1 + second Csd1 ⁇ Csd2), the value represented by Csd1 ⁇ Csd2 can be made almost zero. it can. In addition, by setting the number of the transverse portions to an even number, it is not necessary to change the pattern of electrodes, wirings, thin film transistors, etc. for each pixel arranged in the column direction, and the same pattern can be produced for all the pixels. Therefore, it is easy to suppress variations in pixel potential parameters and variations in the alignment state of liquid crystal molecules.
  • the liquid crystal display device can be applied to any of the above-described alignment modes, but has a shape in which two substantially “ ⁇ ” characters are arranged in the column direction (half-rotated W shape). Therefore, the viewing angle characteristics and the aperture ratio can be further improved by using the IPS mode, the VA mode, the MVA mode, and the TBA mode.
  • Embodiment 6 is an example of the liquid crystal display device of the present invention to which the active matrix substrate of the present invention is applied.
  • the liquid crystal display device according to the sixth embodiment is the same as the liquid crystal display device according to the first embodiment except that a part of the side portion of the pixel electrode has a ring shape and has a ladder shape as a whole. That is, the shape of the pixel electrode in the sixth embodiment is substantially rectangular.
  • FIG. 24 is a schematic plan view showing a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device of Embodiment 6.
  • the source wirings 12, 22, and 32 are formed so that a part thereof overlaps the gap between two pixel electrodes adjacent in the row direction. Further, the source wirings 12, 22, and 32 have a bending point, a crossing portion is formed at the bending point, and the crossing portion is formed so as to cross the pixel electrodes 11a, 11b, 21a, 21b, 31a, and 31b. Has been. Thus, the source wirings 12, 22, and 32 have a zigzag shape as a whole.
  • the source line 12 includes first side portions 12a and 12d that extend in the column direction along one side of the pixel electrodes 11a and 11b, and a column direction along the other side of the pixel electrodes 11a and 11b.
  • the second side parts 12b and 12e that are stretched, and the crossing parts 12c and 12f that connect the first side parts 12a and 12d and the second side parts 12b and 12e, and these parts Each has a structure in which one pixel electrode is provided.
  • the first side portions 22a, 32a, 22d, and 32d, the second side portions 22b, 22e, 32b, and 32e are formed in the same pattern.
  • And crossing portions 22c, 22f, 32c, and 32f are formed.
  • the source wiring is divided into two at the branch point and coupled together at the other branch point.
  • the ring shape formed in this way is provided for each pixel electrode. That is, one of the first side portions 12a and 12d and the second side portions 12b and 12e has a ring shape, and the single source wiring 12 as a whole has a ladder shape. .
  • the overlapping area between the pixel electrode and the source wiring is uniform between the pixel electrodes adjacent in the row direction, so that the pixel potential varies. Hard to occur.
  • a decrease in the aperture ratio can be suppressed as compared with a mode in which the entire source wiring is overlapped with the pixel electrode and the gap between adjacent pixel electrodes in the row direction is crossed.
  • the source wirings of the sixth embodiment there is no large shift in the magnitude of the potential that varies due to the influence of the source wirings 12, 22, and 32 between the pixel electrodes. , 21a, 31a, or pixel electrodes 11b, 21b, 31b, the pixel potential is less likely to vary.
  • the source wiring is not arranged so as to overlap the gap between the two pixel electrodes 11a and 11b, the pixel electrodes 21a and 21b, or the pixel electrodes 31a and 31b adjacent in the column direction, an alignment shift in the column direction occurs. Even so, the pixel potential is less likely to vary between the two pixel electrodes 11a and 11b, the pixel electrodes 21a and 21b, or the pixel electrodes 31a and 31b adjacent in the column direction.
  • the overlapping area between the pixel electrode and the source wiring is uniform between the pixel electrodes adjacent in the row direction, so that the pixel potential is reduced. Difficult to occur.
  • a decrease in the aperture ratio can be suppressed as compared with a mode in which most of the source wiring overlaps with the pixel electrode and crosses the gap between the pixel electrodes adjacent in the row direction.
  • the liquid crystal display device of Embodiment 6 can be applied to any of these alignment modes.
  • the pixel electrode is preferably substantially rectangular in shape. Used for.
  • Embodiment 7 The seventh embodiment is an example of the liquid crystal display device of the present invention to which the active matrix substrate of the present invention is applied, and can be applied to any of the first to sixth embodiments.
  • FIG. 25 is a schematic plan view showing a positional relationship between pixel electrodes and source lines of an active matrix substrate included in the liquid crystal display device according to the seventh embodiment.
  • FIG. 25 shows a form according to the first embodiment, but it may be made according to any of the second to sixth embodiments.
  • the source wirings 12, 22, and 32 are formed so that a part thereof overlaps the gap between two pixel electrodes adjacent in the row direction. Further, the source wirings 12, 22, and 32 have a bending point, a crossing portion is formed at the bending point, and the crossing portion is formed so as to cross the pixel electrodes 11a, 11b, 21a, 21b, 31a, and 31b. Has been. Thus, the source wirings 12, 22, and 32 have a zigzag shape as a whole.
  • the source wiring crossing portions 12c, 22c, 32c, 12f, 22f, and 32f are made of a light-transmitting material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the first side portions 12a, 22a, 32a, 12d, 22a, 32d and the second side portions 12b, 12e, 22b, 22e, 32b, 32e are made of aluminum (Al), copper (Cu). , Chromium (Cr), titanium (Ti), tantalum (Ta), molybdenum (Mo) and other low resistivity materials, nitrides thereof, or a structure in which these layers are laminated.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、アライメントズレが起こったとしても画素電位のばらつきを抑制することを可能にするアクティブマトリクス基板を提供する。本発明のアクティブマトリクス基板は、マトリクス状に配列された複数の画素電極と、列方向に延伸されたソース配線とを備えるアクティブマトリクス基板であって、上記ソース配線は、上記複数の画素電極に含まれる少なくとも一つの画素電極(11a)の列方向の一辺に沿って延伸された第一の側辺部(12a)と、上記画素電極(11a)を横断する横断部(12c)と、上記画素電極(11a)の列方向の他辺に沿って延伸された第二の側辺部(12b)とを有し、上記第一の側辺部(12a)と上記第二の側辺部(12b)とは、上記横断部(12c)を介して互いにつながっており、上記横断部(12c)は、複数の画素電極の列方向に並ぶ少なくとも二つの画素電極のそれぞれに対して少なくとも一本ずつ設けられているアクティブマトリクス基板である。

