WO2011143882A1 - 旋转压缩机 - Google Patents

旋转压缩机 Download PDF

Info

Publication number
WO2011143882A1
WO2011143882A1 PCT/CN2010/077124 CN2010077124W WO2011143882A1 WO 2011143882 A1 WO2011143882 A1 WO 2011143882A1 CN 2010077124 W CN2010077124 W CN 2010077124W WO 2011143882 A1 WO2011143882 A1 WO 2011143882A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
compression chamber
gas
chamber
rotary compressor
Prior art date
Application number
PCT/CN2010/077124
Other languages
English (en)
French (fr)
Inventor
小津政雄
李华明
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Publication of WO2011143882A1 publication Critical patent/WO2011143882A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing

Definitions

  • the invention relates to a rotary compressor.
  • the jet air conditioner increases the efficiency by injecting the gas refrigerant generated by the gas-liquid separator into the cylinder compression chamber of the compressor through the refrigerant injection circuit.
  • the liquid refrigerant condenses in the oil of the compressor, and the viscosity of the oil drops, causing wear of the sliding parts, thereby causing the compressor to malfunction.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2008-286037 Rotary compressor and heat pump system.
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 2006-177224 Rotary compressor.
  • the object of the present invention is to provide a rotary compressor which has a simple and reasonable structure, high air-conditioning capability and high efficiency, safety and reliability, and wide application range, in order to overcome the deficiencies in the prior art.
  • a rotary compressor designed according to the purpose includes a motor portion disposed in a sealed casing and a compression mechanism portion of a two-stage compression type, the motor portion including a stator and a rotor, and the compression mechanism portion includes a first cylinder and a second cylinder, a crankshaft that drives the first piston and the second piston to rotate eccentrically in the first cylinder compression chamber and the second cylinder compression chamber, and a main bearing and a sub-bearing that support the crankshaft, and ends of the first sliding piece and the second sliding piece They are respectively connected to the outer circumferences of the first piston and the second piston, and are characterized in that gas discharged from the first cylinder compression chamber into the sealed casing is sucked into the second cylinder compression chamber.
  • the second cylinder compression chamber is provided with a refrigerant injection device communicating therewith.
  • the main bearing is provided with a first discharge valve and an intermediate pressure silencer, the first discharge valve communicates with the first cylinder compression chamber and the intermediate pressure silencer;
  • the gas introduction cylinder is sleeved outside the crankshaft, and one end of the gas introduction cylinder and the intermediate pressure
  • the muffler is connected, the opening of the other end of the gas introduction cylinder is close to the rotor, and the rotor is provided with more than one through-hole rotor hole along the axis thereof, and the open end of the rotor air hole is located in the range of the opening of the other end of the gas introduction cylinder;
  • the gas is discharged
  • One end of the tube is open to the outside of the gas introduction tube, and the other end of the gas discharge tube is in communication with the intermediate pressure muffler; one end of the gas suction tube is open in the intermediate pressure muffler, and the other end of the gas suction tube is connected to the second cylinder compression chamber .
  • a first silencing chamber and a second silencing chamber are disposed in the intermediate pressure muffler.
  • the first discharge valve is in communication with the first silencing chamber, and one end of the gas suction tube is opened in the second silencing chamber, and the other end of the gas discharge tube is The first muffler cavity is connected.
  • the refrigerant injection device includes a circular tube inserted from the outer side of the sealed casing to the side of the second cylinder, a first discharge hole provided at the center of the circular pipe, and a first hole provided in the second cylinder and opening the second cylinder a discharge port, an expansion chamber connecting the first discharge hole and the second cylinder compression chamber, and a check valve for opening and closing the first discharge hole in the expansion chamber.
  • the round pipe is in communication with one end of the refrigerant injection pipe, and the other end of the refrigerant injection pipe is in communication with the upper space of the gas-liquid separator.
  • the upper end of the crankshaft is provided with a rotor disc, and a gap through which gas can pass is disposed between the rotor disc and the upper end of the rotor.
  • the refrigerant injection device includes a U-shaped tube, one end of the U-shaped tube communicates with a housing space above the motor portion, and the other end of the U-shaped tube communicates with the second cylinder compression chamber.
  • a rotary compressor comprising a motor portion disposed in a sealed housing and a compression mechanism portion of a two-stage compression type, the motor portion including a stator and a rotor, the compression mechanism portion including a first cylinder and a second cylinder, driving the first piston and a second piston is an eccentrically rotating crankshaft in the first cylinder compression chamber and the second cylinder compression chamber, and a main bearing and a sub-bearing supporting the crankshaft, and the ends of the first sliding piece and the second sliding piece are respectively respectively coupled to the first piston
  • the structural feature further comprises: a refrigerant injection device that is bored in the compression chamber of the second cylinder, and the gas discharged from the compression chamber of the first cylinder into the sealed housing is sucked into the compression chamber of the second cylinder .
  • the refrigerant injection device includes a circular tube inserted from the outer side of the sealed casing to the side of the second cylinder, a first discharge hole provided at the center of the circular pipe, and a first hole provided in the second cylinder and opening the second cylinder a discharge port, an expansion chamber connecting the first discharge hole and the second cylinder compression chamber, and a check valve for opening and closing the first discharge hole in the expansion chamber.
  • the round pipe is in communication with one end of the refrigerant injection pipe, and the other end of the refrigerant injection pipe is in communication with the upper space of the gas-liquid separator.
  • the invention adopts a two-stage compression type rotary compressor with a casing pressure as an intermediate pressure, and injects a gas refrigerant in a compression process of the second cylinder compression chamber, and the liquid refrigerant does not condense in the oil even if mixed with the liquid refrigerant, and is easy. Control refrigerant injection.
  • the invention selectively injects the gas refrigerant generated by the gas-liquid separator in the refrigeration cycle into the second cylinder compression chamber of the compressor, and improves the air conditioning capacity and efficiency while not performing the cumbersome refrigeration cycle control state. To prevent the loss of compressor reliability.
  • the present invention has the following advantages: (1) no reliability problem occurs even when a liquid refrigerant is mixed in a refrigerant injection circuit; (2) since it is not necessary to control gas refrigerant injection, it is easy to popularize and apply the compressor. Cost and control costs are relatively low; (3) a large amount of gas refrigerant can be supplied to the cylinder compression chamber, which can further improve the heating capacity and efficiency compared with the conventional method; (4) can reduce the oil discharge from the compressor the amount.
  • the utility model has the advantages of simple and reasonable structure, high air-conditioning capability and high efficiency, safety and reliability, and wide application range, and can be popularized and applied to a heat pump type air conditioner.
