WO2011142231A1 - コブラアンテナ - Google Patents

コブラアンテナ Download PDF

Info

Publication number
WO2011142231A1
WO2011142231A1 PCT/JP2011/059912 JP2011059912W WO2011142231A1 WO 2011142231 A1 WO2011142231 A1 WO 2011142231A1 JP 2011059912 W JP2011059912 W JP 2011059912W WO 2011142231 A1 WO2011142231 A1 WO 2011142231A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
coaxial line
relay unit
terminal
cobra
Prior art date
Application number
PCT/JP2011/059912
Other languages
English (en)
French (fr)
Inventor
功高 吉野
覚 坪井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN2011800222035A priority Critical patent/CN102870278A/zh
Priority to US13/695,384 priority patent/US20130050042A1/en
Priority to BR112012028296A priority patent/BR112012028296A2/pt
Priority to RU2012146939/08A priority patent/RU2012146939A/ru
Priority to KR1020127028875A priority patent/KR20130070589A/ko
Priority to EP11780488A priority patent/EP2571099A1/en
Publication of WO2011142231A1 publication Critical patent/WO2011142231A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/38Vertical arrangement of element with counterpoise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to a cobra antenna, and more particularly to a technology that can realize a small antenna capable of supporting a wide frequency band such as an FM band to a UHF band with a simple configuration.
  • antennas Conventionally, various types of antennas have been used as antennas for receiving various broadcast waves such as television broadcasts and FM broadcasts.
  • a dipole antenna, a Yagi / Uda antenna, or the like is often used for receiving television broadcasts or FM broadcasts.
  • An antenna used in such a case is required to be easy to handle such as assembly and attachment and to be small.
  • a typical example of such an easy-to-handle antenna is a dipole antenna in which an antenna element is realized with a simple structure.
  • a cobra antenna that uses a coaxial cable (coaxial wire) wound around a ferrite core several times is known (for example, Non-Patent Document 1).
  • the cobra antenna described in Non-Patent Document 1 has a linear shape with a length of ⁇ / 4 ( ⁇ : wavelength of received radio wave) on the upper side as an antenna element with respect to the central conductor (core wire) at the end (feeding point) of the coaxial cable. Conductor is connected. A ferrite core is provided at a distance of ⁇ / 4 downward from the feeding point. A coaxial cable is wound around the ferrite core. Since the choke coil is formed by the ferrite core and the coaxial cable wound around the ferrite core, and the lower feeder portion is separated from the ferrite core, a ⁇ / 4 dipole antenna can be easily formed.
  • Non-Patent Document 2 a closely wound coil-shaped small antenna in which a linear conductor is densely wound in a square has been proposed (for example, Non-Patent Document 2).
  • This close-wound coil-shaped small antenna achieves downsizing and simplification of the structure by closely winding a linear conductor into an open-ended square with an antenna height of about 1/13 wavelength and a total length of about 1/5 wavelength. Yes.
  • the null depth in the zenith direction of the monopole antenna can be improved.
  • the cobra antenna described in Non-Patent Document 1 has a wavelength of 3 m when receiving a broadcast wave of 100 MHz, for example, so that it is 0.75 m ( ⁇ / 4) from the feeding point with an antenna element having only the core wire of the coaxial cable. ) Length is required. In addition, 0.75 m is required from the feeding point to the high-frequency cutoff portion configured by winding the coaxial cable around the ferrite core. The total length of the antenna was 1.50 m, which was very large. In order to function as an antenna, it is necessary to prevent the portion that functions as an antenna from overlapping between the antenna element and the outer sheath of the coaxial line. It was received greatly.
  • the close-wound coil-shaped small antenna described in Non-Patent Document 2 is obtained by extending a conductor element having a total length of about ⁇ / 5 vertically from a coaxial central conductor, bending it in parallel with the ground plane, and pulling it down again toward the ground plane. It is configured to bend parallel to the ground plane and finally to be parallel to the vertical conductor near the feeding point.
  • the resonant frequency of this closely wound coil-shaped small antenna mainly depends on the total length L, since it varies depending on the gap between adjacent element gaps s, manufacturing accuracy is required.
  • an antenna having a wide frequency band from the FM band to the UHF band and the like that is small and does not require manufacturing accuracy is desired.
  • a relay unit that constitutes a feeding point and a current generated by reception of radio waves when electrically connected to one terminal of the relay unit and the wavelength of the radio wave is ⁇
  • An antenna element having a plate-like conductor having an area capable of taking a length of ⁇ / 4 as a path flowing to one terminal, a coaxial line having one end electrically connected to the other terminal of the relay unit, and the coaxial
  • a first ferrite core that is provided at a position approximately ⁇ / 4 away from the other terminal of the relay unit to which one end of the wire is connected, and through which the coaxial line passes or is wound.
  • a cobra antenna is provided.
  • the plate-like conductor of the antenna element connected to one terminal of the relay unit may be electrically connected to the coaxial core wire in the relay unit.
  • the plate-like conductor of the antenna element may be a rectangle that is long in the axial direction of the coaxial line.
  • a second ferrite core for cutting off a high-frequency current from the coaxial line is further provided in a front stage of a connector of a receiving device to which the other end of the coaxial line is connected, and the second ferrite core is high-frequency
  • the coaxial line may be penetrated or wound.
  • the length is approximately ⁇ / 4.
  • An antenna element in which a linear conductor is formed in a spiral shape, a coaxial line whose one end is electrically connected to the other terminal of the relay unit, and another relay unit where one end of the coaxial line is connected
  • a cobra antenna provided with a first ferrite core that is provided at a position approximately ⁇ / 4 away from a terminal and on which the coaxial line is wound.
  • the linear conductor of the antenna element connected to one terminal of the relay unit may be electrically connected to the core wire of the coaxial line in the relay unit.
  • the axial direction of the spiral may be the same as the axial direction of the coaxial line.
  • a second ferrite core for cutting off a high-frequency current from the coaxial line is further provided in a front stage of a connector of a receiving device to which the other end of the coaxial line is connected, and the second ferrite core is high-frequency
  • the coaxial line may be penetrated or wound.
  • an antenna having a wide frequency band such as the FM band to the UHF band that is small and does not require manufacturing accuracy.
  • FIG. 1 is an explanatory view showing an example of a conventional cobra antenna.
  • the conventional cobra antenna operates on the same principle as the cobra antenna described in Non-Patent Document 1.
  • a cobra antenna 1 shown in FIG. 1 has an antenna element 2 having a length of ⁇ / 4, a wavelength of a received radio wave, ⁇ / 4, a relay unit 3 as a feeding point, and a coaxial line connected to the relay unit 3 5 (coaxial cable) and a ferromagnetic ferrite core 4.
  • the length of the coaxial line 5 from the relay part 3 to the ferrite core 4 is the same as that of the antenna element 2 ⁇ / 4.
  • the coaxial cable which exposed the core wire partially is used as the antenna element 2, generally it is often comprised only with a linear conductor.
  • the coaxial line 5 is connected to the antenna element 2 via the relay unit 3.
  • the coaxial line 5 is wound about 1 to 3 times around the ferrite core 4 at a position of ⁇ / 4 from the relay unit 3 in the other end direction, and the other end is connected to the connector 6 of the receiver 8.
