WO2011147271A1 - 一种超细钢渣微粉的制备工艺 - Google Patents

一种超细钢渣微粉的制备工艺 Download PDF

Info

Publication number
WO2011147271A1
WO2011147271A1 PCT/CN2011/074225 CN2011074225W WO2011147271A1 WO 2011147271 A1 WO2011147271 A1 WO 2011147271A1 CN 2011074225 W CN2011074225 W CN 2011074225W WO 2011147271 A1 WO2011147271 A1 WO 2011147271A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel slag
grinding
powder
metal iron
less
Prior art date
Application number
PCT/CN2011/074225
Other languages
English (en)
French (fr)
Inventor
曹栋樑
陆文雄
樊钧
施钟毅
郁士忠
Original Assignee
上海海笠工贸有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海笠工贸有限公司 filed Critical 上海海笠工贸有限公司
Publication of WO2011147271A1 publication Critical patent/WO2011147271A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a preparation technology and a production process of a superfine steel slag micropowder, and belongs to the technical field of comprehensive utilization of industrial solid waste and building materials. Background technique
  • the object of the present invention is to provide a preparation technology and a production process of ultrafine steel slag micropowder having a particle diameter of less than 30 ⁇ ⁇ (by mass) > 90%, which is characterized in that the following preparation equipment and closed loop grinding are used.
  • Iron process design :
  • the converter or electric furnace steel slag particle raw material with a small amount of metal iron and meeting the requirements of YB/T022 standard and less than or equal to 20mm is uniformly sent from the storage tank to the pre-grinding system through the speed regulating belt scale.
  • the magnetic separator set on the speed regulating belt scale first recovers a small amount of coarse-grained metal iron mixed in the raw material, and then sends the steel slag particle raw material into the column mill for pre-grinding, and the column mill grinds and smashes the steel slag and wraps the metal wrapped in the steel slag.
  • the iron is separated in the grinding process, and the slag and iron mixture flowing out enters the V-type classifier for classification treatment; most of the steel slag fine powder (metal iron content less than 1%) less than or equal to 2 mm enters the micro-powder collector and is sent After the final grinding of the raw material storage, the steel slag coarse powder larger than 2mm is returned (the metal iron content is more than 1%) and the steel slag particle raw material on the speed regulating belt scale is sent back to the column mill to grind and separate the slag again. Iron, each cycle of the metal iron that has been separated in the steel slag coarse powder on the return path Machine enrichment and recycling.
  • the steel slag fine powder of less than or equal to 2mm is produced by the final powder grinding material library into the high-fine grinding to produce a large number of ultrafine
  • the steel slag micropowder separates the metal iron remaining in the fine powder of the steel slag, and the mixture of the ultrafine steel slag micropowder and the metal iron flowing out is sent to a K-type classifier for classification treatment; most of them are less than or equal to 30 ⁇ m.
  • the fine steel slag micropowder is collected into the finished product warehouse, (the metal iron content is less than 0.5%).
  • the micropowder containing more than 30 ⁇ m containing trace metal iron powder is returned to the final grinding material pool through the air chute and is metered together with the steel slag fine powder.
  • the high-fine grinding powder is re-supplied to produce the ultrafine steel slag micropowder and the trace metal iron therein is separated.
  • the metal iron which has been separated in the micro-powder in the return path is enriched and recovered by the settling chamber and the magnetic separator.
  • the pre-grinding and final grinding system of the present invention can efficiently remove the metallic iron in the steel slag, so that the metal iron content in the final product is less than 0.5%; the specific surface area of the ultrafine steel slag micropowder is greater than 600 mVkg; ⁇ ⁇ ultra-fine steel slag micropowder is greater than 90% (by mass); comprehensive ton of electricity consumption is less than 70kwh; its technical and economic indicators are better than the current domestic and international steel slag micro-powder industry achieved.
  • FIG. 1 is a process flow diagram of a pre-grinding closed circuit circulation system in the present invention.
  • FIG. 2 is a process flow diagram of a final powder grinding closed loop system in the present invention. detailed description
  • the steel magnetic slag tailings pellets ( ⁇ 20mm ) supplied by a certain steel company in Shanghai are subjected to the drying magnetic separation process, they are electronically weighed into the pre-pulverized closed loop system, and the column mill is used for grinding and feeding (20-25 per hour). t, the grinding material fineness control ⁇ 35. 0% ( 2.
  • V-type classifier cycle load 120%)
  • High-fine grinding feed 36 tons per hour, fineness control of grinding material (28-29) % (45 ⁇ m sieve residue),
  • K type powder separator rotation speed N 270/min, selected ultra-fine steel slag powder Specific surface
  • the product of 620m 2 /kg, ultrafine steel slag powder with particle size less than 30 ⁇ accounts for 90.5% of the total mass and the metal iron content is 0.45°/. .
  • Steel slag powder with a particle size larger than 30 ⁇ m is returned to the high-fine grinding cycle.
  • the ⁇ 25 leg steel slag tailings pellets supplied by a steel mill in Nanjing will be fed into the column mill by electronic weighing after drying and magnetic separation process. Feeding per hour (25-28) t, fineness control of the milled material ⁇ 30.0% (2.5mm sieve residue), the material flows into the classification process consisting of V-type separator and micro-powder collector (V-type separator is 125% cyclic load). After classification, the coarse material is magnetically removed and returned to the column.
  • V-type separator is 125% cyclic load
  • the steel slag powder having a particle diameter larger than 30 ⁇ m is returned to the high-fine grinding cycle grinding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Description