Description

アクティブマトリクス基板及び液晶表示装置
本発明は、アクティブマトリクス基板及び液晶表示装置に関する。より詳しくは、極性反転駆動を行う場合に好適に用いられるアクティブマトリクス基板及び液晶表示装置に関するものである。
液晶表示装置は、薄型、軽量及び低消費電力といった特長を活かし、近年では、テレビジョン、パーソナルコンピュータ、携帯電話、デジタルカメラ等、幅広い分野で用いられている。液晶表示は、電圧の印加による液晶の分子配列変化に伴う複屈折性、旋光性、二色性、旋光分散等の各種の光学的性質を利用して表示に用いられる光の制御を行う表示方式であり、液晶の駆動制御法によって、更に様々な方式に分けられる。例えば、マトリクス型の表示方式は、特定のパターンに電極を配置し、その電極ごとに駆動を制御する方式であり、高精細な表示が可能となる。
マトリクス型の表示方式は、更に、パッシブマトリクス型及びアクティブマトリクス型に分類される。アクティブマトリクス型であれば、マトリクス状に配列された電極を囲うように行方向及び列方向に延伸された複数本の配線が設けられ、更に、これらが交差する交点ごとにスイッチング素子が設けられるため、各電極が複数の配線によって個別に駆動制御されることになり、大容量であっても高品位の液晶表示を行うことができる。
このようなアクティブマトリクス型の液晶表示装置については、表示品位を向上させるために従来より配線のパターンに様々な工夫がなされており、例えば、特許文献1~7に記載の液晶表示装置では、信号線(データ線、ソース配線)が一直線状ではなく、一部に屈曲した部位が形成されている。
例えば、特許文献1に記載の液晶表示装置では、画素電極又は信号配線が屈曲部を有し、屈曲部を境界にして隣接する画素電極がそれぞれ被覆されている。このように画素電極又は信号配線を屈曲させることで、ゲート1ライン毎にソース信号の極性を反転させるドット反転駆動を行った場合であっても、画素電極と信号配線(ソース配線)との間で生じる静電容量がレイヤー間のアライメントずれによって画素ごとで変動することを抑制することができる。
また、特許文献2に記載の液晶表示装置では、信号配線(ソース配線)を屈曲させることによって形成された行方向に隣接する2つの画素電極の間隙を遮光するために、保持容量配線及び/又はゲート配線の一部が延伸されている。これにより、隣接する画素電極間で発生する光漏れが抑制され、白黒表示間のコントラスト比を向上させることができる。
特開2001-281682号公報 国際公開第2009/104346号パンフレット 特開2008-3557号公報 特開2004-310105号公報 特開平10-104664号公報 米国特許第7436479号明細書 特開2004-4875号公報
液晶表示装置内に形成される電極や配線は、例えば、スパッタ法を用いて基板面の全体に導電膜を形成した後、フォトリソグラフィー法を用いて所望の形状にパターニングすることで形成することができる。ただし、大画面のパネルに対する露光工程では、フォトマスクを介した露光工程の際に、マスク継ぎ(レンズ継ぎ)を行う必要がある。このとき、マスク継ぎを行う前と行った後とでアライメントが正確でないと、各画素電極間で位置ズレが出てしまう。
図26及び図27は、露光範囲がアライメントズレを起こしたときの、ソース配線と画素電極との配置関係を示す平面模式図である。図26は、画素電極のアライメントが左へずれたときを示し、図27は、画素電極のアライメントが右へずれたときを示している。図26及び図27に示すように、画素電極111、121がマトリクス状に配列される場合、通常、ソース配線112、122は、画素電極111、121の間隙と重なるように配置される。特に、ソース配線112、122と画素電極111、121とを絶縁膜を介して別の層に設けてソース配線112、122の一部と画素電極111、121の一部とを重ねて配置することで、これらを同一の層に配置し、互いが導通しないように画素電極とソース配線との間に一定間隔を空けて設けた場合と比べて開口率を向上させることができる。このような場合、絶縁膜を介してソース配線112、122と画素電極111、121とが重なった領域においては、一定量の寄生容量が生じることになる。寄生容量の大きさは、これらが重なる面積に比例する。
ところが、ソース配線112、122が形成される層と画素電極111、121が形成される層とを異なる層とした場合、マスク継ぎ(レンズ継ぎ)が正確に行われなかったときに、図26及び図27に示すように、ソース配線112、122と画素電極111、121とでアライメントズレが起こり、ある画素電極111の一方の側辺に沿って形成されたソース配線112aが画素電極111と重なる面積と、他の画素電極121の一方の側辺に沿って形成されたソース配線122aが画素電極121と重なる面積とが、互いに相違することになる。また、同様に、ある画素電極111の他方の側辺に沿って形成されたソース配線112bが画素電極111と重なる面積と、他の画素電極121の他方の側辺に沿って形成されたソース配線122bが画素電極121と重なる面積とが、互いに相違することになる。
このようにソース配線と画素電極との重なり面積が各画素間で異なるとき、例えば、隣り合う画素電極間で極性を異ならせる駆動方式を用いた場合に、以下のような不都合が生じうる。ここでは、画素電極の書き込みが行われる信号を供給する配線は、図26及び図27における画素電極の左辺と重なるように配置したものとして説明する。以下、画素電極111、121の左辺と重なるソース配線112a、122aを「自画素ソース配線」ともいい、画素電極111、121の右辺と重なるソース配線112b、122bを「隣画素ソース配線」ともいう。
画素電極111、121と自画素ソース配線112a、122aとの間で形成される寄生容量をCsd1とし、画素電極111、121と隣画素ソース配線112b、122bとの間で形成される寄生容量をCsd2とすると、図26に示すようなアライメントズレが生じた場合のCsd1-Csd2で示される値と、図27に示すようなアライメントズレが生じた場合のCsd1-Csd2で示される値とは、大きさが異なることになる。各画素電極への書き込み電位の大きさは寄生容量の大きさによって変動するため、図26に示される画素電極と図27に示される画素電極とでは、同じ実効値をもつ書き込み電位を加えたとしても、Csd1及びCsd2の大きさに基づき変動する画素電位の大きさがそれぞれ異なるため、結果として、各画素電極によって液晶層間に印加される実効電圧が異なる値となってしまう。
このような実効電圧の違いは、表示装置に適用したときに明るさの違いとなって表れ、表示領域がブロックムラとなって視認される。
本発明は、上記現状に鑑みてなされたものであり、アライメントズレが起こったとしても画素電位のばらつきを抑制することを可能にするアクティブマトリクス基板、及び、開口率を低下させずに画素電位のばらつきによる表示品位の劣化が抑制された液晶表示装置を提供することを目的とするものである。
本発明者らは、ソース配線の一部を屈曲させることによりソース配線が画素電極と重なる面積のバランスを図る方法について種々検討したところ、ソース配線の屈曲のさせ方に着目した。上述の特許文献2に記載の方法を用いることにより、寄生容量の違いによる表示品位の劣化を防ぐことは可能であるが、大半のソース配線が開口部に形成されているため、開口率が低下することになる。
本発明者らは、ソース配線の屈曲のさせ方について鋭意検討を行ったところ、ソース配線を屈曲させる部分を行方向に隣接する画素電極同士の間隙を横断するように配置するのではなく、画素電極自体を横断するように配置し、その他の部分は、行方向に隣接する画素電極同士の間隙と重なるように配置することで、開口率の低下を抑制するとともに、画素電極間での書き込み電位のばらつきを抑制することができることを見いだした。
より詳細に説明すると、画素電極を行方向に横断する横断部を設け、一つの画素電極に対し、列方向に伸びる一本のソース配線が画素電極の列方向の両方の辺に沿うように配置することで、行方向のアライメントズレが起こり、かつそのアライメントズレの程度が画素電極間又はソース配線間で異なっていたとしても、画素電極の一辺に対し、自画素ソース配線及び隣画素ソース配線の両方が重なるため、行方向に隣接する画素電極間での書き込み電位のばらつきは抑制される。また、ソース配線の大半は行方向に隣接する画素電極の間隙と重複することになるので、開口率の低下が抑制される。更に、上記横断部は、列方向に隣接する画素電極同士の間隙ではなく画素電極自体と重なるようにして設けられるので、列方向のアライメントズレが生じたとしても、列方向に隣接する画素間での書き込み電位にばらつきが生じにくい。
こうして、本発明者らは、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、マトリクス状に配列された複数の画素電極と、列方向に延伸されたソース配線とを備えるアクティブマトリクス基板であって、上記ソース配線は、上記複数の画素電極に含まれる少なくとも一つの画素電極の列方向の一辺に沿って延伸された第一の側辺部と、上記画素電極を横断する横断部と、上記画素電極の列方向の他辺に沿って延伸された第二の側辺部とを有し、上記第一の側辺部と上記第二の側辺部とは、上記横断部を介して互いにつながっており、上記横断部は、複数の画素電極の列方向に並ぶ少なくとも二つの画素電極のそれぞれに対して少なくとも一本ずつ設けられているアクティブマトリクス基板である。
本発明のアクティブマトリクス基板は、マトリクス状に配列された複数の画素電極と、列方向に延伸されたソース配線とを備える。ソース配線は、画素電極に対しデータ信号(書き込み電位)を供給する配線であり、画素電極は、ソース配線から供給される書き込み電位の大きさに応じて帯電する。
上記ソース配線は、上記複数の画素電極に含まれる少なくとも一つの画素電極の列方向の一辺に沿って延伸された第一の側辺部と、上記画素電極を横断する横断部と、上記画素電極の列方向の他辺に沿って延伸された第二の側辺部とを有し、上記第一の側辺部と上記第二の側辺部とは、上記横断部を介して互いにつながっており、上記横断部は、複数の画素電極の列方向に並ぶ少なくとも二つの画素電極のそれぞれに対して少なくとも一本ずつ設けられている。ソース配線の一部を画素電極の側辺に沿って形成することで、行方向に隣接する画素電極の間隙に光漏れが起こることを防止し、コントラスト比を向上させることができる。また、このような構成によれば、一つの画素電極につき、ソース配線単線で、上記画素電極の側辺に沿った二つの部分、及び、上記画素電極を横切る部分が形成されているので、行方向及び列方向のアライメントズレのいずれにも強く、かつ開口率の低下が少ないアクティブマトリクス基板を得ることができる。
本発明のアクティブマトリクス基板の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。本発明のアクティブマトリクス基板の好ましい形態について、以下に詳しく説明する。
上記複数の画素電極の行方向に並ぶ画素電極群の、行方向に隣接する二つの画素電極は、互いに極性が異なっていることが好ましい。これにより、本発明のアクティブマトリクス基板を表示装置に適用した際に、表示にフリッカや焼き付き等が生じることを防止することができる。また、本発明のアクティブマトリクス基板の特徴により、アライメントズレが起こったときに行方向に並ぶ各画素電極で寄生容量にバラつきが生じるという極性反転の課題が解消されているので、特に好適に適用される。
上記複数の画素電極の列方向に並ぶ画素電極群の、列方向に隣接する二つの画素電極は、互いに極性が異なっていることが好ましい。これにより、本発明のアクティブマトリクス基板を表示装置に適用した際に、表示にフリッカや焼き付き等が生じることを防止することができる。また、本発明のアクティブマトリクス基板の特徴により、アライメントズレが起こったときに列方向に並ぶ各画素電極で寄生容量の大きさにバラつきが生じるという極性反転の課題が解消されているので、特に好適に適用される。
上記列方向に並ぶ少なくとも二つの画素電極のうちの二つの画素電極は、互いに隣接しており、上記二つの画素電極のうち、一方の画素電極の列方向の一辺に沿って延伸された第二の側辺部と、他方の画素電極の列方向の一辺に沿って延伸された第一の側辺部とは、画素電極を横断する横断部を介さずに互いにつながっていることが好ましい。また、上記列方向に並ぶ少なくとも二つの画素電極のうちの二つの画素電極は、互いに隣接しており、上記二つの画素電極のうち、一方の画素電極の列方向の一辺に沿って延伸された第一の側辺部と、他方の画素電極の列方向の一辺に沿って延伸された第二の側辺部とは、画素電極を横断する横断部を介さずに互いにつながっていることが好ましい。このように、ソース配線の屈曲パターンが二つの画素電極単位での繰り返しパターンをもつことで、列方向に隣接する二つの画素電極間での画素電位のバラツキを生じにくくさせることができ、かつ横断部の数を最小限に減らすことができるので、パターンが複雑とならず歩留まりが向上する。
上記横断部は、上記複数の画素電極のうち列方向に隣接する少なくとも二つの画素電極に対し、それぞれ一本ずつ設けられていることが好ましい。本発明は、上記第一の側辺部、上記第二の側辺部、及び、上記第一の側辺部と上記第二の側辺部とを結ぶ横断部がそれぞれ少なくとも一つずつあることを必須の構成要素としているが、列方向に並ぶ画素電極のそれぞれに一本ずつ横断部を設けることで、低容量化とともに、開口率の低下を最小限に抑えることが可能となる。