  • the connector 6 it is desirable to select one having a low loss of high-frequency signals.
  • the antenna element 2 in FIG. 1 uses a coaxial line having the same configuration as the coaxial line 5.
  • the outer sheath (protective coating) 5a and the shield wire (outer conductor) 5b of the coaxial line 5 are removed, and the core material 5c (derivative) is exposed.
  • the core wire 5d of the coaxial line 5 is connected to the core wire of the antenna element 2 by soldering or the like in the relay portion 3, and the relay portion 3 is molded on the substrate 7.
  • This relay unit 3 becomes a feeding point Fp of the cobra antenna 1.
  • the cobra antenna 1 a choke coil is formed by the ferrite core 4 and the coaxial wire 5 wound around the ferrite core 4, and the feeder portion from the ferrite core 4 to the connector 6 is electrically separated. Therefore, the coaxial line 5 (length ⁇ / 4) from the relay unit 3 (feed point Fp) to the ferrite core 4 and the antenna element 2 (length ⁇ / 4) constitute a ⁇ / 2 dipole antenna. become. It is possible to easily install the antenna by attaching an egg glass or the like to the upper portion of the core wire 5d of the dipole antenna to insulate it and suspending it on a tree branch or a wooden frame. Further, the cobra antenna 1 configured as described above can be used as an antenna of a communication device or a mobile device installed in an automobile.
  • a car navigation device mounted on a car can receive a UHF band frequency used in one-segment broadcasting, for example, a 500 MHz broadcast wave. Since the wavelength ⁇ of the broadcast wave is about 60 cm, the length L1 of the coaxial line 5 from the feeding point Fp is adjusted to 15 cm of ⁇ / 4, and the length L2 of the antenna element 2 is adjusted to 15 cm of ⁇ / 4. UHF band antennas can be configured. The length L of the coaxial line 5 from the ferrite core 4 to the connector 6 can be arbitrarily determined by the choke coil effect of the ferrite core 4.
  • the cobra antenna 10 includes an antenna element 2A, a relay unit 3A as a feeding point, a coaxial line 5 connected to the relay unit 3A, and a ferrite core 4 Is provided.
  • the length of the coaxial line 5 from the relay portion 3A to the ferrite core 4 is ⁇ / 4.
  • the coaxial line 5 is connected to the antenna element 2A via the relay portion 3A.
  • the coaxial line 5 is wound about 1 to 3 times around the ferrite core 4 at a position of ⁇ / 4 from the relay portion 3A toward the other end, and the other end is connected to the connector 6 of the receiver 8.
  • One turn generally refers to a state of being penetrated. In this case, in order to fix in this place, it shape
  • the antenna element 2A is configured by a single flat metal plate (plate conductor) 11 fixed to the substrate 7 and casing. A metal material with good conductivity is used for the metal plate 11.
  • the core wire 5d of the coaxial line 5 is connected to the metal plate 11 of the antenna element 2A at the relay portion 3A by soldering or the like, and the relay portion 3A is molded on the substrate 7.
  • the relay unit 3 ⁇ / b> A serves as a feeding point Fp for the cobra antenna 10.
  • the shape and size of the metal plate 11 can be appropriately determined according to the frequency (wavelength) of the received radio wave, actual antenna characteristics, and the like.
  • the metal plate 11 when receiving a 500 MHz broadcast wave in the UHF band, can be a rectangle having a width of 4 cm and a height of 3 cm as an example, as shown in FIG. 2B.
  • the length of the path 9a until the current (charge) generated in the metal plate 11 when receiving a 500 MHz radio wave flows into the core wire 5d is substantially ⁇ / 4 of 15 cm can be secured.
  • the shape of the metal plate is preferably a rectangle that is long in the length direction of the antenna (axial direction of the coaxial line 5) in consideration of electrical characteristics such as the ease of current flow.
  • the path 9a illustrated in FIG. 2B is an example, and the current can take other complicated paths.
  • FIG. 3A is a graph showing peak gains in vertical polarization and horizontal polarization in the conventional cobra antenna 1 (see FIG. 1).
  • the horizontal axis represents frequency (MHz) and the vertical axis represents peak gain (dBd).
  • the frequency band to be measured was the UHF band (470 MHz to 870 MHz).
  • Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines.
  • 3B and 3C show values at each measurement point in the graph shown in FIG. 3A.
  • FIG. 3B shows the value of the peak gain in the vertical polarization
  • FIG. 3C shows the value of the peak gain in the horizontal polarization.
  • 3B and 3C also show the measured values at 906 MHz that are not in the graph of FIG. 3A.
  • the peak gain value is ⁇ 10 dB or less for both vertical polarization and horizontal polarization, and it can be seen that the antenna gain is obtained. That is, it can be said that both vertical polarization and horizontal polarization can be received in the UHF band.
  • FIG. 4A is a graph showing peak gains in vertical polarization and horizontal polarization in the cobra antenna 10 (see FIG. 2) of the present embodiment.
  • the horizontal axis represents frequency (MHz) and the vertical axis represents peak gain (dBd).
  • the frequency band to be measured was the same UHF band (470 MHz to 870 MHz) as in FIG. 3A.
  • 4B and 4C show values at each measurement point in the graph shown in FIG. 4A.
  • FIG. 4B shows the peak gain value in the vertically polarized wave
  • FIG. 4C shows the peak gain value in the horizontally polarized wave.
  • the peak gain value is ⁇ 10 dB or less for both the vertical polarization and the horizontal polarization, and it can be seen that the antenna gain is obtained.
  • the antenna gain is higher than that of the conventional cobra antenna 1. That is, it can be said that the antenna according to the present embodiment can receive both the vertical polarization and the horizontal polarization in the UHF band, and can ensure the same or better performance as the conventional type even if it is very small.
  • FIG. 5 is an explanatory diagram showing a cobra antenna having a total of two ferrite cores by adding one ferrite core to the cobra antenna 10 (one core product) of FIG.
  • the cobra antenna 10 shown in FIG. 2 is used as an antenna in a wide frequency band from, for example, the FM band to the UHF band
  • radio wave interference occurs due to the length of the coaxial line 5 from the ferrite core 4 to the receiver 8.
  • the radio wave interference that the high-frequency current received by the upper coaxial line 5 extending from the ferrite core 4 to the feeding point Fp leaks from the ferrite core 4 to the lower coaxial line 5 connected to the receiver 8 occurs.
  • the leakage of the high-frequency current is considered to occur due to the impedance mismatch between the upper side and the lower side of the ferrite core 4, but the leakage characteristic may deteriorate the gain characteristics as the antenna.
  • the occurrence of leakage of the high-frequency current depends on the length of the coaxial line 5 connected from the ferrite core 4 to the receiver 8, and is therefore a great limitation in determining the length of the coaxial line 5 between them. Therefore, a cobra antenna having two ferrite cores by adding one ferrite core to the cobra antenna 10 (one core product) of FIG. 2 is considered.
  • the second ferrite core 4A is provided at a position close to the receiver 8, and this ferrite core 4A exhibits high impedance with respect to high frequencies. Therefore, the high-frequency current leaking from the antenna does not propagate to the receiver 8 side.
  • the position of the second ferrite core 4A is more preferably closer to the connector 6 of the receiver 8.
  • the second ferrite core 4 ⁇ / b> A is inserted immediately before the connector 6 of the receiver 8.
  • the coaxial wire 5 may only pass through the hole of the second ferrite core 4A, but the coaxial wire 5 may be wound around the ferrite core 4A about 2 to 3 times before being connected to the connector 6.
