WO2011145159A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2011145159A1
WO2011145159A1 PCT/JP2010/007010 JP2010007010W WO2011145159A1 WO 2011145159 A1 WO2011145159 A1 WO 2011145159A1 JP 2010007010 W JP2010007010 W JP 2010007010W WO 2011145159 A1 WO2011145159 A1 WO 2011145159A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor substrate
semiconductor device
film
end portion
Prior art date
Application number
PCT/JP2010/007010
Other languages
English (en)
French (fr)
Inventor
青井信雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011145159A1 publication Critical patent/WO2011145159A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13009Bump connector integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13563Only on parts of the surface of the core, i.e. partial coating
    • H01L2224/13565Only outside the bonding interface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/1369Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16147Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a bonding area disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2741Manufacturing methods by blanket deposition of the material of the layer connector in liquid form
    • H01L2224/27416Spin coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/276Manufacturing methods by patterning a pre-deposited material
    • H01L2224/27618Manufacturing methods by patterning a pre-deposited material with selective exposure, development and removal of a photosensitive layer material, e.g. of a photosensitive conductive resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29078Plural core members being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a chip-chip stacking, a chip-wafer stacking or a wafer-wafer stacking semiconductor device and a manufacturing method thereof.
  • FIGS. 6A to 6D A conventional method for laminating semiconductor substrates is shown in FIGS. 6A to 6D (see, for example, Non-Patent Document 1).
  • a first silicon substrate 11 is prepared in which the bottom of the through silicon via 12 is exposed on the back surface (opposite surface of the circuit formation surface) 11b side.
  • a transistor 16 and a wiring layer 17 having a multi-layer wiring electrically connected to the through silicon via 12 and the transistor 16 are formed. Yes.
  • the sidewall surface of the through silicon via 12 is covered with an insulating film 18 with a barrier film (not shown) interposed therebetween, and the back surface 11 b of the first silicon substrate 11 is covered with a protective insulating film 19.
  • an insulating adhesive 13 is formed on the protective insulating film 19 and the exposed bottom of the through silicon via 12 by a spin coating method, and then pre-baked.
  • a second silicon substrate 14 having a front surface (circuit forming surface) 14a and a back surface (opposite surface of the circuit forming surface) 14b is prepared.
  • a transistor 20 and a wiring layer 21 having a multilayer wiring electrically connected to the transistor 20 are formed on the surface (circuit formation surface) 14 a of the second silicon substrate 14.
  • a metal electrode portion 15 is formed on the outermost surface portion of the wiring layer 21.
  • the metal electrode portion 15 of the second silicon substrate 14 joined to the through silicon via 12 of the first silicon substrate 11 is opposed to the through silicon via 12.
  • the first silicon substrate 11 and the second silicon substrate 14 are arranged to face each other with the insulating adhesive 13 interposed therebetween.
  • the first silicon substrate 11 and the second silicon substrate 14 are pressure-bonded in order to bond the first silicon substrate 11 and the second silicon substrate 14 together.
  • the insulating adhesive 13 is cured.
  • the insulating adhesive 13 is interposed between the through silicon via 12 and the metal electrode portion 15, but the silicon shown in FIG.
  • the insulating adhesive 13 interposed between the through via 12 and the metal electrode portion 15 is pushed out to the periphery, and the through silicon via 12 and the metal electrode portion 15 are directly connected.
  • the thermal conductivity of the adhesive connecting the semiconductor substrates is low and the heat dissipation efficiency is poor.
  • the heat generated by the operation of the transistors integrated in the logic LSI chip is accumulated in the vicinity of the heat generating portion of the logic LSI chip, causing a temperature rise, resulting in an operation failure or a reliability failure. there were.
  • an object of the present invention is to provide a semiconductor device having a three-dimensional stacked structure capable of efficiently dissipating heat generated from the semiconductor device, and a method for manufacturing the same.
  • the present inventor has proposed a resin containing carbon nanotubes as a filler (filler), which has been proposed as a high heat conductive material for heat dissipation in a packaged semiconductor device or the like (for example, Patent Documents). 1)).
  • the carbon nanotube is a general term for a material in which a sheet of a six-membered ring network formed by carbon atoms is formed into a single-layer or multi-layer coaxial tube. These are called multi-walled carbon nanotubes, but all have the feature of extremely high thermal conductivity.
  • carbon nanotubes have electrical conductivity. Specifically, as the single-walled carbon nanotube, those showing metallic properties and those showing semiconductor properties are mixed in the manufacturing process, and it is difficult to separate them. Multi-walled carbon nanotubes exhibit metallic properties.
  • the inventor of the present application for example, using an adhesive containing conductive carbon nanotubes as a filler, or a heat dissipation member containing conductive carbon nanotubes, The inventors have invented a semiconductor device having a three-dimensional stacked structure that can efficiently dissipate heat generated from the semiconductor device while preventing leakage current between the electrodes, and a manufacturing method thereof.
  • a first semiconductor device includes a first semiconductor substrate and a second semiconductor substrate that are bonded to each other by an adhesive, and a surface of the first semiconductor substrate that faces the second semiconductor substrate. And a second electrode provided such that at least the end portion is exposed on a surface of the second semiconductor substrate facing the first semiconductor substrate.
  • An electrode, the end of the first electrode and the end of the second electrode are connected to each other, the adhesive contains carbon nanotubes, and the first electrode It is formed in a region excluding the connection portion between the end portion and the end portion of the second electrode and the vicinity thereof.
  • the first semiconductor substrate and the second semiconductor substrate are bonded together using an adhesive containing carbon nanotubes, and the adhesive is attached to each semiconductor substrate. It is formed away from the electrode. Therefore, it is possible to obtain a semiconductor device having a three-dimensional laminated structure that can efficiently dissipate heat generated from the semiconductor device while preventing leakage current between electrodes, that is, a highly reliable three-dimensional laminated chip having no malfunction. Can do.
  • the adhesive is provided at least 2 ⁇ m or more away from the connection portion between the end portion of the first electrode and the end portion of the second electrode. Also good. In this way, it is possible to separate the adhesive containing carbon nanotubes from the electrodes of each semiconductor substrate while ensuring a sufficient margin in consideration of the substrate alignment accuracy, lithography accuracy, and the like.
  • the length of the carbon nanotube is determined by the connection between the end of the first electrode and the end of the second electrode, and the adhesive. It may be less than half of the separation distance. In this way, when the adhesive containing the carbon nanotubes is selectively removed from the connection part between the electrodes of each semiconductor substrate and the vicinity thereof, even if the carbon nanotubes remain in the connection part and the vicinity thereof, Generation of leakage current between the electrodes can be reliably prevented.
  • a carbon nanotube is not included between the connection portion between the end portion of the first electrode and the end portion of the second electrode and the adhesive.
  • An insulating adhesive may be further filled. In this way, it is possible to reliably prevent leakage current between the electrodes due to the carbon nanotubes.
  • the insulating adhesive may also be formed between the second semiconductor substrate and the adhesive.
  • the adhesive may have photosensitivity. If it does in this way, the adhesive agent containing a carbon nanotube can be selectively removed from the connection part of the electrodes of each semiconductor substrate, and its vicinity using lithography and image development processing.
  • the carbon nanotube may be a single-walled carbon nanotube, a multi-walled carbon nanotube, or a mixture thereof.
  • the first electrode may be a through electrode penetrating the first semiconductor substrate.
  • the first method for manufacturing a semiconductor device includes a step (a) of preparing a first semiconductor substrate in which at least an end portion of the first electrode is exposed on the surface; A step (b) of forming an adhesive film containing carbon nanotubes on the surface of the first semiconductor substrate excluding the end portion and the vicinity thereof; and after the step (b), the second electrode A second semiconductor substrate having at least an end portion exposed on the surface is prepared, and the end portion of the first electrode and the end portion of the second electrode are connected to each other. A step (c) of bonding the substrate and the second semiconductor substrate together with the adhesive film.
  • the first semiconductor substrate and the second semiconductor substrate are bonded together using an adhesive containing carbon nanotubes, and the adhesive is applied to each of the adhesives. It is formed away from the electrodes of the semiconductor substrate. Therefore, it is possible to obtain a semiconductor device having a three-dimensional laminated structure that can efficiently dissipate heat generated from the semiconductor device while preventing leakage current between electrodes, that is, a highly reliable three-dimensional laminated chip having no malfunction. Can do.
  • a step (d) of forming a conductive adhesive film may be further provided. In this way, it is possible to reliably prevent leakage current between the electrodes due to the carbon nanotubes. Further, in this case, a portion other than the portion formed in the vicinity of the end portion of the first electrode in the insulating adhesive film between the step (d) and the step (c).
  • the method may further include a step (e) of removing.
  • the adhesive may have photosensitivity. If it does in this way, the adhesive agent containing a carbon nanotube can be selectively removed from the connection part of the electrodes of each semiconductor substrate, and its vicinity using lithography and the image development process.
  • the carbon nanotube may be a single-walled carbon nanotube, a multi-walled carbon nanotube, or a mixture thereof.
  • the first electrode may be a through electrode penetrating the first semiconductor substrate.
  • a second semiconductor device includes at least a first semiconductor substrate and a second semiconductor substrate bonded to each other with an adhesive, and a surface of the first semiconductor substrate that faces the second semiconductor substrate.
  • a first electrode provided such that an end portion is exposed; and a second electrode provided such that at least the end portion is exposed on a surface of the second semiconductor substrate facing the first semiconductor substrate; And the end portion of the first electrode and the end portion of the second electrode are connected to each other, and between the first semiconductor substrate or the second semiconductor substrate and the adhesive
  • a carbon nanotube-containing film is formed in a region excluding the connection portion between the end portion of the first electrode and the end portion of the second electrode and the vicinity thereof.
  • the carbon nanotube-containing film is separated from the electrode of each semiconductor substrate between the first semiconductor substrate or the second semiconductor substrate and the adhesive that bonds the two substrates together. Forming. Therefore, it is possible to obtain a semiconductor device having a three-dimensional laminated structure that can efficiently dissipate heat generated from the semiconductor device while preventing leakage current between electrodes, that is, a highly reliable three-dimensional laminated chip having no malfunction. Can do.
  • the carbon nanotube-containing film is provided at least 2 ⁇ m away from the connection portion between the end portion of the first electrode and the end portion of the second electrode. It may be. In this way, the carbon nanotube-containing film can be separated from the electrodes of each semiconductor substrate while ensuring a sufficient margin in consideration of substrate alignment accuracy, lithography accuracy, and the like.
  • the length of the carbon nanotubes included in the carbon nanotube-containing film is the connecting portion between the end portion of the first electrode and the end portion of the second electrode. And a half or less of the separation distance from the carbon nanotube-containing film. In this way, when the carbon nanotube-containing film is selectively removed from the connection portion between the electrodes of each semiconductor substrate and the vicinity thereof, even if carbon nanotubes remain in the connection portion and the vicinity thereof, Leakage current generation can be reliably prevented.
