WO2011145255A1 - 電池制御装置および車両 - Google Patents

電池制御装置および車両 Download PDF

Info

Publication number
WO2011145255A1
WO2011145255A1 PCT/JP2011/001965 JP2011001965W WO2011145255A1 WO 2011145255 A1 WO2011145255 A1 WO 2011145255A1 JP 2011001965 W JP2011001965 W JP 2011001965W WO 2011145255 A1 WO2011145255 A1 WO 2011145255A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
unit
discharge
remaining capacity
voltage value
Prior art date
Application number
PCT/JP2011/001965
Other languages
English (en)
French (fr)
Inventor
哲夫 小池
Original Assignee
電動車両技術開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電動車両技術開発株式会社 filed Critical 電動車両技術開発株式会社
Publication of WO2011145255A1 publication Critical patent/WO2011145255A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC

Definitions

  • the present invention relates to a battery control device that controls a secondary battery mounted on a vehicle.
  • the remaining capacity of the secondary battery also changes depending on, for example, the difference in the internal resistance of the secondary battery, and the internal resistance of the secondary battery also changes depending on the temperature. Further, when the vehicle is in operation, the surrounding environment changes relatively frequently, and the temperature of the secondary battery is difficult to be constant. Therefore, it is not easy to accurately detect the remaining capacity or the deterioration state of the secondary battery mounted on the vehicle.
  • the present invention makes it possible to more accurately detect the remaining capacity or the degree of deterioration of a secondary battery mounted on a vehicle.
  • the secondary battery is discharged until the voltage value of the secondary battery mounted on the vehicle reaches a predetermined discharge end voltage value while the vehicle is stopped.
  • a discharge control unit a first remaining capacity specifying unit that specifies the remaining capacity of the secondary battery before discharging by the discharge control unit as a first remaining capacity based on a predetermined specifying method, and a discharge amount of the secondary battery Based on the discharge amount measured by the discharge amount measuring unit between the discharge amount measuring unit to be measured and the discharge by the discharge control unit, the remaining capacity of the secondary battery before the discharge by the discharge control unit is specified as the second remaining capacity
  • a second remaining capacity specifying unit, and a specifying method correcting unit that corrects the specifying method based on a difference between the first remaining capacity and the second remaining capacity.
  • the first remaining capacity specifying unit specifies the remaining capacity of the secondary battery during operation of the vehicle based on the specifying method, and determines the remaining capacity of the secondary battery immediately before the operation of the vehicle is stopped first. It may be specified as the remaining capacity.
  • the battery control device may further include a temperature acquisition unit that acquires the temperature of the secondary battery, and the identification method correction unit may correct the identification method based on the difference and the temperature.
  • the battery control device further includes a temperature holding unit that holds the temperature during discharge by the discharge control unit acquired by the temperature acquisition unit, and the specifying method correction unit differs from the temperature during discharge held by the temperature holding unit.
  • the identification method may be corrected based on the above.
  • the temperature holding unit further holds the temperature during operation of the vehicle acquired by the temperature acquisition unit
  • the specifying method correction unit is the temperature during discharge held by the temperature holding unit, during operation
  • the specific method may be corrected based on the temperature and the difference.
  • the first remaining capacity specifying unit calculates the discharge amount of the secondary battery during the operation of the vehicle measured by the discharge amount measurement unit, at a predetermined end-of-charge voltage value of the secondary battery. By subtracting from the charged amount, the remaining capacity of the secondary battery during operation of the vehicle may be specified.
  • the battery control device measures the charge amount of the secondary battery when the secondary battery is charged until the voltage value of the secondary battery reaches a predetermined charge end voltage value from the discharge end voltage value.
  • a charge amount measuring unit and a full charge amount specifying unit that specifies a full charge amount based on the charge amount measured by the charge amount measuring unit are further provided, and the first remaining capacity specifying unit is specified by the full charge amount specifying unit
  • the remaining capacity may be specified by subtracting the discharge amount from the full charge amount.
  • the battery control device may further include a transmission unit that transmits data indicating the difference to a server that collects information about the secondary battery.
  • the discharge control unit may discharge the secondary battery after a predetermined period has elapsed after the vehicle is stopped.
  • a secondary battery mounted on a vehicle and a load device that operates by receiving power supply from the secondary battery during operation of the vehicle are stopped.
  • a connection control unit that is electrically connected to the inside, and after the secondary battery and the load device are electrically connected by the connection control unit, the voltage value of the secondary battery at two different timings is set to the first voltage value and the first voltage value.
  • a voltage value acquiring unit that acquires the two voltage values; and a deterioration state specifying unit that specifies a deterioration state of the secondary battery based on the first voltage value and the second voltage value.
  • the battery control device further includes a correlation holding unit that holds a correlation between the first voltage value, the second voltage value, and the deterioration state of the secondary battery, and the deterioration state specifying unit is based on the correlation.
  • the deterioration state of the secondary battery corresponding to the first voltage value and the second voltage value acquired by the voltage value acquisition unit may be specified.
  • the load device is a motor serving as a drive source for the vehicle, and the connection control unit electrically connects the secondary battery and the motor, and supplies current to the excitation coil of the motor. Also good.
  • the battery control apparatus may further include a transmission unit that transmits information indicating the deterioration state of the secondary battery specified by the deterioration state specifying unit to a server that collects information about the secondary battery.
  • the battery control device described above and a secondary battery are provided.
  • FIG. 1 shows a schematic configuration of an electric vehicle according to the present embodiment.
  • an electric vehicle that is one of the electric vehicles will be described as an example.
  • the present embodiment can also be applied to other electric vehicles including a motor generator as a drive source.
  • the electric vehicle is equipped with a secondary battery 10.
  • the secondary battery 10 may be a nickel metal hydride secondary battery or a lithium ion secondary battery.
  • the secondary battery 10 has a plurality of battery blocks connected in series and in parallel.
  • Each of the plurality of battery blocks includes a plurality of battery modules electrically connected in series and in parallel.
  • the battery module includes a plurality of single cells (cells) electrically connected in series and in parallel.
  • the configuration of the secondary battery 10 is not limited to the above.
  • the electric power from the secondary battery 10 is supplied to the motor generator 40 via the relay 20 and the inverter 30.
  • the power from the motor generator 40 is transmitted to the wheels via the drive shaft. Further, the regenerative power generated by the motor generator 40 when the electric vehicle decelerates is charged to the secondary battery 10 via the inverter 30 and the relay 20.
  • the configuration of the electric vehicle is not limited to the above.
  • an electric vehicle of an in-wheel motor system in which a motor is disposed in a wheel may be used.
  • the electric vehicle includes a battery ECU 100, a main ECU 200, and a brake ECU 300.
  • the battery ECU 100 acquires the voltage value V between the terminals of the secondary battery 10 via the voltage sensor 60.
  • Battery ECU 100 acquires charge / discharge current value I including charge current Ic and discharge current Id for secondary battery 10 via current sensor 62.
  • the battery ECU 100 acquires the temperature T of the surface of the secondary battery 10 via the temperature sensor 64.
  • the voltage sensor 60 and / or the temperature sensor 64 may be provided for each battery block, each battery module, or each cell constituting the secondary battery 10.
  • the battery ECU 100 specifies the remaining capacity, the charged state, or the deteriorated state of the secondary battery 10 based on information such as the voltage value V, the charging / discharging current value I including the charging current Ic and the discharging current Id, and the temperature T. , Together with information such as voltage value V, charge / discharge current value I, temperature T, etc., is transmitted to main ECU 200.
  • the main ECU 200 controls the inverter 30 and the like based on information from the battery ECU 100 and the like in order to control operations such as running and stopping of the electric vehicle.
  • the brake ECU 300 receives an input of a brake pedal signal via the brake pedal and controls the brake system 50 based on the brake pedal signal, thereby decelerating the electric vehicle.
  • the main ECU 200 controls the inverter 30 and the like to perform regenerative control for charging the regenerative energy generated in the motor generator 30 to the secondary battery 10.