  • Figure 1 is a schematic view showing the structure of a first embodiment of the present invention.
  • Figure 2 and Figure 3 are partial cross-sectional views of the rotary compressor
  • Figure 4 is an enlarged cross-sectional view taken along line Y-Y of Figure 1
  • Figure 5 is a P-V graph of the present invention.
  • Figure 6 is a schematic view showing the structure of a second embodiment of the present invention.
  • 1 is a rotary compressor
  • 2 is a sealed casing
  • 3 is a discharge pipe
  • 5 is a condenser
  • 6 is an evaporator
  • 7 is a gas-liquid separator
  • 8a is a first capillary
  • 8b is a second capillary
  • 14 is a suction pipe
  • 16 is a refrigerant injection device
  • 16a is a first discharge hole
  • 16b is a second discharge hole
  • 16c is a round pipe
  • 16d is a return valve
  • 17 is a refrigerant injection pipe
  • 18a is a gas refrigerant.
  • 18b is liquid refrigerant
  • 21 is compression mechanism part
  • 22 is motor part
  • 22a is stator
  • 22b is rotor
  • 22c is rotor air hole
  • 22d is end ring
  • 22e is rotor disc
  • 22f is coil
  • 22g is stator core 23a is the first cylinder
  • 23b is the second cylinder
  • 24a is the first cylinder compression chamber
  • 24b is the second cylinder compression chamber
  • 25 is the main bearing
  • 26 is the auxiliary bearing
  • 27 is the crankshaft
  • 28a is the first piston
  • 28b For the second piston, 29a is the first slide, 29b is the second slide, 31 is the middle partition
  • 32 is the intermediate pressure gas suction passage
  • 33 is the intermediate pressure silencer
  • 33a is the first silencer chamber
  • 33b is the first Two muffler chambers
  • 33c is a gas introduction cylinder
  • 33d is a gas discharge pipe
  • 33e is a gas suction pipe
  • 34 is
  • FIG. 1 the internal structure of the rotary compressor 1 and the air-conditioning refrigerating cycle in which the rotary compressor is mounted.
  • 2 and 3 are detailed views of the compression mechanism portion 21.
  • Figure 4 is a Y-Y cross-sectional view of Figure 1.
  • the rotary compressor 1 is composed of a two-stage compression type compression mechanism portion 21 attached to the inner wall of the sealed casing 2, and a motor portion 22 disposed at an upper portion thereof.
  • the compression mechanism portion 21 includes two cylinders: a first cylinder 23a and a second cylinder 23b, a first piston 28a and a second piston 28b housed in the first cylinder compression chamber 24a and the second cylinder compression chamber 24b, and a first slide
  • the 29a and the second slider 29b, the main bearing 25 and the sub-bearing 26, and the crankshaft 27 supported by the main bearing 25 and the sub-bearing 26 are formed.
  • the intermediate partition 31 is sandwiched between the first cylinder 23a and the second cylinder 23b, and the intermediate partition 31 is used to divide the two cylinder compression chambers.
  • the compression mechanism portion 21 is attached to the inner wall of the sealed casing 2 through the outer circumference of the main bearing 25.
  • the motor portion 22 attached to the inner wall of the sealed casing 2 is composed of a stator 22a and a rotor 22b.
  • the stator 22a is composed of a stator core 22g and a coil 22f.
  • the rotor 22b is provided with one or more rotor air holes 22c and end rings 22d.
  • the rotor air hole 22c is provided on the rotor 22b along its axis and penetrates the rotor 22b.
  • the end ring 22d there are many cases where the end ring 22d is not used.
  • a gap through which gas can pass is provided between the rotor disk 22e attached to the upper end of the crankshaft 27 and the upper end of the rotor 22b.
  • the crankshaft 27 driven by the motor portion 22 drives the first piston 28a and the second piston 28b to rotate eccentrically in the first cylinder compression chamber 24a and the second cylinder compression chamber 24b, respectively.
  • the first sliding piece 29a and the second sliding piece 29b are reciprocated with the outer circumferences of the first piston 28a and the second piston 28b, and together with the first piston 28a and the second piston 28b, are sealed and sealed in the first cylinder respectively.
  • the chamber 24a and the second cylinder compress the chamber 24b to compress the gas, and also function to divide the first cylinder compression chamber 24a into a low pressure chamber and a high pressure chamber, and divide the first cylinder compression chamber 24a into a low pressure chamber and a high pressure chamber. The role of the cavity.
  • the main bearing 25 is provided with a first discharge valve 35a and an intermediate pressure silencer 33.
  • the first discharge valve 35a communicates with the first cylinder compression chamber 24a and the intermediate pressure silencer 33.
  • the gas introduction cylinder 33 is sleeved outside the crankshaft 27 for gas introduction.
  • One end of the cylinder 33 communicates with the intermediate pressure muffler 33, the opening of the other end of the gas introduction cylinder 33 is close to the rotor 22b, and the open end of the rotor air hole 22c is located within the range of the opening of the other end of the gas introduction cylinder 33; the gas discharge pipe 33d
  • One end of the gas discharge tube 33d is open to the outside of the gas introduction tube 33, and the other end of the gas discharge tube 33d is connected to the intermediate pressure silencer 33.
  • One end of the gas suction tube 33e is opened in the intermediate pressure silencer 33, and the other end of the gas suction tube 33e is The two cylinder compression chambers 24b are in communication.
  • the intermediate silencer 33 is provided with a first silencing chamber 33a and a second silencing chamber 33b.
  • the first discharge valve 35a communicates with the first silencing chamber 33a, and the other end of the gas discharge tube 33d communicates with the first silencing chamber 33a.
  • One end of the tube 33e is opened in the second silencing chamber 33b.
  • the low-pressure gas having a pressure of Ps sucked from the suction pipe 14 attached to the side of the first cylinder 23a is compressed into an intermediate pressure gas in the first cylinder compression chamber 24a, and the pressure of the intermediate pressure gas is Pm, and the intermediate pressure gas is disposed.
  • the first discharge valve 35a on the main bearing 25 is discharged to the first muffler chamber 33a of the intermediate pressure silencer 33. Thereafter, the intermediate pressure gas moves from the gas discharge pipe 33d to the space between the motor portion 22 and the main bearing 25. A large amount of sprayed oil is mixed into the intermediate pressure gas.
  • the intermediate pressure gas is moved to a space between the upper portion of the motor portion 22 and the sealed casing 2 mainly through the coil 22f wound on the stator 22a and the gap therearound. In the meantime, the spray-like oil mixed with the intermediate pressure gas can be easily separated from the intermediate pressure gas.
  • the intermediate pressure gas moves to a gap between the lower end of the rotor disc 22e and the upper end of the rotor 22b which are rotated at a high speed.
  • the spray-like oil mixed in the intermediate pressure gas is separated by the centrifugal force of the rotor disk 22e, and then falls from the gap of the stator 22a to the bottom of the sealed casing 2, and is recovered.
  • the intermediate pressure gas after separating the oil is normally passed through the gas introduction cylinder 33c, the second silencing chamber 33b, and the gas suction pipe 33e from the upper direction to the lower direction through the four rotor air holes 22c in order from the intermediate pressure gas suction passage 32.
  • the second cylinder compression chamber 24b is sucked.
  • the refrigerant injection device 16 is disposed adjacent to the second vane 29b of the second cylinder compression chamber 24b.
  • the refrigerant injection device 16 includes a circular tube 16c inserted from the outside of the sealed casing 2 to the side of the second cylinder 23b, a first discharge hole 16a provided at the center of the circular tube 16c, a second cylinder 23b, and a second hole
