WO2011145176A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2011145176A1
WO2011145176A1 PCT/JP2010/058374 JP2010058374W WO2011145176A1 WO 2011145176 A1 WO2011145176 A1 WO 2011145176A1 JP 2010058374 W JP2010058374 W JP 2010058374W WO 2011145176 A1 WO2011145176 A1 WO 2011145176A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
layer
semiconductor device
outflow prevention
bonding layer
Prior art date
Application number
PCT/JP2010/058374
Other languages
English (en)
French (fr)
Inventor
裕孝 大野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/058374 priority Critical patent/WO2011145176A1/ja
Priority to US13/387,910 priority patent/US8865584B2/en
Priority to CN201080043795.4A priority patent/CN102549738B/zh
Priority to JP2010544106A priority patent/JP5565315B2/ja
Priority to KR1020127005397A priority patent/KR101343289B1/ko
Priority to EP10851740.0A priority patent/EP2573809A4/en
Publication of WO2011145176A1 publication Critical patent/WO2011145176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4875Connection or disconnection of other leads to or from bases or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/335Material
    • H01L2224/33505Layer connectors having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting the layer connector during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/83411Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to a semiconductor device in which a semiconductor element is bonded to a substrate by solder, and more particularly, to a semiconductor device in which an outflow prevention portion for preventing a solder flow is formed by a cold spray method around a solder layer and a manufacturing method thereof.
  • a semiconductor device 100 shown in FIG. 10 has a semiconductor element 101 such as an IGBT mounted thereon. Since the heat generated by the semiconductor element 101 is large, a metal base substrate such as aluminum or copper having good thermal conductivity or electrical conductivity, or an insulating substrate using a ceramic plate is used for the substrate 102. When the semiconductor element 101 is bonded to the upper surface of the substrate 102 by solder, the semiconductor element 101 made of silicon is subjected to metallization processing such as a nickel alloy on the back surface to improve the bondability with the solder layer 103 and is made of metal. The substrate 102 is provided with a nickel plating layer 104 on the surface.
  • an outflow prevention layer 105 for preventing the solder flow and ensuring the film thickness of the solder layer 103 is formed on the substrate 102 made by pressing a copper plate.
  • the outflow prevention layer 105 masks a portion where the substrate 102 is not coated, and the exposed surface is coated by the thermal spraying apparatus.
  • a method for coating the outflow prevention layer 105 a thermal spraying method for forming a thick film (50 ⁇ m or less) relatively stably is used.
  • an oxide such as aluminum, silicon, or titanium is used.
  • the outflow prevention layer 105 on the substrate 102 is formed so as to surround the semiconductor element 101, and melted solder is blocked by the outflow prevention layer 105 to prevent solder flow.
  • a semiconductor device is a semiconductor device in which a semiconductor element is bonded to a substrate via a solder layer, and surrounds the periphery of the solder layer to prevent a solder flow during soldering.
  • the outflow prevention part is formed by a cold spray method, and the surface is in an oxidized state.
  • the outflow prevention portion is an outflow prevention layer formed by a cold spray method around the solder layer.
  • a solder bonding layer is formed on the substrate, and the semiconductor element is bonded to the solder bonding layer via a solder layer. It is preferably an outflow prevention layer formed by a cold spray method around the bonding layer.
  • an opening corresponding to the outflow prevention portion is formed between a central shielding portion corresponding to the solder layer region and an outer periphery shielding portion corresponding to an outer peripheral region of the outflow prevention portion.
  • Two masks having different positions of the connecting portion connecting the central blocking portion and the outer periphery blocking portion across the opening are prepared, and the two masks are alternately used while the cold spray method is used. It is preferable to form the outflow prevention part.
  • the semiconductor device is formed by forming a solder bonding layer on the substrate and bonding the semiconductor element to the solder bonding layer via the solder layer.
  • the solder joint layer is formed by a cold spray method, and after the solder joint layer is oxidized and reduced, the outflow prevention portion is formed by a cold spray method.
  • the semiconductor device manufacturing method the semiconductor device is formed by forming a solder bonding layer on the substrate and bonding the semiconductor element to the solder bonding layer via the solder layer.
  • the solder bonding layer is formed by a cold spray method, the outflow prevention portion is formed by a cold spray method using a metal that is not reduced, and the outflow prevention portion is formed and then the solder bonding layer is oxidized.
  • a reduction treatment is preferred.
  • solder joint layer is formed on the substrate by a cold spray method
  • a reduction treatment is performed, and a region surrounding the region where the solder layer is located in the surface of the reduced solder joint layer is oxidized gas. It is preferable to oxidize by heating in the oxidation region as the outflow prevention part.
  • FIG. 1 is a cross-sectional view showing the semiconductor device of the first embodiment.
  • a semiconductor element 11 such as an IGBT is mounted on a substrate 12 made of a metal such as aluminum or copper having good thermal conductivity and electrical conductivity.
  • the semiconductor element 11 and the substrate 12 are joined by soldering, and a solder joining layer 14 is provided between the solder layer 13 and the substrate 12 for joining the semiconductor element 11 and the substrate 12 in order to improve solderability to the substrate 12.
  • the back surface of the semiconductor element made of silicon is also subjected to a metallization process such as a nickel alloy in order to improve the bondability with the solder.
  • the solder bonding layer 14 is formed of nickel, copper, tin or the like by a film forming process such as a cold spray method, a plating method, vacuum deposition, or sputtering.
  • a film forming process such as a cold spray method, a plating method, vacuum deposition, or sputtering.
  • Vacuum deposition and sputtering also require film formation in expensive vacuum equipment, and time is also required for evacuation and the like, resulting in poor productivity and high cost. Therefore, partial film formation is easy, and it is effective to use the cold spray method in terms of cost, processing time, and equipment cost.
  • FIG. 2 is a diagram conceptually showing the configuration of a film forming apparatus that executes the cold spray method.
  • the film forming apparatus 80 has a compressor 81 for supplying compressed gas, and the compressed gas sent from the compressor 81 is heated by the heating means 82 and is injected from the nozzle 84 via the pressure adjusting valve 83. Yes.
  • the powder tank 85 is filled with, for example, copper powder, and a heater 86 is provided so that the copper powder fed from the powder tank 85 can be heated by the nozzle 84.
  • a driving means 87 for moving the nozzle 84 in parallel is provided.
  • the substrate 12 is put into a furnace and is added with 3 to 100% hydrogen in a reducing gas atmosphere (for example, argon gas, helium gas, nitrogen gas, etc.) Heat treatment is performed under a temperature condition of 200 ° C. to 700 ° C.
  • the solder bonding layer 14 is heat-treated in a hydrogen gas atmosphere, whereby the oxide layer on the surface of the copper particles deposited and deposited as a film is reduced, and the non-oxidized copper covers the surface. In this way, soldering can be performed on the surface of the solder joint layer 14, but conversely, the solder tends to wet and spread by the reduction treatment, resulting in a problem of solder flow.
  • solder layer 13 is required to have a certain thickness or more so that the stress can be dispersed. If the thickness is not sufficient, fatigue failure is caused.
