WO2011143834A1 - 激光扫描式图像投影仪 - Google Patents

激光扫描式图像投影仪 Download PDF

Info

Publication number
WO2011143834A1
WO2011143834A1 PCT/CN2010/073571 CN2010073571W WO2011143834A1 WO 2011143834 A1 WO2011143834 A1 WO 2011143834A1 CN 2010073571 W CN2010073571 W CN 2010073571W WO 2011143834 A1 WO2011143834 A1 WO 2011143834A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
galvanometer
laser
scanning
image projector
Prior art date
Application number
PCT/CN2010/073571
Other languages
English (en)
French (fr)
Inventor
常晓旺
杨政
李初
Original Assignee
Chang Xiaowang
Yang Zheng
Lee Choo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Xiaowang, Yang Zheng, Lee Choo filed Critical Chang Xiaowang
Publication of WO2011143834A1 publication Critical patent/WO2011143834A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen

Definitions

  • the invention relates to a laser image projector, in particular to a laser scanning image projector with an optimized ultrasonic galvanometer and capable of realizing high definition image and video display, belonging to the technical field of electronic image display.
  • the existing electronic image display technology is mainly divided into two categories, one is a fixed screen display, and the typical implementation includes a cathode ray tube (CRT), a liquid crystal display (LCD), a light-emitting diode screen (LED), etc.; Display, typical implementation includes reflective projection (LCOS) and transmissive projection, where reflective projection refers to a small high-brightness liquid crystal screen that is reflected by an optical system and projected into an enlarged screen.
  • the transmissive projection mainly includes a liquid crystal transmission method. Laser diode (LD) light transmission method and laser diode scanning method.
  • LD Laser diode
  • Laser display is a new generation display technology after black and white display, color display and digital display. It is called "a revolution in the history of human vision". It has the characteristics of wide color gamut, long life, energy saving and environmental protection. For example, traditional display technology can only represent about 30% of the color gamut recognized by the human eye, while laser display technology can cover 90% of the color gamut of the human eye. Due to the narrow spectrum of the laser, high light intensity and good directivity, the laser display technology can achieve a perfect combination of beautiful color performance and large screen display.
  • laser display technology mainly uses two implementation methods.
  • the first one is a projection imaging method using a surface array spatial light modulator, and its schematic diagram is shown in FIG.
  • the red, green and blue lasers are respectively expanded and shimmed and then incident on the corresponding area array spatial modulation light valve.
  • the color laser is colored by the prism and projected onto the screen through the projection lens to obtain a laser display image.
  • This projection display scheme is safe for the human eye because its red, green, and blue lasers have a beam expanding process prior to imaging. Beam expansion is the divergence and focusing of a thin parallel beam into a thicker parallel beam through which the laser has changed from a point source to a surface source.
  • the beam energy is dispersed to make it similar to the energy density of the xenon lamp source.
  • Beijing Zhongshi Zhongke Optoelectronic Technology Co., Ltd. has produced this type of laser display product.
  • the other is a scanning projection imaging method.
  • Specific scanning methods include mechanical mirror scanning and two-dimensional galvanometer scanning based on microelectromechanical systems (MEMS).
  • Figure 2 shows the schematic structure of the mechanical mirror scanning mode.
  • the red, green and blue lasers are respectively incident on the corresponding modulating light valve through the optical lens, and the three colors of light are intensity modulated.
  • the modulated three color lights are combined by lens focusing and prism coloring, and the combined color three colors are first passed.
  • the line mirror completes the line scan, and then scans the field through the field mirror to project the screen to obtain a laser display image.
  • the laser beam scanned in this way has a relatively high energy density, and an excessively large laser beam energy may cause damage to the human eye.
  • the screen of a single projector is not too large, but it can be displayed by multi-machine synthesis.
  • the mechanical scanning mode reference is made to the Chinese patent documents CN1438510A, CN1506712A and CN1139261C.
  • the schematic diagram of the scanning of the two-dimensional galvanometer based on the MEMS process is shown in Fig. 3.
  • the red, green and blue lasers after the modulation and optical lens focusing are combined by the optical prism and projected onto the two-dimensional galvanometer manufactured by the MEMS process.
  • the line scan and the field scan are completed, and the projection lens is projected onto the screen to obtain a laser display image.
  • the US company Micorovi sion has produced this type of laser display product.
  • the biggest advantage of this scanning method is that the two-dimensional galvanometer has a small volume, generally not exceeding 10mmX 10mm.
  • the diaphragm quality is small, the motion inertia still limits its vibration speed.
  • the display resolution of 640 X 480 can be achieved under the field scanning 50Hz.
  • the primary technical problem to be solved by the present invention is to provide a laser scanning image projector (referred to as a laser projector).
  • the laser projector has an optimized ultrasonic galvanometer to meet the requirements of high definition image and video display.
  • Another technical problem to be solved by the present invention is to provide an ultrasonic galvanometer for the above laser projector.
  • a laser scanning image projector includes a circuit portion and an optical and mechanical portion.
  • the control chip is respectively connected to three analog digital signal converters, and the three analog digital signal converters are respectively connected for Three laser diodes showing three primary colors, characterized by:
  • three laser diodes for displaying the three primary colors are connected to the three-color synthesizer, and after the three-color synthesizer completes the combining, the X-ray scanning is completed by the ultrasonic galvanometer, and the moving magnetic type is adopted.
  • the electric galvanometer completes the Y-direction scanning, and then is enlarged by the prismatic mirror and the projection lens to realize projection.
