WO2011147063A1 - 一种使用交流电的发光器件及其制造方法 - Google Patents

一种使用交流电的发光器件及其制造方法 Download PDF

Info

Publication number
WO2011147063A1
WO2011147063A1 PCT/CN2010/001571 CN2010001571W WO2011147063A1 WO 2011147063 A1 WO2011147063 A1 WO 2011147063A1 CN 2010001571 W CN2010001571 W CN 2010001571W WO 2011147063 A1 WO2011147063 A1 WO 2011147063A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
substrate
diode
light emitting
led chip
Prior art date
Application number
PCT/CN2010/001571
Other languages
English (en)
French (fr)
Inventor
周玉刚
曾照明
赖燃兴
姜志荣
许朝军
王瑞珍
肖国伟
Original Assignee
晶科电子(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶科电子(广州)有限公司 filed Critical 晶科电子(广州)有限公司
Publication of WO2011147063A1 publication Critical patent/WO2011147063A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of manufacturing of a light-emitting device, and relates to a structure of a light-emitting device and a method of fabricating the same, and more particularly to a light-emitting device capable of directly using alternating current and a method of manufacturing the same. Background technique
  • LED light sources have the advantages of high efficiency, long life, and no harmful substances such as Hg. With the rapid development of LED technology, LED brightness, life and other performance have been greatly improved, making LED applications more and more widely, from outdoor lighting such as street lamps to decorative lighting and other indoor lighting, have been used or replaced LED is used as the light source.
  • the conventional lighting power source is alternating current, and has two half-periods with opposite current directions in one cycle of alternating current;
  • US Patent Application Publication No. US20100060181 discloses an alternating current light emitting diode (AC LED) having an external integrated circuit.
  • the device includes an inverter and a rectifier that convert AC power to DC power to provide DC power to the LED.
  • CN201043720 discloses an alternating current LED lamp.
  • a plurality of electronic components such as resistors, capacitors, diodes, etc., are formed into an alternating current switching circuit and a protection circuit, which are connected in series. Between the AC power supply and the LED, the LED can be directly connected to the AC power.
  • LEDs can be placed in different connections and connected to an AC power source.
  • An LED lamp disclosed in Chinese Patent Application Publication No. CN101586791 which has two sets of opposite LEDs connected in parallel to an AC power source, so that only one of them is in a half cycle of each single current direction. The group's LED lights are illuminated.
  • a single LED chip is divided into a plurality of different light-emitting regions by designing and wiring on the LED chip, and each region is electrically connected in series or in parallel, respectively, in each single In the half cycle of the current direction, only part of the light-emitting area is illuminated.
  • An object of the present invention is to overcome the disadvantages and deficiencies of the prior art and to provide a high-luminance light-emitting device capable of directly using an alternating current power source.
  • the present invention also provides a method of manufacturing a high-luminance light-emitting device capable of directly using an alternating current power source.
  • a light emitting device using alternating current comprising at least one LED chip and an alternating current driving circuit chip, the alternating current driving chip comprising a substrate and a rectifying circuit integrated on the substrate.
  • the LED chip is flip-chip mounted on a substrate of the AC drive circuit chip and electrically connected to a rectifying circuit that converts alternating current into direct current to be supplied to the LED chip.
  • the rectifier circuit is a bridge rectifier circuit.
  • the rectifier circuit includes a first diode, a second diode, a third diode, and a fourth diode formed on the substrate; an insulating layer covering the upper surface of the substrate, a P-pole corresponding to the insulating layer of the diode has a contact hole; a first metal wire layer is disposed on the upper surface of the insulating layer, and is electrically connected to the P and N poles of each diode through the contact hole; the first diode The N poles of the P pole and the fourth diode are connected to a power connection end on the substrate through the first metal wire layer, and the P pole of the second diode and the N pole of the third diode pass the first metal line
  • the layer is connected to another power connection terminal on the substrate; the N poles of the first diode and the second diode are electrically connected through the first metal wire layer to form an N-type connection end; and the third diode The P pole of the tube and the fourth diode are electrically connected through the first
  • a metal pad is respectively disposed on the upper surfaces of the P-type connection end and the N-type connection end, and an external bonding pad is respectively disposed on the upper surface of the two power connection ends.
  • a bump solder ball is disposed on an upper surface of the metal pad, and the LED chip is electrically connected to the substrate through the bump solder ball.
  • the light emitting device includes an LED chip
  • the LED chip includes a plurality of mutually independent light emitting regions, each of the light emitting regions has a P pole and an N pole, and is connected in series or in parallel through a second metal wire layer on the LED chip or
  • the P pole of the front end light emitting area of the LED chip is electrically connected to the N type connection end of the substrate
  • the N pole of the rear end light emitting area is electrically connected to the P type connection end of the substrate.
  • the light emitting device includes an LED chip including a plurality of mutually independent light emitting regions, each of the light emitting regions having a P pole and an N pole, and connected in series or in parallel through a first metal wire layer on the substrate or
  • the P pole of the front end illumination area of the LED chip is electrically connected to the N-type connection end of the substrate
  • the N pole of the rear end illumination area is electrically connected to the P-type connection end of the substrate.
  • the light emitting device comprises a plurality of mutually independent LED chips, each of the LED chips having a P pole and an N pole, and connected in series or in parallel or by a first metal line layer on the substrate, the front end LED chip The P pole is electrically connected to the N-type connection end of the substrate, and the N pole of the rear LED chip is electrically connected to the P-type connection end of the substrate Further, the light emitting device further includes a filter circuit integrated on the substrate of the AC drive circuit chip and connected in series between the rectifier circuit and the AC power source.
  • the filter circuit is composed of a resistor and a capacitor connected in parallel with each other.
  • the resistor is disposed on an upper surface of the insulating layer on the substrate.
  • the resistor has a meandering shape on the surface of the insulating layer.
  • the structure of the capacitor is a three-layer structure of a conductive layer, an insulating layer and a conductive layer, wherein a conductive layer at the bottom of the capacitor is disposed on the insulating layer and electrically connected to the first metal wire layer, and the top of the capacitor
  • the conductive layer is connected to the first metal line layer connected to the power connection end through a third metal wire layer.
  • the material of the substrate is silicon wafer or silicon carbide or silicon on insulator.
  • a method of manufacturing a light-emitting device using alternating current includes the following steps:
  • the LED chip is flip-chip mounted on the substrate of the AC drive circuit chip and electrically connected to the rectifier circuit.
  • step (2) specifically includes the following steps:
  • S1 forming a first diode, a second diode, a third diode, and a fourth diode on the substrate by using an ion implantation process and a photolithography process;
  • the step (3) is specifically that the P pole of the LED chip is electrically connected to the N-type connection end, and the N pole of the LED chip is electrically connected to the P-type connection end.
  • step (2) further includes the following steps:
  • the step (3) is specifically that the P pole and the N pole of the LED chip are respectively paired with an N-type connection end and a P-type connection end
  • the bump solder balls should be electrically connected.
  • step (2) and (3) further includes the steps of: integrating a filter circuit on the substrate, the specific steps are:
  • D2 forming a capacitor first conductive layer on the upper surface of the insulating layer, the first conductive layer being connected to the first metal line layer of the substrate;
