WO2011145147A1 - 金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法 - Google Patents

金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法 Download PDF

Info

Publication number
WO2011145147A1
WO2011145147A1 PCT/JP2010/003399 JP2010003399W WO2011145147A1 WO 2011145147 A1 WO2011145147 A1 WO 2011145147A1 JP 2010003399 W JP2010003399 W JP 2010003399W WO 2011145147 A1 WO2011145147 A1 WO 2011145147A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
granular
heat treatment
treatment furnace
hearth
Prior art date
Application number
PCT/JP2010/003399
Other languages
English (en)
French (fr)
Inventor
板楠元邦
河野幸次
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN201080065480.XA priority Critical patent/CN103109149B/zh
Priority to PCT/JP2010/003399 priority patent/WO2011145147A1/ja
Priority to KR1020127023901A priority patent/KR101405635B1/ko
Priority to JP2012515646A priority patent/JPWO2011145147A1/ja
Publication of WO2011145147A1 publication Critical patent/WO2011145147A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1621Making linings by using shaped elements, e.g. bricks

Definitions

  • the present invention relates to various furnaces for heat-treating metal ingots, for example, heat-retaining furnaces for slabs after continuous casting, heating furnaces for slabs for hot rolling, or annealing furnaces for metal ingots such as steel plate annealing furnaces, metal ingots, etc.
  • the present invention relates to a method for repairing a heat treatment furnace for metal and a method for producing a hearth filling material used in a heat treatment furnace for a metal lump.
  • the hearth of a furnace (hereinafter also referred to as a heat treatment furnace) for heat-treating a metal lump is composed of a refractory layer on the surface exposed to the furnace (hereinafter also referred to as the operation surface in the furnace), and heat insulation is provided on the back side. Often a layer is provided.
  • the reason why the heat insulating layer is provided in the heat treatment furnace is that the heat insulation of the heat treatment furnace for reducing the fuel intensity of the heat treatment furnace is required.
  • the refractory that constitutes the heat insulation layer (hereinafter also referred to as the heat insulation layer refractory) generally contains many bubbles, and therefore has low strength and erosion resistance, exposure to a high temperature atmosphere in a heat treatment furnace, and scale of the heat treatment. Due to falling objects such as, it deteriorates and the heat insulation is reduced. For this reason, a refractory layer having a high temperature strength and excellent erosion resistance is usually provided on the operation surface side of the heat insulating layer in the furnace.
  • a refractory brick or a refractory castable (hereinafter also referred to as a castable refractory) is used as a refractory constituting the refractory layer (hereinafter also referred to as a refractory layer refractory).
  • Patent Document 1 describes a heat treatment furnace in which a refractory brick (hearth brick) is arranged in the hearth part.
  • the refractory brick disposed in the hearth portion is disposed in a state of being curved in advance in the hearth portion in order to absorb expansion and contraction of the refractory brick due to heat.
  • a ramming material as disclosed in Patent Document 2 is generally used as a hearth structure of a furnace for storing molten metal.
  • the ramming material is generally composed of a relatively fine powdery refractory including a fine particle having a maximum particle size of 5 mm or less and a particle size of 10 ⁇ m or less. This is put into a furnace and solidified by ramming, and then a strong sintered layer is formed by sintering the surface layer of the ramming material by a sintering operation, and the molten metal in the furnace is formed by this sintered layer. Can be held.
  • this sintered layer Since the back surface side of this sintered layer is not exposed to high temperature, it is an unsintered layer that maintains a granular state. Therefore, even if a crack is generated in the sintered layer, the unsintered ramming material on the back side of the sintered layer is sintered by the heat of the molten metal that has entered the crack, thereby preventing the leakage of the molten metal. For this reason, especially a ramming material can obtain a suitable effect by using it for the refractory of the molten metal holding furnace which needs to make the thickness of the refractory as thin as possible, such as an induction furnace.
  • the refractory brick has a shape composed of flat surfaces (for example, a rectangular parallelepiped)
  • a high-temperature furnace atmosphere gas is generated.
  • the air entrained in the furnace or the jet of the burner used in the heat treatment furnace is unsintered on the back side of the sintered layer from the cracks described above. Entering the layer, the unsintered ramming material flows and scatters in the heat treatment furnace.
  • the sintered layers come into close contact with each other due to thermal expansion and the like, and there are problems such as generating stress in other parts of the heat treatment furnace, and raising the sintered layer to reduce the substantial refractory thickness. .
  • the area surrounded by the whole hearth or a groove-like score line (for example, absorption of expansion allowance of a refractory or a place where cracks are preferentially generated) It becomes a monolithic structure. For this reason, cracks occur in the castable refractory due to thermal expansion in the vicinity of the working surface of the castable refractory in the furnace and shrinkage due to sintering. As a result, refractories located on both sides of the score line formed in the cracks and grooves that are generated are pressed against each other, causing stress to other parts of the heat treatment furnace, and the sintered layer is lifted Problems such as reducing the substantial thickness of the refractory occur.
  • the present invention has been made in view of the above circumstances, and it is possible to prevent the occurrence of openings mainly in joints and cracks of the hearth refractory and the intrusion of the hearth refractory due to thermal expansion.
  • Metal block heat treatment furnace, metal block heat treatment furnace repair method, and metal block heat treatment furnace which can suppress and further prevent deterioration of the fire resistance and heat insulation properties of hearth refractories that deteriorate with use over time It aims at providing the manufacturing method of the hearth filling material used for this.
  • the present invention employs the following means in order to solve the above-described problems.
  • the first aspect of the present invention has a packed layer of granular refractories on the working surface side in the furnace, the filling rate of the granular refractory is 65 volume% or more and less than 100 volume%, It is a heat treatment furnace for a metal lump provided with a hearth structure whose thickness is twice or more the maximum particle diameter of the granular refractory.
  • the granular refractory material may include 80% by mass or less of a granular material having a particle diameter of 1 mm or less.
  • the heat treatment furnace for a metal lump described in the above (1) or (2) may further include a ceiling portion on which a ceramic fiber is partially or entirely lined.
  • the packed layer is formed on the surface of a refractory having a compressive strength at room temperature of 1.5 MPa or more. It may be arranged.
  • a second aspect of the present invention is a repair method for a heat treatment furnace for a metal lump in which a refractory brick and / or a refractory castable is constructed on the in-furnace operating surface side of the hearth.
  • This repair method includes a step of forming a packed layer of granular refractory on the repaired portion of the hearth in the furnace working surface side, and the filling rate of the granular refractory in the packed layer is 65 volume% or more and 100%. It is less than volume%, and the thickness of the packed bed is at least twice the maximum particle size of the granular refractory.
  • the said granular refractory material may contain 80 mass% or less of granular materials with a particle size under 1 mm.
  • the repair on the in-furnace working surface side of the hearth is performed before the step of forming the packed layer of the granular refractory.
  • a step of removing a part of the refractory brick including the portion or the refractory castable to form a space filled with the filling layer may be further included.
  • the maximum particle size of the granular refractory constituting the packed bed may be less than 50% of the inner width in the horizontal direction of the space.
  • a third aspect of the present invention is a method for producing a hearth filling material that constitutes the in-furnace operating surface side of the hearth of a heat treatment furnace for metal blocks.
  • This manufacturing method includes a step of compressing and crushing a used refractory; a step of adjusting the maximum particle size of the used refractory that has been crushed and crushing within a range of 20 mm to 100 mm, and forming a granular refractory; Is provided.
  • the used refractory is a refractory layer refractory and / or heat treatment of a molten metal storage container generated at a steelworks. It may be a refractory brick for the furnace.
  • the hearth is exposed to the hot bending strength of the used refractory.
  • the atmospheric temperature may be 0.2 MPa or more.
  • the load softening point temperature of the used refractory is the furnace. It may be 200 ° C. or higher than the ambient temperature to which the floor is exposed.
  • the carbon component of the used refractory is 1% by mass or less. There may be.
  • the packed bed on the in-furnace operating surface side of the hearth is made of granular refractory, so that it is granular without causing surface contact like refractory bricks. Refractories can be brought into point contact substantially. Moreover, since this granular refractory is not mutually couple
  • the granular refractory located in the upper layer is, for example, a gap formed between adjacent granular refractories constituting the lower layer. It is piled up so that it may be located above. Thereby, it can suppress that the clearance gap formed between adjacent granular refractories penetrates in the thickness direction of a packed bed, and can maintain the fire resistance and heat insulation by a packed bed.
  • the granular refractory contains 80% by mass or less of the granular material having a particle size of 1 mm or less, and therefore the thickness of the packed layer due to the flow or scattering of the granular refractory. It is possible to suppress the decrease, and it is possible to suppress and further prevent a decrease in fire resistance and heat insulation of the hearth refractory that deteriorates with use over time.
  • the deformation of the heat treatment furnace for the metal lump can be reduced by lining the ceramic fiber on a part or the whole of the ceiling.
  • the hearth of the metal lump heat treatment furnace is constrained by the foundation structure, but the ceiling is less constrained during expansion, so the furnace width near the ceiling of the heat treatment furnace is wider than the furnace width near the hearth.
  • the amount of thermal expansion in the vicinity of the hearth becomes smaller than before, so the above tendency becomes larger. Therefore, by lining the ceramic fiber that absorbs the thermal expansion by deforming itself on the ceiling, the amount of deformation near the ceiling can be reduced and the above-described tendency can be reduced.
  • a space is formed by removing a part of the refractory brick or the refractory castable including the repaired portion on the operation surface side of the hearth in the furnace, and the packed bed is formed in this space.
  • the fundamental repair of the repair site can be performed.
  • the maximum particle size of the granular refractory constituting the packed bed is less than 50% of the inner width in the horizontal direction of the space, the adjacent granular refractories in the space are in point contact with each other, Generation can be suppressed in advance. Specifically, it is possible to avoid a possibility that two granular refractories come close to each other in the horizontal direction of the space and a new opening is generated. That is, since three or more granular refractories can exist in the horizontal direction, the granular refractories move without approaching each other and can absorb thermal expansion.
  • the lower layer of a filling layer is comprised by arrange
  • the refractory used is compressed and crushed, and the maximum particle size is adjusted within the range of 20 mm to 100 mm to obtain a granular refractory. It is possible to easily and efficiently manufacture a hearth filling material suitable for forming a packed bed that maintains the layer thickness and does not deteriorate the heat insulation and fire resistance on the operating surface side of the hearth. In addition, since the used refractory is used when manufacturing the hearth filling material, it is possible to recycle the used refractory that has been conventionally discarded.
  • the in-furnace working surface side of the hearth of the heat treatment furnace for metal lumps is constructed, so that a granular refractory without surface contact like refractory bricks. Objects can be substantially brought into point contact. Moreover, since this granular refractory is not mutually joined and the relative position changes easily, generation
  • the refractory layer refractory of the molten metal storage container generated in the steelworks or the refractory brick of the heat treatment furnace is used as the used refractory, it is easy to obtain.
  • the refractory material of the refractory layer of the molten metal storage container is used in a high temperature environment of, for example, 1600 ° C. or higher. Therefore, by using this, the hearth filling material to be manufactured has sufficient fire resistance. Can be provided.
  • the hot bending strength of the used refractory is 0.2 MPa or more at the atmospheric temperature to which the hearth is exposed, the hearth filling material is heat-treated for metal lump.
  • the hot bending strength of the used refractory is 0.2 MPa or more at the atmospheric temperature to which the hearth is exposed, the hearth filling material is heat-treated for metal lump.
  • the load softening point temperature of the used refractory is higher by 200 ° C. or more than the ambient temperature to which the hearth is exposed. In use, it is possible to prevent the hearth filling materials from being baked and hardened depending on the use temperature.
  • the present inventors generate an opening generated in the hearth when using a refractory brick or a refractory castable for the refractory layer refractory constituting the in-furnace working surface side of the hearth.
  • a refractory brick or a refractory castable for the refractory layer refractory constituting the in-furnace working surface side of the hearth As a result of intensive studies on the mechanism, the following three points were conceived.
  • the opening generated in the hearth of the heat treatment furnace is caused by the thermal expansion of the refractory layer refractory due to the high temperature inside the furnace of the heat treatment furnace.
  • the thermal expansion allowance of refractory bricks or refractory castables that are refractory layer refractories is absorbed by deformation at joints or cracks where the strength is the lowest, and as a result, the refractory bricks rise up at joints and cracks, and A fire-resistant castable rush occurs at the crack.
  • a gap is provided between adjacent refractory bricks, or a refractory that absorbs stress between adjacent refractory bricks. Measures such as setting things (fiber etc.) are taken.
  • the refractory used for stress absorption deteriorates, the gap between the adjacent refractory bricks is further increased, or the refractory brick and the refractory are used. A gap is generated between them.
  • the generated gap is filled with the scale of the metal block to be heat-treated and the refractory powder generated from the refractory applied itself, which causes the problem that the thermal expansion absorption capacity of the refractory brick decreases with the use of the heat treatment furnace over time. .
  • a decrease or increase in the furnace temperature accompanying regular repair of the heat treatment furnace also promotes a decrease in the thermal expansion absorption capacity.
  • the present inventors can use a refractory brick instead of a refractory brick (hereinafter referred to as a granular refractory) to avoid a surface contact of the refractory brick and make a point contact substantially. Since the relative position can be easily changed without being coupled to each other, it has been conceived that the generation of the opening can be suppressed.
  • a refractory brick instead of a refractory brick (hereinafter referred to as a granular refractory) to avoid a surface contact of the refractory brick and make a point contact substantially. Since the relative position can be easily changed without being coupled to each other, it has been conceived that the generation of the opening can be suppressed.
  • a metal lump heat treatment furnace (hereinafter also simply referred to as a heat treatment furnace) 10 according to a first embodiment of the present invention is filled with a granular refractory on the inside working surface 11 side.
  • a hearth structure 12 with layers is provided. This packed layer is disposed on the surface of the heat insulating layer refractory disposed on the furnace bottom iron skin 13 via a refractory having a compressive strength of 1.5 MPa or more at normal temperature (here, refractory layer refractory). ing.
  • the refractory which comprises the lower layer of a packed bed is a refractory provided with the said compressive strength, it can also be comprised with a heat insulation layer refractory.
  • the packed bed constitutes the outermost layer portion of the hearth structure 12. This will be described in detail below.
  • the reason why the packed bed is formed of the granular refractory is to avoid surface contact between the refractory layers of the refractory layer on the furnace working surface 11 side.
  • This packed bed replaces the upper side (a part) of the refractory layer refractory constituting the in-furnace working surface side of the conventional heat treatment furnace for metal block 14 shown in FIG. 1B.
  • the packed bed may be arranged in a state in which a portion excluding the upper side of the conventional refractory layer refractory is left, and a new refractory layer refractory is disposed on the surface of the heat insulation layer refractory, and then disposed. May be.
  • the packed layer is arranged on the surface of the refractory having a compressive strength of 1.5 MPa or more, the heat-insulating layer refractory that is easily damaged even if, for example, the granular refractory is dispersed or replaced (scraped). Can prevent damage.
  • FIG. 2A The metal lump heat treatment furnace 15 according to the second embodiment of the present invention shown in FIG.
  • this metal lump heat treatment furnace 15 all of the refractory layer refractories constituting the in-furnace operating surface side of the conventional metal lump heat treatment furnace 14 shown in FIG. 1B are replaced with a packed layer of granular refractories.
  • the refractory layer refractories not only all of the refractory layer refractories, but also the granular refractories up to the upper part (part) of the heat insulation layer refractories disposed on the back side of the refractory layer refractories (opposite to the operating surface side in the furnace) It may be replaced with a packed bed. Further, the packed bed composed of granular refractory is arranged on the upper surface of the in-furnace working surface side of the basic concrete like the heat treatment furnace for metal lump 16 according to the third embodiment of the present invention shown in FIG. 2B. May be.
  • the refractory layer is a cuboid refractory brick composed of a flat surface, placed on the hearth so that the flat surfaces face each other (with a mortar or thermal expansion absorber in between).
  • the arrangement of the refractory with the planes facing each other causes the opening to be generated with the use of the heat treatment furnace over time. Therefore, gravel or crushed stone refractories are used in order to avoid disposing the surfaces facing each other.
  • the granular refractories are dispersed and arranged on the surface of the refractory layer refractory shown in FIG. 1A, that is, the portion exposed to the heat treatment atmosphere of the hearth (operating surface), but the arrangement method is not limited to this.
  • this granular refractory is not a shape composed of only a flat surface like a refractory brick, adjacent granular refractories are in point contact at one or more points.
  • the point contact part may be fused during use of the heat treatment furnace over time, but because the contact is at a point, the fused part easily breaks down due to the stress due to thermal expansion of the granular refractory, resulting in granularity. Refractories can move relative to each other, and the generation of openings can be avoided.
  • the above-mentioned granular refractory material may be any material as long as it is used for a conventional refractory layer refractory material. Examples thereof include alumina clinker, crushed material of used refractory bricks, crushed material of used refractory castables, and the like. Further, the granular refractory may be any material that has material characteristics such that the granular refractories come close to each other by thermal expansion and do not break and resist the movement when the relative position moves (does not generate a large amount of powder). Specifically, it is desirable that the hot bending strength at the intended use temperature measured according to JIS R 2656 (1995) is approximately 0.2 MPa or more.
  • the granular refractory has a load softening point at which the granular refractory does not sinter at the intended use temperature.
  • the load softening point measured according to JIS R 2209 (2007) is approximately 200 ° C. or more higher than the furnace atmosphere temperature when used as a granular refractory (upper limit is, for example, about 1100 ° C.) Is desirable.
  • the granular refractory may have a higher high-temperature strength than that of the above-described material. Examples of such a granular refractory include a crushed product of a defective shape product of a fine ceramic product such as zirconia. In addition, a yield-fall product that cannot be shipped due to a crack at the time of manufacturing a zirconia ceramic product can be used.