  • the ultrasonic galvanometer comprises two ultrasonic transducers facing each other, and the longitudinal vibration horns of the two ultrasonic transducers are opposite to each other to push the torsional vibration transducer, and the torsional vibration transducer is The first optical mirror on the upper surface produces an offset.
  • the ultrasonic transducer is sequentially connected by an ultrasonic transducer rear load block, a piezoelectric ceramic piece, and a longitudinal vibration horn.
  • the ultrasonic galvanometer that performs the X-direction scan uses the triangular wave rising section for image scanning.
  • the moving magnetic galvanometer includes a coil mounted on a base, the coil is wound on a yoke, and a permanent magnet and a second optical mirror are disposed above the yoke, wherein the second optical reflection A mirror is fixed to the permanent magnet, and the permanent magnet vibrates about a rotating shaft above the yoke.
  • the moving magnetic galvanometer that performs the Y-direction scanning uses the sawtooth rising section to perform image scanning.
  • the circuit part further includes a signal generator and a timing circuit, the control chip is connected to the signal generator and the timing circuit, and the signal generator and the timing circuit are respectively connected to the X scanning device and the Y through the driving circuit Scanning device.
  • An ultrasonic galvanometer for performing X-direction scanning in the above-described laser scanning image projector characterized in that:
  • the ultrasonic galvanometer comprises two ultrasonic transducers facing each other, and the longitudinal vibration horns of the two ultrasonic transducers are oppositely urged to the torsional vibration transducer, so that the torsional vibration transducer is
  • the optical mirror generates an offset; the ultrasonic transducer is sequentially connected by an ultrasonic transducer rear load block, a piezoelectric ceramic piece, and a longitudinal vibration horn.
  • the ultrasonic transducer is of a 1/2 wavelength longitudinal vibration type, which is formed by sequentially connecting the ultrasonic transducer rear load block, the piezoelectric ceramic piece and the 1/4 wavelength longitudinal vibration horn.
  • the longitudinal vibration horn is in the form of a combination of a straight section and an exponential section.
  • the laser scanning image projector provided by the invention designs a novel line scanning ultrasonic galvanometer by elastic mechanics method, thereby effectively reducing the galvanometer frequency required for realizing high-definition image display, and laying a high-definition image and video display for the laser projector.
  • the necessary technical foundation is provided.
  • FIG. 1 is a schematic diagram of a projection imaging method using an area array spatial light modulator
  • Figure 2 is a schematic view of a mechanical mirror scanning mode
  • FIG. 3 is a schematic diagram of scanning of a two-dimensional galvanometer manufactured by a MEMS process
  • FIG. 4 is a schematic block diagram of a circuit portion of a laser projector provided by the present invention
  • FIG. 5 is a schematic block diagram of an optical and mechanical portion of the laser projector
  • FIG. 6 is a schematic structural view of an ultrasonic galvanometer used in the laser projector
  • Fig. 7 is a schematic structural view of a moving magnetic type electric vibrating mirror used in the laser projector
  • Fig. 8 to Fig. 10 are respectively schematic diagrams showing the off angle of the optical mirror used in the laser projector in an operating state.
  • FIG. 4 is a schematic block diagram of the circuit portion of the laser projector.
  • a Field-Programmable Gate Array (FPGA) as a control chip is respectively coupled with three analog-to-digital converters (D/A), a signal generator (Generator), and a timing.
  • the circuit (Timer) implements the connection.
  • Three analog-to-digital converters (D/A) are connected to the laser diodes of the three primary colors via three driver circuits, and the generator and the timer are also driven by two drive circuits. (Driver) Connect the X scanner and the Y scanner.
  • the RGB three-color digital modulation signal is respectively formed into an analog signal by three analog digital signal converters connected to the FPGA, and the analog modulation signals are respectively output to three through three driving circuits.
  • the signal generator generates X and Y two-way scanning signals, which are respectively output to the X-scan device and the Y-scan device via two driving circuits.
  • the timing circuit generates the clock signal required by the FPGA based on the frequency of the signal generator.
  • the FPGA shown in FIG. 4 is only one example of the control chip.
  • the control chip can also be implemented by a single chip microcomputer or an MCU (micro controller). The common knowledge of those skilled in the art will not be described in detail herein.
  • FIG. 5 is a schematic block diagram of the optical and mechanical parts of the laser projector.
  • the red laser diode 1, the green laser diode 2, and the blue laser diode 3 are connected above the three-color combiner 4.
  • the three-color synthesizer 4, the ultrasonic galvanometer 5, the moving magnetic galvanometer 6, the prismatic mirror 7, and the projection lens 8 are sequentially placed along the optical path for realizing the projection.
  • the three-color laser modulated by the red laser diode 1, the green laser diode 2, and the blue laser diode 3 is first combined by the three-color synthesizer 4, and then after the X-direction scanning is performed by the ultrasonic galvanometer 5, the moving magnetic type is passed.
  • the galvanometer 6 completes the Y-direction scanning, and is enlarged by the prismatic mirror ⁇ and the projection lens 8 and projected onto the projection screen 9 On.
  • FIG. 6 is a schematic view showing the structure of the ultrasonic galvanometer used in the laser projector.
  • the ultrasonic galvanometer 5 is vibrated by two longitudinally vibrating ultrasonic transducers to push the torsional vibration transducer 13 to cause the optical mirror 14 mounted on the torsional vibration transducer 13 to produce an optical galvanometer angle.
  • Each of the ultrasonic transducers described above is of a 1/2 wavelength longitudinal vibration type, which is formed by sequentially connecting the ultrasonic transducer rear load block 10 and the piezoelectric ceramic sheet 11 and the 1/4 wavelength longitudinal vibration horn 12.
  • the ultrasonic galvanometer in order to solve the frequency problem in the line scanning process, is redesigned by an elastic mechanical method to enable a video display of a high definition image (i.e., a resolution of at least 1920 X1080).
  • a high definition image i.e., a resolution of at least 1920 X1080.