  • the semiconductor element 11 is soldered, if the solder layer 13 becomes thin due to the flow of solder that should remain in a predetermined region, it is not possible to secure a film thickness that can sufficiently distribute stress. A possibility arises. Further, if the solder wets and spreads over a wide area, the solder adheres to a connection area of wire bonds (not shown) located around the semiconductor element 11, resulting in a product defect.
  • the opening portions 912 and 922 are interrupted by connecting portions 915 and 925 formed at two locations, respectively, and are not annular. This is for connecting the central shielding part 911 or 921 and the outer shielding part 913 or 923. Therefore, with only one mask, the outflow prevention layer 15 to be formed in an annular shape is interrupted at the connection portions 915 and 925. Therefore, the first mask 91 and the second mask 92 are formed with their positions shifted so that the positions of the connecting portions 915 and 925 become the other openings 922 and 912 when they are overlapped. Has been.
  • the outflow prevention layer 15 In forming the outflow prevention layer 15, first, the first mask 91 shown in FIG. 3 is arranged on the substrate 12, and alignment is performed so that the central shielding portion 911 overlaps the solder bonding layer 14. Then, a film is formed by a cold spray method using the film forming apparatus 80 shown in FIG. That is, the copper powder sprayed vigorously from the nozzle 84 collides with the surface of the substrate 12 through the opening 912, and is plastically deformed to adhere to form a film. The nozzle 84 moves over the entire area of the opening 912 while spraying copper powder, whereby the first film 151 shown in FIG. 5 is formed on the substrate 12.
  • FIG. 5 is a plan view showing a film formation state of the outflow prevention layer 15 formed in stages.
  • the semiconductor element 11 is soldered on the solder bonding layer 14. That is, the semiconductor element 11 is stacked via a foil-shaped or pellet-shaped solder material, and soldering is performed by heating and melting the solder material. At this time, since the outflow prevention layer 15 around the solder bonding layer 14 is in a state where copper is oxidized, the molten solder does not bond and does not spread further outside. Therefore, the solder layer 13 from which the solder flow is prevented can maintain a film thickness of a certain level or more.
  • the semiconductor device 1 in which the outflow prevention layer 15 is formed at low cost by using the cold spray method.
  • the cold spray method it is possible to easily form a film in the atmosphere, and by using the first mask 91 and the second mask 92, partial film formation is possible at a low cost.
  • the annular outflow prevention layer 15 can be formed without any break, and the outflow of solder can be further prevented.
  • the outflow prevention layer 15 prevents the flow of solder, so that the area where the solder wets and spreads is limited, and does not reach the bonding area of wire bonding, thereby preventing bonding failure. Further, the positional accuracy of the semiconductor element 11 to be joined is improved.
  • the cut portions 155 and 156 of the outflow prevention layer 15 are filled by alternately using the first and second masks 91 and 92 described above.
  • the first mask 91 in a floating state, it is also conceivable that the sprayed copper powder goes around to the lower side of the connecting portion 915 and the film forming portion is connected.
  • the cut portion 155 since the cut portion 155 is not formed, it is possible to form the outflow prevention layer 15 using only the first mask 91.
  • the cutting part 155 is local and narrow. Therefore, the film may be formed using only the first mask 91 even when the solder spill does not occur in the cutting portion 155 or the spread of the solder does not interfere with the product.
  • both the solder bonding layer 14 and the outflow prevention layer 15 are formed by forming a copper powder using a cold spray method. Therefore, the solder bonding layer 14 is first formed and reduced, and then the outflow prevention layer 15 is formed, leaving the oxide film without reduction. On the other hand, when a metal that is not reduced by the reduction treatment such as aluminum is used to form the outflow prevention layer 15, the reduction treatment is performed together after the solder joint layer 14 and the outflow prevention layer 15 are formed. May be.
  • the outflow prevention layer 15 is formed of copper, but it is preferable to use a material having high specific gravity, specific heat, and thermal conductivity such as gold and silver in addition to the above-described aluminum.
  • the semiconductor element 11 becomes a heating element, and the amount of heat generated during use increases. Therefore, by providing the outflow prevention layer 15 with good thermal conductivity, the heat dissipation performance of the entire semiconductor device 1 can be improved by thermal diffusion and transient heat absorption.
  • FIG. 6 is a cross-sectional view showing the semiconductor device of the second embodiment.
  • a solder bonding layer 16 is formed on the substrate 12, and the semiconductor element 11 is bonded thereon via the solder layer 13. Since the solder bonding layer 16 is formed by overlapping the outflow prevention layer 17 thereon, the solder bonding layer 16 has a larger area than the solder bonding layer 14 of the first embodiment.
  • the solder bonding layer 16 is formed of nickel, copper, tin, or the like by a film forming process such as a cold spray method, a plating method, vacuum deposition, or sputtering. explain.
  • the solder bonding layer 16 is formed with an outflow prevention layer 17 for preventing the solder flow because the solder wets and spreads by the reduction treatment after the film formation.
  • the outflow prevention layer 17 is formed by forming a copper powder by a cold spray method, and is also formed using the first and second masks 91 and 92 shown in FIGS.
  • the outflow prevention layer 17 is like a wall surrounding the semiconductor element 11, when soldering, a foil-like or pellet-like solder material and the semiconductor element 11 are placed in the frame of the outflow prevention layer 17. Can be put on top of each other. Accordingly, the height of the outflow prevention layer 17 is formed to be at least higher than the film thickness (100 to 400 ⁇ m) of the solder layer 13. This is to prevent the solder material and the semiconductor element 11 from being detached from the outflow prevention layer 17 when moving to the solder furnace without using a jig.
  • the outflow prevention layer 17 having a height can be dammed so that molten solder does not flow during soldering. Further, the outflow prevention layer 17 prevents the solder flow in this way, so that a region where the solder wets and spreads is limited, and the positional accuracy of the semiconductor element 11 bonded thereon is improved.
  • the semiconductor device 2 in which the outflow prevention layer 17 is formed at low cost by using the cold spray method it is possible to provide the semiconductor device 2 in which the outflow prevention layer 17 is formed at low cost by using the cold spray method, and the same effects as in the first embodiment can be obtained.
  • the copper solder bonding layer 16 and the outflow prevention layer 17 having good thermal conductivity increase the volume and increase the heat capacity, thereby improving the heat dissipation performance of the entire semiconductor device 2.
  • it is not necessary to hold the soldering material or the semiconductor element 11 in the outflow prevention layer 17 until the soldering is completed it is possible to eliminate the jig and simplify the production equipment. This also makes it possible to reduce costs.
  • FIG. 7 is a cross-sectional view showing the semiconductor device of the third embodiment.
  • the same components as those in FIG. 1 will be described with the same reference numerals.
  • a solder bonding layer 14 is formed on a substrate 12, and a semiconductor element 11 is bonded thereon via a solder layer 13.
  • the solder bonding layer 14 is formed by forming a copper powder by a cold spray method. Since the solder wets and spreads by the reduction treatment after the film formation, an outflow prevention layer 18 for preventing the solder flow is formed around the solder bonding layer 14. Yes.