  • the carbon nanotubes contained in the carbon nanotube-containing film may be single-walled carbon nanotubes, multi-walled carbon nanotubes, or a mixture thereof.
  • the first electrode may be a through electrode penetrating the first semiconductor substrate.
  • the method for manufacturing a second semiconductor device includes a step (a) of preparing a first semiconductor substrate having at least an end portion of the first electrode exposed on the surface, and the end portion of the first electrode.
  • the insulating adhesive film connects the first semiconductor substrate and the second semiconductor substrate so that the end portion of the first electrode and the end portion of the second electrode are connected to each other.
  • the carbon nanotube-containing film is formed from the electrode of each semiconductor substrate between the first semiconductor substrate or the second semiconductor substrate and the adhesive that bonds the two substrates. They are separated from each other. Therefore, it is possible to obtain a semiconductor device having a three-dimensional laminated structure that can efficiently dissipate heat generated from the semiconductor device while preventing leakage current between electrodes, that is, a highly reliable three-dimensional laminated chip having no malfunction. Can do.
  • the carbon nanotubes contained in the carbon nanotube-containing film may be single-walled carbon nanotubes, multi-walled carbon nanotubes, or a mixture thereof.
  • the first electrode may be a through electrode penetrating the first semiconductor substrate.
  • the heat generated from the semiconductor device can be efficiently radiated while preventing leakage current between the electrodes.
  • a semiconductor device having a stacked structure and a method for manufacturing the same can be realized, whereby a highly reliable three-dimensional stacked chip without malfunction can be obtained.
  • FIGS. 1A to 1D are cross-sectional views showing respective steps of the semiconductor device manufacturing method according to the first embodiment.
  • FIG. 2A is a diagram showing a cross-sectional configuration of a three-dimensional multilayer chip in which an adhesive containing carbon nanotubes is formed also in the connection portion between electrodes of each semiconductor substrate and in the vicinity thereof as a comparative example.
  • FIG. 2B is a diagram showing a cross-sectional configuration of the three-dimensional multilayer chip formed by the method for manufacturing the semiconductor device according to the first embodiment.
  • 3A to 3F are cross-sectional views showing respective steps of a method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • FIG. 1A to 1D are cross-sectional views showing respective steps of the semiconductor device manufacturing method according to the first embodiment.
  • FIGS. 5A to 5E are cross-sectional views showing respective steps of the semiconductor device manufacturing method according to the second embodiment.
  • 6A to 6D are cross-sectional views showing respective steps of a conventional method for manufacturing a semiconductor device.
  • FIGS. 1A to 1D are cross-sectional views showing respective steps of a semiconductor device manufacturing method according to the first embodiment.
  • a first semiconductor substrate (for example, a silicon substrate) 101 in which the bottom of the through via 104 is exposed on the back surface (opposite surface of the circuit formation surface) 101b side is prepared.
  • a transistor 102 and a wiring layer 103 having a multilayer via that is electrically connected to the through via 104 and the transistor 102 are formed on the surface (circuit formation surface) 101 a of the first semiconductor substrate 101.
  • the through via 104 penetrates the first semiconductor substrate 101 and reaches the wiring layer 103, and the side wall surface of the through via 104 is covered with an insulating film 105 with a barrier film (not shown) interposed therebetween.
  • the back surface 101 b of the first semiconductor substrate 101 is covered with a protective insulating film 106.
  • the first semiconductor substrate 101 is provided with a plurality of through vias 104.
  • a negative photosensitive divinylsiloxane-bis-benzocyclo in which single-walled carbon nanotubes are dispersed on the protective insulating film 106 and the exposed bottom of the through via 104, for example, a negative photosensitive divinylsiloxane-bis-benzocyclo in which single-walled carbon nanotubes are dispersed.
  • a 1,3,5-trimethylbenzene solution of butene (BCB) monomer (for example, the concentration of BCB monomer is 20 to 40% by mass and the concentration of single-walled carbon nanotubes is 1 to 40% by mass) is applied, for example, by spin coating. After coating at a thickness of about 5 ⁇ m, pre-baking is performed at 90 ° C. for 90 seconds, for example, to form the BCB monomer film 107.
  • BCB butene
  • a region near the through via 104 (that is, formed on the second semiconductor substrate 111 prepared in a later step and bonded to the through via 104 by a lithography process).
  • a polymerization reaction is caused to form a BCB film 107A insoluble in the developer.
  • the BCB monomer film 107 located in the vicinity region 108 of the through via 104 that is, the BCB monomer film 107 formed on and near the exposed bottom of the through via 104 is dissolved and removed by the developer.
  • a second semiconductor substrate (for example, a silicon substrate) 111 having a front surface (circuit forming surface) 111a and a back surface (opposite surface of the circuit forming surface) 111b is prepared.
  • the transistor 112 and a wiring layer 113 having a multilayer wiring electrically connected to the transistor 112 are formed.
  • an electrode portion 114 made of, for example, metal is formed on the outermost surface portion of the wiring layer 113.
  • a BCB film is used to bond the first semiconductor substrate 101 and the second semiconductor substrate 111 so that the through via 104 and the electrode portion 114 are connected.
  • the BCB film 107A is cured for about 1 hour at a temperature of about 350 ° C., for example. To do.
  • the semiconductor device of this embodiment is completed.
  • the BCB monomer film 107 formed on and near the exposed bottom of the through via 104 is dissolved and removed by the developer, the carbon nanotubes contained in the BCB monomer film 107 are also exposed to the through via 104. It has been removed from and near the bottom. For this reason, it is possible to prevent the through vias 104 from being electrically connected to each other through the carbon nanotubes and thus the insulating property is deteriorated.
  • the first semiconductor substrate 101 and the second semiconductor substrate 111 are bonded to each other using the BCB film 107A that is an adhesive containing carbon nanotubes, and the adhesive is applied to each of the adhesives. It is formed away from the electrodes of the semiconductor substrate. Therefore, it is possible to obtain a semiconductor device having a three-dimensional laminated structure that can efficiently dissipate heat generated from the semiconductor device while preventing leakage current between electrodes, that is, a highly reliable three-dimensional laminated chip having no malfunction. Can do.
  • FIG. 2A shows, as a comparative example, an adhesive (BCB film 107A) containing carbon nanotubes at the connection portion between the electrodes (through via 104 and electrode portion 114) of each of the semiconductor substrates 101 and 111 and in the vicinity thereof.
  • FIG. 2B shows the cross-sectional configuration of the three-dimensional multilayer chip formed by the manufacturing method of the present embodiment described above.
  • the carbon nanotube 115 contained in the adhesive has a risk of bridging between adjacent electrodes. There is a concern that leakage current may occur.
  • the adhesive (BCB film 107A) around the electrodes (through vias 104 and electrode portions 114) of the semiconductor substrates 101 and 111 is removed by patterning. Therefore, it is possible to prevent leakage current between the electrodes due to the carbon nanotube 115 contained in the adhesive.
  • the through via 104 is used as the electrode formed on the back surface (opposite surface of the circuit formation surface) 101b of the first semiconductor substrate 101.
  • it is formed by another method.
  • an electrode such as a bump made of metal may be used.
  • a through via may be formed instead of the electrode portion 114.
  • a photosensitive BCB film is used as an adhesive between the first semiconductor substrate 101 and the second semiconductor substrate 111.
  • the type of adhesive is particularly limited as long as it has insulating properties. It is not limited.
  • single-walled carbon nanotubes are used as carbon nanotubes contained as a filler in the adhesive between the first semiconductor substrate 101 and the second semiconductor substrate 111.
  • multi-walled carbon nanotubes or single-walled carbon nanotubes are used. A mixture of carbon nanotubes and multi-walled carbon nanotubes may be used.
  • the BCB film 107A which is an adhesive between the first semiconductor substrate 101 and the second semiconductor substrate 111, is separated from the connection portion between the through via 104 and the electrode portion 114 by at least 2 ⁇ m or more. It is preferable to be provided. In this way, it is possible to separate the adhesive (BCB film 107A) containing carbon nanotubes from the electrodes of each semiconductor substrate while ensuring a sufficient margin in consideration of the substrate alignment accuracy, lithography accuracy, and the like. Needless to say, when the electrode portion 114 is larger than the through via 104 as in the present embodiment, it is preferable that the BCB film 107 ⁇ / b> A is provided so as not to contact the electrode portion 114.
  • the length of the carbon nanotube included in the BCB film 107A is sufficiently smaller than the size of the vicinity region 108 of the through via 104 where the BCB monomer film 107 is developed and removed.
  • the length of the carbon nanotubes included in the BCB film 107A is preferably less than or equal to half the distance between the connection portion between the through via 104 and the electrode portion 114 and the BCB film 107A.
  • the length of the carbon nanotube contained in the BCB film 107A is the width of the removal region of the BCB monomer film 107.
  • the carbon nanotubes remain on the first semiconductor substrate 101 in the removal region when the BCB monomer film 107 is removed, leakage current between electrodes, that is, insulation failure occurs. Can be sufficiently suppressed.
  • the BCB monomer film 107 is removed by performing plasma ashing for a short time after removing the BCB monomer film 107 on and near the connection portion between the through via 104 and the electrode portion 114 using lithography and development processing. The carbon nanotubes remaining in the region can be removed almost completely.
  • the spin coating method is used for forming the BCB monomer film 107, but it is also possible to use an ink jet printing method or the like instead. In this case, the BCB film does not require photosensitivity.
  • the semiconductor device and the manufacturing method thereof include chip-chip stacking (stacking of chip-state semiconductor devices obtained by wafer dicing), chip-wafer stacking (chip-state semiconductor device and pre-dicing semiconductor device).
  • the semiconductor device can be applied to any of the semiconductor devices in which the wafer state semiconductor device is stacked) or the wafer-wafer stack (lamination of the semiconductor devices in the wafer state) and the manufacturing method thereof.
  • FIGS. 3A to 3F are cross-sectional views showing respective steps of a method for manufacturing a semiconductor device according to a modification of the first embodiment.
  • a first semiconductor substrate (for example, a silicon substrate) 101 is prepared.
  • a transistor 102 and a wiring layer 103 having a multilayer via that is electrically connected to the through via 104 and the transistor 102 are formed.
  • the through via 104 penetrates the first semiconductor substrate 101 and reaches the wiring layer 103, and the side wall surface of the through via 104 is covered with an insulating film 105 with a barrier film (not shown) interposed therebetween.
  • the back surface 101 b of the first semiconductor substrate 101 is covered with a protective insulating film 106.
  • a single layer is formed on the protective insulating film 106 and the exposed bottom of the through via 104 as shown in FIG. 1,3,5-trimethylbenzene solution of negative photosensitive divinylsiloxane-bis-benzocyclobutene (BCB) monomer in which carbon nanotubes are dispersed (for example, the concentration of BCB monomer is 20 to 40% by mass, single layer carbon A nanotube concentration of 1 to 40 mass% is applied by a spin coating method to a thickness of about 5 ⁇ m, for example, and then pre-baked at 90 ° C. for 90 seconds to form the BCB monomer film 107.