  • the second ferrite core 4A is disposed in front of the connector 6, so that the receiver 8 can detect the high frequency current picked up by the coaxial line 5 connecting the ferrite core 4 and the connector 6.
  • the side is set to high impedance. For this reason, even if the high-frequency current leaked from the coaxial wire 5 from the first ferrite core 4 to the connector 6 is picked up, the leaked high-frequency current is blocked by the ferrite core 4A and adversely affects the receiver 8 side. There is no.
  • a metal plate (plate conductor) is used as the antenna element, and the length of the current path necessary for radio wave reception is ensured by appropriately designing the area of the metal plate. .
  • the length of the antenna element can be suppressed to about ⁇ / 4 or less of the wavelength of the received radio wave, and a small antenna can be realized.
  • the arrangement area can be reduced, and convenience can be improved (ease of installation).
  • the antenna element is constituted by a single metal plate, high manufacturing accuracy is not required.
  • the antenna of the present embodiment can maintain the antenna characteristics while realizing miniaturization.
  • the configuration of the antenna has been described on the assumption that the radio waves in the UHF band are received.
  • the antenna element is attached from one metal plate. It goes without saying that the configured antenna can be used.
  • Second Embodiment> [Example of antenna configuration]
  • a configuration example of a cobra antenna when a linear conductor having a helical structure instead of a metal plate is used as an antenna element will be described.
  • the length L2 of the antenna element is 75 cm because the wavelength ⁇ is 3 m. is there.
  • the antenna element for receiving the VHF band is constituted by the antenna element 75 cm and the outer sheath 75 cm of the coaxial line.
  • the antenna length is shortened by using a linear conductor for the antenna element.
  • FIG. 6 is an explanatory diagram illustrating a configuration example of the cobra antenna according to the second embodiment of the present disclosure.
  • the antenna element 2 ⁇ / b> B is configured using a metal wire 13 that is a linear conductor wound in a spiral shape. One end of the metal wire 13 is opened, and the other end is connected to the core wire 5d of the coaxial wire 5 by soldering or the like at the relay portion 3B.
  • the relay portion 3B is molded on the substrate 7.
  • the relay unit 3B serves as a feeding point Fp for the cobra antenna 10B.
  • the spiral metal wire 13 the axial direction of the spiral is the same as the axial direction of the coaxial line 5.
  • FIG. 7A is a graph showing peak gains in vertical polarization and horizontal polarization in the conventional cobra antenna 1 (see FIG. 1).
  • the horizontal axis represents frequency (MHz) and the vertical axis represents peak gain (dBd).
  • the frequency band to be measured was FM / VHF band (70 MHz to 220 MHz).
  • Vertically polarized waves are indicated by broken lines, and horizontally polarized waves are indicated by solid lines.
  • 7B and 7C show values at each measurement point in the graph shown in FIG. 7A.
  • FIG. 7B shows the peak gain value in the vertical polarization
  • FIG. 7C shows the peak gain value in the horizontal polarization.
  • 7B and 7C show only measured values at frequencies between 76 MHz and 107 MHz among the frequencies shown on the horizontal axis of FIG. 7A.
  • the peak gain in the vertically polarized wave is 10.34 dBd at 101 MHz.
  • the peak gain in horizontal polarization is -16.00 dBd at 101 MHz as shown in FIGS. 7A and 7C. That is, in the vicinity of 100 MHz, the peak gain with respect to horizontal polarization is ⁇ 15 dBd or less, and the reception state of horizontal polarization is relatively good.
  • FIG. 8A is a graph showing peak gains in vertical polarization and horizontal polarization in the cobra antenna 10B (see FIG. 6) of the present embodiment.
  • the frequency band to be measured is the same FM / VHF band (70 MHz to 220 MHz) as in FIG. 7A.
  • 8B and 8C show values at each measurement point in the graph shown in FIG. 8A.
  • FIG. 8B shows a peak gain value in the vertical polarization
  • FIG. 8C shows a peak gain value in the horizontal polarization.
  • the peak gain in the vertical polarization is ⁇ 27.34 dBd at 101 MHz.
  • the peak gain in the horizontal polarization is ⁇ 9.87 dBd at 101 MHz as shown in FIGS. 8A and 8C. That is, in the vicinity of 100 MHz, the peak gain with respect to horizontal polarization is ⁇ 15 dBd or less, and the reception state of horizontal polarization is relatively good.
  • the difference in the direction of the radio wave received in the graph of FIG. 8A and the graph of FIG. 7A is due to the difference in how the antenna is placed during measurement.
  • the antenna gain is about the same for vertical polarization in the conventional antenna and for horizontal polarization in the antenna according to this embodiment. I understand that. Therefore, the antenna according to the present embodiment can ensure the same or better performance as the conventional type even if it is very small in the FM / VHF band.
  • a metal wire (linear conductor) is used as an antenna element, and the metal wire is formed into a spiral shape, thereby ensuring the length of a current path necessary for receiving radio waves.
  • the length of the antenna element is suppressed to about ⁇ / 4 or less of the wavelength of the received radio wave, and a small antenna can be realized.
  • the arrangement area can be reduced and the convenience can be improved (ease of installation).
  • the antenna element is formed by forming a metal wire in a spiral shape, high manufacturing accuracy is not required.
  • the antenna of the present embodiment can maintain the antenna characteristics while realizing miniaturization.
  • the antenna of the present disclosure is applied to the cobra antenna, the present invention is not limited to this example because only the antenna element is replaced with the one of the present disclosure, and can be applied to other monopole antennas, dipole antennas, and the like. .
  • the antenna in which the antenna element is composed of a metal plate (plate conductor) or a metal wire (linear conductor) has been described, but the same effect can be exhibited by other members such as a film conductor and a flexible conductor.
  • this technique can also take the following structures.
  • a relay unit constituting the feed point; When electrically connected to one terminal of the relay unit and the wavelength of the radio wave is ⁇ , a length of ⁇ / 4 is defined as a path through which current generated by reception of the radio wave flows to one terminal of the relay unit.
  • a coaxial line having one end electrically connected to the other terminal of the relay unit;
  • a first ferrite core provided at a position approximately ⁇ / 4 away from the other terminal of the relay unit to which one end of the coaxial line is connected, and through which the coaxial line passes or is wound; Cobra antenna equipped with.
  • a relay unit constituting the feed point;
  • An antenna element that is electrically connected to one terminal of the relay unit and has a wavelength of a telephone to be received as ⁇ , and a linear conductor having a length of approximately ⁇ / 4 is formed in a spiral shape;
  • a coaxial line having one end electrically connected to the other terminal of the relay unit;
  • a first ferrite core provided at a position approximately ⁇ / 4 away from the other terminal of the relay unit to which one end of the coaxial line is connected, and through which the coaxial line passes or is wound;
  • Cobra antenna equipped with (6)
  • a linear conductor of the antenna element connected to one terminal of the relay unit is electrically connected to a core wire of the coaxial line in the relay unit.
  • a second ferrite core for cutting off a high-frequency current from the coaxial line is further provided in a front stage of a connector of a receiving device to which the other end of the coaxial line is connected,