  • the specific dimensions of the segments in the ultrasonic transducer described above are solved based on the piezoelectric equation, the wave equation, and the boundary conditions in the elastic mechanics.
  • the dimensions of the 1/4 wavelength longitudinal vibration horn 12 are also solved based on the wave equation and the boundary conditions.
  • the specific design process and working principle of the ultrasonic galvanometer are described below.
  • the piezoelectric equation is a mathematical expression describing the piezoelectric effect of piezoelectric materials. It relates the elastic properties and dielectric properties of piezoelectric materials to each other. The dielectric properties of piezoelectric materials have electric field strength and electrical displacement. The relationship is determined by:
  • the mechanical properties of the elastomer include stress and strain.
  • the relationship between the two is determined by the generalized Hooke's law and has the following relationship:
  • strain S stress L is a second-order tensor
  • Sij is an elastic compliance coefficient
  • Cij is an elastic stiffness coefficient
  • s u ( Cij ) 1
  • an elastic compliant constant matrix, a dielectric constant matrix, a piezoelectric strain constant matrix, and a stress tensor matrix can be obtained for the piezoelectric material.
  • the piezoelectric equation for the reduction of the subscript under the second type of boundary conditions is:
  • adaptive wave equations can be established in different media and different wave modes .
  • the ultrasonic transducer rear load block and the longitudinal vibration horn are generally regarded as continuous elastic media.
  • the piezoelectric ceramic sheet is also regarded as a continuous elastic medium. Ignore the berth when the cross section of the medium is less than a quarter of the wavelength of the sound speed The loose effect only considers the relationship between the corresponding force of the shaft and the strain. According to Hooke's law: Where T is the stress, F is the elastic force, S(x) is the cross-sectional area at any position X on the axis, Y is the Young's modulus of elasticity, and / is the strain.
  • ⁇ ⁇ is the dielectric wave impedance of the load block 10 and the piezoelectric ceramic sheet 11 after the ultrasonic transducer.
  • the design frequency of the ultrasonic transducer is 54 kHz
  • the torsional vibration converter 13 can also establish a dynamic equation based on the above technical idea, and the specific process will not be described herein.
  • the results are analyzed by ANSYS finite element software. Under the condition of considering the maximum stress value of the material, the input voltage of the piezoelectric ceramic piece 11 based on ⁇ -8 material is VVs is 240V, and the longitudinal vibration amplitude of 1/4 wavelength is obtained.
  • the effect of the optical mirror 14 is not considered. If the effect of the optical mirror 14 is considered, the results are slightly different, but are within the range that one of ordinary skill in the art can grasp.
  • the ultrasonic transducer in the present invention has a maximum longitudinal amplitude of up to 150 ⁇ ⁇ by mathematical modeling calculation! ⁇ 160 ⁇ m.
  • the torsional vibration transducer 13 has a torsion angle of ⁇ 3. 5° when the longitudinal vibration amplitude of the ultrasonic transducer is 150 ⁇ m.
  • Fig. 7 is a schematic structural view of a moving magnetic type galvanometer.
  • the moving magnetic galvanometer 6 adopts the design principle of ordinary electromagnetic mechanics, and will not be described in detail herein.
  • a coil 16 is mounted on the base 20, and the coil 16 is wound around the yoke 15.
  • a permanent magnet 17 and an optical mirror 19 are disposed above the yoke 15, wherein the optical mirror 19 is fixedly disposed above the permanent magnet 17, and the permanent magnet 17 is rotatable about the rotating shaft 18 above the yoke 15.
  • the coil 16 passes through an alternating current, and magnetic transformation occurs at both ends of the yoke 15, and the permanent magnet 17 is attracted or repelled around the rotating shaft 18 to generate vibration.
  • the optical mirror 19 moves with the permanent magnet 17, and the speed and angle of motion depend on the frequency and intensity of the alternating current.
  • the angling angle of the optical mirror under working conditions is further analyzed below.
  • 21 is incident light at 45° with the optical mirror
  • 22 is reflected light equal to the incident light angle
  • 23 is an optical mirror.
  • the vibration angle of the optical mirror 23 is a
  • the vibration angle of the reflected light is 2 ot according to the principle of optical basic reflection.
  • the torsion angle of the ultrasonic galvanometer 5 is ⁇ 2°
  • the width of the moving magnetic galvanometer 6 is about 4.19 mm
  • the moving magnetic galvanometer 6 The distance from the projection lens 8 is 80 legs.
  • the off angle of the moving magnetic galvanometer 6 should be ⁇ 1. 97 °.
  • the ultrasonic transducer in the ultrasonic galvanometer is usually driven by a sine wave, but the linearity of the sinusoidal waveform tangential line is poor. If the X-direction scanning is performed, the linear unevenness of the color point distribution tends to occur.
  • the ultrasonic galvanometer 5 performing the X-direction scanning uses the triangular wave rising section for image scanning, the falling section is retrace, and no image signal is output. The linearity of the tangential line of the triangular wave is uniform, and the maximum slope of the tangential line is smaller than the sine wave.
  • the triangular wave waveform with a slight crest can drive the ultrasonic transducer.
  • the moving magnetic galvanometer 6 that performs the Y-direction scanning uses the sawtooth rising section to perform image scanning, the falling section is retrace, and no image signal is output.
  • the circuit portion shown in Figure 4 can be designed to accommodate both of the above scanning methods.
  • the scanning frequency of the ultrasonic galvanometer is usually 20 kHz to 200 kHz. If the field scan frequency is 50 frames per second and the image resolution is 1920 X 1080, the ultrasonic galvanometer scan frequency is 54 kHz. If the field scanning frequency is 100 frames per second and the resolution is constant, the scanning frequency of the ultrasonic galvanometer is still 54 kHz, and the high-definition image display can also be realized by interlaced scanning. It is relatively easy to realize the ultrasonic vibration of the above frequency, and therefore the video display of the high definition image can be conveniently realized by the laser projector provided by the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