  • BCB negative photosensitive divinylsiloxane-bis-benzocyclobutene
  • a region near the through via 104 (that is, a first step prepared in a later step) is formed by a lithography step.
  • a BCB film 107A (hereinafter referred to as a first BCB film 107A) insoluble in the developer is formed.
  • the BCB monomer film 107 located in the vicinity region 108 of the through via 104 that is, the BCB monomer film 107 formed on and near the exposed bottom of the through via 104 is dissolved and removed by the developer.
  • the second BCB film 121 containing no carbon nanotube is formed by coating and pre-baking.
  • the second BCB film 121 that does not contain carbon nanotubes, on the first BCB film 107A in which single-walled carbon nanotubes are dispersed and on the exposed bottom portion of the through via 104
  • the part formed in is removed.
  • the second BCB film 121 is left only in the vicinity of the through via 104.
  • the second BCB film 121 other than the region near the through via 104 can be removed.
  • a second semiconductor substrate (for example, a silicon substrate) 111 having a front surface (circuit forming surface) 111a and a back surface (opposite surface of the circuit forming surface) 111b is prepared.
  • the transistor 112 and a wiring layer 113 having a multilayer wiring electrically connected to the transistor 112 are formed.
  • an electrode portion 114 made of, for example, metal is formed on the outermost surface portion of the wiring layer 113.
  • a first The first semiconductor substrate 101 and the second semiconductor substrate 111 are pressure-bonded with the BCB film 107A (that is, an adhesive containing carbon nanotubes) and the second BCB film 121 (that is, an adhesive not containing carbon nanotubes) interposed therebetween.
  • the BCB films 107A and 121 are cured for about 1 hour at a temperature of about 350 ° C., for example.
  • the semiconductor device of this modification is completed.
  • the BCB monomer film 107 formed on and near the exposed bottom of the through via 104 is dissolved and removed by the developer, the carbon nanotubes contained in the BCB monomer film 107 are also exposed to the through via 104. It has been removed from and near the bottom. For this reason, it is possible to prevent the through vias 104 from being electrically connected to each other through the carbon nanotubes and thus the insulating property is deteriorated.
  • the first semiconductor substrate 101 and the second semiconductor substrate 111 are bonded to each other using the BCB film 107A that is an adhesive containing carbon nanotubes, and the adhesive is applied to each of the adhesives. It is formed away from the electrodes of the semiconductor substrate. Therefore, it is possible to obtain a semiconductor device having a three-dimensional laminated structure that can efficiently dissipate heat generated from the semiconductor device while preventing leakage current between electrodes, that is, a highly reliable three-dimensional laminated chip having no malfunction. Can do.
  • the removal region of the adhesive containing carbon nanotubes (first BCB film 107A), that is, the connection between the through via 104 and the electrode part 114, and the first BCB film 107A is provided.
  • an insulating adhesive (second BCB film 111) that does not contain carbon nanotubes is filled, leakage current between the electrodes due to the carbon nanotubes, that is, insulation deterioration can be more reliably prevented. it can.
  • the portion formed on the first BCB film 107A is removed from the second BCB film 121 in the step shown in FIG. 3E.
  • FIG. 4 the first semiconductor substrate 101 and the second semiconductor substrate 111 are bonded together while leaving the portion of the second BCB film 121 formed on the first BCB film 107A. May be.
  • the through via 104 is used as the electrode formed on the back surface (opposite surface of the circuit formation surface) 101b of the first semiconductor substrate 101.
  • it is formed by another method.
  • an electrode such as a bump made of metal may be used.
  • a through via may be formed instead of the electrode portion 114.
  • a BCB film is used as an adhesive between the first semiconductor substrate 101 and the second semiconductor substrate 111.
  • the type of adhesive is not particularly limited as long as it has insulating properties.
  • single-walled carbon nanotubes were used as the carbon nanotubes contained as the filler in the first BCB film 107A serving as an adhesive, but instead of this, multi-walled carbon nanotubes, or single-walled carbon nanotubes and multi-walled carbon nanotubes, A mixture of these may also be used.
  • the first BCB film 107A which is an adhesive between the first semiconductor substrate 101 and the second semiconductor substrate 111, is separated from the connection portion between the through via 104 and the electrode portion 114 by at least 2 ⁇ m or more.
  • the adhesive containing carbon nanotubes can be separated from the electrodes of each semiconductor substrate while ensuring a sufficient margin in consideration of the substrate alignment accuracy, lithography accuracy, and the like. it can.
  • the first BCB film 107A is preferably provided so as not to contact the electrode portion 114. Yes.
  • the length of the carbon nanotubes included in the first BCB film 107A is desirably sufficiently smaller than the size of the vicinity region 108 of the through via 104 where the BCB monomer film 107 is developed and removed.
  • the length of the carbon nanotubes included in the first BCB film 107A is not more than half of the separation distance between the connection portion between the through via 104 and the electrode portion 114 and the first BCB film 107A. Is preferred.
  • the length of the carbon nanotubes contained in the first BCB film 107A is the removal of the BCB monomer film 107.
  • the width of the region is 1 ⁇ 2 or less, that is, 1 ⁇ m or less, even if carbon nanotubes remain on the first semiconductor substrate 101 in the removal region when the BCB monomer film 107 is removed, generation of leakage current between electrodes, that is, insulation The occurrence of defects can be sufficiently suppressed.
  • the BCB monomer film 107 is removed by performing plasma ashing for a short time after removing the BCB monomer film 107 on and near the connection portion between the through via 104 and the electrode portion 114 using lithography and development processing. The carbon nanotubes remaining in the region can be removed almost completely.
  • the spin coating method is used to form the BCB monomer film 107, but it is also possible to use an ink jet printing method or the like instead. In this case, the BCB film does not require photosensitivity.
  • a BCB monomer film may be formed as the second BCB film 121 by a spin coating method or the like.
  • an ink jet printing method or the like can be used instead of the spin coating method.
  • the BCB monomer film does not require photosensitivity.
  • the BCB monomer film is formed only in the vicinity of the through via 104 by the printing method, it is not necessary to remove unnecessary portions by etch-back as in the case of using the coating method.
  • the semiconductor device and the manufacturing method thereof according to this modification include chip-chip stacking (stacking of chip-state semiconductor devices obtained by wafer dicing), chip-wafer stacking (chip-state semiconductor device and pre-dicing semiconductor device).
  • the semiconductor device can be applied to any of the semiconductor devices in which the wafer state semiconductor device is stacked) or the wafer-wafer stack (lamination of the semiconductor devices in the wafer state) and the manufacturing method thereof.
  • FIGS. 5A to 5E are cross-sectional views showing respective steps of the semiconductor device manufacturing method according to the second embodiment.
  • the bottom of the through via 104 is exposed on the back surface (opposite surface of the circuit forming surface) 101b side.
  • a first semiconductor substrate (for example, a silicon substrate) 101 is prepared.
  • a transistor 102 and a wiring layer 103 having a multilayer via that is electrically connected to the through via 104 and the transistor 102 are formed.
  • the through via 104 penetrates the first semiconductor substrate 101 and reaches the wiring layer 103, and the side wall surface of the through via 104 is covered with an insulating film 105 with a barrier film (not shown) interposed therebetween.
  • the back surface 101 b of the first semiconductor substrate 101 is covered with a protective insulating film 106.
  • the first semiconductor substrate 101 is provided with a plurality of through vias 104.
  • a carbon nanotube film 131 made of, for example, single-walled carbon nanotubes is formed on the protective insulating film 106 and on the exposed bottoms of the through vias 104 by using, for example, a spin coating method. .
  • a region near the through via 104 (that is, formed on the second semiconductor substrate 111 prepared in a later step and joined to the through via 104 by a lithography process).
  • a resist pattern (not shown) is formed to cover the carbon nanotube film 131 located in a region excluding the electrode portion 114 near the electrode portion 114 and the resist pattern is used as a mask. The carbon nanotube film 131 located at is removed.
  • the carbon nanotubes are formed on the remaining carbon nanotube film 131, the exposed bottom of the through via 104, and the protective insulating film 106 near the through via 104 by, for example, coating and pre-baking.
  • a BCB film 132 containing no hydrogen is formed.
  • a portion of the BCB film 132 formed on the exposed bottom portion of the through via 104 may be removed.
  • a second semiconductor substrate (for example, a silicon substrate) 111 having a front surface (circuit formation surface) 111a and a back surface (opposite surface of the circuit formation surface) 111b is prepared.
  • the transistor 112 and a wiring layer 113 having a multilayer wiring electrically connected to the transistor 112 are formed.
  • an electrode portion 114 made of, for example, metal is formed on the outermost surface portion of the wiring layer 113.
  • a BCB film is used to bond the first semiconductor substrate 101 and the second semiconductor substrate 111 so that the through via 104 and the electrode portion 114 are connected.
  • the BCB film 132 is cured for about 1 hour at a temperature of about 350 ° C., for example. To do.
  • the portion of the BCB film 132 formed on the exposed bottom of the through via 104 is not removed, in the step shown in FIG.
  • the BCB film 132 interposed between the through via 104 and the electrode portion 114 is pushed out to the periphery, and the through via 104 and the electrode portion are 114 is directly connected.
  • the semiconductor device of this embodiment is completed.
  • the carbon nanotube film 131 formed on the exposed bottom portion of the through via 104 and in the vicinity thereof is removed, the through vias 104 are electrically connected to each other through the carbon nanotube and the insulating property is deteriorated. Can be prevented.
  • the carbon nanotube film 131 is formed between the adhesive (the BCB film 132) for bonding the first semiconductor substrate 101 and the second semiconductor substrate 111 and the first semiconductor substrate 101. It is formed away from the electrodes of the semiconductor substrate. Therefore, it is possible to obtain a semiconductor device having a three-dimensional laminated structure that can efficiently dissipate heat generated from the semiconductor device while preventing leakage current between electrodes, that is, a highly reliable three-dimensional laminated chip having no malfunction. Can do.
  • an insulating adhesive that does not contain carbon nanotubes is formed between the carbon nanotube film 131 and the removal region of the carbon nanotube film 131, that is, between the connection portion between the through via 104 and the electrode portion 114 and the carbon nanotube film 131. Since the BCB film 132) is filled, it is possible to more reliably prevent the occurrence of leakage current between the electrodes due to the carbon nanotubes, that is, the deterioration of the insulating property.
  • the through via 104 is used as the electrode formed on the back surface (opposite surface of the circuit formation surface) 101b of the first semiconductor substrate 101.
  • it is formed by another method.
  • an electrode such as a bump made of metal may be used.
  • a through via may be formed instead of the electrode portion 114.
  • the BCB film is used as the adhesive between the first semiconductor substrate 101 and the second semiconductor substrate 111, but the type of the adhesive is not particularly limited as long as it has insulating properties.
