WO2011145346A1 - 送信装置 - Google Patents

送信装置 Download PDF

Info

Publication number
WO2011145346A1
WO2011145346A1 PCT/JP2011/002778 JP2011002778W WO2011145346A1 WO 2011145346 A1 WO2011145346 A1 WO 2011145346A1 JP 2011002778 W JP2011002778 W JP 2011002778W WO 2011145346 A1 WO2011145346 A1 WO 2011145346A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
external
input
feedback signal
Prior art date
Application number
PCT/JP2011/002778
Other languages
English (en)
French (fr)
Inventor
裕二 井口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2011145346A1 publication Critical patent/WO2011145346A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Definitions

  • the present invention relates to a transmission device.
  • a transmission device used in a base station of a wireless communication system is configured to output a transmission signal having a predetermined characteristic from its output terminal.
  • a transmission apparatus disclosed in Patent Document 1 is known.
  • an input signal is used as a reference signal, and distortion is based on an error between the reference signal and a feedback signal extracted from a transmission signal supplied from an analog circuit unit including a power amplifier to an output terminal.
  • a correction coefficient is calculated. Then, by multiplying the input signal by the calculated distortion correction coefficient and inputting it to the analog circuit unit, a distortion-compensated transmission signal is output from the output terminal.
  • a base station of a wireless communication system is used to prevent interference with radio waves in adjacent frequency bands used by other wireless communication systems, or to use adjacent frequency bands during or after installation.
  • an external passive device such as a filter or a duplexer is connected to the output terminal of the transmission device in order to share the antenna with the base station.
  • an external active device such as an amplifier may be connected to compensate for power loss due to connection of the external active device or power loss due to the feeder line.
  • the transmission device of the base station is configured to output a transmission signal having a predetermined characteristic from its output terminal. Therefore, when an external connection device such as an external active device or an external passive device is connected to the output terminal of the transmission device as described above, the transmission signal output from the external connection device deteriorates due to the characteristics of the external connection device. Therefore, there is a concern that communication quality may be degraded.
  • Such a problem in the transmission apparatus occurs not only in the transmission apparatus of the base station but also in a transmission apparatus that outputs a transmission signal having a predetermined characteristic when connection of an external connection device is assumed.
  • an object of the present invention is to provide a transmission apparatus that can solve such problems and can reduce deterioration of a transmission signal caused by an externally connected device.
  • An invention for achieving the above object is a transmission device that amplifies an input signal by an amplification unit and transmits the amplified signal from a signal output unit
  • a signal input unit for inputting an external feedback signal based on an output signal output to the antenna from an external connection device connected to the signal output unit;
  • a correction unit that corrects the input signal so as to compensate the characteristics of the output signal of the externally connected device; It is characterized by providing.
  • the invention according to a second aspect is the transmission device according to the first aspect, A compensation unit that receives an internal feedback signal based on a transmission signal supplied from the amplification unit to the signal output unit and corrects the input signal so as to compensate the characteristics of the transmission signal; To do.
  • the invention according to a third aspect is the transmission apparatus according to the second aspect, A modulation unit that modulates the input signal and supplies the modulated signal to the amplification unit; A demodulator that demodulates the external feedback signal or the internal feedback signal; A selection unit that selectively inputs the external feedback signal or the internal feedback signal to the demodulation unit and supplies the demodulation signal to the corresponding correction unit or the compensation unit; Is further provided.
  • the invention according to a fourth aspect is the transmitter according to the third aspect, It further comprises a level adjusting unit that adjusts the level of at least one of the external feedback signal or the internal feedback signal that is selectively input to the demodulating unit.
  • the input signal is corrected by the external feedback signal based on the output signal of the externally connected device, so that it is possible to reduce the deterioration of the transmitted signal by the externally connected device.
  • a transmitter incorporated in a base station of a wireless communication system represented by WiMAX (Worldwide Interoperability for Microwave Access) or LTE (Long Term Evolution) adopting an OFDM (Orthogonal Frequency Division Multiplexing) scheme Will be described as an example.
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 1 is a functional block diagram showing the configuration of the transmission apparatus according to the first embodiment of the present invention.
  • the transmission apparatus 100 includes a transmission system 110, an internal feedback system 130, and an external feedback system 150.
  • the transmission system 110 includes an OFDM signal generation circuit 111, a digital distortion compensation circuit (DPD) 112, digital-analog conversion circuits (DAC) 113I and 113Q, low-pass filters (LPF) 114I and 114Q, and IQ modulation circuit (IQ-MOD) 115.
  • the antenna connection terminal 121 constitutes a signal output unit that outputs a signal output from the PA 118.
  • the internal feedback system 130 includes a directional coupler 131, a mixer (MIX) 132, an LO 133, an amplifier (AMP) 134, an IQ demodulation circuit (IQ-DEM) 135, LPFs 136I and 136Q, and an analog-digital conversion circuit (ADC) 137I. And 137Q.
  • the external feedback system 150 includes an external input terminal 151, a MIX 152, an LO 153, an AMP 154, an IQ-DEM 155, LPFs 156I and 156Q, ADCs 157I and 157Q, and an equalizer 158.
  • the external input terminal 151 constitutes a signal input unit for inputting an external feedback signal.