  • the battery ECU 100 measures the charge amount based on the voltage value V, the charge / discharge current I, and the like even during charging of the secondary battery 10 by the regenerative control, and specifies the remaining capacity of the charge amount secondary battery 10.
  • the battery ECU 100 discharges the secondary battery 10 while the electric vehicle is stopped and is measured during the discharge. Based on the discharged amount, the predetermined specifying method is corrected by correcting the correction coefficient k given to the function for specifying the remaining capacity, the value shown in the lookup table, and the like.
  • stop means the period when the start switch for starting an electric vehicle is an OFF state.
  • operating means a period in which the start switch is in an ON state.
  • the battery ECU 100 electrically connects the secondary battery 10 and the motor generator 40 in a state where the brake system 50 is operated and the rotation of the motor generator 40 is fixed while the electric vehicle is stopped. A high load is applied to the secondary battery 10.
  • Battery ECU 100 specifies the deterioration state of secondary battery 10 based on the amount of change in voltage value V of secondary battery 10 when a high load is applied.
  • FIG. 2 shows functional blocks of the battery ECU 100.
  • the charge amount measuring unit 102 measures the charge amount charged in the secondary battery 10 based on the charging current Ic, the voltage value V, and the charging time Hc.
  • the charge amount measuring unit 102 may use an average value, a mean square value, or a moving average value as the charging current I and the voltage value V.
  • the charge amount measuring unit 102 may measure the charge amount by integrating a value obtained by multiplying the charge current I and the voltage value V by the charge time Hc.
  • the full charge amount specifying unit 104 specifies the charge amount until the voltage value V of the secondary battery 10 reaches the charge end voltage value from the state of the discharge end voltage value determined. Specify the amount of charge.
  • the full charge amount specifying unit 104 specifies the charge amount until the voltage value of any cell, battery module, or battery block constituting the secondary battery 10 reaches the end-of-charge voltage value.
  • the full charge amount of the battery 10 may be specified.
  • the discharge amount measuring unit 106 measures the discharge amount discharged from the secondary battery 10 based on the discharge current Id, the voltage value V, and the discharge time Hd.
  • the charge amount measuring unit 102 may use an average value, a mean square value, or a moving average value as the discharge current Id and the voltage value V.
  • the discharge amount measuring unit 106 may measure the discharge amount by integrating a value obtained by multiplying the discharge current Id and the voltage value V by the discharge time Hd.
  • the first remaining capacity specifying unit 108 specifies the remaining capacity of the secondary battery 10 during operation of the electric vehicle. More specifically, the first remaining capacity specifying unit 108 specifies the remaining capacity by subtracting the discharge amount provided from the discharge amount measuring unit 106 from the full charge amount provided from the full charge amount specifying unit 104.
  • the remaining capacity holding unit 112 holds the remaining capacity specified by the first remaining capacity specifying unit 108.
  • the discharge amount measuring unit 106 registers the remaining capacity specified immediately before the electric vehicle stops operating, that is, immediately before the start switch is turned off, in the remaining capacity holding unit 112 as the first remaining capacity Ca before discharging.
  • the second remaining capacity specifying unit 110 discharges the amount of discharge measured by the discharge amount measuring unit 106 while the discharge control unit 124 described later discharges the secondary battery 10 while the electric vehicle is stopped. It is specified as the second remaining capacity Cb of the previous secondary battery.
  • the discharge controller 124 waits for a predetermined reference period, for example, 2 hours after the electric vehicle stops operating, and after the reference period has elapsed, the voltage of the secondary battery 10 is The secondary battery 10 is discharged until the value V reaches the discharge end voltage value. Note that the discharge control unit 124 sets the voltage value V of the secondary battery 10 to the end of discharge when the voltage value of any cell, battery module, or battery block constituting the secondary battery 10 reaches the end of discharge voltage value. It may be determined that the voltage value has been reached.
  • the discharge control unit 124 connects the secondary battery 10 and the motor generator 40 in a state where the clutch is disengaged or in a state where the brake is applied, and causes the secondary current to flow through the excitation coil included in the motor generator 40.
  • the battery 10 is discharged.
  • the discharge control unit 124 causes the electric vehicle to function as a power storage device and supplies power from the secondary battery 10 to the external electrical device.
  • the secondary battery 10 may be discharged.
  • the temperature acquisition unit 114 acquires the surface temperature T of the secondary battery 10 from the temperature sensor 64 periodically, for example, every second, and registers the temperature T with the time information indicating the acquired time.
  • the identification method correction unit 118 corrects the identification method based on the first remaining capacity Ca, the second remaining capacity Cb, and the temperature T immediately before the secondary battery 10 is discharged by the discharge control unit 124.
  • the correction coefficient k used when the specifying unit 108 calculates the remaining capacity is specified.
  • the first remaining capacity Ca immediately before the secondary battery 10 is discharged by the discharge control unit 124 and the second remaining capacity corresponding to the discharge amount associated with the discharge of the secondary battery 10 by the discharge control unit 124.
  • Cb is the same value.
  • the remaining capacity of the secondary battery 10 changes depending on, for example, the difference in the internal resistance of the secondary battery 10, and the internal resistance of the secondary battery 10 also changes depending on the temperature.
  • the specifying method correction unit 118 calculates the difference ⁇ C between the first remaining capacity Ca and the second remaining capacity Cb, specifies the correction coefficient k based on the difference ⁇ C, and causes the correction coefficient holding unit 122 to hold the correction coefficient k.
  • the identification method correction unit 118 may use the difference ⁇ C as the correction coefficient k.
  • the first remaining capacity specifying unit 108 adds the difference ⁇ C to the value obtained by subtracting the discharge amount provided from the discharge amount measuring unit 106 from the full charge amount, thereby the secondary battery in which the electric vehicle is operating. May be calculated.
  • the specifying method correction unit 118 uses the temperature T of the secondary battery 10 in operation, the temperature T of the secondary battery 10 being discharged by the discharge control unit 124, and the difference ⁇ C as parameters, and performs a statistical classification algorithm or data mining.
  • a correction coefficient k that reduces the difference ⁇ C may be specified. That is, the specifying method correction unit 118 continuously counts the temperature T of the secondary battery 10 in operation, the temperature T of the secondary battery 10 being discharged by the discharge control unit 124, and the difference ⁇ C, and zeroes the difference ⁇ C.
  • the correction coefficient k may be updated sequentially based on a statistical prediction.
  • the specifying method correction unit 118 may specify the correction coefficient k for each temperature change pattern of the operating secondary battery 10 and each driving pattern of the electric vehicle. Note that the temperature T of the secondary battery 10 in operation and the temperature T of the secondary battery 10 being discharged by the discharge control unit 124 may be an average temperature measured during each period.
  • connection control unit 150 closes the relay 20 while the rotation of the motor generator 40 is fixed by the brake system 50 while the electric vehicle is stopped.
  • Secondary battery 10 and motor generator 40 are electrically connected.
  • a high load is applied to the secondary battery 10.
  • the deterioration state of the secondary battery 10 can be specified based on so-called IR (current ⁇ internal resistance) drop.
  • FIG. 3 shows a state of voltage drop of the secondary battery 10 that occurs when the secondary battery 10 is in a high load state. The secondary battery 10 tends to have a voltage drop as the deterioration progresses.
  • the deterioration state of the secondary battery 10 is specified based on the magnitude of the change rate of the voltage value V.
  • the voltage value acquisition unit 152 acquires the voltage value V of the secondary battery 10 at at least two different timings immediately after the connection control unit 150 enters the high load state, and provides it to the deterioration state specifying unit 154. To do.
  • the correlation holding unit 156 holds the change rate of the voltage value V and the deterioration state of the secondary battery 10 in association with each other.
  • the degradation state specifying unit 154 calculates the rate of change of the voltage value V based on the provided plurality of voltage values V, and refers to the correlation holding unit 156, so that the secondary battery corresponding to the calculated rate of change is obtained.
  • Ten deterioration states are specified. Note that the deterioration state of the secondary battery 10 may be the remaining life of the secondary battery 10.
  • the deterioration state specifying unit 154 may specify the deterioration state of the secondary battery 10 based on the image data indicating the voltage waveform pattern of the secondary battery 10 as shown in FIG.