  • single-walled carbon nanotubes are used as the material of the carbon nanotube film 131.
  • multi-walled carbon nanotubes or a mixture of single-walled carbon nanotubes and multi-walled carbon nanotubes may be used.
  • a thin film containing carbon nanotubes may be formed.
  • the carbon nanotube film 131 is formed between the first semiconductor substrate 101 and the adhesive (BCB film 132) for bonding the first semiconductor substrate 101 and the second semiconductor substrate 111.
  • a carbon nanotube film or a carbon nanotube-containing film may be formed between the adhesive (BCB film 132) and the second semiconductor substrate 111.
  • the carbon nanotube film 131 that is a heat dissipation member formed between the first semiconductor substrate 101 and the second semiconductor substrate 111 is at least from the connection portion between the through via 104 and the electrode portion 114. It is preferable that they are provided 2 ⁇ m or more apart. In this way, the carbon nanotube film 131 can be separated from the electrodes of each semiconductor substrate while ensuring a sufficient margin in consideration of the substrate alignment accuracy, lithography accuracy, and the like. Needless to say, when the electrode portion 114 is larger than the through via 104 as in the present embodiment, the carbon nanotube film 131 is preferably provided so as not to contact the electrode portion 114.
  • the length of the carbon nanotubes included in the carbon nanotube film 131 is desirably sufficiently smaller than the size of the vicinity region 108 of the through via 104 from which the carbon nanotube film 131 is removed.
  • the length of the carbon nanotubes included in the carbon nanotube film 131 is preferably less than or equal to half of the distance between the connection portion between the through via 104 and the electrode portion 114 and the carbon nanotube film 131.
  • the carbon nanotube film 131 having a width of 2 ⁇ m is removed around the connection portion between the through via 104 and the electrode portion 114
  • the length of the carbon nanotube included in the carbon nanotube film 131 is the width of the removal region of the carbon nanotube film 131. If the carbon nanotube film 131 is removed, even if the carbon nanotubes remain on the first semiconductor substrate 101 when the carbon nanotube film 131 is removed, leakage current between electrodes, that is, insulation failure occurs. Can be sufficiently suppressed.
  • a BCB monomer film may be formed by a spin coating method or the like.
  • an ink jet printing method or the like can be used instead of the spin coating method.
  • the BCB monomer film does not require photosensitivity.
  • the BCB monomer film is formed only around the through via 104 by the printing method, the BCB monomer film formed on the exposed bottom of the through via 104 is removed as in the case of using the coating method. There is no need.
  • the semiconductor device and the manufacturing method thereof include chip-chip stacking (stacking of chip-state semiconductor devices obtained by wafer dicing), chip-wafer stacking (chip-state semiconductor device and pre-dicing semiconductor device).
  • the semiconductor device can be applied to any of the semiconductor devices in which the wafer state semiconductor device is stacked) or the wafer-wafer stack (lamination of the semiconductor devices in the wafer state) and the manufacturing method thereof.
  • the semiconductor device of the present invention and the method for manufacturing the same can be used for the electrical connection between the electrodes that electrically connect the stacked semiconductor devices even when using an adhesive or a heat dissipation member containing carbon nanotubes.
  • the heat generated from the semiconductor device can be efficiently dissipated while preventing the insulative deterioration, and in particular, the chip-chip stack, the chip-wafer stack or the wafer-wafer stack semiconductor device and the manufacturing method thereof Etc. are useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 第1の半導体基板(101)と第2の半導体基板(111)とが接着剤(107A)によって貼り合わされている。第1の半導体基板(101)には、少なくとも端部が露出する第1の電極(104)が設けられていると共に、第2の半導体基板(111)には、少なくとも端部が露出する第2の電極(114)が設けられている。接着剤(107A)は、カーボンナノチューブを含有すると共に、第1の電極(104)と第2の電極(114)との接続部及びその近傍を除く領域に形成されている。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特に、チップ-チップ積層、チップ-ウェーハ積層又はウェーハ-ウェーハ積層された半導体装置及びその製造方法に関する。
 近年、半導体集積回路装置の高集積化、高機能化及び高速化に伴って、半導体基板のチップ-チップ積層、チップ-ウェーハ積層又はウェーハ-ウェーハ積層による3次元集積化技術が提案されている。
 従来技術による半導体基板の積層方法を図6(a)~(d)に示す(例えば非特許文献1参照)。
 まず、図6(a)に示すように、裏面(回路形成面の反対面)11b側にシリコン貫通ビア12の底部が露出した第1のシリコン基板11を用意する。ここで、第1のシリコン基板11の表面(回路形成面)11a上には、トランジスタ16と、シリコン貫通ビア12及びトランジスタ16と電気的に接続する多層配線を有する配線層17とが形成されている。また、シリコン貫通ビア12の側壁面はバリア膜(図示省略)を挟んで絶縁膜18によって覆われていると共に、第1のシリコン基板11の裏面11bは保護絶縁膜19によって覆われている。
 次に、図6(b)に示すように、保護絶縁膜19上及びシリコン貫通ビア12の露出底部上に、絶縁性接着剤13を回転塗布法により形成した後、プリベークを施す。
 次に、図6(c)に示すように、表面(回路形成面)14a及び裏面(回路形成面の反対面)14bを有する第2のシリコン基板14を用意する。ここで、第2のシリコン基板14の表面(回路形成面)14a上には、トランジスタ20と、トランジスタ20と電気的に接続する多層配線を有する配線層21とが形成されている。また、配線層21の最表面部には金属電極部15が形成されている。
 次に、図6(c)に示すように、第1のシリコン基板11のシリコン貫通ビア12と接合される第2のシリコン基板14の金属電極部15がシリコン貫通ビア12と対向するように、絶縁性接着剤13を挟んで第1のシリコン基板11と第2のシリコン基板14とを対向配置する。
 次に、図6(d)に示すように、第1のシリコン基板11と第2のシリコン基板14とを貼り合わせるために、第1のシリコン基板11と第2のシリコン基板14とを圧着した状態で絶縁性接着剤13に対してキュアを行う。
 ここで、図6(c)に示す状態では、シリコン貫通ビア12と金属電極部15との間には絶縁性接着剤13が介在しているが、図6(d)に示す圧着により、シリコン貫通ビア12と金属電極部15との間に介在していた絶縁性接着剤13は周囲に押し出されて、シリコン貫通ビア12と金属電極部15とが直接接続される。
特開2004-027134号公報
Naoya Watanabe他、Compliant Bump Technology for 3D Chip-Stacking、Technical Digest of the International 3D System Integration Conference 2008 、p.321(Fig.2)
 前述のような3次元集積化技術が注目される中において、例えば、ロジックLSIチップと他のチップとを積層した場合、半導体基板間を接続する接着剤の熱伝導性が低く放熱効率が悪いことに起因して、ロジックLSIチップに集積されたトランジスタの動作によって発生した熱がロジックLSIチップの発熱箇所近傍に蓄積されて温度上昇が引き起こされ、動作不良や信頼性不良等が発生するという問題があった。
 前記に鑑み、本発明は、半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置及びその製造方法を提供することを目的とする。