  • the granular refractory is a granular material that is not composed of only a flat surface.
  • the granular refractory needs to have a certain level of filling rate of the packed bed. Therefore, it is preferable that a plurality of particle sizes (shapes) exist.
  • the shape of the refractory brick is usually constant except for a part of the ends of the arranged bricks. Therefore, it is preferable to use a crushed product of the refractory as the granular refractory. This is because it is difficult to make the periphery of the crushed product flat, and the crushed surface cannot be configured with a substantially right-angled surface like a rectangular parallelepiped, and thus does not have a fixed shape.
  • the plane around the refractory brick may remain on the surface of the granular refractory.
  • this remaining surface is substantially difficult to be disposed so that the flat surfaces face each other when the granular refractory is put into the hearth to constitute the packed bed, the flat surface remaining after crushing Does not affect the formation of openings in the packed bed of granular refractory.
  • a refractory manufactured in a spherical shape including an oval shape, an elliptical cross section, etc.
  • a granular refractory instead of a crushed material to form a packed layer of granular refractory.
  • the gap between adjacent granular refractories also has the effect of improving the heat insulation of the refractory layer, but when the volume ratio of the gap in the packed layer of granular refractory increases, as described above, the gap is heat treated.
  • the high temperature atmosphere of the furnace flows in.
  • the fire resistance and heat insulating properties of the refractory layer are deteriorated, for example, directly connected to the deterioration of the heat insulating layer constructed on the back side of the refractory layer.
  • the particle size of the granular refractory is specified as follows unless otherwise specified. When “50 mm or less”, “ ⁇ 50 mm”, and “50 mm under” are described, each indicates a refractory under a sieve sieved with a sieve having a nominal opening of 50 mm. Moreover, when it describes with “1 mm or more”, “+ 1mm”, and “1mm over”, all point out the refractory material on the sieve sieved with the sieve with a nominal opening of 1 mm.
  • a refractory having a size of 1 to 50 mm refers to a refractory on a sieve that is sieved with a sieve having a nominal aperture of 50 mm and sieved with a sieve having a nominal aperture of 1 mm.
  • the plate sieve described in JIS Z8801-2 (2000) is used for sieving the granular refractory (the same applies hereinafter).
  • the survey method will be explained.
  • the blending ratio (mass ratio) of 20 mm under 1 mm over (hereinafter referred to as 1 to 20 mm) is adjusted.
  • the filling rate was changed to produce a packed bed having a thickness of about 100 mm (about 100 to 110 mm: twice the maximum particle size of the granular refractory).
  • the maximum particle size of the granular refractory was defined by the long diameter of the coarse particles (under the sieve) that passed through the sieve after the granular refractory was once sieved (same below).
  • the granular refractory has a maximum particle size of 50 mm
  • the surface (working surface side) of the packed bed is brought into contact with the furnace atmosphere of a heat treatment furnace having a maximum furnace temperature of 1400 ° C., and the temperature of the bottom of the packed bed (position of 100 to 110 mm from the working surface) is set.
  • Measured with a thermocouple A total of 360 mm of refractory bricks and heat insulating bricks were disposed on the back side of the packed layer of granular refractory, and the total lining thickness including the packed layer was 460 to 470 mm.
  • the filling rate of this granular refractory was determined by the following measuring method. First, separately prepare a cylindrical container with a known volume and mass with a diameter of 285 mm and a depth of 100 mm (a depth equivalent to the construction depth of the granular refractory). The portion having a thickness of 100 mm or more was removed (sliced off), and the weight was weighed. And (mass of granular refractory) / (volume of a container) was calculated
  • the relationship between the filling rate of the granular refractory in the packed bed and the back surface temperature of the packed bed is shown in FIG.
  • the data of the filling rate of 100% by volume is based on the construction of the refractory brick of the prior art (specifically, the two layers of high-alumina refractory brick having a thickness of 50 mm are installed in the open joint). This is the result obtained.
  • the refractory brick is constructed such that a rectangular brick is brought into surface contact as much as possible at an open joint so that there is as little gap as possible between the refractory bricks.
  • the filling rate of the granular refractory in the packed bed is less than 65% by volume, the back surface temperature of the packed bed suddenly rises, and the back surface when the filling rate using refractory brick is 100% by volume. There was a tendency to be higher than the temperature (1320 ° C. indicated by a one-dot chain line in FIG. 3). Therefore, the filling rate of the granular refractory in the packed bed is defined as 65% by volume or more.
  • the upper limit of the granular refractory with a filling rate is defined to be less than 100% by volume because it is necessary to avoid a state in which the contact between adjacent granular refractories becomes surface contact, and 100% by volume is impossible.
  • the filling rate may be set to 92% by volume or less.
  • a powdery granular refractory of 10 ⁇ m to 1 mm is intentionally added. The particle size must be adjusted and must be further solidified with a rammer.
  • the heat insulation tends to deteriorate due to a decrease in the porosity of the packed bed accompanying an increase in the filling rate of the granular refractory.
  • the lower limit of the filling rate of the granular refractory in the packed bed is defined as 65% by volume.
  • the thickness of the packed layer composed of the granular refractory is the same as the maximum particle size of the granular refractory, the gap formed between the adjacent granular refractories is in the thickness direction of the packed layer. There is a possibility of penetration, and it is considered that this penetration gap adversely affects the heat insulation of the hearth.
  • the thickness of the packed bed is at least twice the maximum particle size of the granular refractory, a suitable heat insulating property can be maintained.
  • the upper limit value of the thickness of the packed layer is not particularly specified because the above-described effect can be obtained as the packed layer becomes thicker. However, if the construction of the refractory that is generally performed is considered, it is about 500 mm. It is.
  • the filling rate of the granular refractory in the packed bed is set to a range of 65% by volume or more and less than 100% by volume, and in particular, the range of the filling rate is 70% by volume or more.
  • the tendency for heat insulation to become favorable was obtained at about 85% by volume or less. There are two possible reasons for this. (1) The smaller the filling rate of the granular refractory, the larger the gap diameter between the particles of the granular refractory, and the high-temperature atmosphere gas in the furnace can easily reach the back of the granular refractory.
  • the fine particles having a width (diameter) fitted into the voids generated by the coarse particles and the voids generated by the fine particles What is necessary is just to mix
  • the present inventors have adjusted the mixing ratio (mass ratio) of a granular refractory having a particle diameter of 1 mm under and a granular refractory having a particle diameter of 1 to 50 mm, which is prepared by pulverizing a refractory brick with a jaw crusher.
  • the thickness of the packed bed of the product is set to 115 mm (inner shape of the container containing the packed bed: vertical 395 mm ⁇ horizontal 395 mm ⁇ depth 115 mm) and installed in the heat treatment furnace of the actual machine and left for 3 months. The minimum depth was investigated.
  • Fig. 4 shows the relationship between the proportion of granular material with a particle size of 1 mm or less in the granular refractory and the minimum depth of the packed bed after standing for 3 months.
  • 100 mass% of the granular material shown in FIG. 4 means that the granular refractory under 1 mm is 100 mass%, and 0 mass% means that the granular refractory of 1 to 50 mm is 100 mass%. It means that. From FIG.
  • the proportion of granular material having a particle size of 1 mm or less in the granular refractory is 80 mass% or less (preferably Has been found to be 70% by mass, and further 60% by mass). Even if the granular material of 1 mm or less exceeds 80% by mass, the above-described opening is not generated in the hearth, and the effect of preventing the fire resistance and heat insulation from being deteriorated is obtained.
  • the thickness of the packed bed is inspected and if necessary, it takes time to flatten the packed bed or replenish the granular refractory, it is not always necessary to reduce the ratio of the granular material under 1 mm to 80% by mass or less. .
  • the outline of the lining of the heat treatment furnace investigated is as follows: the hearth part is refractory castable: 110 mm, the refractory bricks and the insulating bricks are 360 mm, the total construction thickness of the hearth is 470 mm, the ceiling part is refractory castable: 230 mm, Ceramic wool, etc .: 150 mm, total ceiling construction thickness: 380 mm.
  • the furnace width dimension in the vicinity of the ceiling of the furnace side wall shell expands by about 40 to 50 mm to the side of the heat treatment furnace, and the furnace width dimension in the vicinity of the bottom of the furnace side wall skin is equal to the side of the heat treatment furnace. It swelled about 10 to 25 mm.
  • the interval between the opposing side walls spreads from the lower part to the upper part of the heat treatment furnace, and oblique stress acts on the side walls of the heat treatment furnace. This is considered to be because the hearth part of the heat treatment furnace is easily restrained by the foundation structure on which the heat treatment furnace is installed, while the ceiling part is less restricted against expansion.
  • ceramic fiber is used for part or all of the refractory lining (construction) on the working surface side of the ceiling refractory. Since the ceramic fiber construction body (for example, a blanket) deforms and absorbs its own thermal expansion by itself, the deformation of the iron skin due to the thermal expansion near the ceiling can be reduced. Therefore, the difference in thermal expansion between the hearth part on which the granular refractory is constructed and the ceiling part on which the ceramic fiber construction body is attached can be reduced.
  • the in-furnace working surface side of the heat treatment furnace is composed of a 110mm-thick packed bed (particulate refractory filling rate: 74% by volume) made of granular refractories, and the entire refractory castable ceiling is made of ceramic fiber.
  • repair using a refractory castable can be slightly shortened in repair period compared with repair using refractory bricks.
  • repair method using either a refractory brick or a refractory castable there is a high possibility that the repair site and its surroundings will be in close contact due to thermal expansion and will be damaged again.
  • an opening (see arrows in FIGS. 5A and 5B) generated between adjacent refractory bricks 20 is partially refractory brick 20. Generated by moving upward. 5A and 5B are typical examples of the opening generation, and show the refractory brick in which the shaded refractory brick 20 has moved upward. 5A and 5B schematically show that adjacent refractory bricks are in line contact, but the solid line is not in line contact, and penetrates at least one layer of refractory bricks. A gap (one layer deep) is created.
  • Such an opening is a part to be repaired, and it is necessary to repair the moved refractory brick with a new one or to close the opening.
  • renewing a refractory brick requires a long time.
  • the repair of closing the opening by pouring mortar or refractory castable cannot solve the squeeze due to thermal expansion, deteriorates with the use of a heat treatment furnace, and the opening is exposed again. Invite the situation. Then, the present inventors provided fire resistance and heat insulation to the opening by placing the granular refractory in a range (repair site) including the opening.
  • the repair method for the heat treatment furnace for metal lump according to the fourth to ninth embodiments of the present invention is a refractory consisting of 20 refractory bricks.
  • the packed layers 33 to 38 made of the above-mentioned granular refractory, that is, the filling rate of the granular refractory is 65 volume% or more. Filled layers 33 to 38 having a thickness of less than 100% by volume and having a thickness of at least twice the maximum particle size of the granular refractory are formed.
  • the refractory material of the hearth is not limited to being composed of refractory bricks, but may be composed of refractory castables, or may be composed of both refractory bricks and refractory castables. This will be described in detail below.
  • the following methods for arranging the filling layer on the repaired part there are, for example, the following methods for arranging the filling layer on the repaired part.
  • the granular refractory is repaired without removing the refractory brick 20 (including damaged ones) that has moved with the generation of the opening.
  • the packed layers 33, 34, 36, and 37 are formed by stacking the portions 27, 28, 30, and 31 in a mountain shape.
  • the repaired parts 28 and 31 are surrounded by new refractory bricks 20, respectively, and the filled layers 34 and 37 are formed by filling the space portions with granular refractories.
  • a part of the moved refractory brick 20 is dismantled and removed, and as shown in FIG. 7C, all of the moved refractory brick 20 is removed, and the repaired part 32 is surrounded by the removed refractory brick 20, and the inside of this space portion is removed.
  • the filled layer 38 may be formed by filling a granular refractory.
  • FIG. 6C there is also a method in which the moved refractory brick 20 is dismantled and removed, and a granular refractory is filled so as to embed the removal trace, thereby forming a packed layer 35.
  • the thickness of the packed layer in the repaired part only needs to be at least twice the maximum particle size of the granular refractory by adjusting the height and range of the granular refractory in the repaired part.
  • FIG. 6A the same applies to FIG. 7A
  • the upper surface (minimum height position) of the refractory brick 20 protruding from the furnace working surface 21.
  • the height from the P1 to the maximum height position P2) to the slope (surface) of the packed bed 33 in the vertical direction is repaired so as to ensure at least twice the maximum particle size of the granular refractory.
  • the thickness of the packed layer 35 (depth of the removed trace)
  • the repaired part 32 is surrounded by the removed refractory brick 20, and the space refractory is filled with granular refractory, so that the maximum particle size of the granular refractory is increased. Repair to ensure twice or more.
  • the refractory brick that has moved at the repair site during the generation of the opening may or may not be removed from the repair site.
  • the moved refractory brick has the above-described opening adjacent thereto, but the refractory brick itself has fire resistance and heat insulation. Therefore, if the moved refractory brick is repaired without removing it from the repaired site, the refractory brick can be repaired utilizing the fire resistance and heat insulating properties.
  • the repair may be performed with the moved refractory brick removed from the repair site. This is because, if the filling rate of the granular refractory and the thickness of the packed layer are within the specified ranges, fire resistance and heat insulation equivalent to the refractory brick before the opening is generated can be realized.
  • the opening when repairing the opening, it is possible to omit work such as on-site adjustment (adjustment) of newly arranged refractory bricks and drying of mortar, and in some cases removal of moved refractory bricks. Shortening is possible.
  • the granular refractory contains 80% by mass or less of granular material having a particle size of 1 mm or less, the height of the packed layer placed on the repaired part can be maintained for a long time, The period until repairs can be extended.
  • the thickness of the packed bed is 2 of the maximum particle size of the granular refractory. Even when the number is twice or more, it may not be possible to suppress the generation of openings between adjacent refractory bricks over a long period of time. For example, as shown in FIG.
  • FIG. 8A is a longitudinal cross-sectional view of the hearth, and since the actual state is three-dimensional with the depth direction, the granular refractory that contacts the point can absorb the thermal expansion by moving in the depth direction. It is thought that there are many cases. Moreover, even if the gap of the damaged part of the refractory brick is less than twice the maximum particle size of the granular refractory, as shown in FIG. If 43 is formed, there is no problem even if a refractory brick 20 approaches and a gap is formed. As described above, the generation of the opening can be dealt with by the above-described method, but the following repair method can also be used.
  • the maximum particle size of the granular refractory 46 constituting the packed bed 45 is set to less than 50% of the inner width in the horizontal direction of the gap 40 at the repair site.
  • the granular refractory 46 is in point contact with the adjacent refractory brick 20, an opening is not easily generated.
  • the adjacent granular refractories 46 come into contact with each other at a point, and generation of the above-described opening can be further suppressed.
  • the generation of the opening can be more reliably suppressed when the maximum particle size of the granular refractory is set to 33% or less of the inner width of the gap 40 in the horizontal direction.
  • the lower limit of the maximum particle size of the granular refractory is not stipulated because the void diameter can be reduced by increasing the filling ratio of the granular refractory as the particle size becomes smaller. Is considered to be over 10 mm, the lower limit of the maximum particle size of the granular refractory is about 5 mm.
  • the granular refractory is placed on the surface of the lower refractory, for example, (1) Falling collision of granular refractory against lower refractory when spraying granular refractory on the surface of lower refractory (2) Friction (rubbing) between granular refractory and lower refractory by leveling the packed bed ) (3) Collision of a shovel or the like (filled layer replacement jig) and the lower layer refractory accompanying removal of the packed layer occurs. For this reason, the lower layer refractory may be damaged during the construction work of the granular refractory. When the construction work of such granular refractory is not frequently performed, or when the lower layer of the packed bed is concrete (see FIG. 2B), the lower layer of the packed bed is not likely to be damaged.
  • the compressive strength (JIS R 2206-1: 2007) of the lower layer refractory at room temperature is 1.5 MPa or more.
  • the upper limit of the compressive strength at normal temperature is not specified in particular, it is about 80 MPa when referring to a refractory commonly used in a heat treatment furnace. Thereby, damage to the refractory disposed on the lower surface of the packed bed can be suppressed.
  • the present invention has been described with reference to the embodiment.
  • the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the claims.
  • Other embodiments and modifications conceivable within the scope are also included.
  • the metal ingot heat treatment furnace and the repair method thereof according to the present invention include various furnaces for heat-treating metal ingots, for example, a slab heat-retaining furnace after continuous casting, a hot-rolling slab heating furnace, or a steel sheet annealing furnace.
  • the metal lump is not intended for a furnace that heat-treats molten metal, but for example, a furnace in which a lump-shaped metal partially melts during heat treatment and adheres to the furnace, This corresponds to the heat treatment furnace targeted by the present invention.
  • the opening generated in the hearth of the heat treatment furnace is caused by the thermal expansion of the refractory layer refractory due to the high temperature inside the furnace of the heat treatment furnace.
  • the thermal expansion allowance of refractory bricks or refractory castables that are refractory layer refractories is absorbed by deformation at joints or cracks where the strength is the lowest, and as a result, the refractory bricks rise up at joints and cracks, and A fire-resistant castable rush occurs at the crack.
  • a gap is provided between adjacent refractory bricks, or a refractory that absorbs stress between adjacent refractory bricks. Measures such as setting things (fiber etc.) are taken.
  • the refractory used for stress absorption deteriorates, the gap between the adjacent refractory bricks is further increased, or the refractory brick and the refractory are used. A gap is generated between them.
  • the generated gap is filled with the scale of the metal block to be heat-treated and the refractory powder generated from the refractory applied itself, which causes the problem that the thermal expansion absorption capacity of the refractory brick decreases with the use of the heat treatment furnace over time. .
  • a decrease or increase in the furnace temperature accompanying regular repair of the heat treatment furnace also promotes a decrease in the thermal expansion absorption capacity.
  • the present inventors can use a refractory brick instead of a refractory brick (hereinafter referred to as a granular refractory) to avoid a surface contact of the refractory brick and make a point contact substantially. Since the relative position can be easily changed without being coupled to each other, it has been conceived that the generation of the opening can be suppressed.
  • a refractory brick instead of a refractory brick (hereinafter referred to as a granular refractory) to avoid a surface contact of the refractory brick and make a point contact substantially. Since the relative position can be easily changed without being coupled to each other, it has been conceived that the generation of the opening can be suppressed.
