WO2011148436A1 - 光電変換素子とその製造方法、および固体撮像素子とその製造方法 - Google Patents

光電変換素子とその製造方法、および固体撮像素子とその製造方法 Download PDF

Info

Publication number
WO2011148436A1
WO2011148436A1 PCT/JP2010/006260 JP2010006260W WO2011148436A1 WO 2011148436 A1 WO2011148436 A1 WO 2011148436A1 JP 2010006260 W JP2010006260 W JP 2010006260W WO 2011148436 A1 WO2011148436 A1 WO 2011148436A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
photoelectric conversion
layer
functional layer
substrate
Prior art date
Application number
PCT/JP2010/006260
Other languages
English (en)
French (fr)
Inventor
良太 境田
誠之 松長
景士 立川
元成 勝野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011148436A1 publication Critical patent/WO2011148436A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors

Definitions

  • the present invention relates to a photoelectric conversion element and a manufacturing method thereof, and a solid-state imaging element and a manufacturing method thereof, in particular, a photoelectric conversion element including a photoelectric conversion functional layer formed using a material containing an organic semiconductor material, and a manufacturing method thereof, and The present invention relates to a solid-state imaging device and a method for manufacturing the same.
  • a solid-state image pickup device mounted on a digital still camera for example, a CMOS sensor or a CCD sensor has a plurality of two-dimensionally arranged photodiodes.
  • each photodiode is configured by forming a PN junction in a semiconductor substrate.
  • the pixel size has been reduced with the increase in the number of pixels, and the area of the photodiode region tends to be reduced.
  • the area of the photodiode region is reduced, there is a problem of a decrease in photoelectric conversion characteristics such as a decrease in sensitivity due to a decrease in aperture ratio and a decrease in light collection efficiency.
  • a photoelectric conversion part is formed in a semiconductor substrate such as silicon, incident light is reflected / scattered by wirings formed above the semiconductor conversion part, resulting in a decrease in sensitivity due to light loss.
  • a solid-state imaging device 901 includes an n region 904 and an n + region 905 for each pixel on a semiconductor substrate composed of an n-type silicon substrate 902 and a p well layer 903 having a plurality of pixels. Is formed. Further, an insulating layer 906 is formed on the n-type silicon substrate 902, and a transparent electrode 907 corresponding to each pixel of the n-type silicon substrate 902 is formed on the insulating film 906. The transparent electrode 907 and the n + region 905 are connected to each other by a contact portion 908 embedded in the insulating film 906 for each pixel.
  • a photoelectric conversion portion 909 On the transparent electrode 907, a photoelectric conversion portion 909, an upper electrode 910, and protective films 911 and 912 are formed over a plurality of pixels.
  • the upper electrode 910 is disposed above the photoelectric conversion unit 909 where photoelectric conversion is performed, that is, on the light incident side. Is blocked by the upper electrode 910. For this reason, the solid-state imaging device proposed in Patent Document 1 is required to further improve sensitivity.
  • the upper electrode 910 for example, ITO (indium tin oxide) or IZO (indium zinc oxide) is used, but its light transmittance is not 100%.
  • the light transmittance in such a transparent electrode film has been studied in, for example, Patent Document 2, and at least several [%], and in the case of many, several tens [%] cannot be transmitted.
  • the present invention has been made in order to solve the above-described problems, and an object thereof is to provide a high-sensitivity photoelectric conversion element with little optical loss and a manufacturing method thereof, and a solid-state imaging element and a manufacturing method thereof.
  • the present invention adopts the following configuration.
  • the photoelectric conversion element according to the present invention is in a state of being in contact with the interface in the photoelectric conversion functional layer, the substrate, the photoelectric conversion functional layer formed above the substrate, and including the organic semiconductor material.
  • a first electrode and a second electrode are provided.
  • the first electrode is in contact with the interface on the substrate side in the photoelectric conversion functional layer, and the first electrode and the second electrode are in the thickness direction of the substrate. In the crossing direction, they are opposed to each other.
  • the photoelectric conversion functional layer is formed in a state of covering the upper surface and the side surface of the first electrode, and the second electrode is the thickness of the substrate.
  • the first electrode is arranged so as to surround at least a part of the periphery of the first electrode.
  • the photoelectric conversion element according to the present invention is configured as described in (1) above, in which the first electrode is composed of a plurality of electrode elements arranged at intervals from each other in a direction along the main surface of the substrate.
  • the second electrode is arranged so as to surround at least a part of the plurality of electrode elements in a direction intersecting the thickness direction of the substrate.
  • the photoelectric conversion element according to the present invention is characterized in that, in the configuration of (2), the first electrode in the thickness direction of the substrate is not covered with the second electrode.
  • the photoelectric conversion element according to the present invention has a stacked structure in which the photoelectric conversion functional layer includes a photoelectric conversion layer and at least one of an electron transport layer and a hole transport layer in the configuration of (1) above. It is characterized by being comprised.
  • the photoelectric conversion element according to the present invention is characterized in that, in the configuration of (1), the surface of at least one of the first electrode and the second electrode is a light reflecting surface.
  • a protective layer for protecting the photoelectric conversion functional layer is laminated on the photoelectric conversion functional layer in the thickness direction of the substrate. It is characterized by.
  • a color filter layer made of an organic material is laminated above the photoelectric conversion functional layer in the thickness direction of the substrate. It is characterized by.
  • the photoelectric conversion element according to the present invention is characterized in that, in the configuration of (1), the layer thickness of the second electrode in the thickness direction of the substrate is thicker than the layer thickness of the first electrode.
  • the solid-state imaging device has a plurality of imaging pixel units arranged two-dimensionally, and each of the plurality of imaging pixel units is any one of the photoelectric conversion devices according to (1) to (9) above. It is characterized by including the following structure.
  • the method for producing a photoelectric conversion element according to the present invention includes the following steps.
  • Step of forming the first electrode and the second electrode forming the first electrode and the second electrode in a state of facing each other in a direction intersecting the thickness direction of the substrate above the substrate .
  • Step of forming a photoelectric conversion functional layer Using a material containing an organic semiconductor material, the photoelectric conversion functional layer is formed in contact with both the first electrode and the second electrode.
  • step (11) in the step of forming the first electrode and the second electrode, in the direction intersecting the thickness direction of the substrate, Forming the photoelectric conversion functional layer in a state of covering the upper surface and the side surface of the first electrode in the step of forming the two electrodes in a state of surrounding at least a part of the periphery of the first electrode and forming the photoelectric conversion functional layer; It is characterized by.
  • the photoelectric conversion element in the configuration of (11) above, in the step of forming the first electrode and the second electrode, in the direction along the main surface of the substrate, the photoelectric conversion element is spaced from each other.
  • the first electrode is formed with a plurality of electrode elements formed in an open state
  • the second electrode is formed so as to surround at least a part of the plurality of electrode elements in the first electrode.
  • the method for producing a photoelectric conversion element according to the present invention includes, in the step (11), a step of forming a photoelectric conversion functional layer, including a photoelectric conversion layer and at least an electron transport layer and a hole transport layer.
  • a photoelectric conversion functional layer is formed with a stacked structure including one of the layers.
  • step (11) in the step of forming the first electrode and the second electrode, at least one of the first electrode and the second electrode is The surface is formed so as to be a light reflecting surface.
  • a protective layer for protecting the photoelectric conversion functional layer is laminated on the photoelectric conversion functional layer in the thickness direction of the substrate. It is characterized by comprising a forming step.
  • the method for producing a photoelectric conversion element according to the present invention includes a step of laminating and forming a color filter layer above the photoelectric conversion functional layer in the thickness direction of the substrate in the configuration (11) above using an organic material. It is characterized by providing.
  • the method for producing a photoelectric conversion element according to the present invention is the step of forming the first electrode and the second electrode in the configuration of (11) above, wherein the second electrode has a layer thickness in the thickness direction of the substrate. Is formed so as to be thicker than the first electrode.
  • a method for manufacturing a solid-state imaging device is a method for manufacturing a solid-state imaging device having a plurality of imaging pixel units arranged two-dimensionally. ) To (19) according to any one of the methods for producing a photoelectric conversion element.
  • the present invention it is possible to provide a photoelectric conversion device and a solid-state imaging device having high sensitivity by eliminating light loss due to electrodes and a method for manufacturing the same.
  • the first electrode and the second electrode are opposed to each other in the direction intersecting the thickness direction of the substrate, and the first and second electrodes are opposed to the interface of the photoelectric conversion function layer. Both sides touch.
  • the first electrode is in contact with the interface on the substrate side in the photoelectric conversion functional layer.
  • the photoelectric conversion element according to the present invention has high optical sensitivity with little optical loss.
  • the solid-state imaging device according to the present invention has the same effects as the above because each of the plurality of imaging pixel units is formed including the configuration of the photoelectric conversion device according to the present invention. Can play.
  • the second electrode is formed so as to surround at least a part of the periphery of the first electrode in the direction intersecting the thickness direction of the substrate.
  • the electric field strength in the conversion functional layer is increased, and the photoelectric conversion characteristics can be improved.
  • the photoelectric conversion functional layer is configured with a stacked structure having functional layers such as an electron transport layer and a hole transport layer in addition to the photoelectric conversion layer. Charge transfer characteristics, photoelectric conversion characteristics, and the like can be improved.
  • the organic layer is formed by moisture or gas (oxygen) in the process after the formation of the photoelectric conversion function layer made of an organic semiconductor material. Degradation of the semiconductor material can be prevented. Therefore, when this configuration is adopted, the protective layer is formed immediately after the photoelectric conversion functional layer is formed, so that the effect of preventing damage in the subsequent steps is great.
  • the photoelectric conversion functional layer including the organic semiconductor can be protected from organic solvents, plasma, and the like, so that subsequent processes such as color filter formation are facilitated.
  • the layer thickness of the second electrode is made larger than the layer thickness of the first electrode, so that the region that contributes to photoelectric conversion is increased in the photoelectric conversion function layer to improve the photoelectric conversion characteristics. be able to.
  • the manufacturing method of the photoelectric conversion element and the manufacturing method of a solid-state image sensor which concern on this invention are the photoelectric conversion element and solid-state image sensor which concern on this invention which has said effect like said (11) to (20). It can be manufactured reliably.
  • neither the first electrode nor the second electrode needs to be a transparent electrode, and the first electrode and the second electrode can be formed in the same process, and the manufacturing cost can be reduced by manufacturing with a simple process. Can be kept low.
  • FIG. 1 is a schematic plan view showing a schematic configuration of a solid-state imaging element 1 according to Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view showing a partial configuration of an imaging pixel region 1a in the solid-state imaging device 1.
  • FIG. 3 is a schematic cross-sectional view showing an electric field strength distribution in a photoelectric conversion functional layer 111 in the solid-state imaging device 1.
  • FIG. 6 is a schematic cross-sectional view showing a partial configuration of an imaging pixel region in a solid-state imaging device according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing an electric field strength distribution in a photoelectric conversion function layer 116 in the solid-state imaging device according to Embodiment 2.
  • FIG. 10 is a schematic plan view showing the shapes of pixel electrodes 207 and counter electrodes 208 in the solid-state imaging device according to Modification 1 and their arrangement with each other.
  • FIG. FIG. 10 is a schematic plan view showing shapes and arrangement of pixel electrodes 307 and counter electrodes 308 in a solid-state imaging device according to Modification 2. It is a schematic plan view which shows the shape of the pixel electrode 407 and the counter electrode 408 in a solid-state image sensor which concerns on the modification 3, and mutual arrangement
  • FIG. 10 is a schematic plan view showing the shape of a pixel electrode 507 and a counter electrode 508 and their arrangement in a solid-state imaging device according to Modification 4.
  • FIG. 16 is a schematic plan view showing the shapes of pixel electrodes 607 and counter electrodes 608 and their mutual arrangement in a solid-state imaging device according to Modification 5.
  • 14 is a schematic plan view showing shapes and arrangement of pixel electrodes 707 and counter electrodes 708 in a solid-state imaging device according to Modification 6.
  • FIG. 16 is a schematic plan view showing the shape of a pixel electrode 807 and a counter electrode 808 in the solid-state imaging device according to Modification Example 7 and the arrangement of each other.
  • FIG. 16 is a schematic plan view showing the shape of a pixel electrode 907 and a counter electrode 908 and their arrangement in a solid-state imaging device according to Modification 8.
  • FIG. 6 is a schematic cross-sectional view illustrating a partial configuration of an imaging pixel region in a solid-state imaging device according to Embodiment 3.
  • FIG. 6 is a schematic cross-sectional view showing an electric field intensity distribution in a photoelectric conversion function layer 131 in a solid-state imaging device according to Embodiment 3.
  • FIGS. 9A to 9C are schematic process diagrams illustrating a part of the manufacturing process of the solid-state imaging device according to the third embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a partial configuration of an imaging pixel region in a solid-state imaging device according to Embodiment 4.
  • FIG. It is a schematic cross section which shows a partial structure of the imaging pixel area
  • the photoelectric conversion element includes an electromagnetic wave absorption / photoelectric conversion site and a charge accumulation / transfer / readout site for charges generated by photoelectric conversion.
  • the electromagnetic wave absorption / photoelectric conversion site is made of at least one organic semiconductor material that can absorb and photoelectrically convert at least blue, green, and red light.
  • the blue light absorption part (hereinafter referred to as B absorption part) can absorb at least light of 400 [nm] to 500 [nm], and preferably the absorption factor of the peak wavelength in that wavelength region is 50 [% ] That's it.
  • the green light absorption part (hereinafter referred to as G absorption part) can absorb at least light of 500 [nm] to 600 [nm], and preferably the absorption factor of the peak wavelength in the wavelength region is 50 [%]. That's it.
  • the red light absorption site (hereinafter referred to as R-absorbing portion) can absorb at least light of 600 [nm] to 700 [nm].
  • the absorption factor of the peak wavelength in the wavelength region is 50 [% ] That's it.
  • the B absorption part, the G absorption part, and the R absorption part may each form a layer.
  • a single layer may be formed of a plurality of organic semiconductor materials, and the B absorption portion, G absorption portion, and R absorption portion may be included in one layer, or a broad absorption spectrum in the visible region. You may have.
  • the charge storage / transfer / readout part is preferably formed under the electrode and shielded by the electrode, so that a false signal (color mixture) due to the influence of light can be prevented.
  • it is formed in and on the surface of an inorganic semiconductor substrate such as silicon.
  • a photoelectric conversion layer made of a material containing an organic semiconductor material in the present invention will be described.
  • the electromagnetic wave absorption / photoelectric conversion site of the present invention is composed of a layer made of a material including an organic semiconductor material formed on a pair of electrodes (first electrode and second electrode).
  • the photoelectric conversion functional layer is formed by laminating or mixing a part that absorbs electromagnetic waves, a photoelectric conversion part, an electron transport part, a hole transport part, and the like.
  • the organic semiconductor layer preferably contains an organic p-type compound (p-type semiconductor layer) or an organic n-type compound (n-type semiconductor layer).
  • Organic p-type compounds are donor organic compounds (semiconductors), which are mainly represented by hole-transporting organic compounds and refer to organic compounds that have the property of easily donating electrons. More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other.
  • any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • organic compound there are phthalocyanine compounds.
  • the present invention is not limited thereto, and as described above, any organic compound having an ionization potential smaller than that of the organic compound used as the n-type (acceptor property) compound may be used as the donor organic semiconductor.
  • Organic n-type compounds are acceptor organic compounds (semiconductors), which are mainly represented by electron-transporting organic compounds and refer to organic compounds that easily accept electrons. More specifically, the organic compound having the higher electron affinity when two organic materials are used in contact with each other.
  • any organic compound can be used as the acceptor organic compound as long as it is an electron-accepting organic compound.
  • an electron-accepting organic compound for example, there is a tetracene derivative.
  • the present invention is not limited to this, and any organic compound having an electron affinity higher than that of the organic compound used as the donor organic compound as described above may be used as the acceptor organic semiconductor.
  • It has at least one of an organic p-type semiconductor and an organic n-type semiconductor on a pair of electrodes (first electrode and second electrode).
  • a p-type semiconductor layer and an n-type semiconductor layer may be formed, respectively, or they may be mixed and dispersed to form one layer.
  • mixing / dispersing by incorporating a bulk heterojunction structure in the organic layer, the disadvantage that the carrier diffusion length of the organic layer is short can be compensated and the photoelectric conversion characteristics can be improved.