 前記の目的を達成するために、本願発明者は、パッケージされた半導体装置等における放熱用の高熱伝導性材料として提案されている、カーボンナノチューブを充填材(フィラー)として含有する樹脂(例えば特許文献1参照)に着目した。ここで、カーボンナノチューブとは、炭素原子によって作られる六員環ネットワークのシートが単層又は多層の同軸管状になった物質の総称であり、単層のものを単層カーボンナノチューブ、多層のものを多層カーボンナノチューブと呼ぶが、いずれも熱伝導性が極めて高いという特徴を有している。
 しかしながら、カーボンナノチューブは電気伝導性を有している。具体的には、単層カーボンナノチューブとしては、製造過程において金属的な性質を示すものと半導体的な性質を示すものとが混在しており、両者の分離は困難である。また、多層カーボンナノチューブは金属的な性質を示す。
 従って、貫通電極等によって複数の半導体基板を積層した場合において、従来の絶縁性接着剤に置き換えて、例えば、カーボンナノチューブを充填材として含有する接着剤を半導体基板間の接着剤として使用すると、1つの半導体基板に設けられている貫通電極の露出部分同士の間で電気的絶縁性の劣化が生じてしまう。
 そこで、本願発明者は、種々の検討を重ねた結果、例えば、導電性を有するカーボンナノチューブを充填剤として含有する接着剤、又は導電性を有するカーボンナノチューブを含有する放熱部材等を用いても、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置及びその製造方法を発明するに至った。
 すなわち、本発明に係る第1の半導体装置は、接着剤によって互いに貼り合わされた第1の半導体基板及び第2の半導体基板と、前記第1の半導体基板における前記第2の半導体基板と対向する表面に少なくとも端部が露出するように設けられた第1の電極と、前記第2の半導体基板における前記第1の半導体基板と対向する表面に少なくとも端部が露出するように設けられた第2の電極とを備え、前記第1の電極の前記端部と前記第2の電極の前記端部とは互いに接続されており、前記接着剤は、カーボンナノチューブを含有すると共に、前記第1の電極の前記端部と前記第2の電極の前記端部との接続部及びその近傍を除く領域に形成されている。
 本発明に係る第1の半導体装置によると、カーボンナノチューブを含有する接着剤を用いて、第1の半導体基板と第2の半導体基板とを貼り合わせていると共に、当該接着剤を各半導体基板の電極から離間させて形成している。このため、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置、つまり、動作不良のない信頼性の高い3次元積層チップを得ることができる。
 本発明に係る第1の半導体装置において、前記接着剤は、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部から少なくとも2μm以上離して設けられていてもよい。このようにすると、基板位置合わせ精度やリソグラフィ精度等を考慮した十分なマージンを確保しつつ、カーボンナノチューブを含有する接着剤を各半導体基板の電極から離間させることができる。
 本発明に係る第1の半導体装置において、前記カーボンナノチューブの長さは、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部と、前記接着剤との離間距離の半分以下であってもよい。このようにすると、各半導体基板の電極同士の接続部及びその近傍から、カーボンナノチューブを含有する接着剤を選択的に除去した際に、当該接続部及びその近傍にカーボンナノチューブが残存したとしても、電極間のリーク電流発生を確実に防止することができる。
 本発明に係る第1の半導体装置において、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部と、前記接着剤との間に、カーボンナノチューブを含有しない絶縁性接着剤がさらに充填されていてもよい。このようにすると、カーボンナノチューブに起因する電極間のリーク電流発生を確実に防止することができる。また、この場合、前記絶縁性接着剤は、前記第2の半導体基板と前記接着剤との間にも形成されていてもよい。
 本発明に係る第1の半導体装置において、前記接着剤は感光性を有していてもよい。このようにすると、リソグラフィ及び現像処理を用いて、各半導体基板の電極同士の接続部及びその近傍から、カーボンナノチューブを含有する接着剤を選択的に除去することができる。
 本発明に係る第1の半導体装置において、前記カーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ又はそれらの混合物であってもよい。
 本発明に係る第1の半導体装置において、前記第1の電極は、前記第1の半導体基板を貫通する貫通電極であってもよい。
 また、本発明に係る第1の半導体装置の製造方法は、第1の電極の少なくとも端部が表面に露出した第1の半導体基板を準備する工程(a)と、前記第1の電極の前記端部上及びその近傍を除く前記第1の半導体基板の前記表面上に、カーボンナノチューブを含有する接着剤膜を形成する工程(b)と、前記工程(b)の後、第2の電極の少なくとも端部が表面に露出した第2の半導体基板を準備して、前記第1の電極の前記端部と前記第2の電極の前記端部とが互いに接続するように、前記第1の半導体基板と前記第2の半導体基板とを前記接着剤膜によって貼り合わせる工程(c)とを備えている。
 本発明に係る第1の半導体装置の製造方法によると、カーボンナノチューブを含有する接着剤を用いて、第1の半導体基板と第2の半導体基板とを貼り合わせていると共に、当該接着剤を各半導体基板の電極から離間させて形成している。このため、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置、つまり、動作不良のない信頼性の高い3次元積層チップを得ることができる。
 本発明に係る第1の半導体装置の製造方法において、前記工程(b)と前記工程(c)との間に、前記第1の半導体基板の前記表面上に、カーボンナノチューブを含有していない絶縁性接着剤膜を形成する工程(d)をさらに備えていてもよい。このようにすると、カーボンナノチューブに起因する電極間のリーク電流発生を確実に防止することができる。また、この場合、前記工程(d)と前記工程(c)との間に、前記絶縁性接着剤膜における前記第1の電極の前記端部の近傍に形成されている部分以外の他の部分を除去する工程(e)をさらに備えていてもよい。
 本発明に係る第1の半導体装置の製造方法において、前記接着剤は感光性を有していてもよい。このようにすると、リソグラフィ及び現像処理を用いて、各半導体基板の電極同士の接続部及びその近傍から、カーボンナノチューブを含有する接着剤を選択的に除去できる。
 本発明に係る第1の半導体装置の製造方法において、前記カーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ又はそれらの混合物であってもよい。
 本発明に係る第1の半導体装置の製造方法において、前記第1の電極は、前記第1の半導体基板を貫通する貫通電極であってもよい。
 本発明に係る第2の半導体装置は、接着剤によって互いに貼り合わされた第1の半導体基板及び第2の半導体基板と、前記第1の半導体基板における前記第2の半導体基板と対向する表面に少なくとも端部が露出するように設けられた第1の電極と、前記第2の半導体基板における前記第1の半導体基板と対向する表面に少なくとも端部が露出するように設けられた第2の電極とを備え、前記第1の電極の前記端部と前記第2の電極の前記端部とは互いに接続されており、前記第1の半導体基板又は前記第2の半導体基板と前記接着剤との間における前記第1の電極の前記端部と前記第2の電極の前記端部との接続部及びその近傍を除く領域に、カーボンナノチューブ含有膜が形成されている。
 本発明に係る第2の半導体装置によると、第1の半導体基板又は第2の半導体基板と、両基板を貼り合わせる接着剤との間にカーボンナノチューブ含有膜を各半導体基板の電極から離間させて形成している。このため、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置、つまり、動作不良のない信頼性の高い3次元積層チップを得ることができる。
 本発明に係る第2の半導体装置において、前記カーボンナノチューブ含有膜は、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部から少なくとも2μm以上離して設けられていてもよい。このようにすると、基板位置合わせ精度やリソグラフィ精度等を考慮した十分なマージンを確保しつつ、カーボンナノチューブ含有膜を各半導体基板の電極から離間させることができる。
 本発明に係る第2の半導体装置において、前記カーボンナノチューブ含有膜に含まれるカーボンナノチューブの長さは、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部と、前記カーボンナノチューブ含有膜との離間距離の半分以下であってもよい。このようにすると、各半導体基板の電極同士の接続部及びその近傍から、カーボンナノチューブ含有膜を選択的に除去した際に、当該接続部及びその近傍にカーボンナノチューブが残存したとしても、電極間のリーク電流発生を確実に防止することができる。
 本発明に係る第2の半導体装置において、前記カーボンナノチューブ含有膜に含まれるカーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ又はそれらの混合物であってもよい。
 本発明に係る第2の半導体装置において、前記第1の電極は、前記第1の半導体基板を貫通する貫通電極であってもよい。
 本発明に係る第2の半導体装置の製造方法は、第1の電極の少なくとも端部が表面に露出した第1の半導体基板を準備する工程(a)と、前記第1の電極の前記端部上及びその近傍を除く前記第1の半導体基板の前記表面上にカーボンナノチューブ含有膜を形成する工程(b)と、前記工程(b)の後、前記第1の半導体基板の前記表面上に、カーボンナノチューブを含有していない絶縁性接着剤膜を形成する工程(c)と、前記工程(c)の後、第2の電極の少なくとも端部が表面に露出した第2の半導体基板を準備して、前記第1の電極の前記端部と前記第2の電極の前記端部とが互いに接続するように、前記第1の半導体基板と前記第2の半導体基板とを前記絶縁性接着剤膜によって貼り合わせる工程(d)とを備えている。
 本発明に係る第2の半導体装置の製造方法によると、第1の半導体基板又は第2の半導体基板と、両基板を貼り合わせる接着剤との間にカーボンナノチューブ含有膜を各半導体基板の電極から離間させて形成している。このため、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置、つまり、動作不良のない信頼性の高い3次元積層チップを得ることができる。
 本発明に係る第2の半導体装置の製造方法において、前記カーボンナノチューブ含有膜に含まれるカーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ又はそれらの混合物であってもよい。
 本発明に係る第2の半導体装置の製造方法において、前記第1の電極は、前記第1の半導体基板を貫通する貫通電極であってもよい。
 本発明によれば、カーボンナノチューブを含有する接着剤又はカーボンナノチューブを含有する放熱部材を用いても、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置及びその製造方法を実現でき、それにより、動作不良のない信頼性の高い3次元積層チップを得ることができる。
図1(a)~(d)は、第1の実施形態に係る半導体装置の製造方法の各工程を示す断面図である。 図2(a)は、比較例として、各半導体基板の電極同士の接続部及びその近傍にも、カーボンナノチューブを含有する接着剤が形成されている3次元積層チップの断面構成を示す図であり、図2(b)は、第1の実施形態に係る半導体装置の製造方法により形成された3次元積層チップの断面構成を示す図である。 図3(a)~(f)は、第1の実施形態の変形例に係る半導体装置の製造方法の各工程を示す断面図である。 図4は、第1の実施形態の変形例に係る半導体装置の断面構成の一例を示す図である。 図5(a)~(e)は、第2の実施形態に係る半導体装置の製造方法の各工程を示す断面図である。 図6(a)~(d)は、従来の半導体装置の製造方法の各工程を示す断面図である。
 (第1の実施形態)
 以下、本発明の第1の実施形態に係る半導体装置及びその製造方法について、図面を参照しながら説明する。
 図1(a)~(d)は、第1の実施形態に係る半導体装置の製造方法の各工程を示す断面図である。
 まず、図1(a)に示すように、裏面(回路形成面の反対面)101b側に貫通ビア104の底部が露出した第1の半導体基板(例えばシリコン基板)101を用意する。ここで、第1の半導体基板101の表面(回路形成面)101a上には、トランジスタ102と、貫通ビア104及びトランジスタ102と電気的に接続する多層配線を有する配線層103とが形成されている。また、貫通ビア104は、第1の半導体基板101を貫通して配線層103中にまで達していると共に、貫通ビア104の側壁面はバリア膜(図示省略)を挟んで絶縁膜105によって覆われている。また、第1の半導体基板101の裏面101bは保護絶縁膜106によって覆われている。尚、図1(a)では貫通ビア104の1つを示しているが、第1の半導体基板101には複数の貫通ビア104が設けられている。