上記横断部は、上記複数の画素電極のうち列方向に隣接する少なくとも二つの画素電極に対し、それぞれ偶数本ずつ設けられていることが好ましい。本発明は、上記第一の側辺部、上記第二の側辺部、及び、上記第一の側辺部と上記第二の側辺部とを結ぶ横断部がそれぞれ少なくとも一つずつあることを必須の構成要素としているが、横断部の本数を偶数本にすることで、列方向に並ぶ各画素内に形成される電極、配線、薄膜トランジスタ等のパターンを変える必要がなく、全ての画素で同じパターンを作製することが可能となるので、画素電位のパラメータのバラツキや、液晶表示装置に適用したときの液晶分子の配向状態のバラツキを抑制しやすくなる。
上記横断部は、上記画素電極の列方向の一辺を略均等に区切る位置にあることが好ましい。これにより、ソース配線の第一の側辺部の長さと第二の側辺部の長さとが一致するので、より画素電位のバラツキを抑制しやすくなる。
上記横断部は、透明電極で構成されていることが好ましい。配線に用いる材料としては、一般的には、比抵抗の低いアルミニウム、銅、クロム、チタン、タンタル、モリブデン等が好適である。しかしながら高い開口率を得るという観点からは、インジウム酸化スズ(ITO:Indium Tin Oxide)、インジウム酸化亜鉛(IZO:Indium Zinc Oxide)等の透光性を有する材料が好適に用いられる。本形態においては、横断部においては透光性を有する材料を用いているので、より高い開口率を得ることができる。また、ソース配線の側辺部において上記比抵抗の低い材料を用いれば、充分な導電性を得ることができるので、配線遅延についてもほとんど影響がない。
本発明において、上記少なくとも一つの画素電極の好ましい形状としては、略矩形である形態、略V字形である形態、及び、略W字形である形態が挙げられる。
上記第一の側辺部は分岐点を境に二つに分岐され、分岐された各第一の側辺部は、それぞれ行方向に隣接する画素電極と重畳していることが好ましい。また、上記第二の側辺部は分岐点を境に二つに分岐され、分岐された各第二の側辺部は、それぞれ行方向に隣接する画素電極と重畳していることが好ましい。ソース配線の第一及び/又は第二の側辺部に分岐点を設け、輪っかを作るような形状をソース配線の一部に設け、ソース配線全体を梯子状とすることで、行方向にアライメントズレが起こったとしても、分岐された各側辺部が行方向に隣接する二つの画素電極の間隙と重なりにくくなるので、行方向に隣接する画素電極間での画素電位のバラツキを抑制しやすくなる。
上記アクティブマトリクス基板は、更に、行方向に伸びるゲート配線を備え、上記ゲート配線は、画素電極を横断していることが好ましい。ゲート配線が画素電極と重なって設けられることで、ゲート電界によって液晶分子に配向乱れが起こった領域を遮光する必要がなくなるので、パターンが簡素化され、歩留まりに貢献する。また、列方向に隣接する画素電極の間隙と重なるように配置する形態と比べ、列方向のアライメントズレが起こったときに、画素電極とゲート配線との間で形成される寄生容量にバラツキが生じることを抑制し、画素電位に変動が生じることを抑制することができる。
上記アクティブマトリクス基板は、更に、行方向に伸びるゲート配線を備え、上記ゲート配線は、列方向に隣接する画素電極の間隙と重なって形成されていることが好ましい。列方向に隣接する画素電極の間隙と重なるようにゲート配線を設けることで、液晶表示装置に適用した際の列方向に隣接する画素電極の間隙における光漏れを遮光することができ、コントラスト比が向上する。
上記アクティブマトリクス基板は、更に、上記ソース配線及び上記ゲート配線のそれぞれと接続された薄膜トランジスタを備え、上記薄膜トランジスタは、画素電極の行方向の一辺の二等分線と重なっていることが好ましい。TFT(Thin Film Transistor:薄膜トランジスタ)をこのように配置することで、TFT周辺の画素電極のパターンを偶数行と奇数行とで同じにしやすくなるので、画素電極の形状の違いによる画素電位のパラメータ変動を起こしにくい。
本発明はまた、上述の本発明のアクティブマトリクス基板、液晶層、及び、対向基板をこの順に積層して有する液晶表示装置でもある。本発明のアクティブマトリクス基板の構造によれば、開口率の低下を抑制するとともに、画素電位のばらつきを抑制することができるため、高品質の表示を得ることができる。
本発明の液晶表示装置に好適に用いられる液晶の配向モードとしては、TN(Twisted Nematic)モード、VA(Vertical Alignment)モード、IPS(In-plane Switching)モード、TBA(Transverse Bend Alignment)モード、CPA(Continuous Pinwheel Alignment)モード、MVA(Multi-domain Vertical Alignment)モードが挙げられる。
本発明のアクティブマトリクス基板によれば、画素電位のばらつきを抑制することができる。また、本発明の液晶表示装置によれば、開口率の低下を抑制するとともに、画素電位のばらつきを抑制することができるため、高品質の表示を得ることができる。
実施形態1の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。 実施形態1の液晶表示装置が備える画素電極が有する極性を示す平面模式図であり、ドット反転駆動であるときを示す。 実施形態1の液晶表示装置が備える画素電極が有する極性を示す平面模式図であり、隣接する列間で極性が入れ変わるライン反転駆動であるときを示す。 実施形態1の液晶表示装置が備える画素電極が有する極性を示す平面模式図であり、隣接する行間で極性が入れ変わるライン反転駆動であるときを示す。 実施形態1の液晶表示装置が備える画素電極が有する極性を示す平面模式図であり、2Hドット反転駆動であるときを示す。 実施形態1の液晶表示装置が備えるアクティブマトリクス基板の一例(実施例1)を示す平面模式図である。 実施形態1の液晶表示装置が備えるアクティブマトリクス基板の一例(実施例2)を示す平面模式図である。 実施形態1の液晶表示装置が備えるアクティブマトリクス基板の一例(実施例3)を示す平面模式図である。 実施形態1のTNモードの液晶表示装置の斜視模式図であり、電圧無印加状態での液晶分子の配向を示している。 実施形態1のTNモードの液晶表示装置の斜視模式図であり、閾値以上の電圧印加状態での液晶分子の配向を示している。 実施形態1のVAモードの液晶表示装置の斜視模式図であり、電圧無印加状態での液晶分子の配向を示している。 実施形態1のVAモードの液晶表示装置の斜視模式図であり、閾値以上の電圧印加状態での液晶分子の配向を示している。 実施形態1のIPSモードの液晶表示装置の斜視模式図であり、電圧無印加状態での液晶分子の配向を示している。 実施形態1のIPSモードの液晶表示装置の斜視模式図であり、閾値以上の電圧印加状態での液晶分子の配向を示している。 実施形態1のTBAモードの液晶表示装置の斜視模式図であり、電圧無印加状態での液晶分子の配向を示している。 実施形態1のTBAモードの液晶表示装置の斜視模式図であり、閾値以上の電圧印加状態での液晶分子の配向を示している。 実施形態1のCPAモードの液晶表示装置の斜視模式図であり、電圧無印加状態での液晶分子の配向を示している。 実施形態1のCPAモードの液晶表示装置の斜視模式図であり、閾値以上の電圧印加状態での液晶分子の配向を示している。 実施形態1のMVAモードの液晶表示装置の斜視模式図であり、電圧無印加状態での液晶分子の配向を示している。 実施形態1のMVAモードの液晶表示装置の斜視模式図であり、閾値以上の電圧印加状態での液晶分子の配向を示している。 実施形態2の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。 実施形態3の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。 実施形態4の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。 実施形態5の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。 実施形態6の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。 実施形態7の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。 露光範囲がアライメントズレを起こしたときの、ソース配線と画素電極との配置関係を示す平面模式図である。 露光範囲がアライメントズレを起こしたときの、ソース配線と画素電極との配置関係を示す平面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
本明細書において「略」を用いて形状を表したときは、対象物が実質的に当該形状を表していることをいい、例えば、「略矩形」とした場合には、実質的に全体が矩形となっていればよく、一部に張り出し部や切り欠き部が形成されていてもよいことを意味する。
本明細書において「画素」とは、画素電極一つ分に相当する範囲をいう。
実施形態1
実施形態1は、本発明のアクティブマトリクス基板を適用した本発明の液晶表示装置の一例である。実施形態1の液晶表示装置は、画素電極、TFT等を備えるアクティブマトリクス基板を備えている。
実施形態1においてアクティブマトリクス基板は、ガラス基板を土台として有しており、ガラス基板上には複数の画素電極が行方向及び列方向に並んで配列されており、全体としてマトリクス状に配列されている。これにより、画素電極ごとに液晶分子の配向制御を行うことができる。
図1は、実施形態1の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。実施形態1において画素電極11a、11b、21a、21b、31a、31bの形状は、略矩形である。実施形態1においてソース配線12、22、32は、一部が行方向に隣接する2つの画素電極の間隙と重なるようにして形成されている。また、ソース配線12、22、32は、屈曲点を有し、その屈曲点を境に横断部が形成され、横断部が画素電極11a、11b、21a、21b、31a、31bをそれぞれ横切るように形成されている。このように、ソース配線12、22、32は、全体としてジグザグ形状を有している。より詳しくは、例えば、第一のソース配線12は、画素電極11a、11bのそれぞれの一辺に沿って列方向に延伸された第一の側辺部12a、12dと、画素電極11a、11bのそれぞれの他辺に沿って列方向に延伸された第二の側辺部12b、12eと、第一の側辺部12a、12dと第二の側辺部12b、12eとをつなぐ横断部12c、12fとを有し、これらの各部位は、一つの画素電極11a、11bにつきそれぞれ一つずつ設けられた構成となっている。横断部12c、12fは、11a、11bの各画素電極の列方向の一辺の二等分線と重なる位置に形成されており、第一の側辺部の長さの合計と、第二の側辺部の長さの合計とは略一致している。また、第二のソース配線22及び第三のソース配線32においても、同様のパターンで、第一の側辺部22a、32a、22d、32d、第二の側辺部22b、22e、32b、32e、及び、横断部22c、22f、32c、32fが形成されている。
画素電極11a、11b、21a、21b、31a、31bとソース配線12、22、32とは、絶縁膜を介してそれぞれ異なる層に形成されている。また、図1においては明示していないが、画素電極とソース配線の側辺部とは、一部が互いに重なり合っていてもよい。こうすることで、画素電極間の光漏れを防ぎ、コントラスト比を向上させることができる。なお、その結果、画素電極とソース配線との間には、寄生容量が形成される。
実施形態1のソース配線の配置構成によれば、特に、行方向に隣り合う画素電極が異なる極性を有する場合に有利である。通常では、行方向に隣り合って配置された二つの画素電極の極性が互いに異なる場合であって、かつ画素電極とソース配線とが重畳する面積が各画素電極間で大きく異なる場合、ソース配線との間で形成される寄生容量の大きさが各画素電極間で異なることとなり、画素電極が保持する電圧に差が生じうる。
しかしながら、実施形態1のソース配線の配置構成によれば、ソース配線又は画素電極間で行方向のアライメントズレが起こったときであっても、一つの画素電極のエッジと、そのエッジに隣接するソース配線との距離が、画素電極の左辺と重なるソース配線(自画素ソース配線)と、画素電極の右辺と重なるソース配線(隣画素ソース配線)とでほぼ均等になる、又は、一つの画素電極に対し複数のソース配線がそれぞれ重なり合い、かつ画素電極の左辺と重なるソース配線(自画素ソース配線)と、画素電極の右辺と重なるソース配線(隣画素ソース配線)との重なり面積がほぼ均等となるため、画素電極と自画素ソース配線との間で形成される寄生容量Csd1から、画素電極と隣画素ソース配線との間で形成される寄生容量をCsd2を差し引いた値、すなわち、Csd1-Csd2で示される値が各画素で均一化される。各画素電極間で、ソース配線12、22、32の影響により変動する電位の大きさに大きなズレはなくなるので、行方向に隣接する画素電極11a、21a、31a、又は、画素電極11b、21b、31b間で、それぞれ画素電位にバラツキが生じにくい。