  • the thickness of the organic semiconductor layer is preferably as thick as possible in terms of light absorption.
  • the thickness of the photoelectric conversion functional layer is not limited. It is preferable to reduce the thickness and increase the electric field strength in the layer when a voltage is applied between the electrodes.
  • a pair of electrodes first electrode and second electrode
  • a photoelectric conversion function layer is formed thereon, so that the photoelectric conversion function The electric field strength in the layer is not uniform, and the region closer to the electrode has higher electric field strength and higher photoelectric conversion efficiency.
  • the thinner the photoelectric conversion functional layer the higher the photoelectric conversion characteristics.
  • the range suitable for the film thickness of the organic semiconductor layer formed on the electrode varies depending on conditions such as the material of the organic semiconductor and voltage, but is preferably 20 nm or more and 500 nm or less, and more preferably 20 nm or less. nm] or more and 300 [nm] or less, and particularly preferably 20 [nm] or more and 200 [nm] or less.
  • the photoelectric conversion functional layer according to the present invention is formed by a dry film forming method or a wet film forming method.
  • the dry film forming method include a vacuum vapor deposition method, a sputtering method, an ion plating method, a physical vapor deposition method such as an MBE method, or a CVD method such as plasma polymerization.
  • a flash vapor deposition method or the like can also be used.
  • a casting method, an ink jet method, a spin coating method, a dipping method, an LB method, or the like can be used.
  • a high molecular compound When a high molecular compound is used as the organic compound, it is preferable to form a film by a wet film forming method that is easy to create because the high molecular compound may be decomposed by a dry film forming method such as vapor deposition.
  • a dry film forming method is preferably used, and a vacuum deposition method is particularly preferably used.
  • the photoelectric conversion functional layer is formed thereon. Electrons and holes generated and separated by the photoelectric conversion functional layer move toward the first electrode or the second electrode, respectively. Preferably, electrons move to the first electrode (pixel electrode) and holes move to the second electrode (counter electrode).
  • holes are extracted from the photoelectric conversion functional layer to the second electrode (counter electrode).
  • holes are taken out from the hole transport photoelectric conversion layer or the hole transport layer.
  • the electrons are taken out from the photoelectric conversion function layer to the first electrode (pixel electrode).
  • electrons are taken out from the electron transporting photoelectric conversion layer or the electron transport layer.
  • a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof can be used as a material of the electrode.
  • a material having a high light reflectance such as aluminum is preferable. Thereby, incident light is reflected on the electrode surface by the electrode, and the sensitivity can be improved by allowing the light to enter the photoelectric conversion functional layer again.
  • the film thickness of the electrode can be appropriately selected depending on the material. In order to suppress the leakage of light to a semiconductor substrate such as silicon forming the charge accumulation / transfer / readout part, it is preferable to increase the film thickness of the electrode to sufficiently generate the reflection / absorption of light. Usually, it is 10 [nm] or more and 1 [ ⁇ m] or less, and preferably 200 [nm] or more and 500 [nm] or less. In addition, when a photoelectric conversion function layer is inserted between the first electrode (pixel electrode) and the second electrode (counter electrode), the photoelectric conversion function layer may be thicker than the electrode. preferable.
  • the electrode various methods are used depending on the material. For example, when aluminum is used, a film forming method such as a sputtering method can be used. The formed aluminum film can be formed into a desired electrode shape by a photolithography method and an etching method which are used for manufacturing a normal inorganic semiconductor element.
  • a film forming method such as a sputtering method
  • the formed aluminum film can be formed into a desired electrode shape by a photolithography method and an etching method which are used for manufacturing a normal inorganic semiconductor element.
  • a dual damascene structure in which copper (Cu) or a copper alloy is formed in a recess formed in the insulating film can be adopted. Details regarding the dual damascene are described in, for example, Japanese Patent No. 3217319, and therefore detailed description thereof is omitted here.
  • both the first electrode (pixel electrode) and the second electrode (counter electrode) are formed below the photoelectric conversion functional layer, it is not necessary to use a transparent electrode such as ITO.
  • each electrode can be created as follows.
  • first electrode when the first electrode (pixel electrode) is thinner than the second electrode (counter electrode), first, a photoresist is formed in the same pattern as the desired first electrode (pixel electrode), A film made of copper (Cu) or a copper alloy is formed thereon. Polishing is performed by CMP or the like until the first electrode (pixel electrode) has a desired film thickness, and the photoresist is removed to form the first electrode (pixel electrode).
  • a photoresist is formed in the same pattern as a desired second electrode (counter electrode), and a film made of copper (Cu) or a copper alloy is formed thereon. Polishing is performed by CMP or the like until the second electrode (counter electrode) has a desired thickness. At this time, the second electrode (counter electrode) is polished so as not to damage the first electrode (pixel electrode). Needs to be thicker than the first electrode (pixel electrode). Then, the second electrode (counter electrode) is formed by removing the photoresist.
  • the layer thickness difference between the first electrode (pixel electrode) and the second electrode (counter electrode) can be appropriately set according to the thickness of the organic semiconductor material or the desired solid-state imaging device, but preferably, 50 [nm] or more and 200 [nm] or less.
  • a photoelectric conversion functional layer made of an organic semiconductor may be inserted, or an insulating layer may be inserted.
  • the photoelectric conversion functional layer is interposed, the strongest electric field strength is applied to the photoelectric conversion functional layer in the portion sandwiched between the first electrode (pixel electrode) and the second electrode (counter electrode) (see FIG. 3). . For this reason, high photoelectric conversion efficiency is obtained in the corresponding photoelectric conversion functional layer. Therefore, when the film thickness of the photoelectric conversion functional layer on the electrode is thin, the photoelectric conversion functional layer is interposed between the first electrode (pixel electrode) and the second electrode (counter electrode). Is good.
  • the electrode and the photoelectric conversion functional layer between the electrodes should be thickened. Is preferred.
  • FIG. 5 shows a conceptual diagram of lines of electric force in the photoelectric conversion element when an insulating layer is interposed between the first electrode (pixel electrode) and the second electrode (counter electrode).
  • the electric field is not concentrated in the region sandwiched between the first electrode (pixel electrode) and the second electrode (counter electrode), and a strong electric field is also applied to the photoelectric conversion functional layer on the electrode.
  • the film thickness of the photoelectric conversion functional layer can be increased.
  • the distance between the first electrode (pixel electrode) and the second electrode (counter electrode) can be set as appropriate depending on the electrode material and the forming method. The shorter the distance, the electrode when a constant voltage is applied. The electric field strength between them becomes stronger. In addition, since the area ratio of the electrode in the imaging pixel increases and the amount of reflection or absorption of incident light increases, the distance between the first electrode (pixel electrode) and the second electrode (counter electrode) is preferably 50 [nm. ] To 300 [nm] or less.
  • the first electrode is an electrode created above the substrate on which the charge accumulation / transfer / readout part is formed, and the signal charge generated by the photoelectric conversion function layer is the first electrode (pixel electrode).
  • a circuit for storing / transferring / reading out charges is formed in the substrate and on the surface for each pixel (one image pickup pixel).
  • the second electrode has a function of discharging charges having a polarity opposite to the signal charge taken in by the first electrode (pixel electrode). Since the discharge of the electric charge does not need to be divided between the imaging pixels, the second electrode (counter electrode) can be shared between the imaging pixels.
  • the second electrode (counter electrode) is formed so as to surround the first electrode (pixel electrode), so that the entire photoelectric conversion functional layer is formed.
  • An electric field can be applied.
  • a shape in which the second electrode (counter electrode) is formed in a lattice shape and the first electrode (pixel electrode) formed in a square shape is arranged therein may be considered.
  • the cleaning liquid after the electrode is formed can be effectively removed to remove image defects such as stains.
  • the second electrode (counter electrode) may have a planar shape as shown in FIG. 7 or FIG.
  • the planar shape of the first electrode (pixel electrode) and the second electrode (counter electrode) may be formed so as to increase the facing area between the first electrode (pixel electrode) and the second electrode (counter electrode).
  • the facing area it is possible to increase a region to which a strong electric field strength is applied and increase photoelectric conversion efficiency.
  • the planar shape of the first electrode (pixel electrode) is a square, the electric field strength is weak at the center of the first electrode (pixel electrode), and the photoelectric conversion efficiency. For example, as shown in FIG.
  • the planar shape of the first electrode (pixel electrode) is made concave, and the second electrode (counter electrode) is interposed between the concave portions of the first electrode (pixel electrode). It may be a planar shape in which a part of is inserted. Also in this case, it is not always necessary to surround the entire periphery of the first electrode (pixel electrode) with the second electrode (counter electrode), and only a part of the periphery of the first electrode (pixel electrode) is the second electrode (counter electrode). You may enclose with.
  • the second electrode (counter electrode) may have a planar shape as shown in FIG. 10 or FIG.
  • the first electrode (pixel electrode) is composed of a plurality of electrode elements, and a part of the second electrode (counter electrode) is inserted between each electrode element, whereby the first electrode
  • the facing area between the (pixel electrode) and the second electrode (counter electrode) can also be increased.
  • the first electrode (pixel electrode) may be configured from four electrode elements, and the second electrode (counter electrode) may be disposed so as to surround them.
  • the entire periphery of the first electrode (pixel electrode) is not necessarily surrounded by the counter electrode, and only a part of the periphery of the first electrode (pixel electrode) may be surrounded by the second electrode (counter electrode).
  • the second electrode (counter electrode) may have a planar shape as shown in FIG.
  • the voltage applied to the photoelectric conversion functional layer made of a material containing an organic semiconductor may be any voltage, and is necessary depending on the organic semiconductor material, the film thickness, the distance between the first electrode (pixel electrode) and the second electrode (counter electrode), etc.
  • the appropriate voltage can be changed as appropriate.
  • the photoelectric conversion efficiency improves as the electric field strength applied to the photoelectric conversion functional layer increases, but the electric field strength increases as the distance between the first electrode (pixel electrode) and the second electrode (counter electrode) becomes shorter even at the same applied voltage. Therefore, if the distance between the first electrode (pixel electrode) and the second electrode (counter electrode) is short, the applied voltage may be relatively small.
  • the electric field strength applied to the photoelectric conversion functional film is preferably 10 [V / m] or more, more preferably 1 ⁇ 10 3 [V / m] or more, and further preferably 1 ⁇ 10 5 [ V / m] or more, particularly preferably 1 ⁇ 10 6 [V / m] or more, and most preferably 1 ⁇ 10 7 [V / m] or more.
  • the electric field strength is increased too much, damage to the organic semiconductor occurs, and an electric current flows unfavorably even in a dark place, so 1 ⁇ 10 12 [V / m] or less is preferable.
  • ⁇ 10 9 [V / m] or less is preferable.
  • JP-A-58-103165 JP-A-58-103166
  • JP-A-2003-332551 JP-A-2003-332551, and the like.
  • a structure in which a MOS transistor is formed for each imaging pixel on a semiconductor substrate or a structure having a CCD as an element can be used as appropriate.
  • charge is photogenerated in the photoelectric conversion functional layer by incident light, and the electric charge is generated by the electric field generated in the photoelectric conversion functional layer by applying a voltage to the electrode. And further move to the charge storage portion in the semiconductor substrate to accumulate charges.
  • the charge accumulated in the charge accumulation unit is transferred to the charge readout unit by switching of the MOS transistor, and is further read as an electric signal and output to an external circuit.
  • the image signal is input to the solid-state imaging device including the signal processing unit.
  • a normal color readout circuit can be used for signal readout.
  • a signal charge or a signal current / voltage generated by photoelectric conversion in the light receiving unit is stored in the light receiving unit itself or an attached capacitor.
  • the stored electric charge is read out together with the selection of the image pickup pixel position by a technique of a MOS type image pickup device using an XY address method, a so-called CMOS sensor.
  • each pixel is sequentially selected by a multiplexer switch and a digital shift register and read as a signal voltage (or signal charge) to a common output signal line.
  • An image sensor for XY address operation that is two-dimensionally arrayed is known as a CMOS sensor. This is because the switch provided in the pixel connected to the intersection of X and Y is connected to the vertical shift register, and when the switch is turned on by the voltage from the vertical scanning shift register, it is read from the pixel provided in the same row. The signal is read out to the output line in the column direction. This signal is sequentially output through a switch driven by a horizontal scanning shift register. For reading out the output signal, a floating diffusion detector or a floating gate detector can be used. For signal processing, signal processing such as gamma correction by an ADC circuit or digitization by an AD converter can be performed.
  • a semiconductor material with high charge mobility is used for the charge transfer / readout part.
  • a silicon semiconductor is preferable because of the progress in miniaturization technology and low cost.
  • There are many methods for charge transfer / reading but any method may be used, preferably a CMOS method or a CCD method. Further, the CMOS method is often preferable in terms of high-speed reading, pixel addition, partial reading, low power consumption, and the like.
  • any metal may be used for the plurality of contact hole portions connecting the photoelectric conversion functional layer / first electrode (pixel electrode) and the charge accumulation / transfer / readout portion, and copper, aluminum, silver, gold, chromium, tungsten Alternatively, it is preferable to use these alloys.
  • the contact material in the upper contact hole may be copper
  • the contact material in the lower contact hole connected to the semiconductor substrate may be tungsten. It is necessary to form a contact hole between the first electrode (pixel electrode) and the charge accumulation portion for each pixel.
  • the first electrode (pixel electrode) is composed of a plurality of electrode elements, contact holes are formed in all the divided electrode elements.
  • a protective layer made of an inorganic material formed in a vacuum by a dry film forming method on the photoelectric conversion functional layer is preferable.
  • the protective layer protects the photoelectric conversion functional layer made of a material containing an organic semiconductor from heating, water, organic solvent, plasma, etc. in the process after the protective layer is formed, and also shuts off moisture, gas, etc. after manufacturing and deteriorates over time. There is a role to suppress.
  • the protective layer is formed on the photoelectric conversion functional layer, it is preferable that the protective layer has high transparency in order to suppress the loss of incident light as much as possible.
  • ICPCVD inductively coupled plasma CVD
  • ICPCVD inductively coupled plasma CVD
  • the protective properties of the protective layer increase as the film thickness increases, but the transparency decreases.
  • the thickness of the protective layer is preferably 100 [nm] or more and 500 [nm] or less.
  • color filter When the light absorption part of the photoelectric conversion functional layer has broad absorption with respect to the visible region, it is preferable to form a color filter.
  • color filters corresponding to RGB are arranged in each imaging pixel.
  • the method for forming a color filter includes a step of forming a material to be a color filter and a step of forming the material into a desired shape.
  • the film forming method there are a dry film forming method and a wet film forming method as in the case of forming the photoelectric conversion functional layer.
  • the photoelectric conversion functional layer made of a material containing an organic semiconductor is damaged by a solvent at the time of forming the color filter. It is better to laminate a protective layer on the functional layer and form a color filter from above the protective layer.
  • a process for forming a desired shape there is a method using a known photolithography technique. These steps can be adjusted by a method for forming a color filter in a known solid-state imaging device.
  • the photoelectric conversion element and the solid-state imaging element of the present invention can be manufactured by a process used for manufacturing a known semiconductor integrated circuit or the like. Basically, it is performed by repetitive operations such as pattern formation by photolithography and etching, diffusion layer formation by ion implantation, arrangement of element formation materials by sputtering and CVD, removal of non-patterned material, and heat treatment. Furthermore, a process and operation for forming a photoelectric conversion functional layer are added.
  • the solid-state image sensor 1 includes an imaging pixel region 1a and a peripheral circuit region 1b. The signal is read from the imaging pixel area 1a to the peripheral circuit area 1b and output. As shown in a portion surrounded by a two-dot chain line in FIG. 1, a plurality of imaging pixels 10 are two-dimensionally arranged in the imaging pixel region 1 a of the solid-state imaging device 1. Each imaging pixel 10 is provided with an associated color filter.
  • FIG. 2 is a schematic cross-sectional view of a part (AA ′) of the imaging pixel region 1a in FIG.
  • an insulating layer 101, a photoelectric conversion functional layer 111, a protective layer 112, a color filter layer 112, and a top lens layer 114 are sequentially stacked on the substrate 100 from the lower side in the Z-axis direction.
  • a charge storage portion 102 and a charge storage portion 104 are formed in a state spaced from each other in the X-axis direction.
  • a gate electrode 103 is provided on the substrate 100 in a region corresponding to the space between the charge storage unit 102 and the charge storage unit 104.
  • the gate electrode 103 and the charge storage portion 102 are connected to a wiring layer 105 provided in the insulating layer 101 through a contact hole 106.
  • a pixel electrode 107 is provided at a boundary portion between the insulating layer 101 and the photoelectric conversion functional layer 111 so as to correspond to each imaging pixel 10.