  • the outflow prevention layer 18 is formed by forming a copper powder by a cold spray method, and is also formed using the first and second masks 91 and 92 shown in FIGS.
  • the outflow prevention layer 18 is formed directly on the substrate 12 and is formed like a wall surrounding the semiconductor element 11.
  • the film thickness of the outflow prevention layer 18 is formed so as to be higher than at least the solder layer 13 on the solder bonding layer 14. Therefore, even if a jig is not used, the solder material and the semiconductor element 11 do not come off from the outflow prevention layer 18 when moving to the solder furnace.
  • the outflow prevention layer 18 having a height can be dammed so that molten solder does not flow during soldering. Further, the outflow prevention layer 18 prevents the solder flow, so that a region where the solder wets and spreads is limited, and the positional accuracy of the semiconductor element 11 bonded thereon is improved.
  • the semiconductor device 3 in which the outflow prevention layer 18 is formed at low cost by using the cold spray method since the copper outflow prevention layer 18 having good thermal conductivity increases the volume and the heat capacity, the heat dissipation performance of the entire semiconductor device 3 can be improved. Furthermore, since it is not necessary to hold the soldering material or the semiconductor element 11 in the outflow prevention layer 18 until the soldering is completed, it is possible to eliminate jigs and simplify the production equipment. This also makes it possible to reduce costs.
  • FIG. 8 is a cross-sectional view showing the semiconductor device of the fourth embodiment.
  • the same components as those in FIG. 1 will be described with the same reference numerals.
  • a solder bonding layer 21 is formed on the substrate 12, and the semiconductor element 11 is bonded thereon via the solder layer 13.
  • the solder bonding layer 21 is formed by forming a copper powder film by a cold spray method, and has a larger area than the semiconductor element 11 and the solder layer 13.
  • the solder joint layer 21 after film formation is oxidized and cannot be soldered as it is. On the other hand, if the whole is reduced, a solder flow occurs. Therefore, in this embodiment, partial reduction treatment is performed so that the solder portion does not occur leaving the oxidized portion. That is, the reduced portion 211 is formed in the central region of the solder bonding layer 21 where the solder layer 13 is disposed, and the oxidized portion 212 that is present around the oxidized portion 212 serves as an outflow prevention portion.
  • FIG. 9 is an image diagram showing a partial reduction method.
  • the reduction treatment is performed by heating at a predetermined temperature in a reducing gas having a reducing property.
  • the solder joint layer 21 is placed in a reducing gas such as hydrogen.
  • a pulse mode laser is emitted from the laser device 220 toward the surface of the solder bonding layer 21. While irradiating the laser at each location for a certain period of time, the irradiation location is shifted little by little and only the reduced portion 211 is irradiated.
  • the pulse mode laser has an energy of about 0.1 to 2.0 J / (cm 2 ⁇ pulse) sufficient for reduction of the laser irradiation point, and is injected for a short time of 100 msec or less. Therefore, only the portion irradiated with the laser is reduced, and the surroundings are not reduced because the temperature rise is suppressed.
  • the laser scanning speed, the pulse irradiation period, the beam diameter, the laser wavelength, and the irradiation surface reflectance are appropriately set depending on the film thickness of the solder bonding layer 21 and the surrounding structure.
  • a CO 2 laser, a YAG laser, a fiber laser, or the like is used for the laser device 220.
  • the reducing gas may be supplied as an atmospheric gas in the chamber, or may be sprayed on the laser irradiation portion.
  • the semiconductor element 11 is overlaid on the reduced portion 211 via a foil-like or pellet-like solder, and soldering is performed by heating. At that time, the solder portion is prevented from flowing because the oxidized portion 212 is formed around the solder by the cold spray method. Therefore, according to the present embodiment, it is possible to provide the semiconductor device 4 formed at low cost by using the solder bonding layer 21 formed by using the cold spray method as an outflow prevention portion for preventing the solder flow as it is. become.
  • the method of partially reducing the solder joint layer 21 has been described. Instead, a method of partially oxidizing the solder joint layer 21 will be described next.
  • the solder joint layer 21 is first subjected to a reduction treatment heated in a reducing gas. For this reason, the whole is reduced, and a solder flow is generated as it is, so that the oxidation treatment is partially performed. That is, the reduced portion 211 is left in the center of the solder bonding layer 21, and an oxidized portion 212 is formed around the reduced portion 211 as an outflow prevention portion.
  • the solder bonding layer 21 is placed in an oxidizing gas containing oxygen or a halogen-based oxidizing gas.
  • the solder bonding layer 21 is irradiated with a pulse mode laser from the laser device 220 toward the surface of the solder bonding layer 21.
  • the irradiation location here is a location corresponding to the oxidized portion 212 of the solder bonding layer 21.
  • the pulse mode laser has sufficient energy to oxidize the laser irradiation point and is injected for a predetermined time. Therefore, only the portion irradiated with the laser is oxidized, and the central portion is not oxidized.
  • the oxidized portion 212 which is limited to the outer peripheral portion, has a smaller area. For this reason, there is an advantage that the laser irradiation time can be shortened.
  • the laser scanning speed, the pulse irradiation period, the beam diameter, the laser wavelength, and the irradiation surface reflectance are appropriately set depending on the film thickness of the solder bonding layer 21 and the surrounding structure.
  • a CO 2 laser, a YAG laser, a fiber laser, or the like is used for the laser device 220.
  • the oxidizing gas has a high oxidizing power when it contains high-concentration oxygen or halogen, and may be diluted as necessary. Further, the oxidizing gas may be supplied as an atmospheric gas in the chamber, or may be sprayed on the laser irradiation portion.
  • a reduced portion 211 and an oxidized portion 212 in a predetermined region are formed in the solder bonding layer 21 even by partial oxidation.
  • the semiconductor element 11 is overlaid on the reduced portion 211 via a foil-like or pellet-like solder, and soldering is performed by heating.
  • the oxidized portion 212 surrounds the solder, the solder flow is prevented. In this way, it has become possible to provide an inexpensive semiconductor device 4 having an oxidized portion 212 formed in the solder bonding layer 21 formed by using the cold spray method and serving as an outflow preventing portion for preventing the solder flow.
  • the present invention is not limited to the above-described embodiment, and it goes without saying that various improvements and modifications can be made without departing from the spirit of the present invention.
  • the outflow prevention layer 15 and the like are made of oxidized copper has been described.
  • aluminum, titanium, Iron, silver, etc. can also be used.
  • the solder bonding layers 14 and 16 are formed.
  • the substrate 12 is formed of copper, nickel, tin, or an alloy thereof and the solder can be directly bonded, the solder bonding layers 14 are formed.
  • , 16 may be omitted.
  • a protective film may be formed on the solder bonding layers 14 and 16 with a resin or the like, and after forming the outflow prevention layers 15, 17 and 18 by a cold spray method, the protective film may be peeled off.
  • the substrate 12 may be an insulating substrate using a ceramic plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Die Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 本発明の半導体装置(1)は、半田流れを防止する構造を安価に形成し得ることを目的としたものであり、基板(12)の上に半田層(13)を介して半導体素子(11)を接合したものであって、半田層(13)の周りを囲むことにより半田付けの際の半田流れを防止する流出防止部(15)を有し、その流出防止部(15)が、コールドスプレー法によって成膜されたものであり、表面が酸化された状態であることを特徴とする。