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】FM帯からUHF帯等の幅広い周波数帯のアンテナとして、小型かつ製作精度が要求されないものを提供する。 【解決手段】給電点Fpを構成する中継部3Aと、この中継部3Aの一の端子に電気的に接続され、当該電波の波長をλとしたとき、電波の受信により発生する電流が中継部3Aの一の端子へ流れる経路としてλ/4の長さを取り得る面積を持つ板状導体11のアンテナエレメント2Aと、中継部3Aの他の端子に一端が電気的に接続される同軸線5と、この同軸線5の一端が接続される中継部3Aの他の端子から電波の波長のほぼ4分の1の長さだけ離れた位置に設けられ、同軸線5が貫通または巻回されるフェライトコア4と、を有するコブラアンテナが提供される。

Description

コブラアンテナ
 本発明は、コブラアンテナに関し、特にFM帯からUHF帯等の幅広い周波数帯に対応できる小型のアンテナを、簡易な構成で実現可能とする技術に係わる。
 従来、テレビジョン放送やFM放送等の様々な放送波を受信するアンテナとして、様々な形態のアンテナが用いられている。例えば、テレビジョン放送やFM放送の受信用には、ダイポールアンテナや八木・宇田アンテナ等がよく用いられる。一方で、これらの様々な放送波又は放送波に載せられた信号を、室内や車内、あるいは徒歩での移動中に受信する機会も増えてきている。このような場合に使用するアンテナとしては、組み立てや取り付け等の取り扱いが容易で、かつ小型であることが求められる。
 このような取り扱いが簡単なアンテナの代表としては、アンテナエレメントを単純な構造で実現したダイポールアンテナがある。このダイポールアンテナの一形態として、同軸ケーブル(同軸線)をフェライトコアに数回巻きつけて使うコブラアンテナが知られている(例えば非特許文献1)。
 非特許文献1に記載のコブラアンテナは、同軸ケーブルの端部(給電点)の中心導体(芯線)に対しアンテナエレメントとして上側にλ/4(λ:受信電波の波長)の長さの線状導体が接続されている。また、給電点から下側へλ/4離れたところにフェライトコアが設けられている。このフェライトコアに同軸ケーブルが巻回されている。フェライトコアとこれに巻回する同軸ケーブルによりチョークコイルが形成され、フェライトコアから下のフィーダ部分が切り離されるため、簡単にλ/4のダイポールアンテナができる。
 また、小型のアンテナとして、線状導体を方形に密に巻き込んだ密巻きコイル状小型アンテナが提案されている(例えば非特許文献2)。この密巻きコイル状小型アンテナは、線状導体をアンテナ高約1/13波長、全長約1/5波長で先端開放の方形に密に巻くことにより、小型化かつ構造の単純化を実現している。さらに、モノポールアンテナの天頂方向のヌル深さを改善することができる。
CQ ham radio編集部編、CQ出版社、「ワイヤーアンテナ」、p.84 長谷部望,坂口浩一、「密巻きコイル状小型アンテナ」、電子情報通信学会論文誌(B)、2007年7月発行、Vol.J90-B No.7、pp.670-678(図1)
 しかしながら、非特許文献1に記載のコブラアンテナは、例えば100MHzの放送波を受信する場合、その波長は3mであるから、同軸ケーブルの芯線のみのアンテナエレメントで給電点から0.75m(λ/4)の長さが必要である。また、フェライトコアに同軸ケーブルが巻回されて構成された高周波遮断部まで給電点から0.75m必要である。アンテナの長さは合計で1.50mとなり、非常に大きなものとなってしまっていた。アンテナとして機能させるためには、アンテナエレメントと同軸線の外皮との間でアンテナとして機能する部分が重ならないようにしなければならないので、自動車内に設置する場合の引き回しなど、配置する場所の制約を大きく受けていた。
 一方で、非特許文献2に記載の密巻きコイル状小型アンテナは、全長約λ/5の導体素子を同軸中心導体から垂直に引き伸ばし、途中で地板と平行に折り曲げ、再び地板方向に引き下ろした後、地板と平行に折り曲げ、最後にこれを給電点付近の垂直導体に平行に沿わせて構成される。この密巻きコイル状小型アンテナの共振周波数は主に全長Lに依存するが、隣り合う素子間ギャップsの間隔に応じて変化するので製作精度が要求されていた。
 上記事情に鑑みれば、FM帯からUHF帯等の幅広い周波数帯のアンテナとして、小型かつ製作精度を要求しないものが望まれる。
 本開示によれば、給電点を構成する中継部と、前記中継部の一の端子に電気的に接続され、当該電波の波長をλとしたとき、電波の受信により発生する電流が前記中継部の一の端子へ流れる経路としてλ/4の長さを取り得る面積を持つ板状導体のアンテナエレメントと、前記中継部の他の端子に一端が電気的に接続される同軸線と、前記同軸線の一端が接続される前記中継部の他の端子からほぼλ/4の長さだけ離れた位置に設けられ、前記同軸線が貫通または巻回される第1のフェライトコアと、を備えたコブラアンテナが提供される。
 前記中継部の一の端子に接続される前記アンテナエレメントの板状導体は、前記中継部において前記同軸線の芯線と電気的に接続されていてもよい。
 前記アンテナエレメントの板状導体は、前記同軸線の軸方向に長い矩形であってもよい。
 前記同軸線の他端が接続される受信機器のコネクタの前段に、前記同軸線からの高周波電流を遮断するための第2のフェライトコア、をさらに備え、前記第2のフェライトコアは、高周波的に高いインピーダンスを持ち、前記同軸線が貫通または巻回されてもよい。
 また、本開示によれば、給電点を構成する中継部と、前記中継部の一の端子に電気的に接続され、受信する電話の波長をλとしたとき、ほぼλ/4の長さの線状導体がらせん状に形成されてなるアンテナエレメントと、前記中継部の他の端子に一端が電気的に接続される同軸線と、前記同軸線の一端が接続される前記中継部の他の端子からほぼλ/4の長さだけ離れた位置に設けられ、前記同軸線が巻回される第1のフェライトコアと、を備えたコブラアンテナが提供される。
 前記中継部の一の端子に接続される前記アンテナエレメントの線状導体は、前記中継部において前記同軸線の芯線と電気的に接続されていてもよい。
 前記アンテナエレメントの線状導体は、前記らせんの軸方向が前記同軸線の軸方向と同じであってもよい。
 前記同軸線の他端が接続される受信機器のコネクタの前段に、前記同軸線からの高周波電流を遮断するための第2のフェライトコア、をさらに備え、前記第2のフェライトコアは、高周波的に高いインピーダンスを持ち、前記同軸線が貫通または巻回されてもよい。
 本開示によれば、FM帯からUHF帯等の幅広い周波数帯のアンテナとして、小型かつ製作精度を要求しないものを提供することができる。
従来型のコブラアンテナの一例を示した説明図である。 本開示の第1の実施の形態に係るコブラアンテナの構成例を示す説明図である。 従来型のコブラアンテナのUHF帯におけるピークゲインの測定結果を示すグラフ及び表である。 本開示の第1の実施の形態によるコブラアンテナのUHF帯におけるピークゲインの測定結果を示すグラフ及び表である 図2のコブラアンテナの変形例を示す説明図である。 本開示の第2の実施の形態によるコブラアンテナの構成例を示す説明図である。 従来型のコブラアンテナのFM/VHF帯におけるピークゲインの測定結果を示すグラフ及び表である。 本開示の第2の実施の形態によるコブラアンテナのFM/VHF帯におけるピークゲインの測定結果を示すグラフ及び表である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.従来型の基本構成例(コブラアンテナの例)
 2.第1の実施の形態(アンテナエレメント:板状導体を使用した例)
 3.第2の実施の形態(アンテナエレメント:ヘリカル構造の金属線を使用した例)
<1.従来型の基本構成例>
 本開示のアンテナを説明するにあたり、まず従来型のコブラアンテナについて説明する。
 図1は、従来型のコブラアンテナの一例を示した説明図である。従来型のコブラアンテナは、非特許文献1に記載のコブラアンテナと同じ原理で動作するものである。
 図1に示すコブラアンテナ1は、受信する電波の波長をλとして、長さがλ/4のアンテナエレメント2と、給電点としての中継部3と、この中継部3と接続している同軸線5(同軸ケーブル)と、強磁性体のフェライトコア4を備える。中継部3からフェライトコア4までの同軸線5の長さはアンテナエレメント2と同じλ/4である。なおアンテナエレメント2として一部芯線を露出した同軸ケーブルが用いられているが、一般には線状導体のみで構成されることが多い。
 同軸線5の一端は、中継部3を介してアンテナエレメント2に接続されている。また、同軸線5は中継部3から他端方向にλ/4の位置でフェライトコア4に1~3回程度巻きつけられ、その他端は受信機8のコネクタ6に接続される。ここでコネクタ6としては、高周波信号の損失が少ないものを選択することが望ましい。なお、図1のアンテナエレメント2は、同軸線5と同様の構成を持つ同軸線が使用されている。