  • a granular refractory (hereinafter also referred to as a granular refractory) is used as the material for filling the hearth of the layer.
  • a metal lump heat treatment furnace 112 shown in FIG. 9B a rectangular parallelepiped refractory brick that constitutes a refractory layer provided on the in-furnace operation surface side of the hearth is brought into surface contact with the flat surfaces facing each other. (Including sandwiching a mortar or a thermal expansion absorbent in between).
  • the arrangement of the planes facing each other in this way causes the opening to be generated with the use of the heat treatment furnace over time.
  • the hearth of the heat treatment furnace 110 shown in FIG. 9A is configured by spraying granular refractories on the surface of the refractory layer refractory, that is, the portion exposed to the heat treatment atmosphere of the hearth (in-furnace operating surface 111). ing.
  • the adjacent granular refractories move to each other, so that the opening is substantially formed in the hearth. Does not occur.
  • this granular refractory is not a shape composed of only a flat surface like a refractory brick, adjacent granular refractories are in point contact at one or more points.
  • the point contact part may be fused during use of the heat treatment furnace over time, but because the contact is at a point, the fused part easily breaks down due to the stress due to thermal expansion of the granular refractory, resulting in granularity. Refractories can move relative to each other, and no opening is generated.
  • the granular refractory is a granular material that is not composed of only a flat surface.
  • the granular refractory needs to have a certain level of filling rate of the packed bed. Therefore, it is preferable that a plurality of particle sizes (shapes) exist.
  • the shape of the refractory brick is usually constant except for a part of the ends of the arranged bricks. Therefore, it is preferable to use a crushed product of the refractory as the granular refractory.
  • the crushed surface cannot be configured with a substantially right-angled surface like a rectangular parallelepiped, and thus does not have a fixed shape.
  • the plane around a refractory brick may remain on the surface of a granular refractory.
  • this remaining surface is substantially difficult to be disposed so that the flat surfaces face each other when the granular refractory is put into the hearth to constitute the packed bed, the flat surface remaining after crushing Does not affect the formation of openings in the packed bed of granular refractory.
  • the gap between adjacent granular refractories also has the effect of improving the heat insulation of the refractory layer, but when the volume ratio of the gap in the packed layer of granular refractory increases, as described above, the gap is heat treated.
  • the high temperature atmosphere of the furnace flows in.
  • the fire resistance and heat insulating properties of the refractory layer are deteriorated, for example, directly connected to the deterioration of the heat insulating layer constructed on the back side of the refractory layer.
  • the particle size of the granular refractory is specified as follows unless otherwise specified. When “50 mm or less”, “ ⁇ 50 mm”, and “50 mm under” are described, each indicates a refractory under a sieve sieved with a sieve having a nominal opening of 50 mm. Moreover, when it describes with “1 mm or more”, “+ 1mm”, and “1mm over”, all point out the refractory material on the sieve sieved with the sieve with a nominal opening of 1 mm.
  • a refractory having a size of 1 to 50 mm refers to a refractory on a sieve that is sieved with a sieve having a nominal aperture of 50 mm and sieved with a sieve having a nominal aperture of 1 mm.
  • the plate sieve described in JIS Z8801-2 (2000) is used for sieving the granular refractory (the same applies hereinafter).
  • the survey method will be explained.
  • the blending ratio (mass ratio) of 20 mm under 1 mm over (hereinafter referred to as 1 to 20 mm) is adjusted.
  • the filling rate was changed to produce a packed bed having a thickness of about 100 mm (about 100 to 110 mm: twice the maximum particle size of the granular refractory).
  • the maximum particle size of the granular refractory was defined by the long diameter of the coarse particles (under the sieve) that passed through the sieve after the granular refractory was once sieved (same below).
  • the granular refractory has a maximum particle size of 50 mm
  • the surface (working surface side) of the packed bed is brought into contact with the furnace atmosphere of a heat treatment furnace having a maximum furnace temperature of 1400 ° C., and the temperature of the bottom of the packed bed (position of 100 to 110 mm from the working surface) is set.
  • Measured with a thermocouple A total of 360 mm of refractory bricks and heat insulating bricks were disposed on the back side of the packed layer of granular refractory, and the total lining thickness including the packed layer was 460 to 470 mm.
  • the filling rate of this granular refractory was determined by the following measuring method. First, separately prepare a cylindrical container with a known volume and mass with a diameter of 285 mm and a depth of 100 mm (a depth equivalent to the construction depth of the granular refractory). The portion having a thickness of 100 mm or more was removed (sliced off), and the weight was weighed. And (mass of granular refractory) / (volume of a container) was calculated
  • the relationship between the filling rate of the granular refractory in the packed bed and the back surface temperature of the packed bed is shown in FIG.
  • the data of the filling rate of 100% by volume is obtained from the construction of the conventional refractory brick (specifically, the two layers of high alumina refractory brick having a thickness of 50 mm are installed in the open joint). This is the result obtained.
  • the refractory brick is constructed such that a rectangular brick is brought into surface contact as much as possible at an open joint so that there is as little gap as possible between the refractory bricks.
  • 10 are obtained from the packed bed prepared by adjusting the blending ratio of the granular refractory of 1 to 20 mm out of the granular refractory composed of 1 to 50 mm. This is the result obtained.
  • the data with a filling rate of 79% by volume is a result obtained from a packed bed prepared by appropriately blending 10 ⁇ m over 1 mm under (hereinafter referred to as 10 ⁇ m to 1 mm) powdery granular refractory.
  • data with a filling rate of 92% by volume is a result obtained from a packed bed prepared by appropriately blending a powdery granular refractory with a particle size of 10 ⁇ m to 1 mm and further solidifying with a rammer.
  • the filling ratio of the granular refractory may be 65 volume% or more and less than 100 volume%.
  • the granular refractory needs to be at least less than 100% by volume.
  • the filling rate may be further adjusted. As is apparent from FIG. 10, the minimum value of the back surface temperature is about 1255 ° C., and in order to set the back surface temperature in the vicinity of the minimum value of about 1255 to 1270 ° C., the filling rate is set to about 70 to 85% by volume. It turns out that is preferable.
  • the filling rate of the granular refractory in the packed bed may be 70% by volume or more and 85% by volume or less.
  • the gap formed between the adjacent granular refractories is in the thickness direction of the packed layer. There is a possibility of penetration, and it is considered that this penetration gap adversely affects the heat insulation of the hearth.
  • the thickness of the packed bed is at least twice the maximum particle size of the granular refractory, a suitable heat insulating property can be maintained.
  • the upper limit value of the thickness of the packed layer is not particularly specified because the above-described effect can be obtained as the packed layer becomes thicker. However, if the construction of the refractory that is generally performed is considered, it is about 500 mm. It is.
  • the filling rate of the granular refractory in the packed bed in the range of 70% by volume or more and 85% by volume or less, heat insulation can be maintained and improved, and in particular, the filling rate range is 71% by volume. Above, about 80% by volume or less, a tendency of good heat insulation was obtained. There are two possible reasons for this. (1) The smaller the filling rate of the granular refractory, the larger the gap diameter between the particles of the granular refractory, and the high-temperature atmosphere gas in the furnace can easily reach the back of the granular refractory. (2) The higher the filling rate of the granular refractory, the more the number of point contacts between the grains of the granular refractory, and the more likely conduction heat transfer occurs.
  • the fine grains having a width (diameter) that fits in the gap caused by the coarse grains and the voids caused by the fine grains.
  • blend suitably the fine particle of the width
  • the present inventors have prepared a mixing ratio (mass ratio) of a granular refractory having a particle size of 1 mm under and a granular refractory having a size of 1 to 50 mm, which is prepared by pulverizing a used refractory brick with a jaw crusher.
  • FIG. 11 shows the relationship between the ratio of granular material with a particle size of 1 mm or less in the granular refractory and the minimum depth of the packed bed after standing for 3 months.
  • 100 mass% of the granular material shown in FIG. 11 means that 1 mm under granular refractory is 100 mass%, and 0 mass% means that 1 to 50 mm granular refractory is 100 mass%. It means that. From FIG.
  • the ratio of the granular material having a particle size of 1 mm or less in the granular refractory is preferably 80% by mass or less (preferably Has been found to be 70% by mass, and further 60% by mass).
  • the granular refractory of the packed bed must be It is preferable to have a particle size distribution such that the filling rate is 70% by volume or more and 85% by volume or less, and further, a granular refractory containing 80% by mass or less of particles having a particle size of 1 mm or less is used for filling the hearth.
  • the present inventors have conceived a method for producing the above-mentioned granular refractory.
  • the method for producing a hearth filling material used in the heat treatment furnace for metal lumps compresses and crushes used refractories and has a maximum particle size in the range of 20 mm to 100 mm.
  • the above-mentioned granular refractories are manufactured by adjusting the inside. This will be described in detail below.
  • the used refractory used for the production of the granular refractory may be any material as long as it is used for the conventional refractory layer refractory, and in particular, the refractory layer refractory of the molten metal storage container (A refractory used with sufficient fire resistance such as a refractory provided on the surface in contact with the molten steel) or a refractory brick (alumina brick) of a heat treatment furnace is preferable.
  • a refractory used with sufficient fire resistance such as a refractory provided on the surface in contact with the molten steel
  • a refractory brick (alumina brick) of a heat treatment furnace is preferable.
  • sufficient fire resistance means having the following characteristics, for example.
  • the hot bending strength of the used refractory at the intended use temperature (atmosphere temperature to which the hearth is exposed) measured according to JIS R 2656 (1995) is 0.2 MPa or more. Thereby, granular refractories can be provided with the material characteristic that granular refractories approach each other by thermal expansion, and do not break down with the movement at the time of a relative position moving (it does not produce a lot of powder).
  • the load softening point temperature measured according to JIS R 2209 (2007) is 200 ° C. or more higher than the intended use temperature (atmosphere temperature to which the hearth is exposed) (the upper limit is, for example, about 1100 ° C.). Thereby, it is possible to prevent the granular refractories from being baked and solidified during use of the granular refractories.
  • the heat insulating material used in the heat treatment furnace or the molten metal storage container can be used. However, since the heat insulating material generally has low strength, care must be taken when using it.
  • the used refractories shown above are sintered because of the heat treatment due to the use and become high strength, and in close contact due to thermal expansion, there is a high tendency for the relative position to move without breaking the grains, which is preferable .
  • used refractories often have cracks, and when used as granular refractories, there is a possibility that the grains will crack with the time of use and the heat insulation may be locally reduced. There is a problem that there is.
  • the used refractory may be crushed by applying a compressive force.
  • a method for crushing used refractories include a chisel and a jaw crusher.
  • the chisel is struck with a hook-shaped jig and the hook-shaped jig is pushed into the used refractory.
  • This is a method of crushing used refractories by the acting tensile stress.
  • a bowl-shaped jig is pushed into a lump of used refractory, the lump is first divided from the part with the lowest strength, that is, the largest crack. Almost no stress is applied to the used refractory mass from the jig.
  • the jaw crusher puts a used refractory material between a pair of tooth plates facing each other with a gap, and crushes this used refractory material mainly by compressive force.
  • the compressive force applied to the entire used refractory by the tooth plate first divides the lump from the weakest part, that is, the largest crack, but the compressive force continues during the time that the refractory lump passes through. Because it keeps hanging, it can break down to a small internal crack compared to a chip.
  • This jaw crusher can control the maximum particle size of the crushed granular refractory by adjusting the distance between the pair of tooth plates.
  • a crushing apparatus having a crushing mechanism similar to a jaw crusher includes a double roll crusher.
  • the alumina-magnesia refractory castable used in the molten steel pan was dismantled and removed from the molten steel pan with a chisel, pulverized with a jaw crusher, and variously changed the interval between the tooth plates arranged oppositely,
  • the result of investigating the ratio of the granular material having a particle size of 1 mm under the granular refractory is shown in FIG.
  • the setting value of the tooth crushing distance of the jaw crusher shown on the horizontal axis in FIG. 12 is the distance at which the distance between the tooth plates opposed to each other is the narrowest.
  • the maximum particle size specified by sieving by the the hatched area in FIG. 12 indicates the proportion distribution of granular materials having a particle size of 1 mm or less when compressed and crushed at intervals between the tooth plates, and the dotted line is an approximation of the actual measurement point ( ⁇ mark in FIG. 12). A curve is shown.
  • the gap between the tooth plates opposed to each other of the jaw crusher that is, the maximum particle size of the granular refractory is set to 20 mm or more, thereby reducing the thickness of the packed bed due to remarkable flow and scattering.
  • Conditions that can be suppressed that is, the proportion of granular material having a particle size of 1 mm or less in the granular refractory can be 80% by mass or less.
  • interval of a toothplate although it investigated only to 100 mm, this is because 100 mm is a practical upper limit of the largest particle size of a granular refractory.
  • the maximum particle size of the granular refractory is set in the range of 20 mm to 100 mm, but the lower limit is preferably 28 mm, more preferably 40 mm, and the upper limit is 80 mm, more preferably 63 mm.
  • the compression crushing which can suppress the production
  • the usage method of the granular refractory manufactured with the manufacturing method of the hearth filling material used for the heat treatment furnace for metal blocks which concerns on one embodiment of this invention is demonstrated.
  • the granular refractory is used by being sprayed in the furnace of the heat treatment furnace for the metal lump.
  • a granular refractory is sprayed on the surface of a refractory (here, a refractory layer refractory) to form a packed layer.
  • the refractory which comprises the lower layer of a packed bed can also be comprised with a heat insulation layer refractory.
  • This packed bed replaces the upper side (a part) of the refractory layer refractory constituting the furnace working surface side of the conventional metal block heat treatment furnace 112 shown in FIG. 9B.
  • the refractory layer refractory is disposed on the surface of the heat insulation layer refractory disposed on the furnace bottom core 113.
  • the packed layer may be formed in a state where the portion excluding the upper side of the conventional refractory layer refractory is left, and is formed after a new refractory layer refractory is disposed on the surface of the heat insulating layer refractory. May be.
  • the compressive strength at normal temperature of the refractory disposed in the lower layer of the packed bed is 1.5 MPa or more, for example, heat insulation that is easily damaged even if the refractory is dispersed or replaced (scraped). Damage to layer refractories can be prevented.
  • the packed bed composed of granular refractory may replace all of the refractory layer refractory constituting the in-furnace working surface side of the conventional metal lump heat treatment furnace 112 shown in FIG. 9B.
  • the present invention has been described with reference to the embodiment.
  • the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the claims.
  • Other embodiments and modifications conceivable within the scope are also included.
  • a case where a method for producing a hearth filling material used in the heat treatment furnace for metal ingots of the present invention by combining a part or all of the above-described embodiments and modifications is included in the scope of the present invention. It is.
  • the hearth filling material produced by the method for producing a hearth filling material used in the heat treatment furnace for metal lumps of the present invention includes various furnaces for heat treating metal lumps, for example, a slab heat retention furnace after continuous casting, Not only a hot rolling slab heating furnace or a steel sheet annealing furnace, but also any furnace can be used as long as it heat treats a lump of metal.
  • the metal lump is not intended for a furnace that heat-treats molten metal, but for example, a furnace in which a lump-shaped metal partially melts during heat treatment and adheres to the furnace, This corresponds to the heat treatment furnace targeted by the present invention.
  • used refractory castables alumina-magnesia castable refractories
  • used refractory castables alumina-magnesia castable refractories
  • the jaw crusher so that the maximum particle size of a granular refractory might be set to 50 mm. Since this crushing is performed by putting a lump of used refractory castable between the tooth plates constituting a pair of jaw crushers, a compressive force is mainly applied to the used refractory castable.
  • the maximum particle size of the granular refractory is 50 mm. After the granular refractory is once screened with a sieve having a nominal aperture of 50 mm, at least one of the coarse particles that have passed through the sieve has coarse particles with a major axis of 50 mm or more. It means the granular refractory under the case.
  • the above-mentioned used refractory having a maximum particle size of 50 mm was further subjected to magnetic separation treatment to remove the bare metal, thereby producing a granular refractory.
  • the filling rate of this granular refractory was measured by the method described above, it was 74% by volume, and contained 18% by mass of 1 mm under granular material.
  • This granular refractory was applied to the surface of a heat insulating brick having a compressive strength of 1.5 to 2.5 MPa at room temperature to form a packed bed, and a hearth of a heat treatment furnace was manufactured.
  • the thickness of the heat insulating brick was 360 mm
  • the thickness of the packed bed was 110 mm
  • the total construction thickness of the hearth was 470 mm.
  • the packed bed transports granular refractories from the outside of the heat treatment furnace to the inside of the furnace by a belt conveyor, spreads the loaded granular refractories onto the hearth using a shovel or the like, and a ground leveling dragonfly (ground leveling) Using a jig or a shovel or the like, a flattened and visually smoothed construction was performed.
  • the maximum particle size of the granular refractory is 50 mm. After the granular refractory is once screened with a sieve having a nominal aperture of 50 mm, at least one of the coarse particles that have passed through the sieve has coarse particles with a major axis of 50 mm or more. It means the granular refractory under the case.
  • the above-mentioned used refractory having a maximum particle size of 50 mm was further subjected to magnetic separation treatment to remove the bare metal, thereby producing a granular refractory.
  • the filling rate of this granular refractory was measured by the method described above, it was 74% by volume, and contained 18% by mass of 1 mm under granular material.
  • This granular refractory was applied to the surface of a heat insulating brick having a compressive strength of 1.5 to 2.5 MPa at room temperature to form a packed bed, and a hearth of a heat treatment furnace was manufactured.
  • the thickness of the heat insulating brick was 360 mm
  • the thickness of the packed bed was 110 mm
  • the total construction thickness of the hearth was 470 mm.
  • the packed bed transports granular refractories from the outside of the heat treatment furnace to the inside of the furnace by a belt conveyor, spreads the loaded granular refractories onto the hearth using a shovel or the like, and a ground leveling dragonfly (ground leveling) A T-shaped tool) and a shovel or the like were used to level the work visually.
  • the present invention it is possible to prevent the generation of openings mainly at joints and cracks of the hearth refractory, and the intrusion of the hearth refractory due to thermal expansion, which deteriorates over time. It is possible to suppress and further prevent a decrease in fire resistance and heat insulation of the hearth refractory. For this reason, the present invention has sufficient industrial applicability.