Description

半導体装置及びその製造方法
 本発明は、基板に対して半田によって半導体素子を接合させた半導体装置に関し、特に半田層の周辺部にコールドスプレー法によって半田流れを防止する流出防止部を形成した半導体装置及びその製造方法に関する。
 図10に示す半導体装置100は、IGBTなどの半導体素子101を搭載したものである。半導体素子101が発する熱が大きいことから、基板102には、熱伝導性や電気伝導性のよいアルミニウムや銅などの金属ベース基板や、セラッミクス板を用いた絶縁基板が用いられる。基板102の上面に半田によって半導体素子101を接合する場合、半田層103との接合性を良くするため、シリコンからなる半導体素子101には裏面にニッケル合金などのメタライズ処理が施され、金属からなる基板102には表面にニッケルメッキのメッキ層104が設けられる。
 例えば銅板をプレス加工して作られた基板102には、半田流れを防止して半田層103の膜厚を確保するための流出防止層105が形成されている。流出防止層105は、基板102に対して被膜を施さない部分をマスキングし、溶射装置によって露出している表面に被覆が行われる。流出防止層105の被覆方法は、比較的安定して厚い被膜(50μm以下)を形成する溶射法が用いられる。流出防止層105としてはアルミニウム、シリコン、チタン等の酸化物が使用される。基板102上の流出防止層105は、半導体素子101の周りを囲むように成形され、溶融した半田が流出防止層105によって堰止められ半田流れを防止する。
特開平6-177290号公報 特開2006-319146号公報
 従来の半導体装置100では、流出防止層105を溶射によって形成しているが、溶射法では、金属粉末を溶融させ、溶融した金属を基材に吹き付けるため、基材が受ける熱影響が大きくなってしまい好ましい方法であるとはいえない。また、溶射は、例えば減圧度の高いチャンバー内において行うなど、被膜の形成にコストを要し、それよって半導体装置100の価格を上げてしまう。さらに、溶融させた材料粉末の熱によって基板102が加熱されるため、成膜後の冷却処理が必要になるなどの手間を要していた。
 本発明は、かかる課題を解決すべく、半田流れを防止する構造を安価に形成し半導体装置及びその製造方法を提供することを目的とする。
 本発明の一態様における半導体装置は、基板の上に半田層を介して半導体素子を接合したものであって、前記半田層の周りを囲むことにより半田付けの際の半田流れを防止する流出防止部を有し、その流出防止部が、コールドスプレー法によって成膜されたものであり、表面が酸化された状態であることを特徴とする。
 上記半導体装置は、前記流出防止部が、前記半田層の周りにコールドスプレー法によって成膜された流出防止層であることが好ましい。
 上記半導体装置は、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものであり、前記流出防止部は、前記半田接合層の周りに沿ってコールドスプレー法により成膜された流出防止層であることが好ましい。
 上記半導体装置は、前記流出防止層が、前記半田層よりも高くなる厚さで成膜されたものであることが好ましい。
 上記半導体装置は、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものであり、前記流出防止部は、前記半田接合層の上にコールドスプレー法により成膜された流出防止層であることが好ましい。
 上記半導体装置は、前記流出防止層が、前記半田層よりも高くなる厚さで成膜されたものであることが好ましい。
 上記半導体装置は、前記半田接合層が、成膜時に酸化した金属が還元処理されたものであり、前記流出防止層は、成膜時に酸化されたままの金属によって形成されたものであることが好ましい。
 上記半導体装置は、前記半田接合層が、コールドスプレー法によって成膜されたものであることが好ましい。
 上記半導体装置は、前記基板の上にはコールドスプレー法により半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものであり、前記半田接合層は、成膜によって酸化した表面のうち、前記半田層が位置する領域が還元ガス中での加熱により還元され、前記流出防止部は、還元された領域の周辺に酸化されたままの領域であることが好ましい。
 上記半導体装置は、前記基板の上にはコールドスプレー法により半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものであり、前記流出防止部は、還元処理された前記半田接合層の表面について、前記半田層が位置する領域を囲むように酸化ガス中での加熱により酸化された領域であることが好ましい。
 本発明の他の態様における半導体装置の製造方法は、基板の上に半田層を介して半導体素子を接合する際、溶融した半田の半田流れを防止しながら前記半導体素子を半田付けするものであり、前記基板の上に前記半田層の周りを囲む領域に、表面が酸化された状態の流出防止部をコールドスプレー法を使用した成膜によって形成し、前記流出防止部に囲まれた中に半田材が配置され、熱を加えて前記半田材を溶融させて前記半導体素子を半田付けすることを特徴とする。
 上記半導体装置の製造方法は、前記半田層の領域に対応する中央遮蔽部と、前記流出防止部の外周領域に対応する外周遮蔽部との間に、前記流出防止部に対応する開口部が形成され、前記開口部を横切って前記中央遮断部と外周遮断部とを連結する連結部の位置が異なる2枚のマスクを用意し、前記2枚のマスクを交互に使用しながらコールドスプレー法によって前記流出防止部を成膜することが好ましい。
 上記半導体装置の製造方法は、前記半導体装置が、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものである場合に、前記半田接合層をコールドスプレー法により成膜し、前記半田接合層を酸化還元処理した後に、前記流出防止部をコールドスプレー法により成膜することが好ましい。
 上記半導体装置の製造方法は、前記半導体装置が、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものである場合に、前記半田接合層をコールドスプレー法により成膜し、前記流出防止部を還元されない金属を使用してコールドスプレー法によって成膜し、前記流出防止部を成膜した後に前記半田接合層を酸化還元処理することが好ましい。
 上記半導体装置の製造方法は、前記半導体装置が、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものである場合に、前記基板の上にはコールドスプレー法により前記半田接合層を成膜し、前記半田接合層の酸化した表面のうち、前記半田層が位置する領域を還元ガス中で加熱して還元し、その還元された領域の周辺に酸化されたまま残した領域を前記流出防止部とすることが好ましい。
 上記半導体装置の製造方法は、前記半導体装置は、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものである場合に、前記基板の上にはコールドスプレー法により前記半田接合層を成膜した後に還元処理し、還元された前記半田接合層の表面のうち、前記半田層が位置する領域を囲む領域を酸化ガス中で加熱して酸化し、当該酸化領域を前記流出防止部とすることが好ましい。
 本発明によれば、流出防止部をコールドスプレー法を使用して形成するものであるが、そのコールドスプレー法が大気中で簡便に成膜できることから、半田流れを防止する構造を安価に形成した半導体装置を提供することができる。
第1実施形態の半導体装置を示した断面図である。 コールドスプレー法を実行する成膜装置の構成を概念的に示した図である。 流出防止層を成膜するための第1マスクを示した図である。 流出防止層を成膜するための第1マスクを示した図である。 段階的に成膜する流出防止層の成膜状況を示した平面図である。 第2実施形態の半導体装置を示した断面図である。 第3実施形態の半導体装置を示した断面図である。 第4実施形態の半導体装置を示した断面図である。 部分還元方法を示したイメージ図である。 従来の半導体装置を示した断面図である。
1 半導体装置
11 半導体素子
12 基板
13 半田層
14 半田接合層
15 流出防止層
91 第1マスク
92 第2マスク
 次に、本発明に係る半導体装置及びその製造方法について、その実施形態を図面を参照しながら以下に説明する。図1は、第1実施形態の半導体装置を示した断面図である。半導体装置1は、例えばIGBTなどの半導体素子11が、熱伝導性や電気伝導性のよいアルミニウムや銅などの金属からなる基板12に搭載されている。半導体素子11と基板12とは半田によって接合されているが、その両者を接合する半田層13と基板12との間には、基板12に対する半田の接合性を良くするため半田接合層14が設けられている。また、シリコンからなる半導体素子の裏面にも、半田との接合性を良くするためニッケル合金などのメタライズ処理が施されている。
 半田接合層14は、ニッケルや銅、スズなどがコールドスプレー法、メッキ法、真空蒸着、或いはスパッタなどの成膜処理によって形成される。しかし、メッキ法によって成膜する場合には、半田接合層14だけの部分成膜をするために、それ以外の表面全部をマスキングしなければならないので、非常に手間とコストがかかる。真空蒸着やスパッタも高価な真空設備での成膜が必要で、真空排気等にも時間が必要なため、生産性が悪くコストがかかる。そこで、部分成膜が容易であり、コストや処理時間、設備費用の点でコールドスプレー法を使用するのが有効である。