激光扫描式图像投影仪 技术领域
本发明涉及一种激光图像投影仪, 尤其涉及一种具有经过优化设计 的超声振镜, 能够实现高清图像视频显示的激光扫描式图像投影仪, 属于 电子图像显示技术领域。
背景技术
现有的电子图像显示技术主要分为两大类, 一是固定屏幕显示, 典型 的实现方式包括阴极射线管(CRT)、液晶屏(LCD)、发光二极管屏(LED) 等; 二是投影方式显示, 典型的实现方式包括反射式投影 (LCOS)和透射式 投影, 其中反射式投影是指小型高亮度液晶屏经过光学系统反射后投影成 扩大的屏幕, 透射式投影主要包括液晶透光方式、 激光二极管(LD)透光 方式和激光二极管扫描方式等。
激光显示是继黑白显示、 彩色显示、 数字显示之后的新一代显示 技术, 被称为 "人类视觉史上的一次革命", 其具有色域范围广、 寿命 长、 节能环保等方面的特点。 例如传统显示技术只能表现人眼所识别 的色域的 30 %左右, 而激光显示技术可覆盖人眼色域的 90 %。 由于激 光的光谱窄、 光强度高、 方向性好, 因此激光显示技术可以实现唯美的色 彩表现与大屏幕显示的完美结合。
目前,激光显示技术主要采用两种实施方式。第一种是采用面阵空间 光调制器的投影成像方式, 其示意图如图 1所示。 红、 绿、 蓝三色激光分 别经过扩束、 匀场后入射到相对应的面阵空间调制光阀上, 经调制后的三 色激光由棱镜合色后经投影透镜投射到屏幕, 得到激光显示图像。 这种投 影显示的方案对人眼是安全的, 因为其红绿蓝激光在成像前有一个扩束的 过程。 扩束就是将较细的平行光束经透镜发散和聚焦成较粗的平行光束, 这时激光已经从点光源变成了面光源。 三色激光扩束后光束能量被分散, 使其与氙灯光源能量密度相近。 2008年 7月, 北京中视中科光电技术有限 公司已生产出该类型的激光显示产品。
另一种是采用扫描式的投影成像方式。 具体的扫描方式有机械转镜扫 描和基于微电子机械系统(MEMS, Micro Electro Mechanical systems)工 艺制造的二维振镜扫描。图 2显示了机械转镜扫描方式的示意性结构。红、 绿、 蓝三色激光分别经光学透镜入射到相对应的调制光阀上, 对三色光进 行强度调制, 调制后的三色光经透镜聚焦和棱镜合色, 合色后的三色光先 经行旋镜完成行扫描, 再经场旋镜完成场扫描后投射到屏幕, 得到激光显 示图像。 以此种方式扫描的激光束能量密度比较大, 过大的激光光束能量 可能对人眼造成伤害。 从能量安全角度看, 单台投影机屏幕不易过大, 但 可通过多机合成的方式来完成显示。 关于机械转镜扫描方式的进一步说 明, 可以参考中国专利文献 CN1438510A、 CN1506712A和 CN1139261C。
机械转镜扫描方式在显示高清图像方面有一定难度。 由于高清图像分 辨率最低标准为 1920 X 1080, 如果场扫描频率为 50Hz, 行扫描频率将达 到 54kHz, 即使行旋镜一周为 36面棱镜, 其旋转速度 n (rpm)应为: n = 54 X 103÷ 36 X 60 = 90000 rpm。 目前普通电机最高转速只能达到 30000rpm, 显然达不到高清显示的要求,只有磁悬浮电机可达到此转速,但成本较高, 不利于推广使用。 基于 MEMS工艺制造的二维振镜的扫描示意图如图 3所示, 调制和光 学透镜聚焦后的红、 绿、 蓝三色激光经光学棱镜合光, 投射到 MEMS 工艺 制造的二维振镜上, 同时完成了行扫描和场扫描,经投影透镜投射到屏幕, 得到激光显示图像。 目前, 美国 Micorovi sion 公司已经生产出该类型的 激光显示产品。此种扫描方式的最大优点在于二维振镜体积很小, 一般不 超过 10mmX 10mm。 但是, 由于采用了刚体振动方式, 虽然振片质量很小, 但是运动惯量还是制约了其振动速度, 目前在场扫描 50Hz 条件下, 能实 现的显示分辨率为 640 X 480。
总而言之, 现有的两种机械扫描方式或受电机转速的限制, 或受振镜 惯性质量的影响, 在目前条件下不可能完成高清图像视频显示对行扫描的 要求。
发明内容
本发明所要解决的首要技术问题在于提供一种激光扫描式图像投 影仪 (简称激光投影仪)。 该激光投影仪具有经过优化设计的超声振镜, 能够满足高清图像视频显示的要求。
本发明还要解决的另外一个技术问题在于提供一种用于上述激光 投影仪的超声振镜。
为实现上述的发明目的, 本发明采用下述的技术方案:
一种激光扫描式图像投影仪, 包括电路部分和光学与机械部分, 在电 路部分中, 控制芯片分别与三个模拟数字信号转换器实现连接, 三个所述 模拟数字信号转换器分别连接用于显示三原色的三个激光二级管, 其特征 在于: 在光学与机械部分中, 用于显示三原色的三个激光二级管连接在三色 合成器上, 所述三色合成器完成合光后, 通过超声振镜完成 X向扫描, 通 过动磁式电振镜完成 Y向扫描, 再经过棱形反射镜及投影镜头放大后实现 投影。
其中较优地, 所述超声振镜包括两个相向振动的超声换能器, 两个所 述超声换能器中的纵向振动变幅杆相向推动扭转振动变换器, 使所述扭转 振动变换器上的第一光学反射镜产生偏移。
所述超声换能器由超声换能器后负载块、 压电陶瓷片以及纵向振动变 幅杆顺序连接而成。
进行 X向扫描的超声振镜使用三角波上升段进行图像扫描。
所述动磁式电振镜包括安装在基体上的线圈, 所述线圈缠绕在轭铁 上, 在所述轭铁的上方设置有永久磁铁和第二光学反射镜, 其中所述第二 光学反射镜固定在所述永久磁铁上, 所述永久磁铁绕所述轭铁上方的旋转 轴振动。
进行 Y向扫描的动磁式电振镜使用锯齿波上升段进行图像扫描。
所述电路部分中还包括信号发生器和定时电路, 所述控制芯片连接所 述信号发生器和所述定时电路, 所述信号发生器和所述定时电路分别经驱 动电路连接 X扫描装置及 Y扫描装置。
一种超声振镜,用于在上述的激光扫描式图像投影仪中实现 X向扫描, 其特征在于:
所述超声振镜包括两个相向振动的超声换能器, 两个所述超声换能器 中的纵向振动变幅杆相向推动扭转振动变换器, 使所述扭转振动变换器上 的光学反射镜产生偏移; 所述超声换能器由超声换能器后负载块、 压电陶 瓷片以及纵向振动变幅杆顺序连接而成。
其中较优地, 所述超声换能器为 1/2波长纵向振动类型, 由超声换能 器后负载块、 压电陶瓷片以及 1/4波长的纵向振动变幅杆顺序连接而成。