より詳細には、例えば、図1における画素電極21aを中心としてみると、画素電極21aが右側にずれた場合、画素電極21aとの間で形成される寄生容量の関係については、第二のソース配線22の第一の側辺部22aとの間で形成されるCsd1の値は小さく、第二のソース配線22の第二の側辺部22bとの間で形成されるCsd1の値は大きくなる。また、第一のソース配線12の第二の側辺部12bとの間で形成されるCsd2の値は小さく、第三のソース配線32の第一の側辺部32aとの間で形成されるCsd2の値は大きくなる。ドット反転駆動の場合、第一のソース配線12から供給される信号電圧と、第三のソース配線32から供給される信号電圧とは、同極性である。したがって、一つの画素電極21a単位で見れば、Csd1の合計値と、Csd2の合計値とは、均一化される。
同様の原理で、画素電極21aが左側にずれた場合、画素電極21aとの間で形成される寄生容量の関係については、第二のソース配線22の第一の側辺部22aとの間で形成されるCsd1の値は大きく、第二のソース配線22の第二の側辺部22bとの間で形成されるCsd1の値は小さくなる。また、第一のソース配線12の第二の側辺部12bとの間で形成されるCsd2の値は大きく、第三のソース配線32の第一の側辺部32aとの間で形成されるCsd2の値は小さくなる。ドット反転駆動の場合、第一のソース配線12から供給される信号電圧と、第三のソース配線32から供給される信号電圧とは、同極性である。したがって、一つの画素電極21a単位で見れば、Csd1の値の合計値と、Csd2の値の合計値とは、均一化される。
このように、実施形態1では、画素電極21aが右側にずれた場合と、画素電極21aが左側にずれた場合とのいずれの場合であっても、Csd1の値とCsd2の値とがほぼ等しくなるように調整されるので、画素電極が左右いずれにアライメントズレしたとしても、画素電位にバラつきが生じにくい。
また、実施形態1では、列方向に隣接する二つの画素電極11a、11b、画素電極21a、21b、又は、画素電極31a、31bの間隙と重なるようにソース配線が配置されていないので、列方向のアライメントズレが起こったとしても、列方向に隣接する二つの画素電極11a、11b、画素電極21a、21b、又は、画素電極31a、31b間で画素電位にバラツキが生じにくい。
したがって、実施形態1によれば、画素電極及びソース配線がいずれの方向にアライメントズレを起こしたとしても、画素電位にバラツキが生じにくいため、優れた表示品位を得ることができる。
図2~4は、実施形態1の液晶表示装置が備える画素電極が有する極性を示す平面模式図である。図2は、ドット反転駆動であるときを示し、図3-1は、隣接する列間で極性が入れ変わるライン反転駆動であるときを示し、図3-2は、隣接する行間で極性が入れ変わるライン反転駆動であるときを示し、図4は、2Hドット反転駆動であるときを示す。実施形態1における画素電極の駆動方式としては、例えば、ドット反転駆動方式が挙げられる。ドット反転駆動は、液晶層を挟んで対向する位置にある対向基板が備える電極の電位(Com電位)をDC(直流)駆動とし、アクティブマトリクス基板におけるソース信号をAC(交流)駆動とするとともに、各画素電極に印加される信号の極性を市松模様状に正負反転させる駆動方法である。したがって、実施形態1の画素電極は、図2に示すように、行方向及び列方向のいずれにおいても+、-、+、-の順に極性が異なって配置されている。このような極性は、ソース配線と接続されたソースドライバを用いて変換することができる。ドット反転駆動によれば、フリッカの発生を効果的に抑制することができる。なお、実施形態1では、図3-1及び図3-2に示すように、行方向又は列方向のいずれか一方のラインのみで画素電極に印加される信号の極性が入れ替わるライン反転駆動方式を採用してもよい。また、図4に示すように、列方向では2画素単位で極性が入れ替わるとともに、行方向では1画素単位で極性が入れ替わる2Hドット反転駆動(例えば、+、+、-、-)を採用してもよい。
実施形態1の構成によれば、隣り合う画素電極11が異なる極性を有する場合であっても表示品位を保つことが可能であるので、フリッカの発生を抑制するとともに、画素電極間の輝度が隣同士で異なることによる輝度ムラを防ぎ、かつ画素電極11a、21a、31a、又は、画素電極11b、21b、31b同士の隙間で起こる光漏れを防止してコントラスト比を向上させ、高品位の表示を得ることができる。
実施形態1のアクティブマトリクス基板の構成について、より詳細に説明する。図5~7は、実施形態1の液晶表示装置が備えるアクティブマトリクス基板の一例(実施例1~実施例3)を示す平面模式図である。実施例1~実施例3においてアクティブマトリクス基板は、画素電極11a、11b及びソース配線12のほかに、ゲート配線13a、13b、保持容量配線(CS配線)14a、14b、ドレイン配線15a、15b等の各種配線、及び、スイッチング素子であるTFT(薄膜トランジスタ)17a、17bを有し、これらは、絶縁膜を介してそれぞれ異なる層に設けられている。
TFT17a、17bは、シリコン等を材料とする半導体層と、ゲート電極、ソース電極及びドレイン電極の三つの電極とを有している。ゲート電極はゲート配線13a、13bと接続され、ソース電極はソース配線12と接続されている。ドレイン電極からは、ドレイン配線15a、15bが引き出されている。そして、絶縁膜のドレイン配線15a、15bと重なる位置にコンタクトホール16a、16bが設けられており、このコンタクトホール16a、16bを介して、ドレイン配線15a、15bと画素電極11a、11bとが接続されている。なお、これら各種配線は、全てがそれぞれ別の層に設けられる必要はなく、例えば、ゲート配線13a、13bとCS配線14a、14bとを同一材料を用いて同一層に形成する、又は、ソース配線12とドレイン配線15a、15bとを同一材料を用いて同一層に形成することができ、これにより、製造効率の向上が図れる。
ソース配線12、ゲート配線13a、13b、CS配線14a、14b等の各種配線、及び、TFT17a、17bの各電極の構成としては、例えば、アルミニウム(Al)、銅(Cu)、クロム(Cr)、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)等の比抵抗の低い材料を用いることができる。また、より具体的には、アルミニウム(Al)や銅(Cu)で構成される層と、これらの下面及び上面に窒化タンタル(TaN)、窒化チタン(TiN)、モリブデン(Mo)等で構成される層を重ねた構造が挙げられる。
画素電極11a、11bの構成としては、例えば、ITO(インジウム酸化スズ)、IZO(インジウム酸化亜鉛)等の透光性を有する金属酸化物のパターン膜が挙げられる。
実施形態1のアクティブマトリクス基板においては、ソース配線とゲート配線とで囲まれた一つの領域につき一つの画素電極を配置し、一つのTFTに対し一つの画素電極を制御する形態であっても、ソース配線とゲート配線とで囲まれた一つの領域につき一つの副画素電極を配置し、一本のゲート配線によってゲート配線を挟んで両側に位置する副画素電極の両方を二つのTFTによって制御するいわゆるマルチ画素駆動方式の形態であってもよい。この場合、一つの画素電極が複数の副画素電極に分割して制御されることと同じことになるが、本発明の効果を得るためには、分割された副画素電極のそれぞれに対して、ソース配線の第一の側辺部、第二の側辺部、及び、横断部が形成される必要がある。
実施形態1のアクティブマトリクス基板によれば、ソース配線又は画素電極に行方向のアライメントズレが起こったときであっても、一つの画素電極のエッジと、そのエッジに隣接するソース配線との距離が、画素電極の左辺と重なるソース配線(自画素ソース配線)と、画素電極の右辺と重なるソース配線(隣画素ソース配線)とでほぼ均等になる、又は、一つの画素電極に対し複数のソース配線がそれぞれ重なり合い、かつ画素電極の左辺と重なるソース配線(自画素ソース配線)と、画素電極の右辺と重なるソース配線(隣画素ソース配線)との重なり面積がほぼ均等となるため、画素電極と自画素ソース配線との間で形成される寄生容量Csd1から、画素電極と隣画素ソース配線との間で形成される寄生容量をCsd2を差し引いた値、すなわち、Csd1-Csd2で示される値が各画素で均等化される。そのため、グレー階調表示の場合には、輝度変化を抑制する効果を得ることができ、特に、電子ブック等、グレー階調表示のモードを有するアプリケーションにおいて好適に用いることができる。
また、実施形態1のアクティブマトリクス基板によれば、ソース配線の大半が行方向に隣接する画素電極間に配置されており、Csdの値が小さくなるので、単色又は補色表示におけるCsdの影響による輝度ズレを抑制することができる。
更に、実施形態1のアクティブマトリクス基板によれば、一つの画素電極に対し形成されるソース配線の横断部の数は一つであるので、開口率の低下を最小限に抑えることができる。更に、ソース配線の屈曲パターンを2画素単位としているため、1画素単位で形成している場合と比べ、画素電極を横断するソース配線の横断部の数を減らすことができるので、高開口率及び低容量化を行うことができる。
図5は、実施例1のアクティブマトリクス基板の平面模式図である。図5に示すように、実施例1では、画素電極11a、11bのそれぞれは、矩形に対し三箇所のスリットが行方向に形成された形状を有している。これにより、画素電極11a、11bはそれぞれ全体として四つの領域に分けられるが、各領域は接続部を介して互いにつながっている。接続部は、画素電極11a、11bの一方の辺に沿って形成された部位と、画素電極11a、11bの他方の辺に沿って形成された部位とがあり、これらは列方向に交互に配置されるように形成されている。なお、実施例1では、CPA方式の液晶表示装置に適用する場合を想定しており、四つに分けられた各領域のそれぞれと重なる位置に、柱状又はホール状の配向制御用パターン18が配置できるように構成されている。
実施例1では、TFT17a、17bは、画素電極11a、11bの真ん中のスリットの中に配置されている。すなわち、画素駆動用のスイッチング素子であるTFT17a、17bは、画素電極11a、11bの中心付近、すなわち、画素電極11a、11bの行方向の一辺の二等分線と列方向の一辺の二等分線とが交わる位置と重なるようにして配置されている。
ソース配線12の第一側辺部12a、12d、及び、第二側辺部12b、12eは列方向に延伸されている。すなわち、第一の側辺部12a、12d及び第二の側辺部12b、12eは、互いに平行な関係にある。ゲート配線13a、13bは、行方向に延伸されており、ソース配線12の横断部12c、12fに沿って画素電極11a、11bの中央を横切るようにして配置されている。ゲート配線13a、13bの半導体層と重なる部分がTFT17a、17bのゲート電極の役割を果たし、一定のゲート電圧の下、ソース配線12とドレイン配線15a、15bとは接続される。このように、TFT17a、17bによって、ゲート配線13a、13bから送られてくるゲート電圧のタイミングにより、ソース配線12から送られてくる信号電圧を画素電極11a、11bに印加するタイミングを制御することができる。なお、TFT17a、17bをこのように配置することで、TFT17a、17b周辺の画素電極11a、11bのエッジの形状を偶数行と奇数行とで同じにすることができるので、画素電極の形状の違いによる画素電位のパラメータ変動を起こしにくい。
実施例1においては、列方向に隣接する画素電極11a、11bの間隙と重なる位置に、CS配線14a、14bが行方向に延伸されている。CS配線14a、14bは、画素の中央部において絶縁膜を介してドレイン配線15a、15bと重畳して配置されており、ドレイン配線15a、15bとの間で一定量の保持容量を形成することができる。また、実施例1においてCS配線は、列方向に隣接する画素電極11a、11bの間隙からの光漏れを防止する役割も果たすため、コントラスト比の向上に寄与する。
図6は、実施例2のアクティブマトリクス基板の平面模式図である。図6に示すように、実施例2では、画素電極11a、11bのそれぞれは、矩形に対し一箇所のスリットが行方向に形成された形状を有している。これにより、画素電極11a、11bはそれぞれ全体として二つの領域に分けられるが、各領域は接続部を介して互いにつながっている。また、画素電極11a、11bの一部からは配線が引き出されており、TFT17a、17bのドレイン配線15a、15bと重なる位置で幅広に形成されている。更に、この幅広に形成された領域において、画素電極11a、11bとドレイン配線15a、15bとは、絶縁膜中に設けられたコンタクトホール16a、16bを介して互いに接続されている。なお、実施例2では、CPA方式の液晶表示装置に適用する場合を想定しており、二つに分けられた各領域のそれぞれと重なる位置に点状の配向制御用パターン(例えば、柱状の誘電体突起物、ホール等)18が配置できるように構成されている。
ソース配線12の第一側辺部12a、12d、及び、第二側辺部12b、12eは列方向に延伸されており、横断部12c、12fは、画素電極11a、11bの中央を横切るようにして配置されている。ゲート配線13a、13bは、画素電極11a、11bの上端付近と重なる位置に、行方向に伸びて配置されている。ゲート配線13a、13bの半導体層と重なる部分がTFT17a、17bのゲート電極の役割を果たし、一定のゲート電圧の下、ソース配線12とドレイン配線15a、15bとは接続される。このように、TFT17a、17bによって、ゲート配線13a、13bから送られてくるゲート電圧のタイミングにより、ソース配線12から送られてくる信号電圧を画素電極11a、11bに印加するタイミングを制御することができる。