  • D3 forming an insulating layer on the upper surface of the first conductive layer of the capacitor
  • D4 forming a second conductive layer on the upper surface of the insulating layer of the capacitor
  • D5 forming a third metal line layer on the upper surface of the insulating layer of the substrate and the upper surface of the second conductive layer of the capacitor, the third metal line layer and the first metal line layer connected to the power connection end connection.
  • the step (1) includes the steps of: forming a plurality of mutually insulated light-emitting regions on the LED chip, each of the light-emitting regions having a P-pole and an N-pole.
  • step (1) further includes the steps of: forming a second metal line layer on the light emitting region, the second metal line layer electrically connecting adjacent P poles and N poles of adjacent light emitting regions, thereby Each of the light emitting regions is connected in series
  • the LED chip of the present invention can be directly used in an alternating current without any external integrated circuit device or electronic component, which saves assembly space, improves flexibility of use, and improves illumination area. Use efficiency.
  • the manufacturing method of the light emitting device of the present invention directly flips the LED chip on the AC driving circuit chip, so that the product does not need any external integrated circuit device or electronic component, thereby saving assembly space and improving use. Flexibility.
  • FIG. 1 is a schematic view showing the structure of a light-emitting device using alternating current according to the present invention.
  • Fig. 2 is a circuit diagram showing a first embodiment of a light-emitting device using alternating current according to the present invention.
  • Figure 3 is a cross-sectional view showing a first embodiment of a light-emitting device of the present invention.
  • Figure 4 is a plan view showing the surface structure of the substrate of the light-emitting device shown in Figure 3.
  • Figure 5 is a cross-sectional view showing a second embodiment of the light-emitting device of the present invention.
  • Figure 6 is a plan view showing the surface structure of the substrate of the light-emitting device shown in Figure 5.
  • Fig. 7 is a circuit diagram showing a third embodiment of a light-emitting device using alternating current according to the present invention.
  • Figure 8 is a cross-sectional view showing a third embodiment of the light-emitting device of the present invention.
  • Fig. 9 is a plan view showing a surface structure of a substrate of the light emitting device shown in Fig. 8. detailed description
  • FIG. 1 is a schematic structural view of a light emitting device using alternating current according to the present invention.
  • the illuminating device comprises an LED chip 1 and an AC driving circuit chip 5, wherein the AC driving circuit chip 5 comprises a substrate 2 and a rectifying circuit 3 integrated on the substrate, and the LED chip 1 is flipped over the AC driving circuit
  • the chip 5 is electrically connected to the rectifier circuit 3.
  • the substrate 2 of the AC drive circuit chip 5 has a power supply terminal at both ends, and is connected to an AC power source.
  • the LED chip 1 has a plurality of mutually independent light-emitting regions 101, and each of the light-emitting regions 101 is connected in series or in parallel.
  • FIG. 2 is a circuit diagram of a first embodiment of a light emitting device using alternating current according to the present invention.
  • the rectifier circuit 3 includes a first diode 301, a second diode 302, a third diode 303, and a fourth diode 304.
  • the first diode 301 and the fourth diode 304 are connected in series to form a first branch
  • the second diode 302 and the third diode 303 are connected in series to form a second branch, a first branch and a second branch.
  • the circuits are connected in parallel to form an AC-to-DC bridge rectifier circuit.
  • the first branch and the second branch are connected in parallel to each of the LEDs 1 in the LED chip 1.
  • connection terminal on the 2 is electrically connected, and then the external AC power source is connected.
  • FIG. 3 is a cross-sectional view showing a first embodiment of the light-emitting device of the present invention
  • FIG. 4 is a plan view showing a surface structure of the substrate of the light-emitting device shown in FIG.
  • the LED chip 1 is divided into two light-emitting regions 101a and 101b. Each of the light-emitting regions 101 has a P-pole and an N-pole. The N-pole of the light-emitting region 101a is adjacent to the P-pole of the light-emitting region 101b.
  • the second metal line layer 102 is electrically connected.
  • the rectifier circuit 3 is integrated on the substrate 2 to form the AC drive circuit chip 5. Specifically, a first diode 301, a second diode 302, a third diode 303, and a fourth diode 304 are formed on the substrate 2.
  • An insulating layer 202 is disposed on the upper surface of the substrate 2, and has a contact hole e at the insulating layer 202 corresponding to the P and N poles of the diode.
  • the first metal line layer 203 is disposed on the upper surface of the insulating layer 202 and passes through the contact hole. e is electrically connected to the P and the poles of each diode.
  • the first diode 301 and the second diode 302 are PN diodes, and the N poles are electrically connected through the first metal wire layer 203 to form an N-type connection terminal; the third diode 303 and the fourth diode
  • the tube 304 is an NP-type diode whose P poles are electrically connected through the first metal line layer 203 to form a P-type connection end.
  • the P pole of the first diode 301 and the N pole of the fourth diode 304 are connected to a power connection terminal through the first metal wire layer 203, and the P pole of the second diode and the N pole of the third diode It is connected to another power connection terminal through the first metal wire layer 203.
  • a metal pad is respectively disposed on the upper surfaces of the P-type connection end and the N-type connection end 204.
  • An external bonding pad 206 is disposed on the upper surface of the two power connection ends.
  • a bump solder ball 205 is disposed on the upper surface of the metal pad 204.
  • the LED chip 1 is flip-chip mounted on the AC driving circuit chip 5.
  • the P-pole of the first light-emitting area of the LED chip 1 is connected to the bump solder ball 205 corresponding to the N-type connection end of the substrate 2, and the second light-emitting area is connected.
  • the N pole is connected to the bump solder ball 205 corresponding to the P-type connection end of the substrate 2.
  • a plurality of mutually insulated light-emitting regions 101 are formed on the LED chip 1, and each of the light-emitting regions 101 has a P-pole and an N-pole, respectively.
  • the material of the second metal wire layer 102 is aluminum or other metal.
  • S 1 forming a first diode 301, a second diode 302, a third diode 303, and a fourth diode on the substrate 2 made of a silicon wafer by an ion implantation process in combination with a photolithography process 304.
  • An insulating layer 202 is formed on the upper surface of the substrate 2.
  • the insulating layer 202 can grow a high temperature silicon dioxide layer as an insulating layer under high temperature conditions by using a chemical vapor deposition tube furnace.
  • a contact hole e is formed at the insulating layer 202 corresponding to the P and N poles of each diode in combination with the photolithography and etching processes.
  • a first metal line layer 203 is formed on the upper surface of the insulating layer 202, and the first metal line layer 203 is electrically connected to the P and N poles of each diode through the contact hole e.
  • the first metal line layer 203 is formed by sputtering and photolithography and a lift-off process, and is made of aluminum or other metal.
  • a metal pad 204 and an external pad 206 are formed on the upper surface of the first metal line layer 203.
  • a bump solder ball 205 is formed on the upper surface of the metal pad 204 by an electroplating process.
  • the material of the bump ball 205 may be a single metal such as gold or a multilayer material or alloy.
  • the LED chip 1 is flip-chip connected to the bump solder balls 205 of the substrate 2 of the AC drive circuit chip 5.
  • the flip-chip connection can be a bonded bonding method followed by pressurized heating followed by ultrasound.
  • FIG. 5 is a cross-sectional view showing a second embodiment of the light-emitting device of the present invention
  • FIG. 6 is a plan view showing the surface structure of the substrate of the light-emitting device shown in FIG. 5.