所述纵向振动变幅杆采用平直段与指数段复合的形式。
本发明所提供的激光扫描式图像投影仪通过弹性力学方法设计了新 型的行扫描超声振镜, 从而有效降低了实现高清图像显示所需的振镜频 率, 为激光投影仪实现高清图像视频显示奠定了必要的技术基础。
附图说明
下面结合附图和具体实施方式对本发明作进一步的详细说明。 图 1为采用面阵空间光调制器的投影成像方式的示意图;
图 2为机械转镜扫描方式的示意图;
图 3为基于 MEMS工艺制造的二维振镜的扫描示意图;
图 4为本发明所提供的激光投影仪的电路部分的原理框图; 图 5为本激光投影仪的光学与机械部分的原理框图;
图 6为本激光投影仪中使用的超声振镜的结构示意图;
图 7为本激光投影仪中使用的动磁式电振镜的结构示意图; 图 8〜图 10分别为本激光投影仪中使用的光学反射镜在工作状态下 的偏角示意图。
具体实施方式
本发明所提供的激光投影仪包括电路部分和光学与机械部分。下面分 别结合附图进行详细的说明。 图 4为本激光投影仪的电路部分的原理框图。如图 4所示, 作为控制 芯片的现场可编程门阵列电路 (FPGA, Field-Programmable Gate Array) 分别与三个模拟数字信号转换器 (D/A)、 一个信号发生器 (Generator) 及一个定时电路 (Timer) 实现连接。 三个模拟数字信号转换器 (D/A) 分 别经过三个驱动电路 (Driver) 连接显示三原色的激光二级管, 同时信号 发生器 (Generator ) 和定时电路 (Timer ) 也分别经过两个驱动电路 (Driver) 连接 X扫描装置及 Y扫描装置。 用于图像显示的 AV信号输入 FPGA处理后, RGB三色数字调制信号分别经三个与 FPGA相连接的模拟数 字信号转换器形成模拟信号, 再分别通过三个驱动电路将模拟调制信号输 出到三色激光二级管 R LD、 0)和8 0)。 同时, 信号发生器产生 X、 Y两 路扫描信号, 分别经两个驱动电路输出至 X扫描装置及 Y扫描装置。 定时 电路根据信号发生器的频率产生 FPGA所需的时钟信号。 需要说明的是, 图 4所示的 FPGA只是控制芯片的一个示例。 该控制芯片也可以采用单片 机或者 MCU (微控制器) 实现。 作为本领域普通技术人员的公知常识, 在 此就不详细赘述了。
图 5为本激光投影仪的光学与机械部分的原理框图。如图 5所示, 红 色激光二极管 1、 绿色激光二极管 2和蓝色激光二极管 3连接在三色合成 器 4之上。 三色合成器 4、 超声振镜 5、 动磁式电振镜 6、 棱形反射镜 7和 投影镜头 8沿实现投影的光路顺序放置。 通过红色激光二极管 1、 绿色激 光二极管 2和蓝色激光二极管 3调制后的三色激光首先经三色合成器 4完 成合光, 然后通过超声振镜 5完成 X向扫描后, 通过动磁式电振镜 6完成 Y向扫描, 并经过棱形反射镜 Ί及投影镜头 8放大后投射到投影屏幕 9之 上。
图 6为本激光投影仪中使用的超声振镜的结构示意图。 如图 6所示, 超声振镜 5由两个纵向振动的超声换能器相向振动, 推动扭转振动变换器 13, 使安装在扭转振动变换器 13上的光学反射镜 14产生光学振镜角的偏 移。 上述的每一个超声换能器为 1/2波长纵向振动类型, 由超声换能器后 负载块 10和压电陶瓷片 11以及 1/4波长的纵向振动变幅杆 12顺序连接 而成。
在本发明中, 为了解决行扫描过程中的频率问题, 通过弹性力学方法 重新设计超声振镜, 使其能够完成高清图像 (即分辨率至少不低于 1920 X1080) 的视频显示。 具体而言, 上述超声换能器中各段的具体尺寸是根 据弹性力学中的压电方程、 波动方程以及边界条件求解得出的。 1/4波长 的纵向振动变幅杆 12 中各段的尺寸也是根据波动方程以及边界条件求解 得出的。 下面对该超声振镜的具体设计过程和工作原理进行说明。
众所周知, 压电方程是描述压电材料压电效应的数学表达式, 它将压 电材料的弹性性能和介电性能互相联系起来, 压电材料介电性能的量有电 场强度和电位移, 二者的关系由下式决定:
Dm=^mnEn m, n=l, 2, 3 (1) 其中, n为介电常数, En为电场强度
弹性体力学性质参数包括应力和应变, 二者的关系由广义胡克定律决 定, 有如下关系:
i, j = l, 2, 3-, 6 (2)
Figure imgf000009_0001
i, j = l, 2, 3-, 6 (3) 其中, 应变 Si, 应力 L为二阶张量, Sij为弹性柔顺系数, Cij为弹性劲 度系数, su= ( Cij ) 1
根据上述的公式, 对于压电材料可以得到弹性柔顺常数矩阵、 介电常 数矩阵、 压电应变常数矩阵和应力张量矩阵。
根据上述的各类矩阵及边界条件, 在压电振动模式下共有四类压电方 程。 在本发明中使用的是第二类边界条件即机械夹持和电学短路。 第二类 边界条件下缩简下标的压电方程为:
T = cES-etE (4) D = eS+ ε Έ ( 5 ) 上述的压电方程以及压电材料性能参数在使用 ANSYS有限元分析软件 进行分析时采用。
另一方面, 当平面波在介质中沿 X轴方向传播时, 记单位面积上厚度 为 dx, 其介质质量为 P, 对介质施加的作用力为 T, 介质的位移为 ξ, 振速为 u, 则这段介质的运动方程为:
, Θ 2 ξ 8 Τ
p ax · ~ = - ax
d 1 d x (6 ) 或简化为, d d x d t ( 7) 根据上述的运动方程, 在不同的介质和不同的波型情况中, 可以建立 出相适应的波动方程。
在实际的工程设计中, 一般将超声换能器后负载块和纵向振动变幅杆 看作连续弹性介质。 同时, 为了避免设计过程中的复杂性, 也将压电陶瓷 片看作连续弹性介质。 当介质的横截面小于声速波长四分之一时, 忽略泊 松效应, 只考虑轴相应力与应变的关系。 根据胡克定律有:
Figure imgf000011_0001
其中 T为应力, F为弹性力, S(x)为轴上任意位置 X处的截面积, Y 为杨氏弹性模量, /&为应变。
当 dx段上弹性增量为:
Figure imgf000011_0002
由式 (9) 及上述的运动方程, 有下列方程:
Figure imgf000011_0003