 図2は、コールドスプレー法を実行する成膜装置の構成を概念的に示した図である。成膜装置80は、圧縮ガスを供給するコンプレッサ81を有し、そのコンプレッサ81から送られる圧縮ガスが加熱手段82によって加熱され、圧力調整弁83を介してノズル84から噴射されるようになっている。粉末タンク85には例えば銅粉末が充填され、その粉末タンク85から送り込まれる銅粉末をノズル84でも加熱できるようにヒータ86が設けられている。そして、銅粉末を特定の領域に噴射して成膜するため、ノズル84を平行移動させる駆動手段87が設けられている。
 成膜装置80によって半田接合層14を成膜する場合、基板12の上にマスク88が配置される。マスク88は、成膜領域に相当する大きさの開口枠881が形成され、基板12に対して開口枠881の位置が合わせられる。ノズル84には、粉末タンク85から平均粒径が5~60μmの銅粉末が供給され、その銅粉末がヒータ86によって加熱される。また、ノズル84にはコンプレッサ81から加熱された圧縮ガスが送り込まれる。
 ノズル84からは50℃~200℃に加熱された固相状態の銅粉末が、圧縮ガスと共に基板12の表面に向けて勢いよく吹き付けられる。ノズル84から噴射された銅粉末は、固体のまま音速から超音速ほどの高速で基板12に衝突し、塑性変形して付着することによって膜を形成する。銅粉末は衝突した際に運動エネルギーが熱エネルギーに変わり、材料によっては材料表面が融点を超えて結合し強固な密着力を得る。そして、銅粉末を噴射するノズル84が成膜領域に従って水平移動を繰返すことにより、基板12に所定厚さの半田接合層14が成膜される。
 コールドスプレー法により半田接合層14が成膜された後の基板12は、炉内に投入されて還元性ガス雰囲気下で(例えばアルゴンガス、ヘリウムガス、窒素ガスなどに水素を3~100%配合した雰囲気下)、200℃~700℃の温度条件で熱処理が行われる。半田接合層14は、有水素ガス雰囲気中で熱処理を行うことによって、被膜として付着して堆積した銅粒子の表面の酸化層が還元され、無酸化の銅が表面を覆う。こうして半田接合層14の表面に半田付けが可能になるが、逆に還元処理により半田が濡れ拡がりやすくなり、半田流れの問題が生じる。
 半導体素子11を構成するシリコンと半田接合層14を構成する銅などとは線膨張係数に差がある。そのため、半導体装置1が繰り返し使用されると、両者を接合する半田層13に冷熱衝撃によるせん断応力が作用する。そのため半田層13は、応力の分散ができるように一定以上の膜厚が求められ、膜厚が十分でない場合には疲労破壊を引き起こしてしまう。半導体素子11を半田付けする際、本来所定領域に留まるべき半田が流れてしまうことが原因で、半田層13の膜厚が薄くなってしまうと、十分な応力分散ができる膜厚を確保できなくなる可能性が生じる。また、半田が広い領域で濡れ拡がると、半導体素子11の周りに位置するワイヤボンド(不図示)の接続領域に半田が付着してしまい製品不良となる。
 そこで、半導体装置1には、半田接合層14の周りを囲むようにして、半田流れを防止する流出防止層15が形成されている。流出防止層15は、半田接合層14と同様に、低コストの形成が可能なコールドスプレー法によって成膜される。流出防止層15も成膜装置80によって成膜されるが、その際、図3及び図4に示す2枚のマスクが使用される。第1マスク91と第2マスク92は、半田接合層14を覆う中央遮蔽部911,921の周りに、それぞれ開口部912,922が形成され、開口部912,922の外側に外周遮蔽部913,923が存在する。
 開口部912,922は、それぞれ2箇所に形成された連結部915,925によって途切れており、環状にはなっていない。これは、中央遮蔽部911又は921と外周遮蔽部913又は923とを連結させるためである。従って、一枚のマスクだけでは、環状に形成すべき流出防止層15が連結部915,925の箇所で途切れてしまう。そこで、第1マスク91と第2マスク92は、両者を重ね合わせた場合に、互いの連結部915,925の位置が他方の開口部922,912になるように、それぞれの位置がずらして形成されている。
 流出防止層15の成膜には、先ず図3に示す第1マスク91が基板12上に配置され、中央遮蔽部911が半田接合層14に重なるように位置合わせが行われる。そして、図2に示す成膜装置80を使用したコールドスプレー法による成膜が行われる。すなわち、ノズル84から勢いよく噴射された銅粉末が、開口部912を通って基板12の表面に衝突し、塑性変形して付着することによって膜が形成される。ノズル84は、銅粉末を噴射しながら開口部912の全領域に渡って移動し、それにより基板12には、図5に示す第1膜151が形成される。図5は、段階的に成膜する流出防止層15の成膜状況を示した平面図である。
 第1膜151は、開口部912に対応した平面形状であって、2つに分割され、その間に切断部155が形成されている。第1膜151を成膜した後、第1マスク91に替えて第2マスク92が配置され、再度ノズル84から銅粉末が噴射される。そのため、第1膜151に重ねて第2膜152が成膜される。このとき、切断部155には銅粉末が入り込み、その凹みが埋められる。一方、第2膜152は、2つに分割された開口部922に対応した平面形状であり、2箇所に切断部156が形成される。そこで、更に第2マスク92に替えて第1マスク91を配置し、交互に成膜が行われる。
 基板12上に半田接合層14と流出防止層15が成膜された後、半田接合層14の上に半導体素子11が半田付けされる。すなわち、箔状或いはペレット状の半田材を介して半導体素子11が重ねられ、加熱して半田材を溶融した半田付けが行われる。このとき、半田接合層14の周りの流出防止層15は銅が酸化した状態であるため、溶融した半田が接合せずそれ以上外側に濡れ拡がらない。従って、半田流れが防止された半田層13は、一定以上の膜厚を保つことができる。
 本実施形態によれば、コールドスプレー法を使用したことにより流出防止層15を安価に形成した半導体装置1を提供することが可能になった。コールドスプレー法によれば、大気中で簡便に成膜でき、第1マスク91と第2マスク92を使用することにより低価格で部分成膜が可能だからである。また、第1マスク91と第2マスク92を使用することにより、切れ目のない環状の流出防止層15とすることができ、半田の流出をより防止可能なものとすることができた。そして、流出防止層15が半田流れを防止することで、半田の濡れ拡がる領域が限定され、ワイヤボンディングの接合領域に到達しなくなり、ボンディング不良を防止することができる。その上で接合される半導体素子11の位置精度が向上する。
 ところで、前述した第1及び第2マスク91,92を交互に使用することにより、流出防止層15の切断部155,156が埋められる。しかし、第1マスク91を浮かせて配置することにより、噴射された銅粉末が連結部915の下側にも回り込み、成膜部分がつながることも考えられる。そうした場合、切断部155が形成されないため、第1マスク91だけで流出防止層15を成膜することも可能である。また、切断部155は局所的であって幅も狭い。そのため、切断部155に半田の流出が生じないか、半田の濡れ拡がりが製品として支障がない場合にも、第1マスク91だけで成膜するようにしてもよい。
 半導体装置1は、半田接合層14と流出防止層15を共にコールドスプレー法を使用し、銅粉末の成膜によって形成したものである。そのため、先に半田接合層14を成膜して還元処理し、その後に流出防止層15を成膜し、還元処理することなく酸化膜を残したままにした。一方で、流出防止層15の形成に、アルミニウムなどの還元処理で還元されない金属を使用した場合には、半田接合層14と流出防止層15を成膜した後に、一緒に還元処理を行うようにしてもよい。
 また、半導体装置1は、流出防止層15を銅で形成しているが、前述したアルミニウムの他、金や銀など、比重や比熱、熱伝導率が高い材料を使用することが好ましい。半導体装置1では、半導体素子11が発熱体となって使用時の発熱量が大きくなる。そのため、熱伝導性の良い流出防止層15を設けることにより、熱拡散と過渡熱吸熱により、半導体装置1全体の放熱性能を向上させることができるからである。
(第2実施形態)
 次に、本発明に係る半導体装置の第2実施形態について説明する。図6は、第2実施形態の半導体装置を示した断面図である。図1と同じ構成については、同じ符号を付して説明する。半導体装置2は、基板12の上に半田接合層16が成膜され、その上に半田層13を介して半導体素子11が接合されている。半田接合層16は、その上に流出防止層17を重ねて形成するため、前記第1実施形態の半田接合層14よりも面積が大きく形成されている。
 半田接合層16は、ニッケルや銅、スズなどがコールドスプレー法、メッキ法、真空蒸着、或いはスパッタなどの成膜処理によって形成されるが、ここでも銅粉末をコールドスプレー法によって成膜したものについて説明する。半田接合層16は、成膜後の還元処理によって半田が濡れ拡がるため、半田流れを防止する流出防止層17が成膜される。流出防止層17は、銅粉末をコールドスプレー法によって成膜されたものであり、ここでも図3及び図4に示す第1及び第2マスク91,92を使用して形成される。