  • the circular tube 16c in this embodiment can be disposed on the left side, the right side, the upper side, or the lower side of the second cylinder 23b as needed, and only the circular tube 16c is disposed on the left side of the second cylinder 23b. Specific structure.
  • the outer side of the disk-shaped check valve 16d has a plurality of slits which serve as gas passages.
  • the gas refrigerant injected into the second cylinder compression chamber 24b is mixed with the compressed gas to become a high pressure gas having a pressure Pd, and the high pressure gas is discharged to the high pressure silencer formed inside the sub-bearing 26 via the second discharge valve 35b. Cavity 34. Thereafter, the high pressure gas flows from the discharge pipe 3 to the condenser 5.
  • the high pressure muffler chamber 34 is formed during the casting phase of the sub-bearing 26.
  • the high-pressure gas discharged from the discharge pipe 3 is condensed in the condenser 5 to become a liquid refrigerant, and is moved to the gas-liquid separator 7 through the first capillary 8a.
  • the gas refrigerant 18a generated by the decompressed liquid refrigerant is accumulated in the upper space of the gas-liquid separator 7, and the supercooled liquid refrigerant 18b is accumulated in the lower space.
  • the liquid refrigerant 18b is decompressed by the second capillary 8b and then evaporated in the evaporator 6.
  • the refrigerant evaporated here returns from the suction pipe 14 to the first cylinder compression chamber 24a via the accumulator 13.
  • the gas refrigerant 18a in the gas-liquid separator 7 is moved to the refrigerant injection device 16 via the refrigerant injection pipe 17.
  • the gas refrigerant is injected into the second cylinder compression chamber 24b as described above.
  • the supercooled liquid refrigerant 18b which does not mix with the gas can increase the heat absorption amount of the evaporator, so that the heating capacity, the cooling capacity, and the efficiency can be improved.
  • Fig. 5 is a P-V graph of the two-stage compression type rotary compressor disclosed in the present invention, and the relationship of the gas refrigerant 18a injected into the second cylinder compression chamber 24b.
  • the P of the vertical axis is the pressure of the first cylinder compression chamber 24a and the second cylinder compression chamber 24b, and the V of the horizontal axis is the volume of these strokes.
  • Pm is the discharge pressure of the first cylinder compression chamber 25a, and is the internal pressure of the sealed casing, and is the suction pressure of the second cylinder compression chamber 24b.
  • Pi is the gas refrigerant pressure discharged from the second discharge port 16b. Pi is depressurized by the condenser 5, the first capillary 8a, and the refrigerant injection pipe 17, and is generally lower than the discharge pressure Pd of the second cylinder compression chamber 24b.
  • the compression pressure of the second cylinder compression chamber 24b varies between the intermediate pressure Pm and the discharge pressure Pd, when the pressure of the second cylinder compression chamber 24b is lower than the pressure Pi of the second discharge port 16b.
  • the gas refrigerant is injected from the second discharge port 16b into the second cylinder compression chamber 24b.
  • the check valve 16d closes the first discharge hole 16a, and the gas refrigerant injection is interrupted.
  • the check valve 16d reciprocates to perform gas refrigerant injection and injection interruption.
  • the refrigerant injection amount associated with the increase or decrease of the air-conditioning capability is as described above, not only with the first capillary tube 8a and the refrigerant injection pipe 17, but also the first discharge hole 16a and the second discharge hole 16b according to the present invention.
  • the difference in size is also relevant.
  • the refrigerant injection device 16 is composed of a first discharge hole 16a, a second discharge hole 16b, and a check valve 16d disposed therebetween, and can easily adjust the amount of refrigerant injection. If necessary, the amount of refrigerant injection can be greatly increased.
  • the gas refrigerant compressed in the second cylinder compression chamber 24b if it flows back from the refrigerant injection pipe 17 to the gas-liquid separator 7, will not only cause the effect of the jet to become zero, but also cause the efficiency of the compressor to decrease;
  • the flow of gas refrigerant into the evaporator 6 will greatly reduce the efficiency of the system.
  • the refrigerant injected from the refrigerant injection pipe is combined with the discharge gas.
  • the condenser is discharged from the discharge pipe provided on the sealed casing via the sealed casing.
  • the refrigerant injected into the compression chamber of the second cylinder merges with the discharge gas having the pressure Pd, and is discharged directly from the discharge pipe that communicates with the compression chamber of the second cylinder to the condenser without passing through the sealed casing. Since the conventional technology is basically different, it is possible to prevent the refrigerant from being condensed in the sealed casing and causing a drop in oil viscosity.
  • At least one of the conventional refrigerant injection pipe, the first capillary tube, and the second capillary tube may be replaced by a flow rate control valve, and the temperature according to the discharge pipe, the suction pipe, and the condenser outlet temperature may be used. The situation is controlled by the system.
  • the control of the gas refrigerant injection system associated with the rotary compressor can be simplified, and the rotary compressor provided can be easily applied.
  • a low-cost capillary can be used instead of the flow control valve previously required.
  • the flow control valve described above can also be used.
  • the gas refrigerant is injected through the refrigerant injection device as a center, and the method of mixing the liquid refrigerant and the gas refrigerant has the effect of lowering the temperature of the discharge gas.
  • a check valve that facilitates the amount of refrigerant injection is used; there are various means for injecting refrigerant into the cylinder compression chamber, and it is not limited to the means of the disclosed technology.
  • the intermediate pressure gas discharged from the first cylinder 23a flows into the upper space of the motor unit 22, and a large amount of spray-like oil containing intermediate pressure gas is used.
  • the high-temperature coil 22f After the high-temperature coil 22f is heated, it becomes a fine-grained oil; (2) by the rotor disc 22e rotating at a high speed, the fine-grained oil can be prevented from entering the rotor pores 22c; (3) the intermediate-pressure gas separated by the oil is from The rotor air hole 22c is sucked into the second cylinder 23b.
  • the disclosed means for reducing the amount of oil discharge is a separate technology from the gas refrigerant injection technology, so it can be widely applied to a two-stage compression type rotary compressor.
  • the invention adopts the design of the DC variable frequency motor and does not require the end ring of the rotor. At this time, by narrowing the gap between the upper end of the gas introduction cylinder 33c and the lower end of the rotor, or by fixing the press component corresponding to the end ring to the rotor, the gap between the stamped component and the gas introduction cylinder 33c can be reduced, and the like. Easy to solve.
  • the displacement of the second cylinder is smaller than that of the first cylinder; of course, the displacement ratio of the two cylinders can also be appropriately adjusted.
  • the first cylinder is compressed as the first segment
  • the second cylinder is compressed as the second segment; of course, the sequence can be reversed, and after the sequential replacement, the composition, function, and effect are not too large compared with the disclosed technology. Big difference.
  • the technology disclosed in the present invention easily applies the jet technology related to the rotary compressor to the system, and has a large utilization value in the production business.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