実施例2においては、ゲート配線13a、13bの行間にCS配線14a、14bが行方向に延伸されている。CS配線14a、14bは、絶縁膜を介してドレイン配線15a、15bと重畳して配置されており、ドレイン配線15a、15bとの間で一定量の保持容量を形成することができる。
実施例2においては、列方向に隣接する画素電極11a、11bの間隙、及び、画素電極11a、11bからの引き出し配線と重なる位置に、CS配線14a、14bが行方向に延伸されている。CS配線14a、14bは、列方向に隣接する画素電極11a、11bの間隙と重なる位置において絶縁膜を介してドレイン配線15a、15bと重畳して配置されており、ドレイン配線15a、15bとの間で一定量の保持容量を形成することができる。また、実施例2においてCS配線14a、14b、ドレイン電極15a、15bは、列方向に隣接する画素電極11a、11bの間隙、及び、画素電極11a、11bからの引き出し配線からの光漏れを防止する役割も果たすため、コントラスト比の向上に寄与する。
図7は、実施例3のアクティブマトリクス基板の平面模式図である。図7に示すように、実施例3では、画素電極11a、11bのそれぞれは、矩形に対し一箇所のスリットが行方向に形成された形状を有している。これにより、画素電極11a、11bはそれぞれ全体として二つの領域に分けられるが、各領域は接続部を介して互いにつながっている。なお、実施例3では、CPA方式の液晶表示装置に適用する場合を想定しており、二つに分けられた各領域のそれぞれと重なる位置に点状の配向制御用パターン(例えば、柱状の誘電体突起物、ホール等)18が配置できるように構成されている。
実施例3では、TFT17a、17bは、画素電極11a、11bのスリットの中に配置されている。すなわち、画素駆動用のスイッチング素子であるTFT17a、17bは、画素電極11a、11bの中心付近、すなわち、画素電極11a、11bの行方向の一辺の二等分線と列方向の一辺の二等分線とが交わる位置と重なるようにして配置されている。
ソース配線12の第一側辺部12a、12d、及び、第二側辺部12b、12eは列方向に延伸されている。ゲート配線13a、13bは、行方向に延伸されており、ソース配線12の横断部12c、12fに沿って画素電極11a、11bの中央を横切るようにして配置されている。ゲート配線13a、13bの半導体層と重なる部分がTFT17a、17bのゲート電極の役割を果たし、一定のゲート電圧の下、ソース配線12とドレイン配線15a、15bとは接続される。このように、TFT17a、17bによって、ゲート配線13a、13bから送られてくるゲート電圧のタイミングにより、ソース配線12から送られてくる信号電圧を画素電極11a、11bに印加するタイミングを制御することができる。
実施例3においては、列方向に隣接する画素電極11a、11bの間隙と重なる位置に、CS配線14a、14bが行方向に延伸されている。また、CS配線14a、14bは、画素の中央部において絶縁膜を介してドレイン配線15a、15bと重畳して配置されており、ドレイン配線15a、15bとの間で一定量の保持容量を形成することができる。また、実施例3においてCS配線は、列方向に隣接する画素電極11a、11bの間隙からの光漏れを防止する役割も果たすため、コントラスト比の向上に寄与する。
図8~19は、実施形態1の液晶表示装置の斜視模式図であり、液晶分子の配向方式によってそれぞれ区別されている。図8及び図9は、TNモードの液晶表示装置であり、図10及び図11は、VAモードの液晶表示装置であり、図12及び図13は、IPSモードの液晶表示装置であり、図14及び図15は、TBAモードの液晶表示装置であり、図16及び図17は、CPAモードの液晶表示装置であり、図18及び図19は、MVAモードの液晶表示装置である。本発明の液晶表示装置はこれらいずれの方式に対しても適用することができる。図8、図10、図12、図14、図16、図18は、電圧無印加状態での液晶分子の配向をそれぞれ示し、図9、図11、図13、図15、図17、図19は、閾値以上の電圧印加状態での液晶分子の配向をそれぞれ示している。
図8~19に示すように、実施形態1の液晶表示装置は、画素電極、TFT等を備えるアクティブマトリクス基板1、及び、対向基板2からなる一対の基板と、これら一対の基板に挟持された液晶層3とを有する液晶表示パネルを備えている。一対の基板のそれぞれの液晶層3と逆側の面上には、偏光板4、5がそれぞれ貼り付けられている。アクティブマトリクス基板側の偏光板4の偏光軸の向きと、対向基板側の偏光板5の偏光軸の向きは、互いに直交しており、いわゆるクロスニコル配置となっている。液晶層3内には、それぞれポジ型(正の誘電異方性を有する)、又は、ネガ型(負の誘電異方性を有する)液晶材料6が充填されている。
図8及び図9に示すようにTNモードの液晶表示装置では、液晶層3中にポジ型の液晶材料6が充填されており、一対の基板1、2のそれぞれに、互いに対になる電極が形成されている。電圧無印加時には、配向膜の影響により基板面近くの液晶分子は基板面に対して水平な方向に配向し、一方の基板1から他方の基板2に向かうにつれ、面内方向にねじれている。これにより、一方の基板1に近接する液晶分子の長軸と、他方の基板2に近接する液晶分子の長軸とは、基板1、2面に対して法線方向から見たときに、略90°の角度をなす。一方、電圧印加時には、各液晶分子6は、基板1、2面に対して垂直の方向に向かって傾斜する。
図10及び図11に示すように、VAモードの液晶表示装置では、液晶層3中にネガ型の液晶材料6が充填されており、一対の基板1、2のそれぞれに、互いに対になる電極が形成されている。電圧無印加時には、配向膜の影響により基板1、2面近くの液晶分子6は基板面に対して垂直な方向に配向しており、電圧印加時には、各液晶分子6は、基板1、2面に対して水平な方向に向かって傾斜する。
図12及び図13に示すように、IPSモードの液晶表示装置では、液晶層3中にポジ型の液晶材料6が充填されており、一対の基板1、2のいずれか一方に、互いに対になる電極が形成されている。電圧無印加時には、配向膜の影響により基板1、2面近くの液晶分子6は基板面に対して水平な方向に配向している。一方、電圧印加時には、各液晶分子6は、傾斜角は維持したまま面内方向に回転する。
図14及び図15に示すように、TBAモードの液晶表示装置では、液晶層3中にポジ型の液晶材料6が充填されており、一対の基板1、2のいずれか一方に、互いに対になる電極が形成されている。電圧無印加時には、配向膜の影響により基板1、2面近くの液晶分子6は基板面に対して垂直な方向に配向しており、電圧印加時には、基板面に対してアーチを描くように配向する。
図16及び図17に示すように、CPAモードの液晶表示装置では、液晶層3中にネガ型の液晶材料6が充填されており、一対の基板1、2のそれぞれに、互いに対になる電極が形成されている。また、一対の基板1、2のいずれか一方又は両方の基板表面に、点状の配向制御用パターン(例えば、柱状の誘電体突起物、ホール等)18が形成されている。電圧無印加時には、配向膜の影響により基板1、2面近くの液晶分子6は基板1、2面に対して垂直な方向に配向し、電圧印加時には、液晶分子6が配向制御用パターン18を中心として放射状に配向する。
図18及び図19に示すように、MVAモードの液晶表示装置では、液晶層3中にネガ型の液晶材料6が充填されており、一対の基板1、2のそれぞれに、互いに対になる電極が形成されている。また、一対の基板1、2のいずれか一方又は両方の基板表面に、線状の配向制御用パターン(例えば、壁状の誘電体突起物、スリット等)19が形成されている。電圧無印加時には、配向膜の影響により基板面近くの液晶分子6は基板1、2面に対して垂直な方向に配向し、電圧印加時には、液晶分子6が配向制御用パターン19に向かって横並びに配向する。
実施形態1の液晶表示装置は、これらいずれの配向モードにも適用することが可能であるが、TNモード又はCPAモードを採用する場合には、画素電極の形状が略矩形である本形態に好適に用いられる。
実施形態2
実施形態2は、本発明のアクティブマトリクス基板を適用した本発明の液晶表示装置の一例である。実施形態2の液晶表示装置は、画素電極の形状が略矩形ではなく、略V字状である、すなわち、1回の折れ曲がり構造を有していること以外は、実施形態1の液晶表示装置と同様である。
図20は、実施形態2の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。実施形態2において画素電極11a、11b、21a、21b、31a、31bの形状は、略「く」の字状(半回転したV字状)である。ソース配線12、22、32は、一部が行方向に隣接する2つの画素電極の間隙と重なるようにして形成されている。また、ソース配線12、22、32は、屈曲点を有し、その屈曲点を境に横断部が形成され、横断部が画素電極11a、11b、21a、21b、31a、31bを横切るように形成されている。このように、ソース配線12、22、32は、全体としてジグザグ形状を有している。より詳しくは、例えば、ソース配線12は、画素電極11a、11bの一辺に沿って列方向に延伸された第一の側辺部12a、12dと、画素電極11a、11bの他辺に沿って列方向に延伸された第二の側辺部12b、12eと、第一の側辺部12a、12dと第二の側辺部12b、12eとをつなぐ横断部12c、12fとを有し、これらの各部位は、一つの画素電極11a、11bにつきそれぞれ一つずつ設けられた構成となっている。横断部12c、12fは、11a、11bの各画素電極の列方向の一辺の二等分線と重なる位置に形成されており、第一の側辺部の長さと、第二の側辺部の長さとはほぼ一致している。実施形態2では、第一の側辺部12a、12d及び第二の側辺部12b、12eは平行でなく、互いの延長線が角度をもつことになる。なお、第二のソース配線22及び第三のソース配線32においても、同様のパターンで、第一の側辺部22a、32a、22d、32d、第二の側辺部22b、22e、32b、32e、及び、横断部22c、22f、32c、32fが形成されている。
実施形態2のソース配線の配置構成によれば、各画素電極間で、ソース配線12、22、32の影響により変動する電位の大きさに大きなズレはなくなるので、行方向に隣接する画素電極11a、21a、31a、又は、画素電極11b、21b、31b間で、それぞれ画素電位にバラツキが生じにくい。また、列方向に隣接する二つの画素電極11a、11b、画素電極21a、21b、又は、画素電極31a、31bの間隙と重なるようにソース配線が配置されていないので、列方向のアライメントズレが起こったとしても、列方向に隣接する二つの画素電極11a、11b、画素電極21a、21b、又は、画素電極31a、31b間で画素電位にバラツキが生じにくい。
実施形態2の液晶表示装置は、上述のいずれの配向モードにも適用することが可能であるが、画素電極が略「く」の字状(半回転したV字状)を有しているため、特に、IPSモード、VAモード、MVAモード及びTBAモードに好適に用いることで、視角特性の向上及び高開口率をより行うことができる。
実施形態3
実施形態3は、本発明のアクティブマトリクス基板を適用した本発明の液晶表示装置の一例である。実施形態3の液晶表示装置は、画素電極の形状が略矩形ではなく、略W字状である、すなわち、3回の折れ曲がり構造を有している(くの字が2段である)こと以外は、実施形態1の液晶表示装置と同様である。
図21は、実施形態3の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。実施形態3において画素電極11a、11b、21a、21b、31a、31bの形状は、略「く」の字が列方向に二つ並んだ形状(半回転したW字状)である。ソース配線12、22、32は、一部が行方向に隣接する2つの画素電極の間隙と重なるようにして形成されている。また、ソース配線12、22、32は、屈曲点を有し、その屈曲点を境に横断部が形成され、横断部が画素電極11a、11b、21a、21b、31a、31bを横切るように形成されている。このように、ソース配線12、22、32は、全体としてジグザグ形状を有している。より詳しくは、例えば、ソース配線12は、画素電極11a、11bの一辺に沿って列方向に延伸された第一の側辺部12a、12dと、画素電極11a、11bの他辺に沿って列方向に延伸された第二の側辺部12b、12eと、第一の側辺部12a、12dと第二の側辺部12b、12eとをつなぐ横断部12c、12fとを有し、これらの各部位は、一つの画素電極11a、11bにつきそれぞれ一つずつ設けられた構成となっている。横断部12c、12fは、各画素電極11a、11bの列方向の一辺の二等分線と重なる位置に形成されており、第一の側辺部の長さと、第二の側辺部の長さとはほぼ一致している。実施形態3では、第一の側辺部12a、12d及び第二の側辺部12b、12eは、いずれもくの字状(半回転したV字状)である。なお、第二のソース配線22及び第三のソース配線32においても、同様のパターンで、第一の側辺部22a、32a、22d、32d、第二の側辺部22b、22e、32b、32e、及び、横断部22c、22f、32c、32fが形成されている。