 中継部3では、同軸線5の外皮(保護被覆)5a及びシールド線(外部導体)5bが取り除かれて、コア材5c(誘導体)が露出した状態となっている。そして、同軸線5の芯線5dは中継部3においてアンテナエレメント2の芯線とはんだ付け等で接続され、この中継部3は基板7上にモールド成形されている。この中継部3がコブラアンテナ1の給電点Fpとなる。
 このような構成により、コブラアンテナ1では、フェライトコア4とこれに巻回する同軸線5によりチョークコイルが形成され、フェライトコア4からコネクタ6までのフィーダ部分が電気的に切り離される。そのため、中継部3(給電点Fp)からフェライトコア4までの同軸線5(長さλ/4)とアンテナエレメント2(長さλ/4)とでλ/2のダイポールアンテナが構成されることになる。このダイポールアンテナの上側の芯線5dの部分に玉子硝子などを取り付けて絶縁し、これを木の枝や木の枠に吊るすことで、簡単にアンテナの設置をすることが可能となる。また、このように構成したコブラアンテナ1は、自動車に設置される通信機器やモバイル機器のアンテナとすることもできる。
 例えば、自動車に搭載されたカーナビゲーション装置によりワンセグ放送で使用されるUHF帯の周波数、例えば500MHzの放送波を受信できるようにする場合を想定する。放送波の波長λは約60cmであるから、同軸線5の給電点Fpからの長さL1をλ/4の15cmに、アンテナエレメント2の長さL2をλ/4の15cmに調整することにより、UHF帯のアンテナを構成できる。フェライトコア4からコネクタ6までの同軸線5の長さLは、フェライトコア4のチョークコイル効果により任意に決定できる。
<2.第1の実施の形態>
[アンテナの構成例]
 図2A,Bは、本開示の第1の実施の形態によるコブラアンテナの構成例を示す説明図である。図2Aにおいて図1と対応する部分の詳細な説明は割愛する。
 図2Aに示すように、第1の実施の形態によるコブラアンテナ10は、アンテナエレメント2Aと、給電点としての中継部3Aと、この中継部3Aと接続している同軸線5と、フェライトコア4を備える。中継部3Aからフェライトコア4までの同軸線5の長さはλ/4である。
 同軸線5の一端は、中継部3Aを介してアンテナエレメント2Aに接続されている。また、同軸線5は中継部3Aから他端方向にλ/4の位置でフェライトコア4に1~3回程度巻きつけられ、その他端は受信機8のコネクタ6に接続される。1ターンとは、一般的には、貫通している状態を指す。この場合は、この場所で固定するために、樹脂で成形するか、ケースで固定する。
 アンテナエレメント2Aは、一枚の平板状の金属板(板状導体)11が基板7に固定、ケーシングされて構成される。金属板11には導電性の良い金属材料を用いる。同軸線5の芯線5dは中継部3Aにおいてアンテナエレメント2Aの金属板11とはんだ付け等で接続され、この中継部3Aは基板7上にモールド成形されている。中継部3Aがコブラアンテナ10の給電点Fpとなる。
 金属板11の形状や大きさは、受信する電波の周波数(波長)や実際のアンテナ特性な
どに応じて適宜決定することができる。例えばUHF帯の500MHzの放送波を受信する場合、金属板11は、図2Bに示すように、一例として幅4cm、高さ3cmの矩形とすることができる。幅4cm、高さ3cmの矩形とした場合、500MHzの電波を受信した際に金属板11内部に発生する電流(電荷)が芯線5dへ流れ込むまでの経路9aの長さとして、実質的にλ/4の15cmを確保することができる。ただし、金属板の形状は電流の流れやすさ等の電気的特性を考慮すると、アンテナの長さ方向(同軸線5の軸方向)に長い矩形が望ましい。なお、図2Bに記載された経路9aは一例であり、電流はその他複雑な経路を取り得る。
 アンテナエレメント2Aに金属板11を用いることにより、従来30cmのアンテナ長が必要であったものが、本例では19cm(=15cm+4cm)の長さでアンテナを構成することが可能になる。
[アンテナ特性の検証]
 従来型のコブラアンテナ1と第1の実施の形態によるコブラアンテナ10との受信性能の比較を行った。
 図3Aは、従来型のコブラアンテナ1(図1参照)での、垂直偏波及び水平偏波におけるピークゲインを示したグラフである。横軸は周波数(MHz)を示し、縦軸はピークゲイン(dBd)を示す。測定対象の周波数帯は、UHF帯(470MHz~870MHz)とした。垂直偏波は破線で示し、水平偏波は実線で示してある。図3B及び図3Cに、図3Aに示したグラフ中の各測定点における値を示した。図3Bは垂直偏波でのピークゲインの値を示し、図3Cは水平偏波でのピークゲインの値を示す。なお、図3B及び図3Cには、図3Aのグラフ中にはない906MHzにおける測定値も示している。
 図3A及び図3Bに示すように、500MHz付近では、垂直偏波、水平偏波ともにピークゲインの値が-10dB以下であり、アンテナゲインが取れていることが分かる。すなわち、UHF帯において、垂直偏波と水平偏波の両方を受信できていると言える。
 図4Aは、本実施の形態のコブラアンテナ10(図2参照)での、垂直偏波及び水平偏波におけるピークゲインを示したグラフである。横軸は周波数(MHz)を示し、縦軸はピークゲイン(dBd)を示す。測定対象の周波数帯は、図3Aの場合と同じUHF帯(470MHz~870MHz)とした。また図4B及び図4Cに、図4Aに示したグラフ中の各測定点における値を示した。図4Bは垂直偏波でのピークゲインの値を示し、図4Cは水平偏波でのピークゲインの値を示す。
 図4A及び図4Bに示すように、調整目標の500MHz付近では、垂直偏波、水平偏波ともにピークゲインの値が-10dB以下であり、アンテナゲインが取れていることが分かる。周波数帯によっては、従来型のコブラアンテナ1よりもアンテナゲインが取れている部分もある。すなわち、本実施の形態に係るアンテナは、UHF帯において垂直偏波と水平偏波の両方を受信できていると言え、非常に小さくても従来型と同等以上の性能を確保できている。
[変形例]
 図5は、図2のコブラアンテナ10(コア1個品)にさらにフェライトコアを1個追加して、合計2個のフェライトコアを有するコブラアンテナを示す説明図である。
 図2に示したコブラアンテナ10を例えばFM帯からUHF帯まで幅広い周波数帯のアンテナとして使う場合には、フェライトコア4から受信機8までの同軸線5の長さにより、電波の干渉が起こる場合がある。つまり、フェライトコア4から給電点Fpに延びた上側の部分の同軸線5で受信する高周波電流が、フェライトコア4から受信機8に接続される下側の同軸線5に漏れるという電波干渉が発生する。この高周波電流の漏洩は、フェライトコア4の上側と下側のインピーダンス不整合によって発生するものと考えられるが、この漏洩により、アンテナとしてのゲイン特性が劣化することが起こりうる。
 この高周波電流の漏洩の発生は、フェライトコア4から受信機8につなぐ同軸線5の長さに依存するため、この間の同軸線5の長さを決める上で、大きな制約になる。そこで、図2のコブラアンテナ10(コア1個品)にさらにフェライトコアを1個追加して、2個のフェライトコアを持つコブラアンテナを考える。
 図5に示すコブラアンテナ10A(コア2個品)では、受信機8に近い位置に第2のフェライトコア4Aが設けられており、このフェライトコア4Aが高周波に対して高いインピーダンスを示す。それゆえ、アンテナから漏れてくる高周波電流が受信機8側に伝搬しなくなる。第2のフェライトコア4Aの位置は受信機8のコネクタ6に近いほうがより望ましい。本例のコブラアンテナ10Aでは、第2のフェライトコア4Aを受信機8のコネクタ6の直前に挿入している。同軸線5は第2のフェライトコア4Aの孔を通過させるだけでもよいが、同軸線5を2回~3回程度フェライトコア4Aに巻回してからコネクタ6に接続するようにしてもよい。
 このように、本例のコブラアンテナ10Aでは、第2のフェライトコア4Aをコネクタ6の前に配置することで、フェライトコア4とコネクタ6を結ぶ同軸線5が拾う高周波電流に対して受信機8側が高インピーダンスになるようにしている。このため、第1のフェライトコア4からコネクタ6に至る同軸線5が漏れた高周波電流を拾ったとしても、その漏れた高周波電流がフェライトコア4Aで遮断され、受信機8側へ悪影響を及ぼすことがない。
[第1の実施の形態による効果]
 上述した実施の形態によれば、アンテナエレメントとして金属板(板状導体)を用い、その金属板の面積を適切に設計することにより、電波の受信に必要な電流の経路の長さを確保する。それにより、アンテナエレメントの長さが受信電波の波長の約λ/4の長さ以下に抑えられ、小型のアンテナを実現できる。そして、小型ゆえに、配置エリアの低減、利便性の向上(設置しやすさ)が図られる。また、一枚の金属板によりアンテナエレメントを構成するので、高い製作精度が要求されない。さらに、本実施の形態のアンテナは、小型化を実現しつつアンテナ特性も維持できている。