  • an OFDM signal generation circuit 111 receives an input data signal from an upper control station (not shown) or the like, and generates an in-phase component (I signal) and a quadrature component (Q signal) of the OFDM baseband signal. These I signal and Q signal are converted into analog signals by the DACs 113I and 113Q via the DPD 112, then supplied to the IQ-MOD 115 via the LPFs 114I and 114Q, and modulated by the radio frequency signal from the LO.
  • the modulated signal modulated by IQ-MOD 115 is amplified by AMP 117, further amplified to a predetermined power by PA 118, and output as a transmission signal.
  • This transmission signal is filtered by the DUP 120 via the ISO 119 and supplied to the antenna connection terminal 121. Therefore, AMP 117 and PA 118 constitute an amplification unit.
  • the I signal and the Q signal generated by the OFDM signal generation circuit 111 are also supplied to the equalizer 158 of the external feedback system 150.
  • the directional coupler 131 is provided in the transmission path between the ISO 119 and the DUP 120 of the transmission system 110, and a part of the transmission signal (transmission power) output from the PA 118 is used as an internal feedback signal.
  • the internal feedback signal distributed by the directional coupler 131 is supplied to the MIX 132, mixed with the signal from the LO 133, and converted to an intermediate frequency band.
  • the frequency-converted internal feedback signal is amplified by the AMP 134 and then demodulated by the IQ-DEM 115 to generate analog I and Q signals.
  • These analog I and Q signals are converted into digital signals by ADCs 137I and 137Q via LPFs 136I and 136Q, respectively, and fed back to DPD 112.
  • the DPD 112 the I signal and the Q signal from the OFDM signal generation circuit 111 are corrected so as to compensate the characteristic (distortion) of the transmission signal caused by the nonlinearity of the PA 118. Therefore, the DPD 112 constitutes a compensation unit that compensates for the characteristics of the transmission signal output from the antenna connection terminal 121.
  • an external feedback signal based on the output signal of the external connection device connected to the antenna connection terminal 121 is input to the external input terminal 151. Similar to the internal feedback system 130, this external feedback signal is mixed with the signal from the LO 153 in the MIX 152, frequency-converted, amplified by the AMP 154, and demodulated into analog I and Q signals by the IQ-DEM 155. The demodulated analog I and Q signals are converted into digital signals by ADCs 157I and 157Q via LPFs 156I and 156Q, respectively.
  • the I signal and the Q signal converted into digital signals by the ADCs 157I and 157Q, respectively, are fed back to the equalizer 158.
  • the equalizer 158 compares the fed back I signal and Q signal with the I signal and Q signal of the OFDM baseband signal from the OFDM signal generation circuit 111, and based on the comparison result, feeds back the I signal. And the deterioration of the frequency and phase of the Q signal is detected, correction information for correcting the deterioration is generated and supplied to the OFDM signal generation circuit 111.
  • the OFDM signal generation circuit 111 performs correction for each subcarrier so as to compensate for the characteristics of the output signal of the external connection device connected to the antenna connection terminal 121, and the I signal and the Q signal of the OFDM baseband signal. Is generated. Therefore, the OFDM signal generation circuit 111 and the equalizer 158 constitute a correction unit that corrects the input signal so as to compensate the characteristics of the output signal from the externally connected device.
  • the reception signal input to the antenna connection terminal 121 is input to a reception system (not shown) via the DUP 120.
  • the transmission apparatus 100 is basically operated with the antenna 122 connected to the antenna connection terminal 121.
  • an external connection device is used between the antenna connection terminal 121 and the antenna 122 as shown in FIG.
  • a certain band pass filter (BPF) 123 is connected and operated.
  • the transmission signal output from the antenna connection terminal 121 may deteriorate due to the characteristics of the BPF 123, and radio waves having desired characteristics may not be radiated from the antenna 122.
  • a directional coupler 124 is provided in the transmission path between the BPF 123 and the antenna 122, whereby a part of the output signal of the BPF 123 is distributed as an external feedback signal, and the distributed external feedback signal is transmitted. This is supplied to the external input terminal 151 of the apparatus 100.
  • the output signal of the BPF 123 is compensated by the OFDM signal generation circuit 111 based on the external feedback signal as described above, it is possible to radiate radio waves with desired characteristics from the antenna 122. It becomes.
  • the output signal of the BPF 123 during operation of the transmission apparatus 100 can be monitored and compensated in real time, so that it is possible to cope with a change in the deterioration state due to an environmental change or a secular change. Thereby, it is possible to always radiate radio waves having desired characteristics from the antenna 122.
  • an external connection device connected to the antenna connection terminal 121 of the transmission device 100 may be known from the installation environment of the base station.
  • the known external connection device prior to the actual operation of the transmission apparatus 100, the known external connection device is connected to the antenna connection terminal 121 of the transmission apparatus 100, and an arbitrary input signal from the transmission apparatus 100 is amplified. Output the transmission signal. Then, the output signal of the externally connected device at that time is appropriately attenuated and fed back to the external input terminal 151, whereby the correction information obtained from the equalizer 158 of the external feedback system 150 is, for example, Store in the equalizer 158.
  • FIG. 2 is a functional block diagram showing a configuration of a transmission apparatus according to the second embodiment of the present invention.
  • the transmission apparatus 200 includes a common feedback system 170 in which the internal feedback system 130 and the external feedback system 150 are shared in the configuration shown in FIG.
  • the common feedback system 170 includes a directional coupler 171, an external input terminal 172, an input selection unit 173, MIX174, LO175, AMP176, IQ-DEM177, LPF178I and 178Q, ADC179I and 179Q, an output selection unit 180, and an equalizer 181.
  • the configuration of the transmission system 110 and other externally connected devices is the same as that in FIG.