旋转压缩机 技术领域
本发明涉及一种旋转压缩机。
背景技术
喷气式空调是把气液分离器产生的气体冷媒通过冷媒注入回路注入到压缩机的气缸压缩腔中而增加效率。当冷媒注入回路中混入液体冷媒后,液体冷媒就会在压缩机的油中冷凝,油的粘度下降,导致作滑动的零部件的磨耗,从而使得压缩机发生故障。
专利文献1:日本公开专利公报2008-286037 旋转压缩机及热泵系统。
专利文献2:日本公开专利公报2006-177224 旋转压缩机。
技术问题
本发明的目的旨在提供一种结构简单合理、空调能力及效率高、安全可靠、适用范围广的旋转压缩机,以克服现有技术中的不足之处。
技术解决方案
按此目的设计的一种旋转压缩机,包括设置在密封壳体内的电机部和作二段压缩式的压缩机构部,电机部包括定子和转子,压缩机构部包括第一气缸和第二气缸、驱动第一活塞和第二活塞分别在第一气缸压缩腔和第二气缸压缩腔内作偏心旋转的曲轴、以及支撑曲轴的主轴承和副轴承,第一滑片和第二滑片的端部分别与第一活塞和第二活塞的外周相接,其结构特征是从第一气缸压缩腔吐出到密封壳体内的气体被吸入到第二气缸压缩腔中。
所述第二气缸压缩腔上设置有与其相通的冷媒注入装置。
所述主轴承上设置有第一吐出阀和中间压消音器,第一吐出阀连通第一气缸压缩腔和中间压消音器;气体导入筒套设在曲轴外,气体导入筒的一端与中间压消音器相通,气体导入筒的另一端的开口靠近转子,转子上沿其轴线设置有一个以上贯通的转子气孔,转子气孔的开口端位于气体导入筒的另一端的开口所在的范围内;气体吐出管的一端开口于气体导入筒的外侧,气体吐出管的另一端与中间压消音器相通;气体吸入管的一端开口于中间压消音器内,气体吸入管的另一端与第二气缸压缩腔相通。
所述中间压消音器内设置有第一消音腔和第二消音腔,第一吐出阀与第一消音腔相通,气体吸入管的一端开口于第二消音腔内,气体吐出管的另一端与第一消音腔相通。
所述冷媒注入装置包括从密封壳体的外侧插入到第二气缸侧面的圆管、设置在圆管中央的第一吐出孔、设置在第二气缸上且开孔于第二气缸压缩腔的第二吐出孔、连通第一吐出孔和第二气缸压缩腔的扩张室以及位于扩张室内用于开闭第一吐出孔的止回阀。
所述圆管与冷媒注入管的一端相通,冷媒注入管的另一端与气液分离器的上部空间相通。
所述曲轴的上端设置有转子圆板,转子圆板和转子的上端之间设置有可通过气体的间隙。
所述冷媒注入装置包括U形管,该U形管的一端连通位于电机部上方的壳体空间,U形管的另一端连通第二气缸压缩腔。
一种旋转压缩机,包括设置在密封壳体内的电机部和作二段压缩式的压缩机构部,电机部包括定子和转子,压缩机构部包括第一气缸和第二气缸、驱动第一活塞和第二活塞分别在第一气缸压缩腔和第二气缸压缩腔内作偏心旋转的曲轴、以及支撑曲轴的主轴承和副轴承,第一滑片和第二滑片的端部分别与第一活塞和第二活塞的外周相接,其结构特征是还包括开孔于第二气缸压缩腔的冷媒注入装置,从第一气缸压缩腔吐出到密封壳体内的气体被吸入到第二气缸压缩腔中。
所述冷媒注入装置包括从密封壳体的外侧插入到第二气缸侧面的圆管、设置在圆管中央的第一吐出孔、设置在第二气缸上且开孔于第二气缸压缩腔的第二吐出孔、连通第一吐出孔和第二气缸压缩腔的扩张室以及位于扩张室内用于开闭第一吐出孔的止回阀。
所述圆管与冷媒注入管的一端相通,冷媒注入管的另一端与气液分离器的上部空间相通。
本发明采用壳体压力为中间压力的二段压缩式旋转压缩机,在第二气缸压缩腔的压缩过程中注入气体冷媒,即使混入液体冷媒,该液体冷媒也不会在油中冷凝,并且容易控制冷媒注入。
本发明选择性地将冷冻循环中的气液分离器所产生的气体冷媒注入压缩机的第二气缸压缩腔,在提高空调能力和效率的同时,可在不进行繁琐的冷冻循环控制的状态下,防止压缩机信赖性的下降。
有益效果
本发明具有以下优点:(1)即使在冷媒注入回路混入液体冷媒,也不会发生信赖性问题;(2)因为不需要对气体冷媒注入进行控制,所以容易将该压缩机进行推广应用,制造成本和控制成本都比较低;(3)可供给大量的气体冷媒到气缸压缩腔中,与以往的方式相比可进一步提高制热能力和效率;(4)可降低来自于压缩机的吐油量。其具有结构简单合理、空调能力及效率高、安全可靠、适用范围广的特点,可被推广应用到热泵式空调上。
附图说明
图1为本发明第一实施例结构示意图。
图2和图3分别为旋转压缩机的局部剖视放大
图4为图1中的Y-Y向剖视放大
图5为本发明的P-V曲线图。
图6为本发明第二实施例结构示意图。
图中:1为旋转压缩机,2为密封壳体,3为吐出管,5为冷凝器,6为蒸发器,7为气液分离器,8a为第一毛细管,8b为第二毛细管,13为储液器,14为吸入管,16为冷媒注入装置,16a为第一吐出孔,16b为第二吐出孔,16c为圆管,16d为止回阀,17为冷媒注入管,18a为气体冷媒,18b为液冷媒,21为压缩机构部,22为电机部,22a为定子,22b为转子,22c为转子气孔,22d为端环,22e为转子圆板,22f为线圈,22g为定子铁芯,23a为第一气缸,23b为第二气缸,24a为第一气缸压缩腔,24b为第二气缸压缩腔,25为主轴承,26为副轴承,27为曲轴,28a为第一活塞,28b为第二活塞,29a为第一滑片,29b为第二滑片,31为中隔板,32为中间压力气体吸入通路,33为中间压消音器,33a为第一消音腔,33b为第二消音腔,33c为气体导入筒,33d为气体吐出管,33e为气体吸入管,34为高压消音腔,35a为第一吐出阀,35b为第二吐出阀,36为油,41为U形管。
本发明的最佳实施方式