  • a counter electrode 108 is provided in a region corresponding to the boundary between the imaging pixels 10 between the pixel electrodes 107 in the adjacent imaging pixels 10.
  • a part of the photoelectric conversion functional layer 111 is interposed between the adjacent pixel electrode 107 and the counter electrode 108. That is, the pixel electrode 107 and the counter electrode 108 sandwich a part of the photoelectric conversion functional layer 111 in the X-axis direction.
  • the pixel electrode 107 and the counter electrode 108 are connected to a wiring layer 105 formed in the insulating layer 101 through contact holes 109 and 110, respectively.
  • the substrate 100 is preferably a silicon single crystal semiconductor substrate.
  • the gate electrode 103 is preferably formed using polycrystalline silicon to which a voltage for reading signal charges is applied. In FIG. 2, an oxide film between the substrate 100 and the gate electrode 103 is omitted.
  • the charge accumulation unit 102 is a part for accumulating the signal charges generated by the photoelectric conversion functional layer 111, and the charge accumulation unit 104 accumulates the read charges by applying a voltage to the gate electrode 103. It is a part for.
  • the charge storage portion 102 is formed by arsenic ion implantation or the like.
  • a p-type or n-type layer such as a well is formed in addition to the charge storage portion 102, and the read signal charge (signal voltage) is output to the outside.
  • Transistors, contacts, wirings, and the like, which are circuits for performing the above, are formed.
  • the wiring layer 105 and the contact holes 106 and 109 serve as paths for signal charge transfer from the pixel electrode 107 to the charge storage unit 102 and signal voltage transmission.
  • Tungsten is preferable as the contact material of the contact hole 106 connected to the charge storage portion 102 and the gate electrode 103, and aluminum is preferable as the contact material of the contact hole 109 connected to the pixel electrode 107.
  • the wiring layer 105 may have any number of layers and can be set as appropriate according to the circuit.
  • Aluminum is preferably used for the pixel electrode 107 and the counter electrode 108.
  • Aluminum having a thickness of 400 [nm] is stacked over the insulating layer 101 by a sputtering method or the like, and a desired pixel electrode and counter electrode are formed thereon.
  • a resist is formed in the planar shape pattern, and desired pixel electrodes 107 and counter electrodes 108 are formed by dry etching. The above process can be easily adjusted by a conventionally known process, a so-called CMOS process.
  • the photoelectric conversion functional layer 111 formed on the pixel electrode 107 and the counter electrode 108 is formed of a mixed layer of copper phthalocyanine and fullerene having broad absorption in the visible region by flash vapor deposition, and the color filters R, G, and B are formed. Each transmitted light is absorbed, and electric charge is generated by photoelectric conversion.
  • the film thickness of the photoelectric conversion functional layer 111 is 600 [nm] from the upper surface of the insulating layer 101 and 200 [nm] from the upper surface of the pixel electrode 107.
  • the protective layer 112 on the photoelectric conversion functional layer 111 is made of a silicon nitride film having a thickness of 500 [nm] formed by a dry film formation method.
  • the color filter layer 113 on the protective layer 112 is a filter having a transmission wavelength corresponding to each imaging pixel 10.
  • the color filter layer 113 is known and can be adjusted by a color filter forming process in a conventional inorganic solid-state imaging device.
  • the strongest electric field strength is applied to the photoelectric conversion functional layer 111 between the pixel electrode 107 and the counter electrode 108 (electric field lines E 1 in FIG. 3).
  • a relatively weak electric field strength is applied to an upper region between the pixel electrode 107 and the counter electrode 108 so as to draw an arc (electric field lines E 2 in FIG. 3).
  • the thickness of the electrodes 107 and 108 and the photoelectric conversion functional layer 111 therebetween is preferable to increase the thickness of the electrodes 107 and 108 and the photoelectric conversion functional layer 111 therebetween.
  • an insulating layer 115 is inserted between the adjacent pixel electrode 107 and the counter electrode 108 on the insulating layer 101.
  • copper is preferably used as a constituent material of the pixel electrode 107 and the counter electrode 108.
  • the insulating layer 115 inserted between the pixel electrode 107 and the counter electrode 108 is not necessarily formed separately from the insulating layer 101, and may be formed of the same material.
  • the insulating layer 101 and the insulating layer 115 are formed from the same material by a known manufacturing method with a dual damascene structure, and recesses are formed in the shapes of the desired contact holes 109 and 110, the pixel electrode 107, and the counter electrode 108.
  • Contact holes 109, 110, a pixel electrode 107, and a counter electrode 108 are formed by sputtering, electrolytic plating, and CMP polishing. The above process can be easily adjusted by a conventionally known process, a so-called CMOS process.
  • the photoelectric conversion function layer 116 formed on the pixel electrode 107 and the counter electrode 108 is not interposed between the pixel electrode 107 and the counter electrode 108 by the insulating layer 115.
  • the photoelectric conversion functional layer 116 is formed of a mixed layer of copper phthalocyanine and fullerene having broad absorption in the visible region by flash vapor deposition, and absorbs each light transmitted through the color filters R, G, and B. Electric charges are generated by photoelectric conversion.
  • the film thickness of the photoelectric conversion functional layer 116 is 300 [nm] from the upper surface of the pixel electrode 107.
  • the protective layer 112 on the photoelectric conversion functional layer 116 is formed by laminating a silicon nitride film having a thickness of 500 [nm] by a dry film forming method as described above.
  • the pixel electrodes arranged at intervals in the X-axis direction for each imaging pixel 10. 107 and a counter electrode 108, and an insulating layer 115 is embedded between the electrodes 107 and 108 is employed.
  • the electric field does not concentrate in a region sandwiched between the pixel electrode 107 and the counter electrode 108, and the upper photoelectric conversion between the pixel electrode 107 and the counter electrode 108 is prevented. Since a strong electric field is also applied to the functional layer 116 (electric field lines E 11 in FIG. 5), the thickness of the photoelectric conversion functional layer 116 on the electrodes 107 and 108 can be increased. A relatively weak electric field is applied further above the region between the pixel electrode 107 and the counter electrode 108 (electric field lines E 12 in FIG. 5).
  • the distance between the pixel electrode 107 and the counter electrode 108 can be appropriately set depending on the electrode material and the forming method. However, the shorter the distance, the electric field strength between the electrodes 107 and 108 when a constant voltage is applied. Becomes stronger. Further, since the area ratio of the electrodes 107 and 108 in the imaging pixel 11 increases and the amount of reflection or absorption of incident light increases, the distance between the pixel electrode 107 and the counter electrode 108 is preferably 50 [nm] or more and 300 [ nm] or less.
  • pixel electrodes 207 each having a square planar shape are arranged with an interval between them in both the X-axis direction and the Y-axis direction.
  • the counter electrode 208 has a lattice shape as a whole, and is interposed between the pixel electrodes 207.
  • the counter electrode 208 is arranged so as to surround the entire periphery of the pixel electrode 207 in each imaging pixel. By disposing the counter electrode 208 in this way, an electric field can be generated in all directions of the pixel electrode 207, and sensitivity can be improved.
  • pixel electrodes 307 each having a square planar shape are spaced apart from each other in both the X-axis direction and the Y-axis direction. It is arranged.
  • the counter electrode 308 includes a trunk portion that extends between the adjacent pixel electrodes 307 in the X-axis direction, and a branch portion 308a that extends in the Y-axis direction therefrom.
  • the counter electrode 308 does not surround the entire periphery of the pixel electrode 307 in each imaging pixel but surrounds a part of the periphery.
  • the voltage applied to the counter electrode 308 can be changed, and the voltage can be set in consideration of sensitivity and power consumption in the Y-axis direction.
  • the X axis and the Y axis can be the vertical direction and the horizontal direction in the planar direction of the imaging pixel region 3a, or can be the horizontal direction and the vertical direction.
  • a portion where the counter electrode 308 does not exist can be arranged at the staggered position, and variation due to the absence of the counter electrode can be reduced even in the peripheral portion in the vertical direction of the imaging pixel region 3a.
  • pixel electrodes 407 each having a square planar shape are spaced from each other in both the X-axis direction and the Y-axis direction. It is arranged.
  • the branch portion 408 a of the counter electrode 408 is formed to extend downward in the Y-axis direction in all the counter electrodes 408.
  • the counter electrode 408 does not surround the entire periphery of the pixel electrode 407 in each imaging pixel, but a part of the periphery. Is enclosed.
  • the voltage applied to the counter electrode can be changed, and the optimum voltage can be set in consideration of sensitivity and power consumption in the Y-axis direction.
  • the X axis and the Y axis can be the vertical direction and the horizontal direction in the planar direction of the imaging pixel region 3a, or can be the horizontal direction and the vertical direction.
  • the three directions of the pixel electrode 407 are surrounded by the integrated counter electrode 408, and the electric field formed by one counter electrode 408 becomes more dominant than that in Modification 2, and the counter electrode The effect due to the voltage change of 408 can be increased.
  • the pixel electrode 507 has a portion 507a partially recessed in the Y-axis direction when seen in a plan view. It is C-shaped.
  • the counter electrode 508 includes a branch portion 508 a that enters the portion corresponding to the portion 507 a that enters the pixel electrode 507.
  • Other forms of the counter electrode 508 are the same as in the first modification.
  • the counter electrode 508 surrounds the entire periphery of the pixel electrode 507 in each imaging pixel, and the branch portion 508a is the pixel electrode. Since the portion 507a that has entered into the concave shape 507 has entered, the area facing the pixel electrode 507 increases. For this reason, the area
  • FIG. 1 the area
  • the pixel electrode 607 has a portion 607a partially recessed in the Y-axis direction when seen in a plan view. Or it is C-shaped.
  • the counter electrode 608 includes a branch portion 608 a that enters the corresponding portion 607 a in the pixel electrode 607, and a branch portion 608 b that enters between adjacent pixel electrodes 607.
  • the branch portions 608a and 608b in the counter electrode 608 are formed to extend in directions opposite to each other in the Y-axis direction.
  • the counter electrode 608 does not surround the entire periphery of the pixel electrode 607 but surrounds a part thereof. Further, when the branch portion 608a of the counter electrode 608 enters the concave portion 607a of the pixel electrode 607, the opposing regions increase. For this reason, the area
  • the pixel electrode 707 has a portion 707a partially recessed in the Y-axis direction in plan view, and has a U-shape as a whole. Or it is C-shaped.
  • the counter electrode 708 includes a branch portion 708a that enters the corresponding portion 707a in the pixel electrode 707, and includes a branch portion 708b that enters between adjacent pixel electrodes 707.
  • the counter electrode 708 according to the sixth modification differs from the fifth modification in that the branch portions 708a and 708b of the counter electrode 708 are formed to extend in the same direction in the Y-axis direction. .
  • the counter electrode 708 does not surround the entire periphery of the pixel electrode 707 but surrounds a part thereof. Further, when the branch portion 708a of the counter electrode 708 enters the concave portion 707a of the pixel electrode 707, the opposing regions increase. For this reason, the area
  • a pixel electrode 807 corresponding to one imaging pixel is obtained by combining four electrode elements 8071, 8072, 8073, and 8074 formed adjacent to each other. Is configured.
  • the electrode elements 8071, 8072, 8073, and 8074 are connected in the insulating layer 101 for each imaging pixel.
  • the counter electrode 808 has a lattice shape in plan view, and is provided between the pixel electrodes 807 and between the electrode elements 8071, 8072, 8073, and 8074 in the pixel electrodes 807.
  • the solid-state imaging device includes four electrode elements 8071, 8072, 8073, and 8074 in which the pixel electrode 807 is divided, and the electrode elements 8071, 8072, 8073, and 8074 are also opposed to each other. Since the electrodes 808 are interposed, the opposing areas can be further increased. For this reason, the area
  • a pixel electrode corresponding to one imaging pixel is obtained by combining the four electrode elements 9071, 9072, 9073, and 9074 formed adjacent to each other. 907 is configured. Also in this modification 8, each electrode element 9071, 9072, 9073, 9074 is connected within the insulating layer 101 for every imaging pixel.
  • This modification 8 is different from the modification 7 in that the counter electrode 908 does not surround the entire periphery of the pixel electrode 907 but surrounds a part thereof.
  • the branch portion 908a is inserted between the electrode elements 9071, 9072, 9073, and 9074, and the branch portion 908b is inserted between the adjacent pixel electrodes 907.
  • a branch portion 908a and a branch portion 908b are formed to extend in opposite directions in the Y-axis direction. For this reason, the area
  • the pixel electrode corresponding to one imaging pixel is obtained by combining the four electrode elements 12071, 12072, 12073, and 12074 formed adjacent to each other. 1207 is configured. Also in this modification 9, each electrode element 12071, 12072, 12073, 12074 is connected in the insulating layer 101 for every imaging pixel.
  • the counter electrode 1208 includes branch portions 1208a and 1208b, but is different from the eighth modification in that the extending directions thereof are the same. Since the branch portion 1208a and the branch portion 1208b are connected to the same counter electrode 1208 with respect to one electrode element, the electric field formed by one electrode element becomes more dominant than the modification example 8, and The effect due to the voltage change of the electrode 1208 can be increased.
  • each imaging pixel 13 of the solid-state imaging device The configuration of each imaging pixel 13 of the solid-state imaging device according to the present embodiment will be described with reference to FIG. In FIG. 15, a portion that is a main part of the solid-state imaging device is extracted and drawn.
  • the thickness of the counter electrode 138 in the Z-axis direction is thicker than that of the pixel electrode 107, and the pixel electrode 107 and the counter electrode 138 are between.
  • a part of 131 is inserted in a photoelectric conversion functional layer made of a material containing an organic semiconductor material.
  • the thickness of the counter electrode 138 with respect to the pixel electrode 107 is relatively large.
  • a relatively strong electric field is applied to the portion between 138 (electric field lines E 21 in FIG. 16), and an electric field is applied relatively upward in the Z-axis direction in the photoelectric conversion functional layer 131 (electric field lines in FIG. 16). E 22 ), and the photoelectric conversion characteristics can be improved.
  • FIGS. 17 and 18 for the sake of simplification of the drawings, wiring and contact holes other than the contact hole 109 connected to the charge accumulation portion, the gate electrode, and the pixel electrode in and on the substrate 100 are illustrated. Omitted.
  • the manufacturing method up to the formation of the insulating layer 101 and the contact hole / wiring layer is the same as that described in the second embodiment.
  • a contact hole 101a is formed in the insulating layer 101 at a location where a contact hole connected to the pixel electrode 107 is to be formed.
  • a resist film 500 is deposited on the insulating layer 101 in a region where the pixel electrode 107 is not to be formed. Subsequently, copper that is a constituent material of the contact material and the pixel electrode 107 is laminated to form a metal film 1070.
  • the pixel electrode 107 and the contact material of the contact hole 109 therebelow are used as different hatching types. However, as described above, the constituent material of the pixel electrode 107 and the contact material are the same. And
  • the thickness of the metal film 1070 is preferably 300 [nm] or more and 350 [nm] or less.
  • the upper portions of the metal film 10702 and the resist film 500 are polished and removed by CMP polishing so as to obtain a desired pixel electrode film thickness. Then, by removing the remaining resist film 500, the pixel electrode 107 and the contact hole 109 are formed as shown in FIG.
  • the film thickness of the pixel electrode 107 is 300 [nm] from the upper surface of the insulating layer 101, which is the same as the desired film thickness of the pixel electrode 107.
  • a resist film 501 patterned in accordance with a region where the counter electrode 138 is not to be formed is disposed on the insulating layer 101 and the pixel electrode 107.
  • a metal film 1380 to be the counter electrode 138 is stacked (see FIG. 18A).
  • the metal film 1380 is also formed of copper, and the film thickness is equal to or greater than the desired film thickness of the counter electrode 138.
  • the thickness of the metal film 1380 is preferably 500 [nm] to 600 [nm].
  • the upper part of the metal film 1380 and the resist film 501 is polished and removed by CMP polishing so that the desired counter electrode film thickness is obtained. By removing the remaining resist film 501, a counter electrode 138 is formed as shown in FIG.
  • the thickness of the counter electrode 138 becomes 500 [nm] from the upper surface of the insulating layer 101 in the stage shown in FIG. 18B, and is the same as the desired thickness of the counter electrode 138.
  • the above process can be adjusted by a conventionally known process, a technique in a so-called CMOS process.
  • the photoelectric conversion functional layer 131 is formed using an organic semiconductor material.
  • the photoelectric conversion functional layer 131 is formed by stacking as a mixed layer of copper phthalocyanine and fullerene having broad absorption in the visible region by flash vapor deposition.
  • the film thickness of the photoelectric conversion functional layer 131 is preferably thicker than the counter electrode 138, and is set to 700 [nm].
  • the solid-state imaging device according to the third embodiment is manufactured by the manufacturing method as described above.
  • FIG. 19 shows an essential part of the solid-state imaging device according to the fourth embodiment.
  • the pixel electrode 107 and the counter electrode 148 are arranged facing each other in a direction intersecting the Z-axis direction. ing.
  • the pixel electrode 107 is formed on the surface of the insulating layer 101 as in the first embodiment, while the counter electrode 148 has the insulating layer 101.
  • An insulating layer or a photoelectric conversion functional layer 141 is interposed between the two surfaces.
  • the present invention is useful for realizing a low-cost digital still camera or digital movie camera including a solid-state imaging device having high sensitivity.
  • Solid-state imaging devices 1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a, 9a, 12a Imaging pixel area 1b. Peripheral circuit area 10, 11, 13, 14. Imaging pixel 100. Substrate 101. Insulating layer 102. Charge storage unit 103. Gate electrode 104. Charge storage unit 105. Wiring layer 106,109,110. Contact hole 107,207,307,407,507,607,707,807,907,1207. Pixel electrodes 108, 138, 148, 208, 308, 408, 508, 608, 708, 808, 908, 1208. Counter electrode 111,116,131,141. Photoelectric conversion functional layer 112. Protective layer 113. Color filter layer 114.
  • Top lens layer 115 Insulating layer 500,501. Resist films 1070, 1380. Metal films 8071, 8072, 8073, 8074, 9071, 9072, 9073, 9074, 12071, 12072, 12073, 12074. Pixel electrode elements E 1 , E 2 , E 11 , E 12 , E 21 , E 22 . Electric field lines