  • the correlation holding unit 156 may hold in advance image data indicating the voltage waveform pattern of the secondary battery 10 in the initial state (at the time of shipment).
  • the deterioration state specifying unit 154 specifies the voltage waveform pattern of the secondary battery 10 when the secondary battery 10 is in a high load state, the image data corresponding to the specified voltage waveform pattern, and the above-mentioned
  • the deterioration state of the secondary battery 10 may be specified based on the degree of coincidence by comparing the image data corresponding to the voltage waveform pattern in the initial state.
  • the correlation holding unit 156 may hold image data of a reference voltage waveform pattern for each deterioration state of the secondary battery 10 in advance.
  • the deterioration state specifying unit 154 specifies the voltage waveform pattern of the secondary battery 10 when the secondary battery 10 is in a high load state, and the reference voltage waveform having the highest degree of coincidence with the specified voltage waveform pattern. By specifying the pattern, the deterioration state of the secondary battery 10 may be specified.
  • the correlation holding unit 156 may hold image data of a reference voltage waveform pattern for each deterioration state in advance for each battery block, each battery module, or each cell.
  • the deterioration state specifying unit 154 specifies and specifies the voltage waveform pattern of the secondary battery 10 for each battery block, each battery module, or each cell.
  • the deterioration state may be specified for each battery block, each battery module, or each cell by specifying the reference voltage waveform pattern having the highest degree of coincidence with each voltage waveform pattern.
  • the transmission unit 130 transmits information on the state of the secondary battery 10 to a predetermined transmission destination.
  • the information regarding the state of the secondary battery 10 includes the difference ⁇ C, the full charge amount of the secondary battery 10 specified by the full charge amount specifying unit 104, and the deterioration state of the secondary battery 10 specified by the deterioration state specifying unit 154. May be included.
  • the transmission destination may be a server that collects information necessary for maintaining an electric vehicle, for example.
  • FIG. 4 shows an example of temperature information held by the temperature holding unit 116.
  • the temperature holding unit 116 holds the temperature T of the secondary battery 10 periodically acquired by the temperature acquisition unit 114, the time when the temperature T is acquired, and the operation state of the electric vehicle at the time when the temperature T is acquired in association with each other. Also good.
  • the operation state of the electric vehicle may include start of discharge, stop of operation, start of discharge, stop of discharge and end of discharge, start of charge, end of charge and end of charge during operation.
  • the specifying method correcting unit 118 can specify the correlation between the operation state of the electric vehicle and the temperature T of the secondary battery 10 by referring to the temperature holding unit 116.
  • FIG. 5 is a flowchart showing a correction procedure of a specific method executed after the electric vehicle stops operating, that is, after the start switch is turned off.
  • the discharge controller 124 determines whether or not the reference period has elapsed since the operation was stopped (S100). If it has elapsed, the discharge control unit 124 discharges the secondary battery 10 until the voltage value V of the secondary battery 10 reaches the end-of-discharge voltage value (S102).
  • the discharge amount measuring unit 106 measures the discharge amount of the secondary battery 10 from when the discharge control unit 124 starts discharging the secondary battery 10 to when the discharge ends, and the second remaining capacity specifying unit 110 The measured discharge amount is specified as the second remaining capacity Cb.
  • the specifying method correcting unit 118 refers to the remaining capacity holding unit 112 and specifies the remaining capacity specified by the first remaining capacity specifying unit 108 immediately before the operation is stopped as the first remaining capacity Ca.
  • the specifying method correction unit 118 calculates a difference ⁇ C between the first remaining capacity Ca and the second remaining capacity Cb, and registers the difference ⁇ C in the difference holding unit 120 (S106).
  • the identification method correction unit 118 refers to the temperature holding unit 116 and the difference holding unit 120, and uses, for example, a statistical classification algorithm or data mining based on the temperature T during operation of the electric vehicle, the temperature T during discharge, and the difference ⁇ C. Then, the correction coefficient k that can reduce the difference ⁇ C is specified (S108).
  • the discharge control unit 124 waits until a predetermined period elapses after the electric vehicle stops operating. Thereafter, the discharge control unit 124 discharges the secondary battery 10 in a relatively stable state.
  • the discharge control unit 124 corresponds to detecting that the temperature of the secondary battery 10 has become constant, such as when the rate of change of the temperature of the secondary battery 10 becomes smaller than a predetermined rate of change.
  • the discharge of the secondary battery 10 may be started.
  • the second remaining capacity specifying unit 110 specifies the second remaining capacity Cb based on the amount of discharge during discharge.
  • the second remaining capacity Cb is a value based on the amount of discharge measured by actually discharging the secondary battery 10 in a relatively stable state. Therefore, there is a high possibility that the value is more accurate than the first remaining capacity Ca. Therefore, the remaining capacity of the secondary battery 10 during operation of the electric vehicle is specified more accurately by setting the correction coefficient k such that the first remaining capacity Ca approaches the second remaining capacity Cb.
  • the battery ECU 100 charges the secondary battery 10 until the voltage value V of the secondary battery 10 reaches the end-of-charge voltage value.
  • the battery ECU 100 may end the charging of the secondary battery 19 when the voltage value of any cell, battery module, or battery block constituting the secondary battery 10 reaches the charge end voltage value. Charging of the secondary battery 10 may be performed by a quick charger.
  • the full charge amount specifying unit 104 may specify the full charge amount of the secondary battery 10 when the secondary battery 10 is charged after the correction coefficient k is specified.
  • FIG. 6 is a flowchart showing a procedure for specifying the deterioration state of the secondary battery 10 after the electric vehicle stops operating.
  • connection control unit 150 determines whether or not the reference period has elapsed since the operation was stopped (S200). If it has elapsed, the connection control unit 150 causes the brake ECU 300 to operate the brake system 50 via the main ECU 200 and outputs a brake signal so that the rotation of the motor generator 40 is fixed. Next, the connection control unit 150 electrically connects the secondary battery 10 and the motor generator 40 by closing the relay 20 while the rotation of the motor generator 40 is fixed. A current is passed through the excitation coil provided (S202). Note that the connection control unit 150 does not have to fix the rotation of the motor generator 40 as long as a current flows through the exciting coil and the electric vehicle can maintain the stopped state.
  • the voltage value acquisition unit 152 is to measure the rate of voltage drop that occurs immediately after the secondary battery 10 and the motor generator 40 are electrically connected, that is, the rate of change of the voltage value of the secondary battery 10.
  • the voltage values V of the secondary batteries 10 at a plurality of different timings are acquired and provided to the deterioration state specifying unit 154.
  • the deterioration state specifying unit 154 calculates the rate of change of the voltage value V based on the plurality of voltage values V, and refers to the correlation holding unit 156 to determine the deterioration state of the secondary battery 10 corresponding to the calculated rate of change. Is identified (S204).
  • the connection control unit 150 waits until a predetermined period elapses after the electric vehicle stops operating. Thereafter, the connection control unit 150 applies a high load to the secondary battery 10 in a relatively stable state, causes an IR drop to occur in the secondary battery 10, a deterioration state of the secondary battery 10, or for each battery block, The deterioration state for each battery module or each cell is specified. As described above, since the deterioration state is determined for the secondary battery 10 in a relatively stable state, the deterioration state of the secondary battery 10 or the deterioration of each battery block, each battery module, or each cell more accurately. A state is identified.
  • the deterioration state of the secondary battery 10 may be specified in response to the correction coefficient k being specified and the charging of the secondary battery 10 being completed.
  • the correction of the specifying method and the specification of the deterioration state may be executed immediately after the operation is stopped.
  • the electric power to the battery ECU 100, the main ECU 200, the brake ECU 300, etc. during the operation stop of the electric vehicle may be supplied from an auxiliary battery provided in the electric vehicle.
  • the life of the secondary battery 10 may be shortened. Therefore, if the remaining capacity of the secondary battery 10 is accurately grasped, the secondary battery 10 can hardly be overcharged or overdischarged during operation of the electric vehicle, and the life of the secondary battery 10 can be shortened. Can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