因为声速 C=(Y/ P)1/2, 介质简谐振动 ξ = ξ , 因此满足上述条 件的方程简化为:
d 2 ξ 1 d S ( x ) 8 ξ
+ k 1 ξ
d χ 2 S ( x ) d x d x
(11) 其中 k为波数, k= c /c
对于由超声换能器后负载块 10和压电陶瓷片 11构成的四分之一波长 换能器, 其边界条件为: un(0)=0, υπ(1π) =υ10(0), u10(l10) =uf, Fn(ln) =F10 (0), F10 (lio)
Figure imgf000011_0004
当^=0时, 由方程 (11) 及边界条件可得频率方程如下:
tgkiiliitgkiollO = Zn/Zi (12) 其中 Ζ Ζη为超声换能器后负载块 10和压电陶瓷片 11的介质波阻抗。 如果超声换能器的设计频率为 54kHz, 利用上述的计算结果可知当选 用 PZT-8材料作为压电陶瓷片 11时, 其参数声速 CuzSgOOm/s, 密度 P = 7600kg/m3, 直径 Φ = 14匪; 选用 LY12硬铝材料制作超声换能器后负载 块 10时, 其参数声速 Cl。 = 5180m/s、密度 P 1Q=2700kg/m3、直径 Φ = 14匪, 压电陶瓷片 11的 ln = 7mm, 超声换能器后负载块 10的 110=7. 4匪。
同理, 如果 1/4波长的纵向振动变幅杆 12采用图 6所示的平直段与 指数段复合的形式, 由上述方法推导频率方程如下:
tg ihiA =T- + il- (" ")2 ct§kUB hie
(13)
Figure imgf000012_0001
( 15 ) 其中 112A为平直段长度, 112B为指数段长度, β为指数形状参数。
如果 1/4波长的纵向振动变幅杆 12的设计频率为 54kHz,利用上述的 计算结果可知当选用 BT-4钛合金材料时, 其参数声速 c12 = 5200m/s, 密度 P 12 = 4500kg/m3, 平直段直径 Φ = 14匪, 指数段前端直径 Φ = 14匪, 后端 直径 Φ =3. 3匪, 平直段长度 112Α=5匪, 指数段长度 112Β=27. 5匪。
根据波动方程及边界条件, 可以推导出纵向振动的超声换能器的最大 应力点, 最大振幅等表达式。 因此, 所设计的 1/4波长的纵向振动变幅杆 12的前端振幅最大可达 ξ m= 130 μ m。
另外, 扭转振动变换器 13 也可以基于上述的技术思路建立动力学方 程, 具体过程在此不予赘述。 在其中的一个具体实施例中, 材料选择 BT-4 钛合金, 实际尺寸外径 Φ ο = 8匪, 内径 Φ ί = 4匪。 整体建模后用 ANSYS有 限元软件分析结果如下, 在考虑材料最大应力值情况下, 基于 ΡΖΤ-8材料 的压电陶瓷片 11的输入电压为 Vrms为 240V, 1/4波长的纵向振动变幅 杆 12的前端为纵向和弯曲振动复合形态, 纵向为 X向, 其中 ξ χπι= 117 μ m, 横向为 Y向 ξ γπι= 10 μ πι, 轴向旋转角 θ = ± 3. 35° , 在此未考虑光学 反射镜 14的影响。 如果考虑光学反射镜 14的影响, 结果稍有不同, 但都 在本领域普通技术人员能够掌握的范围之内。
通过数学上的建模计算, 本发明中的超声换能器的最大纵向振幅可达 150 μ π!〜 160 μ m。扭转振动变换器 13在超声换能器的纵向振动幅度为 150 μ πι时, 扭转角度可达 ± 3. 5° 。
图 7为动磁式电振镜的结构示意图。 该动磁式电振镜 6采用普通电磁 力学的设计原理, 在此就不详细赘述了。 如图 Ί所示, 在基体 20之上安 装有线圈 16, 该线圈 16缠绕在轭铁 15之上。 在轭铁 15的上方设置有永 久磁铁 17和光学反射镜 19, 其中光学反射镜 19固定设置在永久磁铁 17 之上, 永久磁铁 17可以绕轭铁 15上方的旋转轴 18振动。动磁式电振镜 6 在工作时, 线圈 16通过交变电流, 轭铁 15两端产生磁性变换, 永久磁铁 17受到吸引或排斥绕旋转轴 18产生振动。 光学反射镜 19随永久磁铁 17 运动, 运动的速度与角度取决于交变电流的频率与强度。
下面进一步分析光学反射镜在工作状态下的偏角情况。 如图 8〜图 10 所示, 其中 21为与光学反射镜成 45° 的入射光, 22为与入射光角相等的 反射光, 23为光学反射镜。 当光学反射镜 23的振动角为 a时, 根据光学 的基本反射原理,反射光的振动角为 2 ot。如图 10所示,按照几何学原理, L与 H有如下关系: H=L*2tan a。 如果超声振镜 5的扭转角度为 ± 2° , 距动磁式电振镜 6 的距离 L = 60mm, 投影到动磁式电振镜 6 的宽度约为 4. 19mm, 动磁式电振镜 6距投影镜头 8的距离为 80腿。 在 16: 9图像比例 下, 动磁式电振镜 6的偏角应为 ± 1. 97 ° 。
图 5所示的光学与机械部分直接决定了电路部分的扫描方式。在现有 技术中, 超声振镜中的超声换能器通常采用正弦波驱动, 但正弦波波形切 线的线性度较差,若进行 X向扫描,往往会出现色点分布线性不均的缺陷。 在本发明中,进行 X向扫描的超声振镜 5使用三角波上升段进行图像扫描, 下降段为回扫, 没有图像信号输出。 三角波波形切线的线性度均匀, 且波 形切线最大斜率小于正弦波, 实际略微切顶的三角波波形就可以驱动超声 换能器。进行 Y向扫描的动磁式电振镜 6使用锯齿波上升段进行图像扫描, 下降段为回扫, 也没有图像信号输出。 图 4所示的电路部分的设计可以兼 顾上述两种扫描方式。
在显示高清图像时, 通常情况下超声振镜的扫描频率可达 20kHz〜 200kHz。 如果场扫描频率为每秒钟 50帧, 图像分辨率为 1920 X 1080, 则 超声振镜的扫描频率为 54kHz。 如果场扫描频率为每秒钟 100帧, 分辨率 不变, 超声振镜的扫描频率仍为 54kHz, 也可以采用隔行扫描方式实现高 清图像显示。 实现上述频率的超声振动是比较容易的, 因此利用本发明所 提供的激光投影仪可以方便地实现高清图像的视频显示。
以上对本发明所提供的激光扫描式图像投影仪进行了详细的说明。 对本领域的技术人员而言,在不背离本发明实质精神的前提下对它所做 的任何显而易见的改动, 都将构成对本发明专利权的侵犯, 将承担相应 的法律责任。