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

 固体撮像素子の各撮像画素10では、基板100上に、絶縁層101、光電変換機能層111、保護層112、カラーフィルタ層113、およびトップレンズ層114が順に積層形成されている。光電変換機能層111は、有機半導体材料を含む材料から構成されている。各撮像画素10では、絶縁層101上に、画素電極107と対向電極108とが、X軸方向において、互いに対向している。

Description

光電変換素子とその製造方法、および固体撮像素子とその製造方法
 本発明は、光電変換素子とその製造方法、および固体撮像素子とその製造方法に関し、特に、有機半導体材料を含む材料を用い形成された光電変換機能層を備える光電変換素子とその製造方法、および固体撮像素子とその製造方法に関する。
 ディジタルスチルカメラなどに搭載されている固体撮像素子、例えば、CMOSセンサやCCDセンサは、2次元配置された複数のフォトダイオードを有し構成されている。従来において、各フォトダイオードは、半導体基板中にPN接合を形成することにより構成されている。
 ところで、近年において、多画素化に伴って画素サイズが小さくなっており、フォトダイオード領域の面積も小さくなる傾向にある。フォトダイオード領域の面積が小さくなると、開口率の低下、集光効率の低下などによる感度低下など光電変換特性の低下が問題となってきている。また、前述のように、シリコンなどの半導体基板中に光電変換部を形成する場合には、その上方に形成される配線などにより入射光が反射・散乱され、これによる光の損失による感度低下や、隣接する画素のフォトダイオードへの一部の光の入射に伴う混色といった問題も生じる。
 このような問題を解決するために、有機半導体材料を含み構成された光電変換機能層を備え、当該光電変換機能層を配線層などよりも上方、即ち、光の入射側に配した固体撮像素子が提案されている(例えば、特許文献1などを参照)。特許文献1で提案されている固体撮像素子の構成について、図20を用い説明する。
 図20に示すように、従来技術に係る固体撮像装置901は、複数の画素を備えたn型シリコン基板902とpウェル層903からなる半導体基板に、画素毎にn領域904とn+領域905が形成されている。さらに、n型シリコン基板902の上に絶縁層906が形成され、絶縁膜906の上にはn型シリコン基板902の画素毎に対応した透明電極907が形成されている。この透明電極907とn+領域905とは画素毎に絶縁膜906に埋設されたコンタクト部908によって接続されている。
 透明電極907の上には光電変換部909、上部電極910、保護膜911,912が複数の画素にわたって形成されている。保護膜912の上には画素毎にR(赤)、G(緑)、B(青)のカラーフィルタ913とマイクロレンズ914が形成されている。
 また、特許文献1の明細書における段落番号[0143]には、透明電極907と上部電極910に所定のバイアス電圧を印加すると、光電変換部909で発生した電荷が透明電極907とコンタクト部908を介してn+領域905に移動し、蓄積されることが記載されている。
特開2009-130090号公報 特開2006-245045号公報
 しかしながら、上記特許文献1で提案されている固体撮像素子では、光電変換が行われる光電変換部909よりも上方、即ち、光の入射側に上部電極910が配されているので、入射してきた光の一部が上部電極910により遮られてしまう。このため、特許文献1で提案されている固体撮像素子には、更なる感度の向上が求められる。
 ここで、上部電極910の構成材料としては、例えば、ITO(酸化インジウム錫)やIZO(酸化インジウム亜鉛)などが用いられるが、その光透過性は、100[%]ではない。このような透明電極膜における光透過性については、例えば、特許文献2などで検討がなされており、少なくとも数[%]、多い場合には数十[%]の光が透過できない。
 本発明は、上記のような問題の解決を図るべくなされたものであって、光損失の少ない高感度な光電変換素子とその製造方法、および固体撮像素子とその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は、次の構成を採用する。
 (1) 本発明に係る光電変換素子は、基板と、当該基板の上方に形成され、有機半導体材料を含み構成された光電変換機能層と、ともに光電変換機能層における界面に対して接する状態で設けられた第1電極および第2電極とを備える。そして、本発明に係る光電変換素子では、第1電極が、光電変換機能層における基板側の界面に対して接しており、且つ、第1電極と第2電極とが、基板の厚み方向に対して交差する方向において、互いに対向していることを特徴とする。
 (2) 本発明に係る光電変換素子は、上記(1)の構成において、光電変換機能層が、第1電極の上面および側面を覆う状態で形成されており、第2電極が、基板の厚み方向に対して交差する方向において、第1電極の周囲の少なくとも一部を囲む状態で配されていることを特徴とする。
 (3) 本発明に係る光電変換素子は、上記(1)の構成において、第1電極が、基板の主面に沿った方向に、互いに間隔をあけて配された複数の電極要素から構成されており、第2電極が、基板の厚み方向に対して交差する方向において、複数の電極要素の少なくとも一部の周囲を囲む状態で配されていることを特徴とする。
 (4) 本発明に係る光電変換素子は、上記(2)の構成において、基板の厚み方向における第1電極の上方が、第2電極で覆われていないことを特徴とする。
 (5) 本発明に係る光電変換素子は、上記(1)の構成において、光電変換機能層が、光電変換層を含むとともに、電子輸送層および正孔輸送層の少なくとも一方を含む積層構造を以って構成されていることを特徴とする。
 (6) 本発明に係る光電変換素子は、上記(1)の構成において、第1電極および第2電極の少なくとも一方の電極の表面が光反射面となっていることを特徴とする。
 (7) 本発明に係る光電変換素子は、上記(1)の構成において、基板の厚み方向における光電変換機能層の上には、当該光電変換機能層を保護するための保護層が積層形成されていることを特徴とする。
 (8) 本発明に係る光電変換素子は、上記(1)の構成において、基板の厚み方向における光電変換機能層の上方には、有機材料から構成されたカラーフィルタ層が積層形成されていることを特徴とする。
 (9) 本発明に係る光電変換素子は、上記(1)の構成において、基板の厚み方向における第2電極の層厚が、第1電極の層厚よりも厚いことを特徴とする。
 (10) 本発明に係る固体撮像素子は、2次元配列された複数の撮像画素部を有し、複数の撮像画素部の各々が、上記(1)から(9)の何れかの光電変換素子の構成を含み形成されていることを特徴とする。
 (11) 本発明に係る光電変換素子の製造方法は、次の工程を備えることを特徴とする。
  (i)第1電極と第2電極とを形成する工程: 基板の上方において、当該基板の厚み方向に対して交差する方向に、互いに対向する状態で第1電極と第2電極とを形成する。
  (ii)光電変換機能層を形成する工程: 有機半導体材料を含む材料を用い、第1電極と前記第2電極との双方に対して接する状態で、光電変換機能層を形成する。
 (12) 本発明に係る光電変換素子の製造方法は、上記(11)の構成において、第1電極と第2電極とを形成する工程で、基板の厚み方向に対して交差する方向において、第2電極を、第1電極の周囲の少なくとも一部を囲む状態で形成し、光電変換機能層を形成する工程で、第1電極の上面および側面を覆う状態で、光電変換機能層を形成することを特徴とする。
 (13) 本発明に係る光電変換素子の製造方法は、上記(11)の構成において、第1電極と第2電極とを形成する工程で、基板の主面に沿った方向において、互いに間隔をあけた状態の形成した複数の電極要素を以って第1電極を形成し、第1電極における複数の電極要素の少なくとも一部の周囲を囲む状態で、第2電極を形成することを特徴とする。
 (14) 本発明に係る光電変換素子の製造方法は、上記(12)の構成において、第1電極と第2電極とを形成する工程で、基板の厚み方向において、第1電極の上方を覆わないように第2電極を形成することを特徴とする。
 (15) 本発明に係る光電変換素子の製造方法は、上記(11)の構成において、光電変換機能層を形成する工程で、光電変換層を含むとともに、電子輸送層および正孔輸送層の少なくとも一方を含む積層構造を以って光電変換機能層を形成することを特徴とする。
 (16) 本発明に係る光電変換素子の製造方法は、上記(11)の構成において、第1電極と第2電極とを形成する工程で、第1電極および第2電極の少なくとも一方を、その表面が光反射面となるように形成することを特徴とする。
 (17) 本発明に係る光電変換素子の製造方法は、上記(11)の構成において、基板の厚み方向における光電変換機能層の上に、当該光電変換機能層を保護するための保護層を積層形成する工程を備えることを特徴とする。
 (18) 本発明に係る光電変換素子の製造方法は、上記(11)の構成において、有機材料を用い、基板の厚み方向における光電変換機能層の上方に、カラーフィルタ層を積層形成する工程を備えることを特徴とする。
 (19) 本発明に係る光電変換素子の製造方法は、上記(11)の構成において、第1電極と第2電極とを形成する工程で、第2電極を、基板の厚み方向におけるその層厚が、第1電極よりも厚くなるように形成することを特徴とする。
 (20) 本発明に係る固体撮像素子の製造方法は、2次元配列された複数の撮像画素部を有する固体撮像素子の製造する方法であって、複数の撮像画素部の各々を、上記(11)から(19)の何れかの光電変換素子の製造方法を以って形成することを特徴とする。
 本発明によれば、電極による光損失をなくし高い感度を有した光電変換素子及び固体撮像素子およびその製造方法を提供することできる。
 上記(1)の構成では、第1電極と第2電極とを、基板の厚み方向に対して交差する方向において、互いに対向させ、光電変換機能層の界面に対して第1および第2の電極の双方が接する。そして、第1電極は、光電変換機能層における基板側の界面で接している。このため、本発明に係る光電変換素子では、光電変換機能層の上を一方の電極で覆われないので、光電変換機能層への入射光の損失がなく、且つ光電変換機能層上への電極形成に伴う工程ダメージもない。
 従って、本発明に係る光電変換素子は、光損失が少なく高感度である。
 なお、上記(10)のように、本発明に係る固体撮像素子は、複数の撮像画素部の各々が、本発明に係る光電変換素子の構成を含み形成されているので、上記同様の効果を奏することができる。
 また、上記(2)または(3)の構成では、基板の厚み方向に対して交差する方向において、第1電極の周囲の少なくとも一部を囲む状態に第2電極を形成しているので、光電変換機能層における電界強度が増し、光電変換特性を向上させることができる。
 また、上記(5)の構成では、光電変換機能層が、光電変換層の他に、電子輸送層、正孔輸送層などの機能層を有した積層構造を以って構成されているので、電荷移動特性や光電変換特性などを向上させることができる。
 また、上記(6)の構成では、第1電極および第2電極の少なくとも一方の電極表面を、光反射面としているので、電極表面で入射光を反射し再び光電変換機能層へ入射させることができ、感度をさらに向上させることができる。
 また、上記(7)の構成では、光電変換機能層上に保護層を積層することとしているので、有機半導体材料からなる光電変換機能層を形成した後の工程における水分やガス(酸素)による有機半導体材料の劣化を防ぐことができる。よって、この構成を採用する場合には、光電変換機能層を形成した後、直ぐに保護層を形成するので、その後の工程におけるダメージを防ぐ効果は大きい。
 さらには、光電変換素子を完成させた後においても水分やガス(酸素)による有機半導体材料からなる光電変換機能層の経年劣化を防ぐことができる。また、光電変換機能層を保護層で覆うことにより、有機溶媒やプラズマなどからも有機半導体を含み構成された光電変換機能層を保護できるため、カラーフィルタ形成などの後工程が容易となる。
 また、上記(8)の構成では、光電変換機能層が可視領域においてブロードな吸収スペクトルを有する場合でも、特に分光特性に優れ、RGBに対応した固体撮像素子を提供できる。
 また、上記(9)の構成では、第2電極の層厚を、第1電極の層厚よりも厚くするので、光電変換機能層内において光電変換に寄与する領域を増やし光電変換特性を向上させることができる。
 また、本発明に係る光電変換素子の製造方法および固体撮像素子の製造方法は、上記(11)から(20)のように、上記の効果を有する本発明に係る光電変換素子および固体撮像素子を確実に製造することができる。
 そして、第1電極および第2電極の何れについても、透明電極とする必要がなく、第1電極と第2電極とを同じ工程で形成することも可能となり、簡易なプロセスでの製造により製造コストを低く抑えることが可能である。
実施の形態1に係る固体撮像素子1の概略構成を示す模式平面図である。 固体撮像素子1における撮像画素領域1aの一部構成を示す模式断面図である。 固体撮像素子1における光電変換機能層111内での電界強度分布を示す模式断面図である。 実施の形態2に係る固体撮像素子における撮像画素領域の一部構成を示す模式断面図である。 実施の形態2に係る固体撮像素子における光電変換機能層116内での電界強度分布を示す模式断面図である。 変形例1に係る固体撮像素子における画素電極207と対向電極208との形状および互いの配置を示す模式平面図である。 変形例2に係る固体撮像素子における画素電極307と対向電極308との形状および互いの配置を示す模式平面図である。 変形例3に係る固体撮像素子における画素電極407と対向電極408との形状および互いの配置を示す模式平面図である。 変形例4に係る固体撮像素子における画素電極507と対向電極508との形状および互いの配置を示す模式平面図である。 変形例5に係る固体撮像素子における画素電極607と対向電極608との形状および互いの配置を示す模式平面図である。 変形例6に係る固体撮像素子における画素電極707と対向電極708との形状および互いの配置を示す模式平面図である。 変形例7に係る固体撮像素子における画素電極807と対向電極808との形状および互いの配置を示す模式平面図である。 変形例8に係る固体撮像素子における画素電極907と対向電極908との形状および互いの配置を示す模式平面図である。 変形例9に係る固体撮像素子における画素電極1207と対向電極1208との形状および互いの配置を示す模式平面図である。 実施の形態3に係る固体撮像素子における撮像画素領域の一部構成を示す模式断面図である。 実施の形態3に係る固体撮像素子における光電変換機能層131内での電界強度分布を示す模式断面図である。 (a)~(c)は、実施の形態3に係る固体撮像素子の製造過程の一部を示す模式工程図である。 (a)および(b)は、実施の形態3に係る固体撮像素子の製造過程の一部を示す模式工程図である。 実施の形態4に係る固体撮像素子における撮像画素領域の一部構成を示す模式断面図である。 従来技術に係る固体撮像素子における撮像画素領域の一部構成を示す模式断面図である。
  [本発明に係る光電変換素子および固体撮像素子の概要]
 光電変換素子は、電磁波吸収/光電変換部位と光電変換により生成した電荷の電荷蓄積/転送/読み出し部位よりなる。
 電磁波吸収/光電変換部位は、少なくとも青、緑、赤の光を各々吸収し光電変換することができる少なくとも1つ以上の有機半導体材料からなる。青光の吸収部位(以下B吸収部)は、少なくとも400[nm]~500[nm]の光を吸収することができ、好ましくは、その波長域でのピーク波長の吸収率は、50[%]以上である。緑光の吸収部位(以下G吸収部)は、少なくとも500[nm]~600[nm]の光を吸収することができ、好ましくは、その波長域でのピーク波長の吸収率は、50[%]以上である。赤光の吸収部位(以下R吸収部)は、少なくとも600[nm]~700[nm]の光を吸収することができ、好ましくは、その波長域でのピーク波長の吸収率は、50[%]以上である。