  • the directional coupler 171 is provided in the transmission path between the ISO 119 and the DUP 120 of the transmission system 110, as in FIG. 1, and is one of transmission signals (transmission power) output from the PA 118. Are distributed as internal feedback signals.
  • the internal feedback signal is supplied to the input selection unit 173.
  • an external feedback signal based on an output signal of an external connection device connected to the antenna connection terminal 121 is input to the external input terminal 172.
  • the external feedback signal is supplied to the input selection unit 173.
  • the input selection unit 173 switches and selects the internal feedback signal and the external feedback signal to be input at a predetermined timing and supplies them to the MIX 174.
  • the feedback signal supplied to the MIX 174 is mixed with the signal from the LO 175 and converted to an intermediate frequency band, then amplified by the AMP 176 and demodulated by the IQ-DEM 177.
  • analog I and Q signals are generated.
  • These analog I and Q signals are converted into digital signals by ADCs 179I and 179Q via LPFs 178I and 178Q, respectively, and input to output selection section 180.
  • the output selection unit 180 feeds back the I signal and the Q signal from the ADCs 179I and 179Q to the DPD 112 or the equalizer 181 in synchronization with the input signal selection operation by the input selection unit 173. That is, when the internal feedback signal is selected by the input selection unit 173, the I signal and the Q signal from the ADCs 179I and 179Q corresponding to the internal feedback signal are fed back to the DPD 112. When an external feedback signal is selected by the input selection unit 173, the I signal and the Q signal from the ADCs 179I and 179Q corresponding to the external feedback signal are fed back to the equalizer 181. Therefore, the input selection unit 173 and the output selection unit 180 constitute a selection unit that selectively inputs an external feedback signal or an internal feedback signal and supplies the demodulated signal to a corresponding correction unit or compensation unit.
  • the selection timing of the external feedback signal or the internal feedback signal by the input selection unit 173 and the output selection unit 180 can be set as appropriate.
  • the internal feedback signal is selected and set to the compensation mode by the DPD 112, and the external feedback signal is selected for a predetermined time at an appropriate period to set the compensation mode by the equalizer 181 and the OFDM signal generation circuit 111.
  • the appropriate cycle is, for example, once to several times a day, several times a year, etc., or the cycle has a large amount of degradation depending on the signal degradation amount calculated based on the external feedback signal. In such a case, it can be shortened, or can be set appropriately for each maintenance of the base station.
  • the BPF 123 which is an external connection device based on the internal feedback signal and the external feedback signal
  • Radio waves having desired characteristics can be radiated from the antenna 122.
  • the internal feedback signal and the external feedback signal are selectively processed by the common feedback system 170, the configuration of the transmission apparatus 200 can be simplified and the cost can be reduced.
  • FIG. 3 is a functional block diagram showing the configuration of the transmission apparatus according to the third embodiment of the present invention.
  • the transmission device 300 includes an external feedback signal level adjustment unit 190 that is input to the IQ-DEM 177 of the common feedback system 170. Since other configurations are the same as those in FIG. 2, the same components are denoted by the same reference numerals, and description thereof is omitted.
  • the level adjustment unit 190 shown in FIG. 3 reduces the level of the external feedback signal, and includes a level detection circuit (DET) 191 and a variable attenuator (VATT) 192.
  • An external feedback signal input to the external input terminal 172 is supplied to the DET 191 and the VATT 192.
  • the DET 191 detects the level of the input external feedback signal, and controls the attenuation amount of the external feedback signal by the VATT 192 based on the detection result.
  • the level of the external feedback signal is attenuated to the same level as the level of the internal feedback signal from directional coupler 171 and is selectively supplied to IQ-DEM 177 via input selector 173. .
  • variable gain amplifier circuit is provided in place of VATT 192, and the gain is controlled based on the detection level of the external feedback signal by DET 191. To do. As a result, the level of the external feedback signal selectively input to the IQ-DEM 177 is adjusted to the same level as the level of the internal feedback signal.
  • level adjustment section 190 adjusts the level of the external feedback signal input to IQ-DEM 177 to be approximately the same as the level of the internal feedback signal.
  • the external feedback signal can be processed by appropriately setting the circuit constants of the common feedback system 170 so as to adapt to the level of the internal feedback signal that is normally processed. Therefore, each feedback control based on the internal feedback signal and the external feedback signal can be executed with higher accuracy.
  • the level adjustment unit 190 may be provided to adjust the level of the internal feedback signal instead of adjusting the level of the external feedback signal. Further, the level adjustment unit 190 may be provided to adjust the levels of the internal feedback signal and the external feedback signal.
  • the present invention is not limited to a transmission apparatus incorporated in a base station of a wireless communication system that employs an OFDM system, but a transmission apparatus that amplifies an analog or digital input signal and transmits it as an analog output signal, or a modulation or
  • the present invention is widely applicable to a transmission device that transmits a predetermined beacon for modulation, a transmission device that does not have an internal feedback system, and the like.
  • Transmitter 110 Transmission system 111 OFDM signal generation circuit 112 Digital distortion compensation circuit (DPD) 115 IQ modulation circuit (IQ-MOD) 118 Power Amplifier (PA) 121 Antenna connection terminal 122 Antenna 123 Band pass filter (BPF) 130 Internal Feedback System 131 Directional Coupler 135 IQ Demodulator (IQ-DEM) 150 External feedback system 151 External input terminal 155 IQ-DEM 158 Equalizer 170 Common feedback system 171 Directional coupler 172 External input terminal 173 Input selection unit 177 IQ-DEM 180 Output Selection Unit 181 Equalizer 190 Level Adjustment Unit 191 Level Detection Circuit (DET) 192 Variable attenuator (VATT)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