 車両に搭載された二次電池の残容量または劣化度合をより正確に検出可能にする。電池制御装置は、車両の運行停止中に、車両に搭載された二次電池の電圧値が予め定められた放電終止電圧値に到達するまで二次電池を放電させる放電制御部と、予め定められた特定方法に基づいて放電制御部による放電前の二次電池の残容量を第1残容量として特定する第1残容量特定部と、二次電池の放電量を測定する放電量測定部と、放電制御部による放電の間に放電量測定部により測定された放電量に基づいて、放電制御部による放電前の二次電池の残容量を第2残容量として特定する第2残容量特定部と、第1残容量と第2残容量との差分に基づいて特定方法を補正する特定方法補正部とを備える。

Description

電池制御装置および車両
 本発明は、車両に搭載された二次電池を制御する電池制御装置に関する。
 従来、車両に搭載された二次電池の残容量または二次電池の劣化状態を検出する方法が種々提案されている。
 特許文献1 特開2006-194789号公報
 特許文献2 特開2008-179284号公報
 二次電池の残容量は、例えば二次電池の内部抵抗の大きさの違いによっても変化し、二次電池の内部抵抗は温度によっても変化する。さらに、車両が運行中の場合、周囲環境の変化が比較的多く、二次電池の温度は一定になりにくい。したがって、車両に搭載された二次電池の残容量または劣化状態を正確に検出することは容易ではない。
 本発明は、車両に搭載された二次電池の残容量または劣化度合をより正確に検出可能にする。
 本発明に係る電池制御装置の一つの態様では、車両の運行停止中に、車両に搭載された二次電池の電圧値が予め定められた放電終止電圧値に到達するまで二次電池を放電させる放電制御部と、予め定められた特定方法に基づいて放電制御部による放電前の二次電池の残容量を第1残容量として特定する第1残容量特定部と、二次電池の放電量を測定する放電量測定部と、放電制御部による放電の間に放電量測定部により測定された放電量に基づいて、放電制御部による放電前の二次電池の残容量を第2残容量として特定する第2残容量特定部と、第1残容量と第2残容量との差分に基づいて特定方法を補正する特定方法補正部とを備える。
 上記の電池制御装置において、第1残容量特定部は、特定方法に基づいて車両の運行中の二次電池の残容量を特定し、車両の運行停止直前の二次電池の残容量を第1残容量として特定してもよい。
 上記の電池制御装置において、二次電池の温度を取得する温度取得部をさらに備え、特定方法補正部は、差分と温度とに基づいて特定方法を補正してもよい。
 上記の電池制御装置において、温度取得部により取得された放電制御部による放電中における温度を保持する温度保持部をさらに備え、特定方法補正部は、温度保持部が保持する放電中における温度と差分とに基づいて特定方法を補正してもよい。
 上記の電池制御装置において、温度保持部は、温度取得部により取得された車両の運行中の温度をさらに保持し、特定方法補正部は、温度保持部が保持する放電中における温度、運行中の温度、および差分に基づいて特定方法を補正してもよい。
 上記の電池制御装置において、第1残容量特定部は、放電量測定部により測定された車両の運行中における二次電池の放電量を、二次電池の予め定められた充電終止電圧値における満充電量から減算することで、車両の運行中における二次電池の残容量を特定してもよい。
 上記の電池制御装置は、二次電池の電圧値が前記放電終止電圧値から予め定められた充電終止電圧値に到達するまで二次電池が充電される場合における二次電池の充電量を測定する充電量測定部と、充電量測定部により測定された充電量に基づいて満充電量を特定する満充電量特定部とをさらに備え、第1残容量特定部は、満充電量特定部により特定された満充電量から放電量を減算することで、残容量を特定してもよい。
 上記の電池制御装置は、二次電池に関する情報を収集するサーバに、差分を示すデータを送信する送信部をさらに備えてもよい。
 上記の電池制御装置において、放電制御部は、車両の運行停止後、予め定められた期間が経過した後に、二次電池を放電させてもよい。
 本発明に係る電池制御装置の1つの態様では、車両に搭載された二次電池と、車両の運行中に二次電池からの電力の供給を受けて動作する負荷装置とを、車両の運行停止中に電気的に接続する接続制御部と、接続制御部により二次電池と負荷装置とが電気的に接続された後、異なる2つのタイミングにおける二次電池の電圧値を第1電圧値および第2電圧値として取得する電圧値取得部と、第1電圧値および第2電圧値に基づいて二次電池の劣化状態を特定する劣化状態特定部とを備える。
 上記の電池制御装置は、第1電圧値と前記第2電圧値と前記二次電池の劣化状態との相関関係を保持する相関関係保持部をさらに備え、劣化状態特定部は、相関関係に基づいて電圧値取得部により取得された第1電圧値および第2電圧値に対応する二次電池の劣化状態を特定してもよい。
 上記の電池制御装置において、負荷装置は、車両の駆動源となるモータであり、接続制御部は、二次電池とモータとを電気的に接続し、モータが有する励磁コイルに電流を供給してもよい。
 上記の電池制御装置は、劣化状態特定部により特定された二次電池の劣化状態を示す情報を二次電池に関する情報を収集するサーバに送信する送信部をさらに備えてもよい。
 本発明に係る車両の1つの態様では、上記の電池制御装置と、二次電池とを備える。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る電気自動車の概略構成を示す図である。 電池ECUの機能ブロックを示す図である。 二次電池の電圧降下の様子を示す図である。 温度保持部が保持する温度情報の一例を示す図である。 特定方法を補正する手順を示すフローチャートである。 二次電池の劣化状態を特定する手順を示すフローチャートである。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本実施形態に係る電気自動車の概略構成を示す。なお、本実施形態では、電動車両の1つである電気自動車を例に説明するが、駆動源としてモータジェネレータを備える他の電動車両にも本実施形態は適用することができる。
 電気自動車は、二次電池10を搭載する。二次電池10は、ニッケル水素二次電池、リチウムイオン二次電池でもよい。二次電池10は、直列および並列に接続された複数の電池ブロックを有する。複数の電池ブロックは、それぞれ、電気的に直列および並列に接続された複数の電池モジュールを含む。電池モジュールは、電気的に直列および並列に接続された複数の単電池(セル)を含む。なお、二次電池10の構成は上記に限定されるものではない。