 次に、図1(b)に示すように、保護絶縁膜106上及び貫通ビア104の露出底部上に、例えば、単層カーボンナノチューブを分散させたネガ型の感光性ジビニルシロキサン-ビス-ベンゾシクロブテン(BCB)モノマーの1,3,5-トリメチルベンゼン溶液(例えば、BCBモノマーの濃度が20~40質量%、単層カーボンナノチューブの濃度が1~40質量%)を、回転塗布法により例えば厚さ5μm程度で塗布した後、例えば90℃で90秒間のプリベークを施してBCBモノマー膜107を形成する。
 次に、図1(c)に示すように、リソグラフィ工程により、貫通ビア104の近傍領域(つまり、後工程で用意する第2の半導体基板111上に形成されており且つ貫通ビア104と接合される電極部114の近傍領域)108を除く領域に位置するBCBモノマー膜107を露光することによって、重合反応を起こさせて、現像液に不溶なBCB膜107Aを形成する。その後、現像液により、貫通ビア104の近傍領域108に位置するBCBモノマー膜107、つまり、貫通ビア104の露出底部上及びその近傍に形成されたBCBモノマー膜107を溶解して除去する。
 次に、図1(d)に示すように、表面(回路形成面)111a及び裏面(回路形成面の反対面)111bを有する第2の半導体基板(例えばシリコン基板)111を用意する。ここで、第2の半導体基板111の表面(回路形成面)111a上には、トランジスタ112と、トランジスタ112と電気的に接続する多層配線を有する配線層113とが形成されている。また、配線層113の最表面部には、例えば金属からなる電極部114が形成されている。
 次に、図1(d)に示すように、貫通ビア104と電極部114とが接続するように第1の半導体基板101と第2の半導体基板111とを貼り合わせるために、例えば、BCB膜107A(つまりカーボンナノチューブを含有する接着剤)を挟んで第1の半導体基板101と第2の半導体基板111とを圧着した状態で、例えば350℃程度の温度で1時間程度のキュアをBCB膜107Aに対して行う。
 以上のようにして、本実施形態の半導体装置が完成する。ここで、現像液により、貫通ビア104の露出底部上及びその近傍に形成されたBCBモノマー膜107を溶解して除去しているので、BCBモノマー膜107に含まれるカーボンナノチューブも貫通ビア104の露出底部上及びその近傍から除去されている。このため、貫通ビア104同士がカーボンナノチューブを介して電気的に接続して絶縁性が劣化することを防止できる。
 すなわち、本実施形態によると、カーボンナノチューブを含有する接着剤であるBCB膜107Aを用いて、第1の半導体基板101と第2の半導体基板111とを貼り合わせていると共に、当該接着剤を各半導体基板の電極から離間させて形成している。このため、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置、つまり、動作不良のない信頼性の高い3次元積層チップを得ることができる。
 図2(a)は、比較例として、各半導体基板101及び111の電極(貫通ビア104及び電極部114)同士の接続部及びその近傍にも、カーボンナノチューブを含有する接着剤(BCB膜107A)が形成されている3次元積層チップの断面構成を示しており、図2(b)は、前述の本実施形態の製造方法により形成された3次元積層チップの断面構成を示している。
 比較例においては、図2(a)に示すように、接着剤(BCB膜107A)中に含まれるカーボンナノチューブ115が、隣接する電極間を架橋する危険性があるため、リークパス116が発生してリーク電流が生じることが懸念される。
 一方、本実施形態によれば、図2(b)に示すように、各半導体基板101及び111の電極(貫通ビア104及び電極部114)周辺の接着剤(BCB膜107A)がパターニングにより除去されているので、当該接着剤に含まれるカーボンナノチューブ115に起因する電極間のリーク電流発生を防止することが可能となる。
 尚、本実施形態では、第1の半導体基板101の裏面(回路形成面の反対面)101bに形成されている電極として、貫通ビア104を用いたが、これに代えて、他の方法によって形成された電極、例えば金属からなるバンプ等を用いてもよい。また、第2の半導体基板111において、電極部114に代えて、貫通ビアが形成されていてもよい。
 また、本実施形態では、第1の半導体基板101と第2の半導体基板111との接着剤として、感光性のBCB膜を用いたが、絶縁性を有していれば接着剤の種類は特に限定されない。また、第1の半導体基板101と第2の半導体基板111との接着剤に充填剤として含まれるカーボンナノチューブとして、単層カーボンナノチューブを用いたが、これに代えて、多層カーボンナノチューブ、又は単層カーボンナノチューブと多層カーボンナノチューブとの混合物を用いてもよい。
 また、第1の実施形態において、第1の半導体基板101と第2の半導体基板111との接着剤であるBCB膜107Aは、貫通ビア104と電極部114との接続部から少なくとも2μm以上離して設けられていることが好ましい。このようにすると、基板位置合わせ精度やリソグラフィ精度等を考慮した十分なマージンを確保しつつ、カーボンナノチューブを含有する接着剤(BCB膜107A)を各半導体基板の電極から離間させることができる。尚、本実施形態のように、貫通ビア104と比較して電極部114の方が大きい場合、BCB膜107Aが電極部114と接しないように設けられていることが好ましいことは言うまでもない。
 また、本実施形態において、BCB膜107Aに含まれるカーボンナノチューブの長さは、BCBモノマー膜107が現像除去される貫通ビア104の近傍領域108の寸法よりも十分に小さいことが望ましい。具体的には、BCB膜107Aに含まれるカーボンナノチューブの長さは、貫通ビア104と電極部114との接続部と、BCB膜107Aとの離間距離の半分以下であることが好ましい。例えば、貫通ビア104と電極部114との接続部周辺において幅2μmのBCBモノマー膜107を現像除去する場合、BCB膜107Aに含まれるカーボンナノチューブの長さが、BCBモノマー膜107の除去領域の幅の1/2以下つまり1μm以下であれば、BCBモノマー膜107の除去時に当該除去領域にカーボンナノチューブが第1の半導体基板101上に残存したとしても、電極間のリーク電流発生つまり絶縁不良の発生を十分に抑制することができる。尚、リソグラフィ及び現像処理を用いて、貫通ビア104と電極部114との接続部上及びその近傍からBCBモノマー膜107を除去した後、プラズマアッシングを短時間行うことによって、BCBモノマー膜107の除去領域に残存するカーボンナノチューブをほぼ完全に除去することができる。
 また、本実施形態において、BCBモノマー膜107の形成に回転塗布法を用いたが、これに代えて、インクジェットによる印刷法などを用いることも可能である。この場合には、BCB膜には感光性は必要とされない。
 また、本実施形態に係る半導体装置及びその製造方法は、チップ-チップ積層(ウェハダイシングにより得られたチップ状態の半導体装置同士の積層)、チップ-ウェーハ積層(チップ状態の半導体装置と、ダイシング前のウェーハ状態の半導体装置との積層)、又はウェーハ-ウェーハ積層(ウェーハ状態の半導体装置同士の積層)された半導体装置及びその製造方法のいずれにも適用可能である。
 (第1の実施形態の変形例)
 以下、本発明の第1の実施形態の変形例に係る半導体装置及びその製造方法について、図面を参照しながら説明する。
 図3(a)~(f)は、第1の実施形態の変形例に係る半導体装置の製造方法の各工程を示す断面図である。
 まず、第1の実施形態の図1(a)に示す工程と同様に、図3(a)に示すように、裏面(回路形成面の反対面)101b側に貫通ビア104の底部が露出した第1の半導体基板(例えばシリコン基板)101を用意する。ここで、第1の半導体基板101の表面(回路形成面)101a上には、トランジスタ102と、貫通ビア104及びトランジスタ102と電気的に接続する多層配線を有する配線層103とが形成されている。また、貫通ビア104は、第1の半導体基板101を貫通して配線層103中にまで達していると共に、貫通ビア104の側壁面はバリア膜(図示省略)を挟んで絶縁膜105によって覆われている。また、第1の半導体基板101の裏面101bは保護絶縁膜106によって覆われている。尚、図3(a)では貫通ビア104の1つを示しているが、第1の半導体基板101には複数の貫通ビア104が設けられている。
 次に、第1の実施形態の図1(b)に示す工程と同様に、図3(b)に示すように、保護絶縁膜106上及び貫通ビア104の露出底部上に、例えば、単層カーボンナノチューブを分散させたネガ型の感光性ジビニルシロキサン-ビス-ベンゾシクロブテン(BCB)モノマーの1,3,5-トリメチルベンゼン溶液(例えば、BCBモノマーの濃度が20~40質量%、単層カーボンナノチューブの濃度が1~40質量%)を、回転塗布法により例えば厚さ5μm程度で塗布した後、例えば90℃で90秒間のプリベークを施してBCBモノマー膜107を形成する。
 次に、第1の実施形態の図1(c)に示す工程と同様に、図3(c)に示すように、リソグラフィ工程により、貫通ビア104の近傍領域(つまり、後工程で用意する第2の半導体基板111上に形成されており且つ貫通ビア104と接合される電極部114の近傍領域)108を除く領域に位置するBCBモノマー膜107を露光することによって、重合反応を起こさせて、現像液に不溶なBCB膜107A(以下、第1のBCB膜107Aという)を形成する。その後、現像液により、貫通ビア104の近傍領域108に位置するBCBモノマー膜107、つまり、貫通ビア104の露出底部上及びその近傍に形成されたBCBモノマー膜107を溶解して除去する。
 次に、図3(d)に示すように、単層カーボンナノチューブを分散させた第1のBCB膜7A上、貫通ビア104の露出底部上、及び貫通ビア104近傍の保護絶縁膜106上に、例えば塗布及びプリベークによって、カーボンナノチューブを含有しない第2のBCB膜121を形成する。
 次に、図3(e)に示すように、カーボンナノチューブを含有しない第2のBCB膜121のうち、単層カーボンナノチューブを分散させた第1のBCB膜107A上及び貫通ビア104の露出底部上に形成されている部分を除去する。言い換えると、貫通ビア104の近傍領域のみに第2のBCB膜121を残存させる。ここで、例えば、第2のBCB膜121の全面に対してエッチバックを行うことにより、貫通ビア104の近傍領域以外の第2のBCB膜121を除去することができる。
 次に、図3(f)に示すように、表面(回路形成面)111a及び裏面(回路形成面の反対面)111bを有する第2の半導体基板(例えばシリコン基板)111を用意する。ここで、第2の半導体基板111の表面(回路形成面)111a上には、トランジスタ112と、トランジスタ112と電気的に接続する多層配線を有する配線層113とが形成されている。また、配線層113の最表面部には、例えば金属からなる電極部114が形成されている。
 次に、図3(f)に示すように、貫通ビア104と電極部114とが接続するように第1の半導体基板101と第2の半導体基板111とを貼り合わせるために、例えば、第1のBCB膜107A(つまりカーボンナノチューブを含有する接着剤)及び第2のBCB膜121(つまりカーボンナノチューブを含有しない接着剤)を挟んで第1の半導体基板101と第2の半導体基板111とを圧着した状態で、例えば350℃程度の温度で1時間程度のキュアをBCB膜107A及び121に対して行う。
 以上のようにして、本変形例の半導体装置が完成する。ここで、現像液により、貫通ビア104の露出底部上及びその近傍に形成されたBCBモノマー膜107を溶解して除去しているので、BCBモノマー膜107に含まれるカーボンナノチューブも貫通ビア104の露出底部上及びその近傍から除去されている。このため、貫通ビア104同士がカーボンナノチューブを介して電気的に接続して絶縁性が劣化することを防止できる。
 すなわち、本変形例によると、カーボンナノチューブを含有する接着剤であるBCB膜107Aを用いて、第1の半導体基板101と第2の半導体基板111とを貼り合わせていると共に、当該接着剤を各半導体基板の電極から離間させて形成している。このため、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置、つまり、動作不良のない信頼性の高い3次元積層チップを得ることができる。
 また、本変形例では、カーボンナノチューブを含有する接着剤(第1のBCB膜107A)の除去領域、つまり、貫通ビア104と電極部114との接続部と、第1のBCB膜107Aとの間に、カーボンナノチューブを含有しない絶縁性の接着剤(第2のBCB膜111)を充填しているため、カーボンナノチューブに起因する電極間のリーク電流発生つまり絶縁性劣化をより確実に防止することができる。
 尚、本変形例において、図3(e)に示す工程で、第2のBCB膜121のうち第1のBCB膜107A上に形成されている部分を除去したが、これに代えて、例えば図4に示すように、第2のBCB膜121のうち第1のBCB膜107A上に形成されている部分を残存させたまま、第1の半導体基板101と第2の半導体基板111とを貼り合わせてもよい。
 また、本変形例では、第1の半導体基板101の裏面(回路形成面の反対面)101bに形成されている電極として、貫通ビア104を用いたが、これに代えて、他の方法によって形成された電極、例えば金属からなるバンプ等を用いてもよい。また、第2の半導体基板111において、電極部114に代えて、貫通ビアが形成されていてもよい。
 また、本変形例では、第1の半導体基板101と第2の半導体基板111との接着剤として、BCB膜を用いたが、絶縁性を有していれば接着剤の種類は特に限定されない。また、接着剤となる第1のBCB膜107Aに充填剤として含まれるカーボンナノチューブとして、単層カーボンナノチューブを用いたが、これに代えて、多層カーボンナノチューブ、又は単層カーボンナノチューブと多層カーボンナノチューブとの混合物を用いてもよい。