実施形態3のソース配線の配置構成によれば、各画素電極間で、ソース配線12、22、32の影響により変動する電位の大きさに大きなズレはなくなるので、行方向に隣接する画素電極11a、21a、31a、又は、画素電極11b、21b、31b間で、それぞれ画素電位にバラツキが生じにくい。また、列方向に隣接する二つの画素電極11a、11b、画素電極21a、21b、又は、画素電極31a、31bの間隙と重なるようにソース配線が配置されていないので、列方向のアライメントズレが起こったとしても、列方向に隣接する二つの画素電極11a、11b、画素電極21a、21b、又は、画素電極31a、31b間で画素電位にバラツキが生じにくい。
実施形態3の液晶表示装置は、上述のいずれの配向モードにも適用することが可能であるが、略「く」の字が列方向に二つ並んだ形状(半回転したW字状)を有しているため、特に、IPSモード、VAモード、MVAモード及びTBAモードに好適に用いることで、視角特性の向上及び高開口率をより行うことができる。
実施形態4
実施形態4は、本発明のアクティブマトリクス基板を適用した本発明の液晶表示装置の一例である。実施形態4の液晶表示装置は、画素電極を横断するソース配線の横断部の数が一本ではなく二本であること以外は、実施形態1の液晶表示装置と同様である。すなわち、実施形態4における画素電極の形状は、略矩形である。
図22は、実施形態4の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。ソース配線12、22、32は、一部が行方向に隣接する2つの画素電極の間隙と重なるようにして形成されている。また、ソース配線12、22、32は、屈曲点を有し、その屈曲点を境に横断部が形成され、横断部が画素電極11a、21a、31aを横切るように形成されている。このように、ソース配線12、22、32は、全体としてジグザグ形状を有している。より詳しくは、例えば、ソース配線12は、画素電極11aの一辺に沿って列方向に延伸された第一の側辺部12aと、画素電極11aの他辺に沿って列方向に延伸された第二の側辺部12bと、第一の側辺部12aと第二の側辺部12bとをつなぐ横断部12cとを有し、これらの各部位は、一つの画素電極11aにつきそれぞれ二つずつ設けられた構成となっている。横断部12cは、各画素電極11aの列方向の一辺を略均等に三つに分けられるように形成されており、第一の側辺部の長さの合計と、第二の側辺部の長さの合計とはほぼ一致している。実施形態4では、第一の側辺部12a及び第二の側辺部12bは、互いに平行な関係にある。なお、第二のソース配線22及び第三のソース配線32においても、同様のパターンで、第一の側辺部22a、32a、第二の側辺部22b、32b及び、横断部22c、32cが形成されている。
実施形態4のソース配線の配置構成によれば、各画素電極間で、ソース配線12、22、32の影響により変動する電位の大きさに大きなズレはなくなるので、行方向に隣接する画素電極11a、21a、31a間で、それぞれ画素電位にバラツキが生じにくい。また、列方向に隣接する二つの画素電極の間隙と重なるようにソース配線が配置されていないので、列方向のアライメントズレが起こったとしても、列方向に隣接する二つの画素電極間で画素電位にバラツキが生じにくい。
特に、実施形態4では、一つの画素電極11aに対して、第一の側辺部12aは二つ形成されているので、開口率の点では実施形態1には及ばないものの、画素電極と自画素ソース配線との間で形成される寄生容量Csd1の値が、二箇所によって形成される(第一のCsd1+第二のCsd1≒Csd2)ので、Csd1-Csd2で示される値をほぼゼロにすることができる。
実施形態4の液晶表示装置は、これらいずれの配向モードにも適用することが可能であるが、TNモード又はCPAモードを採用する場合には、画素電極の形状が略矩形である本形態に好適に用いられる。
実施形態5
実施形態5は、本発明のアクティブマトリクス基板を適用した本発明の液晶表示装置の一例である。実施形態5の液晶表示装置は、画素電極を横断するソース配線の横断部の数が一本ではなく二本であること以外は、実施形態3の液晶表示装置と同様である。すなわち、実施形態5における画素電極の形状は、略W字状である。
図23は、実施形態5の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。ソース配線12、22、32は、一部が行方向に隣接する2つの画素電極の間隙と重なるようにして形成されている。また、ソース配線12、22、32は、屈曲点を有し、その屈曲点を境に横断部が形成され、横断部が画素電極11a、21a、31aを横切るように形成されている。このように、ソース配線12、22、32は、全体としてジグザグ形状を有している。より詳しくは、例えば、ソース配線12は、画素電極11aの一辺に沿って列方向に延伸された第一の側辺部12aと、画素電極11aの他辺に沿って列方向に延伸された第二の側辺部12bと、第一の側辺部12aと第二の側辺部12bとをつなぐ横断部12c、12eとを有し、これらの各部位は、一つの画素電極につきそれぞれ二つずつ設けられた構成となっている。横断部12c、12eは、各画素電極11aの列方向の一辺を略均等に三つに分けられるように形成されており、第一の側辺部の長さの合計と、第二の側辺部の長さの合計とはほぼ一致している。実施形態5では、第一の側辺部側辺部12a又は第二の側辺部12bの一方のみが、くの字状(半回転したV字状)である。また、一つの画素電極11aに対して、第一の側辺部12aはそれぞれ二つずつ形成されることになる。なお、第二のソース配線22及び第三のソース配線32においても、同様のパターンで、第一の側辺部22a、32a、第二の側辺部22b、32b及び、横断部22c、22e、32c、32eが形成されている。
実施形態5のソース配線の配置構成によれば、各画素電極間で、ソース配線12、22、32の影響により変動する電位の大きさに大きなズレはなくなるので、行方向に隣接する画素電極11a、21a、31a間で、それぞれ画素電位にバラツキが生じにくい。また、列方向に隣接する二つの画素電極の間隙と重なるようにソース配線が配置されていないので、列方向のアライメントズレが起こったとしても、列方向に隣接する二つの画素電極間で画素電位にバラツキが生じにくい。
特に、実施形態5では、一つの画素電極11aに対して、第一の横断部12cは二本形成されているので、開口率の点では実施形態1には及ばないものの、画素電極と自画素ソース配線との間で形成される寄生容量Csd1の値が、二箇所によって形成される(第一のCsd1+第二のCsd1≒Csd2)ので、Csd1-Csd2で示される値をほぼゼロにすることができる。また、横断部の本数を偶数本にすることで、列方向に並ぶ画素毎に、電極、配線、薄膜トランジスタ等のパターンを変える必要がなく、全ての画素で同じパターンを作製することが可能となるので、画素電位のパラメータのバラツキや、液晶分子の配向状態のバラツキを抑制しやすくなる。
実施形態5の液晶表示装置は、上述のいずれの配向モードにも適用することが可能であるが、略「く」の字が列方向に二つ並んだ形状(半回転したW字状)を有しているため、特に、IPSモード、VAモード、MVAモード及びTBAモードに用いることで、視角特性の向上及び開口率の向上をより行うことができる。
実施形態6
実施形態6は、本発明のアクティブマトリクス基板を適用した本発明の液晶表示装置の一例である。実施形態6の液晶表示装置は、画素電極の側辺部の一部が輪っか形状となっており、全体として梯子状になっていること以外は、実施形態1の液晶表示装置と同様である。すなわち、実施形態6における画素電極の形状は、略矩形である。
図24は、実施形態6の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。ソース配線12、22、32は、一部が行方向に隣接する2つの画素電極の間隙と重なるようにして形成されている。また、ソース配線12、22、32は、屈曲点を有し、その屈曲点を境に横断部が形成され、横断部が画素電極11a、11b、21a、21b、31a、31bを横切るように形成されている。このように、ソース配線12、22、32は、全体としてジグザグ形状を有している。より詳しくは、ソース配線12は、画素電極11a、11bの一辺に沿って列方向に延伸された第一の側辺部12a、12dと、画素電極11a、11bの他辺に沿って列方向に延伸された第二の側辺部12b、12eと、第一の側辺部12a、12dと第二の側辺部12b、12eとをつなぐ横断部12c、12fとを有し、これらの各部位は、一つの画素電極につきそれぞれ一つずつ設けられた構成となっている。なお、第二のソース配線22及び第三のソース配線32においても、同様のパターンで、第一の側辺部22a、32a、22d、32d、第二の側辺部22b、22e、32b、32e、及び、横断部22c、22f、32c、32fが形成されている。
実施形態6では、ソース配線が分岐点を境に二つに分かれ、他の分岐点を境に一つに結合されている。このようにして形成された輪っか形状は、画素電極一つに対し一つずつ設けられている。すなわち、第一の側辺部12a、12d、及び、第二の側辺部12b、12eのいずれか一方が、輪っか形状を有し、全体として一本のソース配線12が梯子状となっている。
実施形態6によれば、行方向のアライメントズレが起こったとしても、そもそも画素電極とソース配線との重なり面積が、行方向に隣接する画素電極間で均一化されるので、画素電位にバラツキが生じにくい。また、ソース配線の全体を画素電極と重畳させ、行方向に隣接する画素電極の間隙を横断する形態と比べて、開口率の低下を抑制することができる。
実施形態6のソース配線の配置構成によれば、各画素電極間で、ソース配線12、22、32の影響により変動する電位の大きさに大きなズレはなくなるので、行方向に隣接する画素電極11a、21a、31a、又は、画素電極11b、21b、31b間で、それぞれ画素電位にバラツキが生じにくい。また、列方向に隣接する二つの画素電極11a、11b、画素電極21a、21b、又は、画素電極31a、31bの間隙と重なるようにソース配線が配置されていないので、列方向のアライメントズレが起こったとしても、列方向に隣接する二つの画素電極11a、11b、画素電極21a、21b、又は、画素電極31a、31b間で画素電位にバラツキが生じにくい。
特に、実施形態6によれば、行方向のアライメントズレが起こったとしても、そもそも画素電極とソース配線との重なり面積が、行方向に隣接する画素電極間で均一化されるので、画素電位にバラツキが生じにくい。また、ソース配線の大半を画素電極と重畳させ、行方向に隣接する画素電極の間隙を横断する形態と比べて、開口率の低下を抑制することができる。
実施形態6の液晶表示装置は、これらいずれの配向モードにも適用することが可能であるが、TNモード又はCPAモードを採用する場合には、画素電極の形状が略矩形である本形態に好適に用いられる。
実施形態7
実施形態7は、本発明のアクティブマトリクス基板を適用した本発明の液晶表示装置の一例であり、実施形態1~6のいずれにも適用することができる。
図25は、実施形態7の液晶表示装置が備えるアクティブマトリクス基板の画素電極とソース配線との配置関係を示す平面模式図である。図25は実施形態1に順じた形態を示しているが、実施形態2~6のいずれに順じて作製してもよい。ソース配線12、22、32は、一部が行方向に隣接する2つの画素電極の間隙と重なるようにして形成されている。また、ソース配線12、22、32は、屈曲点を有し、その屈曲点を境に横断部が形成され、横断部が画素電極11a、11b、21a、21b、31a、31bを横切るように形成されている。このように、ソース配線12、22、32は、全体としてジグザグ形状を有している。
実施形態7においては、ソース配線の横断部12c、22c、32c、12f、22f、32fが、インジウム酸化スズ(ITO)、インジウム酸化亜鉛(IZO)等の透光性を有する材料で構成されている。一方、第一の側辺部12a、22a、32a、12d、22a、32d、及び、第二の側辺部12b、12e、22b、22e、32b、32eは、アルミニウム(Al)、銅(Cu)、クロム(Cr)、チタン(Ti)、タンタル(Ta)、モリブデン(Mo)等の比抵抗の低い材料や、これらの窒化物、あるいは、これらの層を積層した構造となっている。
第一の側辺部12a、12d、22a、22d、32a、32d及び第二の側辺部12b、12e、22b、22e、32b、32eと、横断部12c、12f、22c、22f、32c、32fとの接続点においては、いずれか一方が他方の上に直接積層されたものであっても、絶縁膜を介してそれぞれが異なる層に設けられ、かつ絶縁膜内のコンタクトホールを介して、これらが接続されたものであってもよい。
これによって、実施形態1~6の場合と比べて、高い開口率を得るとともに、配線遅延についてもほとんど影響がないので、より優れた表示特性をもつ液晶表示装置を得ることができる。
なお、本願は、2010年5月24日に出願された日本国特許出願2010-118734号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1、2:基板
3:液晶層
4、5:偏光板
6:液晶分子
11a、11b、21a、21b、31a、31b、111、121:画素電極
12、112a、112b、122a、122b:ソース配線
12a、12d、22a、22d、32a、32d:第一の側辺部
12b、12e、22b、22e、32b、32e:第二の側辺部
12c、12f、22c、22f、32c、32f:横断部
13a、13b:ゲート配線
14a、14b:CS配線
15a、15b:ドレイン配線
16a、16b:コンタクトホール
17a、17b:TFT
18:配向規制パターン(点状)
19:配向規制パターン(線状)