 二次電池10からの電力は、リレー20、インバータ30を介してモータジェネレータ40に供給される。モータジェネレータ40からの動力はドライブシャフトを介して車輪に伝達される。また、電気自動車が減速する場合にモータジェネレータ40で発生する回生電力はインバータ30、リレー20を介して二次電池10に充電される。なお、電気自動車の構成は、上記に限定されない。例えば、モータがホイール内に配置されたインホイールモータ方式の電気自動車でもよい。
 電気自動車は、電池ECU100、メインECU200、およびブレーキECU300を備える。電池ECU100は、二次電池10の端子間の電圧値Vを電圧センサ60を介して取得する。電池ECU100は、二次電池10に対する充電電流Icおよび放電電流Idを含む充放電電流値Iを電流センサ62を介して取得する。さらに、電池ECU100は、二次電池10の表面の温度Tを温度センサ64を介して取得する。なお、本実施形態では、電圧センサ60および温度センサ64が二次電池10に対して1つ設けられる例について説明する。しかし、二次電池10を構成する、電池ブロック毎、電池モジュール毎、またはセル毎に電圧センサ60および/または温度センサ64を設けてもよい。
 電池ECU100は、電圧値V、充電電流Icおよび放電電流Idを含む充放電電流値I、温度Tなどの情報に基づいて、二次電池10の残容量、充電状態、または劣化状態などを特定し、電圧値V、充放電電流値I、温度Tなどの情報とともにメインECU200に送信する。メインECU200は、電気自動車の走行、停止などの運行を制御すべく、電池ECU100からの情報などに基づいてインバータ30などを制御する。ブレーキECU300は、ブレーキペダルを介してブレーキペダル信号の入力を受けて、ブレーキペダル信号に基づいてブレーキシステム50を制御することで、電気自動車を減速させる。
 なお、電気自動車が減速する場合、メインECU200は、モータジェネレータ30において発生した回生エネルギーを二次電池10に充電する回生制御をすべく、インバータ30等を制御する。電池ECU100は、回生制御による二次電池10の充電中も、電圧値V、充放電電流Iなどに基づいて充電量を測定し、充電量二次電池10の残容量を特定する。
 上記のように構成された電気自動車において、二次電池10の残容量をより正確に検知すべく、電気自動車が運行停止中に、電池ECU100が二次電池10を放電させ、放電中に測定された放電量に基づいて、残容量を特定するための関数に対して与えられる補正係数k、ルックアップテーブルに示される値などを補正することで、予め定められた特定方法を補正する。なお、運行停止中とは、電気自動車を起動させるための起動スイッチがオフ状態の期間のことをいう。また、運行中とは、起動スイッチがオン状態の期間のことをいう。
 さらに、電池ECU100は、電気自動車が運行停止中に、ブレーキシステム50を作動させてモータジェネレータ40の回転が固定された状態で、二次電池10とモータジェネレータ40とを電気的に接続し、二次電池10に高負荷をかける。電池ECU100は、高負荷がかけられた場合の二次電池10の電圧値Vの変化量に基づいて二次電池10の劣化状態を特定する。
 図2は、電池ECU100の機能ブロックを示す。充電量測定部102は、充電電流Ic、電圧値Vおよび充電時間Hcに基づいて、二次電池10に充電された充電量を測定する。なお、充電量測定部102は、充電電流Iおよび電圧値Vとして、平均値、二乗平均値、移動平均値を用いてもよい。充電量測定部102は、充電電流Iと電圧値Vとを乗算した値を充電時間Hcで積分することで充電量を測定してもよい。満充電量特定部104は、二次電池10の電圧値Vが定められた放電終止電圧値の状態から充電終止電圧値に到達するまでの充電量を特定することで、二次電池10の満充電量を特定する。なお、満充電量特定部104は、二次電池10を構成するいずれかのセル、電池モジュールあるいは電池ブロックの電圧値が充電終止電圧値に到達するまでの充電量を特定することで、二次電池10の満充電量を特定してもよい。
 放電量測定部106は、放電電流Id、電圧値Vおよび放電時間Hdに基づいて、二次電池10が放電した放電量を測定する。なお、充電量測定部102は、放電電流Idおよび電圧値Vとして、平均値、二乗平均値、移動平均値を用いてもよい。放電量測定部106は、放電電流Idと電圧値Vとを乗算した値を放電時間Hdで積分することで放電量を測定してもよい。第1残容量特定部108は、電気自動車が運行中に、二次電池10の残容量を特定する。より具体的には、第1残容量特定部108は、満充電量特定部104から提供される満充電量から、放電量測定部106から提供される放電量を減算することで残容量を特定する。残容量保持部112は、第1残容量特定部108により特定された残容量を保持する。なお、放電量測定部106は、電気自動車が運行停止する直前、つまり起動スイッチがオフされる直前に特定された残容量を放電前の第1残容量Caとして残容量保持部112に登録する。
 第2残容量特定部110は、電気自動車が運行停止中に、後述の放電制御部124が二次電池10を放電させている間に、放電量測定部106により測定される放電量を、放電前の二次電池の第2残容量Cbとして特定する。
 放電制御部124は、二次電池10の状態を安定させるべく、電気自動車が運行停止してから予め定められた基準期間、例えば、2時間待機し、基準期間経過後に、二次電池10の電圧値Vが放電終止電圧値に到達するまで二次電池10を放電させる。なお、放電制御部124は、二次電池10を構成するいずれかのセル、電池モジュールあるいは電池ブロックの電圧値が放電終止電圧値に到達した場合に、二次電池10の電圧値Vが放電終止電圧値に到達したと判断してもよい。放電制御部124は、例えば、クラッチを切った状態、またはブレーキをかけた状態で二次電池10とモータジェネレータ40とを接続し、モータジェネレータ40が備える励磁コイルに電流を流すことで、二次電池10を放電させる。電気自動車が蓄電装置として外部の電気機器に電力を供給可能な場合には、放電制御部124は、電気自動車を蓄電装置として機能させ、二次電池10からの電力を外部の電気機器に供給することで、二次電池10を放電させてもよい。
 温度取得部114は、温度センサ64から二次電池10の表面の温度Tを定期的、例えば、1秒毎に取得し、取得した時刻を示す時刻情報とともに温度保持部116に登録する。