 入力信号を増幅部(117,118)により増幅して信号出力部121から送信する送信装置100において、信号出力部121に接続される外部接続機器123からアンテナ122に出力する出力信号に基づく外部フィードバック信号を入力するための信号入力部151と、信号入力部151に入力される外部フィードバック信号に基づいて、外部接続機器123の出力信号の特性を補償するように入力信号を補正する補正部(111,158)と、を備える。

Description

送信装置 関連出願の相互参照
 本出願は、2010年5月20日に出願された日本国特許出願2010-116551号の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
 本発明は、送信装置に関するものである。
 例えば、無線通信システムの基地局に用いられる送信装置は、その出力端子から所定の特性の送信信号を出力するように構成されている。そのような送信装置の一例として、例えば、特許文献1に開示の送信装置が知られている。この特許文献1に開示の送信装置では、入力信号を参照信号とし、その参照信号と電力増幅器を含むアナログ回路部から出力端子に供給される送信信号から取り出したフィードバック信号との誤差に基づいて歪補正係数を算出する。そして、算出された歪補正係数を入力信号に乗じてアナログ回路部に入力させることにより、出力端子から歪補償された送信信号を出力するようにしている。
特開2003-188747号公報
 ところで、無線通信システムの基地局は、その設置時や設置後に、他の無線通信システムが使用する隣接する周波数帯の電波との干渉を防止するために、あるいは、隣接する周波数帯を使用する他の基地局とアンテナを共用するために、送信装置の出力端子にフィルタや分波器等の外部受動機器が接続される場合がある。また、外部能動機器の接続による電力損失や、給電線による電力損失を補うために、増幅器等の外部能動機器が接続される場合もある。
 しかしながら、基地局の送信装置は、上述したように、その出力端子から所定の特性の送信信号を出力するように構成されている。そのため、上記のように送信装置の出力端子に外部能動機器や外部受動機器等の外部接続機器が接続されると、その外部接続機器の特性によって当該外部接続機器から出力される送信信号が劣化して、通信品質の低下を招くことが懸念される。このような送信装置における課題は、基地局の送信装置に限らず、所定の特性の送信信号を出力する送信装置において、外部接続機器の接続が想定される場合に、同様に生じるものである。
 したがって、本発明の目的は、かかる課題を解決し、外部接続機器による送信信号の劣化を低減できる送信装置を提供することにある。
 上記目的を達成する第1の観点に係る発明は、入力信号を増幅部により増幅して信号出力部から送信する送信装置において、
 前記信号出力部に接続される外部接続機器からアンテナに出力する出力信号に基づく外部フィードバック信号を入力するための信号入力部と、
 該信号入力部に入力される前記外部フィードバック信号に基づいて、前記外部接続機器の出力信号の特性を補償するように前記入力信号を補正する補正部と、
 を備えることを特徴とするものである。
 第2の観点に係る発明は、第1の観点に係る送信装置において、
 前記増幅部から前記信号出力部に供給される送信信号に基づく内部フィードバック信号を入力して、当該送信信号の特性を補償するように前記入力信号を補正する補償部を、さらに備えることを特徴とするものである。
 第3の観点に係る発明は、第2の観点に係る送信装置において、
 前記入力信号を変調して前記増幅部に供給する変調部と、
 前記外部フィードバック信号または前記内部フィードバック信号を復調する復調部と、
 該復調部に対して、前記外部フィードバック信号または前記内部フィードバック信号を選択的に入力させて、復調信号を対応する前記補正部または前記補償部に供給する選択部と、
 をさらに備えることを特徴とするものである。
 第4の観点に係る発明は、第3の観点に係る送信装置において、
 前記復調部に選択的に入力される前記外部フィードバック信号または前記内部フィードバック信号の少なくとも一方のレベルを調整するレベル調整部をさらに備える、ことを特徴とするものである。
 本発明に係る送信装置によれば、外部接続機器の出力信号に基づく外部フィードバック信号により入力信号が補正されるので、外部接続機器による送信信号の劣化を低減することが可能となる。
本発明の第1実施の形態に係る送信装置の構成を示す機能ブロック図である。 本発明の第2実施の形態に係る送信装置の構成を示す機能ブロック図である。 本発明の第3実施の形態に係る送信装置の構成を示す機能ブロック図である。
 以下、本発明の実施の形態について、図を参照して説明する。なお、以下の実施の形態では、OFDM(Orthogonal Frequency Division Multiplexing)方式を採用するWiMAX(Worldwide Interoperability for Microwave Access)やLTE(Long Term Evolution)に代表される無線通信システムの基地局に組み込まれる送信装置を例にとって説明する。
(第1実施の形態)