 また、本変形例において、第1の半導体基板101と第2の半導体基板111との接着剤である第1のBCB膜107Aは、貫通ビア104と電極部114との接続部から少なくとも2μm以上離して設けられていることが好ましい。このようにすると、基板位置合わせ精度やリソグラフィ精度等を考慮した十分なマージンを確保しつつ、カーボンナノチューブを含有する接着剤(第1のBCB膜107A)を各半導体基板の電極から離間させることができる。尚、本変形例のように、貫通ビア104と比較して電極部114の方が大きい場合、第1のBCB膜107Aが電極部114と接しないように設けられていることが好ましいことは言うまでもない。
 また、本変形例において、第1のBCB膜107Aに含まれるカーボンナノチューブの長さは、BCBモノマー膜107が現像除去される貫通ビア104の近傍領域108の寸法よりも十分に小さいことが望ましい。具体的には、第1のBCB膜107Aに含まれるカーボンナノチューブの長さは、貫通ビア104と電極部114との接続部と、第1のBCB膜107Aとの離間距離の半分以下であることが好ましい。例えば、貫通ビア104と電極部114との接続部周辺において幅2μmのBCBモノマー膜107を現像除去する場合、第1のBCB膜107Aに含まれるカーボンナノチューブの長さが、BCBモノマー膜107の除去領域の幅の1/2以下つまり1μm以下であれば、BCBモノマー膜107の除去時に当該除去領域にカーボンナノチューブが第1の半導体基板101上に残存したとしても、電極間のリーク電流発生つまり絶縁不良の発生を十分に抑制することができる。尚、リソグラフィ及び現像処理を用いて、貫通ビア104と電極部114との接続部上及びその近傍からBCBモノマー膜107を除去した後、プラズマアッシングを短時間行うことによって、BCBモノマー膜107の除去領域に残存するカーボンナノチューブをほぼ完全に除去することができる。
 また、本変形例において、BCBモノマー膜107の形成に回転塗布法を用いたが、これに代えて、インクジェットによる印刷法などを用いることも可能である。この場合には、BCB膜には感光性は必要とされない。
 また、本変形例において、第2のBCB膜121として、例えばBCBモノマー膜を回転塗布法等により形成してもよい。或いは、回転塗布法に代えて、インクジェットによる印刷法などを用いることも可能である。この場合には、BCBモノマー膜には感光性は必要とされない。また、印刷法により貫通ビア104の近傍のみにBCBモノマー膜を形成した場合には、塗布法を用いた場合のように全面エッチバックによる不要部分の除去を行わなくてもよい。
 また、本変形例に係る半導体装置及びその製造方法は、チップ-チップ積層(ウェハダイシングにより得られたチップ状態の半導体装置同士の積層)、チップ-ウェーハ積層(チップ状態の半導体装置と、ダイシング前のウェーハ状態の半導体装置との積層)、又はウェーハ-ウェーハ積層(ウェーハ状態の半導体装置同士の積層)された半導体装置及びその製造方法のいずれにも適用可能である。
 (第2の実施形態)
 以下、本発明の第2の実施形態に係る半導体装置及びその製造方法について、図面を参照しながら説明する。
 図5(a)~(e)は、第2の実施形態に係る半導体装置の製造方法の各工程を示す断面図である。
 まず、第1の実施形態の図1(a)に示す工程と同様に、図5(a)に示すように、裏面(回路形成面の反対面)101b側に貫通ビア104の底部が露出した第1の半導体基板(例えばシリコン基板)101を用意する。ここで、第1の半導体基板101の表面(回路形成面)101a上には、トランジスタ102と、貫通ビア104及びトランジスタ102と電気的に接続する多層配線を有する配線層103とが形成されている。また、貫通ビア104は、第1の半導体基板101を貫通して配線層103中にまで達していると共に、貫通ビア104の側壁面はバリア膜(図示省略)を挟んで絶縁膜105によって覆われている。また、第1の半導体基板101の裏面101bは保護絶縁膜106によって覆われている。尚、図5(a)では貫通ビア104の1つを示しているが、第1の半導体基板101には複数の貫通ビア104が設けられている。
 次に、図5(b)に示すように、保護絶縁膜106上及び貫通ビア104の露出底部上に、例えばスピンコート法を用いて、例えば単層カーボンナノチューブからなるカーボンナノチューブ膜131を形成する。
 次に、図5(c)に示すように、リソグラフィ工程により、貫通ビア104の近傍領域(つまり、後工程で用意する第2の半導体基板111上に形成されており且つ貫通ビア104と接合される電極部114の近傍領域)108を除く領域に位置するカーボンナノチューブ膜131を覆うレジストパターン(図示省略)を形成し、当該レジストパターンをマスクとして、例えばプラズマエッチングにより、貫通ビア104の近傍領域108に位置するカーボンナノチューブ膜131を除去する。
 次に、図5(d)に示すように、残存するカーボンナノチューブ膜131上、貫通ビア104の露出底部上、及び貫通ビア104近傍の保護絶縁膜106上に、例えば塗布及びプリベークによって、カーボンナノチューブを含有しないBCB膜132を形成する。ここで、BCB膜132のうち貫通ビア104の露出底部上に形成されている部分を除去してもよい。
 次に、図5(e)に示すように、表面(回路形成面)111a及び裏面(回路形成面の反対面)111bを有する第2の半導体基板(例えばシリコン基板)111を用意する。ここで、第2の半導体基板111の表面(回路形成面)111a上には、トランジスタ112と、トランジスタ112と電気的に接続する多層配線を有する配線層113とが形成されている。また、配線層113の最表面部には、例えば金属からなる電極部114が形成されている。
 次に、図5(e)に示すように、貫通ビア104と電極部114とが接続するように第1の半導体基板101と第2の半導体基板111とを貼り合わせるために、例えば、BCB膜132(つまりカーボンナノチューブを含有しない接着剤)を挟んで第1の半導体基板101と第2の半導体基板111とを圧着した状態で、例えば350℃程度の温度で1時間程度のキュアをBCB膜132に対して行う。
 ここで、図5(d)に示す工程において、BCB膜132のうち貫通ビア104の露出底部上に形成されている部分が除去されていない場合には、図5(e)に示す工程において、第1の半導体基板101と第2の半導体基板111とを圧着した際に、貫通ビア104と電極部114との間に介在していたBCB膜132が周囲に押し出され、貫通ビア104と電極部114とが直接接続される。
 以上のようにして、本実施形態の半導体装置が完成する。ここで、貫通ビア104の露出底部上及びその近傍に形成されたカーボンナノチューブ膜131を除去しているため、貫通ビア104同士がカーボンナノチューブを介して電気的に接続して絶縁性が劣化することを防止できる。
 すなわち、本実施形態によると、第1の半導体基板101と第2の半導体基板111とを貼り合わせる接着剤(BCB膜132)と、第1の半導体基板101との間にカーボンナノチューブ膜131を各半導体基板の電極から離間させて形成している。このため、電極間のリーク電流発生を防止しつつ半導体装置から発生する熱を効率的に放熱できる3次元積層構造の半導体装置、つまり、動作不良のない信頼性の高い3次元積層チップを得ることができる。
 また、本実施形態では、カーボンナノチューブ膜131の除去領域、つまり、貫通ビア104と電極部114との接続部と、カーボンナノチューブ膜131との間に、カーボンナノチューブを含有しない絶縁性の接着剤(BCB膜132)を充填しているため、カーボンナノチューブに起因する電極間のリーク電流発生つまり絶縁性劣化をより確実に防止することができる。
 尚、本実施形態では、第1の半導体基板101の裏面(回路形成面の反対面)101bに形成されている電極として、貫通ビア104を用いたが、これに代えて、他の方法によって形成された電極、例えば金属からなるバンプ等を用いてもよい。また、第2の半導体基板111において、電極部114に代えて、貫通ビアが形成されていてもよい。
 また、本実施形態では、第1の半導体基板101と第2の半導体基板111との接着剤として、BCB膜を用いたが、絶縁性を有していれば接着剤の種類は特に限定されない。
 また、本実施形態では、カーボンナノチューブ膜131の材料として、単層カーボンナノチューブを用いたが、これに代えて、多層カーボンナノチューブ、又は単層カーボンナノチューブと多層カーボンナノチューブとの混合物を用いてもよい。また、カーボンナノチューブ膜131に代えて、カーボンナノチューブを含有する薄膜を形成してもよい。
 また、本実施形態では、第1の半導体基板101と第2の半導体基板111とを貼り合わせる接着剤(BCB膜132)と、第1の半導体基板101との間にカーボンナノチューブ膜131を形成した。しかし、これに代えて、又は、これに加えて、接着剤(BCB膜132)と第2の半導体基板111との間にカーボンナノチューブ膜又はカーボンナノチューブ含有膜を形成してもよい。
 また、本実施形態において、第1の半導体基板101と第2の半導体基板111との間に形成される放熱部材であるカーボンナノチューブ膜131は、貫通ビア104と電極部114との接続部から少なくとも2μm以上離して設けられていることが好ましい。このようにすると、基板位置合わせ精度やリソグラフィ精度等を考慮した十分なマージンを確保しつつ、カーボンナノチューブ膜131を各半導体基板の電極から離間させることができる。尚、本実施形態のように、貫通ビア104と比較して電極部114の方が大きい場合、カーボンナノチューブ膜131が電極部114と接しないように設けられていることが好ましいことは言うまでもない。
 また、本実施形態において、カーボンナノチューブ膜131に含まれるカーボンナノチューブの長さは、カーボンナノチューブ膜131が除去される貫通ビア104の近傍領域108の寸法よりも十分に小さいことが望ましい。具体的には、カーボンナノチューブ膜131に含まれるカーボンナノチューブの長さは、貫通ビア104と電極部114との接続部と、カーボンナノチューブ膜131との離間距離の半分以下であることが好ましい。例えば、貫通ビア104と電極部114との接続部周辺において幅2μmのカーボンナノチューブ膜131を除去する場合、カーボンナノチューブ膜131に含まれるカーボンナノチューブの長さが、カーボンナノチューブ膜131の除去領域の幅の1/2以下つまり1μm以下であれば、カーボンナノチューブ膜131の除去時に当該除去領域にカーボンナノチューブが第1の半導体基板101上に残存したとしても、電極間のリーク電流発生つまり絶縁不良の発生を十分に抑制することができる。
 また、本実施形態において、BCB膜132として、例えばBCBモノマー膜を回転塗布法等により形成してもよい。或いは、回転塗布法に代えて、インクジェットによる印刷法などを用いることも可能である。この場合には、BCBモノマー膜には感光性は必要とされない。また、印刷法により貫通ビア104の周辺のみにBCBモノマー膜を形成した場合には、塗布法を用いた場合のように、貫通ビア104の露出底部上に形成されているBCBモノマー膜を除去する必要はない。
 また、本実施形態に係る半導体装置及びその製造方法は、チップ-チップ積層(ウェハダイシングにより得られたチップ状態の半導体装置同士の積層)、チップ-ウェーハ積層(チップ状態の半導体装置と、ダイシング前のウェーハ状態の半導体装置との積層)、又はウェーハ-ウェーハ積層(ウェーハ状態の半導体装置同士の積層)された半導体装置及びその製造方法のいずれにも適用可能である。
 以上に説明したように、本発明の半導体装置及びその製造方法は、カーボンナノチューブを含有する接着剤又は放熱部材等を用いても、積層された半導体装置同士を電気的に接続する電極間における電気的な絶縁性劣化を防止しつつ、半導体装置から発生する熱を効率的に放熱できるものであり、特に、チップ-チップ積層、チップ-ウェーハ積層又はウェーハ-ウェーハ積層された半導体装置及びその製造方法等に有用である。
 101  第1の半導体基板
 101a  第1の半導体基板の表面
 101b  第1の半導体基板の裏面
 102  トランジスタ
 103  配線層
 104  貫通ビア
 105  絶縁膜
 106  保護絶縁膜
 107  BCBモノマー膜
 107A  BCB膜(第1のBCB膜)
 108  貫通ビアの近傍領域
 111  第2の半導体基板
 111a  第2の半導体基板の表面
 111b  第2の半導体基板の裏面
 112  トランジスタ
 113  配線層
 114  電極部
 115  カーボンナノチューブ
 116  リークパス
 121  第2のBCB膜
 131  カーボンナノチューブ膜
 132  BCB膜

Claims (22)

  1.  接着剤によって互いに貼り合わされた第1の半導体基板及び第2の半導体基板と、
     前記第1の半導体基板における前記第2の半導体基板と対向する表面に少なくとも端部が露出するように設けられた第1の電極と、
     前記第2の半導体基板における前記第1の半導体基板と対向する表面に少なくとも端部が露出するように設けられた第2の電極とを備え、
     前記第1の電極の前記端部と前記第2の電極の前記端部とは互いに接続されており、