 電磁波吸収/光電変換部位は、B吸収部、G吸収部、R吸収部がそれぞれ層を形成していても良い。あるいは複数の有機半導体材料により1つの層を形成するなどして1つの層の中にB吸収部、G吸収部、R吸収部を有していても良いし、または可視領域においてブロードな吸収スペクトルを有していてもよい。
 電荷蓄積/転送/読み出し部位は、好ましくは電極の下に形成され、電極により遮光されているため、光の影響による偽信号(混色)を防ぐことができる。好ましくはシリコンなどの無機の半導体基板内および表面に形成される。
 本発明における有機半導体材料を含む材料からなる光電変換層について説明する。
 本発明の電磁波吸収/光電変換部位は、一対の電極(第1電極と第2電極)上に形成された有機半導体材料を含む材料からなる層からなる。光電変換機能層は、電磁波を吸収する部位、光電変換部位、電子輸送部位、正孔輸送部位などの積層あるいは混合から形成される。有機半導体層は有機p型化合物(p型半導体層)または有機n型化合物(n型半導体層)を含有することが好ましい。
 有機p型化合物(有機p型半導体)は、ドナー性有機化合物(半導体)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。
 従って、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。例えばフタロシアニン化合物などがある。もちろんこれに限らず、上記したようにn型(アクセプター性)化合物として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であればドナー性有機半導体として用いてもよい。
 有機n型化合物(有機n型半導体)は、アクセプター性有機化合物(半導体)であり、主に電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは、2つの有機材料を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。
 従って、アクセプター性有機化合物は、電子受容性のある有機化合物であれば、何れの有機化合物も使用が可能である。例えば、テトラセン誘導体などがある。勿論、これに限らず、上記したようにドナー性有機化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプター性有機半導体として用いてよい。
 一対の電極(第1電極と第2の電極)上に、有機p型半導体と有機n型半導体の少なくとも一方を有している。有機p型半導体と有機n型半導体の両方を有する場合、それぞれp型半導体層とn型半導体層を形成していてもよく、あるいはそれらを混合・分散し1つの層としていてもよい。混合・分散させる場合、有機層にバルクへテロ接合構造を含有させることにより、有機層のキャリア拡散長が短いという欠点を補い、光電変換特性を向上させることができる。
 従来の積層型の光電変換素子の場合、光の吸収という点においては、有機半導体層の膜厚は厚いほど好ましいが、電子正孔対の分離という点においては、光電変換機能層の膜厚を薄くして電極間に電圧を印加した際の層内の電界強度を強くした方が好ましい。本発明においては、一対の電極(第1電極と第2電極)を平面(基板の厚み方向に対して交差する方向)に形成し、その上に光電変換機能層を形成するため、光電変換機能層内における電界強度は一様にはならず、電極に近い領域ほど電界強度が強く光電変換効率が高い。
 また、入射面つまり光電変換機能層の表面(上面)に近い領域ほど光の吸収量が大きく、多くの電荷が発生する。これらを考慮すると、本発明における平面型の光電変換素子および固体撮像素子の場合には、光電変換機能層の膜厚については、より薄いほうが光電変換特性は高くなる。有機半導体の材料や電圧などの条件により、電極上に形成する有機半導体層の膜厚として適した範囲は異なるが、好ましくは、20[nm]以上500[nm]以下、さらに好ましくは、20[nm]以上300[nm]以下、特に好ましくは、20[nm]以上200[nm]以下である。
 本発明に係る光電変換機能層は、乾式成膜法あるいは湿式成膜法により成膜される。乾式成膜法の具体的な例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE法などの物理気相成長法あるいはプラズマ重合などのCVD法が挙げられる。有機p型半導体と有機n型半導体とを混合・分散させて1つの層を形成する場合には、フラッシュ蒸着法などを用いることもできる。湿式成膜法としては、キャスト法、インクジェット法、スピンコート法、ディッピング法、LB法などを用いることができる。
 有機化合物として高分子化合物を用いる場合は、蒸着などの乾式成膜法では高分子化合物が分解するおそれがあるため、作成の容易な湿式成膜法により成膜することが好ましい。一方、低分子を用いる場合は、乾式成膜法が好ましく用いられ、特に真空蒸着法が好ましく用いられる。
 次に、本発明に係る電極について説明する。
 第1電極および第2電極(一方が画素電極であり、他方が対向電極である)の2つ電極からなり、第1電極と第2電極は平面(基板の厚み方向に対して交差する方向)に形成されており、その上に光電変換機能層が形成されている。光電変換機能層で光生成・分離した電子・正孔は、それぞれ第1電極あるいは第2電極に向けて移動する。好ましくは、第1電極(画素電極)に電子が、第2電極(対向電極)に正孔が移動する。
 第2電極(対向電極)に正孔が移動する場合には、光電変換機能層から第2電極(対向電極)へと正孔を取り出す。好ましくは、正孔輸送性光電変換層あるいは正孔輸送層から正孔を取り出す。
 第1電極(画素電極)に電子が移動する場合には、光電変換機能層から第1電極(画素電極)へと電子を取り出す。好ましくは、電子輸送性光電変換層あるいは電子輸送層から電子を取り出す。
 電極の材料としては、金属、合金、金属酸化物、電気伝導性化合物、またはこれらの混合物などを用いることができる。好ましくは、アルミニウムなど光の反射率の高い材料である。これにより、電極により入射光を電極表面で反射させ、光を再び光電変換機能層に入射させることで感度を向上させることができる。
 電極の膜厚としては、材料により適宜選択可能である。電荷蓄積/転送/読み出し部位を形成するシリコンなどの半導体基板への光の漏れこみを抑制するために、電極の膜厚を厚くし、光の反射・吸収を十分に発生させることが好ましい。通常は、10[nm]以上1[μm]以下であり、好ましくは、200[nm]以上500[nm]以下である。また、第1電極(画素電極)と第2電極(対向電極)との間に光電変換機能層を挿設する場合は、電極の膜厚より光電変換機能層の膜厚の方が厚いことが好ましい。
 電極の形成には、材料によって様々な方法が用いられるが、例えば、アルミニウムを用いる場合には、スパッタリング法などによる成膜法を用いることができる。成膜したアルミニウム膜は、通常の無機半導体素子の製造に用いられるフォトリソグラフィ法およびエッチング法により所望の電極形状とすることができる。
 また、例えば、銅(Cu)あるいは銅合金を用いる場合には、絶縁膜に形成した凹部に銅(Cu)あるいは銅合金を形成したデュアルダマシン構造を採ることができる。デュアルダマシンに関する詳細は、例えば、特許第3217319号において説明されているので、ここでの詳述は省略する。
 また、第1電極(画素電極)および第2電極(対向電極)は、ともに光電変換機能層の下部に形成されるため、ITOなどの透明電極を用いる必要はない。
 第1電極(画素電極)と第2電極(対向電極)の膜厚が異なる場合は、以下のようにして各電極を作成することができる。
 例えば、第1電極(画素電極)の方が、第2電極(対向電極)より膜厚が薄い場合は、先ず、フォトレジストを所望の第1電極(画素電極)と同一のパターンに形成し、その上から銅(Cu)あるいは銅合金からなる膜を成膜する。第1電極(画素電極)が所望の膜厚になるまでCMPなどで研磨し、さらに、フォトレジストを除去することで第1電極(画素電極)が形成される。
 さらに、同様にフォトレジストを所望の第2電極(対向電極)と同一のパターンに形成し、その上から銅(Cu)あるいは銅合金からなる膜を成膜する。第2電極(対向電極)が所望の膜厚になるまでCMPなどで研磨するが、このとき、第1電極(画素電極)にダメージが加わらないように研磨するため、第2電極(対向電極)は、第1電極(画素電極)より層厚を厚くする必要がある。そして、フォトレジストを除去することで第2電極(対向電極)が形成される。
 第1電極(画素電極)と第2電極(対向電極)の膜厚差が大きいほど電極を形成しやすく、また、光電変換機能層内でも、第1電極(画素電極)から離れた上方の領域にも第2電極(対向電極)が厚い分だけ強い電界強度が加わり、光電変換特性を向上することができる。
 第1電極(画素電極)と第2電極(対向電極)の層厚差については、有機半導体材料や所望される固体撮像素子全体の厚さに合わせて適宜設定することができるが、好ましくは、50[nm]以上200[nm]以下である。
 第1電極(画素電極)と第2電極(対向電極)の間は、有機半導体からなる光電変換機能層が介挿されていてもよいし、絶縁層が介挿されていてもよい。光電変換機能層が介挿される場合には、第1電極(画素電極)と第2電極(対向電極)に挟まれた部分の光電変換機能層に最も強い電界強度が加わる(図3を参照)。このため、該当の光電変換機能層においては、高い光電変換効率が得られる。よって、電極上の光電変換機能層の膜厚が薄い場合は、第1電極(画素電極)と第2電極(対向電極)との間には、光電変換機能層を介挿させる構成とした方がよい。
 また、第1電極(画素電極)と第2電極(対向電極)との間の部位が、最も電極間距離が短く強い電界が加わるので、電極および電極間にある光電変換機能層を厚くすることが好ましい。
 一方、第1電極(画素電極)と第2電極(対向電極)との間に絶縁層が介挿される場合についての光電変換素子における電気力線の概念図を、図5に示す。第1電極(画素電極)と第2電極(対向電極)に挟まれた領域に電界が集中することがなくなり、電極上の光電変換機能層にも強い電界が加わるようになるため、電極上の光電変換機能層の膜厚を厚くすることができる。
 第1電極(画素電極)と第2電極(対向電極)との距離は、電極の材料や形成方法により適宜設定することが可能であるが、距離が短いほど一定の電圧を印加した際の電極間の電界強度が強くなる。また、撮像画素内における電極の面積率が増加し入射光の反射あるいは吸収量が大きくなるため、第1電極(画素電極)と第2電極(対向電極)の距離は、好ましくは、50[nm]以上300[nm]以下である。
 第1電極(画素電極)とは、電荷蓄積/転送/読み出し部位が形成された基板上方に作成された電極であり、光電変換機能層で光生成された信号電荷は第1電極(画素電極)を介して基板内に形成された電荷蓄積部位に移動させる。1ピクセル(1撮像画素)ごとに電荷蓄積/転送/読み出し部位の回路が基板内および表面に形成されている。第1電極(画素電極)も通常1ピクセルごとに1つ形成されるか、あるいは、1ピクセルにおける第1電極(画素電極)をいくつかの電極要素に分割しそれを1組とする場合においては、1ピクセルごとに1組の第1電極(画素電極)が形成される。
 第2電極(対向電極)とは、第1電極(画素電極)が取り込む信号電荷とは逆の極性を持つ電荷を吐き出す機能を有する。この電荷の吐き出しは、各撮像画素間で分割する必要がないため、第2電極(対向電極)は各撮像画素間で共有にすることもできる。
 第1電極(画素電極)と第2電極(対向電極)の平面形状としては、第2電極(対向電極)は第1電極(画素電極)を囲むように形成することで、光電変換機能層全体に電界を加えることができる。例えば、図6に示すように、第2電極(対向電極)を格子状に形成し、その中に四角形に形成した第1電極(画素電極)を配置するような形状が考えられる。
 なお、第1電極(画素電極)の周囲全体を第2電極(対向電極)で囲む必要は必ずしもなく、電極形成後の洗浄工程などにおける洗浄液などのはけを良くし、しみなどの画像不良を抑制するために、第1電極(画素電極)の周囲の一部のみを第2電極(対向電極)で囲んでもよい。例えば、第2電極(対向電極)は、図7あるいは図8に示すような平面形状とすることもできる。
 また、第1電極(画素電極)と第2電極(対向電極)の対向面積を増加させるように、第1電極(画素電極)と第2電極(対向電極)の平面形状を形成してもよく、このようにして対向面積を増加させることで、強い電界強度が印加される領域を増加させ、光電変換効率を増加させることができる。特に、電極の端部でより強い電界が発生するため、第1電極(画素電極)の平面形状を四角とした場合などでは、第1電極(画素電極)の中央では電界強度が弱く光電変換効率が低下してしまうので、例えば、図9に示すように、第1電極(画素電極)の平面形状を凹形にし、第1電極(画素電極)の凹部の間に第2電極(対向電極)の一部が入り込むような平面形状でもよい。この場合も、第1電極(画素電極)の周囲全体を第2電極(対向電極)で囲む必要は必ずしもなく、第1電極(画素電極)の周囲の一部のみを第2電極(対向電極)で囲んでもよい。 例えば、第2電極(対向電極)は、図10あるいは図11に示すような平面形状とすることもできる。
 さらには、第1電極(画素電極)を、複数の電極要素から構成されることとし、各電極要素の間に第2電極(対向電極)の一部が入り込む構成とすることで、第1電極(画素電極)と第2電極(対向電極)との対向面積を増加させることもできる。例えば、図12に示すように、4つの電極要素から第1電極(画素電極)を構成し、これらを囲むように第2電極(対向電極)を配置した平面形状とすることができる。この場合も、第1電極(画素電極)の周囲全体を対向電極で囲む必要は必ずしもなく、第1電極(画素電極)の周囲の一部のみを第2電極(対向電極)で囲んでもよい。例えば、第2電極(対向電極)は、図13あるいは図14のような平面形状とすることもできる。
 以上は本発明の好ましい形態を示すものであるが、もちろんこれに限定されるものではなく、上述の概念に該当すればどのような平面形状でもよい。
 有機半導体を含む材料からなる光電変換機能層に印加する電圧としては、いかなる電圧でも良く、有機半導体材料や膜厚、第1電極(画素電極)と第2電極(対向電極)の距離などにより必要な電圧は適宜変更することが可能である。
 光電変換効率は、光電変換機能層に加わる電界強度が強いほど向上するが、同じ印加電圧でも、第1電極(画素電極)と第2電極(対向電極)との距離が短いほど電界強度は強くなるため、第1電極(画素電極)と第2電極(対向電極)の距離が短ければ、印加電圧は相対的に小さくても良い。
 光電変換機能膜に加わる電界強度としては、好ましくは、10[V/m]以上であり、さらに好ましくは、1×103[V/m]以上であり、さらに好ましくは、1×105[V/m]以上であり、特に好ましくは、1×106[V/m]以上であり、最も好ましくは、1×107[V/m]以上である。特に上限はないが、電界強度を強くしすぎると有機半導体へのダメージが発生し、また、暗所でも電流が流れ好ましくないため、1×1012[V/m]以下が好ましく、さらに、1×109[V/m]以下が好ましい。
 電荷蓄積/転送/読み出し部位については、特開昭58-103165号公報、特開昭58-103166号公報、特開2003-332551号公報などを参考にすることができる。半導体基板上にMOSトランジスタが各撮像画素単位に形成された構成や、あるいは素子として、CCDを有する構成を適宜用いることができる。例えば、MOSトランジスタを用いた光電変換素子の場合には、入射光により光電変換機能層内で電荷が光生成し、電極に電圧を印加することにより光電変換機能層内に生じる電界によって電荷が電極まで移動し、さらに半導体基板内の電荷蓄積部まで移動し、電荷が蓄積される。
 電荷蓄積部に蓄積された電荷は、MOSトランジスタのスイッチングにより電荷読み出し部に転送し、さらに電気信号として読み出され外部回路に出力される。これにより画像信号が信号処理部を含む固体撮像装置に入力される。