Claims

权 利 要 求
1. 一种激光扫描式图像投影仪, 包括电路部分和光学与机械部分, 在电路部分中, 控制芯片分别与三个模拟数字信号转换器实现连接, 三个 所述模拟数字信号转换器分别连接用于显示三原色的三个激光二级管, 其 特征在于:
在光学与机械部分中, 用于显示三原色的三个激光二级管连接在三色 合成器上, 所述三色合成器完成合光后, 通过超声振镜完成 X向扫描, 通 过动磁式电振镜完成 Y向扫描, 再经过棱形反射镜及投影镜头放大后实现 投影。
2. 如权利要求 1所述的激光扫描式图像投影仪, 其特征在于: 所述超声振镜包括两个相向振动的超声换能器, 两个所述超声换能器 中的纵向振动变幅杆相向推动扭转振动变换器, 使所述扭转振动变换器上 的第一光学反射镜产生偏移。
3. 如权利要求 2所述的激光扫描式图像投影仪, 其特征在于: 所述超声换能器由超声换能器后负载块、 压电陶瓷片以及纵向振动变 幅杆顺序连接而成。
4. 如权利要求 1或 2所述的激光扫描式图像投影仪, 其特征在于: 进行 X向扫描的超声振镜使用三角波上升段进行图像扫描。
5. 如权利要求 1所述的激光扫描式图像投影仪, 其特征在于: 所述动磁式电振镜包括安装在基体上的线圈, 所述线圈缠绕在轭铁 上, 在所述轭铁的上方设置有永久磁铁和第二光学反射镜, 其中所述第二 光学反射镜固定在所述永久磁铁上, 所述永久磁铁绕所述轭铁上方的旋转 轴振动。
6. 如权利要求 1或 5所述的激光扫描式图像投影仪, 其特征在于: 进行 Y向扫描的动磁式电振镜使用锯齿波上升段进行图像扫描。
7. 如权利要求 1所述的激光扫描式图像投影仪, 其特征在于: 所述电路部分中还包括信号发生器和定时电路, 所述控制芯片连接所 述信号发生器和所述定时电路, 所述信号发生器和所述定时电路分别经驱 动电路连接 X扫描装置及 Y扫描装置。
8. 一种超声振镜, 用于在如权利要求 1 所述的激光扫描式图像投影 仪中实现 X向扫描, 其特征在于:
所述超声振镜包括两个相向振动的超声换能器, 两个所述超声换能器 中的纵向振动变幅杆相向推动扭转振动变换器, 使所述扭转振动变换器上 的光学反射镜产生偏移; 所述超声换能器由超声换能器后负载块、 压电陶 瓷片以及纵向振动变幅杆顺序连接而成。
9. 如权利要求 8所述的超声振镜, 其特征在于:
所述超声换能器为 1/2波长纵向振动类型, 由超声换能器后负载块、 压电陶瓷片以及 1/4波长的纵向振动变幅杆顺序连接而成。
10. 如权利要求 8或 9所述的超声振镜, 其特征在于:
所述纵向振动变幅杆采用平直段与指数段复合的形式。
PCT/CN2010/073571 2010-05-21 2010-06-04 激光扫描式图像投影仪 WO2011143834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010179954 CN102253487B (zh) 2010-05-21 2010-05-21 激光扫描式图像投影仪
CN201010179954.5 2010-05-21