一种超细钢渣微粉的制备工艺
技术领域
本发明涉及一种超细钢渣微粉的制备技术及生产工艺, 属于工业固体废弃 物综合利用及建筑材料技术领域。 背景技术
随着我国钢铁产量的逐年增加, 排出的钢渣也随之增加。 将钢渣微粉化是 综合利用钢渣和提升钢渣技术附加值的关键途径。 然而, 由于钢渣中渣和铁夹 杂在一起, 结构致密, 硬度高, 不易破碎和粉磨。 长期以来用传统的粉磨设备 加工钢渣一直比较困难, 目前在钢渣微粉的应用技术领域中钢渣微粉的比表面 积<
Figure imgf000003_0001
, 而且 < 4 0 μ ηι粒径的钢渣微粉仅占 65%以下, 钢渣微粉中的含铁 量< 1°/。, 金属铁除净率不高。 发明内容
本发明的目的在于提供一种粒径小于 30 μ ηι (按质量计) > 9 0%的超细钢渣 微粉的制备技术及其生产工艺, 其特征在于选用以下的制备设备和闭路循环磨 细除铁的工艺设计:
a、 选用柱磨机为主体设备的预粉磨闭路循环工艺:
首先将夹杂有少量金属铁的、 符合 YB/T022标准规定要求的、 小于或等于 20mm 的转炉或电炉钢渣颗粒原料从储存库经调速皮带秤均匀地送往预粉磨系 统。 调速皮带秤上设置的磁选机先回收原料中夹杂的少量粗颗粒金属铁再将钢 渣颗粒原料送入柱磨机进行预粉磨, 柱磨机碾研粉碎钢渣并使钢渣中包裹的金 属铁在碾研中得到分离, 流出的渣、 铁混合物进入 V型选粉机进行分级处理; 大部分小于或等于 2mm的钢渣细粉料(金属铁含量小于 1 % )进入微粉收集器并 被送往终粉磨原料储存库,大于 2mm的钢渣粗粉料被返还(金属铁含量大于 1 % ) 和调速皮带秤上的钢渣颗粒原料一起重新送入柱磨机再次碾研粉碎和分离渣 、 铁, 每一次循环在返回路径上钢渣粗粉料中已经分离的金属铁都被设置的磁 选机富集和回收。
b、 选用高细磨和 K式选粉机为主体设备的终粉磨闭路循环工艺: 小于或等于 2mm的钢渣细粉料由终粉磨原料库通过电子计量称进入高细磨 生产大量超细钢渣微粉并分离残存在钢渣细粉料中的金属铁, 流出的这些超细 钢渣微粉、 金属铁的混合料被送入 K式选粉机进行分级处理; 大部分小于或等 于 30 μ m的超细钢渣微粉得到收集进入成品库, (金属铁含量小于 0. 5% )大于 30 μ m含有微量金属铁粉的微粉料通过风送斜槽返回终粉磨原料库并和钢渣细 粉料一起计量重新送入高细磨再次生产超细钢渣微粉并分离其中的微量金属 铁, 每一次循环在返回路径上微粉料中已经分离的金属铁都被设置的沉降室和 磁选机富集和回收。
本发明的特点及优点如下:
采用本发明的预粉磨和终粉磨系统可高效去除钢渣中的金属铁, 使最终产 物中的金属铁含量小于 0. 5%; 超细钢渣微粉的比表面积大于 600 mVkg; 粒径 小于 30 μ ηι的超细钢渣微粉大于 90% (按质量计) ; 综合吨电耗小于 70kwh; 其技术经济指标优于目前国内外钢渣微粉产业所达到的指标。 附图说明
图 1为本发明中的预粉磨闭路循环系统工艺流程图。
图 2为本发明中的终粉磨闭路循环系统工艺流程图。 具体实施方式
现将本发明的具体实施例叙述于后。
实施例 1
上海某钢铁有限公司提供的钢渣尾矿颗粒 ( < 20mm ) 经烘干磁选工序后, 经电子称量进入预粉磨闭路循环系统, 选用柱磨机碾研, 每小时进料 ( 20-25 ) t , 出磨物料细度控制 < 35. 0% ( 2. 5mm筛筛余) , 物料流入 V型选粉机和微粉 收集器组成的分级工序(V型选粉机循环负荷 =120% ) , 分级后粗料经磁选除铁 返回柱磨机进行循环碾研, 细料( 2. 5mm筛筛余 =1. 3% , 金属铁 =0. 95% )进入终 粉磨闭路循环系统; 高细磨每小时进料 36 吨, 出磨物料细度控制 ( 28-29 ) % ( 45 μ m筛筛余) , K式选粉机转速 N=270/分钟, 选出的超细钢渣微粉比表面 积 620m2/kg, 粒径小于 30μηι 的超细钢渣微粉占总质量 90.5%, 金属铁含量 0.45°/。。 粒径大于 30 μ m的钢渣粉返回高细磨循环研磨。
实施例 2
将南京某钢厂提供的 < 25腿钢渣尾矿颗粒, 经烘干、 磁选工序后经电子称 量送入柱磨机, 每小时进料( 25-28 ) t, 出磨物料细度控制 < 30.0% ( 2.5mm筛 筛余) , 物料流入 V型选粉机和微粉收集器组成的分级工序 (V型选粉机循环 负荷 125% ) , 分级后粗料经磁选除铁后返回柱磨机进行循环碾研, 细料( 2.5mm 筛筛余 =1.5%, 金属铁含量 =0.75%) 进入终粉磨闭路循环系统; 高细磨每小时 进料 40 吨, 出磨物料细度控制 ( 26-27 ) % ( 45 μ歸歸余) , K 式选粉机转速 Ν=270/分钟, 选出的超细钢渣微粉比表面积 635m2/kg, 粒径小于 30μηι的超细 钢渣微粉占总质量 91%, 金属铁含量 0.35°/。。 粒径大于 30μηι的钢渣粉返回高 细磨循环研磨。
所述内容仅为本发明构思下的基本说明, 而根据本发明的技术方案所作的 任何等效变换, 均应属于本发明的保护范围。

Claims

权 利 要 求 书
1、 一种超细钢渣微粉的制备技术及其生产工艺, 其特征在于选用以下的 制备设备和闭路循环磨细除铁的工艺设计:
a、 选用柱磨机为主体设备的预粉磨闭路循环工艺:
首先将夹杂有少量金属铁的、 符合 YB/T 022标准规定要求的、 小于或等于 20mm 的转炉或电炉钢渣颗粒原料从储存库经调速皮带秤均匀地送往预粉磨系 统;
调速皮带秤上设置的磁选机先回收原料中夹杂的少量粗颗粒金属铁再将 钢渣颗粒原料送入柱磨机进行预粉磨, 柱磨机碾研粉碎钢渣并使钢渣中包裹的 金属铁在碾研中得到分离,流出的渣、 铁混合物进入 V型选粉机进行分级处理; 大部分小于或等于 2mm的钢渣细粉料(金属铁含量小于 1 % )进入微粉收集 器并被送往终粉磨原料储存库, 大于 2腿的钢渣粗粉料被返还 (金属铁含量大 于 1% )和调速皮带秤上的钢渣颗粒原料一起重新送入柱磨机再次碾研粉碎和分 离渣、 铁, 每一次循环在返回路径上钢渣粗粉料中已经分离的金属铁都被设置 的磁选机富集和回收;
b、 选用高细磨和 K式选粉机为主体设备的终粉磨闭路循环工艺: 小于或等于 2 mm的钢渣细粉料由终粉磨原料库通过电子计量称进入高细磨 生产大量超细钢渣微粉并分离残存在钢渣细粉料中的金属铁, 流出的这些超细 钢渣微粉、 金属铁的混合料被送入 K式选粉机进行分级处理;
大部分小于或等于 30 μ ηι的超细钢渣微粉得到收集进入成品库, (金属铁 含量小于 0. 5% )大于 30 μ ηι含有微量金属铁粉的微粉料通过风送斜槽返回终粉 磨原料库并和钢渣细粉料一起计量重新送入高细磨再次生产超细钢渣微粉并 分离其中的微量金属铁, 每一次循环在返回路径上微粉料中已经分离的金属铁 都被设置的沉降室和磁选机富集和回收。
PCT/CN2011/074225 2010-05-26 2011-05-18 一种超细钢渣微粉的制备工艺 WO2011147271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101856872A CN101880736B (zh) 2010-05-26 2010-05-26 超细钢渣微粉的制备技术及生产工艺
CN201010185687.2 2010-05-26

Publications (1)

Publication Number Publication Date
WO2011147271A1 true WO2011147271A1 (zh) 2011-12-01

Family

ID=43052876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074225 WO2011147271A1 (zh) 2010-05-26 2011-05-18 一种超细钢渣微粉的制备工艺

Country Status (2)

Country Link
CN (1) CN101880736B (zh)
WO (1) WO2011147271A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880736B (zh) * 2010-05-26 2012-06-27 上海海笠工贸有限公司 超细钢渣微粉的制备技术及生产工艺
CN108033695B (zh) * 2017-12-12 2020-10-09 上海海笠新型环保建材股份有限公司 超细高活性钢渣粉及其制备方法
CN110788114B (zh) * 2019-10-23 2020-12-29 迁安威盛固废环保实业有限公司 一种钢渣实时循环除铁和粉磨方法
CN112010579A (zh) * 2020-09-08 2020-12-01 山东埃尔派粉体科技有限公司 一种超细钢渣粉的生产方法
CN113402179B (zh) * 2021-05-10 2022-10-25 江苏融达新材料股份有限公司 一种基于钢渣活化技术的超高比表面积钢渣粉生产工艺
CN114871236B (zh) * 2022-03-23 2023-07-04 山东山科同创环境工程设计院有限公司 一种细钢渣尾渣辊式粉磨超细粉的系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289732A (zh) * 2000-09-20 2001-04-04 津江超细粉体(武汉)有限公司 组合式钢渣超细粉处理系统
CN1718746A (zh) * 2005-06-30 2006-01-11 武汉理工大学 一种优质钢渣矿粉的生产工艺
CN1899731A (zh) * 2006-07-18 2007-01-24 浙江海穆钢铁服务有限公司 超细钢渣粉制作方法
CN101880736A (zh) * 2010-05-26 2010-11-10 上海大学 超细钢渣微粉的制备技术及生产工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2542653Y (zh) * 2002-05-11 2003-04-02 和相见 利用硫铁矿渣生产氧化铁颜料的装置
CN100386446C (zh) * 2005-06-30 2008-05-07 武汉理工大学 从钢渣中回收铁的方法
CN1916186A (zh) * 2005-08-16 2007-02-21 莱芜厚泽钢渣环保工程有限公司 一种冶金渣微粉生产工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289732A (zh) * 2000-09-20 2001-04-04 津江超细粉体(武汉)有限公司 组合式钢渣超细粉处理系统
CN1718746A (zh) * 2005-06-30 2006-01-11 武汉理工大学 一种优质钢渣矿粉的生产工艺
CN1899731A (zh) * 2006-07-18 2007-01-24 浙江海穆钢铁服务有限公司 超细钢渣粉制作方法
CN101880736A (zh) * 2010-05-26 2010-11-10 上海大学 超细钢渣微粉的制备技术及生产工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAO, ZHIGANG: "Application of Column Mill in Metallic Mines", METAL MINE, October 2004 (2004-10-01), pages 252 - 254 *
XU,YIRU: "Application of Column Mill in New Technology of More Crushing and Less Griding", METAL MINE, August 2005 (2005-08-01), pages 260 - 262 *

Also Published As

Publication number Publication date
CN101880736A (zh) 2010-11-10
CN101880736B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
WO2011147271A1 (zh) 一种超细钢渣微粉的制备工艺
CN109013051B (zh) 一种煤基直接还原磁选生产高镍合金的方法及装置
CN103567051B (zh) 小规模贫赤铁矿分选的工艺
CN100383260C (zh) 钢渣铁精粉的生产工艺
WO2016187862A1 (zh) 一种尾矿资源回收工艺
CN101637744A (zh) 湿法炼锌挥发窑窑渣的回收及利用方法
CN105289838B (zh) 弱磁精选‑焙烧‑再磨磁选尾矿回收工艺
CN101480632A (zh) 一种磁铁矿的选矿方法
CN211678207U (zh) 一种钢渣资源化系统
CN102703714A (zh) 从高炉炼铁烟尘制取铁粉和回收有色金属的方法
CN106755650B (zh) 钢渣生产高活性钢渣粉和惰性矿物产品的工艺
CN103861733B (zh) 一种磁选-反浮选制备超级铁精矿的方法
CN102319617A (zh) 从高炉瓦斯灰中回收铁和碳元素的工艺
CN105233974B (zh) 细磨磁选‑焙烧‑再磨磁选回收尾矿工艺
CN108380360B (zh) 一种钢渣铁精粉生产工艺
CN102357400A (zh) 低品位高岭土矿的加工方法
CN104185687A (zh) 通过物理和化学分离技术从包括铜、锌和铅的有色金属的冶炼过程中排放的有色金属废渣中分离和回收铁的方法
CN103041904A (zh) 一种用辊压机生产钢渣粉的方法
CN111285405A (zh) 一种从钢渣磁选尾矿中分离铁酸钙和铁酸镁的方法
CN112010579A (zh) 一种超细钢渣粉的生产方法
CN107899723A (zh) 一种钢渣固废物高压辊粉磨磁选工艺方法
CN106694517A (zh) 一种钢渣磁选粉提纯协同制备钢渣微粉的生产工艺
CN100430145C (zh) 高铁铝土矿中铝铁磁选分离的方法
CN110328044A (zh) 一种高炉瓦斯灰资源化利用的方法
CN107470016B (zh) 一种以锌窑渣为原料制备化工铁粉的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786043

Country of ref document: EP

Kind code of ref document: A1