Claims (24)

  1. マトリクス状に配列された複数の画素電極と、列方向に延伸されたソース配線とを備えるアクティブマトリクス基板であって、
    該ソース配線は、該複数の画素電極に含まれる少なくとも一つの画素電極の列方向の一辺に沿って延伸された第一の側辺部と、該画素電極を横断する横断部と、該画素電極の列方向の他辺に沿って延伸された第二の側辺部とを有し、
    該第一の側辺部と該第二の側辺部とは、該横断部を介して互いにつながっており、
    該横断部は、複数の画素電極の列方向に並ぶ少なくとも二つの画素電極のそれぞれに対して少なくとも一本ずつ設けられている
    ことを特徴とするアクティブマトリクス基板。
  2. 前記複数の画素電極の行方向に並ぶ画素電極の、行方向に隣接する二つの画素電極は、互いに極性が異なっていることを特徴とする請求項1記載のアクティブマトリクス基板。
  3. 前記複数の画素電極の列方向に並ぶ画素電極の、列方向に隣接する二つの画素電極は、互いに極性が異なっていることを特徴とする請求項1又は2記載のアクティブマトリクス基板。
  4. 前記列方向に並ぶ少なくとも二つの画素電極のうちの二つの画素電極は、互いに隣接しており、
    該二つの画素電極のうち、一方の画素電極の列方向の一辺に沿って延伸された第二の側辺部と、他方の画素電極の列方向の一辺に沿って延伸された第一の側辺部とは、画素電極を横断する横断部を介さずに互いにつながっていることを特徴とする請求項1~3のいずれかに記載のアクティブマトリクス基板。
  5. 前記列方向に並ぶ少なくとも二つの画素電極のうちの二つの画素電極は、互いに隣接しており、
    該二つの画素電極のうち、一方の画素電極の列方向の一辺に沿って延伸された第一の側辺部と、他方の画素電極の列方向の一辺に沿って延伸された第二の側辺部とは、画素電極を横断する横断部を介さずに互いにつながっている
    ことを特徴とする請求項1~4のいずれかに記載のアクティブマトリクス基板。
  6. 前記横断部は、前記複数の画素電極のうち列方向に隣接する少なくとも二つの画素電極に対し、それぞれ一本ずつ設けられていることを特徴とする請求項1~5のいずれかに記載のアクティブマトリクス基板。
  7. 前記横断部は、前記複数の画素電極のうち列方向に隣接する少なくとも二つの画素電極に対し、それぞれ偶数本ずつ設けられていることを特徴とする請求項1~5のいずれかに記載のアクティブマトリクス基板。
  8. 前記横断部は、前記画素電極の列方向の一辺を略均等に区切る位置にあることを特徴とする請求項1~7のいずれかに記載のアクティブマトリクス基板。
  9. 前記横断部は、透明電極で構成されていることを特徴とする請求項1~8のいずれかに記載のアクティブマトリクス基板。
  10. 前記少なくとも一つの画素電極は、略矩形であることを特徴とする請求項1~9のいずれかに記載のアクティブマトリクス基板。
  11. 前記少なくとも一つの画素電極は、略V字形であることを特徴とする請求項1~9のいずれかに記載のアクティブマトリクス基板。
  12. 前記少なくとも一つの画素電極は、略W字形であることを特徴とする請求項1~9のいずれかに記載のアクティブマトリクス基板。
  13. 前記第一の側辺部は分岐点を境に二つに分岐され、分岐された各第一の側辺部は、それぞれ行方向に隣接する画素電極と重畳していることを特徴とする請求項1~12のいずれかに記載のアクティブマトリクス基板。
  14. 前記第二の側辺部は分岐点を境に二つに分岐され、分岐された各第二の側辺部は、それぞれ行方向に隣接する画素電極と重畳していることを特徴とする請求項1~13のいずれかに記載のアクティブマトリクス基板。
  15. 前記アクティブマトリクス基板は、更に、行方向に伸びるゲート配線を備え、
    該ゲート配線は、画素電極を横断している
    ことを特徴とする請求項1~14のいずれかに記載のアクティブマトリクス基板。
  16. 前記アクティブマトリクス基板は、更に、行方向に伸びるゲート配線を備え、
    該ゲート配線は、列方向に隣接する画素電極の間隙と重なって形成されている
    ことを特徴とする請求項1~14のいずれかに記載のアクティブマトリクス基板。
  17. 前記アクティブマトリクス基板は、更に、前記ソース配線及び前記ゲート配線のそれぞれと接続された薄膜トランジスタを備え、
    該薄膜トランジスタは、画素電極の行方向の一辺の二等分線と重なっている
    ことを特徴とする請求項15又は16記載のアクティブマトリクス基板。
  18. 請求項1~17のいずれかに記載のアクティブマトリクス基板、液晶層、及び、対向基板をこの順に積層して有することを特徴とする液晶表示装置。
  19. 前記液晶表示装置は、TNモードであることを特徴とする請求項18記載の液晶表示装置。
  20. 前記液晶表示装置は、VAモードであることを特徴とする請求項18記載の液晶表示装置。
  21. 前記液晶表示装置は、IPSモードであることを特徴とする請求項18記載の液晶表示装置。
  22. 前記液晶表示装置は、TBAモードであることを特徴とする請求項18記載の液晶表示装置。
  23. 前記液晶表示装置は、CPAモードであることを特徴とする請求項18記載の液晶表示装置。
  24. 前記液晶表示装置は、MVAモードであることを特徴とする請求項18記載の液晶表示装置。
PCT/JP2011/051316 2010-05-24 2011-01-25 アクティブマトリクス基板及び液晶表示装置 WO2011148664A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112012025436A BR112012025436A2 (pt) 2010-05-24 2011-01-25 substrato de matriz ativa e dispositivo de exibição de cristal líquido.
RU2012155901/28A RU2516578C1 (ru) 2010-05-24 2011-01-25 Подложка активной матрицы и жидкокристаллическое устройство отображения
KR1020127027178A KR101404874B1 (ko) 2010-05-24 2011-01-25 액티브 매트릭스 기판 및 액정 표시 장치
EP11786364.7A EP2579093A4 (en) 2010-05-24 2011-01-25 Active Matrix Substrate and Liquid Crystal Display Device
CN201180018465.4A CN102844704B (zh) 2010-05-24 2011-01-25 有源矩阵基板和液晶显示装置
US13/643,379 US9405160B2 (en) 2010-05-24 2011-01-25 Active matrix substrate and liquid crystal display device
JP2012517159A JP5486085B2 (ja) 2010-05-24 2011-01-25 アクティブマトリクス基板及び液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010118734 2010-05-24
JP2010-118734 2010-05-24