Abstract

 本発明は、炉内稼動面側に粒状耐火物の充填層を有し、前記粒状耐火物の充填率が65体積%以上100体積%未満で、前記充填層の厚みが前記粒状耐火物の最大粒径の2倍以上である炉床構造を備える金属塊用熱処理炉を提供する。

Description

金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法
 本発明は、金属の塊を熱処理する種々の炉、例えば、連続鋳造後のスラブの保熱炉、熱間圧延用スラブの加熱炉、又は鋼板の焼鈍炉等の金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法に関する。
 一般に、金属塊を熱処理する炉(以下、熱処理炉ともいう)の炉床は、炉内に露出する面(以下、炉内稼動面ともいう)側が、耐火層で構成され、この背面側に断熱層を設ける場合が多い。このように、熱処理炉に断熱層を設けるのは、熱処理炉の燃料原単位の低減を目的とした熱処理炉の断熱性が求められるためである。しかし、断熱層を構成する耐火物(以下、断熱層耐火物ともいう)は、一般に、気泡を多く含むため、強度や耐侵食性が低く、熱処理炉の高温雰囲気への曝露や熱処理物のスケール等の落下物により、劣化して断熱性が低下する。このため、断熱層の炉内稼動面側に、高温強度が高く耐侵食性に優れた耐火層が通常設けられる。なお、耐火層を構成する耐火物(以下、耐火層耐火物ともいう)には、耐火れんが又は耐火キャスタブル(以下、キャスタブル耐火物ともいう)を用いるのが一般的である。
 このような金属塊用熱処理炉としては、例えば、特許文献1に、耐火れんが(炉床れんが)を炉床部に配置した熱処理炉が記載されている。この炉床部に配置された耐火れんがは、熱による耐火れんがの膨張伸縮を吸収するため、炉床部に予め湾曲させた状態で配置されている。
 また、金属塊用熱処理炉ではないが、溶湯を貯蔵する炉の炉床構造としては、例えば、特許文献2のようなラミング材が一般に用いられている。ラミング材は、焼結性を担保するため、一般に最大粒径が5mm以下で、粒径10μm以下の微粉を含めた比較的微細な粉粒状の耐火物から構成される。これを炉内に投入して突き固めることにより築炉し、その後、焼結運転によってラミング材の表層を焼結させることで強固な焼結層を形成させ、この焼結層によって炉内の溶湯を保持することができる。この焼結層の背面側は、高温に曝されないため、粉粒状態を保った未焼結層となっている。従って、この焼結層に亀裂が生成しても、この亀裂に侵入した溶湯の熱により、焼結層背面側の未焼結のラミング材が焼結することで、溶湯の漏洩を防止できる。このため、ラミング材は、特に、誘導炉等のように、耐火物の厚みを極力薄くする必要がある溶湯保持用炉の耐火物に使用することで、好適な効果が得られる。
日本国特開平8-200652号公報 日本国特開2004-83363号公報
 しかしながら、特許文献1に開示の熱処理炉では、隣合う耐火れんが同士が面で接触しているため、耐火れんが自身の熱膨張によってその接触部(れんが目地)が迫り上がり、隣合う耐火れんがの目地部に開口部が生成する。このように、開口部が生成すると、耐火れんがの背面側の断熱層耐火物の表面が熱処理炉内に露出するため、炉内の高温雰囲気への曝露や熱処理物のスケール等の落下物により、断熱層耐火物の劣化に直結する。なお、この現象は、隣合う耐火れんがの目地部にモルタル等を配置しても同様に発生する。特に、耐火れんがは、平面で構成される形状(例えば、直方体)であるため、面接触するように配置された隣合う耐火れんがの間に開口部が一旦生成すると、高温の炉内雰囲気ガスが開口部から侵入し、耐火れんがが1層分無くなるのと同等な、耐火性や断熱性の低下の悪影響がある。
 また、特許文献2のように、溶湯保持用炉において好適な効果が得られるラミング材を、本発明が対象とする金属塊用熱処理炉の炉床構造に適用すると、以下の課題がある。ラミング材は、炉内稼動面近傍が焼結して焼結層を生成するため、昇温後は、キャスタブル耐火物と同様に炉床全体が一体構造となり、焼結層の熱膨張や焼結による収縮により、未焼結層に達する亀裂が発生する。このため、金属塊を熱処理炉に装入する際に、炉内に巻込まれる空気、又は熱処理炉内にて使用されるバーナーの噴流が、上記した亀裂から焼結層の裏面側の未焼結層に侵入して、未焼結のラミング材が熱処理炉内で流動し飛散する。このとき、焼結層の背面側に空洞ができるため、熱処理炉の経時使用と共に、耐火性や断熱性が劣化する部分が発生する。更に、焼結層は、熱膨張等によって互いに迫り合い、熱処理炉の他の部位へ応力を発生させたり、また焼結層が浮き上がり実質的な耐火物厚みを減少させたりする等の課題もある。
 なお、炉床にキャスタブル耐火物を用いる場合、炉床全体、もしくは溝状のスコアライン(例えば、耐火物の膨張代の吸収や、亀裂を優先的に発生させる箇所)で囲まれた領域が、一体構造となる。このため、キャスタブル耐火物の炉内稼動面近傍の熱膨張や、焼結による収縮により、キャスタブル耐火物に亀裂が発生する。その結果、発生した亀裂や溝状に形成したスコアラインにおいて、この両側に位置する耐火物同士で互いに迫り合いが生じ、熱処理炉の他の部位へ応力を発生させたり、また焼結層が浮き上がり実質的な耐火物の厚みを減少させたりする等の課題が発生する。
 本発明は上述の事情に鑑みてなされたもので、炉床耐火物の主として目地部や亀裂部での開口部の発生や、熱膨張による炉床耐火物の迫り合いを、未然に防止することができ、経時使用と共に劣化する炉床耐火物の耐火性や断熱性の低下を抑制、更には防止可能な、金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法を提供することを目的とする。
 本発明は、上述の課題を解決するために以下の手段を採用した。
(1)本発明の第1の態様は、炉内稼動面側に粒状耐火物の充填層を有し、前記粒状耐火物の充填率が65体積%以上100体積%未満で、前記充填層の厚みが前記粒状耐火物の最大粒径の2倍以上である炉床構造を備える金属塊用熱処理炉である。
(2)上記(1)に記載の金属塊用熱処理炉では、前記粒状耐火物が、粒径1mmアンダーの粒状物を80質量%以下含んでもよい。
(3)上記(1)又は(2)に記載の金属塊用熱処理炉は、セラミックスファイバーが一部又は全体にライニングされる天井部を更に備えてもよい。
(4)上記(1)~(3)のいずれか1項に記載の金属塊の熱処慮理炉では、前記充填層が、常温での圧縮強度が1.5MPa以上の耐火物の表面に配置されてもよい。
(5)本発明の第2の態様は、耐火れんが及び又は耐火キャスタブルを炉床の炉内稼動面側に施工した金属塊用熱処理炉の補修方法である。この補修方法は、前記炉床の炉内稼動面側の補修部位に対し、粒状耐火物の充填層を形成する工程を備え、前記充填層の前記粒状耐火物の充填率が65体積%以上100体積%未満であり、前記充填層の厚みが前記粒状耐火物の最大粒径の2倍以上である。
(6)上記(5)に記載の金属塊用熱処理炉の補修方法では、前記粒状耐火物が、粒径1mmアンダーの粒状物を80質量%以下含んでもよい。
(7)上記(5)又は(6)に記載の金属塊用熱処理炉の補修方法では、前記粒状耐火物の充填層を形成する工程の前に、前記炉床の炉内稼動面側の補修部位を含む前記耐火れんが又は前記耐火キャスタブルの一部を除去して前記充填層が充填される空間を形成する工程をさらに含んでもよい。前記充填層を構成する前記粒状耐火物の最大粒径が、前記空間の水平方向の内幅の50%未満であってもよい。
(8)上記(5)~(7)のいずれか1項に記載の金属塊用熱処理炉の補修方法では、前記充填層が、常温での圧縮強度が1.5MPa以上の耐火物の表面に配置されてもよい。
(9)本発明の第3の態様は、金属塊用熱処理炉の炉床の炉内稼動面側を構成する炉床充填用材料の製造方法である。この製造方法は、使用済み耐火物を圧縮破砕する工程と;圧縮破砕された前記使用済み耐火物の最大粒径を20mm以上100mm以下の範囲内に調整し、粒状耐火物を形成する工程と;を備える。
(10)上記(9)に記載の金属塊用熱処理炉に用いる炉床充填用材料の製造方法では、前記使用済み耐火物が、製鉄所で発生する溶湯貯蔵容器の耐火層耐火物及び又は熱処理炉の耐火れんがであってもよい。
(11)上記(9)又は(10)に記載の金属塊用熱処理炉に用いる炉床充填用材料の製造方法では、前記使用済み耐火物の熱間曲げ強度が、前記炉床が曝される雰囲気温度で0.2MPa以上であってもよい。
(12)上記(9)~(11)のいずれか1項に記載の金属塊用熱処理炉に用いる炉床充填用材料の製造方法では、前記使用済み耐火物の荷重軟化点温度が、前記炉床が曝される雰囲気温度よりも200℃以上高くてもよい。
(13)上記(9)~(12)のいずれか1項に記載の金属塊用熱処理炉に用いる炉床充填用材料の製造方法では、前記使用済み耐火物の炭素成分が1質量%以下であってもよい。
 上記(1)及び(5)に記載の構成及び方法によれば、炉床の炉内稼動面側の充填層を粒状耐火物で構成するので、耐火れんがのように面接触させることなく、粒状耐火物同士を実質的に点接触させることができる。また、この粒状耐火物同士は、互いに結合されておらず、その相対位置が容易に変化するので、従来のような、開口部の生成を抑制、更には防止できる。なお、充填層の粒状耐火物の充填率が65体積%以上100体積%未満であるので、隣合う粒状耐火物の間に形成される隙間の割合を、隙間から流入する高温雰囲気で充填層の背面側の温度を急激に上昇させることなく、且つ、隣合う粒状耐火物が面接触しない状態に調整できる。また、充填層の厚みが、粒状耐火物の最大粒径の2倍以上であるので、上層に位置する粒状耐火物は、例えば、下層を構成する隣合う粒状耐火物の間に形成される隙間の上方に位置するように積み重なる。これにより、隣合う粒状耐火物の間に形成される隙間が、充填層の厚さ方向に貫通することを抑制でき、充填層による耐火性や断熱性を維持できる。従って、炉床耐火物の主として目地部や亀裂部での開口部の発生や、熱膨張による炉床耐火物の迫り合いを、未然に防止することができ、経時使用と共に劣化する炉床耐火物の耐火性や断熱性の低下を抑制、更には防止できる。
 上記(2)及び(6)に記載の構成及び方法によれば、粒状耐火物が、粒径1mmアンダーの粒状物を80質量%以下含むため、粒状耐火物の流動や飛散による充填層の厚み減少を抑制でき、経時使用と共に劣化する炉床耐火物の耐火性や断熱性の低下を抑制、更には防止できる。
 上記(3)に記載の構成によれば、天井部の一部又は全体にセラミックスファイバーをライニングすることにより、金属塊用熱処理炉の変形を小さくできる。金属塊用熱処理炉の炉床は、基礎構造体により拘束されるが、天井は、膨張に際しての拘束が少ないため、熱処理炉の天井近傍の炉幅が、炉床近傍の炉幅よりも広がる。特に、炉床に粒状耐火物の充填層を施工すると、炉床近傍での熱膨張量が従来よりも小さくなるため、上記した傾向がより大きくなる。そこで、天井部に、熱膨張を自ら変形して吸収するセラミックスファイバーをライニングすることで、天井近傍の変形量を小さくでき、上記した傾向を小さくできる。
 また、上記(7)に記載の方法によれば、炉床の炉内稼動面側の補修部位を含む耐火れんが又は耐火キャスタブルの一部を除去して空間を形成し、この空間内に充填層を形成することにより、補修部位の根本的な補修を実施できる。このとき、充填層を構成する粒状耐火物の最大粒径を、前記空間の水平方向の内幅の50%未満とするので、空間内の隣合う粒状耐火物同士が点接触し、開口部の生成を未然に抑制できる。詳細には、前記空間の水平方向において、2個の粒状耐火物が迫り合って新たに開口部が生成する可能性を回避できる。即ち、水平方向に3個以上の粒状耐火物を存在させることができるため、粒状耐火物同士が迫り合うことなく移動し、熱膨張を吸収できる。
 上記(4)及び(8)に記載の構成及び方法によれば、充填層を、常温での圧縮強度が1.5MPa以上の耐火物の表面に配置することで、充填層の下層を構成する耐火物の強度が高められる。これにより、例えば、充填層を形成するため、粒状耐火物の散布や入替を行っても、その下層の損傷を抑制、更には防止できる。
 上記(9)に記載の方法によれば、使用済み耐火物を圧縮破砕して、最大粒径を20mm以上100mm以下の範囲内に調整し、粒状の耐火物にするので、金属塊用熱処理炉の炉床の炉内稼動面側に、層厚を維持して断熱性及び耐火性を低下させない充填層を形成するのに適した炉床充填用材料を、容易かつ効率的に製造できる。また、炉床充填用材料の製造に際し、使用済み耐火物を用いるので、従来廃棄されていた使用済み耐火物のリサイクルも可能となる。このようにして製造した炉床充填用材料を使用して、金属塊用熱処理炉の炉床の炉内稼動面側を構成することで、耐火れんがのように面接触させることなく、粒状の耐火物同士を実質的に点接触させることができる。また、この粒状の耐火物同士は、互いに結合されておらず、その相対位置が容易に変化するので、従来のような、開口部の生成を抑制、更には防止できる。従って、炉床の耐火物の主として目地部や亀裂部での開口部の発生や、熱膨張による炉床の耐火物の迫り合いを、未然に防止することができ、経時使用と共に劣化する炉床の耐火物の耐火性や断熱性の低下を抑制、更には防止できる。
 上記(10)に記載の方法によれば、使用済み耐火物として、製鉄所で発生する溶湯貯蔵容器の耐火層耐火物又は熱処理炉の耐火れんがを用いるため、入手が容易である。特に、溶湯貯蔵容器の耐火層耐火物は、例えば、1600℃以上の高温環境下で使用されたものであるため、これを使用することで、製造する炉床充填用材料が十分な耐火性を備えることができる。
 上記(11)に記載の方法によれば、使用済み耐火物の熱間曲げ強度が、炉床が曝される雰囲気温度で0.2MPa以上であるため、炉床充填用材料を金属塊用熱処理炉に用いるに際し、炉床充填用材料同士が熱膨張で迫り合って、その相対位置が動く現象が発生しても、その動きに耐えて粉化しないような強度を備えることができる。
 上記(12)に記載の方法によれば、使用済み耐火物の荷重軟化点温度が、炉床が曝される雰囲気温度よりも200℃以上高いため、炉床充填用材料を金属塊用熱処理炉に用いるに際し、使用温度によって炉床充填用材料同士が焼き固まることを防止できる。
 上記(13)に記載の方法によれば、使用済み耐火物の炭素成分が1質量%以下であるため、金属塊用熱処理炉の炉内で熱処理する金属塊への炭素成分の酸化による悪影響を防止できる。
本発明の第1の実施の形態に係る金属塊用熱処理炉の炉床構造の説明図である。 従来例に係る金属塊用熱処理炉の炉床構造の説明図である。 本発明の第2の実施の形態に係る金属塊用熱処理炉の炉床構造の説明図である。 本発明の第3の実施の形態に係る金属塊用熱処理炉の炉床構造の説明図である。 充填層の粒状耐火物の充填率と充填層の背面温度との関係を示す説明図である。 粒状耐火物中の粒径1mmアンダーの粒状物の割合と3ヶ月間放置後の充填層の最小深さとの関係を示す説明図である。 金属塊用熱処理炉の炉床に開口部が生成した状況を示す説明図である。 金属塊用熱処理炉の炉床に開口部が生成した状況を示す他の説明図である。 本発明の第4の実施の形態に係る金属塊用熱処理炉の補修方法の説明図である。 本発明の第5の実施の形態に係る金属塊用熱処理炉の補修方法の説明図である。 本発明の第6の実施の形態に係る金属塊用熱処理炉の補修方法の説明図である。 本発明の第7の実施の形態に係る金属塊用熱処理炉の補修方法の説明図である。 本発明の第8の実施の形態に係る金属塊用熱処理炉の補修方法の説明図である。 本発明の第9の実施の形態に係る金属塊用熱処理炉の補修方法の説明図である。 金属塊用熱処理炉の炉床の損傷部位を示す説明図である。 本発明の第10の実施の形態に係る金属塊用熱処理炉の補修方法の説明図である。 本発明の第11の実施の形態に係る金属塊用熱処理炉の補修方法の説明図である。 本発明の第12の実施の形態に係る金属塊用熱処理炉に用いる炉床充填用材料の製造方法で製造した粒状耐火物を使用した金属塊用熱処理炉の炉床構造の説明図である。 従来例に係る金属塊用熱処理炉の炉床構造の説明図である。 充填層の粒状耐火物の充填率と充填層の背面温度との関係を示す説明図である。 粒状耐火物中の粒径1mmアンダーの粒状物の割合と3ヶ月間放置後の充填層の最小深さとの関係を示す説明図である。 ジョークラッシャーの歯板間隔の設定値と粒状耐火物中の粒径1mmアンダーの粒状物の割合との関係を示す説明図である。
 本発明者らは、金属塊用熱処理炉について、その炉床の炉内稼動面側を構成する耐火層耐火物に耐火れんが又は耐火キャスタブルを用いた際に、炉床に発生する開口部の発生機構を鋭意検討したところ、以下の3点に想到した。
(1)熱処理炉の炉床に生成する開口部は、熱処理炉の炉内が高温であることによる耐火層耐火物の熱膨張に起因する。耐火層耐火物である耐火れんが又は耐火キャスタブルの熱膨張代は、強度が最も低い目地部又は亀裂部での変形により吸収され、その結果、目地部や亀裂部では耐火れんがの迫り上がりが、また亀裂部では耐火キャスタブルの迫り上がりが発生する。
(2)なお、従来は、耐火層耐火物に上記した熱膨張代を設けるため、例えば、隣合う耐火れんがの間に隙間を設けたり、また、隣合う耐火れんがの間に応力を吸収する耐火物(ファイバー等)を設けたりする等の対策が講じられている。しかし、これらの方法では、熱処理炉の経時使用と共に、応力吸収に用いる耐火物が劣化し、隣合う耐火れんがの間に設けた隙間の間隔が更に大きくなったり、また耐火れんがと耐火物との間に隙間が生成したりする。このため、生成した隙間に、熱処理する金属塊のスケールや施工した耐火物自身から発生した耐火物粉が充填され、熱処理炉の経時使用と共に耐火れんがの熱膨張吸収能が低下するという問題を招く。また、熱処理炉の定期修理などに伴う炉内温度の低下や上昇も、この熱膨張吸収能の低下を促進する。
(3)本発明者らは、耐火層耐火物に従来の耐火れんがを用いた場合でも、熱膨張吸収が可能な構造を検討するにあたり、従来の耐火れんがにおける開口部の発生メカニズムを鋭意検討した。その結果、複数の耐火れんがを面接触させた状態で配置施工すれば、熱処理炉の経時使用に伴う開口部の生成抑制が不可能であるとの結論に達した。また、耐火層耐火物に耐火キャスタブルを用いた場合でも、発生した亀裂部や溝状のスコアライン部では、隣合う耐火れんが同士が面接触した場合と同様、開口部の生成抑制が不可能であった。
 以上の結果から、本発明者らは、耐火れんがの代わりに粒状の耐火物(以下、粒状耐火物という)を用いることで、耐火れんがの面接触を避けて実質的に点接触にでき、しかも互いに結合されることなく相対位置が容易に変化しうるようにできるため、開口部の生成抑制が可能となることに想到した。
 以下、添付した図面を参照しつつ、上述の知見に基づく本発明を具体化した第1~11の実施の形態につき説明し、本発明の理解に供する。
