WO2011142215A1 - 耐火性フィラー及びこれを用いた封着材料、並びに耐火性フィラーの製造方法 - Google Patents

耐火性フィラー及びこれを用いた封着材料、並びに耐火性フィラーの製造方法 Download PDF

Info

Publication number
WO2011142215A1
WO2011142215A1 PCT/JP2011/059539 JP2011059539W WO2011142215A1 WO 2011142215 A1 WO2011142215 A1 WO 2011142215A1 JP 2011059539 W JP2011059539 W JP 2011059539W WO 2011142215 A1 WO2011142215 A1 WO 2011142215A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory filler
willemite
raw material
producing
glass
Prior art date
Application number
PCT/JP2011/059539
Other languages
English (en)
French (fr)
Inventor
朋子 榎本
博之 岡村
伸敏 伊藤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011023446A external-priority patent/JP5773128B2/ja
Priority claimed from JP2011057320A external-priority patent/JP5779922B2/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201180023136.9A priority Critical patent/CN102892724B/zh
Priority to US13/695,636 priority patent/US8871664B2/en
Priority to KR1020127027149A priority patent/KR101464996B1/ko
Publication of WO2011142215A1 publication Critical patent/WO2011142215A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/22Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions containing two or more distinct frits having different compositions

Definitions

  • the present invention relates to a refractory filler and a method for producing the same, and particularly to sealing of display devices such as a plasma display panel (hereinafter referred to as PDP), an organic EL display, a field emission display (hereinafter referred to as FED), and a fluorescent display tube (hereinafter referred to as VFD).
  • PDP plasma display panel
  • FED field emission display
  • VFD fluorescent display tube
  • the present invention relates to a refractory filler used as a sealing material for electronic parts such as a bonding material, a piezoelectric vibrator package, and an IC package, and a manufacturing method thereof.
  • sealing material a composite powder material containing glass powder and a refractory filler is used.
  • This sealing material is excellent in chemical durability and heat resistance as compared with a resin-based adhesive, and is suitable for ensuring airtightness.
  • Patent Document 1 PbO—B 2 O 3 -based glass has been used as the glass powder (see Patent Document 1, etc.).
  • Patent Document 2 Bi 2 O 3 —B 2 O 3 glass has a low melting point and has the same chemical durability as PbO—B 2 O 3 glass.
  • a refractory filler When a refractory filler is used, the thermal expansion coefficient can be lowered and the mechanical strength can be improved.
  • low expansion lead titanate has been used as a refractory filler.
  • it is required to remove PbO from the composition of the refractory filler in the same manner as the glass powder. For this reason, willemite, cordierite, tin dioxide, ⁇ -eucryptite, mullite, silica, ⁇ -quartz solid solution, aluminum titanate, zircon and the like have been studied as refractory fillers.
  • Patent Document 3 willemite has low expansion and good compatibility with Bi 2 O 3 —B 2 O 3 glass (it is difficult to devitrify Bi 2 O 3 —B 2 O 3 glass during sealing). Therefore, it attracts attention (see Patent Document 3 and Non-Patent Document 1).
  • Refractory fillers such as willemite are generally produced by a solid phase reaction method.
  • the raw material batch is fired for a long time at a temperature near the melting point (about 1510 ° C .; see Non-Patent Document 1), specifically at 1440 ° C. or higher.
  • a temperature near the melting point about 1510 ° C .; see Non-Patent Document 1
  • the firing temperature is too high, fusion of the fired product is likely to occur at the time of firing, and as a result, the pulverization efficiency of the fired product is greatly reduced, and the production cost of the refractory filler is increased.
  • the refractory filler has an effect of reducing the thermal expansion coefficient of the sealing material or the like. Therefore, when the effect of reducing the thermal expansion coefficient is high, a desired thermal expansion coefficient can be obtained even if the content ratio of the refractory filler in the sealing material or the like is reduced. As a result, the content ratio of the glass powder contained in the sealing material or the like increases, and the fluidity of the sealing material or the like can be improved. On the other hand, when the effect of reducing the thermal expansion coefficient is low, it is difficult to obtain a desired thermal expansion coefficient if the content ratio of the refractory filler is lowered in a sealing material or the like.
  • the present invention can reliably prevent a situation in which a part of the raw material remains unreacted while reducing the manufacturing cost, and can appropriately set the thermal expansion coefficient of the sealing material and the like. It is a technical problem to provide a refractory filler that can be reduced.
  • the method for producing a refractory filler according to the first invention comprises melting a raw material batch and then cooling the obtained melt to obtain a main crystal (most precipitation amount). It is characterized by precipitating willemite as a crystalline) phase.
  • the above-mentioned method for producing a refractory filler is characterized by melting a raw material batch. In this way, since the reaction time of the raw material batch can be shortened, the manufacturing cost of the refractory filler can be reduced. Moreover, since it is hard to generate
  • the above-mentioned method for producing a refractory filler is characterized by cooling the melt. In this way, it becomes possible to precipitate crystals during cooling, and the manufacturing cost of the refractory filler can be reduced.
  • the above-mentioned method for producing a refractory filler is characterized in that willemite is precipitated as the main crystal.
  • the effect of lowering the thermal expansion coefficient is increased, so that it is easy to prevent a situation where the sealing part or the like is damaged due to thermal stress.
  • a predetermined raw material batch it becomes possible to deposit willemite or the like as the main crystal phase during cooling.
  • the crystallinity of the refractory filler when the crystallinity of the refractory filler is low, it is possible to increase the crystallinity of the refractory filler by providing a heat treatment step at 800 ° C. or higher after cooling.
  • a heat treatment step at 800 ° C. or higher after cooling.
  • sufficient crystals are precipitated during cooling, and such a heat treatment step may be omitted. preferable.
  • the method for producing a refractory filler according to the first invention preferably cools the melt by pouring between the forming rollers.
  • the refractory filler can be easily made finer and the particle size of the refractory filler can be easily adjusted.
  • the manufacturing cost of the refractory filler can be easily reduced.
  • the method for producing a refractory filler according to the first invention preferably cools the melt by pouring it into water. In this way, it is molded into a crushed shape during cooling, and a large number of cracks are formed in the molded product, so that the refractory filler is easily finely divided, and the particle size adjustment of the refractory filler is also facilitated. It becomes easy to reduce the manufacturing cost of the refractory filler. And it is also possible to precipitate a willemite crystal at the time of cooling.
  • the method for producing a refractory filler according to the first invention is such that the composition of the refractory filler is mol%, ZnO 50-80%, SiO 2 10-40%, Al 2 O 3 0-10. It is preferable to prepare the raw material batch so as to contain%. If it does in this way, since it will become easy to precipitate willemite etc. as a main crystal phase at the time of cooling, it will become easy to reduce the manufacturing cost of a refractory filler.
  • the production method of the refractory filler according to the first invention preferably has an average particle diameter D 50 of the raw batch is less than 20 [mu] m.
  • the “average particle diameter D 50 ” refers to a value measured by the laser diffraction method, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. Represents a particle size of 50%.
  • the maximum particle diameter Dmax of the raw material batch is preferably less than 100 ⁇ m.
  • the “maximum particle diameter D max ” indicates a value measured by the laser diffraction method, and in the cumulative particle size distribution curve based on the volume when measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. Represents a particle size of 99%.
  • the method for producing a refractory filler according to the first invention preferably deposits willemite and garnite as the main crystal phase. In this way, since the effect of improving the mechanical strength is greater than when the main crystal phase is only willemite, it becomes easier to prevent damage to the sealing site and the like, and the airtightness of the display device and the like is maintained. It becomes easy to do.
  • the ratio of willemite and garnite is preferably in the range of 100: 0 to 70:30 in terms of molar ratio.
  • the refractory filler according to the first invention is manufactured by the above method.
  • the refractory filler according to the first invention is a refractory filler in which willemite is precipitated as the main crystal, and is prepared by melting the raw material batch and then cooling the obtained melt. It is characterized by being made.
  • the sealing material according to the first invention is characterized in that in the sealing material containing glass powder and a refractory filler, all or part of the refractory filler is the above-mentioned refractory filler. To do.
  • the refractory filler according to the second invention which was created in order to solve the above-mentioned problems, is a refractory filler in which willemite is precipitated as a main crystal (a crystal having the largest amount of precipitation).
  • %, ZnO 50 to 80%, SiO 2 10 to 40%, Al 2 O 3 0.1 to 10%, and the ratio of willemite: Al-based crystal is 100: 0 to 99: It is characterized by 1.
  • Al-based crystal refers to a crystal (for example, garnite) containing Al as a crystal component.
  • the above refractory filler contains 50 to 80 mol% of ZnO and 10 to 40 mol% of SiO 2 as a composition. If it does in this way, since willemite will precipitate easily as a main crystal, the effect of reducing a thermal expansion coefficient becomes large. Further, the refractory filler of the present invention, a composition, the Al 2 O 3 containing not less than 0.1 mol%. In this way, since the refractory filler can be produced at a lower temperature than in the prior art, it is possible to prevent a situation in which unreacted raw material remains, and to surely reduce the manufacturing cost. Furthermore, the refractory filler of the present invention contains 10 mol% or less of Al 2 O 3 as a composition. If it does in this way, it will become easy to control the amount of precipitation of Al system crystal.
  • the above refractory filler is characterized in that as a main crystal, willemite is precipitated, and the ratio of willemite: Al-based crystal is 100: 0 to 99: 1 in molar ratio. Willemite is precipitated as the main crystal, and if the amount of precipitated Al-based crystals is small, it is easy to enjoy the effect of lowering the thermal expansion coefficient of the sealing material, etc. It becomes possible to reduce appropriately.
  • the Al-based crystal when an Al-based crystal is precipitated, the Al-based crystal is preferably garnite.
  • garnite When garnite is precipitated in the same particle, the effect of improving the mechanical strength is enhanced. As a result, it becomes easy to prevent damage to the sealing part and the like, and it becomes easy to maintain the airtightness of the display device and the like.
  • the refractory filler according to the second invention may be prepared by melting the raw material batch and then cooling the obtained melt, that is, prepared by a melting method. preferable. If the raw material batch is melted, the reaction time of the raw material batch can be shortened, so that the manufacturing cost of the refractory filler can be reduced. Moreover, since it will become difficult to generate
  • the sealing material according to the second invention is characterized in that in the sealing material containing glass powder and a refractory filler, all or a part of the refractory filler is the above-mentioned refractory filler. .
  • the first embodiment of the present invention will be described.
  • the method for producing a refractory filler according to the first embodiment after melting a raw material batch, the obtained melt is cooled to precipitate willemite as a main crystal phase.
  • various methods can be employed as a method for cooling the melt. For example, a method of pouring between molding rollers, a method of pouring into water, and the like are suitable. According to the former method, since it can shape
  • the molded product is formed into a crushed shape upon cooling and a large number of cracks are formed in the molded product. Therefore, the molded product is easily pulverized, and the refractory filler is easily refined and adjusted in particle size. And it is also possible to precipitate a willemite crystal at the time of cooling.
  • the refractory filler is, in mol%, ZnO 60 to 79.9% (preferably 63 to 70%), SiO 2 20 to 39.9% (preferably 28 to 35%). ), Preferably starting material batch so as to contain Al 2 O 3 0-10%.
  • the batch composition of the raw material batch is also in terms of mol%: ZnO 60-79.9% (preferably 63-70%), SiO 2 20-39.9% (preferably 28-35%), Al 2 O 3 0- It is preferable to contain 10%.
  • ZnO and SiO 2 are constituents of the crystal.
  • Al 2 O 3 is a component of the crystal and is a component that lowers the melting point of the melt when added in a small amount.
  • the content of Al 2 O 3 is preferably 0.1 mol% or more, 1 mol% or more, particularly 3 mol% or more. If the content of Al 2 O 3 is less than 0.1 mol%, garnite is difficult to precipitate, and the effect of lowering the melting point of the melt is poor. On the other hand, if the content of Al 2 O 3 is too large, the molded product is easily vitrified, so that it is difficult to deposit willemite, and the component balance of the melt is impaired, conversely, the melting point of the melt. Tends to rise, making it difficult to melt the raw material batch.
  • the above-mentioned method for producing a refractory filler preferably uses a raw material batch that does not substantially contain PbO. In this way, environmental demands in recent years can be satisfied.
  • substantially does not contain PbO refers to a case where the content of PbO is 1000 ppm (mass) or less.
  • the method of manufacturing a refractory filler preferably has an average particle diameter D 50 of the raw batch is less than 20 [mu] m.
  • the density difference between the raw materials becomes large.
  • the average particle diameter D 50 of the raw batch is too large, due to the density difference between the raw material, since the suspended solids precipitated and SiO 2 of ZnO is likely to occur, it difficult to obtain a homogeneous melt, As a result, the composition of the refractory filler tends to be non-uniform.
  • the density of the ZnO raw material is 5.6 g / cm 3 and the density of the SiO 2 raw material is 2.6 g / cm 3 .
  • the maximum particle size D max of the raw material batch is less than 100 ⁇ m.
  • the density difference between the raw materials increases.
  • the maximum particle diameter Dmax of the raw material batch is too large, it becomes difficult to obtain a homogeneous melt because ZnO precipitation or SiO 2 suspended matter is likely to occur due to the density difference between the raw materials.
  • the composition of the refractory filler tends to be non-uniform.
  • willemite and garnite As the main crystal phase, it is preferable to deposit willemite and garnite as the main crystal phase.
  • the effect of improving the mechanical strength is greater than when the main crystal phase is only willemite.
  • the effect of lowering the thermal expansion coefficient can also be enjoyed accurately due to the precipitation of willemite.
  • the ratio of garnite is small, the effect of increasing the mechanical strength becomes poor.
  • the proportion of garnite is too large, the effect of reducing the thermal expansion coefficient becomes poor.
  • the method for producing the refractory filler preferably includes a step of pulverizing and classifying the molded product so that the average particle diameter D 50 is 20 ⁇ m or less, particularly 2 to 15 ⁇ m. If it does in this way, it will become easy to narrow down sealing thickness.
  • the average particle diameter D 50 of the refractory filler is preferably at least 0.5 [mu] m.
  • the above method for producing a refractory filler preferably includes a step of pulverizing and classifying the molded product so that the maximum particle diameter Dmax is 100 ⁇ m or less, particularly 10 to 75 ⁇ m. In this way, the glaze surface can be easily smoothed and the sealing thickness can be easily reduced.
  • pulverization method a ball mill, jaw crusher, jet mill, disc mill, spectro mill, grinder, mixer mill and the like can be used, but a ball mill is preferable from the viewpoint of running cost and pulverization efficiency.
  • the refractory filler according to the first embodiment of the present invention is manufactured by the above method. Moreover, it is preferable that the refractory filler of this invention does not contain PbO substantially for the above-mentioned reason.
  • the sealing material according to the first embodiment of the present invention is a sealing material containing glass powder and a refractory filler, wherein all or part of the refractory filler is a refractory filler produced by the above method. It is characterized by being.
  • the content of the refractory filler in the sealing material is preferably 0.1 to 70% by volume, 15 to 50% by volume, particularly 20 to 40% by volume. When the content of the refractory filler is more than 70% by volume, the content of the glass powder is relatively reduced, so that the fluidity of the sealing material is lowered, and as a result, the sealing strength is easily lowered.
  • examples of the refractory filler include cordierite, zircon, ⁇ -eucryptite, quartz glass, alumina, mullite, zirconium tungstate phosphate, tungstic acid.
  • zirconium and alumina-silica ceramics may be included.
  • These refractory fillers are useful from the viewpoints of adjusting the thermal expansion coefficient, adjusting the fluidity, and improving the mechanical strength.
  • the total content of these refractory fillers is preferably 0 to 30% by volume, particularly preferably 0 to 10% by volume.
  • glass powders can be used as the glass powder.
  • Bi 2 O 3 —B 2 O 3 —ZnO glass, V 2 O 5 —P 2 O 5 glass, and SnO—P 2 O 5 glass are suitable in terms of low melting point characteristics
  • Bi 2 O 3- B 2 O 3 —ZnO-based glass is particularly preferable in terms of thermal stability and water resistance.
  • “to glass” is a glass containing an explicit component as an essential component and a total amount of the explicit component of 30 mol% or more, preferably 40 mol% or more, more preferably 50 mol% or more. Point to.
  • glass powder does not contain PbO substantially in a glass composition from an environmental viewpoint.
  • Bi 2 O 3 -B 2 O 3 -ZnO based glass as a glass composition, in mol%, Bi 2 O 3 30 ⁇ 60%, B 2 O 3 10 ⁇ 35%, to contain ZnO 1 ⁇ 35% preferable.
  • the reason for limiting the content range of each component as described above will be described below. In the description of the glass composition range,% display indicates mol%.
  • Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 30 to 60%, 36 to 55%, and particularly preferably 37 to 52%.
  • Bi 2 content of O 3 is too small, too high softening point, the fluidity tends to decrease.
  • the content of Bi 2 O 3 is too large, the glass tends to devitrify during firing, due to the devitrification and the fluidity tends to decrease.
  • B 2 O 3 is an essential component as a glass forming component, and its content is preferably 10 to 35%, 15 to 30%, particularly preferably 18 to 28%.
  • B 2 O 3 content is too small, it becomes a glass network is hardly formed, the glass is liable to devitrify during firing.
  • the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
  • ZnO is a component that enhances devitrification resistance, and its content is preferably 1 to 35%, 5 to 30%, 10 to 25%, particularly preferably 13 to 25%. When the content is less than 1% or more than 35%, the component balance of the glass composition is impaired, and the devitrification resistance tends to be lowered.
  • SiO 2 is a component that increases water resistance, but has an action of increasing the softening point. For this reason, the SiO 2 content is preferably 0 to 4%, 0 to 3%, 0 to 2%, particularly preferably 0 to 1%. If the content of SiO 2 is too large, the glass tends to be devitrified during firing.
  • CuO + Fe 2 O 3 (total amount of CuO and Fe 2 O 3 ) is a component that enhances devitrification resistance, and its content is 0 to 25%, 0.01 to 10%, particularly 0.1 to 10%. Is preferred.
  • the content of Bi 2 O 3 is increased.
  • glass becomes easy to devitrify at the time of baking, and fluidity
  • the Bi 2 O 3 content is 30% or more, the tendency becomes remarkable.
  • CuO is a component that enhances devitrification resistance, and its content is preferably 0 to 15%, particularly preferably 0.1 to 10%. When there is too much content of CuO, the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely.
  • Fe 2 O 3 is a component that enhances devitrification resistance, and its content is preferably 0 to 10%, 0.1 to 10%, particularly preferably 0.3 to 5%.
  • content of Fe 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
  • BaO is a component that increases devitrification resistance.
  • the BaO content is preferably 0 to 12%, particularly preferably 1 to 8%.
  • the component balance of a glass composition will be missing, conversely, the thermal stability of glass will be impaired and it will become easy to devitrify glass. If the BaO content is restricted to 1 to 8%, the thermal stability of the glass can be remarkably enhanced.
  • Al 2 O 3 is a component that improves water resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0 to 2%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
  • Sb 2 O 3 is a component that enhances devitrification resistance, and its content is preferably 0 to 5%, particularly preferably 0.1 to 2%. When the content of Sb 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
  • the average particle diameter D 50 of the glass powder less than 15 ⁇ m, 0.5 ⁇ 10 ⁇ m, particularly 1 ⁇ 5 [mu] m is preferred. As the average particle diameter D 50 of the glass powder is small, the softening point of the glass powder is lowered.
  • the above-mentioned sealing material may be used in a powder state, but from the viewpoint of improving handleability, it is preferable to uniformly knead it with a vehicle to form a paste.
  • a vehicle usually includes a solvent and a resin.
  • the resin is added for the purpose of adjusting the viscosity of the paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • the produced paste is applied to the surface of an object to be sealed using an applicator such as a dispenser or a screen printer.
  • acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used.
  • acrylic acid esters and nitrocellulose are preferable because they have good thermal decomposability.
  • Solvents include N, N′-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, water, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), - methyl-2-pyrrolidone or the like can be used.
  • ⁇ -terpineol is preferable because it is highly viscous and
  • the sealing material of the present invention is preferably sintered into a predetermined shape and used as a tablet.
  • a tablet also referred to as a press frit, a glass sintered body, or a glass molded body
  • the tablet has an insertion hole for inserting the exhaust pipe.
  • the exhaust pipe is inserted into the insertion hole, and the tip of the exhaust pipe is aligned with the position of the exhaust hole of the panel and fixed with a clip or the like. .
  • an exhaust pipe is attached to a panel by softening a tablet by a secondary baking process (sealing process). If the above sealing material is processed into a tablet, the exhaust pipe can be easily connected to the exhaust equipment when installed, and the inclination of the exhaust pipe can be reduced. It becomes easy to install so that reliability is maintained.
  • Tablets are produced by multiple heat treatments.
  • a resin or solvent is added to the sealing material to form a slurry.
  • this slurry is put into a granulator such as a spray dryer to produce granules.
  • the granules are dried at a temperature at which the solvent volatilizes (about 100 to 200 ° C.).
  • the produced granules are put into a mold designed to have a predetermined size, and then dry press-molded into a ring shape to produce a pressed body.
  • the resin remaining in the press body is decomposed and volatilized in a heat treatment furnace such as a belt furnace, and then sintered at a temperature about the softening point of the sealing material.
  • a tablet having a predetermined shape can be produced.
  • the number of times of sintering may be multiple. In this way, the strength of the tablet is improved and it is easy to prevent the tablet from being broken or broken.
  • the above-mentioned sealing material is made into a tablet and then attached to the tip of the exhaust pipe further expanded in diameter to be used as a tablet-integrated exhaust pipe. In this way, it is not necessary to align the center of the exhaust pipe and the tablet, and the installation work of the exhaust pipe can be simplified.
  • the tablet-integrated exhaust pipe it is necessary to first heat-treat the tablet in contact with the tip of the exhaust pipe, and to bond the tablet to the tip of the exhaust pipe in advance.
  • the jig for fixing the exhaust pipe is preferably made of a material to which the tablet is not fused, such as a carbon jig.
  • the adhesion between the exhaust pipe and the tablet may be performed in the vicinity of the softening point of the sealing material for a short time, for example, about 5 to 10 minutes.
  • SiO 2 —Al 2 O 3 —B 2 O 3 glass containing a predetermined amount of an alkali metal oxide is suitable, and FE-2 manufactured by Nippon Electric Glass Co., Ltd. is particularly suitable.
  • This exhaust pipe has a thermal expansion coefficient of 85 ⁇ 10 ⁇ 7 / ° C., a heat resistant temperature of 550 ° C., and has dimensions of, for example, an outer diameter of 5 mm and an inner diameter of 3.5 mm.
  • the diameter of the tip of the exhaust pipe is increased, the self-supporting stability can be improved. In that case, the flare shape or the flange shape is preferable for the tip of the exhaust pipe.
  • FIG. 1 shows an example of a tablet-integrated exhaust pipe having this configuration. That is, FIG. 1 is a cross-sectional view of the tablet-integrated exhaust pipe, in which the tip of the exhaust pipe 1 is enlarged in diameter, and the tablet 2 is bonded to the tip of the exhaust pipe on the panel side.
  • a tablet and a high melting point tablet are attached to the tip of the expanded exhaust pipe, and the tablet is attached to the tip of the enlarged exhaust pipe, A structure attached to the rear end side of the tablet is preferable.
  • the area in contact with the panel or the like becomes larger than in the case of the exhaust pipe alone, so that it becomes easy to attach the panel vertically to the panel.
  • a high melting point tablet can be placed between the tablet and the jig, eliminating the need for a special jig and, as a result, simplifying the manufacturing process of the tablet-integrated exhaust pipe be able to.
  • the tablet is bonded to the outer peripheral surface of the distal end portion of the exhaust pipe, the tablet is bonded only to the outer peripheral surface of the distal end portion of the exhaust pipe, In other words, a configuration in which the surface is not bonded to the panel or the like is more preferable. If it does in this way, it will become easy to prevent the situation where the component of a tablet flows into an exhaust hole in a vacuum exhaust process.
  • the high melting point tablet part is fixed directly to the exhaust pipe via the tablet instead of directly adhering to the exhaust pipe, the high melting point tablet part is fixed with a clip in the secondary firing process, and the exhaust pipe is pressure sealed. This is preferable because it is possible.
  • FIG. 2 is a cross-sectional view of the tablet-integrated exhaust pipe, in which the distal end portion of the exhaust pipe 1 is enlarged, and the tablet 2 is bonded to the distal end portion on the outer peripheral surface side of the flange portion 1a of the exhaust pipe 1. is doing.
  • the high melting point tablet 3 is not bonded to the outer peripheral surface side of the exhaust pipe 1.
  • the tablet 2 is attached to the front end side of the flange portion 1 a, and the high melting point tablet 3 is attached to the rear end portion side of the flange portion 1 a than the tablet 2.
  • ST-4 and FN-13 manufactured by Nippon Electric Glass Co., Ltd. are preferable as high melting point tablets.
  • the method for producing the high melting point tablet is the same as the method for producing the tablet when the material is glass.
  • ceramics, metal, etc. can also be used as a high melting point tablet.
  • the refractory filler according to the second embodiment contains, as a composition, mol%, ZnO 50 to 80%, SiO 2 10 to 40%, and Al 2 O 3 0.1 to 10%.
  • mol% ZnO 50 to 80%
  • SiO 2 10 to 40% SiO 2 10 to 40%
  • Al 2 O 3 0.1 to 10%.
  • ZnO is a component for precipitating willemite, and its content is 50 to 80%, preferably 60 to 79.9%, particularly 63 to 70%. When the content of ZnO is out of the above range, the amount of Willemite deposited tends to decrease.
  • SiO 2 is a component for precipitating willemite, and its content is 10 to 40%, preferably 20 to 39.9%, particularly 28 to 35%. When the content of SiO 2 is out of the above range, the amount of willemite deposited tends to decrease.
  • Al 2 O 3 is a component for enhancing the melting property, and its content is 0.1 to 10%, preferably 0.5 to 8%, particularly 1 to 6%.
  • the content of Al 2 O 3 is less than 0.1%, the effect of increasing the meltability becomes poor.
  • the content of Al 2 O 3 is more than 10%, it becomes easy to vitrify at the time of cooling, and crystals are hardly precipitated.
  • the precipitation amount of the Al-based crystal increases, and the effect of reducing the thermal expansion coefficient of the sealing material or the like becomes poor.
  • the proportion of the Al-based crystal is increased, the effect of reducing the thermal expansion coefficient of the sealing material or the like is likely to be reduced.
  • the above refractory filler does not substantially contain PbO, as in the first embodiment.
  • the average particle diameter D 50 is preferably 20 ⁇ m or less, particularly preferably 2 to 15 ⁇ m.
  • the average particle diameter D 50 of the refractory filler is preferably at least 0.5 [mu] m.
  • the maximum particle size D max is preferably 100 ⁇ m or less, particularly preferably 10 to 75 ⁇ m.
  • the above refractory filler can be produced by various methods. For example, after firing a raw material batch made of various oxides in a firing furnace or the like, the obtained fired body is pulverized (solid phase reaction method), or the raw material batch is once melted, and then the obtained melt is A cooling and pulverizing method (melting method) can be employed.
  • the refractory filler produced by the melting method is less liable to precipitate Al-based crystals than the refractory filler produced by the solid phase reaction method, and the thermal expansion coefficient tends to be low. Therefore, the above refractory filler is preferably produced by a melting method.
  • various methods can be employed as a method for cooling the melt. For example, as in the first embodiment, a method of pouring between forming rollers, a method of pouring into water, and the like are suitable.
  • the average particle diameter D 50 of the raw batch, as in the first embodiment, is preferably less than 20 [mu] m. Further, the maximum particle diameter Dmax of the raw material batch is preferably less than 100 ⁇ m, as in the first embodiment.
  • the method described in the first embodiment can be similarly used.
  • the above refractory filler is preferably combined with glass powder and used as a sealing material. That is, the sealing material according to the second embodiment of the present invention is characterized in that, in a sealing material containing glass powder and a refractory filler, all or part of the refractory filler is the above refractory filler. To do.
  • the content of the refractory filler in the sealing material is preferably 0.1 to 70% by volume, 15 to 50% by volume, and particularly preferably 20 to 40% by volume.
  • Various glass powders can be used as the glass powder. Specifically, as exemplified in the first embodiment, Bi 2 O 3 —B 2 O 3 —ZnO glass, V 2 O 5 —P 2 O 5 glass, SnO—P 2 O 5 glass is used. It is suitable in terms of low melting point characteristics.
  • the above-mentioned sealing material may be used in a powder state, but it is preferable to uniformly knead it with a vehicle to form a paste.
  • a vehicle usually includes a solvent and a resin.
  • this resin and solvent those described in the first embodiment can be used in the same manner.
  • surfactant, a thickener, etc. can also be added as needed.
  • the sealing material according to the second embodiment is preferably sintered into a predetermined shape and used as a tablet.
  • Table 1 shows examples of the first embodiment (sample Nos. 1 to 4) and comparative examples (samples No. 5 and 6).
  • Sample no. 1 to 4 were produced. First, raw materials for various oxides were prepared so that the compositions in the table were obtained, and raw material batches were prepared. Next, the raw material batch is put in a platinum crucible and melted at the melting temperature in the table for 3 hours, and then the obtained melt is cooled between casting rollers (double rollers) to be cooled and formed into a film shape. Molded. Subsequently, the obtained film was pulverized by a ball mill and then classified by a 250 mesh pass sieve to obtain a refractory filler having an average particle diameter D 50 of 10 ⁇ m. In the table, this method is described as “melting method”.
  • Sample no. 5 and 6 were produced. First, raw materials of various oxides were prepared so as to have the composition shown in the table, and then pulverized and mixed for 1 hour using a ball mill to prepare a raw material batch. Next, the raw material batch was put in an alumina crucible and fired at the firing temperature in the table for 20 hours. Finally, the obtained fired product was pulverized, pulverized with a ball mill, and classified with a 250 mesh pass sieve to obtain a refractory filler having an average particle diameter D 50 of 12 ⁇ m. In the table, this method is referred to as “solid phase reaction method”.
  • Table 2 shows examples of the first embodiment (sample Nos. 7 to 10).
  • Sample no. 7 to 10 were produced. First, raw materials for various oxides were prepared so as to have the composition described in the table, and raw material batches were prepared. Next, the raw material batch was put into a platinum crucible and melted at the melting temperature in the table for 3 hours, and then the obtained melt was cooled into water to form a crushed shape. Subsequently, the obtained ground pulverized product was pulverized with a ball mill and then classified with a 250 mesh pass sieve to obtain a refractory filler having an average particle size D 50 of 10 ⁇ m. In the table, this method is indicated as “melting method”.
  • Table 3 shows examples of the second embodiment (sample Nos. 11 to 14) and comparative examples (sample Nos. 15 to 17).
  • Sample no. 11 to 13 and 15 were produced. First, raw materials for various oxides were prepared so that the compositions in the table were obtained, and raw material batches were prepared. Next, the raw material batch was put in a platinum crucible and melted at 1580 ° C. for 1 hour, and then the obtained melt was cooled between casting rollers (double rollers) to cool and mold into a film shape. Subsequently, the obtained film was pulverized with a ball mill and then classified with a sieve of 250 mesh pass to obtain a refractory filler having an average particle diameter D 50 of 12 ⁇ m. In the table, this method is indicated as “melting method”.
  • Sample no. 14 was produced. First, raw materials of various oxides were prepared so as to have the composition shown in the table, and then pulverized and mixed for 1 hour using a ball mill to prepare a raw material batch. Next, the raw material batch was put in an alumina crucible and fired at 1440 ° C. for 20 hours. The obtained small organisms were crushed and then fired again at 1440 ° C. for 20 hours. Finally, the obtained fired product was pulverized, pulverized with a ball mill, and classified with a 250 mesh pass sieve to obtain a refractory filler having an average particle diameter D 50 of 12 ⁇ m. In the table, this method is referred to as “solid phase reaction method”.
  • Sample no. 16 and 17 were produced. First, raw materials of various oxides were prepared so as to have the composition shown in the table, and then pulverized and mixed for 1 hour using a ball mill to prepare a raw material batch. Next, the raw material batch was put in an alumina crucible and baked at 1420 ° C. for 20 hours. Finally, the obtained fired product was pulverized, pulverized with a ball mill, and classified with a 250 mesh pass sieve to obtain a refractory filler having an average particle diameter D 50 of 12 ⁇ m. In the table, this method is referred to as “solid phase reaction method”.
  • XRD X-ray diffractometer
  • the meltability was evaluated as follows. First, raw materials for various oxides were prepared so that the compositions in the table were obtained, and raw material batches were prepared. Next, after putting this raw material batch in a platinum crucible and holding at 1500 ° C. for 30 minutes, when the platinum crucible is taken out, the state that the raw material batch is completely melted is “good”, and the raw material batch remains. The state of being “bad”.
  • the lower limit melting temperature was investigated as follows. First, raw materials for various oxides were prepared so that the compositions in the table were obtained, and raw material batches were prepared. Next, this raw material batch was put in a platinum crucible and held at a temperature in increments of 1440 ° C. to 10 ° C. for 30 minutes, and the state of the raw material batch was observed at each temperature. The lowest temperature at which the raw material batch completely melted was defined as the lower melting temperature.
  • the thermal expansion coefficient was evaluated as follows. First, glass powder made of bismuth glass was prepared. The glass composition of the glass powder was 76.4% Bi 2 O 3 , 8.1% B 2 O 3 , 6.4% ZnO, 5.8% BaO, 2.2% CuO, and Fe 2. O 3 0.5%, Sb 2 O 3 0.6%, and the average particle diameter D 50 was about 10 ⁇ m. Next, 35% by volume of the refractory filler in the table and 65% by volume of the above glass powder were added and mixed, followed by firing at 500 ° C. to obtain a dense sintered body. Subsequently, the obtained sintered body was processed into a predetermined shape to prepare a measurement sample for TMA (push bar thermal expansion coefficient measurement). TMA was performed using this measurement sample. The measurement temperature range is 30 to 300 ° C.
  • the method for producing a refractory filler according to the present invention includes (1) sealing materials for display devices such as PDP, organic EL display, FED, and VFD, and (2) coating of display devices such as PDP, organic EL display, FED, and VFD. Materials, (3) sealing materials for electronic components such as piezoelectric vibrator packages, IC packages, (4) sealing materials for cores of magnetic heads or cores and sliders, (5) silicon solar cells, dye-sensitized solar It is suitable as a method for producing a fireproof filler used for sealing materials for solar cells such as batteries, and (6) sealing materials for lighting devices such as organic EL lighting.
  • sealing materials for display devices such as PDP, organic EL display, FED, and VFD
  • Materials (3) sealing materials for electronic components such as piezoelectric vibrator packages, IC packages, (4) sealing materials for cores of magnetic heads or cores and sliders, (5) silicon solar cells, dye-sensitized solar It is suitable as a method for producing a fireproof filler used for sealing materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明の耐火性フィラーの製造方法は、原料バッチを融解した後、得られた融液を冷却することにより、主結晶相として、ウイレマイトを析出させることを特徴とする。

Description

耐火性フィラー及びこれを用いた封着材料、並びに耐火性フィラーの製造方法
 本発明は、耐火性フィラー及びその製造方法に関し、特にプラズマディスプレイパネル(以下、PDP)、有機ELディスプレイ、フィールドエミッションディスプレイ(以下、FED)、蛍光表示管(以下、VFD)等の表示装置の封着材料、圧電振動子パッケージ、ICパッケージ等の電子部品の封着材料に用いる耐火性フィラー及びその製造方法に関する。
 封着材料として、ガラス粉末と耐火性フィラーを含む複合粉末材料が用いられている。この封着材料は、樹脂系の接着剤に比べ、化学的耐久性や耐熱性に優れており、また気密性の確保に適している。
 従来、ガラス粉末として、PbO-B系ガラスが用いられていた(特許文献1等参照)。しかし、環境的観点から、ガラス組成からPbOを除くことが要求されており、Bi-B系ガラスが開発されるに至っている。特許文献2等によると、Bi-B系ガラスは、低融点であり、且つPbO-B系ガラスと同様の化学的耐久性を有している。
 耐火性フィラーを用いると、熱膨張係数の低下や機械的強度の向上を図ることができる。従来、耐火性フィラーとして、低膨張のチタン酸鉛等が使用されてきた。しかし、ガラス粉末と同様にして、耐火性フィラーの組成からPbOを除くことが要求されている。このため、耐火性フィラーとして、ウイレマイト、コーディエライト、二酸化スズ、β-ユークリプタイト、ムライト、シリカ、β-石英固溶体、チタン酸アルミ、ジルコン等が検討されている。その中でもウイレマイトは、低膨張であり、且つBi-B系ガラスと適合性が良好である(封着時にBi-B系ガラスを失透させ難い)ため、注目されている(特許文献3、非特許文献1参照)。
特開昭63-315536号公報 特開平8-59294号公報 特開平4-114930号公報
E.N.Bunting、「Phase equilibtia in the system SiO2-ZnO-Al2O3」、J.Res.NAT.Bur.Stand.,11,725、1933
 ウイレマイト等の耐火性フィラーは、一般的に固相反応法で作製される。固相反応法でウイレマイトを作製する場合、固相反応を完了させるために、融点(約1510℃;非特許文献1参照)付近の温度、具体的には1440℃以上で原料バッチを長時間焼成する必要がある。このため、焼成温度が高過ぎると、焼成時に焼成物の融着が発生し易く、結果として、焼成物の粉砕効率が大幅に低下し、耐火性フィラーの製造コストが高騰してしまう。
 一方、焼成温度が低過ぎると、原料の一部が未反応になり易い。このように耐火性フィラー中に未反応の原料が残存していると、ガラス粉末と複合化して封着材料等として用いた場合に、ガラスに意図しない結晶が析出し易くなり、封着不良が発生し易くなる。
 また、耐火性フィラーは、上記の通り、封着材料等の熱膨張係数を低下させる効果を有する。そのため、この熱膨張係数の低減効果が高い場合、封着材料等において耐火性フィラーの含有比率を低下させても所望の熱膨張係数を得ることができる。その結果、封着材料等に含まれるガラス粉末の含有比率が上昇し、封着材料等の流動性を高めることが可能となる。これに対し、熱膨張係数の低減効果が低い場合、封着材料等おいて耐火性フィラーの含有比率を低下させると、所望の熱望膨張係数を得ることが困難となる。
 本発明は、上記実情に鑑み、製造コストの低廉化を図りつつ、原料の一部が未反応のまま残存するという事態を確実に防止でき、且つ、封着材料等の熱膨張係数を適正に低下し得る耐火性フィラーを提供することを技術的課題とする。
 上記技術的課題を解決するために創案された第一の発明に係る耐火性フィラーの製造方法は、原料バッチを融解した後、得られた融液を冷却することにより、主結晶(最も析出量が多い結晶)相として、ウイレマイトを析出させることを特徴とする。
 上記の耐火性フィラーの製造方法は、原料バッチを融解することを特徴とする。このようにすれば、原料バッチの反応時間を短縮できるため、耐火性フィラーの製造コストを低廉化することができる。また、このようにすれば、未反応原料が発生し難いため、耐火性フィラーの組成を均一化し易くなる。
 また、上記の耐火性フィラーの製造方法は、融液を冷却することを特徴とする。このようにすれば、冷却時に結晶を析出させることが可能になり、耐火性フィラーの製造コストを低廉化することができる。
 さらに、上記の耐火性フィラーの製造方法は、主結晶として、ウイレマイトを析出させることを特徴とする。このようにすれば、熱膨張係数を低下させる効果が大きくなるため、封着部位等が熱応力により破損する事態を防止し易くなる。なお、所定の原料バッチを用いると、冷却時に、主結晶相として、ウイレマイト等を析出させることが可能になる。
 ここで、耐火性フィラーの結晶化度が低い場合には、冷却後に、800℃以上の熱処理工程を設けて、耐火性フィラーの結晶化度を高めることも可能である。しかし、第一の発明の耐火性フィラーの製造方法では、耐火性フィラーの製造コストの更なる低廉化を図る観点から、冷却時に十分な結晶を析出させ、そのような熱処理工程を省略することが好ましい。
 第二に、第一の発明に係る耐火性フィラーの製造方法は、成形ローラー間に流し出すことにより、融液を冷却することが好ましい。このようにすれば、フィルム形状に成形できるため、耐火性フィラーを細粒化し易くなり、また耐火性フィラーの粒度調整も容易になり、結果として、耐火性フィラーの製造コストを低廉化し易くなる。そして、冷却時にウイレマイト結晶を析出させることも可能である。
 第三に、第一の発明に係る耐火性フィラーの製造方法は、水中に流し出すことにより、融液を冷却することが好ましい。このようにすれば、冷却時に破砕形状に成形され、且つ成形物に多数のクラックが入るため、耐火性フィラーを細粒化し易くなり、また耐火性フィラーの粒度調整も容易になり、結果として、耐火性フィラーの製造コストを低廉化し易くなる。そして、冷却時にウイレマイト結晶を析出させることも可能である。
 第四に、第一の発明に係る耐火性フィラーの製造方法は、耐火性フィラーが、組成として、モル%で、ZnO 50~80%、SiO 10~40%、Al 0~10%を含有するように、原料バッチを調製することが好ましい。このようにすれば、冷却時に、主結晶相として、ウイレマイト等が析出し易くなるため、耐火性フィラーの製造コストを低廉化し易くなる。
 第五に、第一の発明に係る耐火性フィラーの製造方法は、原料バッチの平均粒子径D50が20μm未満であることが好ましい。このようにすれば、原料の密度差に起因した原料の未溶解や融液の不均質化を防止し易くなる。ここで、「平均粒子径D50」は、レーザ回折法で測定した値を指し、レーザ回折法で測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒径を表す。
 第六に、第一の発明に係る耐火性フィラーの製造方法は、原料バッチの最大粒子径Dmaxが100μm未満であることが好ましい。このようにすれば、原料の密度差に起因した原料の未溶解や融液の不均質化を防止し易くなる。ここで、「最大粒子径Dmax」は、レーザ回折法で測定した値を指し、レーザ回折法で測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒径を表す。
 第七に、第一の発明に係る耐火性フィラーの製造方法は、主結晶相として、ウイレマイト及びガーナイトを析出させることが好ましい。このようにすれば、主結晶相がウイレマイトのみの場合よりも、機械的強度を向上させる効果が大きくなるため、封着部位等の破損を防止し易くなって、表示装置等の気密性を維持し易くなる。
 第八に、第一の発明に係る耐火性フィラーの製造方法は、ウイレマイトとガーナイトの割合が、モル比で、100:0~70:30の範囲内であることが好ましい。
 第九に、第一の発明に係る耐火性フィラーは、上記の方法で製造されていることを特徴とする。
 第十に、第一の発明に係る耐火性フィラーは、主結晶として、ウイレマイトが析出している耐火性フィラーであって、原料バッチを融解した後、得られた融液を冷却することで作製されてなることを特徴とする。
 第十一に、第一の発明に係る封着材料は、ガラス粉末と耐火性フィラーを含む封着材料において、耐火性フィラーの全部又は一部が、上記の耐火性フィラーであることを特徴とする。
 また、上記課題を解決するために創案された第二の発明に係る耐火性フィラーは、主結晶(最も析出量が多い結晶)として、ウイレマイトが析出している耐火性フィラーにおいて、組成として、モル%で、ZnO 50~80%、SiO 10~40%、Al 0.1~10%を含有すると共に、ウイレマイト:Al系結晶の割合が、モル比で、100:0~99:1であることを特徴とする。ここで、「Al系結晶」とは、結晶構成成分として、Alを含む結晶(例えば、ガーナイト)を指す。
 上記の耐火性フィラーは、組成として、ZnOを50~80モル%、SiOを10~40モル%含有する。このようにすれば、主結晶として、ウイレマイトが析出し易くなることから、熱膨張係数を低下させる効果が大きくなる。また、本発明の耐火性フィラーは、組成として、Alを0.1モル%以上含有する。このようにすれば、従来よりも低温で耐火性フィラーを作製することができることから、未反応の原料が残存するという事態が防止されると共に、製造コストの低廉化を確実に図ることができる。さらに、本発明の耐火性フィラーは、組成として、Alを10モル%以下含有する。このようにすれば、Al系結晶の析出量を抑制し易くなる。
 上記の耐火性フィラーは、主結晶として、ウイレマイトが析出していると共に、ウイレマイト:Al系結晶の割合が、モル比で、100:0~99:1であることを特徴とする。主結晶として、ウイレマイトが析出しており、且つAl系結晶の析出量が少ないと、封着材料等の熱膨張係数を低下させる効果を享受し易くなるため、封着材料等の熱膨張係数を適正に低下させることが可能になる。
 第二に、第二の発明に係る耐火性フィラーは、Al系結晶が析出している場合、そのAl系結晶がガーナイトであることが好ましい。同一粒子中にガーナイトを析出させた場合、機械的強度を向上させる効果が高くなる。その結果、封着部位等の破損を防止し易くなって、表示装置等の気密性を維持し易くなる。
 第三に、第二の発明に係る耐火性フィラーは、原料バッチを一旦融解させた後、得られた融液を冷却することで作製されてなること、つまり溶融法で作製されてなることが好ましい。原料バッチを融解すれば、原料バッチの反応時間を短縮できるため、耐火性フィラーの製造コストを低廉化することができる。また、このようにすれば、未反応原料が発生し難くなるため、耐火性フィラーの組成を均一化し易くなる。さらに、得られた融液を冷却すれば、冷却時に結晶を析出させることが可能になり、耐火性フィラーの製造コストを低廉化することができる。
 第四に、第二の発明に係る封着材料は、ガラス粉末と耐火性フィラーを含む封着材料において、耐火性フィラーの全部又は一部が、上記の耐火性フィラーであることを特徴とする。
タブレット一体型排気管の一形態を示す断面概念図である。 タブレット一体型排気管の一形態を示す断面概念図である。
 本発明の第一実施形態について説明する。第一実施形態に係る耐火性フィラーの製造方法は、原料バッチを融解した後、得られた融液を冷却することにより、主結晶相として、ウイレマイトを析出させるというものである。この耐火性フィラーの製造方法において、融液の冷却方法として、種々の方法を採用することができる。例えば、成形ローラー間に流し出す方法や、水中に流し出す方法等が好適である。前者の方法によれば、フィルム形状に成形できるため、成形物を粉砕し易くなり、耐火性フィラーの細粒化や粒度調整が容易になる。そして、冷却時にウイレマイト結晶を析出させることも可能である。一方、後者の方法によれば、冷却時に破砕形状に成形され且つ成形物に多数のクラックが入るため、成形物を粉砕し易くなり、耐火性フィラーの細粒化や粒度調整が容易になる。そして、冷却時にウイレマイト結晶を析出させることも可能である。
 上記の耐火性フィラーの製造方法では、耐火性フィラーが、モル%で、ZnO 60~79.9%(好ましくは63~70%)、SiO 20~39.9%(好ましくは28~35%)、Al 0~10%を含有するように原料バッチを調製することが好ましい。原料バッチのバッチ組成も、モル%で、ZnO 60~79.9%(好ましくは63~70%)、SiO 20~39.9%(好ましくは28~35%)、Al 0~10%を含有することが好ましい。ZnO及びSiOは、結晶の構成成分である。Alは、結晶の構成成分であり、且つ少量の添加により、融液の融点を低下させる成分である。なお、主結晶相として、ガーナイトを析出させる場合、Alの含有量は0.1モル%以上、1モル%以上、特に3モル%以上が好ましい。Alの含有量が0.1モル%より少ないと、ガーナイトが析出し難くなり、また融液の融点を低下させる効果が乏しくなる。一方、Alの含有量が多過ぎると、成形物がガラス化し易くなるため、ウイレマイトを析出させることが困難になり、また融液の成分バランスが損なわれて、逆に融液の融点が上昇し易くなり、原料バッチを融解し難くなる。
 上記の耐火性フィラーの製造方法は、実質的にPbOを含有しない原料バッチを用いることが好ましい。このようにすれば、近年の環境的要請を満たすことができる。ここで、「実質的にPbOを含有しない」とは、PbOの含有量が1000ppm(質量)以下の場合を指す。
 上記の耐火性フィラーの製造方法は、原料バッチの平均粒子径D50が20μm未満であることが好ましい。本発明の耐火性フィラーの作製に際し、ZnO原料とSiO原料を用いると、原料間の密度差が大きくなる。この場合、原料バッチの平均粒子径D50が大き過ぎると、原料間の密度差に起因して、ZnOの沈殿やSiOの浮遊物が生じ易くなるため、均質な融液を得難くなり、結果として、耐火性フィラーの組成が不均一になり易い。なお、ZnO原料の密度は5.6g/cmであり、SiO原料の密度は2.6g/cmである。
 上記の耐火性フィラーの製造方法は、原料バッチの最大粒子径Dmaxが100μm未満であることが好ましい。上記の通り、本発明の耐火性フィラーの作製に際し、ZnO原料とSiO原料を用いると、原料間の密度差が大きくなる。この場合、原料バッチの最大粒子径Dmaxが大き過ぎると、原料間の密度差に起因して、ZnOの沈殿やSiOの浮遊物が生じ易くなるため、均質な融液を得難くなり、結果として、耐火性フィラーの組成が不均一になり易い。
 上記の耐火性フィラーの製造方法は、主結晶相として、ウイレマイト及びガーナイトを析出させることが好ましい。同一粒子中にウイレマイト及びガーナイトを析出させた場合、主結晶相がウイレマイトのみの場合よりも、機械的強度を向上させる効果が大きくなる。その結果、封着部位等の破損を防止し易くなって、表示装置等の気密性を維持し易くなる。また、ウイレマイトの析出により、熱膨張係数を低下させる効果も的確に享受することができる。
 上記の耐火性フィラーの製造方法において、ウイレマイトとガーナイトの析出割合をモル比でウイレマイト:ガーナイト=99:1~70:30、95:5~80:20、特に95:5~90:10に調整することが好ましい。ガーナイトの割合が少ないと、機械的強度を高める効果が乏しくなる。一方、ガーナイトの割合が多過ぎると、熱膨張係数を低下させる効果が乏しくなる。
 上記の耐火性フィラーの製造方法は、平均粒子径D50が20μm以下、特に2~15μmになるように、成形物を粉砕、分級する工程を有することが好ましい。このようにすれば、封着厚みを狭小化し易くなる。なお、耐火性フィラーによる効果を的確に享受するために、耐火性フィラーの平均粒子径D50は0.5μm以上が好ましい。
 上記の耐火性フィラーの製造方法は、最大粒子径Dmaxが100μm以下、特に10~75μmになるように、成形物を粉砕、分級する工程を有することが好ましい。このようにすれば、グレーズ面を平滑化し易くなるとともに、封着厚みを狭小化し易くなる。
 粉砕方法(装置)として、ボールミル、ジョークラッシャー、ジェットミル、ディスクミル、スペクトロミル、グラインダー、ミキサーミル等が利用可能であるが、ランニングコスト及び粉砕効率の観点から、ボールミルが好ましい。
 本発明の第一実施形態に係る耐火性フィラーは、上記の方法で製造されていることを特徴とする。また、本発明の耐火性フィラーは、上記の理由により、実質的にPbOを含有しないことが好ましい。
 上記の耐火性フィラーは、ガラス粉末と複合化し、封着材料として用いることが好ましい。すなわち、本発明の第一実施形態に係る封着材料は、ガラス粉末と耐火性フィラーを含む封着材料において、耐火性フィラーの全部又は一部が、上記の方法で製造された耐火性フィラーであることを特徴とする。封着材料中の耐火性フィラーの含有量は0.1~70体積%、15~50体積%、特に20~40体積%が好ましい。耐火性フィラーの含有量が70体積%より多いと、ガラス粉末の含有量が相対的に少なくなるため、封着材料の流動性が低下し、結果として、封着強度が低下し易くなる。一方、耐火性フィラーの含有量が0.1体積%より少ないと、耐火性フィラーによる効果が乏しくなる。なお、更に、上記方法で作製した耐火性フィラー以外にも、耐火性フィラーとして、例えば、コーディエライト、ジルコン、β-ユークリプタイト、石英ガラス、アルミナ、ムライト、リン酸タングステン酸ジルコニウム、タングステン酸ジルコニウム、アルミナ-シリカ系セラミックスから選ばれる一種又は二種以上を含んでもよい。これらの耐火性フィラーは、熱膨張係数の調整、流動性の調整、及び機械的強度の向上の観点から、有用である。また、これらの耐火性フィラーの含有量は、合量で0~30体積%、特に0~10体積%が好ましい。
 ガラス粉末として、種々のガラス粉末を用いることができる。例えば、Bi-B-ZnO系ガラス、V-P系ガラス、SnO-P系ガラスが低融点特性の点で好適であり、Bi-B-ZnO系ガラスが熱的安定性、耐水性の点で特に好ましい。ここで、「~系ガラス」とは、明示の成分を必須成分として含有し、且つ明示の成分の合量が30モル%以上、好ましくは40モル%以上、より好ましくは50モル%以上のガラスを指す。なお、ガラス粉末は、環境的観点からガラス組成中に実質的にPbOを含まないことが好ましい。
 Bi-B-ZnO系ガラスは、ガラス組成として、モル%で、Bi 30~60%、B 10~35%、ZnO 1~35%含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、ガラス組成範囲の説明において、%表示はモル%を指す。
 Biは、軟化点を低下させるための主要成分であり、その含有量は30~60%、36~55%、特に37~52%が好ましい。Biの含有量が少な過ぎると、軟化点が高くなり過ぎて、流動性が低下し易くなる。一方、Biの含有量が多過ぎると、焼成時にガラスが失透し易くなり、この失透に起因して、流動性が低下し易くなる。
 Bは、ガラス形成成分として必須の成分であり、その含有量は10~35%、15~30%、特に18~28%が好ましい。Bの含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、焼成時にガラスが失透し易くなる。一方、Bの含有量が多過ぎると、ガラスの粘性が高くなり、流動性が低下し易くなる。
 ZnOは、耐失透性を高める成分であり、その含有量は1~35%、5~30%、10~25%、特に13~25%が好ましい。その含有量が1%より少なく、或いは35%より多いと、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 SiOは、耐水性を高める成分であるが、軟化点を上昇させる作用を有する。このため、SiOの含有量は0~4%、0~3%、0~2%、特に0~1%が好ましい。また、SiOの含有量が多過ぎると、焼成時にガラスが失透し易くなる。
 CuO+Fe(CuOとFeの合量)は、耐失透性を高める成分であり、その含有量は0~25%、0.01~10%、特に0.1~10%が好ましい。Bi-B-ZnO系ガラスの軟化点を下げるためには、ガラス組成中にBiを多量に導入する必要があるが、Biの含有量を増加させると、焼成時にガラスが失透し易くなり、この失透に起因して流動性が低下し易くなる。特に、Biの含有量が30%以上になると、その傾向が顕著になる。この対策として、CuO+Feを適量添加すれば、Biの含有量が30%以上であっても、ガラスの失透を効果的に抑制することができる。なお、CuO+Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 CuOは、耐失透性を高める成分であり、その含有量は0~15%、特に0.1~10%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 Feは、耐失透性を高める成分であり、その含有量は0~10%、0.1~10%、特に0.3~5%が好ましい。Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 BaOは、耐失透性を高める成分である。BaOの含有量は0~12%、特に1~8%が好ましい。BaOの含有量が多過ぎると、ガラス組成の成分バランスを欠き、逆にガラスの熱的安定性が損なわれて、ガラスが失透し易くなる。なお、BaOの含有量を1~8%に規制すれば、ガラスの熱的安定性を顕著に高めることができる。
 Alは、耐水性を高める成分であり、その含有量は0~10%、0~5%、特に0~2%が好ましい。Alの含有量が多過ぎると、軟化点が不当に上昇する虞がある。
 Sbは、耐失透性を高める成分であり、その含有量は0~5%、特に0.1~2%が好ましい。Sbの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
 ガラス粉末の平均粒子径D50は15μm未満、0.5~10μm、特に1~5μmが好ましい。ガラス粉末の平均粒子径D50が小さい程、ガラス粉末の軟化点が低下する。
 上記の封着材料は、粉末状態で使用に供してもよいが、取り扱い性を向上させる観点からは、ビークルと均一に混練してペースト化することが好ましい。ビークルは、通常、溶媒と樹脂を含む。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製されたペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて、被封着物の表面に塗布される。
 樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロースは、熱分解性が良好であるため、好ましい。
 溶媒としては、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、水、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。特に、α-ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。
 本発明の封着材料は、所定形状に焼結し、タブレット化して用いることが好ましい。PDP等の排気管の封着には、リング状に成型加工されたタブレット(プレスフリット、ガラス焼結体、ガラス成形体などとも称される)が使用されている。タブレットには、排気管を挿入するための挿入孔が形成されており、この挿入孔に排気管を挿入し、排気管の先端部をパネルの排気孔の位置に合わせ、クリップ等で固定される。その後、二次焼成工程(封着工程)でタブレットを軟化させることにより、排気管がパネルに取り付けられる。上記の封着材料をタブレットに加工すれば、排気管の取り付けに際して、排気設備への接続が容易になり、また排気管の傾きを低減でき、更にはPDP等の発光能力を維持しつつ、気密信頼性が保たれるように取り付け易くなる。
 タブレットは、複数回の熱処理により作製される。まず、封着材料に樹脂や溶剤を添加し、スラリーを形成する。その後、このスラリーをスプレードライヤー等の造粒装置に投入し、顆粒を作製する。その際、顆粒は、溶剤が揮発する温度(100~200℃程度)で乾燥される。さらに、作製された顆粒は、所定の寸法に設計された金型に投入された後、リング状に乾式プレス成型され、プレス体が作製される。次に、ベルト炉等の熱処理炉にて、このプレス体に残存する樹脂を分解揮発させた後、封着材料の軟化点程度の温度で焼結する。このようにして、所定形状のタブレットを作製することができる。また、焼結回数を複数回としてもよい。このようにすれば、タブレットの強度が向上し、タブレットの欠損、破壊等を防止し易くなる。
 上記の封着材料は、タブレット化した上で、更に拡径された排気管の先端部に取り付けてタブレット一体型排気管として用いることが好ましい。このようにすれば、排気管とタブレットの中心位置合わせが不要になり、排気管の取り付け作業を簡略化することができる。
 タブレット一体型排気管の作製に当たり、まず排気管の先端部にタブレットを接触させた状態で熱処理し、予めタブレットを排気管の先端部に接着しておく必要がある。この場合、治具で排気管を固定し、この状態の排気管にタブレットを挿入し熱処理する方法が好ましい。排気管を固定する治具は、タブレットが融着しない材質、例えばカーボン治具等が好ましい。また、排気管とタブレットの接着は、封着材料の軟化点付近で短時間、例えば5~10分程度行えばよい。
 排気管として、アルカリ金属酸化物を所定量含有させたSiO-Al-B系ガラスが好適であり、特に日本電気硝子株式会社製FE-2が好適である。この排気管は、熱膨張係数が85×10-7/℃、耐熱温度が550℃であり、寸法が、例えば外径5mm、内径3.5mmである。また、排気管の先端部を拡径化すれば、自立安定性を高めることができる。その場合、排気管の先端部は、フレア形状又はフランジ形状が好ましい。排気管の先端部を拡径化する方法として、種々の方法を採用することができる。特に、排気管の先端部を回転させながらガスバーナーを用いて加熱し、数種類の治具を用いて所定の形状に加工する方法が量産性に優れるため好ましい。図1は、この構成のタブレット一体型排気管の一例を示している。つまり、図1は、タブレット一体型排気管の断面図であり、排気管1の先端部が拡径化されており、排気管のパネル側の先端部にタブレット2が接着されている。
 タブレット一体型排気管として、拡径された排気管の先端部にタブレットと、高融点タブレットとが取り付けられており、且つタブレットを拡径された排気管の先端部側に取り付け、高融点タブレットをタブレットよりも後端部側に取り付けた構造が好ましい。この構成を採用すれば、パネル等に排気管を取り付ける際にパネル等と接触する面積が、排気管だけの場合よりも大きくなるため、パネルに対して垂直に取り付け易くなる。また、タブレットを排気管に固着させる際、タブレットと治具の間に高融点タブレットを配置できるため、特殊な治具が不要になり、結果として、タブレット一体型排気管の製造工程を簡略化することができる。
 上記のタブレット一体型排気管において、タブレットが排気管の先端部の外周面に接着した構成が好ましく、タブレットが排気管の先端部の外周面のみに接着し、排気管の先端部の先端面、すなわちパネル等と接する面に接着していない構成が更に好ましい。このようにすれば、真空排気工程でタブレットの構成成分が排気孔へ流れ込む事態を防止し易くなる。また、高融点タブレットについては、排気管に直接接着せず、タブレットを介して排気管に固定すれば、二次焼成工程で高融点タブレット部分をクリップで固定した状態で排気管を加圧封着できるため、好ましい。図2は、この構成のタブレット一体型排気管の一例を示している。つまり、図2は、タブレット一体型排気管の断面図であり、排気管1の先端部が拡径化されており、排気管1のフランジ部分1aの外周面側の先端部にタブレット2が接着している。一方、高融点タブレット3は排気管1の外周面側に接着していない。また、タブレット2は、フランジ部分1aの先端部側に取り付けられており、高融点タブレット3がタブレット2よりもフランジ部分1aの後端部側に取り付けられている。
 高融点タブレットとして、日本電気硝子株式会社製ST-4、FN-13が好ましい。高融点タブレットの作製方法は、材質がガラスの場合、上記のタブレットの作製方法と同様である。また、高融点タブレットとして、セラミックス、金属等を用いることもできる。
 次に、本発明の第二実施形態について説明する。なお、第一実施形態と共通する点については適宜説明を省略する。
 第二実施形態に係る耐火性フィラーは、組成として、モル%で、ZnO 50~80%、SiO 10~40%、Al 0.1~10%を含有する。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、組成範囲の説明において、%表示はモル%を指す。
 ZnOは、ウイレマイトを析出させるための成分であり、その含有量は50~80%であり、好ましくは60~79.9%、特に63~70%である。ZnOの含有量が上記範囲外になると、ウイレマイトの析出量が低下し易くなる。
 SiOは、ウイレマイトを析出させるための成分であり、その含有量は10~40%、好ましくは20~39.9%、特に28~35%である。SiOの含有量が上記範囲外になると、ウイレマイトの析出量が低下し易くなる。
 Alは、融解性を高めるための成分であり、その含有量は0.1~10%であり、好ましくは0.5~8%、特に1~6%である。Alの含有量が0.1%より少ないと、融解性を高める効果が乏しくなる。一方、Alの含有量が10%より多いと、冷却時にガラス化しやすくなり、結晶が析出し難くなる。また、Al系結晶の析出量が多くなって、封着材料等の熱膨張係数を低下させる効果が乏しくなる。
 上記成分以外にも、他の成分を10%以下の範囲で添加してもよい。
 上記の耐火性フィラーにおいて、ウイレマイトとAl系結晶の割合は、モル比で、ウイレマイト:ガーナイト=100:0~99:1が好ましい。Al系結晶の割合が大きくなると、封着材料等の熱膨張係数を低下させる効果が低下し易くなる。
 上記の耐火性フィラーは、第一実施形態と同様に、実質的にPbOを含有しないことが好ましい。
 上記の耐火性フィラーにおいて、第一実施形態と同様に、平均粒子径D50は20μm以下、特に2~15μmが好ましい。なお、耐火性フィラーによる効果を的確に享受するために、耐火性フィラーの平均粒子径D50は0.5μm以上が好ましい。
 上記の耐火性フィラーにおいて、第一実施形態と同様に、最大粒子径Dmaxは100μm以下、特に10~75μmが好ましい。
 上記の耐火性フィラーは、種々の方法で作製可能である。例えば、各種酸化物からなる原料バッチを焼成炉等で焼成した後、得られた焼成体を粉砕する方法(固相反応法)、或いは原料バッチを一旦融解させた後、得られた融液を冷却、粉砕する方法(溶融法)を採用することができる。なお、溶融法で作製した耐火性フィラーは、固相反応法で作製した耐火性フィラーよりもAl系結晶が析出し難く、熱膨張係数が低くなる傾向がある。したがって、上記の耐火性フィラーは、溶融法で作製されることが好ましい。この場合、融液の冷却方法としては、種々の方法を採用することができる。例えば、第一実施形態と同様に、成形ローラー間に流し出す方法、水中に流し出す方法等が好適である。
 原料バッチの平均粒子径D50は、第一実施形態と同様に、20μm未満が好ましい。また、原料バッチの最大粒子径Dmaxも、第一実施形態と同様に、100μm未満が好ましい。
 粉砕方法(装置)としては、第一実施形態で説明した方法が同様に利用可能である。
 耐火性フィラーの結晶化度が低い場合は、別途、800℃以上の熱処理工程を設けて、耐火性フィラーの結晶化度を高めることも可能であるが、このような熱処理工程はコストアップの要因になり得る。よって、このような熱処理工程を設けないことが有利である。
 上記の耐火性フィラーは、ガラス粉末と複合化し、封着材料として用いることが好ましい。すなわち、本発明の第二実施形態に係る封着材料は、ガラス粉末と耐火性フィラーを含む封着材料において、耐火性フィラーの全部又は一部が、上記の耐火性フィラーであることを特徴とする。封着材料中の耐火性フィラーの含有量は、第一実施形態と同様に、0.1~70体積%、15~50体積%、特に20~40体積%が好ましい。
 ガラス粉末として、種々のガラス粉末を用いることができる。具体的には、第一実施形態で例示したように、Bi-B-ZnO系ガラス、V-P系ガラス、SnO-P系ガラスが低融点特性の点で好適である。
 ガラス粉末の平均粒子径D50は15μm未満、0.5~10μm、特に1~5μmが好ましい。
 上記の封着材料は、粉末状態で使用に供してもよいが、ビークルと均一に混練し、ペースト化することが好ましい。ビークルは、通常、溶媒と樹脂を含む。この樹脂や溶媒としては、第一実施形態で説明したものを同様に使用できる。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。
 第二実施形態に係る封着材料は、第一実施形態と同様に、所定形状に焼結し、タブレット化して用いることが好ましい。
 以下、第一実施形態の実施例を説明する。なお、以下の実施例は単なる例示であって、本発明は以下の実施例に限定されるものではない。
 表1は、第一実施形態の実施例(試料No.1~4)及び比較例(試料No.5、6)を示している。
Figure JPOXMLDOC01-appb-T000001
 以下のようにして、試料No.1~4を作製した。まず表中の組成になるように、各種酸化物の原料を調合し、原料バッチを作製した。次に、原料バッチを白金坩堝に入れて、表中の融解温度で3時間融解した後、得られた融液を成形ローラー(双ローラー)間に流し出すことにより、冷却し、且つフィルム形状に成形した。続いて、得られたフィルムをボールミルで粉砕した後、250メッシュパスの篩で分級し、平均粒子径D5010μmの耐火性フィラーを得た。表中では、この方法を「溶融法」と記載した。
 以下のようにして、試料No.5、6を作製した。まず表中の組成になるように、各種酸化物の原料を調合した後、ボールミルを用いて、1時間粉砕混合し、原料バッチを作製した。次に、原料バッチをアルミナ坩堝に入れて、表中の焼成温度で20時間焼成した。最後に、得られた焼成物を解砕後、ボールミルで粉砕した上で、250メッシュパスの篩で分級し、平均粒子径D5012μmの耐火性フィラーを得た。表中では、この方法を「固相反応法」と表記した。
 各試料につき、主結晶相及び未反応の原料(主にZnO)の有無をXRDにより評価した。その結果を表1に示す。
 表1から明らかなように、試料No.1~4は、主結晶相として、ウイレマイト又はウイレマイト・ガーナイトが析出しており、また未反応原料が残っていなかった。一方、試料No.5は、固相反応法で作製されているため、未反応原料が残っていた。また、試料No.6は、主結晶相として、ウイレマイトが析出していないため、熱膨張係数を低下させる効果が乏しいと考えられる。
 表2は、第一実施形態の実施例(試料No.7~10)を示している。
Figure JPOXMLDOC01-appb-T000002
 以下のようにして、試料No.7~10を作製した。まず表中に記載の組成になるように、各種酸化物の原料を調合し、原料バッチを作製した。次に、原料バッチを白金坩堝に入れて、表中の融解温度で3時間融解した後、得られた融液を水中に流し出すことにより、冷却し、破砕形状に成形した。続いて、得られた水砕物をボールミルで粉砕した後、250メッシュパスの篩で分級し、平均粒子径D5010μmの耐火性フィラーを得た。表中では、この方法を「溶融法」と表記した。
 各試料につき、主結晶相及び未反応の原料(主にZnO)の有無をXRDにより評価した。その結果を表2に示す。
 表2から明らかなように、試料No.7~10は、主結晶相として、ウイレマイト又はウイレマイト・ガーナイトが析出しており、また未反応原料が残っていなかった。
 以下、第二実施形態の実施例を説明する。なお、以下の実施例は単なる例示であって、本発明は以下の実施例に限定されるものではない。
 表3は、第二実施形態の実施例(試料No.11~14)及び比較例(試料No.15~17)を示している。
Figure JPOXMLDOC01-appb-T000003
 以下のようにして、試料No.11~13、15を作製した。まず表中の組成になるように、各種酸化物の原料を調合し、原料バッチを作製した。次に、原料バッチを白金坩堝に入れて、1580℃で1時間融解した後、得られた融液を成形ローラー(双ローラー)間に流し出すことにより、冷却し、且つフィルム形状に成形した。続いて、得られたフィルムをボールミルで粉砕した後、250メッシュパスの篩で分級し、平均粒子径D5012μmの耐火性フィラーを得た。表中では、この方法を「溶融法」と表記した。
 以下のようにして、試料No.14を作製した。まず表中の組成になるように、各種酸化物の原料を調合した後、ボールミルを用いて、1時間粉砕混合し、原料バッチを作製した。次に、原料バッチをアルミナ坩堝に入れて、1440℃で20時間焼成した。得られた小生物を解砕後、再度、1440℃で20時間焼成した。最後に、得られた焼成物を解砕後、ボールミルで粉砕した上で、250メッシュパスの篩で分級し、平均粒子径D5012μmの耐火性フィラーを得た。表中では、この方法を「固相反応法」と表記した。
 以下のようにして、試料No.16、17を作製した。まず表中の組成になるように、各種酸化物の原料を調合した後、ボールミルを用いて、1時間粉砕混合し、原料バッチを作製した。次に、原料バッチをアルミナ坩堝に入れて、1420℃で20時間焼成した。最後に、得られた焼成物を解砕後、ボールミルで粉砕した上で、250メッシュパスの篩で分級し、平均粒子径D5012μmの耐火性フィラーを得た。表中では、この方法を「固相反応法」と表記した。
 各試料につき、XRDにより析出結晶を同定すると共に、析出結晶のピーク強度を測定することにより、ウイレマイトとAl系結晶(ガーナイト)のモル比を算出した。その結果を表3に示す。なお、XRDは、粉末X線回折装置(リガク製RINT2100)で測定し、電圧40kV、電流値40mAでCuターゲットにより発生したX線を用いて、2θ=10~60°の範囲、1°/分で測定した。なお、結晶のピーク強度が100cps以下の場合は、そのピークはノイズであると判断することができる。
 次のようにして、融解性を評価した。まず表中の組成になるように、各種酸化物の原料を調合し、原料バッチを作製した。次に、この原料バッチを白金坩堝に入れて、1500℃で30分間保持した後、白金坩堝を取り出した際に、原料バッチが完全に融解している状態を「良好」、原料バッチが残っている状態を「不良」とした。
 次のようにして、融解下限温度を調査した。まず表中の組成になるように、各種酸化物の原料を調合し、原料バッチを作製した。次に、この原料バッチを白金坩堝に入れて、1440℃から10℃刻みの温度で30分間保持し、各温度で原料バッチの状態を観察した。原料バッチが完全に融解する最低温度を融解下限温度とした。
 次のようにして、熱膨張係数を評価した。まずビスマス系ガラスからなるガラス粉末を用意した。このガラス粉末のガラス組成は、質量%で、Bi 76.4%、B 8.1%、ZnO 6.4%、BaO 5.8%、CuO 2.2%、Fe 0.5%、Sb 0.6%であり、平均粒子径D50は約10μmであった。次に、表中の耐火性フィラー35体積%と、上記のガラス粉末65体積%とを添加、混合した後、500℃で焼成することにより緻密な焼結体を得た。続いて、得られた焼結体を所定形状に加工して、TMA(押棒式熱膨張係数測定)用の測定試料を作製した。この測定試料を用いて、TMAを行った。なお、測定温度範囲は30~300℃である。
 表3から明らかなように、試料No.11~13は、組成中にAlを含んでいるため、ウイレマイトの融点より低い温度で融解し、融解性の評価が良好であった。また、組成中のAlの量が増加するに連れて、融解下限温度は低下した。一方、試料No.5は、組成中にAlを含んでいないため、ウイレマイトの融点より高い1530℃まで昇温しないと完全に融解せず、融解性の評価が不良であった。
 また、試料No.16、17は、Al系結晶であるガーナイトが析出しており、ウイレマイト:ガーナイトの割合がモル比で99:1を超えていた。このため、熱膨張係数が高かった。
 本発明の耐火性フィラーの製造方法は、(1)PDP、有機ELディスプレイ、FED、VFD等の表示装置の封着材料、(2)PDP、有機ELディスプレイ、FED、VFD等の表示装置の被覆材料、(3)圧電振動子パッケージ、ICパッケージ等の電子部品の封着材料、(4)磁気ヘッドのコア同士又はコアとスライダーの封着材料、(5)シリコン太陽電池、色素増感型太陽電池等の太陽電池の封着材料、(6)有機EL照明等の照明装置の封着材料に用いる耐火性フィラーの製造方法として好適である。

Claims (15)

  1.  原料バッチを融解した後、得られた融液を冷却することにより、主結晶相として、ウイレマイトを析出させることを特徴とする耐火性フィラーの製造方法。
  2.  成形ローラー間に流し出すことにより、融液を冷却することを特徴とする請求項1に記載の耐火性フィラーの製造方法。
  3.  水中に流し出すことにより、融液を冷却することを特徴とする請求項1に記載の耐火性フィラーの製造方法。
  4.  耐火性フィラーが、組成として、モル%で、ZnO 50~80%、SiO 10~40%、Al 0~10%を含有するように、原料バッチを調製することを特徴とする請求項1~3のいずれか1項に記載の耐火性フィラーの製造方法。
  5.  原料バッチの平均粒子径D50が20μm未満であることを特徴とする請求項1~4のいずれか1項に記載の耐火性フィラーの製造方法。
  6.  原料バッチの最大粒子径Dmaxが100μm未満であることを特徴とする請求項1~5のいずれか1項に記載の耐火性フィラーの製造方法。
  7.  主結晶相として、ウイレマイト及びガーナイトを析出させることを特徴とする請求項1~6のいずれか1項に記載の耐火性フィラーの製造方法。
  8.  ウイレマイトとガーナイトの割合が、モル比で、100:0~70:30の範囲内であることを特徴とする請求項7に記載の耐火性フィラーの製造方法。
  9.  請求項1~8のいずれかに1項に記載の方法で製造されていることを特徴とする耐火性フィラー。
  10.  主結晶として、ウイレマイトが析出している耐火性フィラーであって、
     原料バッチを融解した後、得られた融液を冷却することで作製されてなることを特徴とする耐火性フィラー。
  11.  ガラス粉末と耐火性フィラーを含む封着材料において、
     耐火性フィラーの全部又は一部が、請求項9又は10に記載の耐火性フィラーであることを特徴とする封着材料。
  12.  主結晶としてウイレマイトが析出している耐火性フィラーにおいて、
     組成として、モル%で、ZnO 50~80%、SiO 10~40%、Al 0.1~10%を含有し、
     ウイレマイト:Al系結晶の割合が、モル比で、100:0~99:1であることを特徴とする耐火性フィラー。
  13.  Al系結晶が析出している場合、そのAl系結晶がガーナイトであることを特徴とする請求項12に記載の耐火性フィラー。
  14.  原料バッチを融解した後、得られた融液を冷却することで作製されてなることを特徴とする請求項12又は13に記載の耐火性フィラー。
  15.  ガラス粉末と耐火性フィラーを含む封着材料において、
     耐火性フィラーの全部又は一部が、請求項12~14のいずれか1項に記載の耐火性フィラーであることを特徴とする封着材料。
PCT/JP2011/059539 2010-05-10 2011-04-18 耐火性フィラー及びこれを用いた封着材料、並びに耐火性フィラーの製造方法 WO2011142215A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180023136.9A CN102892724B (zh) 2010-05-10 2011-04-18 耐火性填料及使用其的密封材料以及耐火性填料的制造方法
US13/695,636 US8871664B2 (en) 2010-05-10 2011-04-18 Refractory filler, sealing material using same, and manufacturing method for refractory filler
KR1020127027149A KR101464996B1 (ko) 2010-05-10 2011-04-18 내화성 필러 및 이것을 사용한 밀봉 재료, 및 내화성 필러의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010108219 2010-05-10
JP2010-108219 2010-05-10
JP2011023446A JP5773128B2 (ja) 2010-05-10 2011-02-07 耐火性フィラーの製造方法
JP2011-023446 2011-02-07
JP2011-057320 2011-03-16
JP2011057320A JP5779922B2 (ja) 2011-03-16 2011-03-16 耐火性フィラー及びこれを用いた封着材料

Publications (1)

Publication Number Publication Date
WO2011142215A1 true WO2011142215A1 (ja) 2011-11-17

Family

ID=44914271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059539 WO2011142215A1 (ja) 2010-05-10 2011-04-18 耐火性フィラー及びこれを用いた封着材料、並びに耐火性フィラーの製造方法

Country Status (1)

Country Link
WO (1) WO2011142215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066616A (ja) * 2019-10-18 2021-04-30 日本電気硝子株式会社 金属封止用ガラス及びこれを用いた金属封止用材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252549A (ja) * 1987-12-22 1989-10-09 Matsushita Electric Ind Co Ltd 封着用ガラス
JPH02133336A (ja) * 1988-11-10 1990-05-22 Asahi Glass Co Ltd 封着用組成物
JPH11228173A (ja) * 1998-02-18 1999-08-24 Nippon Electric Glass Co Ltd 抗菌性ガラス及び樹脂組成物
JP2009155200A (ja) * 2007-12-06 2009-07-16 Nippon Electric Glass Co Ltd 封着材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252549A (ja) * 1987-12-22 1989-10-09 Matsushita Electric Ind Co Ltd 封着用ガラス
JPH02133336A (ja) * 1988-11-10 1990-05-22 Asahi Glass Co Ltd 封着用組成物
JPH11228173A (ja) * 1998-02-18 1999-08-24 Nippon Electric Glass Co Ltd 抗菌性ガラス及び樹脂組成物
JP2009155200A (ja) * 2007-12-06 2009-07-16 Nippon Electric Glass Co Ltd 封着材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066616A (ja) * 2019-10-18 2021-04-30 日本電気硝子株式会社 金属封止用ガラス及びこれを用いた金属封止用材料
JP7484125B2 (ja) 2019-10-18 2024-05-16 日本電気硝子株式会社 金属封止用ガラス及びこれを用いた金属封止用材料

Similar Documents

Publication Publication Date Title
JP5476850B2 (ja) タブレットおよびタブレット一体型排気管
KR101163002B1 (ko) 태블릿
KR101020143B1 (ko) 비스무트계 봉착 재료 및 비스무트계 페이스트 재료
JP5013317B2 (ja) 平面表示装置
KR101389875B1 (ko) 봉착재료
JP5311274B2 (ja) ビスマス系ガラス組成物および封着材料
JP5605748B2 (ja) 耐火性フィラー粉末、封着材料及び耐火性フィラー粉末の製造方法
WO2017183490A1 (ja) セラミック粉末、複合粉末材料及び封着材料
KR101464996B1 (ko) 내화성 필러 및 이것을 사용한 밀봉 재료, 및 내화성 필러의 제조 방법
JP5083704B2 (ja) ビスマス系封着材料
JP2009073729A (ja) 封着材料
JP5419249B2 (ja) ビスマス系ガラス組成物およびビスマス系封着材料
JP5321934B2 (ja) 結晶性ビスマス系材料
WO2011142215A1 (ja) 耐火性フィラー及びこれを用いた封着材料、並びに耐火性フィラーの製造方法
WO2017170052A1 (ja) セラミック粉末及びその製造方法
JP5779922B2 (ja) 耐火性フィラー及びこれを用いた封着材料
JP5773128B2 (ja) 耐火性フィラーの製造方法
JP5152686B2 (ja) 支持枠形成材料
JP5664894B2 (ja) 結晶性封着材料
JP2010013332A (ja) ビスマス系ガラス組成物および封着材料
JP3948165B2 (ja) 封着材料
JP2013082624A (ja) ビスマス系ガラス組成物およびビスマス系封着材料
JP2009173480A (ja) 封着材料
JP5679522B2 (ja) 封着材料
JPWO2018186200A1 (ja) 封着材料及び結晶化ガラス粉末の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023136.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127027149

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13695636

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11780472

Country of ref document: EP

Kind code of ref document: A1