 特定方法補正部118は、特定方法を補正すべく、放電制御部124により二次電池10が放電される直前の第1残容量Ca、第2残容量Cb、温度Tに基づいて第1残容量特定部108が残容量を算出する場合に利用する補正係数kを特定する。ここで、放電制御部124により二次電池10が放電される直前の第1残容量Caと、放電制御部124により二次電池10が放電されたことに伴う放電量に対応する第2残容量Cbとは、同一の値である。しかし、二次電池10の残容量は、例えば二次電池10の内部抵抗の大きさの違いによって変化し、二次電池10の内部抵抗は温度によっても変化する。さらに、電気自動車が運行中の場合、二次電池10は充電および放電を繰り返す。また、周囲環境の変化が比較的多く、二次電池10の温度は一定になりにくい。したがって、電気自動車が運行中に第1残容量特定部108により特定された第1残容量Caは、電気自動車が運行停止中に第2残容量特定部110により特定された第2残容量Cbに比べて誤差が生じやすい。そこで、特定方法補正部118は、第1残容量Caと第2残容量Cbとの差分ΔCを算出し、差分ΔCに基づいて補正係数kを特定し、補正係数保持部122に保持させる。
 特定方法補正部118は、差分ΔCを補正係数kとしてもよい。この場合、第1残容量特定部108は、満充電量から放電量測定部106から提供される放電量を減算した値に、差分ΔCを加算することで、電気自動車が運行中の二次電池の残容量を算出してもよい。
 また、上記の通り、二次電池10の温度Tの違いによって残容量は変化する可能性がある。よって、特定方法補正部118は、運行中の二次電池10の温度T、放電制御部124による放電中の二次電池10の温度T、および差分ΔCをパラメータとして、統計分類アルゴリズムまたはデータマインングにより、差分ΔCが小さくなるような補正係数kを特定してもよい。つまり、特定方法補正部118は、運行中の二次電池10の温度T、放電制御部124による放電中の二次電池10の温度T、および差分ΔCを継続的に集計し、差分ΔCをゼロに近づけるべく、統計的な予想に基づき補正係数kを順次更新してもよい。特定方法補正部118は、運行中の二次電池10の温度変化パターン、電気自動車の運行パターン毎に補正係数kを特定してもよい。なお、運行中の二次電池10の温度T、放電制御部124による放電中の二次電池10の温度Tは、それぞれの期間に測定される温度の平均温度でもよい。
 接続制御部150は、二次電池10の劣化状態を特定すべく、電気自動車が運行停止中に、ブレーキシステム50によりモータジェネレータ40の回転を固定した状態で、リレー20を閉状態にして、二次電池10とモータジェネレータ40とを電気的に接続する。モータジェネレータ40の回転を固定した状態で、二次電池10とモータジェネレータ40とが電気的に接続されると、二次電池10には高負荷が印加された状態になる。二次電池10を高負荷状態にすることで、いわゆるIR(電流×内部抵抗)ドロップに基づいて二次電池10の劣化状態を特定することができる。図3は、二次電池10が高負荷状態になった場合に生じる二次電池10の電圧降下の様子を示す。二次電池10は、劣化が進行するほど電圧降下が生じやすい。つまり、電圧値Vの変化率が大きいほど二次電池10の劣化が進行している可能性が高い。そこで、本実施形態では、電圧値Vの変化率の大きさに基づいて二次電池10の劣化状態を特定する。
 電圧値取得部152は、接続制御部150により二次電池10が高負荷状態になった直後の少なくとも2つの異なるタイミングにおける二次電池10の電圧値Vを取得し、劣化状態特定部154に提供する。相関関係保持部156は、電圧値Vの変化率と二次電池10の劣化状態とを対応付けて保持する。劣化状態特定部154は、提供された複数の電圧値Vに基づいて電圧値Vの変化率を算出し、相関関係保持部156を参照することで、算出された変化率に対応する二次電池10の劣化状態を特定する。なお、二次電池10の劣化状態は、二次電池10の残寿命でもよい。
 なお、劣化状態特定部154は、図3に示すような、二次電池10の電圧波形パターンを示す画像データに基づいて二次電池10の劣化状態を特定してもよい。例えば、相関関係保持部156は、初期状態(出荷時)の二次電池10の電圧波形パターンを示す画像データを予め保持してもよい。この場合、劣化状態特定部154は、二次電池10を高負荷状態にした場合に、二次電池10の電圧波形パターンを特定し、特定された電圧波形パターンに対応する画像データと、上記の初期状態の電圧波形パターンに対応する画像データとを比較し、一致度合に基づいて二次電池10の劣化状態を特定してもよい。また、相関関係保持部156は、二次電池10の劣化状態毎の基準電圧波形パターンの画像データを予め保持してもよい。この場合、劣化状態特定部154は、二次電池10を高負荷状態にした場合に、二次電池10の電圧波形パターンを特定し、特定された電圧波形パターンと一致度合が最も高い基準電圧波形パターンを特定することで、二次電池10の劣化状態を特定してもよい。また、相関関係保持部156は、電池ブロック毎、電池モジュール毎、またはセル毎に、劣化状態毎の基準電圧波形パターンの画像データを予め保持してもよい。この場合、劣化状態特定部154は、二次電池10を高負荷状態にした場合に、電池ブロック毎、電池モジュール毎、またはセル毎に二次電池10の電圧波形パターンを特定し、特定されたそれぞれの電圧波形パターンと一致度合が最も高い基準電圧波形パターンをそれぞれ特定することで、電池ブロック毎、電池モジュール毎、またはセル毎に劣化状態を特定してもよい。
 送信部130は、二次電池10の状態に関する情報を予め定められた送信先に送信する。二次電池10の状態に関する情報は、差分ΔC、満充電量特定部104により特定された二次電池10の満充電量、および劣化状態特定部154により特定された二次電池10の劣化状態を含んでもよい。また、送信先は、例えば、電気自動車をメンテナンスするために必要な情報を収集するサーバでもよい。
 図4は、温度保持部116が保持する温度情報の一例を示す。温度保持部116は、温度取得部114が周期的に取得した二次電池10の温度T、温度Tを取得した時刻、及び温度Tを取得した時刻における電気自動車の運行状態を関連付けて保持してもよい。電気自動車の運行状態は、運行中、運行停止中、運行停止中における放電開始、放電中および放電終了、充電開始、充電中および充電終了を含んでもよい。特定方法補正部118は、温度保持部116を参照することで、電気自動車の運行状態と、二次電池10の温度Tとの相関関係を特定することができる。
 図5は、電気自動車が運行停止した後、つまり、起動スイッチがオフされた後に実行される特定方法の補正手順を示すフローチャートである。