 図1Aに示すように、本発明の第1の実施の形態に係る金属塊用熱処理炉(以下、単に熱処理炉ともいう)10は、炉内稼動面11側に粒状耐火物で構成される充填層を有する炉床構造12を備えている。この充填層は、炉底鉄皮13上に配置された断熱層耐火物の表面に、常温での圧縮強度が1.5MPa以上の耐火物(ここでは、耐火層耐火物)を介して配置されている。なお、充填層の下層を構成する耐火物は、上記圧縮強度を備える耐火物であれば、断熱層耐火物で構成することもできる。このように、充填層は、炉床構造12の最表層部を構成している。以下、詳しく説明する。充填層を粒状耐火物で構成したのは、炉内稼動面11側の耐火層耐火物同士の面接触を避けるためである。この充填層は、図1Bに示す従来の金属塊用熱処理炉14の炉内稼動面側を構成する耐火層耐火物の上側(一部)を代替している。なお、充填層は、従来の耐火層耐火物の上側を除く部分を残した状態で配置してもよく、また断熱層耐火物の表面に、新たに耐火層耐火物を配置した後、配置してもよい。このように、充填層を、圧縮強度が1.5MPa以上の耐火物の表面に配置するので、例えば、粒状耐火物の散布や入替(掻出し)を行っても、損傷し易い断熱層耐火物の損傷を防止できる。
 しかし、粒状耐火物の全量交換作業を想定しない場合や、損傷に対抗しうる充分な強度(常温での圧縮強度が1.5MPa以上)を持った断熱層耐火物を入手できる場合は、図2Aに示す本発明の第2の実施の形態に係る金属塊用熱処理炉15のように構成してもよい。この金属塊用熱処理炉15では、図1Bに示す従来の金属塊用熱処理炉14の炉内稼動面側を構成する耐火層耐火物の全部が、粒状耐火物の充填層で代替されている。更には、耐火層耐火物の全部のみならず、耐火層耐火物の背面側(炉内稼動面側とは反対側)に配置された断熱層耐火物の上側(一部)まで、粒状耐火物の充填層で代替されてもよい。また、粒状耐火物で構成される充填層は、図2Bに示す本発明の第3の実施の形態に係る金属塊用熱処理炉16のように、基礎コンクリートの炉内稼動面側の上面に配置してもよい。
 従来、図1Bに示すように、耐火層は平面から構成される直方体状の耐火れんがを、その平面を対向させて面接触させるように、炉床に配置(間にモルタルや熱膨張吸収材を挟む場合も含む)して形成されているが、このように、平面を対向させて耐火物を配置することが、熱処理炉の経時使用に伴う開口部生成の原因となる。そこで、平面を対向させて配置することを避けるため、砂利状又は砕石状の粒状耐火物を使用する。なお、粒状耐火物は、図1Aに示す耐火層耐火物の表面、即ち炉床の熱処理雰囲気に曝露する部分(稼動面)に、散布して配置されているが、配置方法はこれに限定されない。このように、粒状耐火物を配置した炉床構造12を採用することで、粒状耐火物が熱膨張しても、隣合う粒状耐火物同士が互いに移動することで、開口部が炉床に実質的に発生しない。
 この粒状耐火物は、耐火れんがのように平面のみで構成される形状ではないため、1又は複数の点で、隣接する粒状耐火物同士が点接触する。なお、熱処理炉の経時使用中には、点接触部が融着する場合があるが、点での接触であるため、粒状耐火物の熱膨張による応力により容易に融着部が破壊し、粒状耐火物同士が相対的に移動でき、開口部の生成を回避することができる。また、図1Aに示すように、粒状耐火物の充填層の下に、耐火層耐火物である従来技術の耐火れんが層を設ける場合、耐火れんが層の目地部で開口部が生成しても、開口部の上方に粒状耐火物の充填層が存在するため、この開口部に粒状耐火物が落下し充填され、著しい耐火性や断熱性の劣化にはつながらない。
 上記した粒状耐火物は、従来技術の耐火層耐火物に用いられている材質であれば何でもよい。例えば、アルミナクリンカ、使用済み耐火れんがの破砕物、使用済み耐火キャスタブルの破砕物、等が挙げられる。また、粒状耐火物は、粒状耐火物同士が互いに熱膨張で迫り合って、相対位置が動く際の動きに耐えて破壊しない(粉を多量に生成しない)材料特性を備えるものであればよい。具体的には、JIS R 2656(1995年)に従って測定した使用目的温度における熱間曲げ強度が、概ね0.2MPa以上であることが望ましい。
 更に、粒状耐火物は、使用目的温度において、粒状耐火物同士が焼結してしまわないような荷重軟化点を有するのが望ましい。具体的には、JIS R 2209(2007年)に従って測定した荷重軟化点が、粒状耐火物として使用する場合の炉内雰囲気温度より、概ね200℃以上高い(上限は、例えば、1100℃程度)ものが望ましい。なお、粒状耐火物は、上記した材質のものより、高温強度が高いものであってもよい。このような粒状耐火物としては、例えば、ジルコニア等のファインセラミックス製品の形状不良品の破砕物などが挙げられる。また、ジルコニアセラミックス製品の製造時に、亀裂が発生して出荷できなくなった歩留り落ち品も使用できる。
 そして、粒状耐火物は、前記したように、耐火物の平面を対向させて接触するように配置しないことが肝要であるため、平面のみで構成されていない粒状のものである。この粒状耐火物は、後述するように、充填層の充填率を一定レベルにする必要があるため、粒径(形状)が複数存在するとよい。なお、耐火れんがは、配列したれんがの端部等の一部を除き、通常は、その形状が一定である。そこで、粒状耐火物には、耐火物の破砕品を用いることが好適である。破砕品は、その周囲を平面とすることが困難であり、また破砕面を、直方体のように略直角な面で構成することが不可能であるため、一定形状にならないからである。
 なお、耐火れんがの破砕品を粒状耐火物に用いる場合は、耐火れんがの周囲の平面が粒状耐火物の表面に残留する場合がある。しかし、この残留した表面は、粒状耐火物を炉床に投入して充填層を構成する際に、平面を対向させて接触するように配置することが実質困難であるため、破砕後に残留する平面は、粒状耐火物の充填層の開口部生成には影響しない。また、破砕物ではなく、球状(例えば、卵形、断面楕円形等も含む)に製造した耐火物を粒状耐火物として用い、粒状耐火物の充填層を形成することも可能である。球状の粒状耐火物は、形状が一定であっても、後述する充填層の充填率を実現できる場合があり、また平面を対向させて接触するような配置にはならず、粒状耐火物の熱膨張によって、開口部が粒状耐火物の充填層に生成することはない。
 上記したように、粒状耐火物で充填層を構成すると、上記した開口部の生成抑制に好適な効果があるが、隣合う粒状耐火物の間には隙間が存在するため、以下の2点が懸念される。
(a)隣合う粒状耐火物の間の隙間に熱処理炉内の高温雰囲気が流入し、炉床耐火物の耐火性や断熱性が低下する。
(b)熱処理炉の炉内雰囲気の流動により、長期に渡って粒状耐火物が流動して飛散すると、粒状耐火物の充填層の厚みが減少し、炉床耐火物の耐火性や断熱性が低下する。
 なお、隣合う粒状耐火物の間の隙間は、耐火層の断熱性を向上させる効果もあるが、粒状耐火物の充填層における隙間の体積割合が増えると、上記したように、この隙間に熱処理炉の高温雰囲気が流入する。その結果、耐火層の耐火性や断熱性が劣化し、例えば、耐火層の背面側に施工する断熱層の劣化に直結する。
 そこで、本発明者らは、充填層における隣合う粒状耐火物の間の隙間の占める割合と断熱性の関係を調査した。なお、粒状耐火物の粒径は、特に記載しない限り、以下のように規定する。「50mm以下」、「-50mm」、及び「50mmアンダー」と記載した場合は、いずれも公称目開きが50mmの篩で篩分けした篩下の耐火物を指す。また、「1mm以上」、「+1mm」、及び「1mmオーバー」と記載した場合は、いずれも公称目開きが1mmの篩で篩分けした篩上の耐火物を指す。更に、1~50mmの耐火物と記載した場合は、公称目開き50mmの篩で篩分けした篩下で、かつ公称目開きが1mmの篩で篩分けした篩上の耐火物を指す。なお、特に限定するものではないが、粒状耐火物の篩分けには、JIS Z8801-2(2000年)に記載の板篩を用いている(以下、同様)。
 まず、調査方法について説明する。50mmアンダー1mmオーバー(以下、1~50mmと記載)で構成された粒状耐火物のうち、20mmアンダー1mmオーバー(以下、1~20mmと記載)の粒状耐火物の配合割合(質量割合)を調整して、その充填率を変更し、厚さ約100mm(100~110mm程度:粒状耐火物の最大粒径の2倍)の充填層を製造した。なお、粒状耐火物の最大粒径は、粒状耐火物を篩で一度ふるった後の篩を抜けた(篩下の)粗粒の長径で規定した(以下、同様)。例えば、粒状耐火物の最大粒径が50mmとは、粒状耐火物を公称目開き50mmの篩で一度ふるった後に、篩を抜けた粗粒のうち1個でも長径が50mm以上の粗粒がある場合の篩下の粒状耐火物を意味する。そして、この充填層の表面(稼動面側)を、炉内最高温度が1400℃の熱処理炉の炉内雰囲気に接触させ、この充填層の底部(稼動面から100~110mmの位置)の温度を、熱電対にて測定した。なお、粒状耐火物の充填層の背面側には、耐火れんがと断熱れんが等を合計360mm配置し、充填層を含めた全ライニング厚みを460~470mmにした。
 この粒状耐火物の充填率は、以下の測定方法で求めた。まず、別途、直径が285mmで深さが100mm(粒状耐火物の施工深さと同等の深さ)の容積及び質量が既知の円筒状容器を用意し、これに粒状耐火物を投入して、高さ100mm以上となる部分を除去して(摺り切り)、その重さを秤量した。そして、(粒状耐火物の質量)/(容器の容積)を求め、これを充填層の充填嵩比重とした。また、これとは別に、粒状耐火物から概ね10mm以上の粗粒を無差別に10個以上採取し、JIS R 2205(1992年)に従ってこの粗粒の嵩比重を測定した。なお、粗粒の大きさを概ね10mm以上としたのは、これ未満の大きさの粒状耐火物では、実行上、JIS R 2205による嵩比重測定が困難だからである。そして、(充填層の充填嵩比重)/(粗粒の嵩比重)×100(%)を求め、これを充填率とした。
 ここで、充填層の粒状耐火物の充填率と充填層の背面温度との関係を、図3に示す。この図3において、充填率100体積%のデータは、従来技術の耐火れんがを施工したもの(具体的には、厚み50mmの高アルミナ質耐火れんがを2層、空目地にて設置したもの)から求めた結果である。なお、耐火れんがは、直方体状のれんがを、空目地にてなるべく面接触させ、耐火れんが間に可能な限り隙間がないように施工している。また、図3の充填率71体積%と74体積%のデータは、1~50mmで構成された粒状耐火物のうち、1~20mmの粒状耐火物の配合割合を調整して作製した充填層から求めた結果である。そして、充填率79体積%のデータは、10μmオーバー1mmアンダー(以下、10μm~1mmと記載)の粉末状の粒状耐火物を適宜配合して作製した充填層から求めた結果である。更に、充填率92体積%のデータは、10μm~1mmの粉末状の粒状耐火物を適宜配合し、更にランマーにて突き固めて作製した充填層から求めた結果である。
 図3から明らかなように、充填層の粒状耐火物の充填率が65体積%未満になると、充填層の背面温度が急激に上昇し、耐火れんがを用いた充填率100体積%のときの背面温度(図3中の一点鎖線で示す1320℃)よりも高温となる傾向があった。そこで、充填層の粒状耐火物の充填率を65体積%以上と規定する。一方、充填率の粒状耐火物の上限は、隣接する粒状耐火物の接触が面接触となる状態を避ける必要があり、100体積%はあり得ないため、100体積%未満と規定する。しかし、以下に示す理由から、充填率を92体積%以下に設定してもよい。充填率を92体積%よりも高くするには、1~50mmの粒状耐火物に加え、10μm~1mmの粉末状の粒状耐火物を意図的に加える等、充填率を無意味に向上させるための粒度調整が必要であり、更にランマーにて突き固めなければならない。また、粒状耐火物の充填率の上昇に伴う充填層の気孔率の低下により、断熱性が悪化する傾向となるからである。
 以上のことから、充填層の粒状耐火物の充填率の下限は65体積%に規定される。しかし、粒状耐火物で構成される充填層の厚さが、粒状耐火物の最大粒径と同じであれば、隣合う粒状耐火物の間に形成される隙間が、充填層の厚さ方向に貫通する可能性があり、この貫通した隙間が、炉床の断熱性に悪影響を与えるものと考えられる。なお、前記した試験では、充填層の厚みが、粒状耐火物の最大粒径の少なくとも2倍あれば、好適な断熱性を維持できたため、充填層の厚みを粒状耐火物の最大粒径の2倍以上(好ましくは、3倍以上、更には4倍以上)にする必要があると考える。この充填層の厚みの上限値については、充填層が厚くなるに伴い上記した効果が得られるため、特に規定していないが、一般的に行っている耐火物の施工を考慮すれば、500mm程度である。
 以上のように、充填層の粒状耐火物の充填率を65体積%以上100体積%未満の範囲とすることで、断熱性の維持が可能であり、特に、充填率の範囲が70体積%以上85体積%以下程度で、断熱性が良好になる傾向が得られた。この理由としては、次の2点が考えられる。
(1)粒状耐火物の充填率が小さいほど、粒状耐火物の粒間の空隙径が大きくなり、炉内の高温雰囲気ガスが粒状耐火物の背面へ容易に到達しうる。
(2)粒状耐火物の充填率が高いほど、粒状耐火物の粒同士の点接触の数が増加して、伝導伝熱が起こり易くなる。特に、充填率100体積%では、充填層内が実質的にひとつの粒で構成されることになるため、点接触における伝導伝熱が実質的にほとんどなくなり、粒内での伝導伝熱が支配的となるため、断熱性が急に変化すると思われる。
 従って、粒状耐火物の充填率を高位に維持して空隙径を小さくするためには、粗粒によって生じる空隙内に嵌まり込む幅(径)の細粒と、この細粒によって生じる空隙内に嵌まり込む幅(径)の微粒と、この微粒によって生じる空隙内に嵌まり込む幅(径)の超微粒とを、適切に配合すればよい。しかし、前記した熱処理炉の炉内雰囲気の噴流等により、粒状耐火物が長期に渡って流動し飛散して、炉床の粒状耐火物の充填層の厚みが減少し、熱処理炉の耐火性が部分的に低下する懸念がある。そこで、本発明者らは、耐火れんがをジョークラッシャーで粉砕して作製した1mmアンダーの粒径の粒状耐火物と、1~50mmの粒状耐火物の混合比(質量割合)を調整し、粒状耐火物の充填層の厚みを115mm(充填層を収納した容器の内面形状:縦395mm×横395mm×深さ115mm)として、実機の熱処理炉内に設置し、3ヶ月間放置した後の充填層の最小深さを調査した。
 粒状耐火物中の粒径1mmアンダーの粒状物の割合と3ヶ月間放置後の充填層の最小深さとの関係を、図4に示す。なお、図4に示す粒状物の割合100質量%とは、1mmアンダーの粒状耐火物が100質量%であることを意味し、0質量%とは、1~50mmの粒状耐火物が100質量%であることを意味する。図4から、顕著な流動や飛散による充填層の厚さの減少を、概ね1割程度に抑制するには、粒状耐火物中の粒径1mmアンダーの粒状物の割合を80質量%以下(好ましくは、70質量%、更には60質量%)にする必要があることが判明した。なお、1mmアンダーの粒状物が80質量%を超えても、炉床には前記したような開口部が発生せず、耐火性や断熱性が低下しない効果が得られるため、定期的に炉床の充填層の厚さ点検を実施し、必要に応じて充填層の平坦化や粒状耐火物の補充の手間をかければ、必ずしも1mmアンダーの粒状物の割合を80質量%以下にする必要はない。
 なお、熱処理炉の炉床に粒状耐火物の充填層を施工すると、従来の耐火れんがの施工に比べて、炉床の膨張率が低減する。ここで、炉床と天井に耐火キャスタブルを施工した長さ45m×幅12.1m×高さ(炉床から天井までの距離)5.1mの熱処理炉(炉内雰囲気温度:1300~1400℃)について、5年間の鉄皮変形量を測定した。この調査した熱処理炉のライニング概要は、炉床部が、耐火キャスタブル:110mm、耐火れんが及び断熱れんが等:360mm、炉床の合計施工厚み:470mm、であり、天井部が、耐火キャスタブル:230mm、セラミックスウール等:150mm、天井の合計施工厚み:380mm、であった。
 その結果、炉側壁鉄皮の天井近傍部の炉幅寸法が、熱処理炉の側方に40~50mm程度膨らみ、また、炉側壁鉄皮の炉底近傍部の炉幅寸法が、熱処理炉の側方に10~25mm程度膨らんでいた。つまり、熱処理炉の長期の使用により、対向する側壁の間隔が熱処理炉の下部から上部へかけて広がり、熱処理炉の側壁に斜めの応力が作用していることが判明した。これは、熱処理炉の炉床部分が、熱処理炉を設置した基礎構造体により拘束され易く、一方、天井部分が、膨張に対する拘束が少ないためだと考えられる。このため、熱処理炉の炉床に粒状耐火物の充填層を施工すると、炉床部分の膨張はより小さくなるため、熱処理炉の側壁に斜めに作用する応力が、より大きくなるものと推定される。
 そこで、天井部耐火物の稼動面側にライニング(施工)する耐火物の一部又は全部に、セラミックスファイバーを用いる。セラミックスファイバーの施工体(例えば、ブランケット)は、自身の熱膨張を自ら変形して吸収するため、天井近傍の熱膨張による鉄皮変形を小さくできる。従って、粒状耐火物を施工した炉床部と、セラミックスファイバーの施工体を取付けた天井部との熱膨張の差を小さくすることができる。なお、熱処理炉の炉内稼動面側を、粒状耐火物で構成される厚み110mmの充填層(粒状耐火物の充填率:74体積%)で構成し、天井部の耐火キャスタブルの全体をセラミックスファイバーの施工体に変更して、1年経過後の熱処理炉の側壁の天井近傍の鉄皮変形量を測定したところ、変形は非常に少なく(最大3mm)、良好な結果が得られた。
 続いて、金属塊用熱処理炉の補修方法について説明する。従来の金属塊用熱処理炉では、前記したように、炉床に施工した耐火れんがに開口部が生成するため、以下の方法で補修を行っていた。まず、熱処理炉を停止し、炉内温度を低下させた後、作業者が炉内に入る。そして、作業者は、損傷した部位の耐火物を除去して、新しく配置する耐火れんがの長さと幅を現地で合わせて調整し、この耐火れんがの設置と築造、更にモルタル等の乾燥を行う。これにより、熱処理炉の補修が完了するが、耐火れんがの補修には長時間を要していた。
 また、炉床の補修を耐火キャスタブルで行う場合は、損傷した部位の耐火物を除去した後、耐火キャスタブルの混練と流込みを行い、耐火キャスタブルの養生硬化と乾燥を経て、補修が完了する。このため、耐火キャスタブルを用いた補修は、耐火れんがによる補修よりも、補修期間が若干ながら短縮可能である。しかし、耐火れんがと耐火キャスタブルのいずれを用いた補修方法も、この補修部位及びその周辺で、熱膨張による迫り合いが起こり、再度破損する可能性が高い。
 熱処理炉の炉床において、図5A、図5Bに示すように、隣合う耐火れんが20の間に発生する開口部(図5A、図5B中の矢印を参照)は、一部の耐火れんが20が上方に移動することで生成する。なお、図5A、図5Bは、開口部生成の典型的な例であり、網かけした耐火れんが20が、上方に移動した耐火れんがを示している。また、図5A、図5Bは模式的に示しているため、隣接する耐火れんがが線接触しているように図示されているが、実線は線接触ではなく、少なくとも耐火れんがを1層分貫通する(一層分の深さの)隙間が生成している。