 流出防止層17は、半導体素子11の周りを囲む壁のようになっているため、半田付けの際には、流出防止層17の枠中に、箔状或いはペレット状の半田材と半導体素子11が重ねて入れられる。そこで、流出防止層17の高さは、少なくとも半田層13の膜厚(100~400μm)よりも高くなるように形成される。これは、治具を使わなくても、半田炉へ移動する際に、半田材や半導体素子11が流出防止層17から外れないようにするためである。そして、高さをもった流出防止層17は、半田付けに際して溶融した半田が流れてしまわないように、堰き止めることができる。また、こうして流出防止層17が半田流れを防止することで、半田の濡れ拡がる領域が限定され、その上で接合される半導体素子11の位置精度が向上する。
 よって、本実施形態でも、コールドスプレー法を使用したことにより流出防止層17を安価に形成した半導体装置2を提供することが可能になるなど、前記第1実施形態と同様の効果が得られる。また、熱伝導性の良い銅製の半田接合層16や流出防止層17によって体積が大きくなり熱容量が増え、半導体装置2全体の放熱性能を向上させることができる。更に、流出防止層17内に半田材や半導体素子11を入れて配置するだけで、半田付け完了まで保持する必要がないため、治具などの廃止や生産設備の簡素化が可能になり、この点でもコストの削減が可能になる。
(第3実施形態)
 次に、本発明に係る半導体装置の第3実施形態について説明する。図7は、第3実施形態の半導体装置を示した断面図である。図1と同じ構成については、同じ符号を付して説明する。半導体装置3は、基板12の上に半田接合層14が成膜され、その上に半田層13を介して半導体素子11が接合されている。半田接合層14は、銅粉末をコールドスプレー法によって成膜したものであり、成膜後の還元処理によって半田が濡れ拡がるため、その周りに半田流れを防止する流出防止層18が成膜されている。流出防止層18は、銅粉末をコールドスプレー法によって成膜されたものであり、ここでも図3及び図4に示す第1及び第2マスク91,92を使用して形成される。
 流出防止層18は、基板12の上に直接成膜され、半導体素子11の周りを囲む壁のようにして形成されている。流出防止層18の膜厚は、少なくとも半田接合層14上の半田層13よりも高くなるように形成される。従って、治具を使わなくても、半田炉へ移動する際に、半田材や半導体素子11が流出防止層18から外れてしまうようなことはない。また、高さをもった流出防止層18は、半田付けに際して溶融した半田が流れてしまわないように堰き止めることができる。更に、流出防止層18が半田流れを防止することで、半田の濡れ拡がる領域が限定され、その上で接合される半導体素子11の位置精度が向上する。
 よって、本実施形態でも、コールドスプレー法を使用したことにより流出防止層18を安価に形成した半導体装置3を提供することが可能になるなど、前記第1実施形態と同様の効果が得られる。また、熱伝導性の良い銅製の流出防止層18によって体積が大きくなり熱容量が増えるため、半導体装置3全体の放熱性能を向上させることができる。更に、流出防止層18内に半田材や半導体素子11を入れて配置するだけで、半田付け完了まで保持する必要がないため、治具などの廃止や生産設備の簡素化が可能になり、この点でもコストの削減が可能になる。
(第4実施形態)
 次に、本発明に係る半導体装置の第4実施形態について説明する。図8は、第4実施形態の半導体装置を示した断面図である。図1と同じ構成については、同じ符号を付して説明する。半導体装置4は、基板12の上に半田接合層21が成膜され、その上に半田層13を介して半導体素子11が接合されている。半田接合層21は、銅粉末をコールドスプレー法によって成膜されたものであり、半導体素子11や半田層13よりも面積が大きく形成されている。
 成膜後の半田接合層21は、酸化されていてそのままでは半田付けができない。一方で、全体を還元してしまったのでは半田流れが生じてしまう。そこで、本実施形態では部分的に還元処理を施すことにより、酸化部分を残して半田流れが生じないようにした。すなわち、半田層13が配置される半田接合層21の中央領域に還元部分211が形成され、その周り存在する酸化されたままの酸化部分212が流出防止部となる。図9は、部分還元方法を示したイメージ図である。
 還元処理は、還元性のある還元ガス中で所定温度の加熱によって行われる。本実施形態の還元処理は、水素などの還元ガス中に半田接合層21が置かれる。そして、図9に示すように、レーザ装置220から半田接合層21の表面に向けてパルスモードのレーザが照射される。一箇所毎に一定時間レーザを照射しながら、照射場所を少しずつずらして還元部分211のみ照射する。パルスモードのレーザは、レーザ照射点の還元に十分な0.1~2.0J/(cm ・パルス)程度のエネルギーであって、100msec以下の短時間だけ注入される。従って、レーザが照射された部分のみが還元され、その周囲は温度上昇が抑えられて還元されない。
 なお、レーザの走査速度、パルス照射周期、ビーム径、レーザ波長および照射面反射率は、半田接合層21の膜厚や周辺の構造などによって適宜設定される。また、レーザ装置220には、COレーザ、YAGレーザまたはファイバーレーザなどが使用される。還元ガスは、チャンバー内で雰囲気ガスとして供給するようにしてもよく、レーザ照射部分に吹き付けるようにしてもよい。
 半田接合層21に所定領域の還元部分211が形成された後、還元部分211上には、箔状或いはペレット状の半田を介して半導体素子11が重ねられ、加熱によって半田付けが行われる。その際、半田の周りには、コールドスプレー法によって成膜されたままの酸化部分212が存在するため、半田流れが防止される。よって、本実施形態によれば、コールドスプレー法を使用して成膜した半田接合層21をそのまま半田流れを防止する流出防止部分とすることにより安価に形成した半導体装置4を提供することが可能になる。
 ところで、半田接合層21に対して部分的に還元する方法を説明したが、それに代えて、次は半田接合層21に対して部分的に酸化する方法を説明する。この方法では、基板12に対してコールドスプレー法によって半田接合層21が成膜された後、その半田接合層21は、先ず還元ガス中で加熱された還元処理が行われる。そのため、全体が還元してしまい、そのままでは半田流れが生じてしまうため部分的に酸化処理が施される。すなわち、半田接合層21の中央に還元部分211を残し、その周りに、流出防止部として酸化した酸化部分212が形成される。
 酸化処理は、半田接合層21が、酸素やハロゲン系の酸化性のあるガスを含む酸化ガス中に置かれる。半田接合層21には、図9に示す場合と同様に、レーザ装置220から半田接合層21の表面に向けてパルスモードのレーザが照射される。ただし、ここでの照射箇所は、半田接合層21の酸化部分212に相当する箇所である。パルスモードのレーザは、レーザ照射点の酸化に十分なエネルギーであって、所定時間だけ注入される。従って、レーザが照射された部分のみが酸化され、中央部分は酸化されない。還元部分211に比べ外周部だけに限られる酸化部分212は面積が小さい。このため、レーザ照射時間が短時間で済むメリットがある。
 なお、レーザの走査速度、パルス照射周期、ビーム径、レーザ波長および照射面反射率は、半田接合層21の膜厚や周辺の構造などによって適宜設定される。また、レーザ装置220には、COレーザ、YAGレーザまたはファイバーレーザなどが使用される。そして、酸化ガスは、高濃度の酸素やハロゲンを含むと酸化力が高いものとなるため、必要に応じて希釈してもよい。また、酸化ガスは、チャンバー内で雰囲気ガスとして供給するようにしてもよく、レーザ照射部分に吹き付けるようにしてもよい。
 よって、部分酸化でも半田接合層21に所定領域の還元部分211と酸化部分212とが形成される。その後は、還元部分211上に箔状或いはペレット状の半田を介して半導体素子11が重ねられ、加熱によって半田付けが行われる。その際、半田の周りを酸化部分212が囲んでいるため、半田流れが防止される。こうして、コールドスプレー法を使用して成膜した半田接合層21に酸化部分212を形成し、半田流れを防止する流出防止部分とする安価な半導体装置4を提供することが可能になった。
 なお、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良、変形が可能であることは言うまでもない。
 前記各実施形態では、流出防止層15などを酸化した銅によって構成した場合を説明したが、半田と接合せず濡れない材料であれば、コールドスプレー法によって成膜する材料として、アルミニウム、チタン、鉄、銀などの使用も可能である。
 また、第1乃至第3実施形態では半田接合層14,16が形成されているが、基板12が銅やニッケル、スズあるいはその合金で形成され、半田が直接接合できる場合には半田接合層14,16を省いた構成であってもよい。
 また、第1乃至第3実施形態では、流出防止層15,17,18の成膜に当たって、第1及び第2マスク91,92を使用した方法を説明したが、その他の方法として、基板12や半田接合層14,16に樹脂などで保護膜を形成し、コールドスプレー法により流出防止層15,17,18を成膜をした後に、その保護膜を剥離するようにしてもよい。
 また、基板12は、セラッミクス板を用いた絶縁基板であってもよい。
 