 図1は、本発明の第1実施の形態に係る送信装置の構成を示す機能ブロック図である。この送信装置100は、送信系110、内部フィードバック系130、および、外部フィードバック系150を備える。送信系110は、OFDM信号生成回路111、デジタル歪補償回路(DPD)112、デジタル-アナログ変換回路(DAC)113Iおよび113Q、ローパスフィルタ(LPF)114Iおよび114Q、IQ変調回路(IQ-MOD)115、局部発振器(LO)116、増幅器(AMP)117、電力増幅器(PA)118、アイソレータ(ISO)119、デュープレクサ(DUP)120、アンテナ接続端子121を備える。アンテナ接続端子121は、PA118により出力された信号を出力する信号出力部を構成する。
 内部フィードバック系130は、方向性結合器131、混合器(MIX)132、LO133、増幅器(AMP)134、IQ復調回路(IQ-DEM)135、LPF136Iおよび136Q、アナログ-デジタル変換回路(ADC)137Iおよび137Qを備える。また、外部フィードバック系150は、外部入力端子151、MIX152、LO153、AMP154、IQ-DEM155、LPF156Iおよび156Q、ADC157Iおよび157Q、等化器158を備える。外部入力端子151は、外部フィードバック信号を入力するための信号入力部を構成する。
 送信系110において、OFDM信号生成回路111は、図示しない上位の制御局等からの入力データ信号を受けて、OFDMベースバンド信号の同相成分(I信号)および直交成分(Q信号)を生成する。これらI信号およびQ信号は、DPD112を経て、DAC113Iおよび113Qによりそれぞれアナログ信号に変換された後、LPF114Iおよび114Qを経てIQ-MOD115に供給されて、LO116からの無線周波数の信号により変調される。IQ-MOD115で変調された変調信号は、AMP117で増幅され、さらに、PA118で所定の電力に増幅されて、送信信号として出力される。この送信信号は、ISO119を経てDUP120によりフィルタリングされてアンテナ接続端子121に供給される。したがって、AMP117およびPA118は、増幅部を構成する。なお、OFDM信号生成回路111で生成されたI信号およびQ信号は、外部フィードバック系150の等化器158にも供給される。
 内部フィードバック系130において、方向性結合器131は、送信系110のISO119とDUP120との間の伝送路に設けられて、PA118から出力される送信信号(送信電力)の一部を内部フィードバック信号として分配する。この方向性結合器131により分配される内部フィードバック信号は、MIX132に供給されて、LO133からの信号と混合されて中間周波数帯に変換される。この周波数変換された内部フィードバック信号は、AMP134で増幅された後、IQ-DEM115により復調されてアナログのI信号およびQ信号が生成される。そして、これらアナログのI信号およびQ信号は、それぞれLPF136Iおよび136Qを経てADC137Iおよび137Qでデジタル信号に変換されてDPD112にフィードバックされる。これにより、DPD112において、PA118の非線形性によって生じる送信信号の特性(歪)を補償するように、OFDM信号生成回路111からのI信号およびQ信号が補正される。したがって、DPD112は、アンテナ接続端子121から出力される送信信号の特性を補償する補償部を構成している。
 また、外部フィードバック系150において、外部入力端子151には、アンテナ接続端子121に接続される外部接続機器の出力信号に基づく外部フィードバック信号が入力される。この外部フィードバック信号は、内部フィードバック系130と同様に、MIX152においてLO153からの信号と混合されて周波数変換された後、AMP154で増幅されて、IQ-DEM155によりアナログのI信号およびQ信号に復調される。そして、復調されたアナログのI信号およびQ信号は、それぞれLPF156Iおよび156Qを経てADC157Iおよび157Qでデジタル信号に変換される。
 ADC157Iおよび157Qによりそれぞれデジタル信号に変換されたI信号およびQ信号は、等化器158にフィードバックされる。等化器158は、フィードバックされたI信号およびQ信号と、OFDM信号生成回路111からのOFDMベースバンド信号のI信号およびQ信号とを比較し、その比較結果に基づいて、フィードバックされたI信号およびQ信号の周波数および位相の劣化を検出し、その劣化を補正するための補正情報を生成してOFDM信号生成回路111に供給する。
 これにより、OFDM信号生成回路111は、アンテナ接続端子121に接続される外部接続機器の出力信号の特性を補償するように、サブキャリア毎に補正を加えてOFDMベースバンド信号のI信号およびQ信号を生成する。したがって、OFDM信号生成回路111および等化器158は、外部接続機器からの出力信号の特性を補償するように入力信号を補正する補正部を構成している。なお、アンテナ接続端子121に入力する受信信号は、DUP120を経て図示しない受信系に入力される。