 このような開口部は、補修すべき部位であり、移動した耐火れんがを新しいものに更新、あるいは開口部を塞ぐ等の補修を行う必要がある。しかし、耐火れんがの更新は、前記した通り、長時間を要するという課題がある。また、モルタル又は耐火キャスタブル等の流込みにより開口部を塞ぐという補修は、上記したように、熱膨張による迫り合いを解決できず、熱処理炉の使用と共に劣化して、再度開口部が露出するという事態を招く。そこで、本発明者らは、粒状耐火物を開口部を含む範囲(補修部位)に盛付けることで、開口部に耐火性と断熱性を付与した。
 即ち、図6A~図6C、図7A~図7Cに示すように、本発明の第4~第9の実施の形態に係る金属塊用熱処理炉の補修方法は、耐火れんが20からなる耐火物が施工された炉床の炉内稼動面21~26側の補修部位27~32に、それぞれ前記した粒状耐火物で構成される充填層33~38、即ち粒状耐火物の充填率を65体積%以上100体積%未満とし、厚みを粒状耐火物の最大粒径の2倍以上にした充填層33~38を形成する。なお、炉床の耐火物は、耐火れんがで構成された場合のみならず、耐火キャスタブルで構成されてもよく、また耐火れんがと耐火キャスタブルの双方で構成されてもよい。以下、詳しく説明する。
 この充填層の補修部位への盛付け方法には、例えば、以下に示す方法がある。図6A、図6B、図7A、図7Bに示すように、開口部の生成に伴って移動した耐火れんが20(破損したものもの含む。以下、同様)を除去することなく、粒状耐火物を補修部位27、28、30、31に山状に盛付けて充填層33、34、36、37を形成する方法がある。なお、図6B、図7Bは、新たな耐火れんが20で補修部位28、31をそれぞれ囲み、この空間部内に粒状耐火物を充填して充填層34、37を形成している。更に、移動した耐火れんが20の一部を解体除去し、また図7Cに示すように、移動した耐火れんが20の全部を除去し、この除去した耐火れんが20で補修部位32を囲み、この空間部内に粒状耐火物を充填して充填層38を形成してもよい。また、図6Cに示すように、移動した耐火れんが20を解体除去し、粒状耐火物をこの除去跡を埋込むように充填して、充填層35を形成する方法もある。
 なお、補修部位における充填層の厚みは、補修部位の粒状耐火物の盛付け高さと盛付け範囲を調整することで、粒状耐火物の最大粒径の2倍以上が確保できればよい。例えば、図6A(図7Aも同様)に示すように、補修部位27に山状の充填層33を形成する場合は、炉内稼動面21よりも突出した耐火れんが20の上面(最低高さ位置P1から最高高さ位置P2にかけて)から、その鉛直方向の充填層33の斜面(表面)までの高さが、粒状耐火物の最大粒径の2倍以上を確保するように補修する。
 また、図6B(図7Bも同様)に示すように、補修部位28を囲むように、炉内稼動面22上に耐火れんが20を配置し、この空間部内に粒状耐火物を充填する場合は、炉内稼動面22よりも突出した耐火れんが20の上面の最高高さ位置P3から充填層34の表面までの高さが、粒状耐火物の最大粒径の2倍以上を確保するように補修する。そして、図6Cに示すように、破損した耐火れんが20を解体除去して、この除去跡に粒状耐火物を埋込むように充填する場合は、この充填層35の厚み(除去跡の深さ)が粒状耐火物の最大粒径の2倍以上を確保すればよい。しかし、この深さを確保できなければ、図7Cに示すように、除去した耐火れんが20で補修部位32を囲み、この空間部内に粒状耐火物を充填して、粒状耐火物の最大粒径の2倍以上を確保するように補修する。
 以上に示したように、補修に際しては、開口部の生成に際して補修部位で移動した耐火れんがを、補修部位から除去してもよく、また除去しなくてもよい。移動した耐火れんがには、前記した開口部が隣接して存在していたが、耐火れんが自体は耐火性と断熱性を備えている。従って、移動した耐火れんがを、補修部位から除去することなく補修を施すと、耐火れんがの耐火性と断熱性を活用した補修が可能になる。また、移動した耐火れんがを補修部位から除去して、この耐火れんがの下方の開口状況を確認する場合は、移動した耐火れんがを補修部位から除去した状態で、上記した補修を施してもよい。粒状耐火物の充填率及び充填層の厚さを規定範囲とすれば、開口部の発生前の耐火れんがと同等の耐火性と断熱性が実現できるためである。
 これにより、開口部の補修に際し、新たに配置する耐火れんがの現地合わせ(調整)やモルタル乾燥等の作業、場合によっては移動した耐火れんがの除去作業を省略することができ、補修時間の大幅な短縮が可能となる。なお、更に、粒状耐火物が、粒径1mmアンダーの粒状物を80質量%以下含むことで、補修を施した部位に盛付けた充填層の高さを、長時間に渡って維持でき、再度の補修を施すまでの期間を長くできる。
 しかし、開口部の生成に際して補修部位で移動した残留する耐火れんがを除去し、生成した隙間に粒状耐火物を充填する補修を実施する場合、充填層の厚みが粒状耐火物の最大粒径の2倍以上であっても、隣合う耐火れんが間での開口部の発生抑制が、長期に渡って実現できない場合があった。例えば、図8Aに示すように、隣合う耐火れんが20の間に形成される隙間(空間の一例)40の深さ方向に、2個の粒状耐火物41、42が配置された場合、この各粒状耐火物41、42が、それぞれ水平方向で隣接する耐火れんが20に点接触し、耐火れんが20や粒状耐火物41、42が熱膨張したとき、この熱膨張を吸収できなければ、開口部が生成するものと考えられる。
 ここで、図8Aは炉床を縦断面視しており、実態は奥行き方向を持つ三次元であるため、点接触する粒状耐火物は、奥行き方向に移動するなどして、熱膨張が吸収できる場合も多いと考えられる。また、耐火れんがの破損部の隙間が、粒状耐火物の最大粒径の2倍未満であっても、図8Bに示すように、その上方に粒状耐火物を盛上げるように散布して充填層43を形成すれば、耐火れんが20が迫り合って隙間が生じても問題ない。このように、前記した開口部の生成に際しても、上記した方法で対処できるが、以下のような補修方法を用いることもできる。
 図8Cに示すように、充填層45を構成する粒状耐火物46の最大粒径を、補修部位の隙間40の水平方向の内幅の50%未満とする。図8Aに示すように、粒状耐火物46は隣接する耐火れんが20と点接触するため、開口部は発生しにくいが、図8Cに示すように、粒状耐火物の最大粒径を隙間40の水平方向の内幅の50%未満とすることで、隣合う粒状耐火物46同士が点で接触し、更に上記した開口部の生成を未然に抑制できる。この開口部の生成は、粒状耐火物の最大粒径を隙間40の水平方向の内幅の33%以下にすると、更に確実に抑制できる。なお、粒状耐火物の最大粒径の下限については、粒径が小さくなるに伴い、粒状耐火物の充填率を高位にして空隙径を小さくできるため規定していないが、通常、補修すべき隙間は10mm超と考えられるため、粒状耐火物の最大粒径の下限値は5mm程度である。これにより、補修部位における開口部の生成抑制を、長期に渡って確実に実施できる。
 次に、粒状耐火物を施工して充填層を形成するに際し、充填層の下層を構成する耐火物(以下、下層耐火物ともいう)の損傷抑制方法について説明する。粒状耐火物を、図1A、図2Aに示すように、下層耐火物の表面に配置する施工作業時には、例えば、
(1)粒状耐火物を下層耐火物表面へ散布する際の下層耐火物に対する粒状耐火物の落下衝突
(2)充填層を平坦にならすことによる粒状耐火物と下層耐火物との擦過(こすれ合い)
(3)充填層の除去に伴うシャベル等(充填層入替え治具)と下層耐火物との衝突
等が起こる。このため、粒状耐火物の施工作業時に、下層耐火物が損傷する場合がある。このような粒状耐火物の施工作業を頻繁に実施しない場合や、充填層の下層がコンクリートである場合(図2B参照)は、充填層の下層が損傷する恐れはない。
 しかし、粒状耐火物の施工作業を繰返し行う場合は、下層耐火物が損傷し、これが熱処理炉の耐火性や断熱性に悪影響を及ぼす場合がある。このため、下層耐火物の常温での圧縮強度(JIS R 2206-1:2007年)を、1.5MPa以上にするのが好ましい。これは、本発明者らが検討したところ、常温での圧縮強度が0.8MPaの耐火物では、耐火性や断熱性への悪影響が懸念される損傷が発生したのに対し、圧縮強度が1.5MPaの耐火物では、このような損傷が発生しなかったことによる。なお、常温での圧縮強度の上限は、特に規定しないが、熱処理炉に用いる耐火物で常用されるものを参照すると、80MPa程度である。これにより、充填層の下面に配置された耐火物の損傷を抑制できる。
 以上、本発明を、実施の形態を参照して説明してきたが、本発明は上記した実施の形態に記載の構成のみに限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の金属塊用熱処理炉及びその補修方法を構成する場合も本発明の権利範囲に含まれる。本発明の金属塊用熱処理炉及びその補修方法は、金属の塊を熱処理する種々の炉、例えば、連続鋳造後のスラブの保熱炉、熱間圧延のスラブの加熱炉、又は鋼板の焼鈍炉等のみならず、金属の塊を熱処理する炉であれば、いずれの炉にも適用できる。なお、金属の塊とは、溶融状態の金属を熱処理する炉を対象とするものではないが、例えば、塊状の金属が熱処理に際して部分的に溶解し、これが炉内に付着するような炉は、本発明が対象とする熱処理炉に該当する。
 続いて、添付した図面を参照しつつ、本発明を具体化した第12の実施の形態につき説明し、本発明の理解に供する。まず、本発明の第12の実施の形態に係る金属塊用熱処理炉に用いる炉床充填用材料の製造方法を想到するに至った経緯について説明した後、金属塊用熱処理炉に用いる炉床充填用材料の製造方法について説明する。本発明者らは、金属塊用熱処理炉について、その炉床の炉内稼動面側を構成する耐火層耐火物に耐火れんが又は耐火キャスタブルを用いた際に、炉床に発生する開口部の発生機構を鋭意検討したところ、以下の3点に想到した。
(1)熱処理炉の炉床に生成する開口部は、熱処理炉の炉内が高温であることによる耐火層耐火物の熱膨張に起因する。耐火層耐火物である耐火れんが又は耐火キャスタブルの熱膨張代は、強度が最も低い目地部又は亀裂部での変形により吸収され、その結果、目地部や亀裂部では耐火れんがの迫り上がりが、また亀裂部では耐火キャスタブルの迫り上がりが発生する。
(2)なお、従来は、耐火層耐火物に上記した熱膨張代を設けるため、例えば、隣合う耐火れんがの間に隙間を設けたり、また、隣合う耐火れんがの間に応力を吸収する耐火物(ファイバー等)を設けたりする等の対策が講じられている。しかし、これらの方法では、熱処理炉の経時使用と共に、応力吸収に用いる耐火物が劣化し、隣合う耐火れんがの間に設けた隙間の間隔が更に大きくなったり、また耐火れんがと耐火物との間に隙間が生成したりする。このため、生成した隙間に、熱処理する金属塊のスケールや施工した耐火物自身から発生した耐火物粉が充填され、熱処理炉の経時使用と共に耐火れんがの熱膨張吸収能が低下するという問題を招く。また、熱処理炉の定期修理などに伴う炉内温度の低下や上昇も、この熱膨張吸収能の低下を促進する。
(3)本発明者らは、耐火層耐火物に従来の耐火れんがを用いた場合でも、熱膨張吸収が可能な構造を検討するにあたり、従来の耐火れんがにおける開口部の発生メカニズムを鋭意検討した。その結果、複数の耐火れんがを面接触させた状態で配置施工すれば、熱処理炉の経時使用に伴う開口部の生成抑制が不可能であるとの結論に達した。また、耐火層耐火物に耐火キャスタブルを用いた場合でも、発生した亀裂部や溝状のスコアライン部では、隣合う耐火れんが同士が面接触した場合と同様、開口部の生成抑制が不可能であった。
 以上の結果から、本発明者らは、耐火れんがの代わりに粒状の耐火物(以下、粒状耐火物という)を用いることで、耐火れんがの面接触を避けて実質的に点接触にでき、しかも互いに結合されることなく相対位置が容易に変化しうるようにできるため、開口部の生成抑制が可能となることに想到した。
 即ち、耐火層耐火物同士の面接触を避けるため、図9Aに示すように、金属塊用熱処理炉(以下、単に熱処理炉ともいう)110の炉床の炉内稼動面111側を構成する充填層の炉床充填用材料に粒状の耐火物(以下、粒状耐火物ともいう)を用いる。従来、図9Bに示す金属塊用熱処理炉112のように、炉床の炉内稼動面側に設けられた耐火層を構成する直方体状の耐火れんがは、その平面を対向させて面接触させるように、配置(間にモルタルや熱膨張吸収材を挟むことも含む)されている。しかし、このように平面を対向させて配置することが、熱処理炉の経時使用に伴う開口部生成の原因となる。
 そこで、平面を対向させて配置することを避けるため、砂利状又は砕石状の粒状耐火物を使用する。なお、図9Aに示す熱処理炉110の炉床は、耐火層耐火物の表面、即ち炉床の熱処理雰囲気に曝露する部分(炉内稼動面111)に、粒状耐火物を散布することで構成されている。このように、粒状耐火物を配置した炉床構造を採用することで、粒状耐火物が熱膨張しても、隣合う粒状耐火物同士が互いに移動することで、開口部が炉床に実質的に発生しない。この粒状耐火物は、耐火れんがのように平面のみで構成される形状ではないため、1又は複数の点で、隣接する粒状耐火物同士が点接触する。なお、熱処理炉の経時使用中には、点接触部が融着する場合があるが、点での接触であるため、粒状耐火物の熱膨張による応力により容易に融着部が破壊し、粒状耐火物同士が相対的に移動でき、開口部が生成することがない。
 この粒状耐火物は、前記したように、耐火物の平面を対向させて接触するように配置しないことが肝要であるため、平面のみで構成されていない粒状のものである。この粒状耐火物は、後述するように、充填層の充填率を一定レベルにする必要があるため、粒径(形状)が複数存在するとよい。なお、耐火れんがは、配列したれんがの端部等の一部を除き、通常は、その形状が一定である。そこで、粒状耐火物には、耐火物の破砕品を用いることが好適である。破砕品は、その周囲を平面とすることが困難であり、また破砕面を、直方体のように略直角な面で構成することが不可能であるため、一定形状にならないからである。なお、耐火れんがの破砕品を粒状耐火物に用いる場合は、耐火れんがの周囲の平面が粒状耐火物の表面に残留する場合がある。しかし、この残留した表面は、粒状耐火物を炉床に投入して充填層を構成する際に、平面を対向させて接触するように配置することが実質困難であるため、破砕後に残留する平面は、粒状耐火物の充填層の開口部生成には影響しない。
 上記したように、粒状耐火物で充填層を構成すると、上記した開口部の生成抑制に好適な効果があるが、隣合う粒状耐火物の間には隙間が存在するため、以下の2点が懸念される。
(a)隣合う粒状耐火物の間の隙間に熱処理炉内の高温雰囲気が流入し、炉床耐火物の耐火性や断熱性が低下する。
(b)熱処理炉の炉内雰囲気の流動により、長期に渡って粒状耐火物が流動して飛散すると、粒状耐火物の充填層の厚みが減少し、炉床耐火物の耐火性や断熱性が低下する。
 なお、隣合う粒状耐火物の間の隙間は、耐火層の断熱性を向上させる効果もあるが、粒状耐火物の充填層における隙間の体積割合が増えると、上記したように、この隙間に熱処理炉の高温雰囲気が流入する。その結果、耐火層の耐火性や断熱性が劣化し、例えば、耐火層の背面側に施工する断熱層の劣化に直結する。
 そこで、本発明者らは、充填層における隣合う粒状耐火物の間の隙間の占める割合と断熱性の関係を調査した。なお、粒状耐火物の粒径は、特に記載しない限り、以下のように規定する。「50mm以下」、「-50mm」、及び「50mmアンダー」と記載した場合は、いずれも公称目開きが50mmの篩で篩分けした篩下の耐火物を指す。また、「1mm以上」、「+1mm」、及び「1mmオーバー」と記載した場合は、いずれも公称目開きが1mmの篩で篩分けした篩上の耐火物を指す。更に、1~50mmの耐火物と記載した場合は、公称目開き50mmの篩で篩分けした篩下で、かつ公称目開きが1mmの篩で篩分けした篩上の耐火物を指す。なお、特に限定するものではないが、粒状耐火物の篩分けには、JIS Z8801-2(2000年)に記載の板篩を用いている(以下、同様)。
 まず、調査方法について説明する。50mmアンダー1mmオーバー(以下、1~50mmと記載)で構成された粒状耐火物のうち、20mmアンダー1mmオーバー(以下、1~20mmと記載)の粒状耐火物の配合割合(質量割合)を調整して、その充填率を変更し、厚さ約100mm(100~110mm程度:粒状耐火物の最大粒径の2倍)の充填層を製造した。なお、粒状耐火物の最大粒径は、粒状耐火物を篩で一度ふるった後の篩を抜けた(篩下の)粗粒の長径で規定した(以下、同様)。例えば、粒状耐火物の最大粒径が50mmとは、粒状耐火物を公称目開き50mmの篩で一度ふるった後に、篩を抜けた粗粒のうち1個でも長径が50mm以上の粗粒がある場合の篩下の粒状耐火物を意味する。そして、この充填層の表面(稼動面側)を、炉内最高温度が1400℃の熱処理炉の炉内雰囲気に接触させ、この充填層の底部(稼動面から100~110mmの位置)の温度を、熱電対にて測定した。なお、粒状耐火物の充填層の背面側には、耐火れんがと断熱れんが等を合計360mm配置し、充填層を含めた全ライニング厚みを460~470mmにした。
 この粒状耐火物の充填率は、以下の測定方法で求めた。まず、別途、直径が285mmで深さが100mm(粒状耐火物の施工深さと同等の深さ)の容積及び質量が既知の円筒状容器を用意し、これに粒状耐火物を投入して、高さ100mm以上となる部分を除去して(摺り切り)、その重さを秤量した。そして、(粒状耐火物の質量)/(容器の容積)を求め、これを充填層の充填嵩比重とした。また、これとは別に、粒状耐火物から概ね10mm以上の粗粒を無差別に10個以上採取し、JIS R 2205(1992年)に従ってこの粗粒の嵩比重を測定した。なお、粗粒の大きさを概ね10mm以上としたのは、これ未満の大きさの粒状耐火物では、実行上、JIS R 2205による嵩比重測定が困難だからである。そして、(充填層の充填嵩比重)/(粗粒の嵩比重)×100(%)を求め、これを充填率とした。
 ここで、充填層の粒状耐火物の充填率と充填層の背面温度との関係を、図10に示す。この図2において、充填率100体積%のデータは、従来技術の耐火れんがを施工したもの(具体的には、厚み50mmの高アルミナ質耐火れんがを2層、空目地にて設置したもの)から求めた結果である。なお、耐火れんがは、直方体状のれんがを、空目地にてなるべく面接触させ、耐火れんが間に可能な限り隙間がないように施工している。また、図10の充填率71体積%と74体積%のデータは、1~50mmで構成された粒状耐火物のうち、1~20mmの粒状耐火物の配合割合を調整して作製した充填層から求めた結果である。そして、充填率79体積%のデータは、10μmオーバー1mmアンダー(以下、10μm~1mmと記載)の粉末状の粒状耐火物を適宜配合して作製した充填層から求めた結果である。更に、充填率92体積%のデータは、10μm~1mmの粉末状の粒状耐火物を適宜配合し、更にランマーにて突き固めて作製した充填層から求めた結果である。