Claims (16)

  1.  基板の上に半田層を介して半導体素子を接合した半導体装置において、
     前記半田層の周りを囲むことにより半田付けの際の半田流れを防止する流出防止部を有し、その流出防止部が、コールドスプレー法によって成膜されたものであり、表面が酸化された状態であることを特徴とする半導体装置。
  2. 請求項1に記載する半導体装置において、
     前記流出防止部は、前記半田層の周りにコールドスプレー法によって成膜された流出防止層であることを特徴とする半導体装置。
  3. 請求項1に記載する半導体装置において、
     前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものであり、前記流出防止部は、前記半田接合層の周りに沿ってコールドスプレー法により成膜された流出防止層であることを特徴とする半導体装置。
  4. 請求項3に記載する半導体装置において、
     前記流出防止層は、前記半田層よりも高くなる厚さで成膜されたものであることを特徴とする半導体装置。
  5. 請求項1に記載する半導体装置において、
     前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものであり、前記流出防止部は、前記半田接合層の上にコールドスプレー法により成膜された流出防止層であることを特徴とする半導体装置。
  6. 請求項5に記載する半導体装置において、
     前記流出防止層は、前記半田層よりも高くなる厚さで成膜されたものであることを特徴とする半導体装置。
  7. 請求項3乃至請求項6のいずれかに記載する半導体装置において、
     前記半田接合層は、成膜時に酸化した金属が還元処理されたものであり、前記流出防止層は、成膜時に酸化されたままの金属によって形成されたものであることを特徴とする半導体装置。
  8. 請求項7に記載する半導体装置において、
     前記半田接合層は、コールドスプレー法によって成膜されたものであることを特徴とする半導体装置。
  9. 請求項1に記載する半導体装置において、
     前記基板の上にはコールドスプレー法により半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものであり、
     前記半田接合層は、成膜によって酸化した表面のうち、前記半田層が位置する領域が還元ガス中での加熱により還元され、前記流出防止部は、還元された領域の周辺に酸化されたままの領域であることを特徴とする半導体装置。
  10. 請求項1に記載する半導体装置において、
     前記基板の上にはコールドスプレー法により半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものであり、
     前記流出防止部は、還元処理された前記半田接合層の表面について、前記半田層が位置する領域を囲むように酸化ガス中での加熱により酸化された領域であることを特徴とする半導体装置。
  11.  基板の上に半田層を介して半導体素子を接合する際、溶融した半田の半田流れを防止しながら前記半導体素子を半田付けする半導体装置の製造方法において、
     前記基板の上に前記半田層の周りを囲む領域に、表面が酸化された状態の流出防止部をコールドスプレー法を使用した成膜によって形成し、
     前記流出防止部に囲まれた中に半田材が配置され、熱を加えて前記半田材を溶融させて前記半導体素子を半田付けすることを特徴とする半導体装置の製造方法。
  12. 請求項11に記載する半導体装置の製造方法において、
     前記半田層の領域に対応する中央遮蔽部と、前記流出防止部の外周領域に対応する外周遮蔽部との間に、前記流出防止部に対応する開口部が形成され、前記開口部を横切って前記中央遮断部と外周遮断部とを連結する連結部の位置が異なる2枚のマスクを用意し、
     前記2枚のマスクを交互に使用しながらコールドスプレー法によって前記流出防止部を成膜することを特徴とする半導体装置の製造方法。
  13. 請求項11に記載する半導体装置の製造方法において、
     前記半導体装置は、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものである場合に、
     前記半田接合層をコールドスプレー法により成膜し、前記半田接合層を酸化還元処理した後に、前記流出防止部をコールドスプレー法により成膜することを特徴とする半導体装置の製造方法。
  14. 請求項11に記載する半導体装置の製造方法において、
     前記半導体装置は、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものである場合に、
     前記半田接合層をコールドスプレー法により成膜し、前記流出防止部を還元されない金属を使用してコールドスプレー法によって成膜し、前記流出防止部を成膜した後に前記半田接合層を酸化還元処理することを特徴とする半導体装置の製造方法。
  15. 請求項11に記載する半導体装置の製造方法において、
     前記半導体装置は、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものである場合に、
     前記基板の上にはコールドスプレー法により前記半田接合層を成膜し、
     前記半田接合層の酸化した表面のうち、前記半田層が位置する領域を還元ガス中で加熱して還元し、その還元された領域の周辺に酸化されたまま残した領域を前記流出防止部とすることを特徴とする半導体装置の製造方法。
  16. 請求項11に記載する半導体装置の製造方法において、
     前記半導体装置は、前記基板の上には半田接合層が成膜され、前記半導体素子が前記半田接合層の上に半田層を介して接合されたものである場合に、
     前記基板の上にはコールドスプレー法により前記半田接合層を成膜した後に還元処理し、
     還元された前記半田接合層の表面のうち、前記半田層が位置する領域を囲む領域を酸化ガス中で加熱して酸化し、当該酸化領域を前記流出防止部とすることを特徴とする半導体装置の製造方法。
     
     
PCT/JP2010/058374 2010-05-18 2010-05-18 半導体装置及びその製造方法 WO2011145176A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/058374 WO2011145176A1 (ja) 2010-05-18 2010-05-18 半導体装置及びその製造方法
US13/387,910 US8865584B2 (en) 2010-05-18 2010-05-18 Semiconductor device and manufacturing method thereof
CN201080043795.4A CN102549738B (zh) 2010-05-18 2010-05-18 半导体装置及其制造方法
JP2010544106A JP5565315B2 (ja) 2010-05-18 2010-05-18 半導体装置の製造方法
KR1020127005397A KR101343289B1 (ko) 2010-05-18 2010-05-18 반도체 장치 및 그 제조 방법
EP10851740.0A EP2573809A4 (en) 2010-05-18 2010-05-18 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058374 WO2011145176A1 (ja) 2010-05-18 2010-05-18 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011145176A1 true WO2011145176A1 (ja) 2011-11-24

Family

ID=44991300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058374 WO2011145176A1 (ja) 2010-05-18 2010-05-18 半導体装置及びその製造方法

Country Status (6)

Country Link
US (1) US8865584B2 (ja)
EP (1) EP2573809A4 (ja)
JP (1) JP5565315B2 (ja)
KR (1) KR101343289B1 (ja)
CN (1) CN102549738B (ja)
WO (1) WO2011145176A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247256A (ja) * 2012-05-28 2013-12-09 Hitachi Ltd 半導体装置およびその製造方法
JP2014187180A (ja) * 2013-03-22 2014-10-02 Mitsubishi Materials Corp 半導体装置用接合体、パワーモジュール用基板及びパワーモジュール
JP2016086069A (ja) * 2014-10-24 2016-05-19 三菱電機株式会社 半導体素子および半導体装置
JP2017129086A (ja) * 2016-01-21 2017-07-27 トヨタ自動車株式会社 シリンダヘッドの製造方法
WO2019207996A1 (ja) * 2018-04-23 2019-10-31 株式会社日立パワーデバイス 半導体装置およびその製造方法
WO2022153780A1 (ja) * 2021-01-13 2022-07-21 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359644B2 (ja) * 2009-07-23 2013-12-04 三菱マテリアル株式会社 パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5637992B2 (ja) * 2009-09-15 2014-12-10 株式会社東芝 セラミックス回路基板の製造方法
KR101180224B1 (ko) 2010-07-07 2012-09-05 주식회사 포스코 쇳물용기 지지장치
CN104603921B (zh) * 2012-09-04 2018-07-24 三菱电机株式会社 半导体装置、半导体装置的制造方法
DE102013211089A1 (de) * 2013-06-14 2014-12-18 Robert Bosch Gmbh Substrat mit einem Bereich zur Begrenzung eines Lotbereichs
US20150246371A1 (en) * 2014-02-28 2015-09-03 Pratt & Whitney Canada Corp. Method of cold spraying components of a gas turbine engine mask therefor
KR200478914Y1 (ko) * 2015-04-23 2015-12-03 제엠제코(주) 반도체 패키지
DE102016110847B4 (de) 2016-06-14 2022-02-17 Auto-Kabel Management Gmbh Leitungsintegrierter Schalter und Verfahren zum Herstellen eines leitungsintegrierten Schalters
JP6847259B2 (ja) * 2017-11-22 2021-03-24 三菱電機株式会社 半導体装置および半導体装置の製造方法
CN108365357B (zh) * 2018-01-30 2019-11-26 番禺得意精密电子工业有限公司 端子及具有该端子的电连接器
EP4005357A1 (en) * 2019-07-22 2022-06-01 Technische Hochschule Aschaffenburg Electrical connection pad with enhanced solderability and corresponding method for laser treating an electrical connection pad
DE102019132332B3 (de) * 2019-11-28 2021-01-28 Infineon Technologies Ag Verfahren zum Herstellen eines Moduls, Lötkörper mit einem erhöhten Rand zum Herstellen eines Moduls und Verwenden des Lötkörpers zum Herstellen eines Leistungsmoduls