下面结合附图及实施例对本发明作进一步描述。
第一实施例
参见图1,为旋转压缩机1的内部构造和搭载该旋转压缩机的空调冷冻循环。图2和图3为压缩机构部21的详细图。图4为图1中的Y-Y截面图。
旋转压缩机1由安装于密封壳体2内壁上的作二段压缩式的压缩机构部21以及配置于其上部的电机部22构成。
压缩机构部21包括两个气缸:第一气缸23a和第二气缸23b、收纳到第一气缸压缩腔24a和第二气缸压缩腔24b中的第一活塞28a和第二活塞28b、第一滑片29a和第二滑片29b、主轴承25和副轴承26、被主轴承25和副轴承26支撑的曲轴27构成。夹在第一气缸23a和第二气缸23b中的中隔板31,该中隔板31用于划分两个气缸压缩腔。压缩机构部21通过主轴承25的外周被安装到密封壳体2的内壁上。
安装于密封壳体2内壁上的电机部22由定子22a和转子22b构成,定子22a由定子铁芯22g和线圈22f构成,转子22b上设置有一个以上的转子气孔22c和端环22d。转子气孔22c在转子22b上沿其轴线设置,且贯通转子22b。但是,对于变频电机而言,不使用端环22d的情况比较多。在转子22b的上方,安装于曲轴27上端的转子圆板22e和转子22b上端之间设置有可通过气体的间隙。
被电机部22驱动的曲轴27,分别在第一气缸压缩腔24a和第二气缸压缩腔24b中驱动第一活塞28a和第二活塞28b作偏心旋转。第一滑片29a和第二滑片29b与第一活塞28a和第二活塞28b的外周相接作往复运动,与第一活塞28a和第二活塞28b一起,起着密封分别在第一气缸压缩腔24a和第二气缸压缩腔24b中被压缩的气体的作用,而且还起着将第一气缸压缩腔24a划分为低压腔和高压腔,以及将第一气缸压缩腔24a划分为低压腔和高压腔的作用。
主轴承25上设置有第一吐出阀35a和中间压消音器33,第一吐出阀35a连通第一气缸压缩腔24a和中间压消音器33;气体导入筒33套设在曲轴27外,气体导入筒33的一端与中间压消音器33相通,气体导入筒33的另一端的开口靠近转子22b,转子气孔22c的开口端位于气体导入筒33的另一端的开口所在的范围内;气体吐出管33d的一端开口于气体导入筒33的外侧,气体吐出管33d的另一端与中间压消音器33相通;气体吸入管33e的一端开口于中间压消音器33内,气体吸入管33e的另一端与第二气缸压缩腔24b相通。
中间压消音器33内设置有第一消音腔33a和第二消音腔33b,第一吐出阀35a与第一消音腔33a相通,气体吐出管33d的另一端与第一消音腔33a相通,气体吸入管33e的一端开口于第二消音腔33b内。当把气体导入筒33c的外径与端环22d内径之间的间隙设计得小时,从气体吐出管33d吐出的气体不会进入气体导入筒33c的内部。
从安装于第一气缸23a侧面的吸入管14吸入的压力为Ps的低压气体,在第一气缸压缩腔24a中被压缩为中间压气体,该中间压气体的压力为Pm,中间压气体经由配置于主轴承25上的第一吐出阀35a,吐出到中间压消音器33的第一消音腔33a。其后,中间压气体从气体吐出管33d,移动到电机部22和主轴承25之间的空间。中间压气体中混入大量的喷雾状的油。
中间压气体主要通过卷到定子22a上的线圈22f和其周围的间隙,移动到电机部22上部和密封壳体2之间的空间。其间,混入中间压气体的喷雾状的油可较容易地从中间压气体中分离出来。
在此,中间压气体移动到高速旋转地转子圆板22e的下端和转子22b的上端之间的间隙。此时,混入中间压气体内的喷雾状的油,被转子圆板22e的离心力分离出来后,从定子22a间隙落到密封壳体2的底部,被回收。
分离油后的中间压气体,通常从上方向到下方向、通过四个转子气孔22c,按顺序依次经由气体导入筒33c、第二消音腔33b和气体吸入管33e,从中间压气体吸入通路32吸入第二气缸压缩腔24b。
如图2所示,冷媒注入装置16与第二气缸压缩腔24b的第二滑片29b相邻而配置。冷媒注入装置16包括从密封壳体2的外侧插入到第二气缸23b侧面的圆管16c、设置在圆管16c中央的第一吐出孔16a、设置在第二气缸23b上且开孔于第二气缸压缩腔24b的第二吐出孔16b、连通第一吐出孔16a和第二气缸压缩腔24b的扩张室以及位于扩张室内用于开闭第一吐出孔16a的止回阀16d。本实施例中的圆管16c可以根据需要而设置在第二气缸23b的左侧、右侧、上侧或下侧,图中仅仅给出了将圆管16c设置在第二气缸23b左侧的具体结构。
圆板状的止回阀16d的外侧具有成为气体通路的数个切口。止回阀16d打开第一吐出孔16a时,第一吐出孔16a的气体冷媒通过止回阀的切口,从第二吐出孔16b注入到第二气缸压缩腔24b。
注入到第二气缸压缩腔24b中的气体冷媒,与压缩中的气体混合,变成压力为Pd的高压气体,该高压气体经由第二吐出阀35b、吐出到构成于副轴承26内部的高压消音腔34。其后,高压气体从吐出管3流向冷凝器5。高压消音腔34在副轴承26的铸造阶段成形。
从吐出管3吐出的高压气体,在冷凝器5中冷凝后变为液体冷媒,通过第一毛细管8a、移动到气液分离器7。被减压的液体冷媒所产生的气体冷媒18a囤积到气液分离器7的上部空间,过冷却的液体冷媒18b囤积到下部空间。液体冷媒18b通过第二毛细管8b减压后,在蒸发器6中蒸发。在此蒸发的冷媒,经由储液器13,从吸入管14返回到第一气缸压缩腔24a。
气液分离器7中的气体冷媒18a经由冷媒注入管17,移动到冷媒注入装置16。气体冷媒如上所述,注入到第二气缸压缩腔24b中。如此,使用喷气压缩机的冷冻循环中,不混入气体的过冷却的液体冷媒18b,可提高蒸发器的吸热量,因此可改善制热能力、制冷能力和效率。