Publications (1)

Publication Number Publication Date
WO2011143834A1 true WO2011143834A1 (zh) 2011-11-24

Family

ID=44980840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073571 WO2011143834A1 (zh) 2010-05-21 2010-06-04 激光扫描式图像投影仪

Country Status (2)

Country Link
CN (1) CN102253487B (zh)
WO (1) WO2011143834A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3751324A3 (en) * 2019-06-14 2021-03-31 Tdk Taiwan Corp. Optical element driving mechanism

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916646A (zh) * 2014-04-29 2014-07-09 周毅 激光全彩色显示系统
CN105785696A (zh) * 2014-12-26 2016-07-20 南京理工大学常熟研究院有限公司 一种增强激光扫描投影图像亮度的系统
CN107065420B (zh) * 2017-05-23 2018-10-26 海信集团有限公司 一种投影系统
CN109604813A (zh) * 2018-12-27 2019-04-12 上海骄成机电设备有限公司 一种旋转式超声波换能器
CN110876048A (zh) * 2019-11-29 2020-03-10 上海汽车集团股份有限公司 一种激光扫描投影系统
CN113703250B (zh) * 2020-12-31 2023-04-07 苏州立创致恒电子科技有限公司 一种基于扫描振镜的成像系统及成像方法
CN112802308B (zh) * 2021-01-05 2022-08-16 成都极米科技股份有限公司 一种地震预警方法、装置及投影仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093284A (zh) * 2006-06-20 2007-12-26 三星电子株式会社 利用激光器的显示装置及利用激光器的方法
JP2008051963A (ja) * 2006-08-23 2008-03-06 Sony Corp 画像投射装置
US20080143979A1 (en) * 2006-12-15 2008-06-19 Konica Minolta Opto, Inc. Laser projection device
CN101546104A (zh) * 2008-03-28 2009-09-30 船井电机株式会社 投影型图像显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068901A (ja) * 1996-08-29 1998-03-10 Olympus Optical Co Ltd 2次元スキャナ装置
CN100554188C (zh) * 2006-06-27 2009-10-28 吴为国 水车式增氧机的叠装式叶轮

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093284A (zh) * 2006-06-20 2007-12-26 三星电子株式会社 利用激光器的显示装置及利用激光器的方法
JP2008051963A (ja) * 2006-08-23 2008-03-06 Sony Corp 画像投射装置
US20080143979A1 (en) * 2006-12-15 2008-06-19 Konica Minolta Opto, Inc. Laser projection device
CN101546104A (zh) * 2008-03-28 2009-09-30 船井电机株式会社 投影型图像显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3751324A3 (en) * 2019-06-14 2021-03-31 Tdk Taiwan Corp. Optical element driving mechanism

Also Published As

Publication number Publication date
CN102253487B (zh) 2013-05-22
CN102253487A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2011143834A1 (zh) 激光扫描式图像投影仪
US7922333B2 (en) Projector, screen, projector system, and scintillation removing apparatus for removing scintillation on an image display using a vibration generating unit
JP4574396B2 (ja) 光偏向器
JP5310566B2 (ja) マイクロスキャナ装置およびマイクロスキャナ装置の制御方法
JP5206610B2 (ja) アクチュエータ、光スキャナおよび画像形成装置
US20120206782A1 (en) Device for reducing speckle effect in a display system
US20160139404A1 (en) Light deflector, and devices incorporating the same
JP2008102362A (ja) アクチュエータ、光スキャナ、および画像形成装置
US20120147445A1 (en) Actuator, optical scanner, and image forming apparatus
KR100488461B1 (ko) 레이저 표시장치
KR20060035747A (ko) 레이저 빔 스캐너
US20140118809A1 (en) Optical scanning device, image display apparatus and optical scanning method
JP2008209653A (ja) 光走査装置、網膜走査型表示装置及び光走査装置の製造方法
JP2007010823A (ja) 駆動ミラー及び光走査光学装置並びに画像表示装置
JP6485013B2 (ja) 光偏向器、画像表示装置及び物体装置
JP2011100100A (ja) 光走査装置、画像形成装置および画像投影装置
JP2016033651A (ja) 光偏向器、光走査装置、画像形成装置、画像投影装置及びヘッドアップディスプレイ
JP6682774B2 (ja) 光偏向器、光走査装置、画像形成装置、画像投影装置、ヘッドアップディスプレイ装置、およびレーダ装置
JP5991001B2 (ja) 光学デバイス、光スキャナーおよび画像表示装置
JP2009288800A (ja) アクチュエータ、光スキャナ、および画像形成装置
CN207301488U (zh) 一种mems扫描器及扫描成像系统
JP4720729B2 (ja) 光学デバイス、光スキャナ、および画像形成装置
JP4735608B2 (ja) 画像表示装置
JP5045611B2 (ja) アクチュエータ、光スキャナおよび画像形成装置
JP2010134420A (ja) 光走査装置及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851592

Country of ref document: EP

Kind code of ref document: A1