 本実施の形態に係る送信装置100は、基本的には、アンテナ接続端子121にアンテナ122が接続されて運用される。しかし、例えば、他の無線通信システムが使用する隣接する周波数帯の電波との干渉を防止するために、図1に示すように、アンテナ接続端子121とアンテナ122との間に、外部接続機器であるバンドパスフィルタ(BPF)123が接続されて運用される場合がある。この場合、アンテナ接続端子121から出力される送信信号は、BPF123の特性により劣化して、アンテナ122から所望の特性の電波が放射されない場合がある。
 このような場合は、BPF123とアンテナ122との伝送路に方向性結合器124を設け、これによりBPF123の出力信号の一部を外部フィードバック信号として分配して、その分配された外部フィードバック信号を送信装置100の外部入力端子151に供給する。
 このようにすれば、BPF123の出力信号は、その外部フィードバック信号に基づいて、上述したように、OFDM信号生成回路111により補償されるので、アンテナ122から所望の特性の電波を放射することが可能となる。しかも、この場合、送信装置100の運用中におけるBPF123の出力信号を、リアルタイムでモニタして補償できるので、環境変化や経年変化等による劣化状態の変動にも対応することができる。これにより、アンテナ122から常に所望の特性の電波を放射することが可能となる。
 なお、送信装置100によっては、基地局の設置環境から、当該送信装置100のアンテナ接続端子121に接続される外部接続機器が既知の場合もある。このような場合は、送信装置100の実際の運用に先立って、送信装置100のアンテナ接続端子121に当該既知の外部接続機器を接続して、送信装置100から任意の入力信号を増幅したOFDMの送信信号を出力させる。そして、その際の外部接続機器の出力信号を、適宜減衰等の処理をして外部入力端子151にフィードバックし、これにより外部フィードバック系150の等化器158から得られる補正情報を、例えば、当該等化器158に記憶させる。
 その後、送信装置100の実際の運用においては、外部入力端子151へのフィードバックを停止して、等化器158に記憶されている補正情報を用いて、OFDM信号生成回路111により、上述したように入力信号に対してサブキャリア毎に補正を加えてOFDMベースバンド信号を生成させる。これにより、アンテナ接続端子121に接続されている既知の外部接続機器の出力信号の特性を補償することができる。この場合、実際の運用態様において、外部接続機器の出力信号の一部を外部フィードバック信号として分配して、送信装置100の外部入力端子151にフィードバックする必要がない。したがって、そのフィードバック分の送信電力の損失がなくなり、送信電力の有効利用が図れる。また、外部フィードバック信号を得るための方向性結合器や分配された外部フィードバック信号を外部入力端子151に供給するための給電線等も不要となるので、その分のコストダウンが図れる。
(第2実施の形態)
 図2は、本発明の第2実施の形態に係る送信装置の構成を示す機能ブロック図である。この送信装置200は、図1に示した構成において、内部フィードバック系130と外部フィードバック系150とを共用化した共通フィードバック系170を備える。共通フィードバック系170は、方向性結合器171、外部入力端子172、入力選択部173、MIX174、LO175、AMP176、IQ-DEM177、LPF178Iおよび178Q、ADC179Iおよび179Q、出力選択部180、等化器181を備える。なお、送信系110やその他の外部接続機器等の構成は、図1と同様であるので、同一構成要素には同一参照符号を付して説明を省略する。
 共通フィードバック系170において、方向性結合器171は、図1と同様に、送信系110のISO119とDUP120との間の伝送路に設けられて、PA118から出力される送信信号(送信電力)の一部を内部フィードバック信号として分配する。この内部フィードバック信号は、入力選択部173に供給される。また、外部入力端子172には、図1と同様に、アンテナ接続端子121に接続される外部接続機器の出力信号に基づく外部フィードバック信号が入力される。この外部フィードバック信号は、入力選択部173に供給される。
 入力選択部173は、入力する内部フィードバック信号と外部フィードバック信号とを所定のタイミングで切り替え選択して、MIX174に供給する。MIX174に供給されたフィードバック信号は、LO175からの信号と混合されて中間周波数帯に変換された後、AMP176で増幅されてIQ-DEM177により復調される。これにより、アナログのI信号およびQ信号が生成される。そして、これらアナログのI信号およびQ信号は、それぞれLPF178Iおよび178Qを経てADC179Iおよび179Qでデジタル信号に変換されて出力選択部180に入力される。
 出力選択部180は、入力選択部173による入力信号の選択動作と同期して、ADC179Iおよび179QからのI信号およびQ信号をDPD112または等化器181にフィードバックする。すなわち、入力選択部173により内部フィードバック信号が選択された場合は、その内部フィードバック信号に対応するADC179Iおよび179QからのI信号およびQ信号をDPD112にフィードバックする。また、入力選択部173により外部フィードバック信号が選択された場合は、その外部フィードバック信号に対応するADC179Iおよび179QからのI信号およびQ信号を等化器181にフィードバックする。したがって、入力選択部173および出力選択部180は、外部フィードバック信号または内部フィードバック信号を選択的に入力させて、その復調信号を対応する補正部または補償部に供給する選択部を構成する。