 放電制御部124は、運行停止してから基準期間が経過したか否かを判定する(S100)。経過していれば、放電制御部124は、二次電池10の電圧値Vが放電終止電圧値に到達するまで二次電池10を放電させる(S102)。放電量測定部106は、放電制御部124が二次電池10の放電を開始してから放電を終了するまでの間の二次電池10の放電量を測定し、第2残容量特定部110が測定された放電量を第2残容量Cbとして特定する。特定方法補正部118は、残容量保持部112を参照して、運行停止直前に第1残容量特定部108により特定された残容量を第1残容量Caとして特定する。さらに、特定方法補正部118は、第1残容量Caと第2残容量Cbとの差分ΔCを算出し、差分保持部120に登録する(S106)。特定方法補正部118は、温度保持部116および差分保持部120を参照して、電気自動車の運行中の温度T、放電中の温度T、差分ΔCに基づいて、例えば統計分類アルゴリズムまたはデータマイニングにより、差分ΔCを小さくできる補正係数kを特定する(S108)。
 以上の通り、本実施形態では、二次電池10の状態を安定させるべく、電気自動車が運行停止してから予め定められた期間が経過するまで放電制御部124は待機する。その後、放電制御部124は、比較的安定した状態の二次電池10を放電させる。なお、放電制御部124は、二次電池10の温度の変化率が予め定められた変化率より小さくなった場合など二次電池10の温度が一定になったことを検知したことに対応して、二次電池10の放電を開始してもよい。第2残容量特定部110は、放電中の放電量に基づいて第2残容量Cbを特定する。第2残容量Cbは、比較的安定した状態の二次電池10を実際に放電させることで、測定された放電量に基づく値である。したがって、第1残容量Caよりも正確な値である可能性が高い。よって、第1残容量Caが第2残容量Cbに近づくような、補正係数kが設定されることで、電気自動車の運行中の二次電池10の残容量がより正確に特定される。
 なお、上記の通り、放電制御部124により二次電池10の電圧値が放電終止電圧値まで低下している。そこで、電気自動車を再び運行させるためには、二次電池10を再び充電する必要がある。よって、補正係数kが特定された後、電池ECU100は、二次電池10の電圧値Vが充電終止電圧値に到達するまで二次電池10を充電させる。なお、電池ECU100は、二次電池10を構成するいずれかのセル、電池モジュールあるいは電池ブロックの電圧値が充電終止電圧値に到達した段階で、二次電池19の充電を終了してもよい。二次電池10の充電は、急速充電器により実行されてもよい。また、満充電量特定部104は、補正係数kが特定された後に実行される二次電池10の充電時に、二次電池10の満充電量を特定してもよい。
 図6は、電気自動車が運行停止した後、二次電池10の劣化状態を特定する手順を示すフローチャートである。
 接続制御部150は、運行停止してから基準期間が経過したか否かを判定する(S200)。経過していれば、接続制御部150は、メインECU200を介してブレーキECU300にブレーキシステム50を作動させて、モータジェネレータ40の回転を固定させた状態にすべくブレーキ信号を出力する。次いで、接続制御部150は、モータジェネレータ40の回転が固定された状態で、リレー20を閉状態にすることで、二次電池10とモータジェネレータ40とを電気的に接続し、モータジェネレータ40が備える励磁コイルに電流を流す(S202)。なお、接続制御部150は、励磁コイルに電流が流れ、かつ電気自動車が停止状態を維持できるのであれば、モータジェネレータ40の回転を固定しなくてもよい。電圧値取得部152は、二次電池10とモータジェネレータ40とが電気的に接続された直後の発生する電圧降下の降下率、つまり、二次電池10の電圧値の変化率を測定すべく、異なる複数のタイミングの二次電池10の電圧値Vを取得し、劣化状態特定部154に提供する。劣化状態特定部154は、複数の電圧値Vに基づいて電圧値Vの変化率を算出し、相関関係保持部156を参照して、算出された変化率に対応する二次電池10の劣化状態を特定する(S204)。
 以上の通り、本実施形態では、二次電池10の状態を安定させるべく、電気自動車が運行停止してから予め定められた期間が経過するまで接続制御部150は待機する。その後、接続制御部150は、比較的安定した状態の二次電池10に対して高負荷をかけ、二次電池10にIRドロップを発生させ、二次電池10の劣化状態、あるいは電池ブロック毎、電池モジュール毎、またはセル毎の劣化状態を特定する。このように、比較的安定した状態の二次電池10に対して劣化状態が判定されるので、より正確に二次電池10の劣化状態、あるいは電池ブロック毎、電池モジュール毎、またはセル毎の劣化状態が特定される。
 なお、上記の説明では、特定方法の補正と、劣化状態の特定とがそれぞれ個別に実行される例について説明した。しかし、補正係数kが特定され、二次電池10の充電が終了したことに対応して、二次電池10の劣化状態の特定が実行されてもよい。また、特定方法の補正、および劣化状態の特定はそれぞれ運行停止後、基準期間経過後に実行される例について説明した。しかし、特定方法の補正、および劣化状態の特定はそれぞれ運行停止直後に実行してもよい。
 また、電気自動車の運行停止中における電池ECU100、メインECU200、ブレーキECU300などへの電力は、電気自動車が備える補機バッテリから供給されてもよい。
 さらに、本実施形態では、二次電池10とモータジェネレータ40とを電気的に接続する例について説明したが、モータジェネレータ40以外の負荷装置を二次電池10に電気的に接続してもよい。負荷装置として、例えば、電気自動車に搭載された空調装置を利用してもよい。
 二次電池10は、過充電状態または過放電状態になると、二次電池10の寿命が短くなる可能性がある。そこで、二次電池10の残容量が正確に把握されれば、電気自動車が運行中に、二次電池10が過充電状態また過放電状態になりにくくでき、二次電池10の寿命の短縮を抑制することができる。
 また、二次電池10の劣化状態が正確に把握されることで、電気自動車のメンテナンスが容易になる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 二次電池
20 リレー
30 インバータ
40 モータジェネレータ
50 ブレーキシステム
60 電圧センサ
62 電流センサ
64 温度センサ
100 電池ECU
102 充電量測定部
104 満充電量特定部
106 放電量測定部
108 第1残容量特定部
110 第2残容量特定部
112 残容量保持部
114 温度取得部
116 温度保持部
118 特定方法補正部
120 差分保持部
122 補正係数保持部
124 放電制御部
130 送信部
150 接続制御部
152 電圧値取得部
154 劣化状態特定部
156 相関関係保持部
200 メインECU
300 ブレーキECU