 なお、上述した実施の形態では、UHF帯の電波を受信することを想定してアンテナの構成を説明したが、FM/VHF帯の電波を受信する際にも一枚の金属板からアンテナエレメントを構成したアンテナを利用できることは言うまでもない。
<3.第2の実施の形態>
[アンテナの構成例]
 次に、本開示の第2の実施の形態として、アンテナエレメントに金属板ではなくヘリカル構造の線状導体を用いた場合のコブラアンテナの構成例について説明する。
 第1の実施の形態の変形例に係るコブラアンテナ10A(図5参照)を用いてVHF帯の100MHzの電波を受信する場合、波長λは3mであるからアンテナエレメントの長さL2は75cm必要である。そして、アンテナエレメント75cmと同軸線の外皮75cmとによってVHF帯受信用のアンテナを構成することになる。しかし、アンテナと機能させるためには、UHF帯受信の場合以上に、そのアンテナエレメントと同軸線の外皮との間でアンテナとして機能する部分が重ならないようにしなければならないので、配置する場所の制約を大きく受けていた。そこで、第2の実施の形態では、アンテナエレメントに線状導体を用いてアンテナ長を短くする構成とした。
 図6は、本開示の第2の実施の形態によるコブラアンテナの構成例を示す説明図である。図6において図5と対応する部分の詳細な説明は割愛する。
 図6に示すように、らせん状に巻いた線状導体である金属線13を用いてアンテナエレメント2Bを構成している。金属線13の一端は開放され、他端を中継部3Bにおいて同軸線5の芯線5dとはんだ付け等で接続されている。この中継部3Bは基板7上にモールド成形されている。中継部3Bがコブラアンテナ10Bの給電点Fpとなる。らせん状の金属線13は、らせんの軸方向が同軸線5の軸方向と同じである。
 長さ75cmの金属線13を直径10mmのらせん状に巻いてケーシングすることで構成されるアンテナエレメント2Bは、長さ方向では従来1.5m必要であったものが、0.9m(=0.75m+0.15m)でアンテナを構成することが可能となる。なお、金属線により成形されるらせんの直径は10mmに限るものではない。
[アンテナ特性の検証]
 従来型のコブラアンテナ1と第2の実施の形態によるコブラアンテナ10Bとの受信性能の比較を行った。
 図7Aは、従来型のコブラアンテナ1(図1参照)での、垂直偏波及び水平偏波におけるピークゲインを示したグラフである。横軸は周波数(MHz)を示し、縦軸はピークゲイン(dBd)を示す。測定対象の周波数帯は、FM/VHF帯(70MHz~220MHz)とした。垂直偏波は破線で示し、水平偏波は実線で示してある。図7B及び図7Cに、図7Aに示したグラフ中の各測定点における値を示した。図7Bは垂直偏波でのピークゲインの値を示し、図7Cは水平偏波でのピークゲインの値を示す。なお、図7B及び図7Cには、図7Aの横軸に示した周波数のうち、76MHz~107MHzまでの間の周波数における測定値のみを示している。
 図7A及び図7Bに示すように、100MHz付近では、垂直偏波でのピークゲインは101MHzで-10.34dBdとなっている。水平偏波でのピークゲインは、図7A及び図7Cに示すように、101MHzで-16.00dBdとなっている。すなわち、100MHz付近では、水平偏波に対するピークゲインが-15dBd以下となっており、水平偏波の受信状態が比較的によい。
 図8Aは、本実施の形態のコブラアンテナ10B(図6参照)での、垂直偏波及び水平偏波におけるピークゲインを示したグラフである。測定対象の周波数帯は、図7Aの場合と同じFM/VHF帯(70MHz~220MHz)である。また図8B及び図8Cに、図8Aに示したグラフ中の各測定点における値を示した。図8Bは垂直偏波でのピークゲインの値を示し、図8Cは水平偏波でのピークゲインの値を示す。
 図8A及び図8Bに示すように、100MHz付近では、垂直偏波でのピークゲインは101MHzで-27.34dBdとなっている。水平偏波でのピークゲインは、図8A及び図8Cに示すように、101MHzで-9.87dBdとなっている。すなわち、100MHz付近では、水平偏波に対するピークゲインが-15dBd以下となっており、水平偏波の受信状態が比較的によい。この図8Aのグラフと図7Aのグラフで受信している電波の向きが異なるのは、測定時のアンテナの置き方の違いによるものである。
 今回の測定結果から、受信している電波の向きが異なるものの、従来型アンテナでは垂直偏波に対して、また本実施の形態に係るアンテナでは水平偏波に対して、同じ程度アンテナゲインがあることがわかる。したがって、本実施の形態に係るアンテナは、FM/VHF帯において、非常に小さくても従来型と同等以上の性能を確保できている。
[第2の実施の形態による効果]
 上述した実施の形態によれば、アンテナエレメントとして金属線(線状導体)を用い、その金属線をらせん状に成形することにより、電波の受信に必要な電流の経路の長さを確保する。それにより、アンテナエレメントの長さが受信電波の波長の約λ/4の長さ以下に抑えられ、小型のアンテナを実現できる。そして、小型ゆえに、配置エリアの低減、利便性の向上(設置しやすさ)が図られる。また、金属線をらせん状に成形してアンテナエレメントを構成するので、高い製作精度が要求されない。さらに、本実施の形態のアンテナは、小型化を実現しつつアンテナ特性も維持できている。
 また、コブラアンテナに本開示のアンテナを適用したが、アンテナエレメントを本開示のものに置換するだけであるからこの例に限られるものではなく、その他のモノポールアンテナやダイポールアンテナ等にも適用できる。
 また、アンテナエレメントを金属板(板状導体)または金属線(線状導体)で構成したアンテナについて説明したが、フィルム状導体、フレキシブル導体など、その他の部材でも同様の効果を発揮できる。
 また、上述した実施の形態では、アンテナを自動車に搭載した例で説明したが、自動車以外の室内用の機器でも使用可能であることは言うまでもない。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本技術はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、本技術は以下のような構成も取ることができる。
(1) 給電点を構成する中継部と、
 前記中継部の一の端子に電気的に接続され、当該電波の波長をλとしたとき、電波の受信により発生する電流が前記中継部の一の端子へ流れる経路としてλ/4の長さを取り得る面積を持つ板状導体のアンテナエレメントと、
 前記中継部の他の端子に一端が電気的に接続される同軸線と、
 前記同軸線の一端が接続される前記中継部の他の端子からほぼλ/4の長さだけ離れた位置に設けられ、前記同軸線が貫通または巻回される第1のフェライトコアと、
 を備えたコブラアンテナ。
(2) 前記中継部の一の端子に接続される前記アンテナエレメントの板状導体は、前記中継部において前記同軸線の芯線と電気的に接続されている請求項1に記載のコブラアンテナ。
(3) 前記アンテナエレメントの板状導体は、前記同軸線の軸方向に長い矩形である請求項1又は2に記載のコブラアンテナ。
(4) 前記同軸線の他端が接続される受信機器のコネクタの前段に、前記同軸線からの高周波電流を遮断するための第2のフェライトコア、をさらに備え、
 前記第2のフェライトコアは、高周波的に高いインピーダンスを持ち、前記同軸線が貫通または巻回される請求項1~3のいずれか一項に記載のコブラアンテナ。
(5) 給電点を構成する中継部と、
 前記中継部の一の端子に電気的に接続され、受信する電話の波長をλとしたとき、ほぼλ/4の長さの線状導体がらせん状に形成されてなるアンテナエレメントと、
 前記中継部の他の端子に一端が電気的に接続される同軸線と、
 前記同軸線の一端が接続される前記中継部の他の端子からほぼλ/4の長さだけ離れた位置に設けられ、前記同軸線が貫通または巻回される第1のフェライトコアと、
 を備えたコブラアンテナ。
(6) 前記中継部の一の端子に接続される前記アンテナエレメントの線状導体は、前記中継部において前記同軸線の芯線と電気的に接続されている請求項5に記載のコブラアンテナ。
(7) 前記アンテナエレメントの線状導体は、前記らせんの軸方向が前記同軸線の軸方向と同じである請求項5又は6に記載のコブラアンテナ。
(8) 前記同軸線の他端が接続される受信機器のコネクタの前段に、前記同軸線からの高周波電流を遮断するための第2のフェライトコア、をさらに備え、
 前記第2のフェライトコアは、高周波的に高いインピーダンスを持ち、前記同軸線が貫通または巻回される請求項5~7のいずれか一項に記載のコブラアンテナ。
 2,2A,2B…アンテナエレメント、3,3A,3B…中継部、4,4A…フェライトコア、5…同軸線、5a…外皮、5b…シールド線、5c…コア材、5d…芯線、7…基板、9…金属板、9a…経路、10,10A,10B…コブラアンテナ
 