接下来,对本发明实施例1公开技术的作用和效果进行说明。
图5为,本发明中公开的二段压缩式旋转压缩机的P-V曲线图,和被注入到第二气缸压缩腔24b中的气体冷媒18a的关系。纵轴的P为第一气缸压缩腔24a和第二气缸压缩腔24b的压力,横轴的V为这些行程的容积。
在此,Pm为第一气缸压缩腔25a的吐出压力,同时为密封壳体的内压力,且为第二气缸压缩腔24b的吸入压力。Pi为从第二吐出孔16b吐出的气体冷媒压力。Pi通过冷凝器5、第一毛细管8a、冷媒注入管17来减压,通常比第二气缸压缩腔24b的吐出压力Pd低。
随着第二活塞28b的偏心旋转,第二气缸压缩腔24b的压缩压力在中间压力Pm和吐出压力Pd之间变化,当第二气缸压缩腔24b的压力比第二吐出孔16b压力Pi低时,气体冷媒从第二吐出孔16b注入到第二气缸压缩腔24b。其后,在第二气缸压缩腔24b的压缩压力比第二吐出孔16b压力高的瞬间,止回阀16d关闭第一吐出孔16a,气体冷媒注入中断。第二活塞28b每旋转一次,止回阀16d往复运动,进行气体冷媒注入和注入中断。从冷媒注入到注入中断的压力范围,可表现为图5的Δp,Δp=Pi-Pm。
在此,与空调能力增减相关的冷媒注入量,如上所述,不仅与上述的第一毛细管8a和冷媒注入管17相关,而且根据本发明中的第一吐出孔16a和第二吐出孔16b大小的不同也有关。冷媒注入装置16由第一吐出孔16a、第二吐出孔16b、在其间配置的止回阀16d构成,可容易调整冷媒注入量;如果需要的话,可大幅度增加冷媒注入量。
如果吸入压力Ps和吐出压力Pd中的任一个发生变化时,Pm就会发生变化。在实际的运转条件中,Pm经常变化,特别在非常态的运转条件下时有很大的变化。采用可频繁改变压缩机旋转速度的变频电机时,该变化就会更明显。但是,本发明,即使在Pi比Pm小的条件下,止回阀16d可仍自动关闭第一吐出孔16a,因此可回避冷媒逆流的问题。在第二气缸压缩腔24b压缩中的气体冷媒,如果发生从冷媒注入管17逆流到气液分离器7,将不仅会使得喷气的效果变为零,而且会导致压缩机的效率下降;因为逆流的气体冷媒流到蒸发器6中,将会大幅度降低系统的效率。
以往旋转压缩机的冷媒注入系统,从冷媒注入管注入的冷媒与吐出气体一起, 经由密封壳体,再从设置在密封壳体上的吐出管吐出到冷凝器。然而在本发明中,注入到第二气缸压缩腔的冷媒与压力为Pd的吐出气体合流后,不用经由密封壳体,直接从与第二气缸压缩腔相通的吐出管吐出到冷凝器,所以与以往的技术基本不同,因此可防止冷媒在密封壳体中冷凝、造成油粘度下降的课题。
作为解决上述多个课题的手段,可将以往的冷媒注入管和第一毛细管、第二毛细管三者中的至少一个替换为流量控制阀,根据吐出管、吸入管、冷凝器出口温度等的温度情况进行系统控制。
本发明通过上述特征,使得旋转压缩机相关的气体冷媒注入系统控制简易化,可容易地应用所提供的旋转压缩机。例如,可使用低成本的毛细管,代替以往所需的流量控制阀。但是,需要优化毛细管的设计,当然,也可使用上述的流量控制阀。
在公开技术中,以通过冷媒注入装置来注入气体冷媒为中心,进行了说明;使用混合液体冷媒与气体冷媒的方法,具有降低吐出气体温度的效果。在公开的技术中,使用了有利于冷媒注入量的止回阀;注入冷媒到气缸压缩腔的手段有多种,并非只限定为本发明公开技术的手段。
本发明公开的降低吐油量手段,(1)正如一般的旋转压缩机,从第一气缸23a吐出的中间压气体流到电机部22的上部空间,含有中间压气体的大量喷雾状的油被高温的线圈22f加热后,变为细粒化的油;(2)通过高速旋转的转子圆板22e,可防止细粒化的油进入转子气孔22c;(3)被油分离的中间压气体从转子气孔22c吸入到第二气缸23b。
通过这三个行程,可防止油进入第二气缸压缩腔24b中,可大幅度减少从吐出管3吐出的油、即系统循环的吐油量。其结果是,可防止吐油量过多所导致的压缩机缺油及系统效率下降。
作为从转子气孔22c吸入中间压气体到第二气缸23b的技术方案,如公开技术,通过在主轴承25上部设置连通第二气缸压缩腔24b的消音腔,从而容易解决。上述公开技术,与以往技术相比,可大幅度减少吐油量,所以也可取消转子圆板22e的设计。
在本发明这样的把密封壳体作为中间压力的二段压缩式旋转压缩机中,存在着进入第2段第二气缸的油不能在密封壳体中进行油分离、而直接吐油到系统中的课题。可使用提供的技术,解决该课题。
公开的降低吐油量手段,是从气体冷媒注入技术中独立出来的技术,所以可广泛应用到二段压缩式旋转压缩机上。
本发明采用直流变频式电机的设计,不需要转子的端环。此时,通过缩小气体导入筒33c上端和转子下端的间隙,或者将相当于端环的冲压零部件固定到转子上,从而减小冲压零部件与气体导入筒33c之间的间隙等手段,可容易解决。在本发明公开的图纸中,第二气缸的排量比第一气缸设计得小;当然,也可适当地调整两个气缸的排量比率。把第一气缸作为第1段压缩,把第二气缸作为第2段压缩;当然,可也将其顺序调换,顺序调换后、与公开技术相比,其构成、作用、效果都不会有太大的差异。
第二实施例
参见图6,通过使用U形管41、从第二气缸23b的侧面吸入电动机部22上部中间压气体的方法,可获得与公开技术相同的效果。但是,通过该方法,不能使用转子圆板,所以会使油分离机能大幅度下降、且成本变高。
其余未述部分见第一实施例,不再重复。
综上所述,本发明公开的技术,容易将旋转压缩机相关的喷气技术应用到系统上,在生产事业上的利用价值大。