 図10から明らかなように、充填層の粒状耐火物の充填率が65体積%未満になると、充填層の背面温度が急激に上昇し、耐火れんがを用いた充填率100体積%のときの背面温度(図10中の一点鎖線で示す1320℃)よりも高温となる傾向があった。よって、耐火れんがを用いた場合と同等か、より低い背面温度にするには、粒状耐火物の充填率が65体積%以上100体積%未満であればよい。なお、粒状耐火物は、隣接する粒状耐火物が面接触となる状態を避ける必要があるため、少なくとも100体積%未満が必要である。ここで、背面温度を更に低下させるには、充填率を更に調整すればよい。図10から明らかなように、背面温度の最小値は1255℃程度であり、背面温度を1255~1270℃程度の最小値近傍に設定するには、充填率を70~85体積%程度にするのが好ましいことが分かる。
 以上のことから、充填層の粒状耐火物の充填率を70体積%以上85体積%以下としてもよい。しかし、粒状耐火物で構成される充填層の厚さが、粒状耐火物の最大粒径と同じであれば、隣合う粒状耐火物の間に形成される隙間が、充填層の厚さ方向に貫通する可能性があり、この貫通した隙間が、炉床の断熱性に悪影響を与えるものと考えられる。なお、前記した試験では、充填層の厚みが、粒状耐火物の最大粒径の少なくとも2倍あれば、好適な断熱性を維持できたため、充填層の厚みを粒状耐火物の最大粒径の2倍以上(好ましくは、3倍以上、更には4倍以上)にする必要があると考える。この充填層の厚みの上限値については、充填層が厚くなるに伴い上記した効果が得られるため、特に規定していないが、一般的に行っている耐火物の施工を考慮すれば、500mm程度である。
 以上のように、充填層の粒状耐火物の充填率を70体積%以上85体積%以下の範囲とすることで、断熱性の維持向上が可能であり、特に、充填率の範囲が71体積%以上80体積%以下程度で、断熱性が良好になる傾向が得られた。この理由としては、次の2点が考えられる。
(1)粒状耐火物の充填率が小さいほど、粒状耐火物の粒間の空隙径が大きくなり、炉内の高温雰囲気ガスが粒状耐火物の背面へ容易に到達しうる。
(2)粒状耐火物の充填率が高いほど、粒状耐火物の粒同士の点接触の数が増加して、伝導伝熱が起こり易くなる。
 従って、粒状耐火物の充填率を適切な範囲に維持して空隙径を小さくするためには、粗粒によって生じる空隙内に嵌まり込む幅(径)の細粒と、この細粒によって生じる空隙内に嵌まり込む幅(径)の微粒と、この微粒によって生じる空隙内に嵌まり込む幅(径)の超微粒とを、適切に配合すればよい。ここで、細粒や超微粒の量が多過ぎると、前記した熱処理炉の炉内雰囲気の噴流等により、粒状耐火物が長期に渡って流動し飛散して、炉床の粒状耐火物の充填層の厚みが減少し、熱処理炉の耐火性が部分的に低下する懸念がある。そこで、本発明者らは、使用済み耐火物である耐火れんがをジョークラッシャーで粉砕して作製した1mmアンダーの粒径の粒状耐火物と、1~50mmの粒状耐火物の混合比(質量割合)を調整し、粒状耐火物の充填層の厚みを115mm(充填層を収納した容器の内面形状:縦395mm×横395mm×深さ115mm)として、実機の熱処理炉内に設置し、3ヶ月間放置した後の充填層の最小深さを調査した。
 粒状耐火物中の粒径1mmアンダーの粒状物の割合と3ヶ月間放置後の充填層の最小深さとの関係を、図11に示す。なお、図11に示す粒状物の割合100質量%とは、1mmアンダーの粒状耐火物が100質量%であることを意味し、0質量%とは、1~50mmの粒状耐火物が100質量%であることを意味する。図11から、顕著な流動や飛散による充填層の厚さの減少を、概ね1割程度に抑制するには、粒状耐火物中の粒径1mmアンダーの粒状物の割合を80質量%以下(好ましくは、70質量%、更には60質量%)にする必要があることが判明した。
 以上のことから、炉床耐火物の主として目地部又は亀裂部での開口部の発生や、熱膨張による炉床耐火物の迫り合いを、未然に防止するには、充填層の粒状耐火物の充填率が70体積%以上85体積%以下となるような粒度分布を備えることが好ましく、更には、粒径1mmアンダーの粒状物を80質量%以下含むような粒状耐火物を、炉床充填用材料に使用する必要がある。そこで、本発明者らは、上記した粒状耐火物を製造する方法を想到した。即ち、本発明の第12の実施の形態に係る金属塊用熱処理炉に用いる炉床充填用材料の製造方法は、使用済み耐火物を圧縮破砕して、最大粒径を20mm以上100mm以下の範囲内に調整することで、上記した粒状耐火物を製造している。以下、詳しく説明する。
 粒状耐火物の製造に使用する使用済み耐火物は、従来技術の耐火層耐火物に用いられている材質であれば何でもよいが、特に、製鉄所で発生する溶湯貯蔵容器の耐火層耐火物(溶鋼と接触する面側に設けられた耐火物)や、熱処理炉の耐火れんが(アルミナれんが)等のように、充分な耐火性を持つ耐火物の使用済み品が好ましい。なお、不定形耐火物であっても、使用済み品であれば、耐火物が焼結して塊状又は粒状の形状を呈しているため、充分な耐火性を備える場合は使用できる。ここで、充分な耐火性とは、例えば、以下の特性を備えることを意味する。
(1)JIS R 2656(1995年)に従って測定した使用目的温度(炉床が曝される雰囲気温度)における使用済み耐火物の熱間曲げ強度が、0.2MPa以上であること。
 これにより、粒状耐火物は、粒状耐火物同士が互いに熱膨張で迫り合って、相対位置が動く際の動きに耐えて破壊しない(粉を多量に生成しない)材料特性を備えることができる。
(2)JIS R 2209(2007年)に従って測定した荷重軟化点温度が、使用目的温度(炉床が曝される雰囲気温度)よりも200℃以上高いこと(上限は、例えば、1100℃程度)。
 これにより、粒状耐火物の使用中に、粒状耐火物同士が焼き固まることを防止できる。
 なお、使用済み耐火物は、その炭素成分が1質量%以下(0質量%でもよい)のものを使用すると、更によい。使用済み耐火物に炭素成分が含まれる場合、粒状耐火物を熱処理炉の炉床に施工した際に、炭素が酸化し、熱処理対象物である金属塊に悪影響を及ぼすためである。以上の条件を満足できるものであれば、熱処理炉や溶湯貯蔵容器に使用した断熱材も使用できるが、一般に断熱材は強度が低いため、使用に際しては注意が必要である。以上に示した使用済み耐火物は、使用による熱処理により焼結が進行して高強度となっており、熱膨張による迫り合いにおいては、粒が崩れずに相対位置が動き得る傾向が高いため好ましい。その一方で、使用済み耐火物には、亀裂が内在している場合が多く、粒状耐火物として使用している際に、使用時間と共に粒が割れて局所的に断熱性が低下する可能性があるという問題がある。
 そこで、使用済み耐火物に圧縮力を付与して破砕してもよい。このような、使用済み耐火物の破砕方法には、例えば、ハツリやジョークラッシャー等がある。ハツリとは、例えば、耐火物容器から使用済み耐火物を分離するために、槍状の治具で使用済み耐火物を叩いて、槍状治具が使用済み耐火物に押込まれる際に、作用する引張応力によって使用済み耐火物を破砕する方法である。使用済み耐火物の塊に、槍状治具が押込まれると、まず最も強度が低くなっている部分、即ち最も大きな亀裂から塊が分断されるが、この分断が発生した時点で、槍状治具から使用済み耐火物の塊に、殆ど応力が掛からなくなってしまう。
 また、ジョークラッシャーは、間隔を有して対向配置された対となる歯板の間に使用済み耐火物を入れ、この使用済み耐火物を主として圧縮力で破砕する。歯板による使用済み耐火物全体への圧縮力により、まず最も強度が低くなっている部分、即ち最も大きな亀裂から塊が分断されるが、耐火物の塊が通り抜ける時間中は、引き続き圧縮力が掛かり続けるため、ハツリと比較して小さな内在亀裂まで破壊できる。このジョークラッシャーは、対となる歯板の間隔を調整することで、破砕された粒状耐火物の最大粒径を制御することができる。なお、ジョークラッシャーと類似した粉砕機構を備える破砕装置には、ダブルロールクラッシャー等がある。
 ここで、溶鋼鍋にて使用したアルミナ-マグネシア質耐火キャスタブルを、ハツリにて溶鋼鍋から解体除去し、これをジョークラッシャーにて粉砕し、対向配置された歯板の間隔を種々変更して、粒状耐火物中の粒径1mmアンダーの粒状物の割合を調査した結果を、図12に示す。なお、図12の横軸に示すジョークラッシャーの歯板間隔の設定値とは、対向配置された歯板の間隔が最も狭くなる間隔であるため、これが粒状耐火物の最大粒径(前記した篩による篩分けで規定した最大粒径と略同等)となる。また、図12中の斜線で示す領域は、各歯板間隔で圧縮破砕した際の粒径1mmアンダーの粒状物の割合分布を示し、点線は、実測点(図12中の●印)の近似曲線を示している。
 図12から明らかなように、ジョークラッシャーの対向配置された歯板の間隔、即ち粒状耐火物の最大粒径を20mm以上とすることで、顕著な流動や飛散による充填層の厚さの減少を抑制できる条件、即ち、粒状耐火物中の粒径1mmアンダーの粒状物の割合を80質量%以下にできる。なお、歯板の間隔の上限値については、100mmまでしか調査していないが、これは、100mmが粒状耐火物の最大粒径の実用上の上限値であることによる。以上のことから、粒状耐火物の最大粒径を20mm以上100mm以下の範囲内としたが、下限を28mm、更には40mm、上限を80mm、更には63mmにすることが好ましい。このように、粒径1mmアンダーの粒状物の生成を抑制できる圧縮破砕を行うことにより、亀裂が内在する使用済み耐火物から、充填率が70体積%以上85体積%以下の範囲となる粒状耐火物を製造できる。
 続いて、本発明の一実施の形態に係る金属塊用熱処理炉に用いる炉床充填用材料の製造方法で製造した粒状耐火物の使用方法について説明する。粒状耐火物は、金属塊用熱処理炉の炉内に散布して使用する。例えば、図9Aに示すように、耐火物(ここでは、耐火層耐火物)の表面に、粒状耐火物を散布して充填層を形成する。なお、充填層の下層を構成する耐火物は、断熱層耐火物で構成することもできる。この充填層は、図9Bに示す従来の金属塊用熱処理炉112の炉内稼動面側を構成する耐火層耐火物の上側(一部)を代替している。また、耐火層耐火物は、炉底鉄皮113上に配置された断熱層耐火物の表面に配置されている。なお、充填層は、従来の耐火層耐火物の上側を除く部分を残した状態で形成してもよく、また断熱層耐火物の表面に、新たに耐火層耐火物を配置した後、形成してもよい。上記した充填層の下層に配置される耐火物の常温での圧縮強度が、1.5MPa以上であれば、例えば、粒状耐火物の散布や入替(掻出し)を行っても、損傷し易い断熱層耐火物の損傷を防止できる。
 なお、粒状耐火物で構成される充填層は、図9Bに示す従来の金属塊用熱処理炉112の炉内稼動面側を構成する耐火層耐火物の全部を代替してもよく、更には、耐火層耐火物の全部のみならず、耐火層耐火物の背面側(炉内稼動面側とは反対側)に配置された断熱層耐火物の上側(一部)まで代替してもよい。また、充填層は、基礎コンクリートの炉内稼動面側の上面に配置してもよい。更に、粒状耐火物を前記した隣合う耐火れんがの間に発生する開口部を含む範囲(補修部位)に盛付けてもよい。このような補修に際しては、開口部の生成に際して補修部位で移動した耐火れんがを、補修部位から除去し、この空間部内に粒状耐火物を充填してもよく、また耐火れんがを除去することなく、開口部を覆うように粒状耐火物を散布してもよい。これにより、開口部に耐火性と断熱性を付与できる。
 以上、本発明を、実施の形態を参照して説明してきたが、本発明は上記した実施の形態に記載の構成のみに限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の金属塊用熱処理炉に用いる炉床充填用材料の製造方法を構成する場合も本発明の権利範囲に含まれる。本発明の金属塊用熱処理炉に用いる炉床充填用材料の製造方法で製造した炉床充填用材料は、金属の塊を熱処理する種々の炉、例えば、連続鋳造後のスラブの保熱炉、熱間圧延のスラブの加熱炉、又は鋼板の焼鈍炉等のみならず、金属の塊を熱処理する炉であれば、いずれの炉にも使用できる。なお、金属の塊とは、溶融状態の金属を熱処理する炉を対象とするものではないが、例えば、塊状の金属が熱処理に際して部分的に溶解し、これが炉内に付着するような炉は、本発明が対象とする熱処理炉に該当する。
 次に、本発明に係る金属塊用熱処理炉及びその補修方法の作用効果を確認するために行った実施例について説明する。まず、製鋼工程の溶鋼鍋に用いていた使用済みの耐火キャスタブル(アルミナ-マグネシア系のキャスタブル耐火物)を用い、この使用済み耐火キャスタブルに付着した地金やスラグをハツリで除去した。そして、粒状耐火物の最大粒径が50mmとなるように、ジョークラッシャーで破砕した。この破砕は、ジョークラッシャーの対となる歯板の間に、使用済み耐火キャスタブルの塊を投入して行うため、使用済み耐火キャスタブルへは主として圧縮力を付与している。なお、粒状耐火物の最大粒径が50mmとは、粒状耐火物を公称目開き50mmの篩で一度ふるった後に、篩を抜けた粗粒のうち1個でも長径が50mm以上の粗粒がある場合の篩下の粒状耐火物を意味する。
 上記した最大粒径50mmの使用済み耐火物を、更に磁選処理して地金を除去し、粒状耐火物を製造した。この粒状耐火物の充填率を、前記した方法で測定すると74体積%であり、1mmアンダーの粒状物を18質量%含んでいた。この粒状耐火物を、常温での圧縮強度が1.5~2.5MPaの断熱れんがの表面に施工して充填層を形成し、熱処理炉の炉床を製造した。なお、断熱れんがの厚みは360mmであり、充填層の厚みは110mmであり、炉床の合計施工厚みを470mmにした。また、充填層は、粒状耐火物を熱処理炉の炉外から炉内へベルトコンベアにて搬送し、搬入した粒状耐火物をシャベル等を用いて炉床に散布し、グラウンド整地用のとんぼ(地ならしをする丁字形の道具)等の治具やシャベル等を用いて目視で平坦にならし施工した。
 上記した粒状耐火物の充填層を施工した熱処理炉の炉床状況を、使用開始後1年経過した時点で観察したところ、顕著な開口部の発生は観察されず、加熱に要するガス原単位(熱処理鋼材の単位質量(トン)あたりに必要なガス量(Nm))の変動も確認されなかった。また、常温での圧縮強度が20~50MPaの耐火れんがの表面に充填層を形成し、その下部に断熱れんがを設けた場合も、同様な結果であった。なお、耐火れんがと断熱れんがの合計厚みを360mmとし、充填層の厚みを110mmとし、炉床の合計施工厚みを470mmにした。一方、炉内稼動面側を耐火キャスタブルで施工した従来の熱処理炉の炉床状況を、使用開始後1年経過した時点で目視で観察すると、局所的に耐火キャスタブルの亀裂や盛上がり(迫り上がり)が観察された。以上のことから、本発明の金属塊用熱処理炉及びその補修方法を用いることで、炉床耐火物の主として目地部や亀裂部での開口部の発生や、熱膨張による炉床耐火物の迫り合いを、未然に防止することができ、経時使用と共に劣化する炉床耐火物の耐火性や断熱性の低下を抑制、更には防止できることを確認できた。
 次に、本発明に係る金属塊用熱処理炉に用いる炉床充填用材料の製造方法で製造した粒状耐火物の作用効果を確認するために行った実施例について説明する。まず、製鋼工程の溶鋼鍋に用いていた使用済みの耐火キャスタブル(アルミナ-マグネシア系のキャスタブル耐火物)を用い、この使用済み耐火キャスタブルに付着した地金やスラグをハツリで除去した。そして、粒状耐火物の最大粒径が50mmとなるように、ジョークラッシャーで破砕した。この破砕は、ジョークラッシャーの対となる歯板の間に、使用済み耐火キャスタブルの塊を投入して行うため、使用済み耐火キャスタブルへは主として圧縮力を付与している。なお、粒状耐火物の最大粒径が50mmとは、粒状耐火物を公称目開き50mmの篩で一度ふるった後に、篩を抜けた粗粒のうち1個でも長径が50mm以上の粗粒がある場合の篩下の粒状耐火物を意味する。
 上記した最大粒径50mmの使用済み耐火物を、更に磁選処理して地金を除去し、粒状耐火物を製造した。この粒状耐火物の充填率を、前記した方法で測定すると74体積%であり、1mmアンダーの粒状物を18質量%含んでいた。この粒状耐火物を、常温での圧縮強度が1.5~2.5MPaの断熱れんがの表面に施工して充填層を形成し、熱処理炉の炉床を製造した。なお、断熱れんがの厚みは360mmであり、充填層の厚みは110mmであり、炉床の合計施工厚みを470mmにした。また、充填層は、粒状耐火物を熱処理炉の炉外から炉内へベルトコンベアにて搬送し、搬入した粒状耐火物をシャベル等を用いて炉床に散布し、グラウンド整地用のとんぼ(地ならしをするT字形の道具)等の治具やシャベル等を用いて目視で平坦にならし施工した。
 上記した粒状耐火物の充填層を施工した熱処理炉の炉床状況を、使用開始後1年経過した時点で観察したところ、顕著な開口部の発生は観察されず、加熱に要するガス原単位(熱処理鋼材の単位質量(トン)あたりに必要なガス量(Nm))の変動も確認されなかった。また、常温での圧縮強度が20~50MPaの耐火れんがの表面に充填層を形成し、その下部に断熱れんがを設けた場合も、同様な結果であった。なお、耐火れんがと断熱れんがの合計厚みを360mmとし、充填層の厚みを110mmとし、炉床の合計施工厚みを470mmにした。一方、炉内稼動面側を耐火キャスタブルで施工した従来の熱処理炉の炉床状況を、使用開始後1年経過した時点で目視で観察すると、局所的に耐火キャスタブルの亀裂や盛上がり(迫り上がり)が観察された。以上のことから、本発明に係る金属塊用熱処理炉に用いる炉床充填用材料の製造方法を用いて製造した粒状耐火物を使用することで、炉床耐火物の主として目地部や亀裂部での開口部の発生や、熱膨張による炉床耐火物の迫り合いを、未然に防止することができ、経時使用と共に劣化する炉床耐火物の耐火性や断熱性の低下を抑制、更には防止できることを確認できた。
 本発明によれば、炉床耐火物の主として目地部や亀裂部での開口部の発生や、熱膨張による炉床耐火物の迫り合いを、未然に防止することができ、経時使用と共に劣化する炉床耐火物の耐火性や断熱性の低下を抑制、更には防止できる。このため、本発明は産業上の利用可能性を十分に有する。
10:金属塊用熱処理炉
11:炉内稼動面
12:炉床構造
13:炉底鉄皮
14~16:金属塊用熱処理炉
20:耐火れんが
21~26:炉内稼動面
27~32:補修部位
33~38:充填層
40:隙間(空間)
41、42:粒状耐火物
43:充填層
45:充填層
46:粒状耐火物
110:金属塊用熱処理炉
111:炉内稼動面
112:金属塊用熱処理炉
113:炉底鉄皮