 なお、入力選択部173および出力選択部180による外部フィードバック信号または内部フィードバック信号の選択タイミングは、適宜設定することが可能である。例えば、通常は、内部フィードバック信号を選択して、DPD112による補償モードとし、適宜の周期で外部フィードバック信号を所定時間選択して、等化器181およびOFDM信号生成回路111による補償モードとする。ここで、適宜の周期は、例えば、1日に1回~数回、年に数回等としたり、その周期を外部フィードバック信号に基づいて算出される信号劣化量に応じて、劣化量が多い場合は短くしたり、基地局のメンテナンス毎としたり、適宜設定することが可能である。
 このように、内部フィードバック信号および外部フィードバック信号に基づいて、PA118による送信信号の歪の補償と、外部接続機器であるBPF123による出力信号(送信信号)の劣化補正とを選択的に行うことにより、アンテナ122から所望の特性の電波を放射することが可能となる。しかも、内部フィードバック信号および外部フィードバック信号を、共通フィードバック系170により選択的に処理するので、送信装置200の構成を簡単にでき、コストダウンを図ることが可能となる。
(第3実施の形態)
 図3は、本発明の第3実施の形態に係る送信装置の構成を示す機能ブロック図である。この送信装置300は、図2に示した構成において、共通フィードバック系170のIQ-DEM177に入力される外部フィードバック信号のレベル調整部190を備えるものである。その他の構成は、図2と同様であるので、同一構成要素には同一参照符号を付して説明を省略する。
 図3に示すレベル調整部190は、外部フィードバック信号のレベルを低下させるもので、レベル検出回路(DET)191と可変アッテネータ(VATT)192とを備える。外部入力端子172に入力される外部フィードバック信号は、DET191およびVATT192に供給される。DET191は、入力する外部フィードバック信号のレベルを検出し、その検出結果に基づいてVATT192による外部フィードバック信号の減衰量を制御する。これにより、VATT192において、外部フィードバック信号のレベルを、方向性結合器171からの内部フィードバック信号のレベルと同程度となるように減衰させて入力選択部173を経て選択的にIQ-DEM177に供給する。
 なお、外部入力端子172に入力される外部フィードバック信号のレベルが低いと想定される場合は、VATT192に代えて可変利得増幅回路を設け、その利得をDET191による外部フィードバック信号の検出レベルに基づいて制御する。これにより、IQ-DEM177に選択的に入力される外部フィードバック信号のレベルを、内部フィードバック信号のレベルと同程度に調整する。
 このように、本実施の形態に係る送信装置300は、レベル調整部190により、IQ-DEM177に入力される外部フィードバック信号のレベルを、内部フィードバック信号のレベルと同程度となるように調整する。これにより、共通フィードバック系170の回路定数を通常処理する内部フィードバック信号のレベルに適応するように適切に設定して、外部フィードバック信号を処理することが可能となる。したがって、内部フィードバック信号および外部フィードバック信号に基づくそれぞれのフィードバック制御を、より精度よく実行することが可能となる。
 なお、本発明は、上記実施の形態に限定されるものではなく、幾多の変形または変更が可能である。例えば、図3において、レベル調整部190は、外部フィードバック信号のレベル調整に代えて内部フィードバック信号のレベルを調整するように設けてもよい。また、レベル調整部190は、内部フィードバック信号および外部フィードバック信号のそれぞれのレベルを調整するように設けてもよい。また、本発明は、OFDM方式を採用する無線通信システムの基地局に組み込まれる送信装置に限らず、アナログあるいはデジタルの入力信号を増幅してアナログの出力信号として送信する送信装置や、変調あるいは無変調の所定のビーコンを送信する送信装置、内部フィードバック系を有しない送信装置等に広く適用可能である。
 100,200,300 送信装置
 110 送信系
 111 OFDM信号生成回路
 112 デジタル歪補償回路(DPD)
 115 IQ変調回路(IQ-MOD)
 118 電力増幅器(PA)
 121 アンテナ接続端子
 122 アンテナ
 123 バンドパスフィルタ(BPF)
 130 内部フィードバック系
 131 方向性結合器
 135 IQ復調回路(IQ-DEM)
 150 外部フィードバック系
 151 外部入力端子
 155 IQ-DEM
 158 等化器
 170 共通フィードバック系
 171 方向性結合器
 172 外部入力端子
 173 入力選択部
 177 IQ-DEM
 180 出力選択部
 181 等化器
 190 レベル調整部
 191 レベル検出回路(DET)
 192 可変アッテネータ(VATT)
 