 信号の読み出しは、通常のカラー読み出し回路を用いることができる。受光部で光電変換し発生した信号電荷あるいは信号電流・電圧は、受光部そのものもしくは付設されたキャパシタで蓄えられる。蓄えられた電荷は、X-Yアドレス方式を用いたMOS型撮像素子、いわゆるCMOSセンサの手法により、撮像画素位置の選択とともに読み出される。
 他には、アドレス選択方式として、1画素ずつ順次マルチプレクサスイッチとデジタルシフトレジスタで選択し、共通の出力信号線に信号電圧(または信号電荷)として読み出す方式が挙げられる。2次元にアレイ化されたX-Yアドレス操作の撮像素子がCMOSセンサとして知られる。これは、X、Yの交点に接続された画素に設けられたスイッチは垂直シフトレジスタに接続され、垂直走査シフトレジスタからの電圧でスイッチがオンすると同じ行に設けられた画素から読み出された信号は、列方向の出力線に読み出される。この信号は、水平走査シフトレジスタにより駆動されるスイッチを通して順番に出力される。出力信号の読み出しには、フローティングディフュージョン検出器や、フローティングゲート検出器を用いることができる。信号処理には、ADC回路によるガンマ補正や、AD変換機によるデジタル化などの信号処理を施すことができる。
 電荷転送/読み出し部位には電荷の移動度が高い半導体材料を用いる。その中でも微細化技術が進んでいることと、低コストであることからシリコン半導体が好ましい。電荷転送/読み出しの方式は数多くあるが、いずれの方式でもよく、好ましくはCMOS方式あるいはCCD方式である。さらに、CMOS方式の方が高速読み出し、画素加算、部分読み出し、低消費電力などの点で好ましいことが多い。
 光電変換機能層/第1電極(画素電極)と電荷蓄積/転送/読み出し部位を接続する複数のコンタクトホール部位は、何れの金属を用いてもよく、銅、アルミニウム、銀、金、クロム、タングステン、あるいはこれらの合金を用いることが好ましい。例えば、銅を用いて第1電極(画素電極)を形成する場合には、上層のコンタクトホールにおけるコンタクト材は銅、半導体基板と接続する下層のコンタクトホールにおけるコンタクト材はタングステンでもよい。1ピクセルごとに第1電極(画素電極)と電荷蓄積部位との間にコンタクトホールを形成する必要がある。第1電極(画素電極)が、複数の電極要素から構成される場合には、分割構成された電極要素の全てにコンタクトホールを形成する。
 保護層としては、光電変換機能層上に、乾式成膜法により真空中で成膜される無機材料からなる保護層が好ましい。保護層は、保護層形成後の工程における加熱・水・有機溶媒・プラズマなどから有機半導体を含む材料からなる光電変換機能層を保護し、また、製造後に水分やガスなどを遮断して経年劣化を抑制する役割がある。
 さらに、保護層は、光電変換機能層の上に形成されるため、入射光の損失をできるだけ抑えるために、保護層には高い透明性を有するものが好ましい。
 また、保護層を成膜する際の光電変換機能層へのダメージが少ない製造方法が好ましい。例えば、誘導結合型プラズマCVD(ICPCVD)は、常温で高密度のプラズマが生成され、通常のプラズマCVDと比べて常温で極めて良質な保護層が形成できる。常温での形成であるので光電変換機能層の劣化が抑えられ、また、基板から十分に離れた位置にプラズマが生成するのでプラズマによるダメージも抑制できる。
 また、例えば、電子サイクロトロン共鳴プラズマCVD(ECRCVD)でも、常温で高密度のプラズマが生成され、通常のプラズマCVDと比べて常温で極めて良質な保護層が形成できる。やはり、常温での形成であるので、光電変換機能層の劣化が抑えられ、また、基板から十分に離れた位置にプラズマが生成するのでプラズマによるダメージも抑制できる。これらの成膜方法により透明性の高い酸化シリコンあるいは窒化シリコンなどの無機材料を保護層として成膜する。
 保護層は、その膜厚が厚いほど保護特性が向上するが、逆に透明性は低下する。保護層の膜厚は、好ましくは100[nm]以上500[nm]以下である。
 光電変換機能層の光吸収部位が可視領域に対しブロードな吸収を有する場合、カラーフィルタを形成することが好ましい。フルカラーに対応した固体撮像素子を製造する場合は、RGBに対応したカラーフィルタを各撮像画素に配列する。
 カラーフィルタの形成方法については、カラーフィルタとなる材料を成膜する工程と所望する形状に形成する工程からなる。成膜方法としては、光電変換機能層の成膜と同様に、乾式成膜法と湿式成膜法がある。また、光電変換機能層の上に直接カラーフィルタを形成することも可能だが、カラーフィルタ形成時の溶媒などにより有機半導体を含む材料からなる光電変換機能層にダメージが加わるため、好ましくは、光電変換機能層の上に保護層を積層し、保護層の上からカラーフィルタを形成した方が良い。所望する形状に形成する工程としては、公知のフォトリソグラフィ技術によるものなどがある。これらの工程は公知の固体撮像素子におけるカラーフィルタの形成方法により調整できる。
 本発明の光電変換素子および固体撮像素子は、公知の半導体集積回路などの製造に用いられているプロセスにより製造することができる。基本的には、フォトリソグラフィおよびエッチングによるパターン形成、イオン注入による拡散層形成、スパッタやCVDによる素子形成材料の配置、非パターン部の材料の除去、熱処理などの反復操作による。さらに、光電変換機能層を形成するプロセス・操作が加わる。
 《実施の形態》
 以下では、本発明を実施するための形態について、図面を参酌しながら説明する。なお、以下の各実施の形態は、本発明の構成およびそこから奏される作用・効果を分かり易く説明するために用いる一例であって、本発明は、本質的な特徴部分以外に何ら以下の形態に限定を受けるものではない。
 [実施の形態1]
 1.固体撮像素子1の概略構成
 図1に示すように、本実施の形態に係る固体撮像素子1は、撮像画素領域1aと周辺回路領域1bとから構成されている。信号は、撮像画素領域1aから周辺回路領域1bに読み出され、出力される。図1の二点鎖線で囲んだ部分に示すように、固体撮像素子1における撮像画素領域1aでは、複数の撮像画素10が2次元配列されている。各撮像画素10には、対応付けられた色のフィルタが設けられている。
 2.固体撮像素子1における各撮像画素10の構成
 図2は、図1における撮像画素領域1aの一部(A-A')の模式断面図である。
 図2に示すように、基板100上には、絶縁層101、光電変換機能層111、保護層112、カラーフィルタ層112およびトップレンズ層114が、Z軸方向下側より順に積層されている。基板100における表層部分には、X軸方向に互いに間隔をあけた状態で、電荷蓄積部102および電荷蓄積部104が形成されている。そして、基板100上であって、電荷蓄積部102と電荷蓄積部104との間に相当する領域には、ゲート電極103が設けられている。ゲート電極103および電荷蓄積部102には、コンタクトホール106を介して、絶縁層101内に設けられた配線層105に接続されている。
 絶縁層101と光電変換機能層111との境界部分には、撮像画素10毎に対応して画素電極107が設けられている。また、隣接する撮像画素10における画素電極107間であって、撮像画素10同士の境界に相当する領域には、対向電極108が設けられている。隣接する画素電極107と対向電極108との間には、光電変換機能層111の一部が介挿されている。即ち、画素電極107と対向電極108とは、X軸方向において、光電変換機能層111の一部を挟み込んでいる。
 画素電極107および対向電極108は、それぞれコンタクトホール109,110を介して、絶縁層101内に形成された配線層105に接続されている。
 基板100としては、シリコン単結晶の半導体基板が好ましい。ゲート電極103は、信号電荷を読み出すための電圧が印加され、多結晶シリコンを用い形成されるのが好ましい。なお、図2では、基板100とゲート電極103との間の酸化膜は省略している。
 電荷蓄積部102は、光電変換機能層111で光生成した信号電荷を蓄積するための部位であり、電荷蓄積部104は、ゲート電極103への電圧の印加により、読み出された電荷を蓄積するための部位である。画素電極107から信号電荷として電子を取り出す場合には、砒素のイオン注入などにより電荷蓄積部102を形成する。また、図2では、図示を省略しているが、電荷蓄積部102以外にもウエルなどのp型あるいはn型の層が形成され、さらに読み出された信号電荷(信号電圧)を外部に出力するための回路となるトランジスタ、コンタクトや配線などが形成されている。
 配線層105およびコンタクトホール106,109は、画素電極107から電荷蓄積部102への信号電荷の移動や、信号電圧の伝達などの経路としての役割がある。電荷蓄積部102やゲート電極103に接続しているコンタクトホール106のコンタクト材としては、タングステンが好ましく、画素電極107に接続しているコンタクトホール109のコンタクト材としては、アルミニウムが好ましい。
 配線層105としては何層でもよく、回路により適宜設定できる。
 画素電極107および対向電極108にはアルミニウムを用いるのが好ましく、絶縁層101の上に膜厚400[nm]のアルミニウムをスパッタリング法などを用いて積層し、その上に所望の画素電極および対向電極の平面形状パターンにレジストを形成し、ドライエッチにより所望の画素電極107および対向電極108が形成される。以上のプロセスは従来公知のプロセス、いわゆるCMOSプロセスにより容易に調整できる。
 画素電極107および対向電極108の上に形成される光電変換機能層111は、フラッシュ蒸着により銅フタロシアニンと可視領域においてブロードな吸収を有するフラーレンの混合層で形成され、カラーフィルタR、G、Bを透過したそれぞれの光を吸収し、光電変換により電荷が生成される。光電変換機能層111の膜厚は、絶縁層101の上面から600[nm]、画素電極107の上面から200[nm]である。
 光電変換機能層111の上の保護層112は、乾式成膜法により積層形成した膜厚500[nm]の窒化シリコン膜よりなる。保護層112の上のカラーフィルタ層113は、撮像画素10毎に対応した透過波長を有するフィルタである。
 なお、光電変換機能層111は保護層112により保護されているため、カラーフィルタ層113は公知で従来の無機の固体撮像素子におけるカラーフィルタの形成プロセスにより調整できる。
 3.光電変換機能層111中における電界強度
 図3に示すように、本実施の形態に係る固体撮像素子1では、各撮像画素10毎に、X軸方向において、互いに間隔をあけて配置された画素電極107と対向電極108とを備え、互いの電極107,108間に光電変換機能層111の一部が介挿される構成を採用している。
 このため、固体撮像素子1では、画素電極107と対向電極108に挟まれた部分の光電変換機能層111に最も強い電界強度が加わる(図3における電気力線E1)。
 一方、光電変換機能層111において、画素電極107と対向電極108との間における上方領域には、弧を描くように、相対的に弱い電界強度が加わる(図3における電気力線E2)。
 このため、光電変換機能層111における画素電極107と対向電極108とにより挟みこまれた部分においては、高い光電変換効率が得られる。よって、画素電極107上の光電変換機能層111の膜厚が薄い場合は、図3に示すように、画素電極107と対向電極108との間に、光電変換機能層111の一部を介挿させる構成とすることが好ましい。
 また、画素電極107と対向電極108との間の部位が、最も電極間距離が短く強い電界が加わるので、電極107,108およびその間にある光電変換機能層111を厚くすることが好ましい。
 [実施の形態2]
 1.各撮像画素11の構成
 本実施の形態に係る固体撮像素子の各撮像画素11の構成について、図4を用い説明する。なお、図4では、上記実施の形態1に係る固体撮像素子1と同一構成の部分については、同一符号を付し、以下での説明を省略する。
 図4に示すように、本実施の形態に係る固体撮像素子の各撮像画素11では、絶縁層101上の隣接する画素電極107と対向電極108との間に、絶縁層115が挿設されている。なお、本実施の形態では、画素電極107および対向電極108の構成材料として、銅を用いることが好ましい。
 画素電極107と対向電極108の間に挿設される絶縁層115については、絶縁層101と別々に形成する必要は必ずしもなく、同一材料で形成されていてもよい。公知のデュアルダマシン構造での製造方法により、同一材料により絶縁層101および絶縁層115を形成し、所望するコンタクトホール109,110および画素電極107および対向電極108の形状に凹部を形成し、銅のスパッタリングおよび電解メッキ、CMP研磨によりコンタクトホール109,110と画素電極107および対向電極108を形成する。以上のプロセスは従来公知のプロセス、いわゆるCMOSプロセスにより容易に調整できる。
 画素電極107および対向電極108の上に形成される光電変換機能層116については、絶縁層115により、画素電極107と対向電極108との間には介挿されないこととなる。
 光電変換機能層116については、上記同様に、フラッシュ蒸着により銅フタロシアニンと可視領域においてブロードな吸収を有するフラーレンの混合層で形成され、カラーフィルタR、G、Bを透過したそれぞれの光を吸収し、光電変換により電荷が生成される。
 光電変換機能層116の膜厚は、画素電極107の上面から300[nm]である。光電変換機能層116上の保護層112は、上記同様に、乾式成膜法により膜厚500[nm]の窒化シリコン膜を積層することにより形成される。
 2.光電変換機能層116中における電界強度
 図3に示すように、本実施の形態に係る固体撮像素子1では、各撮像画素10毎に、X軸方向において、互いに間隔をあけて配置された画素電極107と対向電極108とを備え、互いの電極107,108間に絶縁層115が埋め込まれた構成を採用している。
 このため、本実施の形態に係る固体撮像素子では、画素電極107と対向電極108に挟まれた領域に電界が集中することがなくなり、画素電極107と対向電極108との間の上方の光電変換機能層116にも強い電界が加わるようになるため(図5における電気力線E11)、電極107,108上の光電変換機能層116の膜厚を厚くすることができる。なお、画素電極107と対向電極108との間の領域のさらに上方には、相対的に弱い電界が加わる(図5における電気力線E12)。
 画素電極107と対向電極108との距離については、電極の材料や形成方法により適宜設定することが可能であるが、距離が短いほど一定の電圧を印加した際の電極107,108間の電界強度が強くなる。また、撮像画素11内における電極107,108の面積率が増加し入射光の反射あるいは吸収量が大きくなるため、画素電極107と対向電極108の距離は、好ましくは、50[nm]以上300[nm]以下である。
 [変形例1]
 変形例1に係る固体撮像素子の撮像画素領域2aの構成中、画素電極207と対向電極208との形状および互いの配置について、図6を用い説明する。
 図6に示すように、変形例1に係る撮像画素領域2aでは、各々が四角形の平面形状をした画素電極207が、X軸方向およびY軸方向の双方において、互い間に間隔をあけて配されている。そして、対向電極208は、全体の平面形状が格子状をしており、画素電極207間に介挿されている。
 このように、本変形例1に係る固体撮像素子では、対向電極208が、各撮像画素における画素電極207の周囲の全てを囲むように配されている。対向電極208をこのように配置することで、画素電極207の全方位に電界を発生させることができ、感度の向上を図ることができる。
 [変形例2]
 変形例2に係る固体撮像素子の撮像画素領域3aの構成中、画素電極307と対向電極308との形状および互いの配置について、図7を用い説明する。
 図7に示すように、変形例2に係る撮像画素領域3aにおいても、各々が四角形の平面形状をした画素電極307が、X軸方向およびY軸方向の双方において、互い間に間隔をあけて配されている。変形例2では、対向電極308が、隣接する画素電極307間にX軸方向に延伸配置される幹部分と、そこからY軸方向に延伸された枝部分308aとを有し構成されている。