Claims (13)

  1.  炉内稼動面側に粒状耐火物の充填層を有し、前記粒状耐火物の充填率が65体積%以上100体積%未満で、前記充填層の厚みが前記粒状耐火物の最大粒径の2倍以上である炉床構造を備えることを特徴とする金属塊用熱処理炉。
  2.  前記粒状耐火物は、粒径1mmアンダーの粒状物を80質量%以下含むことを特徴とする請求項1に記載の金属塊用熱処理炉。
  3.  セラミックスファイバーが一部又は全体にライニングされる天井部を更に備えることを特徴とする請求項1又は2に記載の金属塊用熱処理炉。
  4.  前記充填層は、常温での圧縮強度が1.5MPa以上の耐火物の表面に配置されることを特徴とする請求項1又は2に記載の金属塊用熱処理炉。
  5.  耐火れんが及び又は耐火キャスタブルを炉床の炉内稼動面側に施工した金属塊用熱処理炉の補修方法であって、
     前記炉床の炉内稼動面側の補修部位に対し、粒状耐火物の充填層を形成する工程を備え、
     前記充填層の前記粒状耐火物の充填率が65体積%以上100体積%未満であり、前記充填層の厚みが前記粒状耐火物の最大粒径の2倍以上である
    ことを特徴とする金属塊用熱処理炉の補修方法。
  6.  前記粒状耐火物は、粒径1mmアンダーの粒状物を80質量%以下含むことを特徴とする請求項5に記載の金属塊用熱処理炉の補修方法。
  7.  前記粒状耐火物の充填層を形成する工程の前に、前記炉床の炉内稼動面側の補修部位を含む前記耐火れんが又は前記耐火キャスタブルの一部を除去して前記充填層が充填される空間を形成する工程をさらに含み、前記充填層を構成する前記粒状耐火物の最大粒径が、前記空間の水平方向の内幅の50%未満であることを特徴とする請求項5又は6に記載の金属塊用熱処理炉の補修方法。
  8.  前記充填層は、常温での圧縮強度が1.5MPa以上の耐火物の表面に配置されることを特徴とする請求項5又は6に記載の金属塊用熱処理炉の補修方法。
  9.  金属塊用熱処理炉の炉床の炉内稼動面側を構成する炉床充填用材料の製造方法であって、
     使用済み耐火物を圧縮破砕する工程と;
     圧縮破砕された前記使用済み耐火物の最大粒径を20mm以上100mm以下の範囲内に調整し、粒状耐火物を形成する工程と;
    を備えることを特徴とする金属塊用熱処理炉に用いる炉床充填用材料の製造方法。
  10.  前記使用済み耐火物は、製鉄所で発生する溶湯貯蔵容器の耐火層耐火物及び又は熱処理炉の耐火れんがであることを特徴とする請求項9に記載の金属塊用熱処理炉に用いる炉床充填用材料の製造方法。
  11.  前記使用済み耐火物の熱間曲げ強度は、前記炉床が曝される雰囲気温度で0.2MPa以上であることを特徴とする請求項9又は10に記載の金属塊用熱処理炉に用いる炉床充填用材料の製造方法。
  12.  前記使用済み耐火物の荷重軟化点温度は、前記炉床が曝される雰囲気温度よりも200℃以上高いことを特徴とする請求項9又は10に記載の金属塊用熱処理炉に用いる炉床充填用材料の製造方法。
  13.  前記使用済み耐火物の炭素成分は1質量%以下であることを特徴とする請求項9又は10に記載の金属塊用熱処理炉に用いる炉床充填用材料の製造方法。
PCT/JP2010/003399 2010-05-20 2010-05-20 金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法 WO2011145147A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080065480.XA CN103109149B (zh) 2010-05-20 2010-05-20 金属锭用热处理炉、金属锭用热处理炉的修补方法、及金属锭用热处理炉所用的炉床填充用材料的制造方法
PCT/JP2010/003399 WO2011145147A1 (ja) 2010-05-20 2010-05-20 金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法
KR1020127023901A KR101405635B1 (ko) 2010-05-20 2010-05-20 금속괴용 열처리로, 금속괴용 열처리로의 보수 방법 및 금속괴용 열처리로에 사용하는 노상 충전용 재료의 제조 방법
JP2012515646A JPWO2011145147A1 (ja) 2010-05-20 2010-05-20 金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003399 WO2011145147A1 (ja) 2010-05-20 2010-05-20 金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法

Publications (1)

Publication Number Publication Date
WO2011145147A1 true WO2011145147A1 (ja) 2011-11-24

Family

ID=44991275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003399 WO2011145147A1 (ja) 2010-05-20 2010-05-20 金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法

Country Status (4)

Country Link
JP (1) JPWO2011145147A1 (ja)
KR (1) KR101405635B1 (ja)
CN (1) CN103109149B (ja)
WO (1) WO2011145147A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848693A (zh) * 2015-06-09 2015-08-19 中国十九冶集团有限公司 用于加热炉内衬层的快速施工方法
CN114380609A (zh) * 2022-02-21 2022-04-22 江苏朗耐德耐火材料有限公司 一种脱酸炉耐火层用的耐火材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2577114T3 (es) * 2014-04-10 2016-07-13 Refractory Intellectual Property Gmbh & Co. Kg Combinación de ladrillos cerámicos refractarios
TWI635247B (zh) 2017-10-02 2018-09-11 財團法人工業技術研究院 固化設備
JP7229903B2 (ja) * 2019-11-28 2023-02-28 株式会社日立製作所 エレベータードア

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187589A (ja) * 1989-01-13 1990-07-23 Nkk Corp 溶湯容器の補修方法
JPH03229829A (ja) * 1990-02-03 1991-10-11 Daido Steel Co Ltd 直火式冷延鋼板連続焼鈍炉
JPH0464097U (ja) * 1990-10-12 1992-06-01
JP2003226570A (ja) * 2002-02-05 2003-08-12 Kurosaki Harima Corp マグネシア−スピネル質れんが
JP2005188798A (ja) * 2003-12-25 2005-07-14 Jfe Steel Kk 使用済み耐火物の再利用方法及び溶融金属容器の内張り保護層の形成方法
JP2005336588A (ja) * 2004-05-31 2005-12-08 Jfe Steel Kk 出銑樋及びその形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU87550A1 (fr) * 1989-06-30 1991-02-18 Glaverbel Procede de formation d'une masse refractaire sur une surface et melange de particules destine a ce procede
FR2778910A1 (fr) * 1998-05-19 1999-11-26 Saint Gobain Isover Four, notamment a verre, utilisation et procede utilisant le four
JP3615400B2 (ja) * 1998-09-30 2005-02-02 品川白煉瓦株式会社 不焼成炭素含有耐火物および溶融金属用容器
JP2003314967A (ja) * 2002-04-17 2003-11-06 Tokyo Yogyo Co Ltd 流動性をもつ不定形物の充填装置、流動性をもつ不定形物の充填方法、炉充填材の充填装置、炉充填材の充填方法
US7078360B2 (en) * 2004-07-12 2006-07-18 Specialty Minerals (Michigan) Inc. High durability refractory composition
JP5434209B2 (ja) * 2009-04-07 2014-03-05 新日鐵住金株式会社 金属塊の熱処理炉及びその補修方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187589A (ja) * 1989-01-13 1990-07-23 Nkk Corp 溶湯容器の補修方法
JPH03229829A (ja) * 1990-02-03 1991-10-11 Daido Steel Co Ltd 直火式冷延鋼板連続焼鈍炉
JPH0464097U (ja) * 1990-10-12 1992-06-01
JP2003226570A (ja) * 2002-02-05 2003-08-12 Kurosaki Harima Corp マグネシア−スピネル質れんが
JP2005188798A (ja) * 2003-12-25 2005-07-14 Jfe Steel Kk 使用済み耐火物の再利用方法及び溶融金属容器の内張り保護層の形成方法
JP2005336588A (ja) * 2004-05-31 2005-12-08 Jfe Steel Kk 出銑樋及びその形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848693A (zh) * 2015-06-09 2015-08-19 中国十九冶集团有限公司 用于加热炉内衬层的快速施工方法
CN114380609A (zh) * 2022-02-21 2022-04-22 江苏朗耐德耐火材料有限公司 一种脱酸炉耐火层用的耐火材料及其制备方法

Also Published As

Publication number Publication date
KR101405635B1 (ko) 2014-06-10
JPWO2011145147A1 (ja) 2013-07-22
CN103109149A (zh) 2013-05-15
CN103109149B (zh) 2015-04-01
KR20120128676A (ko) 2012-11-27

Similar Documents

Publication Publication Date Title
JP4470207B2 (ja) 耐火れんが
JP4856772B2 (ja) 高炉鋳床樋
WO2011145147A1 (ja) 金属塊用熱処理炉、金属塊用熱処理炉の補修方法、及び金属塊用熱処理炉に用いる炉床充填用材料の製造方法
EP1953125A1 (en) Monolithic refractory
BRPI0515750B1 (pt) Método e sistema para uso na produção de pepitas de ferro metálico
JP5434209B2 (ja) 金属塊の熱処理炉及びその補修方法
KR20120042981A (ko) 고로용의 비소성 함탄 괴성광 및 그 제조 방법
CN103922759B (zh) 碳化硅质耐磨耐火导风墙大梁、导风墙砖的制备方法
JP6498515B2 (ja) 耐火組成物及びそれを使用してなる耐火コンクリートブロック
JP5671785B2 (ja) 金属塊用熱処理炉に用いる炉床充填用材料の製造方法
CN105263884B (zh) 制造碳化硅晶须增强型耐火组合物的方法
CN110331252B (zh) 对发生局部损坏的转炉出钢口座砖进行在线修补的方法
US20210331982A1 (en) Dry refractory compositions with reduced levels of respirable crystalline silica
JP6188214B2 (ja) 湿式施工用補修剤及びその補修方法
JP4855339B2 (ja) 不定形耐火物、及び耐火物の製造方法
JP3464323B2 (ja) 溶鋼取鍋およびその補修方法
CN109405555B (zh) 转底炉下料溜槽端部耐磨砖的砌筑方法
CN101801563B (zh) 中间升液件、其制造方法以及低压铸造装置
JPH09192822A (ja) タンディッシュカバー
CN106123601B (zh) 一种高温下凹槽式组合式耐火砖及制作方法
CN103044042A (zh) 一种耐火材料组合物及其制备方法和应用
KR102273124B1 (ko) 유도 용해로 라이닝용 내화 성형물 제작 방법 및 이에 의해 제작된 유도 용해로 라이닝용 내화 성형물
JPH01215923A (ja) 耐熱支持部材
CN103157783B (zh) 一种钢包包底的砌筑方法
CN115057694B (zh) 一种用于烧结机风箱的刚玉莫来石浇注料及其制备的预制块

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065480.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515646

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127023901

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851712

Country of ref document: EP

Kind code of ref document: A1