Claims (14)

  1.  車両の運行停止中に、前記車両に搭載された二次電池の電圧値が予め定められた放電終止電圧値に到達するまで前記二次電池を放電させる放電制御部と、
     予め定められた特定方法に基づいて前記放電制御部による放電前の前記二次電池の残容量を第1残容量として特定する第1残容量特定部と、
     前記二次電池の放電量を測定する放電量測定部と、
     前記放電制御部による放電の間に前記放電量測定部により測定された放電量に基づいて、前記放電制御部による放電前の前記二次電池の残容量を第2残容量として特定する第2残容量特定部と、
     前記第1残容量と前記第2残容量との差分に基づいて前記特定方法を補正する特定方法補正部と
    を備える電池制御装置。
  2.  前記第1残容量特定部は、前記特定方法に基づいて前記車両の運行中の前記二次電池の残容量を特定し、前記車両の運行停止直前の前記二次電池の残容量を前記第1残容量として特定する
    請求項1に記載の電池制御装置。
  3.  前記二次電池の温度を取得する温度取得部をさらに備え、
     前記特定方法補正部は、前記差分と前記温度とに基づいて前記特定方法を補正する
    請求項1または請求項2に記載の電池制御装置。
  4.  前記温度取得部により取得された前記放電制御部による放電中における温度を保持する温度保持部をさらに備え、
     前記特定方法補正部は、前記温度保持部が保持する前記放電中における温度と前記差分とに基づいて前記特定方法を補正する
    請求項3に記載の電池制御装置。
  5.  前記温度保持部は、前記温度取得部により取得された前記車両の運行中の温度をさらに保持し、
     前記特定方法補正部は、前記温度保持部が保持する前記放電中における温度、前記運行中の温度、および前記差分に基づいて前記特定方法を補正する
    請求項4に記載の電池制御装置。
  6.  前記第1残容量特定部は、前記放電量測定部により測定された前記車両の運行中における前記二次電池の放電量を、前記二次電池の予め定められた充電終止電圧値における満充電量から減算することで、前記車両の運行中における前記二次電池の残容量を特定する
    請求項1から請求項5のいずれか1つに記載の電池制御装置。
  7.  前記二次電池の電圧値が前記放電終止電圧値から予め定められた充電終止電圧値に到達するまで前記二次電池が充電される場合における前記二次電池の充電量を測定する充電量測定部と、
     前記充電量測定部により測定された充電量に基づいて前記満充電量を特定する満充電量特定部と
    をさらに備え、
     前記第1残容量特定部は、前記満充電量特定部により特定された前記満充電量から前記放電量を減算することで、前記残容量を特定する
    請求項6に記載の電池制御装置。
  8.  前記二次電池に関する情報を収集するサーバに、前記差分を示すデータを送信する送信部をさらに備える
    請求項7に記載の電池制御装置。
  9.  前記放電制御部は、前記車両の運行停止後、予め定められた期間が経過した後に、前記二次電池を放電させる
    請求項1から請求項8のいずれか1つに記載の電池制御装置。
  10.  車両に搭載された二次電池と、前記車両の運行中に前記二次電池からの電力の供給を受けて動作する負荷装置とを、前記車両の運行停止中に電気的に接続する接続制御部と、
     前記接続制御部により前記二次電池と前記負荷装置とが電気的に接続された後、異なる2つのタイミングにおける前記二次電池の電圧値を第1電圧値および第2電圧値として取得する電圧値取得部と、
     前記第1電圧値および前記第2電圧値に基づいて前記二次電池の劣化状態を特定する劣化状態特定部と
    を備える電池制御装置。
  11.  前記第1電圧値と前記第2電圧値と前記二次電池の劣化状態との相関関係を保持する相関関係保持部をさらに備え、
     前記劣化状態特定部は、前記相関関係に基づいて前記電圧値取得部により取得された前記第1電圧値および前記第2電圧値に対応する前記二次電池の劣化状態を特定する
    請求項10に記載の電池制御装置。
  12.  前記負荷装置は、前記車両の駆動源となるモータであり、
     前記接続制御部は、前記二次電池と前記モータとを電気的に接続し、前記モータが有する励磁コイルに電流を供給する
    請求項10または請求項11に記載の電池制御装置。
  13.  前記劣化状態特定部により特定された前記二次電池の劣化状態を示す情報を前記二次電池に関する情報を収集するサーバに送信する送信部をさらに備える
    請求項10から請求項12のいずれか1つに記載の電池制御装置。
  14.  請求項1から請求項13のいずれか1つに記載の前記電池制御装置と、
     前記二次電池と
    を備える車両。
PCT/JP2011/001965 2010-05-21 2011-03-31 電池制御装置および車両 WO2011145255A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-117066 2010-05-21
JP2010117066A JP2011240896A (ja) 2010-05-21 2010-05-21 電池制御装置および車両

Publications (1)

Publication Number Publication Date
WO2011145255A1 true WO2011145255A1 (ja) 2011-11-24

Family

ID=44991378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001965 WO2011145255A1 (ja) 2010-05-21 2011-03-31 電池制御装置および車両

Country Status (2)

Country Link
JP (1) JP2011240896A (ja)
WO (1) WO2011145255A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108128191A (zh) * 2017-12-25 2018-06-08 衢州量智科技有限公司 基于大数据的电动汽车锂电池的容量校正方法及装置
WO2024114825A1 (zh) * 2022-11-30 2024-06-06 远景能源有限公司 一种串联电芯的soh估计方法、装置和机器可读存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350215B2 (ja) * 2014-10-29 2018-07-04 トヨタ自動車株式会社 二次電池の診断装置
KR102424528B1 (ko) * 2015-06-11 2022-07-25 삼성전자주식회사 배터리의 상태를 추정하는 장치 및 방법
JP2019023600A (ja) * 2017-07-25 2019-02-14 株式会社Jvcケンウッド 管理装置、端末装置および通信システム
WO2019021095A1 (ja) * 2017-07-26 2019-01-31 株式会社半導体エネルギー研究所 二次電池の充電制御システム及び二次電池の異常検出方法
WO2019131825A1 (ja) 2017-12-27 2019-07-04 Future Science Research株式会社 二次電池管理装置、二次電池および二次電池管理プログラム
US10921383B2 (en) * 2019-03-07 2021-02-16 Mitsubishi Electric Research Laboratories, Inc. Battery diagnostic system for estimating capacity degradation of batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328154A (ja) * 2001-05-01 2002-11-15 Honda Motor Co Ltd 蓄電装置の残容量検出装置
JP2007178401A (ja) * 2005-12-28 2007-07-12 Ntt Facilities Inc 二次電池管理装置、二次電池管理方法及びプログラム
JP2007244030A (ja) * 2006-03-06 2007-09-20 Toyota Motor Corp 車両の制御装置
JP2009199774A (ja) * 2008-02-19 2009-09-03 Sanyo Electric Co Ltd 二次電池の充放電方法。

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071986A (ja) * 2007-09-13 2009-04-02 Fuji Heavy Ind Ltd 車載バッテリの劣化度演算装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328154A (ja) * 2001-05-01 2002-11-15 Honda Motor Co Ltd 蓄電装置の残容量検出装置
JP2007178401A (ja) * 2005-12-28 2007-07-12 Ntt Facilities Inc 二次電池管理装置、二次電池管理方法及びプログラム
JP2007244030A (ja) * 2006-03-06 2007-09-20 Toyota Motor Corp 車両の制御装置
JP2009199774A (ja) * 2008-02-19 2009-09-03 Sanyo Electric Co Ltd 二次電池の充放電方法。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108128191A (zh) * 2017-12-25 2018-06-08 衢州量智科技有限公司 基于大数据的电动汽车锂电池的容量校正方法及装置
WO2024114825A1 (zh) * 2022-11-30 2024-06-06 远景能源有限公司 一种串联电芯的soh估计方法、装置和机器可读存储介质

Also Published As

Publication number Publication date
JP2011240896A (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011145255A1 (ja) 電池制御装置および車両
US7570021B2 (en) Rechargeable battery controller and method for controlling output of rechargeable battery
US8957636B2 (en) Vehicle battery-pack equalization system and vehicle battery-pack equalization method
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
JP5621818B2 (ja) 蓄電システムおよび均等化方法
US8060322B2 (en) Battery management system and driving method thereof
JP5868499B2 (ja) 電池制御装置
JP5719236B2 (ja) 二次電池の制御装置
EP3640071B1 (en) Display device and vehicle including the same
US20090013521A1 (en) Reconstituted battery pack, reconstituted battery pack producing method, reconstituted battery pack using method, and reconstituted battery pack control system
WO2012010955A2 (en) Vehicle control device and vehicle control method
US20130057213A1 (en) Battery monitoring and charging system and motor-driven vehicle
WO2012140776A1 (ja) 充電制御装置
US7508170B2 (en) Device and method for controlling input to a rechargeable battery
WO2012137456A1 (ja) 余寿命判定方法
JP2008178186A (ja) 容量均等化装置
WO2013084353A1 (ja) 電池制御装置
JP2009284717A (ja) 自動車のバッテリ制御方法及びその装置
JP5938633B2 (ja) 電池の充電可否判断装置
US20200122604A1 (en) Display apparatus and vehicle including the same
JP5413592B2 (ja) 二次電池の充電状態推定制御装置
JP2010246357A (ja) 車両駆動電力制御装置
JP2014155401A (ja) 蓄電システム
JP2013127440A (ja) 蓄電システム
US20230288488A1 (en) Energy storage apparatus, energy storage system, internal resistance estimation method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783194

Country of ref document: EP

Kind code of ref document: A1