 このように、本変形例2に係る固体撮像素子では、対向電極308が、各撮像画素における画素電極307の周囲全体を囲むのではなく、周囲の一部を囲んでいる。対向電極308をY軸方向ではここに独立させることで、対向電極308にかける電圧を変えることができ、Y軸方向での感度や消費電力を考慮した電圧にすることができる。また、図示をしていないが、X軸とY軸は撮像画素領域3aの平面方向において、上下方向と左右方向とすることもでき、左右方向と上下方向とすることも可能である。そして、本変形例では、対向電極308が存在しない部分を千鳥位置に配置でき、撮像画素領域3aの上下方向の周辺部分においても、対向電極が不存在によるバラツキを低減することができる。
 [変形例3]
 変形例3に係る固体撮像素子の撮像画素領域4aの構成中、画素電極407と対向電極408との形状および互いの配置について、図8を用い説明する。
 図8に示すように、変形例3に係る撮像画素領域4aにおいても、各々が四角形の平面形状をした画素電極407が、X軸方向およびY軸方向の双方において、互い間に間隔をあけて配されている。変形例3では、上記変形例2と異なり、対向電極408における枝部分408aが、全ての対向電極408においてY軸方向下向きに延伸形成されている。
 本変形例3に係る固体撮像素子においても、上記変形例2に係る固体撮像素子と同様に、対向電極408が、各撮像画素における画素電極407の周囲全体を囲むのではなく、周囲の一部を囲んでいる。対向電極408をY軸方向ではここに独立させることで、対向電極にかける電圧を変えることができ、Y軸方向での感度や消費電力を考慮した最適な電圧にすることができる。また、図示をしていないが、X軸とY軸は撮像画素領域3aの平面方向において、上下方向と左右方向とすることもでき、左右方向と上下方向とすることも可能である。そして、本変形例では、画素電極407の3方向を、一体となった対向電極408で囲むことになり、一つの対向電極408が形成する電界が変形例2よりも支配的になり、対向電極408の電圧変化による効果を大きくすることができる。
 [変形例4]
 変形例4に係る固体撮像素子の撮像画素領域5aの構成中、画素電極507と対向電極508との形状および互いの配置について、図9を用い説明する。
 図9に示すように、変形例4に係る撮像画素領域5aでは、画素電極507が、平面視においてY軸方向に一部が凹状に入り込んだ部分507aを有し、全体としてコの字状あるいはC字状をしている。対向電極508は、画素電極507における入り込んだ部分507aに対応して、当該部分に入り込む枝部分508aを備える。対向電極508における他の形態は、上記変形例1と同様である。
 本変形例4に係る固体撮像素子では、上記変形例1に係る固体撮像素子と同様に、対向電極508が、各撮像画素における画素電極507の周囲全体を囲み、且つ、枝部分508aが画素電極507の凹状に入り込んだ部分507aに入り込んでいるので、画素電極507との対向領域が多くなる。このため、電界を発生させる領域が広がり、変形例1よりも感度を向上させることができる。
 [変形例5]
 変形例5に係る固体撮像素子の撮像画素領域6aの構成中、画素電極607と対向電極608との形状および互いの配置について、図10を用い説明する。
 図10に示すように、変形例5に係る撮像画素領域6aにおいても、画素電極607が、平面視においてY軸方向に一部が凹状に入り込んだ部分607aを有し、全体としてコの字状あるいはC字状をしている。対向電極608は、画素電極607における入り込んだ部分607aに対応して、当該部分に入り込む枝部分608aを備え、また、隣接する画素電極607間に入り込む枝部分608bを備える。対向電極608における枝部分608a、608bは、Y軸方向において、互いに逆向きに延伸形成されている。
 本変形例5に係る固体撮像素子では、上記変形例2,3などと同様に、対向電極608が、画素電極607の周囲全体を囲むのではなく、その一部を囲んでいる。また、画素電極607における凹状に入り込んだ部分607aに、対向電極608の枝部分608aが入り込むことで、互いの対向領域が多くなる。このため、電界を発生させる領域が広がり、変形例2,3よりも感度を向上させることができる。そして、一つの画素電極607に対して、枝部分608aと枝部分608bとは異なる対向電極608に接続されているので、異なる電圧を印加することができ、感度を調節することができる。
 [変形例6]
 変形例6に係る固体撮像素子の撮像画素領域7aの構成中、画素電極707と対向電極708との形状および互いの配置について、図11を用い説明する。
 図11に示すように、変形例6に係る撮像画素領域7aにおいても、画素電極707が、平面視においてY軸方向に一部が凹状に入り込んだ部分707aを有し、全体としてコの字状あるいはC字状をしている。対向電極708は、上記変形例5と同様に、画素電極707における入り込んだ部分707aに対応して、当該部分に入り込む枝部分708aを備え、また、隣接する画素電極707間に入り込む枝部分708bを備える。本変形例6に係る対向電極708では、上記変形例5と相違するのは、対向電極708における枝部分708a、708bが、Y軸方向において、同一方向に向けて延伸形成されている点にある。
 本変形例6に係る固体撮像素子においても、上記変形例5と同様に、対向電極708が、画素電極707の周囲全体を囲むのではなく、その一部を囲んでいる。また、画素電極707における凹状に入り込んだ部分707aに、対向電極708の枝部分708aが入り込むことで、互いの対向領域が多くなる。このため、電界を発生させる領域が広がり、変形例2,3よりも感度を向上させることができる。そして、一つの画素電極707に対して、枝部分708aと枝部分708bとは同じ対向電極708に接続されているので、一つの対向電極708が形成する電界が変形例5よりも支配的になり、対向電極708の電圧変化による効果を大きくすることができる。
 [変形例7]
 変形例7に係る固体撮像素子の撮像画素領域8aの構成中、画素電極807と対向電極808との形状および互いの配置について、図12を用い説明する。
 図12に示すように、変形例7に係る撮像画素領域8aでは、隣接形成された4つの電極要素8071,8072,8073,8074の組み合わせを以って、1つの撮像画素に対応する画素電極807が構成されている。各電極要素8071,8072,8073,8074は、撮像画素毎に、絶縁層101内で接続されている。
 対向電極808は、平面視において、格子状をしており、各画素電極807間、および各画素電極807における電極要素8071,8072,8073,8074間に設けられている。
 本変形例7に係る固体撮像素子では、画素電極807が分割された4つの電極要素8071,8072,8073,8074を以って構成され、各電極要素8071,8072,8073,8074間にも対向電極808が介挿されているので、互いの対向領域をさらに多くすることができる。このため、電界を発生させる領域が広がり、さらに感度を向上させることができる。
 [変形例8]
 変形例8に係る固体撮像素子の撮像画素領域9aの構成中、画素電極907と対向電極908との形状および互いの配置について、図13を用い説明する。
 図13に示すように、変形例8に係る撮像画素領域9aにおいても、隣接形成された4つの電極要素9071,9072,9073,9074の組み合わせを以って、1つの撮像画素に対応する画素電極907が構成されている。本変形例8においても、各電極要素9071,9072,9073,9074は、撮像画素毎に、絶縁層101内で接続されている。
 本変形例8が上記変形例7と相違する点は、対向電極908が画素電極907の周囲全体を囲むのではなく、その一部を囲んでいる点にある。なお、対向電極908は、枝部分908aが電極要素9071,9072,9073,9074間に介挿され、枝部分908bが隣接する画素電極907間に介挿されている。そして、対向電極908においては、枝部分908aと枝部分908bとが、Y軸方向において逆向きに延伸形成されている。このため、電界を発生させる領域が広がり、さらに感度を向上させることができる。そして、一つの電極要素に対して、枝部分908aと枝部分908bとは異なる対向電極908に接続されているので、異なる電圧を印加することができ、感度を調節することができる。
 [変形例9]
 変形例9に係る固体撮像素子の撮像画素領域12aの構成中、画素電極1207と対向電極1208との形状および互いの配置について、図14を用い説明する。
 図14に示すように、変形例9に係る撮像画素領域12aにおいても、隣接形成された4つの電極要素12071,12072,12073,12074の組み合わせを以って、1つの撮像画素に対応する画素電極1207が構成されている。本変形例9においても、各電極要素12071,12072,12073,12074は、撮像画素毎に、絶縁層101内で接続されている。
 本変形例9に係る固体撮像素子においても、対向電極1208が枝部分1208a,1208bを備えるが、その延伸方向が、互いに同一である点で上記変形例8と相違する。そして、一つの電極要素に対して、枝部分1208aと枝部分1208bとは同じ対向電極1208に接続されているので、一つの電極要素が形成する電界が変形例8よりも支配的になり、対向電極1208の電圧変化による効果を大きくすることができる。
 [実施の形態3]
 1.各撮像画素13の構成
 本実施の形態に係る固体撮像素子の各撮像画素13の構成について、図15を用い説明する。なお、図15では、固体撮像素子の要部となる部分を抜き出して描いている。
 図15に示すように、本実施の形態に係る固体撮像素子では、画素電極107に比べ対向電極138のZ軸方向における膜厚が厚くなっており、画素電極107と対向電極138との間には、上記実施の形態1に係る固体撮像素子1と同様に、有機半導体材料を含む材料からなる光電変換機能層で131の一部が介挿されている。
 2.光電変換機能層131中における電界強度
 本実施の形態に係る固体撮像素子の光電変換機能層131中における電界強度分布について、図16を用い説明する。
 図16に示すように、本実施の形態に係る固体撮像素子では、画素電極107に対する対向電極138の膜厚が相対的に厚くなっており、これにより、光電変換機能層131内の電極107,138間の部分には、相対的に強い電界が加わるとともに(図16における電気力線E21)、光電変換機能層131における比較的Z軸方向上方まで電界が加わるので(図16における電気力線E22)、光電変換特性を向上させることができる。
 3.製造方法
 本実施の形態に係る固体撮像素子の製造過程中、特徴となる部分について、図17および図18を用い説明する。なお、図17および図18では、図面の簡略化のため、基板100内および表面にある電荷蓄積部位やゲート電極、画素電極と接続しているコンタクトホール109以外の配線・コンタクトホールなどの図示を省略している。そして、絶縁層101およびコンタクトホール・配線層を形成するまでの製造方法は、上記実施の形態2での説明と同一である。
 図17(a)に示すように、絶縁層101に対し、画素電極107と接続するコンタクトホールを形成しようとする箇所に、コンタクト孔101aを形成する。
 図17(b)に示すように、コンタクト孔101aを形成した後、絶縁層101上に、画素電極107を形成しない予定の領域に対して、レジスト膜500を堆積形成する。続いて、コンタクト材および画素電極107の構成材料となる銅を積層し、金属膜1070を形成する。なお、図15などでは、便宜上、画素電極107とその下部のコンタクトホール109のコンタクト材とを別のハッチング種としているが、前述のように、画素電極107の構成材料とコンタクト材とは、同一とする。
 また、画素電極107の膜厚を300[nm]とする場合には、金属膜1070の膜厚は、好ましくは300[nm]以上350[nm]以下である。
 次に、CMP研磨により、所望する画素電極の膜厚となるように金属膜10702およびレジスト膜500の上部分を研磨・除去する。そして、残ったレジスト膜500を除去することにより、図17(c)に示すように、画素電極107およびコンタクトホール109が形成される。なお、画素電極107の膜厚は、絶縁層101の上面から300[nm]となり、所望する画素電極107の膜厚と同じになる。
 絶縁層101および画素電極107の上に、対向電極138を形成しない予定の領域に合わせてパターン形成されたレジスト膜501を配置する。続いて、対向電極138となる金属膜1380を積層する(図18(a)を参照)。ここで、金属膜1380も銅から形成され、その膜厚は、所望する対向電極138の膜厚以上となる。対向電極138の膜厚を500[nm]と設定する場合には、金属膜1380の膜厚は、好ましくは500[nm]以上600[nm]以下である。
 CMP研磨により、所望する対向電極の膜厚となるように金属膜1380およびレジスト膜501の上部分を研磨・除去する。残ったレジスト膜501を除去することにより、図18(b)に示すように、対向電極138が形成される。
 なお、対向電極138の膜厚は、図18(b)に段階で、絶縁層101の上面から500[nm]となり、所望する対向電極138の膜厚と同じになる。以上のプロセスは従来公知のプロセス、いわゆるCMOSプロセスにおける技術により調整できる。
 この後、図示を省略しているが、有機半導体材料を用い光電変換機能層を131を形成する。光電変換機能層131の形成は、フラッシュ蒸着により銅フタロシアニンと可視領域においてブロードな吸収を有するフラーレンの混合層として積層することによりなされる。
 光電変換機能層131の膜厚としては、対向電極138より厚いことが好ましく、700[nm]とする。以上のような製造方法により、実施の形態3に係る固体撮像素子が製造される。
 [実施の形態4]
 実施の形態4に係る固体撮像素子の構成について、図19を用い説明する。図19は、実施の形態4に係る固体撮像素子の要部を抜き出して示している。
 図19に示すように、本実施の形態に係る固体撮像素子では、各撮像画素14において、画素電極107と対向電極148とが、Z軸方向に対して交差する方向に対向した状態で配されている。本実施の形態に係る固体撮像素子では、画素電極107が上記実施の形態1などと同様に、絶縁層101の面上に形成されているのに対して、対向電極148については、絶縁層101の面との間に絶縁層あるいは光電変換機能層141が介挿されている。
 このように、対向電極148の位置を、Z軸方向上方にずらして配置することにより、光電変換機能層141のZ軸方向上方部分で多く光生成される電荷を効果的に画素電極107へと読み込むことが可能となり、感度特性をさらに高くすることが可能となる。
 本発明は、高い感度を有する固体撮像素子を備えるディジタルスチルカメラやディジタルムービカメラを低コストに実現するのに有用である。
   1.固体撮像素子
  1a,2a,3a,4a,5a,6a,7a,8a,9a,12a.撮像画素領域
  1b.周辺回路領域
  10,11,13,14.撮像画素
 100.基板
 101.絶縁層
 102.電荷蓄積部
 103.ゲート電極
 104.電荷蓄積部
 105.配線層
 106,109,110.コンタクトホール
 107,207,307,407,507,607,707,807,907,1207.画素電極
 108,138,148,208,308,408,508,608,708,808,908,1208.対向電極
 111,116,131,141.光電変換機能層
 112.保護層
 113.カラーフィルタ層
 114.トップレンズ層
 115.絶縁層
 500,501.レジスト膜
1070,1380.金属膜
8071,8072,8073,8074,9071,9072,9073,9074,12071,12072,12073,12074.画素電極要素
  E1,E2,E11,E12,E21,E22.電気力線