Claims (11)

  1. 一种旋转压缩机,包括设置在密封壳体(1)内的电机部(22)和作二段压缩式的压缩机构部(21),电机部(22)包括定子和转子(22b),压缩机构部(21)包括第一气缸(23a)和第二气缸(23b)、驱动第一活塞(28a)和第二活塞(28b)分别在第一气缸压缩腔(24a)和第二气缸压缩腔(24b)内作偏心旋转的曲轴(27)、以及支撑曲轴(27)的主轴承(25)和副轴承(26),第一滑片(29a)和第二滑片(29b)的端部分别与第一活塞(28a)和第二活塞(28b)的外周相接,其特征是从第一气缸压缩腔(24a)吐出到密封壳体(1)内的气体被吸入到第二气缸压缩腔(24b)中。
  2. 根据权利要求1所述的旋转压缩机,其特征是所述第二气缸压缩腔(24b)上设置有与其相通的冷媒注入装置(16)。
  3. 根据权利要求1或2所述的旋转压缩机,其特征是所述主轴承(25)上设置有第一吐出阀(35a)和中间压消音器(33),第一吐出阀(35a)连通第一气缸压缩腔(24a)和中间压消音器(33);气体导入筒(33)套设在曲轴(27)外,气体导入筒(33)的一端与中间压消音器(33)相通,气体导入筒(33)的另一端的开口靠近转子(22b),转子(22b)上沿其轴线设置有一个以上贯通的转子气孔(22c),转子气孔(22c)的开口端位于气体导入筒(33)的另一端的开口所在的范围内;气体吐出管(33d)的一端开口于气体导入筒(33)的外侧,气体吐出管(33d)的另一端与中间压消音器(33)相通;气体吸入管(33e)的一端开口于中间压消音器(33)内,气体吸入管(33e)的另一端与第二气缸压缩腔(24b)相通。
  4. 根据权利要求3所述的旋转压缩机,其特征是所述中间压消音器(33)内设置有第一消音腔(33a)和第二消音腔(33b),第一吐出阀(35a)与第一消音腔(33a)相通,气体吐出管(33d)的另一端与第一消音腔(33a)相通,气体吸入管(33e)的一端开口于第二消音腔(33b)内。
  5. 根据权利要求2或4所述的旋转压缩机,其特征是所述冷媒注入装置(16)包括从密封壳体(2)的外侧插入到第二气缸(23b)侧面的圆管(16c)、设置在圆管(16c)中央的第一吐出孔(16a)、设置在第二气缸(23b)上且开孔于第二气缸压缩腔(24b)的第二吐出孔(16b)、连通第一吐出孔(16a)和第二气缸压缩腔(24b)的扩张室以及位于扩张室内用于开闭第一吐出孔(16a)的止回阀(16d)。
  6. 根据权利要求5所述的旋转压缩机,其特征是所述圆管(16c)与冷媒注入管(17)的一端相通,冷媒注入管(17)的另一端与气液分离器(7)的上部空间相通。
  7. 根据权利要求5所述的旋转压缩机,其特征是所述曲轴(27)的上端设置有转子圆板(22e),转子圆板(22e)和转子(22b)的上端之间设置有可通过气体的间隙。
  8. 根据权利要求2所述的旋转压缩机,其特征是所述冷媒注入装置包括U形管(41),该U形管(41)的一端连通位于电机部(22)上方的壳体空间,U形管(41)的另一端连通第二气缸压缩腔(24b)。
  9. 一种旋转压缩机,包括设置在密封壳体(1)内的电机部(22)和作二段压缩式的压缩机构部(21),电机部(22)包括定子和转子(22b),压缩机构部(21)包括第一气缸(23a)和第二气缸(23b)、驱动第一活塞(28a)和第二活塞(28b)分别在第一气缸压缩腔(24a)和第二气缸压缩腔(24b)内作偏心旋转的曲轴(27)、以及支撑曲轴(27)的主轴承(25)和副轴承(26),第一滑片(29a)和第二滑片(29b)的端部分别与第一活塞(28a)和第二活塞(28b)的外周相接,其特征是还包括开孔于第二气缸压缩腔(24b)的冷媒注入装置(16),从第一气缸压缩腔(24a)吐出到密封壳体(1)内的气体被吸入到第二气缸压缩腔(24b)中。
  10. 根据权利要求9所述的旋转压缩机,其特征是所述冷媒注入装置(16)包括从密封壳体(2)的外侧插入到第二气缸(23b)侧面的圆管(16c)、设置在圆管(16c)中央的第一吐出孔(16a)、设置在第二气缸(23b)上且开孔于第二气缸压缩腔(24b)的第二吐出孔(16b)、连通第一吐出孔(16a)和第二气缸压缩腔(24b)的扩张室以及位于扩张室内用于开闭第一吐出孔(16a)的止回阀(16d)。
  11. 根据权利要求10所述的旋转压缩机,其特征是所述圆管(16c)与冷媒注入管(17)的一端相通,冷媒注入管(17)的另一端与气液分离器(7)的上部空间相通。
PCT/CN2010/077124 2010-05-17 2010-09-20 旋转压缩机 WO2011143882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010181068 CN102251964B (zh) 2010-05-17 2010-05-17 旋转压缩机
CN201010181068.6 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011143882A1 true WO2011143882A1 (zh) 2011-11-24