     前記接着剤は、カーボンナノチューブを含有すると共に、前記第1の電極の前記端部と前記第2の電極の前記端部との接続部及びその近傍を除く領域に形成されていることを特徴とする半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記接着剤は、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部から少なくとも2μm以上離して設けられていることを特徴とする半導体装置。
  3.  請求項1又は2に記載の半導体装置において、
     前記カーボンナノチューブの長さは、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部と、前記接着剤との離間距離の半分以下であることを特徴とする半導体装置。
  4.  請求項1~3のいずれか1項に記載の半導体装置において、
     前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部と、前記接着剤との間に、カーボンナノチューブを含有しない絶縁性接着剤がさらに充填されていることを特徴とする半導体装置。
  5.  請求項4に記載の半導体装置において、
     前記絶縁性接着剤は、前記第2の半導体基板と前記接着剤との間にも形成されていることを特徴とする半導体装置。
  6.  請求項1~5のいずれか1項に記載の半導体装置において、
     前記接着剤は感光性を有することを特徴とする半導体装置。
  7.  請求項1~6のいずれか1項に記載の半導体装置において、
     前記カーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ又はそれらの混合物であることを特徴とする半導体装置。
  8.  請求項1~7のいずれか1項に記載の半導体装置において、
     前記第1の電極は、前記第1の半導体基板を貫通する貫通電極であることを特徴とする半導体装置。
  9.  第1の電極の少なくとも端部が表面に露出した第1の半導体基板を準備する工程(a)と、
     前記第1の電極の前記端部上及びその近傍を除く前記第1の半導体基板の前記表面上に、カーボンナノチューブを含有する接着剤膜を形成する工程(b)と、
     前記工程(b)の後、第2の電極の少なくとも端部が表面に露出した第2の半導体基板を準備して、前記第1の電極の前記端部と前記第2の電極の前記端部とが互いに接続するように、前記第1の半導体基板と前記第2の半導体基板とを前記接着剤膜によって貼り合わせる工程(c)とを備えていることを特徴とする半導体装置の製造方法。
  10.  請求項9に記載の半導体装置の製造方法において、
     前記工程(b)と前記工程(c)との間に、
     前記第1の半導体基板の前記表面上に、カーボンナノチューブを含有していない絶縁性接着剤膜を形成する工程(d)をさらに備えていることを特徴とする半導体装置の製造方法。
  11.  請求項10に記載の半導体装置の製造方法において、
     前記工程(d)と前記工程(c)との間に、
     前記絶縁性接着剤膜における前記第1の電極の前記端部の近傍に形成されている部分以外の他の部分を除去する工程(e)をさらに備えていることを特徴とする半導体装置の製造方法。
  12.  請求項9~11のいずれか1項に記載の半導体装置の製造方法において、
     前記接着剤は感光性を有することを特徴とする半導体装置の製造方法。
  13.  請求項9~12のいずれか1項に記載の半導体装置の製造方法において、
     前記カーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ又はそれらの混合物であることを特徴とする半導体装置の製造方法。
  14.  請求項9~13のいずれか1項に記載の半導体装置の製造方法において、
     前記第1の電極は、前記第1の半導体基板を貫通する貫通電極であることを特徴とする半導体装置の製造方法。
  15.  接着剤によって互いに貼り合わされた第1の半導体基板及び第2の半導体基板と、
     前記第1の半導体基板における前記第2の半導体基板と対向する表面に少なくとも端部が露出するように設けられた第1の電極と、
     前記第2の半導体基板における前記第1の半導体基板と対向する表面に少なくとも端部が露出するように設けられた第2の電極とを備え、
     前記第1の電極の前記端部と前記第2の電極の前記端部とは互いに接続されており、
     前記第1の半導体基板又は前記第2の半導体基板と前記接着剤との間における前記第1の電極の前記端部と前記第2の電極の前記端部との接続部及びその近傍を除く領域に、カーボンナノチューブ含有膜が形成されていることを特徴とする半導体装置。
  16.  請求項15に記載の半導体装置において、
     前記カーボンナノチューブ含有膜は、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部から少なくとも2μm以上離して設けられていることを特徴とする半導体装置。
  17.  請求項15又は16に記載の半導体装置において、
     前記カーボンナノチューブ含有膜に含まれるカーボンナノチューブの長さは、前記第1の電極の前記端部と前記第2の電極の前記端部との前記接続部と、前記カーボンナノチューブ含有膜との離間距離の半分以下であることを特徴とする半導体装置。
  18.  請求項15~17のいずれか1項に記載の半導体装置において、
     前記カーボンナノチューブ含有膜に含まれるカーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ又はそれらの混合物であることを特徴とする半導体装置。
  19.  請求項15~18のいずれか1項に記載の半導体装置において、
     前記第1の電極は、前記第1の半導体基板を貫通する貫通電極であることを特徴とする半導体装置。
  20.  第1の電極の少なくとも端部が表面に露出した第1の半導体基板を準備する工程(a)と、
     前記第1の電極の前記端部上及びその近傍を除く前記第1の半導体基板の前記表面上にカーボンナノチューブ含有膜を形成する工程(b)と、
     前記工程(b)の後、前記第1の半導体基板の前記表面上に、カーボンナノチューブを含有していない絶縁性接着剤膜を形成する工程(c)と、
     前記工程(c)の後、第2の電極の少なくとも端部が表面に露出した第2の半導体基板を準備して、前記第1の電極の前記端部と前記第2の電極の前記端部とが互いに接続するように、前記第1の半導体基板と前記第2の半導体基板とを前記絶縁性接着剤膜によって貼り合わせる工程(d)とを備えていることを特徴とする半導体装置の製造方法。
  21.  請求項20に記載の半導体装置の製造方法において、
     前記カーボンナノチューブ含有膜に含まれるカーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ又はそれらの混合物であることを特徴とする半導体装置の製造方法。
  22.  請求項20又は21に記載の半導体装置の製造方法において、
     前記第1の電極は、前記第1の半導体基板を貫通する貫通電極であることを特徴とする半導体装置の製造方法。
PCT/JP2010/007010 2010-05-17 2010-12-01 半導体装置及びその製造方法 WO2011145159A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010113271A JP2011243689A (ja) 2010-05-17 2010-05-17 半導体装置及びその製造方法
JP2010-113271 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011145159A1 true WO2011145159A1 (ja) 2011-11-24

Family

ID=44991286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007010 WO2011145159A1 (ja) 2010-05-17 2010-12-01 半導体装置及びその製造方法

Country Status (2)

Country Link
JP (1) JP2011243689A (ja)
WO (1) WO2011145159A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865604B2 (en) * 2012-09-17 2014-10-21 The Boeing Company Bulk carbon nanotube and metallic composites and method of fabricating
JP2015023235A (ja) 2013-07-23 2015-02-02 株式会社東芝 半導体装置及びその製造方法
US10854530B1 (en) 2019-07-31 2020-12-01 Taiwan Semiconductor Manufacturing Co., Ltd. Heat dissipation structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164152A (ja) * 2007-12-28 2009-07-23 Nikon Corp 積層型半導体装置
JP2009246258A (ja) * 2008-03-31 2009-10-22 Nikon Corp 半導体装置および製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164152A (ja) * 2007-12-28 2009-07-23 Nikon Corp 積層型半導体装置
JP2009246258A (ja) * 2008-03-31 2009-10-22 Nikon Corp 半導体装置および製造方法

Also Published As

Publication number Publication date
JP2011243689A (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
US9502396B2 (en) Air trench in packages incorporating hybrid bonding
TW201644018A (zh) 用於三維積體電路的嵌式石墨散熱器
US8680692B2 (en) Carrier, semiconductor package and fabrication method thereof
US10862005B2 (en) Light emitting device and manufacturing method thereof
JP5298762B2 (ja) 積層型半導体装置、積層型半導体装置の製造方法及び半導体基板
TW201222773A (en) Integrated circuit device and method of forming the same
JP2007059452A (ja) インターポーザ及びその製造方法ならびに電子装置
TW201101439A (en) Semiconductor device and method of manufacturing semiconductor device
TW201220431A (en) Integrated circuit structure and method of forming the same
TW201244004A (en) Method of manufacturing semiconductor device
WO2012107971A1 (ja) 半導体装置及びその製造方法
TW200828554A (en) Stack package having reduced electrical connection length suitable for high speed operations and method of manufacturing the same
TW201906021A (zh) 半導體封裝結構及其製造方法
WO2011145159A1 (ja) 半導体装置及びその製造方法
JP6116476B2 (ja) チップスタックを製造するための方法及びその方法を実施するためのキャリア
US20060193108A1 (en) Circuit device and manufacturing method thereof
JP2008218832A (ja) 半導体装置の製造方法、及び、半導体装置
JP2010232400A (ja) 半導体基板と半導体基板の製造方法および半導体パッケージ
WO2017038108A1 (ja) 半導体装置、及び半導体装置の製造方法
JP2011146655A (ja) 半導体装置製造方法及び積層半導体装置
TWI392071B (zh) 封裝結構及其製法
US11257713B2 (en) Interposer board without feature layer structure and method for manufacturing the same
JP2004342990A (ja) 半導体装置及びその製造方法、回路基板並びに電子機器
JP4238998B2 (ja) 電気デバイス
WO2011148444A1 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851723

Country of ref document: EP

Kind code of ref document: A1