  • the structure of the light-emitting device of Embodiment 2 is substantially the same as that of Embodiment 1, and both of the same rectifier circuit 3 are integrated on the substrate 2, the only difference being: the P-pole of the light-emitting region 101 on the light-emitting diode chip 1.
  • the N poles are respectively connected to the bump solder balls 205 of the substrate 2 by flip chip bonding, that is, adjacent N poles and P poles in the adjacent two light emitting regions 101
  • the bump solder balls 205 at positions corresponding to the upper surface of the substrate 2 are not connected, and are connected in series through the first metal wire layer 203 on the substrate 2.
  • the manufacturing method of the light emitting device of Embodiment 2 specifically includes the following steps:
  • a plurality of mutually insulated light-emitting regions 101 are formed on the LED chip 1, and each of the light-emitting regions 101 has a P-pole and an N-pole, respectively.
  • S 1 forming a first diode 301, a second diode 302, a third diode 303, and a fourth diode on the substrate 2 made of a silicon wafer by an ion implantation process in combination with a photolithography process 304.
  • An insulating layer 202 is formed on the upper surface of the substrate 2.
  • the insulating layer 202 can grow a high temperature silicon dioxide layer as an insulating layer under high temperature conditions by using a chemical vapor deposition tube furnace.
  • a contact hole e is formed at the insulating layer 202 corresponding to the P and N poles of each diode in combination with the photolithography and etching processes.
  • a first metal line layer 203 is formed on the upper surface of the insulating layer 202, and the first metal line layer 203 is electrically connected to the P and N poles of each diode through the contact hole e.
  • the first metal line layer 203 is formed by sputtering and photolithography and a lift-off process, and is made of aluminum or other metal.
  • a metal pad 204 and an external pad 206 are formed on the upper surface of the first metal line layer 203.
  • a bump solder ball 205 is formed on the upper surface of the metal pad 204 by a stencil printing technique.
  • the material of the bump solder ball 205 may be a material such as a lead solder paste.
  • the LED chip 1 is flip-chip bonded to the bump solder balls 205 of the substrate 2.
  • the flip-chip connection may be a bonding bonding method based mainly on reflow soldering.
  • FIG. 7 is a circuit diagram of a third embodiment of a light emitting device using alternating current according to the present invention.
  • the light emitting device circuit includes a plurality of LED chips 103, a rectifying circuit 3, and a filtering circuit 4.
  • the plurality of LED chips 103 are connected in series.
  • the filter circuit 4 includes a resistor 401 and a capacitor 402 connected in parallel with each other.
  • the rectifier circuit 3 is a bridge rectifier circuit having the same structure as that of the rectifier circuit of the first embodiment.
  • the filter circuit 4 is connected in series to the power input terminal of the rectifier circuit 3.
  • the plurality of series connected LED chips 103 are connected in series at the output of the rectifier circuit 3.
  • Fig. 8 is a cross-sectional view showing a third embodiment of the light-emitting device of the present invention
  • Fig. 9 is a plan view showing the surface structure of the substrate of the light-emitting device shown in Fig. 8.
  • the LED chip 103 has a light-emitting area having a P-pole and an N-pole.
  • the rectifier circuit 3 and the filter circuit 4 are integrated on the substrate 2 to form an AC drive circuit chip 6.
  • the filter circuit 4 is disposed between the rectifier circuit 3 and a power supply connection terminal.
  • Integrated circuit wiring of the rectifier circuit 3 and the embodiment 2 The wiring structure is the same.
  • the resistor 401 of the filter circuit 4 is disposed on the upper surface of the insulating layer 202 on the upper surface of the substrate 2.
  • the resistance can be set to a rounded shape according to the set resistance to increase the length thereof, thereby increasing the resistance of the resistor 401.
  • the resistor 401 is made of polysilicon.
  • the structure of the capacitor 402 is a three-layer structure (not shown) of a conductive layer, an insulating layer and a conductive layer.
  • the bottom conductive layer is disposed on the insulating layer 202 and electrically connected to the first metal wire layer 203.
  • the conductive layer on the top of the capacitor 402 is connected to the first metal wire connected to the power connection end through a third metal wire layer 207.
  • the plurality of LED chips 103 are flip-chip soldered on the substrate 2 of the AC driving circuit chip 6, and the P and N poles of each LED chip 103 are respectively connected with the bump solder balls 205 at corresponding positions on the substrate 2 to form The circuit circuit of the light emitting device shown in FIG.
  • the manufacturing method of the light emitting device of Embodiment 3 specifically includes the following steps: (1) fabricating at least one LED chip, each of which has a P pole and an N pole.
  • S1 forming a first diode 301, a second diode 302, a third diode 303, and a fourth diode 304 on the substrate 2 having a silicon wafer by an ion implantation process and a photolithography process, respectively. .
  • An insulating layer 202 is formed on the upper surface of the substrate 2.
  • the insulating layer 202 can grow a high temperature silicon dioxide layer as an insulating layer under high temperature conditions by using a chemical vapor deposition tube furnace.
  • a contact hole e is formed at the insulating layer 202 corresponding to the P and N poles of each diode in combination with the photolithography and etching processes.
  • a first metal line layer 203 is formed on the upper surface of the insulating layer 202, and the first metal line layer 203 is electrically connected to the P and N poles of each diode through the contact hole e.
  • the first metal line layer 203 is formed by sputtering and photolithography and a lift-off process, and is made of aluminum or other metal.
  • a metal pad 204 and an external pad 206 are formed on the upper surface of the first metal line layer 203.
  • a bump solder ball 205 is formed on the upper surface of the metal pad 204 by an electroplating process.
  • the material of the bump ball 205 may be a single metal such as gold or a multilayer material or alloy.
  • the resistor 401 is formed on the upper surface of the insulating layer 202.
  • a first conductive layer of the capacitor 402 is formed on the upper surface of the insulating layer 202, and the first conductive layer is connected to the first metal line layer 203 of the substrate.
  • An insulating layer is formed on the upper surface of the first conductive layer of the capacitor 402.
  • the third metal line layer 207 can be formed by sputtering in conjunction with photolithography and lift-off processes.
  • the material of the third metal wire layer 207 is aluminum Or other metals.
  • the LED chip 103 is flip-chip bonded to the bump ball 205 of the substrate 2.
  • the flip-chip connection can be a bonded bonding method followed by pressurized heating followed by ultrasound.
  • the fabrication steps of the filter circuit 4 can be completed between S4 and S5. After the substrate 2 is integrated with the rectifying circuit 3 and the filter circuit 4, a metal pad 204, an external pad 206, and a bump solder ball 205 are formed.
  • the rectifier circuit of the present invention is not limited to a bridge rectifier circuit composed of a series of diodes in parallel, and may be a rectifier circuit of other configurations.
  • the AC drive circuit chip of the present invention can also integrate other forms of circuits or components to make the AC to DC function more stable. Further, each of the LED chips or an LED chip in the LED chip of the present invention may be connected in series or in parallel or in parallel.
  • the present invention forms an AC drive circuit chip by integrating a rectifying circuit on a substrate, and then
  • the LED chip is directly flipped on the AC driving circuit chip, so that the light emitting device can be directly connected to the AC power source without any external integrated circuit device or electronic component, thereby saving assembly space and improving the flexibility of use. Further, the present invention improves the reliability by flip-chip bonding the LED chip on the substrate without connection by wire bonding or circuit board connection. In addition, whether it is a different light-emitting area on a single LED chip or a plurality of LED chips directly connected to an alternating current, all LED chips or light-emitting areas are in the two current directions of the alternating current power source in a suitable voltage range. It is illuminated, making full use of all the light-emitting areas of the LED, so that the use efficiency of the light-emitting area is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

一种使用交流电的发光器件及其制造方法 技术领域
本发明属于发光器件的制造领域, 涉及一种发光器件的结构及其制造方法, 尤其是涉及 一种能够直接使用交流电的发光器件及其制造方法。 背景技术
发光二极管 (LED)光源具有高效率、 长寿命、 不含 Hg等有害物质的优点。 随着 LED 技术的迅猛发展, LED的亮度、寿命等性能都得到了极大的提升, 使得 LED的应用领域越来 越广泛, 从路灯等室外照明到装饰灯等室内照明, 均纷纷使用或更换成 LED作为光源。
传统的照明电源为交流电, 在交流电的一个周期中具有两个电流方向相反的半周期; 而
LED需要提供直流电源, 因此在使用交流电源时, 目前一般会采取以下几种方式来实现: 如公开号为 US20100060181的美国专利申请公开了一种交流发光二极管(AC LED)具 有一外置集成电路器件, 包括将交流电转换为直流电的换流器和整流器, 用以给 LED提供直 流电源。
又如授权公告号为 CN201043720的中国专利公开了一种交流 LED灯, 该技术方案中将 多种电子元件, 如电阻、 电容、 二极管等, 组成一交流一直流转换电路以及保护电路, 串接 在交流电源与 LED之间, 使得 LED等能够直接接入交流电中使用。
以上两种技术方案均需要将 LED配合外置的交流 /直流转换器或电子元件组成的功能电 路共同使用, 而这些外置的器件均需占用 LED光源的部分空间, 还影响了 LED的安装使用 的灵活性。
此外, 还可以将多颗 LED 布置成不同的连接方式再与交流电源连接。 如公开号为 CN101586791的中国专利申请公开的一种 LED灯, 其将两组电极相反的 LED并联后接入交流 电源中, 这样, 在每一单一电流方向的半个周期内, 仅有其中一组的 LED灯被点亮。 又或者, 作为这种技术方案的变形, 通过在 LED芯片上设计及布线, 将单颗 LED芯片划分成多个不同 的发光区域, 各区域分别进行串联或并联电连接, 同样, 在每一单一电流方向的半个周期内, 仅有部分发光区域被点亮。 在这两种技术方案中, 会使得部分 LED或 LED芯片的部分发光区 域在半个周期内被闲置, 无法充分同时利用所有的 LED或 LED芯片的发光区域, 同样影响了 LED的发光区域的利用效率。 发明内容 本发明的目的在于克服现有技术中的缺点与不足,提供一种能够直接使用交流电源的高 发光率的发光器件。
同时, 本发明还提供了所述能够直接使用交流电源的高发光率的发光器件的制造方法。 一种使用交流电的发光器件, 其包括至少一 LED芯片和一交流驱动电路芯片, 该交流 驱动芯片包括一衬底和集成在所述衬底上的整流电路。所述 LED芯片倒装在所述交流驱动电 路芯片的衬底上, 并与整流电路电连接, 该交流驱动电路芯片将交流电转换为直流电以提供 给所述 LED芯片。
所述整流电路为桥式整流电路。
进一步, 所述整流电路包括在衬底上形成的第一二极管、 第二二极管、 第三二极管和第 四二极管; 一绝缘层覆盖在衬底的上表面, 在各二极管的 P、 极对应的绝缘层处具有接触 孔; 一第一金属线层设置在绝缘层的上表面, 并通过接触孔分别与各二极管的 P、 N极电连 接;第一二极管的 P极与第四二极管的 N极通过第一金属线层连接至衬底上的一电源连接端, 第二二极管的 P极与第三二极管的 N极通过第一金属线层连接至衬底上的另一电源连接端; 在该第一二极管和第二二极管的 N极通过第一金属线层电连接形成一 N型连接端;其该第三 二极管和第四二极管的 P极通过第一金属线层电连接形成一 P型连接端,所述 LED芯片的 P 极与 N型连接端电连接, LED芯片的 N极与 P型连接端电连接。
进一步,在所述 P型连接端和 N型连接端的上表面分别设置有一金属焊垫,在二电源连 接端上表面分别设置有一外接焊垫。
在所述金属焊垫的上表面设置有一凸点焊球, 所述 LED芯片通过该凸点焊球与所述衬 底电连接。
进一步, 该发光器件包括一 LED芯片, 该 LED芯片包括多个相互独立的发光区, 每个 发光区具有 P极和 N极, 并通过所述 LED芯片上的第二金属线层串联或并联或混联, 所述 LED芯片的前端发光区的 P极与衬底的 N型连接端电连接, 后端发光区的 N极与衬底的 P 型连接端电连接。
或者, 该发光器件包括一 LED 芯片, 该 LED芯片包括多个相互独立的发光区, 每个发 光区具有 P极和 N极, 并通过所述衬底上的第一金属线层串联或并联或混联, 所述 LED芯 片的前端发光区的 P极与衬底的 N型连接端电连接,后端发光区的 N极与衬底的 P型连接端 电连接。
又或者, 该发光器件包括多个相互独立的 LED芯片, 每个 LED芯片具有 P极和 N极, 并通过所述衬底上的第一金属线层串联或并联或混联, 前端 LED芯片的 P极与衬底的 N型 连接端电连接, 后端 LED芯片的 N极与衬底的 P型连接端电连接 进一步, 所述发光器件还包括一滤波电路, 其集成在所述交流驱动电路芯片的衬底上, 并串接在所述整流电路与交流电源之间。
所述滤波电路由相互并联的一电阻和一电容组成。
所述电阻设置在所述衬底上的绝缘层的上表面。 所述电阻在所述绝缘层表面呈迂回形 状。
所述电容的结构是导电层一绝缘层一导电层的三层结构, 其中, 所述电容底部的导电层 设置在绝缘层上并与所述第一金属线层电连接, 所述电容顶部的导电层通过一第三金属线层 连接至与电源连接端连接的第一金属线层上。
所述衬底的材料为硅片或碳化硅或在绝缘体上的硅。
一种使用交流电的发光器件的制造方法, 包括如下步骤:
( 1 ) 形成 LED芯片;
(2) 在衬底上集成整流电路, 并在衬底上形成二电源连接端, 形成交流驱动电路芯片;
(3 ) 将 LED芯片倒装在所述交流驱动电路芯片的衬底上, 并与整流电路电连接。
进一步, 所述步骤 (2) 具体包括如下歩骤:
S1 : 采用离子注入工艺配合光刻工艺, 在所述衬底上分别形成第一二极管、第二二极管、 第三二极管和第四二极管;
S2: 在所述衬底的上表面形成一绝缘层;
S3: 在各二极管的 P、 N极对应的绝缘层处形成接触孔;
S4: 在所述绝缘层的上表面形成一第一金属线层, 该第一金属线层通过接触孔与各二极 管的 P极和 N极电连接;所述第一二极管和第二二极管的 N极通过第一金属线层电 连接形成一 N型连接端;所述第三二极管和第四二极管的 P极通过第一金属线层电 连接形成一 P型连接端;所述第一二极管的 P极与第四二极管的 N极通过第一金属 线层连接并在衬底上形成一电源连接端, 所述第二二极管的 P极与第三二极管的 N 极通过第一金属线层连接并在衬底上形成另一电源连接端。
所述步骤 ( 3 ) 具体为所述 LED芯片的 P极与 N型连接端电连接, LED芯片的 N极与 P型连接端电连接。
进一步, 所述步骤 (2)还包括如下步骤:
S5 : 在所述第一金属线层的 P型连接端和 N型连接端的上表面的形成金属焊垫, 在所述 的电源连接端上表面形成外接焊垫;
S6: 在所述金属焊垫的上表面形成凸点焊球。
所述步骤 (3 ) 具体为所述 LED芯片的 P极和 N极分别与 N型连接端和 P型连接端对 应的凸点焊球电连接。
进一步, 在所述步骤(2)和(3 )之间进一步包括步骤: 在所述衬底上集成一滤波电路, 具体的步骤为:
D1 : 在绝缘层的上表面形成一电阻;
D2: 在绝缘层的上表面形成一电容的第一导电层, 该第一导电层与衬底的第一金属线层 连接;
D3 : 在所述电容的第一导电层上表面形成一绝缘层;
D4: 在所述电容的绝缘层上表面形成一第二导电层;
D5 : 在所述衬底的绝缘层上表面以及所述电容的第二导电层上表面形成一第三金属线 层, 所述第三金属线层布线与电源连接端连接的第一金属线层连接。
进一步, 所述步骤(1 )包括步骤: 在该 LED芯片上形成多个相互绝缘的发光区, 每个 发光区分别具有 P极和 N极。
进一步, 所述歩骤 (1 )还包括步骤: 在所述发光区上形成第二金属线层, 该第二金属 线层将相邻发光区相邻的 P极和 N极电连接, 从而使各发光区串联。
相对于现有技术, 本发明的 LED芯片可直接接入交流电中使用而不需要任何外置的集 成电路器件或者电子零件, 节省了组装空间, 提高了使用的灵活性, 同时提高了发光区域的 使用效率。
相对于现有技术, 本发明的发光器件的制造方法直接将 LED芯片倒装在交流驱动电路 芯片上, 使得产品不需要外置任何的集成电路器件或者电子零件, 节省了组装空间, 提高了 使用的灵活性。
为了能更清晰的理解本发明, 以下将结合附图说明阐述本发明的具体实施方式。 附图说明
图 1是本发明使用交流电的发光器件的结构示意图。
图 2是本发明使用交流电的发光器件第一实施例的电路示意图。
图 3是本发明发光器件的第一实施例的剖面示意图。
图 4是图 3所示的发光器件的衬底的表面结构俯视图。
图 5是本发明发光器件的第二实施例的剖面示意图。
图 6是图 5所示的发光器件的衬底的表面结构俯视图。
图 7是本发明使用交流电的发光器件第三实施例的电路示意图。
图 8是本发明发光器件的第三实施例的剖面示意图。 图 9是图 8所示的发光器件的衬底的表面结构俯视图。 具体实施方式
请参阅图 1, 其是本发明使用交流电的发光器件的结构示意图。 该发光器件包括一 LED 芯片 1和一交流驱动电路芯片 5, 其中, 该交流驱动电路芯片 5包括一衬底 2以及集成在衬 底上的整流电路 3, LED芯片 1倒装在该交流驱动电路芯片 5上并与整流电路 3电连接。 该 交流驱动电路芯片 5的衬底 2两端具有电源连接端, 用以外接交流电源。该 LED芯片 1上具 有多个相互独立的发光区 101, 每一个发光区 101之间串联或并联连接。 实施例 1
请参阅图 2,其是本发明使用交流电的发光器件第一实施例的电路示意图。该整流电路 3 包括第一二极管 301、第二二极管 302、第三二极管 303和第四二极管 304。该第一二极管 301 与第四二极管 304串联成第一支路, 该第二二极管 302和第三二极管 303串联成第二支路, 第一支路和第二支路并联形成一交流转直流的桥式整流电路。 该第一支路和第二支路并联后 与 LED芯片 1中的每一个发光区 101串接。在该第一二极管 301与第四二极管 304之间的连 接点, 以及第二二极管 302与第三二极管 303之间的连接点分别与交流驱动电路芯片 5的衬 底 2上的电源连接端电连接, 进而外接交流电源。
请同时参阅图 3和图 4, 其中, 图 3是本发明发光器件的第一实施例的剖面示意图, 图 4 是图 3所示的发光器件的衬底的表面结构俯视图。
该 LED芯片 1上划分二个发光区 101a和 101b, 每个发光区 101分别具有一 P极和一 N 极, 发光区 101a的 N极与发光区 101b的 P极相邻, 它们之间通过一第二金属线层 102电连 接。
该整流电路 3集成在该衬底 2上形成该交流驱动电路芯片 5。 具体的, 在衬底 2上形成 第一二极管 301、 第二二极管 302、 第三二极管 303和第四二极管 304。 在衬底 2的上表面覆 盖一绝缘层 202, 在二极管的 P、 N极对应的绝缘层 202处具有接触孔 e, 第一金属线层 203 设置在绝缘层 202的上表面, 并通过接触孔 e分别与各二极管的 P、 极电连接。 其中, 第 一二极管 301和第二二极管 302为 P-N型二极管,其 N极通过第一金属线层 203电连接形成 一 N型连接端; 第三二极管 303和第四二极管 304为 N-P型二极管, 其 P极通过第一金属线 层 203电连接形成一 P型连接端。第一二极管 301的 P极与第四二极管 304的 N极通过第一 金属线层 203连接至一电源连接端, 第二二极管的 P极与第三二极管的 N极通过第一金属线 层 203连接至另一电源连接端。在 P型连接端和 N型连接端的上表面分别设置有一金属焊垫 204, 在二电源连接端上表面分别设置有一外接焊垫 206。 在该金属焊垫 204的上表面设置有 一凸点焊球 205。
该 LED芯片 1倒装在该交流驱动电路芯片 5上, 该 LED芯片 1的第一发光区的 P极与 衬底 2的 N型连接端对应的凸点焊球 205连接,第二发光区的 N极与衬底 2的 P型连接端对 应的凸点焊球 205连接。
以下详细说明实施例 1中的使用交流电的发光器件的制作方法:
( 1 )在该 LED芯片 1上形成多个相互绝缘的发光区 101, 每个发光区 101分别具有 P 极和 N极。 通过电子束蒸发配合光刻及腐蚀工艺的方式, 形成第二金属线层 102, 该第二金 属线层 102将相邻发光区相邻的 P极和 N极电连接, 从而使各发光区串联。 其中, 该第二金 属线层 102的材质为铝或其他金属。
(2 )在衬底 2上集成该整流电路 3, 形成该交流驱动电路芯片 5, 具体的步骤为:
S 1 :通过离子注入工艺配合光刻工艺,在材料为硅片的衬底 2上分别形成第一二极管 301、 第二二极管 302、 第三二极管 303和第四二极管 304。
S2: 在该衬底 2的上表面形成一绝缘层 202。 该绝缘层 202可以通过使用化学气相沉积 管式炉, 在高温条件下生长高温二氧化硅层作为绝缘层。
S3: 结合光刻和腐蚀工艺, 在各二极管的 P、 N极对应的绝缘层 202处形成接触孔 e。
S4: 在绝缘层 202的上表面形成一第一金属线层 203, 该第一金属线层 203通过接触孔 e 与各二极管的 P极和 N极电连接。 该第一金属线层 203是以溅射配合光刻及剥离工艺形成, 其材质为铝或其他金属。
S5 : 在该第一金属线层 203的上表面形成金属焊垫 204和外接焊垫 206。
S6: 在该金属焊垫 204的上表面通过电镀工艺形成凸点焊球 205。 该凸点焊球 205的材 料可以是金等单一金属, 也可以是多层材料或合金。
( 3 )将 LED芯片 1倒装连接在交流驱动电路芯片 5的衬底 2的凸点焊球 205上。 该倒 装连接可以是加压加热后再加超声的绑定键合方法。 实施例 2
请同时参阅图 5和图 6, 其中, 图 5是本发明发光器件的第二实施例的剖面示意图, 图 6 是图 5所示的发光器件的衬底的表面结构俯视图。
实施例 2的发光器件的结构与实施例 1的结构大致相同, 且均在衬底 2上集成了相同的 整流电路 3, 其区别仅在于: 在发光二极管芯片 1上的发光区 101的 P极和 N极均通过倒装 焊的方式连接到衬底 2的凸点焊球 205上, 即相邻的二发光区 101中的相邻的 N极和 P极分 别与衬底 2上表面对应位置的凸点焊球 205连接, 并通过衬底 2上的第一金属线层 203实现 串联连接。
实施例 2的发光器件的制作方法具体包括以下步骤:
( 1 )在该 LED芯片 1上形成多个相互绝缘的发光区 101, 每个发光区 101分别具有 P 极和 N极。
(2 )在衬底 2上集成该整流电路 3, 形成该交流驱动电路芯片 5, 具体的步骤为:
S 1 :通过离子注入工艺配合光刻工艺,在材料为硅片的衬底 2上分别形成第一二极管 301、 第二二极管 302、 第三二极管 303和第四二极管 304。
S2: 在该衬底 2的的上表面形成一绝缘层 202。 该绝缘层 202可以通过使用化学气相沉 积管式炉, 在高温条件下生长高温二氧化硅层作为绝缘层。
S3: 结合光刻和腐蚀工艺, 在各二极管的 P、 N极对应的绝缘层 202处形成接触孔 e。
S4: 在绝缘层 202的上表面形成一第一金属线层 203, 该第一金属线层 203通过接触孔 e 与各二极管的 P极和 N极电连接。 该第一金属线层 203是以溅射配合光刻及剥离工艺形成, 其材质为铝或其他金属。
S5 : 在该第一金属线层 203的上表面形成金属焊垫 204和外接焊垫 206。
S6: 在该金属焊垫 204的上表面采用模板印刷技术形成凸点焊球 205。 该凸点焊球 205 的材料可以是铅锡膏等材料。
( 3 )将 LED芯片 1倒装连接在衬底 2的凸点焊球 205上。 该倒装连接可以是以回流焊 为主的绑定键合方法。 实施例 3
请参阅图 7, 其是本发明使用交流电的发光器件第三实施例的电路示意图。 该发光器件 电路包括多个 LED芯片 103、一整流电路 3和一滤波电路 4。该多个 LED芯片 103相互串接。 该滤波电路 4包括相互并联的一电阻 401和一电容 402。 该整流电路 3为桥式整流电路, 其 结构与实施例 1的整流电路的结构相同。 该滤波电路 4串接在整流电路 3的电源输入端。 该 多个串联的 LED芯片 103串接在整流电路 3的输出端。
请同时参阅图 8和图 9, 其中, 图 8是本发明发光器件的第三实施例的剖面示意图, 图 9 是图 8所示的发光器件的衬底的表面结构俯视图。
该 LED芯片 103具有一个发光区, 发光区具有一 P极和一 N极。
该整流电路 3和滤波电路 4一并集成在该衬底 2上, 形成交流驱动电路芯片 6, 该滤波 电路 4设置在整流电路 3与一电源连接端之间。 该整流电路 3的集成电路布线与实施例 2的 布线结构相同。 该滤波电路 4的电阻 401设置在该衬底 2上表面的绝缘层 202的上表面, 可 根据设定的阻值将电阻设置成迂回形状以增加其长度, 从而可增大电阻 401的阻值。 该电阻 401由多晶硅制成。 该电容 402的结构是导电层一绝缘层一导电层的三层结构 (图未示)。 其 中, 底部的导电层设置在绝缘层 202上并与第一金属线层 203电连接, 该电容 402顶部的导 电层通过一第三金属线层 207连接至与电源连接端连接的第一金属线层 203上。
该多个 LED芯片 103倒装焊在该交流驱动电路芯片 6的衬底 2上, 每个 LED芯片 103 的 P极和 N极分别与衬底 2上对应位置的凸点焊球 205连接, 形成图 7所示的发光器件的电 路回路。
实施例 3的发光器件的制作方法具体包括以下步骤- ( 1 ) 制作至少一个 LED芯片, 每个 LED芯片具有 P极和 N极。
(2)在衬底 2上集成该整流电路 3, 具体的步骤为:
S1 :通过离子注入工艺配合光刻工艺,在材料为硅片的衬底 2上分别形成第一二极管 301、 第二二极管 302、 第三二极管 303和第四二极管 304。
S2: 在该衬底 2的的上表面形成一绝缘层 202。 该绝缘层 202可以通过使用化学气相沉 积管式炉, 在高温条件下生长高温二氧化硅层作为绝缘层。
S3: 结合光刻和腐蚀工艺, 在各二极管的 P、 N极对应的绝缘层 202处形成接触孔 e。
S4: 在绝缘层 202的上表面形成一第一金属线层 203, 该第一金属线层 203通过接触孔 e 与各二极管的 P极和 N极电连接。 该第一金属线层 203是以溅射配合光刻及剥离工艺形成, 其材质为铝或其他金属。
S5 : 在该第一金属线层 203的上表面形成金属焊垫 204和外接焊垫 206。
S6: 在该金属焊垫 204的上表面通过电镀工艺形成凸点焊球 205。 该凸点焊球 205的材 料可以是金等单一金属, 也可以是多层材料或合金。
(3 )在衬底 2上集成该滤波电路 4, 具体的步骤为:
D1 : 在绝缘层 202的上表面形成该电阻 401。
D2: 在绝缘层 202的上表面形成该电容 402的第一导电层, 该第一导电层与衬底的第一 金属线层 203连接。
D3 : 在该电容 402的第一导电层上表面形成一绝缘层。
D4: 在该电容 402的绝缘层上表面形成一第二导电层。
D5: 在该衬底 2的绝缘层 202上表面以及该电容 402的第二导电层上表面形成第三金属 线层 207, 该第三金属线层 207布线与电源连接端连接的第一金属线层 203连接。 该第三金 属线层 207可以通过溅射配合光刻及剥离工艺的方式形成。 该第三金属线层 207的材料为铝 或其他金属。
(4)将 LED芯片 103倒装连接在衬底 2的凸点悍球 205上。 该倒装连接可以是加压加 热后再加超声的绑定键合方法。
在实施例 3中, 该滤波电路 4的制作歩骤可以在 S4和 S5之间完成。 在衬底 2集成了整 流电路 3以及滤波电路 4之后再形成金属焊垫 204、 外接焊垫 206和凸点焊球 205。
本发明的各实施例中制作各集成器件的方法可交换使用。 并且, 本发明的整流电路并不 限于由二极管串并联组成的桥式整流电路, 还可以是其他结构的整流电路。 本发明的交流驱 动电路芯片还可集成其他形式的电路或元件, 使其交流转直流的功能更加的稳定。 进一步, 本发明的各 LED芯片或者一 LED芯片中的各发光区不仅可以是串联, 还可以是并联或同时 串并联的连接方式。
相对于现有技术, 本发明通过在衬底上集成整流电路形成一交流驱动电路芯片, 然后将
LED芯片直接倒装在该交流驱动电路芯片上, 使得发光器件可直接接入交流电源, 而不需要 任何外置的集成电路器件或者电子零件, 节省了组装空间, 提高了使用的灵活性。 进一歩, 本发明通过将 LED芯片倒装焊接在衬底上, 不需以打线或电路板连接等方式接驳, 提高了其 可靠性。 此外, 不论是以单颗 LED芯片上的不同发光区域或者以多颗 LED芯片直接与交流 电连接使用, 在合适的电压范围内, 所有的 LED芯片或发光区域在交流电源的两个电流方向 下都会被点亮, 充分利用了 LED的所有发光区, 使得其发光区域的使用效率得到了提高。
本发明并不局限于上述实施方式, 如果对本发明的各种改动或变形不脱离本发明的精神 和范围, 倘若这些改动和变形属于本发明的权利要求和等同技术范围之内, 则本发明也意图 包含这些改动和变形。

Claims

权 利 要 求 书 、 一种使用交流电的发光器件, 其特征在于: 包括:
至少一 LED芯片; 以及
交流驱动电路芯片, 其包括一衬底和集成在所述衬底上的整流电路;
所述 LED芯片倒装在所述交流驱动电路芯片的衬底上, 并与整流电路电连接, 该交流驱 动电路芯片将交流电转换为直流电以提供给所述 LED芯片。
、 根据权利要求 1所述的发光器件, 其特征在于: 所述整流电路为桥式整流电路。
、 根据权利要求 2所述的发光器件,其特征在于:所述整流电路包括在衬底上形成的第一二 极管、 第二二极管、 第三二极管和第四二极管; 一绝缘层覆盖在衬底的上表面, 在各二极 管的 P、 N极对应的绝缘层处具有接触孔; 一第一金属线层设置在绝缘层的上表面, 并通 过接触孔分别与各二极管的 P、 N极电连接;第一二极管的 P极与第四二极管的 N极通过 第一金属线层连接至衬底上的一电源连接端, 第二二极管的 P极与第三二极管的 N极通 过第一金属线层连接至衬底上的另一电源连接端; 在该第一二极管和第二二极管的 N极 通过第一金属线层电连接形成一 N型连接端; 其该第三二极管和第四二极管的 P极通过 第一金属线层电连接形成一 P型连接端,所述 LED芯片的 P极与 N型连接端电连接, LED 芯片的 N极与 P型连接端电连接。
、 根据权利要求 3所述的发光器件, 其特征在于: 在所述 P型连接端和 N型连接端的上表 面分别设置有一金属焊垫, 在二电源连接端上表面分别设置有一外接焊垫。
、 根据权利要求 4所述的发光器件,其特征在于:在所述金属焊垫的上表面设置有一凸点焊 球, 所述 LED芯片通过该凸点焊球与所述衬底电连接。
、 根据权利要求 3要求所述的发光器件,其特征在于:该发光器件包括一 LED芯片,该 LED 芯片包括多个相互独立的发光区, 每个发光区具有 P极和 N极, 并通过所述 LED芯片上 的第二金属线层串联或并联或混联, 所述 LED芯片的前端发光区的 P极与衬底的 N型连 接端电连接, 后端发光区的 N极与衬底的 P型连接端电连接。
、 根据权利要求 3所述的发光器件, 其特征在于: 该发光器件包括一 LED 芯片, 该 LED芯 片包括多个相互独立的发光区, 每个发光区具有 P极和 N极, 并通过所述衬底上的第一 金属线层串联或并联或混联, 所述 LED芯片的前端发光区的 P极与衬底的 N型连接端电 连接, 后端发光区的 N极与衬底的 P型连接端电连接。
、 根据权利要求 3所述的发光器件, 其特征在于: 该发光器件包括多个相互独立的 LED芯 片, 每个 LED芯片具有 P极和 N极, 并通过所述衬底上的第一金属线层串联或并联或混 联,前端 LED芯片的 P极与衬底的 N型连接端电连接,后端 LED芯片的 N极与衬底的 P 型连接端电连接。
、 根据权利要求 1-8中任意一权利要求所述的发光器件, 其特征在于: 所述发光器件还包括 一滤波电路,其集成在所述交流驱动电路芯片的衬底上, 并串接在所述整流电路与交流电 源之间。
0、 根据权利要求 9所述的发光器件, 其特征在于: 所述滤波电路由相互并联的一电阻和一 电容组成。
1、根据权利要求 10所述的发光器件, 其特征在于: 所述电阻设置在所述衬底上的绝缘层的 上表面。
、根据权利要求 11所述的发光器件,其特征在于:所述电阻在所述绝缘层表面呈迂回形状。3、 根据权利要求 10-12中任意一权利要求所述的发光器件, 其特征在于: 所述电容的结构 是导电层一绝缘层一导电层的三层结构,其中,所述电容底部的导电层设置在绝缘层上并 与所述第一金属线层电连接,所述电容顶部的导电层通过一第三金属线层连接至与电源连 接端连接的第一金属线层上。
、 根据权利要求 1所述的发光器件, 其特征在于: 所述衬底的材料为硅片或碳化硅或在绝 缘体上的硅。
5、 一种使用交流电的发光器件的制造方法, 其特征在于: 包括如下步骤-
( 1 ) 形成 LED芯片;
(2) 在衬底上集成整流电路, 并在衬底上形成二电源连接端, 形成交流驱动电路芯片;
(3 ) 将 LED芯片倒装在所述交流驱动电路芯片的衬底上, 并与整流电路电连接。
6、 根据权利要求 15所述的制造方法, 其特征在于: 所述步骤 (2) 具体包括如下歩骤: S1 : 采用离子注入工艺配合光刻工艺, 在所述衬底上分别形成第一二极管、第二二极管、 第三二极管和第四二极管;
S2: 在所述衬底的上表面形成一绝缘层;
S3: 在各二极管的 P、 N极对应的绝缘层处形成接触孔;
S4: 在所述绝缘层的上表面形成一第一金属线层, 该第一金属线层通过接触孔与各二极 管的 P极和 N极电连接;所述第一二极管和第二二极管的 N极通过第一金属线层电 连接形成一 N型连接端;所述第三二极管和第四二极管的 P极通过第一金属线层电 连接形成一 P型连接端;所述第一二极管的 P极与第四二极管的 N极通过第一金属 线层连接并在衬底上形成一电源连接端, 所述第二二极管的 P极与第三二极管的 N 极通过第一金属线层连接并在衬底上形成另一电源连接端。 所述步骤(3 )具体为所述 LED芯片的 P极与 N型连接端电连接, LED芯片的 N极与 P 型连接端电连接。
17、 根据权利要求 16所述的制造方法, 其特征在于: 所述步骤 (2) 还包括如下歩骤:
S5 : 在所述第一金属线层的 P型连接端和 N型连接端的上表面的形成金属焊垫, 在所述 的电源连接端上表面形成外接焊垫;
S6: 在所述金属焊垫的上表面形成凸点焊球。
所述步骤(3 )具体为所述 LED芯片的 P极和 N极分别与 N型连接端和 P型连接端对应 的凸点焊球电连接。
18、 根据权利要求 15所述的制造方法, 其特征在于: 在所述步骤(2)和 (3 )之间进一步包 括步骤: 在所述衬底上集成一滤波电路, 具体的步骤为:
D1 : 在绝缘层的上表面形成一电阻;
D2: 在绝缘层的上表面形成一电容的第一导电层, 该第一导电层与衬底的第一金属线层 连接;
D3 : 在所述电容的第一导电层上表面形成一绝缘层;
D4: 在所述电容的绝缘层上表面形成一第二导电层;
D5 : 在所述衬底的绝缘层上表面以及所述电容的第二导电层上表面形成一第三金属线 层, 所述第三金属线层布线与电源连接端连接的第一金属线层连接。
19、 根据权利要求 15-18中的任意一权利要求所述的制造方法, 其特征在于: 所述步骤 (1 ) 包括步骤: 在该 LED芯片上形成多个相互绝缘的发光区, 每个发光区分别具有 P极和 N 极。
20、 根据权利要求 19所述的制造方法, 其特征在于: 所述步骤 (1 )还包括步骤: 在所述发 光区上形成第二金属线层, 该第二金属线层将发光区的 P极和 N极电连接, 从而使各发光区 串联或并联或混联。
PCT/CN2010/001571 2010-05-24 2010-10-08 一种使用交流电的发光器件及其制造方法 WO2011147063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010190052.1 2010-05-24
CN2010101900521A CN101886759B (zh) 2010-05-24 2010-05-24 一种使用交流电的发光器件及其制造方法

Publications (1)

Publication Number Publication Date
WO2011147063A1 true WO2011147063A1 (zh) 2011-12-01

Family

ID=43072779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001571 WO2011147063A1 (zh) 2010-05-24 2010-10-08 一种使用交流电的发光器件及其制造方法

Country Status (5)

Country Link
US (1) US20110285284A1 (zh)
EP (1) EP2390918A3 (zh)
JP (1) JP5636251B2 (zh)
CN (1) CN101886759B (zh)
WO (1) WO2011147063A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222726B2 (en) * 2010-03-29 2012-07-17 Advanced Semiconductor Engineering, Inc. Semiconductor device package having a jumper chip and method of fabricating the same
DE102012111247A1 (de) * 2012-11-21 2014-05-22 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil
US20140209961A1 (en) * 2013-01-30 2014-07-31 Luxo-Led Co., Limited Alternating current light emitting diode flip-chip
CN103337582B (zh) * 2013-06-19 2015-04-22 深圳市源磊科技有限公司 Led光源及其制造方法
WO2015052616A1 (en) * 2013-10-09 2015-04-16 Koninklijke Philips N.V. Monolithic led arrays for uniform and high-brightness light sources
CN104752594B (zh) * 2013-12-25 2017-11-10 宝钢金属有限公司 一种用于ac‑led芯片结构倒装焊金属层的制作方法
CN104752578A (zh) * 2013-12-25 2015-07-01 宝钢金属有限公司 一种用于ac-led芯片结构倒装焊金属层结构
DE102014105734A1 (de) * 2014-04-23 2015-10-29 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
TWI577058B (zh) * 2014-11-14 2017-04-01 Bidirectional light emitting diodes and their lighting devices
CN104994634A (zh) * 2015-06-29 2015-10-21 宝钢金属有限公司 一种ac-led集成芯片
US10079264B2 (en) * 2015-12-21 2018-09-18 Hong Kong Beida Jade Bird Display Limited Semiconductor devices with integrated thin-film transistor circuitry
CA3009273A1 (en) 2015-12-23 2017-06-29 Koninklijke Philips N.V. Marine structure
US10332949B2 (en) 2016-07-06 2019-06-25 Seoul Semiconductor Co., Ltd. Display apparatus
JP7071618B2 (ja) * 2016-11-30 2022-05-19 日亜化学工業株式会社 発光装置及び基板
CN113110439B (zh) * 2021-04-08 2022-10-28 江苏大学 一种实时可抗风浪无人船的航线控制方法及其水质监测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836332A (zh) * 2003-08-12 2006-09-20 皇家飞利浦电子股份有限公司 用于交流驱动有机二极管的电路装置
CN101414605A (zh) * 2004-06-30 2009-04-22 首尔Opto仪器股份有限公司 结合有多个单元的发光元件以及使用发光元件的发光装置
JP2009105355A (ja) * 2007-10-23 2009-05-14 Daiichi-Tsusho Co Ltd Led照明器具
CN201412704Y (zh) * 2009-03-10 2010-02-24 广州南科集成电子有限公司 一种集成led芯片的光源
JP2010511971A (ja) * 2007-09-14 2010-04-15 エスエムクリエーション リミテッド 安定器を有する蛍光灯用のled照明灯

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121104A (en) * 1997-12-12 2000-09-19 Texas Instruments Incorporated Charge cancellation technique for integrated circuit resistors
CN2545706Y (zh) * 2002-03-29 2003-04-16 苏州固锝电子有限公司 片式微型桥堆
US20040206970A1 (en) * 2003-04-16 2004-10-21 Martin Paul S. Alternating current light emitting device
US6898068B2 (en) * 2003-09-24 2005-05-24 Texas Instruments Incorporated Dual mask capacitor for integrated circuits
US7221044B2 (en) * 2005-01-21 2007-05-22 Ac Led Lighting, L.L.C. Heterogeneous integrated high voltage DC/AC light emitter
EP2280430B1 (en) * 2005-03-11 2020-01-01 Seoul Semiconductor Co., Ltd. LED package having an array of light emitting cells coupled in series
CN101865375B (zh) * 2005-06-28 2013-03-13 首尔Opto仪器股份有限公司 发光装置
KR100634307B1 (ko) * 2005-08-10 2006-10-16 서울옵토디바이스주식회사 발광 소자 및 이의 제조 방법
US7148515B1 (en) * 2006-01-07 2006-12-12 Tyntek Corp. Light emitting device having integrated rectifier circuit in substrate
JP2007188942A (ja) * 2006-01-11 2007-07-26 Tyntek Corp 整流回路を副キャリアに結合した発光ダイオードの発光装置及びその製造方法
CN101154656B (zh) * 2006-09-30 2010-05-12 香港微晶先进封装技术有限公司 多芯片发光二极管模组结构及其制造方法
US7863825B2 (en) * 2007-01-30 2011-01-04 Addtek Corp. LED driver circuit for providing desired luminance with constant current
CN201043720Y (zh) * 2007-06-19 2008-04-02 天津医科大学总医院 交流led灯
KR101001241B1 (ko) 2008-09-05 2010-12-17 서울반도체 주식회사 교류 led 조광장치 및 그에 의한 조광방법
US8062916B2 (en) * 2008-11-06 2011-11-22 Koninklijke Philips Electronics N.V. Series connected flip chip LEDs with growth substrate removed
CN201335281Y (zh) * 2009-01-06 2009-10-28 常州机电职业技术学院 节能照明装置
CN101586791A (zh) 2009-03-13 2009-11-25 厦门市光电工程技术研究中心 一种简约节能半导体灯
CN101908534B (zh) * 2009-06-08 2012-06-13 晶元光电股份有限公司 发光装置
CN201680214U (zh) * 2010-05-24 2010-12-22 晶科电子(广州)有限公司 一种使用交流电的发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836332A (zh) * 2003-08-12 2006-09-20 皇家飞利浦电子股份有限公司 用于交流驱动有机二极管的电路装置
CN101414605A (zh) * 2004-06-30 2009-04-22 首尔Opto仪器股份有限公司 结合有多个单元的发光元件以及使用发光元件的发光装置
JP2010511971A (ja) * 2007-09-14 2010-04-15 エスエムクリエーション リミテッド 安定器を有する蛍光灯用のled照明灯
JP2009105355A (ja) * 2007-10-23 2009-05-14 Daiichi-Tsusho Co Ltd Led照明器具
CN201412704Y (zh) * 2009-03-10 2010-02-24 广州南科集成电子有限公司 一种集成led芯片的光源

Also Published As

Publication number Publication date
EP2390918A3 (en) 2013-04-17
JP2011249755A (ja) 2011-12-08
EP2390918A2 (en) 2011-11-30
JP5636251B2 (ja) 2014-12-03
CN101886759A (zh) 2010-11-17
CN101886759B (zh) 2012-07-25
US20110285284A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2011147063A1 (zh) 一种使用交流电的发光器件及其制造方法
US8587956B2 (en) Integrated electronic device for controlling light emitting diodes
US7148515B1 (en) Light emitting device having integrated rectifier circuit in substrate
US7777237B2 (en) Semiconductor light-emitting device and method of fabricating the same
JP2014167940A (ja) 低電力白熱ランプのledランプ交換
JP2011146353A (ja) 照明装置
KR20130128841A (ko) 멀티셀 어레이를 갖는 반도체 발광장치 및 그 제조방법, 그리고 발광모듈 및 조명장치
WO2013067945A1 (zh) 发光二极管灯芯和采用发光二极管作为光源的照明装置
TWM498387U (zh) 熱電分離的發光二極體封裝模組及電連接模組
JP2013222782A (ja) Ledモジュール
JP2006157025A (ja) 高効率散熱及び光度のチップ
CN102130107B (zh) 阶梯阵列式高压发光管及其制备方法
US9136257B1 (en) Rectifier structures for AC LED systems
JP5946311B2 (ja) Ledモジュール
JP2013543277A (ja) 発光デバイスのための点在キャリア
CN101814489A (zh) 带有功能芯片的发光二极管封装结构及其封装方法
CN101834175A (zh) Led照明cob封装结构以及球泡
CN106960840A (zh) 一种可调色温的led光源
CN201680214U (zh) 一种使用交流电的发光器件
US20120267645A1 (en) Light emitting diode module package structure
KR20060037589A (ko) 다수의 셀이 결합된 발광 소자 및 이의 제조 방법 및 이를이용한 발광 장치
CN209517602U (zh) 一种直通散热双面铜基板
TW201209992A (en) Light emitting apparatus and solar cell apparatus
CN205979379U (zh) 一种使用陶瓷基板的led投影灯光源
CN100477211C (zh) 发光二极管模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851935

Country of ref document: EP

Kind code of ref document: A1