Claims (20)

  1.  基板と、当該基板の上方に形成され、有機半導体材料を含み構成された光電変換機能層と、ともに前記光電変換機能層の界面に対して接する状態で設けられた第1電極および第2電極とを備える光電変換素子であって、
     前記第1電極は、前記光電変換機能層における前記基板側の界面に対して接しており、
     前記第1電極と前記第2電極とは、前記基板の厚み方向に対して交差する方向において、互いに対向している
     ことを特徴とする光電変換素子。
  2.  前記光電変換機能層は、前記第1電極の上面および側面を覆う状態で形成されており、
     前記第2電極は、前記基板の厚み方向に対して交差する方向において、前記第1電極の周囲の少なくとも一部を囲む状態で配されている
     ことを特徴とする請求項1に記載の光電変換素子。
  3.  前記第1電極は、前記基板の主面に沿った方向において、互いに間隔をあけて配された複数の電極要素から構成されており、
     前記第2電極は、前記基板の厚み方向に対して交差する方向において、前記複数の電極要素の少なくとも一部の周囲を囲む状態で配されている
     ことを特徴とする請求項1に記載の光電変換素子。
  4.  前記基板の厚み方向において、前記第1電極の上方は、前記第2電極で覆われていない
     ことを特徴とする請求項2に記載の光電変換素子。
  5.  前記光電変換機能層は、光電変換層を含むとともに、電子輸送層および正孔輸送層の少なくとも一方を含む積層構造を以って構成されている
     ことを特徴とする請求項1に記載の光電変換素子。
  6.  前記第1電極および前記第2電極の少なくとも一方の電極は、その表面が光反射面となっている
     ことを特徴とする請求項1に記載の光電変換素子。
  7.  前記基板の厚み方向において、前記光電変換機能層の上には、当該光電変換機能層を保護するための保護層が積層形成されている
     ことを特徴とする請求項1に記載の光電変換素子。
  8.  前記基板の厚み方向において、前記光電変換機能層の上方には、有機材料から構成されたカラーフィルタ層が積層形成されている
     ことを特徴とする請求項1に記載の光電変換素子。
  9.  前記基板の厚み方向において、前記第2電極の層厚は、前記第1電極の層厚よりも厚い
     ことを特徴とする請求項1に記載の光電変換素子。
  10.  2次元配列された複数の撮像画素部を有する固体撮像素子であって、
     前記複数の撮像画素部の各々は、請求項1から請求項9の何れかの光電変換素子の構成を含み形成されている
     ことを特徴とする固体撮像素子。
  11.  基板の上方において、当該基板の厚み方向に対して交差する方向に、互いに対向する状態で第1電極と第2電極とを形成する工程と、
     有機半導体材料を含む材料を用い、前記第1電極と前記第2電極との双方に対して接する状態で、光電変換機能層を形成する工程と、
     を備える
     ことを特徴とする光電変換素子の製造方法。
  12.  前記第1電極と第2電極とを形成する工程では、前記基板の厚み方向に対して交差する方向において、前記第2電極を、前記第1電極の周囲の少なくとも一部を囲む状態で形成し、
     前記光電変換機能層を形成する工程では、前記第1電極の上面および側面を覆う状態で、前記光電変換機能層を形成する
     ことを特徴とする請求項11に記載の光電変換素子の製造方法。
  13.  前記第1電極と第2電極とを形成する工程では、
     前記基板の主面に沿った方向において、互いに間隔をあけた状態の形成した複数の電極要素を以って前記第1電極を形成し、
     前記第1電極における前記複数の電極要素の少なくとも一部の周囲を囲む状態で、前記第2電極を形成する
     ことを特徴とする請求項11に記載の光電変換素子の製造方法。
  14.  前記第1電極と第2電極とを形成する工程では、前記基板の厚み方向において、前記第1電極の上方を覆わないように前記第2電極を形成する
     ことを特徴とする請求項12に記載の光電変換素子の製造方法。
  15.  前記光電変換機能層を形成する工程では、光電変換層を含むとともに、電子輸送層および正孔輸送層の少なくとも一方を含む積層構造を以って前記光電変換機能層を形成する
     ことを特徴とする請求項11から請求項14の何れかに記載の光電変換素子の製造方法。
  16.  前記第1電極と第2電極とを形成する工程では、前記第1電極および前記第2電極の少なくとも一方を、その表面が光反射面となるように形成する
     ことを特徴とする請求項11に記載の光電変換素子の製造方法。
  17.  前記基板の厚み方向における前記光電変換機能層の上に、当該光電変換機能層を保護するための保護層を積層形成する工程を備える
     ことを特徴とする請求項11に記載の光電変換素子の製造方法。
  18.  有機材料を用い、前記基板の厚み方向における前記光電変換機能層の上方に、カラーフィルタ層を積層形成する工程を備える
     ことを特徴とする請求項11に記載の光電変換素子の製造方法。
  19.  前記第1電極と第2電極とを形成する工程では、前記第2電極を、前記基板の厚み方向におけるその層厚が、前記第1電極よりも厚くなるように形成する
     ことを特徴とする請求項11に記載の光電変換素子の製造方法。
  20.  2次元配列された複数の撮像画素部を有する固体撮像素子の製造方法であって、
     前記複数の撮像画素部の各々を、請求項11から請求項19の何れかの光電変換素子の製造方法を以って形成する
     ことを特徴とする固体撮像素子の製造方法。
PCT/JP2010/006260 2010-05-28 2010-10-22 光電変換素子とその製造方法、および固体撮像素子とその製造方法 WO2011148436A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-122237 2010-05-28
JP2010122237A JP2011249623A (ja) 2010-05-28 2010-05-28 光電変換素子とその製造方法、および固体撮像素子とその製造方法

Publications (1)

Publication Number Publication Date
WO2011148436A1 true WO2011148436A1 (ja) 2011-12-01

Family

ID=45003446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006260 WO2011148436A1 (ja) 2010-05-28 2010-10-22 光電変換素子とその製造方法、および固体撮像素子とその製造方法

Country Status (2)

Country Link
JP (1) JP2011249623A (ja)
WO (1) WO2011148436A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10269849B2 (en) 2014-09-26 2019-04-23 Canon Kabushiki Kaisha Imaging device including photoelectric conversion film for continuously covering electrodes having a distance between a counter electrode and a pixel electrode or an intermediate electrode is smaller than a distance between the counter electrode and an insulating member
US10531020B2 (en) 2015-11-18 2020-01-07 Sony Semiconductor Solutions Corporation Solid-state image pickup device, manufacturing method therefor, and electronic apparatus
CN114530468A (zh) * 2021-11-19 2022-05-24 中芯热成科技(北京)有限责任公司 红外焦平面探测器及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232589B2 (ja) * 2013-06-24 2017-11-22 パナソニックIpマネジメント株式会社 固体撮像装置およびその製造方法
KR102095494B1 (ko) 2013-07-01 2020-03-31 삼성전자주식회사 씨모스 이미지 센서
KR102136852B1 (ko) 2013-12-30 2020-07-22 삼성전자 주식회사 Tfa 기반의 시모스 이미지 센서 및 그 동작방법
JP6754156B2 (ja) * 2015-06-15 2020-09-09 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および固体撮像素子の製造方法、光電変換素子、撮像装置、電子機器、並びに光電変換素子。
KR102560623B1 (ko) * 2018-06-05 2023-07-26 삼성전자주식회사 이미지 센서 및 그 제조 방법
JP7362385B2 (ja) * 2019-09-19 2023-10-17 株式会社ジャパンディスプレイ 検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111021A (ja) * 1999-08-02 2001-04-20 Casio Comput Co Ltd 光電変換素子、フォトセンサアレイおよび2次元画像の読取装置
JP2006066535A (ja) * 2004-08-25 2006-03-09 Fuji Photo Film Co Ltd 光電変換素子及び撮像素子
JP2006302925A (ja) * 2005-04-15 2006-11-02 Sony Corp 半導体装置、光学装置及びセンサ装置
JP2010098249A (ja) * 2008-10-20 2010-04-30 Fujifilm Corp 光電変換素子,光電変換素子の製造方法及び撮像素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111021A (ja) * 1999-08-02 2001-04-20 Casio Comput Co Ltd 光電変換素子、フォトセンサアレイおよび2次元画像の読取装置
JP2006066535A (ja) * 2004-08-25 2006-03-09 Fuji Photo Film Co Ltd 光電変換素子及び撮像素子
JP2006302925A (ja) * 2005-04-15 2006-11-02 Sony Corp 半導体装置、光学装置及びセンサ装置
JP2010098249A (ja) * 2008-10-20 2010-04-30 Fujifilm Corp 光電変換素子,光電変換素子の製造方法及び撮像素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10269849B2 (en) 2014-09-26 2019-04-23 Canon Kabushiki Kaisha Imaging device including photoelectric conversion film for continuously covering electrodes having a distance between a counter electrode and a pixel electrode or an intermediate electrode is smaller than a distance between the counter electrode and an insulating member
US10531020B2 (en) 2015-11-18 2020-01-07 Sony Semiconductor Solutions Corporation Solid-state image pickup device, manufacturing method therefor, and electronic apparatus
CN114530468A (zh) * 2021-11-19 2022-05-24 中芯热成科技(北京)有限责任公司 红外焦平面探测器及其制备方法
CN114530468B (zh) * 2021-11-19 2023-11-14 中芯热成科技(北京)有限责任公司 红外焦平面探测器及其制备方法

Also Published As

Publication number Publication date
JP2011249623A (ja) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2011148436A1 (ja) 光電変換素子とその製造方法、および固体撮像素子とその製造方法
US10608051B2 (en) Solid-state image pickup device and manufacturing method thereof, and electronic apparatus
US11658196B2 (en) Semiconductor image sensor
US9614010B2 (en) Solid-state image sensing device having an organic photoelectric conversion section fills a depression section and solid-state image pickup unit including same
CN110246861B (zh) 固态图像拾取元件、其制造方法和电子设备
JP4741015B2 (ja) 撮像素子
JP6233717B2 (ja) 固体撮像装置およびその製造方法
US11011583B2 (en) Image sensors and electronic devices
KR101489038B1 (ko) 개선된 반사성의 이미지 센서용 광학 그리드를 위한 방법 및 장치
JP5032954B2 (ja) カラー撮像装置
US20130342722A1 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
WO2011141974A1 (ja) 固体撮像素子及びその製造方法
US11322536B2 (en) Image sensor and method of fabricating the same
CN108242510B (zh) 电子器件及其制造方法
Fontaine Recent innovations in CMOS image sensors
WO2017061176A1 (ja) 固体撮像素子および固体撮像素子の製造方法
JP5102692B2 (ja) カラー撮像装置
US20230402483A1 (en) Reduced cross-talk in color and infrared image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852107

Country of ref document: EP

Kind code of ref document: A1