Claims (8)

  1.  給電点を構成する中継部と、
     前記中継部の一の端子に電気的に接続され、当該電波の波長をλとしたとき、電波の受信により発生する電流が前記中継部の一の端子へ流れる経路としてλ/4の長さを取り得る面積を持つ板状導体のアンテナエレメントと、
     前記中継部の他の端子に一端が電気的に接続される同軸線と、
     前記同軸線の一端が接続される前記中継部の他の端子からほぼλ/4の長さだけ離れた位置に設けられ、前記同軸線が貫通または巻回される第1のフェライトコアと、
     を備えたコブラアンテナ。
  2.  前記中継部の一の端子に接続される前記アンテナエレメントの板状導体は、前記中継部において前記同軸線の芯線と電気的に接続されている
     請求項1に記載のコブラアンテナ。
  3.  前記アンテナエレメントの板状導体は、前記同軸線の軸方向に長い矩形である
     請求項2に記載のコブラアンテナ。
  4.  前記同軸線の他端が接続される受信機器のコネクタの前段に、前記同軸線からの高周波電流を遮断するための第2のフェライトコア、をさらに備え、
     前記第2のフェライトコアは、高周波的に高いインピーダンスを持ち、前記同軸線が貫通または巻回される
     請求項3に記載のコブラアンテナ。
  5.  給電点を構成する中継部と、
     前記中継部の一の端子に電気的に接続され、受信する電話の波長をλとしたとき、ほぼλ/4の長さの線状導体がらせん状に形成されてなるアンテナエレメントと、
     前記中継部の他の端子に一端が電気的に接続される同軸線と、
     前記同軸線の一端が接続される前記中継部の他の端子からほぼλ/4の長さだけ離れた位置に設けられ、前記同軸線が貫通または巻回される第1のフェライトコアと、
     を備えたコブラアンテナ。
  6.  前記中継部の一の端子に接続される前記アンテナエレメントの線状導体は、前記中継部において前記同軸線の芯線と電気的に接続されている
     請求項5に記載のコブラアンテナ。
  7.  前記アンテナエレメントの線状導体は、前記らせんの軸方向が前記同軸線の軸方向と同じである
     請求項6に記載のコブラアンテナ。
  8.  前記同軸線の他端が接続される受信機器のコネクタの前段に、前記同軸線からの高周波電流を遮断するための第2のフェライトコア、をさらに備え、
     前記第2のフェライトコアは、高周波的に高いインピーダンスを持ち、前記同軸線が貫通または巻回される
     請求項7に記載のコブラアンテナ。
     
PCT/JP2011/059912 2010-05-11 2011-04-22 コブラアンテナ WO2011142231A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2011800222035A CN102870278A (zh) 2010-05-11 2011-04-22 眼镜蛇天线
US13/695,384 US20130050042A1 (en) 2010-05-11 2011-04-22 Cobra antenna
BR112012028296A BR112012028296A2 (pt) 2010-05-11 2011-04-22 "antena cobra".
RU2012146939/08A RU2012146939A (ru) 2010-05-11 2011-04-22 Антенна в виде кобры
KR1020127028875A KR20130070589A (ko) 2010-05-11 2011-04-22 코브라 안테나
EP11780488A EP2571099A1 (en) 2010-05-11 2011-04-22 Cobra antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010109694 2010-05-11
JP2010-109694 2010-05-11

Publications (1)

Publication Number Publication Date
WO2011142231A1 true WO2011142231A1 (ja) 2011-11-17

Family

ID=44914287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059912 WO2011142231A1 (ja) 2010-05-11 2011-04-22 コブラアンテナ

Country Status (9)

Country Link
US (1) US20130050042A1 (ja)
EP (1) EP2571099A1 (ja)
JP (1) JP2011259414A (ja)
KR (1) KR20130070589A (ja)
CN (1) CN102870278A (ja)
BR (1) BR112012028296A2 (ja)
RU (1) RU2012146939A (ja)
TW (1) TW201220607A (ja)
WO (1) WO2011142231A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101104A1 (ja) * 2016-11-29 2018-06-07 株式会社村田製作所 アンテナ装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600987B2 (ja) * 2010-03-26 2014-10-08 ソニー株式会社 コブラアンテナ
JP5639097B2 (ja) * 2012-02-17 2014-12-10 株式会社フジクラ アンテナ
JP5949200B2 (ja) * 2012-06-20 2016-07-06 ソニー株式会社 折り畳みアンテナ装置
EP3024091A4 (en) * 2013-07-17 2016-07-13 Panasonic Ip Man Co Ltd WIRELESS DEVICE
DE102013016116A1 (de) * 2013-09-26 2015-03-26 Dieter Kilian Antenne für Nahbereichsanwendungen sowie Verwendung einer derartigen Antenne
CN106575350B (zh) * 2014-08-21 2019-12-20 株式会社村田制作所 带rfid标签的物品的读取方法及rfid系统
DE102014015708A1 (de) * 2014-10-23 2016-04-28 Dieter Kilian Antennenvorrichtung für Nahbereichsanwendungen sowie Verwendung einer derartigen Antennenvorrichtung
DE102015003784A1 (de) * 2015-03-23 2016-09-29 Dieter Kilian Antenne für Nahbereichsanwendungen sowie Verwendung einer derartigen Antenne
US10446922B1 (en) * 2017-08-11 2019-10-15 Mastodon Design Llc Flexible antenna assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120902A (ja) * 1990-09-12 1992-04-21 Mitsubishi Electric Corp アンテナ装置
WO2007017959A1 (ja) * 2005-08-08 2007-02-15 Murata Manufacturing Co., Ltd. 基準発振器
JP2010057007A (ja) * 2008-08-29 2010-03-11 Dx Antenna Co Ltd アンテナ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504834A (en) * 1982-12-22 1985-03-12 Motorola, Inc. Coaxial dipole antenna with extended effective aperture
US4730195A (en) * 1985-07-01 1988-03-08 Motorola, Inc. Shortened wideband decoupled sleeve dipole antenna
JPH01177202A (ja) * 1988-01-06 1989-07-13 Sony Corp 移動体アンテナ
US5793336A (en) * 1996-06-10 1998-08-11 Antennas America, Inc. Conformal antenna assemblies
TW457741B (en) * 2000-08-31 2001-10-01 Gemtek Technology Co Ltd Planar sleeve dipole antenna
US20030030591A1 (en) * 2001-08-09 2003-02-13 David Gipson Sleeved dipole antenna with ferrite material
US6809698B2 (en) * 2002-12-14 2004-10-26 Antennigues Corp. Broadband dual-frequency tablet antennas
JP2004336303A (ja) * 2003-05-06 2004-11-25 Yokohama Rubber Co Ltd:The スリーブアンテナ
CN101689706A (zh) * 2007-06-29 2010-03-31 通腾科技股份有限公司 天线布置设备、接收设备及减小共模信号的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120902A (ja) * 1990-09-12 1992-04-21 Mitsubishi Electric Corp アンテナ装置
WO2007017959A1 (ja) * 2005-08-08 2007-02-15 Murata Manufacturing Co., Ltd. 基準発振器
JP2010057007A (ja) * 2008-08-29 2010-03-11 Dx Antenna Co Ltd アンテナ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CQ ham radio Henshubu", WIRE ANTENNA, 1 September 2003 (2003-09-01), pages 84, XP008172141 *
"Wire Antenna", CQ PUBLISHING CO., LTD., pages: 84
NOZOMU HASEBE; KOUICHI SAKAGUCHI: "Closely-Coiled Compact Antennas", JOURNAL OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS (B, vol. J90-B, no. 7, July 2007 (2007-07-01), pages 670 - 678

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101104A1 (ja) * 2016-11-29 2018-06-07 株式会社村田製作所 アンテナ装置
JP6447798B2 (ja) * 2016-11-29 2019-01-09 株式会社村田製作所 アンテナ装置
JPWO2018101104A1 (ja) * 2016-11-29 2019-03-14 株式会社村田製作所 アンテナ装置
US11081799B2 (en) 2016-11-29 2021-08-03 Murata Manufacturing Co., Ltd. Antenna device

Also Published As

Publication number Publication date
JP2011259414A (ja) 2011-12-22
KR20130070589A (ko) 2013-06-27
CN102870278A (zh) 2013-01-09
BR112012028296A2 (pt) 2016-11-01
TW201220607A (en) 2012-05-16
US20130050042A1 (en) 2013-02-28
RU2012146939A (ru) 2014-05-10
EP2571099A1 (en) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2011142231A1 (ja) コブラアンテナ
US6483471B1 (en) Combination linearly polarized and quadrifilar antenna
CN104037496B (zh) 一种全向圆极化天线
US7817103B2 (en) Dual-band multi-pitch parasitic half-wave (MPPH) antenna
JP5600987B2 (ja) コブラアンテナ
US20140125552A1 (en) Antenna and antenna unit including same
KR20080038062A (ko) 루프 안테나
KR101241554B1 (ko) 안테나
US7132998B2 (en) Multiple bands type antenna and method for producing the same
US6809697B2 (en) Dual-frequency broadband antennas
JP5631374B2 (ja) アンテナ
JP5162713B1 (ja) 漏洩同軸ケーブル
JP5337621B2 (ja) 衛星放送・地上デジタル放送兼用アンテナ
US7129905B2 (en) Multiple band antenna apparatus
JPWO2018135060A1 (ja) アンテナ装置及び受信装置
KR100958812B1 (ko) 다중공진 안테나 및 이를 갖는 휴대용 전자기기
RU2493639C1 (ru) Антенна
JP5648653B2 (ja) アンテナ
JP3434219B2 (ja) アンテナ
JP2003087030A (ja) 車載用アンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022203.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13695384

Country of ref document: US

Ref document number: 2011780488

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012146939

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20127028875

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9626/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012028296

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012028296

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121105