Publications (1)

Publication Number Publication Date
WO2011148664A1 true WO2011148664A1 (ja) 2011-12-01

Family

ID=45003659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051316 WO2011148664A1 (ja) 2010-05-24 2011-01-25 アクティブマトリクス基板及び液晶表示装置

Country Status (8)

Country Link
US (1) US9405160B2 (ja)
EP (1) EP2579093A4 (ja)
JP (1) JP5486085B2 (ja)
KR (1) KR101404874B1 (ja)
CN (1) CN102844704B (ja)
BR (1) BR112012025436A2 (ja)
RU (1) RU2516578C1 (ja)
WO (1) WO2011148664A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102102155B1 (ko) * 2013-12-23 2020-05-29 엘지디스플레이 주식회사 액정표시장치
CN104765209B (zh) * 2015-04-07 2018-03-13 深圳市华星光电技术有限公司 一种阵列基板及液晶显示设备
KR102367955B1 (ko) 2015-08-24 2022-02-25 삼성디스플레이 주식회사 표시 장치
KR102484230B1 (ko) * 2015-12-22 2023-01-03 삼성디스플레이 주식회사 액정 표시 장치
KR20180098451A (ko) 2017-02-24 2018-09-04 삼성디스플레이 주식회사 표시 장치
CN108415201A (zh) * 2018-03-07 2018-08-17 京东方科技集团股份有限公司 一种显示面板及显示装置
JP2022178523A (ja) * 2021-05-20 2022-12-02 シャープディスプレイテクノロジー株式会社 アクティブマトリクス基板および液晶表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104664A (ja) 1996-08-05 1998-04-24 Sharp Corp 液晶表示装置
JP2001281682A (ja) 2000-03-30 2001-10-10 Sharp Corp アクティブマトリクス型液晶表示装置
JP2004004875A (ja) 2003-06-03 2004-01-08 Sharp Corp 液晶表示パネル
JP2004310105A (ja) 2003-04-04 2004-11-04 Samsung Electronics Co Ltd 多重ドメイン液晶表示装置及びその薄膜トランジスタ基板
JP2005148753A (ja) * 2003-11-18 2005-06-09 Samsung Electronics Co Ltd 表示装置用薄膜トランジスタ表示板
JP2008003557A (ja) 2006-06-22 2008-01-10 Au Optronics Corp 液晶表示装置及びその薄膜トランジスタ基板
WO2009104346A1 (ja) 2008-02-21 2009-08-27 シャープ株式会社 アクティブマトリクス基板及び液晶表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW373114B (en) 1996-08-05 1999-11-01 Sharp Kk Liquid crystal display device
US7119870B1 (en) * 1998-11-27 2006-10-10 Sanyo Electric Co., Ltd. Liquid crystal display device having particular drain lines and orientation control window
TWI299099B (en) 2000-03-30 2008-07-21 Sharp Kk Active matrix type liquid crystal display apparatus
KR20070051037A (ko) * 2005-11-14 2007-05-17 삼성전자주식회사 액정 표시 장치
KR20080053644A (ko) * 2006-12-11 2008-06-16 삼성전자주식회사 액정 표시 장치
JP2007140565A (ja) * 2007-02-23 2007-06-07 Kyocera Corp 液晶表示装置
JP2008256854A (ja) * 2007-04-03 2008-10-23 Sharp Corp 薄膜トランジスタアレイ基板、その製造方法および液晶表示装置
JP4650471B2 (ja) * 2007-09-28 2011-03-16 ソニー株式会社 液晶表示装置、その製造方法及び電子機器
JP5401778B2 (ja) * 2007-10-15 2014-01-29 株式会社リコー 薄膜トランジスタアレイ、表示装置及び情報表示システム
CN101802699A (zh) * 2007-11-16 2010-08-11 夏普株式会社 液晶显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104664A (ja) 1996-08-05 1998-04-24 Sharp Corp 液晶表示装置
JP2001281682A (ja) 2000-03-30 2001-10-10 Sharp Corp アクティブマトリクス型液晶表示装置
JP2004310105A (ja) 2003-04-04 2004-11-04 Samsung Electronics Co Ltd 多重ドメイン液晶表示装置及びその薄膜トランジスタ基板
JP2004004875A (ja) 2003-06-03 2004-01-08 Sharp Corp 液晶表示パネル
JP2005148753A (ja) * 2003-11-18 2005-06-09 Samsung Electronics Co Ltd 表示装置用薄膜トランジスタ表示板
US7436479B2 (en) 2003-11-18 2008-10-14 Samsung Electronics Co., Ltd. Thin film panel for preventing stitch defect
JP2008003557A (ja) 2006-06-22 2008-01-10 Au Optronics Corp 液晶表示装置及びその薄膜トランジスタ基板
WO2009104346A1 (ja) 2008-02-21 2009-08-27 シャープ株式会社 アクティブマトリクス基板及び液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579093A4 *

Also Published As

Publication number Publication date
EP2579093A4 (en) 2015-05-27
JP5486085B2 (ja) 2014-05-07
KR101404874B1 (ko) 2014-06-09
RU2516578C1 (ru) 2014-05-20
CN102844704A (zh) 2012-12-26
KR20130008585A (ko) 2013-01-22
EP2579093A1 (en) 2013-04-10
US20130038807A1 (en) 2013-02-14
JPWO2011148664A1 (ja) 2013-07-25
US9405160B2 (en) 2016-08-02
BR112012025436A2 (pt) 2016-07-05
CN102844704B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
US8159429B2 (en) Liquid crystal display and method thereof
KR101133761B1 (ko) 액정 표시 장치
US8848151B2 (en) Liquid crystal display device
JP5619783B2 (ja) 液晶表示装置
JP4938032B2 (ja) 液晶パネル、液晶表示装置、およびテレビジョン装置
US8184220B2 (en) Liquid crystal display, thin film transistor substrate and method thereof
US7973864B2 (en) Liquid crystal display
US7880852B2 (en) Thin film transistor and liquid crystal display having the same
US7821003B2 (en) Thin-film transistor substrate and display device having the same
JP5486085B2 (ja) アクティブマトリクス基板及び液晶表示装置
US8441589B2 (en) Pixel array structure
JP5791593B2 (ja) 液晶表示パネルおよび液晶表示装置
US20160202575A1 (en) Liquid crystal display
JP2017044915A (ja) 液晶表示装置
US7623190B2 (en) LCD device having common line extension and gate line recess of equal areas
US10564489B2 (en) Liquid crystal display device
JP5514418B2 (ja) 液晶表示装置
KR20010105256A (ko) 액정디스플레이
JP4501979B2 (ja) 液晶表示装置
KR20080051852A (ko) 액정 표시 장치
JP2008203676A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018465.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517159

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127027178

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13643379

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011786364

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 10565/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2012155901

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012025436

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012025436

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121005