Family

ID=44979458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077124 WO2011143882A1 (zh) 2010-05-17 2010-09-20 旋转压缩机

Country Status (2)

Country Link
CN (1) CN102251964B (zh)
WO (1) WO2011143882A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291624A (zh) * 2012-02-22 2013-09-11 珠海格力节能环保制冷技术研究中心有限公司 一种混合室外置式单机双级全封闭制冷压缩机
WO2015198539A1 (ja) * 2014-06-24 2015-12-30 パナソニックIpマネジメント株式会社 2つのシリンダを持ったロータリ圧縮機
CN112412798A (zh) * 2020-11-30 2021-02-26 安徽美芝精密制造有限公司 隔板组件、压缩机和热泵设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101981096B1 (ko) 2012-10-12 2019-05-22 엘지전자 주식회사 밀폐형 압축기
CN103775342A (zh) * 2014-01-06 2014-05-07 广东美芝制冷设备有限公司 旋转式压缩机
CN103727039A (zh) * 2014-01-08 2014-04-16 广东美芝制冷设备有限公司 两级压缩旋转压缩机及其泵体组件以及空调系统
CN106151049A (zh) * 2015-04-07 2016-11-23 珠海格力节能环保制冷技术研究中心有限公司 压缩机和空调系统
CN105698425B (zh) * 2016-02-22 2018-06-15 广东美芝制冷设备有限公司 制冷装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004219B (zh) * 1984-11-06 1989-05-17 株式会社东芝 旋转式制冷压缩机
JPH02294587A (ja) * 1989-05-09 1990-12-05 Matsushita Electric Ind Co Ltd 2段圧縮型回転圧縮機
JPH0337391A (ja) * 1989-07-04 1991-02-18 Hitachi Ltd ロータリ圧縮機
JP2005264878A (ja) * 2004-03-19 2005-09-29 Sanyo Electric Co Ltd 横形回転圧縮機
CN1227459C (zh) * 2000-03-30 2005-11-16 三洋电机株式会社 多级压缩机
CN100347452C (zh) * 2002-06-05 2007-11-07 三洋电机株式会社 旋转式压缩机及其制造方法和其排除容积比设定方法
CN201025261Y (zh) * 2007-04-26 2008-02-20 珠海格力电器股份有限公司 具有喷气增焓功能的旋转式压缩机
JP2008286037A (ja) * 2007-05-16 2008-11-27 Fujitsu General Ltd ロータリ圧縮機およびヒートポンプシステム
CN101344091A (zh) * 2008-08-16 2009-01-14 广东美芝制冷设备有限公司 旋转式压缩机的冷媒充注装置及其控制方法
CN201351607Y (zh) * 2008-09-10 2009-11-25 珠海格力电器股份有限公司 具有喷气装置的旋转式压缩机
CN101684804A (zh) * 2008-09-27 2010-03-31 乐金电子(天津)电器有限公司 二级旋转压缩机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934056A1 (de) * 1989-10-12 1991-05-08 Zeiss Carl Fa Tastkopf fuer koordinatenmessgeraete

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1004219B (zh) * 1984-11-06 1989-05-17 株式会社东芝 旋转式制冷压缩机
JPH02294587A (ja) * 1989-05-09 1990-12-05 Matsushita Electric Ind Co Ltd 2段圧縮型回転圧縮機
JPH0337391A (ja) * 1989-07-04 1991-02-18 Hitachi Ltd ロータリ圧縮機
CN1227459C (zh) * 2000-03-30 2005-11-16 三洋电机株式会社 多级压缩机
CN100347452C (zh) * 2002-06-05 2007-11-07 三洋电机株式会社 旋转式压缩机及其制造方法和其排除容积比设定方法
JP2005264878A (ja) * 2004-03-19 2005-09-29 Sanyo Electric Co Ltd 横形回転圧縮機
CN201025261Y (zh) * 2007-04-26 2008-02-20 珠海格力电器股份有限公司 具有喷气增焓功能的旋转式压缩机
JP2008286037A (ja) * 2007-05-16 2008-11-27 Fujitsu General Ltd ロータリ圧縮機およびヒートポンプシステム
CN101344091A (zh) * 2008-08-16 2009-01-14 广东美芝制冷设备有限公司 旋转式压缩机的冷媒充注装置及其控制方法
CN201351607Y (zh) * 2008-09-10 2009-11-25 珠海格力电器股份有限公司 具有喷气装置的旋转式压缩机
CN101684804A (zh) * 2008-09-27 2010-03-31 乐金电子(天津)电器有限公司 二级旋转压缩机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291624A (zh) * 2012-02-22 2013-09-11 珠海格力节能环保制冷技术研究中心有限公司 一种混合室外置式单机双级全封闭制冷压缩机
WO2015198539A1 (ja) * 2014-06-24 2015-12-30 パナソニックIpマネジメント株式会社 2つのシリンダを持ったロータリ圧縮機
JPWO2015198539A1 (ja) * 2014-06-24 2017-04-20 パナソニックIpマネジメント株式会社 2つのシリンダを持ったロータリ圧縮機
CN112412798A (zh) * 2020-11-30 2021-02-26 安徽美芝精密制造有限公司 隔板组件、压缩机和热泵设备

Also Published As

Publication number Publication date
CN102251964A (zh) 2011-11-23
CN102251964B (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2011143882A1 (zh) 旋转压缩机
US10378539B2 (en) System including high-side and low-side compressors
CN202851355U (zh) 可单双级互换的双缸压缩机
US8419395B2 (en) Compressor and refrigeration apparatus
US20090241581A1 (en) Expander and heat pump using the expander
CN102725526A (zh) 压缩机和冷冻装置
WO2009062365A1 (fr) Dispositif d'aspiration pour compresseur rotatif à capacité contrôlée
WO2021103552A1 (zh) 压缩机及制冷设备
CN205064266U (zh) 一种卧式压缩机及调温设备
CN107559192A (zh) 一种双级涡旋结构的压缩机
CN106837790A (zh) 一种旋转压缩机、制冷系统及调温设备
CN101344089B (zh) 多汽缸旋转压缩机
CN203248363U (zh) 双模压缩泵体及使用该压缩泵体的双缸压缩机
JP4337820B2 (ja) スクロール型流体機械
CN201321985Y (zh) 一种具有防排油结构的涡旋压缩机
CN104121192B (zh) 双级压缩机
CN201943953U (zh) 带有启动卸载和输气量调节的滚动转子压缩机
CN110594152B (zh) 一种立式双级涡旋压缩机
CN108386354B (zh) 一种双泵体结构的高温热泵压缩机
CN206397738U (zh) 一种旋转压缩机、制冷系统及调温设备
CN207500111U (zh) 一种双级涡旋结构的压缩机
CN111005870A (zh) 双泵体组件、压缩机和空调系统
CN110985385A (zh) 一种压缩机和空调器
JP2009074445A (ja) 2気筒回転式圧縮機および冷凍サイクル装置
JPH03260391A (ja) 密閉型ロータリー圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851639

Country of ref document: EP

Kind code of ref document: A1