            

Claims (4)

  1.  入力信号を増幅部により増幅して信号出力部から送信する送信装置において、
     前記信号出力部に接続される外部接続機器からアンテナに出力する出力信号に基づく外部フィードバック信号を入力するための信号入力部と、
     該信号入力部に入力される前記外部フィードバック信号に基づいて、前記外部接続機器の出力信号の特性を補償するように前記入力信号を補正する補正部と、
     を備えることを特徴とする送信装置。
  2.  前記増幅部から前記信号出力部に供給される送信信号に基づく内部フィードバック信号を入力して、当該送信信号の特性を補償するように前記入力信号を補正する補償部を、さらに備えることを特徴とする請求項1に記載の送信装置。
  3.  前記入力信号を変調して前記増幅部に供給する変調部と、
     前記外部フィードバック信号または前記内部フィードバック信号を復調する復調部と、
     該復調部に対して、前記外部フィードバック信号または前記内部フィードバック信号を選択的に入力させて、復調信号を対応する前記補正部または前記補償部に供給する選択部と、
     をさらに備えることを特徴とする請求項2に記載の送信装置。
  4.  前記復調部に選択的に入力される前記外部フィードバック信号または前記内部フィードバック信号の少なくとも一方のレベルを調整するレベル調整部をさらに備える、ことを特徴とする請求項3に記載の送信装置。
     
PCT/JP2011/002778 2010-05-20 2011-05-18 送信装置 WO2011145346A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010116551A JP2011244341A (ja) 2010-05-20 2010-05-20 送信装置
JP2010-116551 2010-05-20

Publications (1)

Publication Number Publication Date
WO2011145346A1 true WO2011145346A1 (ja) 2011-11-24

Family

ID=44991464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002778 WO2011145346A1 (ja) 2010-05-20 2011-05-18 送信装置

Country Status (2)

Country Link
JP (1) JP2011244341A (ja)
WO (1) WO2011145346A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311497B2 (ja) * 2014-07-01 2018-04-18 富士通株式会社 無線装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053625A (ja) * 1999-08-13 2001-02-23 Ando Electric Co Ltd 基地局システム
JP2002077285A (ja) * 2000-08-31 2002-03-15 Hitachi Kokusai Electric Inc 送信機
JP2004328342A (ja) * 2003-04-24 2004-11-18 Nec Mobiling Ltd 送信装置及びその歪み補償方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008998B2 (ja) * 1991-07-31 2000-02-14 日本電気株式会社 無線送信装置
JP2008187618A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 歪み補償装置
US8185065B2 (en) * 2009-10-15 2012-05-22 Crestcom, Inc. Transmitting unit that reduces PAPR using out-of-band distortion and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053625A (ja) * 1999-08-13 2001-02-23 Ando Electric Co Ltd 基地局システム
JP2002077285A (ja) * 2000-08-31 2002-03-15 Hitachi Kokusai Electric Inc 送信機
JP2004328342A (ja) * 2003-04-24 2004-11-18 Nec Mobiling Ltd 送信装置及びその歪み補償方法

Also Published As

Publication number Publication date
JP2011244341A (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
US9106304B2 (en) Correction of quadrature errors
JP3381689B2 (ja) 非線形歪み補償回路及びそれを用いた送信装置並びに移動通信機
US8224266B2 (en) Power amplifier predistortion methods and apparatus using envelope and phase detector
JP5381202B2 (ja) 時分割双方向伝送方式の無線装置
US9369094B2 (en) Systems and methods for improved power yield and linerization in radio frequency transmitters
US20080233879A1 (en) Radio System, Radio Transmitter, and Radio Receiver
EP2830273B1 (en) Device and method for communications correction
EP2761739B1 (en) Systems and methods for adaptive power amplifier linearization
EP2779440B1 (en) Baseband digital pre-distortion architecture
US20120099624A1 (en) Communication device and method of reducing harmonics transmitted
JP2000228646A (ja) 携帯移動端末および送信装置
US10637525B2 (en) Wireless device and wireless communication method
WO2011145346A1 (ja) 送信装置
US20030045247A1 (en) Amplifying device
JP2006094043A (ja) 送信装置及び通信装置
JP5122361B2 (ja) 歪み補償機能を備えた増幅装置
JP5752005B2 (ja) 送信装置
JP2008098781A (ja) 通信装置
JP2005012419A (ja) 増幅装置
JP5485045B2 (ja) 通信装置
US7760043B2 (en) Polar modulation apparatus
JP2012175573A (ja) マイクロ波送信装置
KR20110023541A (ko) 알에프아이디(rfid)의 리더
JP5146300B2 (ja) 無線送信機、キャリアリーク制御方法
KR20180076780A (ko) 중계기 및 중계기의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783283

Country of ref document: EP

Kind code of ref document: A1