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177290A (ja) 1992-12-04 1994-06-24 Nippon Steel Corp 半導体装置
JPH0823002A (ja) * 1994-07-05 1996-01-23 Hitachi Ltd 半導体装置及びその製造方法
JP2006319146A (ja) 2005-05-13 2006-11-24 Fuji Electric Holdings Co Ltd 配線基板
JP2008172066A (ja) * 2007-01-12 2008-07-24 Fuji Electric Device Technology Co Ltd 半導体装置及びその製造方法
JP2009026953A (ja) * 2007-07-19 2009-02-05 Toyota Motor Corp パワーモジュールの製造方法、パワーモジュール、車両用インバータ、及び車両

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170090A (ja) 1987-12-25 1989-07-05 Hitachi Ltd はんだ付け方法
JP2527828B2 (ja) * 1990-02-27 1996-08-28 三菱電機株式会社 半導体パッケ―ジ
JPH0496256A (ja) 1990-08-03 1992-03-27 Mitsubishi Materials Corp 金属製ハーメチックシール蓋
JP3198661B2 (ja) * 1992-10-14 2001-08-13 株式会社村田製作所 誘電体共振器装置およびその実装構造
JPH06244224A (ja) 1993-02-15 1994-09-02 Fuji Electric Co Ltd 半導体装置の部品半田付け方法
JPH07211731A (ja) * 1994-01-27 1995-08-11 Fuji Electric Co Ltd 半導体装置
JPH10242330A (ja) * 1997-02-21 1998-09-11 Dowa Mining Co Ltd パワーモジュール用基板及びその製造法
JP3918379B2 (ja) * 1999-10-20 2007-05-23 トヨタ自動車株式会社 溶射方法、溶射装置及び粉末通路装置
JP3706533B2 (ja) * 2000-09-20 2005-10-12 三洋電機株式会社 半導体装置および半導体モジュール
DE10045783A1 (de) * 2000-05-08 2001-11-22 Ami Doduco Gmbh Verfahren zum Herstellen von Werkstücken, welche der Leitung von elektrischem Strom dienen und mit einem überwiegend metallischen Material beschichtet sind
US7832177B2 (en) * 2002-03-22 2010-11-16 Electronics Packaging Solutions, Inc. Insulated glazing units
JP3938742B2 (ja) * 2002-11-18 2007-06-27 Necエレクトロニクス株式会社 電子部品装置及びその製造方法
DE102004055817B3 (de) * 2004-11-18 2006-01-12 Danfoss Silicon Power Gmbh Verfahren zum Herstellen eines Leistungshalbleitermoduls und Halbleitermodul
US20060216428A1 (en) * 2005-03-23 2006-09-28 United Technologies Corporation Applying bond coat to engine components using cold spray
JP4979290B2 (ja) * 2006-07-21 2012-07-18 北陸電気工業株式会社 表面実装用可変抵抗器
JP5077529B2 (ja) 2006-11-10 2012-11-21 富士電機株式会社 絶縁基板の製造方法、ならびに半導体装置の製造方法
US7758916B2 (en) * 2006-11-13 2010-07-20 Sulzer Metco (Us), Inc. Material and method of manufacture of a solder joint with high thermal conductivity and high electrical conductivity
TWI367552B (en) * 2007-08-22 2012-07-01 Everlight Electronics Co Ltd Soldering process for electrical component and apparatus thereof
WO2011141979A1 (ja) * 2010-05-10 2011-11-17 トヨタ自動車株式会社 マスキング治具、基板加熱装置、及び成膜方法
KR101297870B1 (ko) * 2010-05-21 2013-08-19 도요타지도샤가부시키가이샤 반도체 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177290A (ja) 1992-12-04 1994-06-24 Nippon Steel Corp 半導体装置
JPH0823002A (ja) * 1994-07-05 1996-01-23 Hitachi Ltd 半導体装置及びその製造方法
JP2006319146A (ja) 2005-05-13 2006-11-24 Fuji Electric Holdings Co Ltd 配線基板
JP2008172066A (ja) * 2007-01-12 2008-07-24 Fuji Electric Device Technology Co Ltd 半導体装置及びその製造方法
JP2009026953A (ja) * 2007-07-19 2009-02-05 Toyota Motor Corp パワーモジュールの製造方法、パワーモジュール、車両用インバータ、及び車両

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247256A (ja) * 2012-05-28 2013-12-09 Hitachi Ltd 半導体装置およびその製造方法
JP2014187180A (ja) * 2013-03-22 2014-10-02 Mitsubishi Materials Corp 半導体装置用接合体、パワーモジュール用基板及びパワーモジュール
JP2016086069A (ja) * 2014-10-24 2016-05-19 三菱電機株式会社 半導体素子および半導体装置
JP2017129086A (ja) * 2016-01-21 2017-07-27 トヨタ自動車株式会社 シリンダヘッドの製造方法
WO2019207996A1 (ja) * 2018-04-23 2019-10-31 株式会社日立パワーデバイス 半導体装置およびその製造方法
WO2022153780A1 (ja) * 2021-01-13 2022-07-21 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US8865584B2 (en) 2014-10-21
CN102549738B (zh) 2015-07-01
KR101343289B1 (ko) 2013-12-18
US20120126411A1 (en) 2012-05-24
JPWO2011145176A1 (ja) 2013-07-22
EP2573809A1 (en) 2013-03-27
EP2573809A4 (en) 2017-05-24
KR20120049319A (ko) 2012-05-16
JP5565315B2 (ja) 2014-08-06
CN102549738A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5565315B2 (ja) 半導体装置の製造方法
JP5316637B2 (ja) 半導体装置
JP4844702B1 (ja) マスキング治具、基板加熱装置、及び成膜方法
US9437573B2 (en) Semiconductor device and method for manufacturing thereof
TWI523724B (zh) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
JP4901933B2 (ja) 半導体装置の製造方法
JP5321601B2 (ja) 半導体装置
KR20150038535A (ko) 반도체장치 및 반도체장치의 제조방법
JP5708961B2 (ja) 半導体装置の製造方法
JP2008028286A (ja) 半導体装置の製造方法
CN114823364B (zh) 一种气密封装方法
JP2011054889A (ja) 樹脂封止型半導体装置およびその製造方法
WO1998041354A1 (en) Method of solid-phase welding members
JP5733466B2 (ja) 半導体装置の製造方法
JP5644806B2 (ja) 絶縁基板、半導体装置およびそれらの製造方法
JP2011249599A (ja) 半導体実装基板およびそれを用いた実装構造体
JP2015185689A (ja) 半導体の実装方法及び半導体部品の製造装置
TWI381900B (zh) Metal bonding structure and joining method thereof
TWI555125B (zh) 功率模組封裝體的製造方法
JP6270027B2 (ja) 半導体装置の製造装置
JP2007142054A (ja) シールカバーおよびその製造方法
WO2015019677A1 (ja) 半導体装置の製造方法
JPH0864955A (ja) 加熱接合方法
JPS5939034A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043795.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010544106

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010851740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13387910

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127005397

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE