WO2011140833A1 - 一种盲均衡器及盲均衡处理方法 - Google Patents

一种盲均衡器及盲均衡处理方法 Download PDF

Info

Publication number
WO2011140833A1
WO2011140833A1 PCT/CN2011/070029 CN2011070029W WO2011140833A1 WO 2011140833 A1 WO2011140833 A1 WO 2011140833A1 CN 2011070029 W CN2011070029 W CN 2011070029W WO 2011140833 A1 WO2011140833 A1 WO 2011140833A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
weight vector
update
vector
module
Prior art date
Application number
PCT/CN2011/070029
Other languages
English (en)
French (fr)
Inventor
谢宁
王晖
胡恒云
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2011140833A1 publication Critical patent/WO2011140833A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • H04L25/0307Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure using blind adaptation

Definitions

  • the invention belongs to the field of communications. In particular, it relates to a blind equalizer and a blind equalization processing method.
  • Equalization is a technique used to reduce distortion and compensate for signal loss. Since blind equalization does not require the use of training sequences, system bandwidth efficiency can be improved. In addition, for some communication systems, it is difficult to obtain a correct training sequence at the receiving end when the receiving end loses synchronization or the like. Blind equalization provides a practical means of eliminating the harmful effects of the channel.
  • CMA Constant Modulus Algorithm
  • the weight update equation for the CMA equalizer uses the steepest descent gradient algorithm:
  • the equalizer has N tap coefficients, also called weights; Representing a weight vector; Is the (positive) iteration step, which controls the convergence speed; the equalizer input signal vector is , the output signal is ; Cost function middle Obtaining the partial derivative, that is, ; upper corner Indicates that the conjugate operation is taken.
  • the weights are adjusted according to the CMA weight update equation to reduce the error term. That is, the deviation between the output of the equalizer and the constant mode is reduced until the equalizer converges.
  • the (positive) iteration step size of the DSE-CMA algorithm which controls the convergence speed of the DSE-CMA algorithm; Representing a conjugate operation; Indicates the error term of DSE-CMA, . among them, Express output signal ; Error term for CMA , That is, the random signal added before quantization, Indicates the amplitude of the jitter, which is a normal number; , with Uniformly distributed And subject to independent and identically distributed jitter random signals. , sgn(.) represents a symbolic operation, thus simplifying the calculation.
  • the DSE-CMA algorithm reduces the error term by adjusting the weights until the equalizer converges.
  • the DSE-CMA algorithm simplifies calculations by turning a large number of update multiplications into symbolic operations.
  • DSE-CMA The purpose of the algorithm is to maintain the robustness of the CMA while reducing complexity.
  • the convergence rate of the DSE-CMA algorithm is slower and the steady-state performance is not good enough.
  • the object of the present invention is to solve the problem of slow convergence speed and poor steady state performance existing in the existing blind equalizer technology.
  • a blind equalizer includes a weight update unit and a filter
  • the weight update unit includes:
  • a first weight update module configured to update the first weight vector by using a jitter symbol error-constant modulus algorithm
  • a second weight update module for using a maximum a posteriori probability theory as a decision basis, using a steepest descent gradient algorithm, Maximizing the logarithm of the local posterior probability density function, updating the second weight vector;
  • a weight combination module configured to merge the updated first weight vector and second weight vector
  • the filter is configured to perform equalization processing on the received signal vector according to the weight vector obtained by combining the weight combining modules. .
  • Another object of the present invention is to provide a problem aimed at solving the prior art, and to provide a
  • the blind equalization processing method includes the following steps:
  • the steepest descending gradient algorithm is used to make the local posterior probability density function.
  • the logarithmic value is the largest, and the second weight vector is updated;
  • the received signal vector is equalized and output.
  • the density function has the largest logarithmic value, and the weight vector is updated. Then, the received signal vector is equalized and output according to the updated weight vector, and a blind equalizer is realized, which can improve the convergence speed and steady state performance.
  • FIG. 1 is a structural block diagram of a blind equalization system provided by the prior art
  • FIG. 2 is a structural block diagram of a blind equalizer according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a blind equalization system in which a blind equalizer is provided according to an embodiment of the present invention
  • FIG. 5 is a diagram of inter-symbol interference (ISI) simulation provided by an embodiment of the present invention
  • ISI inter-symbol interference
  • FIG. 7 is a flowchart of an implementation process of a blind equalization processing method according to an embodiment of the present invention.
  • the error term of the first weight update module is minimized and the local a posteriori probability used by the second weight update module is adopted.
  • the density function has the largest logarithmic value, and the weight vector is updated. Then, the received signal vector is equalized and output according to the updated weight vector, and a blind equalizer is realized.
  • FIG 2 The structure of the blind equalizer provided by the embodiment of the present invention is shown, and only parts related to the embodiment of the present invention are shown for convenience of description.
  • the blind equalizer can be used in a receiver of a wireless mobile communication system, and can be a software unit, a hardware unit or a combination of hardware and software running in the receivers, wherein:
  • the weight update unit 201 according to the steepest descent gradient algorithm, in order to make the first weight update module 201
  • the error term is minimized and the second weight update module 202 employs a local posterior probability density function (p.d.f.
  • the logarithmic value is the largest, updating the weight vector;
  • the filter 202 performs equalization processing on the received signal vector according to the weight vector updated by the weight update unit 201.
  • the following method is used to equalize the received signal vector:
  • the upper corner ' 'Indicating matrix transpose The updated weight vector for the weight update unit 201, For the received signal vector, The signal that is output after equalization processing.
  • the weight update unit 201 includes a first weight update module 2011 and a second weight update module. 2012 and weights merge module 2013 :
  • First weight update module 2011, using DSE-CMA The algorithm updates the first weight vector, and specifically updates the first weight vector by using an iterative formula as follows:
  • the (positive) iteration step size for weight vector update using the DSE-CMA algorithm which controls the convergence speed of the weight vector update using the DSE-CMA algorithm.
  • Is the output signal of the blind equalizer (ie, filter 202) For the received signal vector, the upper corner Representing a conjugate operation; Indicates the error term used to update the weight vector using the DSE-CMA algorithm.
  • ESE Excess Mean Square Error
  • the second weight update module 2012 uses the maximum posterior probability theory as the basis for the decision, using the steepest descent gradient algorithm, The logarithm of the local posterior p.d.f. is maximized, so that the second weight vector is continuously updated until convergence, and the second weight vector is updated by using the following iterative formula:
  • the weight vector of the moment Represents the noise variance, which is related to the spread of the channel.
  • a partial posterior pdf representing the output of the blind equalizer (ie, filter 202).
  • the second weight update module 2012 uses the steepest descent gradient algorithm to adjust By reducing The value thus maximizes the logarithm of the partial posterior pdf.
  • the weight combination module 2013 merges the first weight vector after the first weight update unit is updated And the second weight update vector update unit update second weight vector Specifically, the combination of weight vectors is performed by the following formula:
  • the number of taps of the first weight update module 2011 and the second weight update module 2012 is ; , , with The selection can be determined based on actual experience. After multiple debugging, find the appropriate value to ensure fast convergence and good steady state performance. For example, for a QAM signal, The value should be between 0 and 1, generally Value ratio The value of the new one to two orders of magnitude can make the second weight update module 2012 effectively improve the output of the blind equalizer.
  • FIG. 1 A block diagram of a blind equalization system in which the blind equalizer provided by the embodiment of the present invention is shown in FIG. Where the signal is sent Superimposed white Gaussian noise by adder 30 after channel 10 response , obtaining the input signal of the blind equalizer 20 , It is the output signal of the blind equalizer 20.
  • Figure 4 shows the 64QAM local soft decision region, where the boxed region represents the divided local soft decision region, the open dots represent symbol points, and the black dots represent the output symbols of the blind equalizer. If the output of the blind equalizer is in the area Then, the second weight update module 2012 uses the partial posterior pdf of the symbol points in this area to adjust the weight To adjust the output of the blind equalizer. It should be appreciated that the division of soft decision regions of other orders is similar to that of Figure 4. As can be seen from FIG. 4, the second weight update module 2012 can reduce the number of calculations of the posterior probability density function by dividing the decision region, that is, the calculation can be simplified.
  • FIG. 5 shows the intersymbol interference of the output signal after the equalization process is performed by the blind equalizer provided by the present invention when the 16QAM signal source is used ( Inter-Symbol Interference, ISI) simulation map, ISI is defined as:
  • Channel Impulse response Represents the weight vector corresponding to the blind equalizer.
  • the blind equalizer provided by the embodiment of the present invention is used, and only DSE-CMA is adopted. Convergence is faster than blind equalizers that perform weight vector updates; and ISI is smaller at steady state.
  • the first weight update module 2011 is based on The steepest descent gradient algorithm divides the CMA error term into two parts: the real part and the imaginary part, then adds the jitter random signal and performs the symbolic operation to form a new error term.
  • the jitter symbol error-modified constant modulus algorithm (Dithered Signed-Error - Modified) is used.
  • the Constant Modulus Algorithm, DSE-MCMA) algorithm updates the first weight vector, specifically, the first weight vector is updated using the following iterative formula:
  • the (positive) iteration step size for weight vector update using the DSE-MCMA algorithm which controls the convergence speed of the weight vector update using the DSE-MCMA algorithm.
  • Is the output signal of the blind equalizer (ie, filter 202) For the received signal vector, the upper corner Representing a conjugate operation; Indicates the error term used to update the weight vector using the DSE-MCMA algorithm.
  • the rest is the same as the DSE-CMA algorithm.
  • the DSE-MCMA algorithm reduces the error term by adjusting the weight until the equalizer converges.
  • the number of taps N of the first weight update module 2011 and the second weight update module 2012 The value is the same as in the above DSE-CMA algorithm, and can be taken based on the empirical value after multiple experiments.
  • the second weight update module 2012, the weight combination module 2013, and the filter 202 The implementation is the same as in Embodiment 1, except that the algorithm for updating the first weight vector by the first weight update module 2011 is changed.
  • FIG. 6 shows an output signal after the equalization process is performed by the blind equalizer provided by the embodiment of the present invention when the 16QAM signal source is used. ISI simulation diagram. It can be seen from FIG. 6 that the blind equalizer provided by the embodiment of the present invention has a convergence speed lower than that of the embodiment 1 of the present invention. The blind equalizer provided is faster and has better steady state performance.
  • FIG. 7 is a flowchart showing an implementation process of a blind equalization processing method according to an embodiment of the present invention, which is described in detail as follows:
  • step S701 the first weight vector is updated by using a DSE-CMA algorithm
  • step S702 the maximum posterior probability theory is used as the judgment basis, and the steepest descending gradient algorithm is used to make the local posterior
  • the logarithm of p.d.f. is the largest, and the second weight vector is updated;
  • step S703 the updated first weight vector and the second weight vector are merged
  • step S704 the received signal vector is equalized and output according to the weight vector obtained after the combination.
  • the following method is used to equalize the received signal vector:
  • the upper corner ' 'Indicating matrix transpose The weight vector obtained after the combination in step S703, For the received signal vector, The signal that is output after equalization processing.
  • step S701 DSE-CMA is adopted.
  • the algorithm updates the first weight vector the first weight vector is updated by using the following iterative formula:
  • the transmitted signal is related to the output signal of the blind equalizer, and the values related to these three factors are respectively recorded as , with . specifically,
  • steady-state EMSE which is usually selected as .
  • step S702 when the second weight vector is updated, the second weight vector is specifically updated by using an iterative formula as follows:
  • step S703 the combination of the weight vectors is specifically performed by the following formula:
  • first weight vector And second weight vector Dimensions are ; , , with The selection can be determined based on actual experience. After multiple debugging, find the appropriate value to ensure fast convergence and good steady state performance. For example, for a QAM signal, The value should be between 0 and 1, generally Value ratio The value of the new one to two orders of magnitude, in order to make the updated second weight vector Effectively improve the performance of blind equalization processing.
  • step S701 and step S702 may be exchanged or may be performed simultaneously.
  • step S7011 In order to reduce the phase offset and further increase the convergence speed, as a preferred embodiment of the present invention, in step S7011, according to The steepest descent gradient algorithm divides the CMA error term into two parts: the real part and the imaginary part, then adds the jitter random signal and performs the symbolic operation to form a new error term, which is continuously reduced to reduce the new error term.
  • the new first weight vector is until convergence, that is, the first weight vector is updated by the DSE-MCMA algorithm. Specifically, the first weight vector is updated by using the following iterative formula:
  • the (positive) iteration step size for weight vector update using the DSE-MCMA algorithm which controls the convergence speed of the weight vector update using the DSE-MCMA algorithm;
  • DSE-MCMA The algorithm reduces the error term by adjusting the weight until the equalizer converges.
  • the second weight vector is updated and the weight is combined.
  • the algorithm is unchanged, only the algorithm of the first weight vector update has changed.
  • the weight vector is updated, and then the received signal vector is equalized according to the updated weight vector. After processing, the output realizes a blind equalizer. Can improve convergence speed and steady state performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明适用于通信领域,提供了一种盲均衡器及盲均衡处理方法,所述盲均衡器包括权值更新单元和滤波器;所述权值更新单元包括第一权值更新模块、第二权值更新模块以及权值合并模块。在本发明中,通过使第一权值更新模块的误差项最小且使第二权值更新模块采用的局部后验概率密度函数的对数值最大,更新权值向量,再根据更新后的权值向量对接收到的信号向量进行均衡处理后输出,实现了一种盲均衡器,能够提高收敛速度和稳态性能。

Description

一种盲均衡器及盲均衡处理方法 技术领域
本发明属于通信领域 . ,尤其涉及一种盲均衡器及盲均衡处理方法。
背景技术
信号在非理想信道中传输会导致失真,均衡是用来减少失真且补偿信号损失的一种技术。由于盲均衡不需要使用训练序列,因而可以提高系统带宽效率。此外,对某些通信系统来说,在当接收端失去同步等时,很难在接收端得到正确的训练序列。而盲均衡则为这类系统提供了一个能消除信道有害影响的实际手段。
从 20 世纪 90 年代开始,研究和使用得最多的盲均衡算法是恒模算法( Constant Modulus Algorithm , CMA )。 CMA 试图恢复某些通信信号的恒包络特性,通过恢复信号的模值,可能间接恢复信号的其它特性,从而有可能产生合适的性能。盲均衡系统的结构框图如图 1 所示, 为发送信号,
Figure PCTCN2011070029-appb-I000002
为信道
Figure PCTCN2011070029-appb-I000003
的冲激响应,
Figure PCTCN2011070029-appb-I000004
为均值为零的高斯白噪声,
Figure PCTCN2011070029-appb-I000005
为输入均衡器的接收信号,
Figure PCTCN2011070029-appb-I000006
表示长度为
Figure PCTCN2011070029-appb-I000007
的均衡器,
Figure PCTCN2011070029-appb-I000008
为均衡器的输出信号,盲均衡算法通过调整均衡器的权值减少码间干扰( Inter-Symbol Interference , ISI ),使均衡器的输出与原发送信号逼近。 CMA 通过最小化一个非凸代价函数来实现,通常采用的代价函数为:
Figure PCTCN2011070029-appb-I000009
其中,
Figure PCTCN2011070029-appb-I000010
表示 CMA 的代价函数,
Figure PCTCN2011070029-appb-I000011
为均衡器的输出,
Figure PCTCN2011070029-appb-I000012
为与传输信号的模值有关的常数,即恒模。
Figure PCTCN2011070029-appb-I000013
其中,
Figure PCTCN2011070029-appb-I000014
表示传输信号。
CMA 均衡器的权值更新方程采用最陡下降梯度算法:
Figure PCTCN2011070029-appb-I000015
其中,均衡器具有 N 个抽头系数,也称为权值;
Figure PCTCN2011070029-appb-I000016
表示权值向量;
Figure PCTCN2011070029-appb-I000017
是(正)迭代步长,它控制收敛速度;均衡器输入信号向量为
Figure PCTCN2011070029-appb-I000018
,输出信号为
Figure PCTCN2011070029-appb-I000019
Figure PCTCN2011070029-appb-I000020
为误差项,它是通过对代价函数
Figure PCTCN2011070029-appb-I000021
中的
Figure PCTCN2011070029-appb-I000022
求偏导得到的,即
Figure PCTCN2011070029-appb-I000023
; 上角标
Figure PCTCN2011070029-appb-I000024
表示取共轭运算 。
这样,根据 CMA 权值更新方程调节权值以减少误差项
Figure PCTCN2011070029-appb-I000025
,即减少均衡器的输出与恒模之间的偏差,直到均衡器收敛为止。
P. Schniter 和 C. R. Johnson 在' Dithered signed-error CMA: The complex-valued case , in Proc. Asilomar Conf. Signals , Syst. , Comput., Pacific Grove , CA , 1998' 中描述了针对复数值信号的抖动符号误差恒模算法( Dithered Signed-Error CMA , DSE-CMA )。抖动是指在量化之前增加一个随机信号,以试图保存量化过程中丢失的信息。从加性噪声的角度来看,抖动是使量化噪声成为均值为零,且与被量化的信号相互独立的白噪声。 复数情况下, DSE-CMA 算法的权值更新方程同样采用最陡下降梯度法:
Figure PCTCN2011070029-appb-I000026
其中,
Figure PCTCN2011070029-appb-I000027
表示 DSE-CMA 算法的权向量;
Figure PCTCN2011070029-appb-I000028
为 DSE-CMA 算法的(正)迭代步长,它控制 DSE-CMA 算法的收敛速度; 上角标
Figure PCTCN2011070029-appb-I000029
表示取共轭运算;
Figure PCTCN2011070029-appb-I000030
表示 DSE-CMA 的误差项,
Figure PCTCN2011070029-appb-I000031
。其中,
Figure PCTCN2011070029-appb-I000032
表示输出信号
Figure PCTCN2011070029-appb-I000033
Figure PCTCN2011070029-appb-I000034
为 CMA 的误差项
Figure PCTCN2011070029-appb-I000035
Figure PCTCN2011070029-appb-I000036
即在量化之前增加的随机信号,
Figure PCTCN2011070029-appb-I000037
表示抖动幅度,是正常数;
Figure PCTCN2011070029-appb-I000039
Figure PCTCN2011070029-appb-I000040
分别是均匀分布在
Figure PCTCN2011070029-appb-I000041
上且服从独立同分布的抖动随机信号。
Figure PCTCN2011070029-appb-I000042
, sgn(.) 表示取符号操作,因此简化了计算。 DSE-CMA 算法通过调节权值以减少误差项,直到均衡器收敛为止。
DSE-CMA 算法通过把大量的更新乘法转变成符号操作,简化了计算。 DSE-CMA 算法的目的是在降低复杂性的同时,保持 CMA 的鲁棒性。但是, DSE-CMA 算法的收敛速度比较慢,稳态性能不够好。
技术问题
本发明的目的旨在解决现有盲均衡器技术存在的收敛速度慢和稳态性能差的问题 。
技术解决方案
本发明是这样实现的,一种盲均衡器,包括权值更新单元和滤波器;
所述权值更新单元包括:
第一权值更新模块,用于 采用抖动符号误差 - 恒模算法更新第一权值向量;
第二权值更新模块 ,用于 以最大后验概率理论作为判决依据,采用 最陡下降梯度算法, 为 使局部后验概率 密度函数 的对数值最大, 更新第二权值向量;以及
权值合并模块 ,用 于合并更新后的所述 第一权值向量和第二权值向量 ;
所述滤波器用于根据所述 权值合并模块 合并后得到的权值向量,对接收到的信号向量进行均衡处理后输出 。
本发明的另一目的在于提供旨在解决现有技术存在的问题,提供一种 盲均衡处理方法,包括下述步骤:
采用抖动符号误差 - 恒模算法更新第一权值向量;
以最大后验概率理论作为判决依据,采用 最陡下降梯度算法, 为 使局部后验概率 密度函数 的对数值最大,更新第二权值向量 ;
合并更新后的第一权值向量和第二权值向量;
根据合并后得到的权值向量,对接收到的信号向量进行均衡处理后输出。
有益效果
在本发明中,通过 采用最陡下降梯度算法,为使第一权值更新模块的误差项最小且使第二权值更新模块采用的局部后验 概率 密度函数的对数值最大,更新权值向量,再根据更新后的权值向量对接收到的信号向量进行均衡处理后输出,实现了一种盲均衡器, 能够提高收敛速度和稳态性能。
附图说明
图 1 是现有技术提供的 盲均衡系统的结构框图;
图 2 是本发明 实施例提供的 盲均衡器的结构框图;
图 3 是本发明 实施例提供的 盲均衡器所处的盲均衡系统的框图;
图 4 是本发明 实施例提供的 局部软判决区域划分图 ;
图 5 是本发明 实施例提供的 码间干扰( ISI )仿真图 ;
图 6 是本发明 实施例提供的 码间干扰( ISI )仿真图 ;
图 7 是本发明实施例提供的盲均衡处理方法的实现流程。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例 1 :
在本发明实施例中,通过采用最陡下降梯度算法,为使第一权值更新模块的误差项最小且使第二权值更新模块采用的局部后验 概率 密度函数的对数值最大,更新权值向量,再根据更新后的权值向量对接收到的信号向量进行均衡处理后输出,实现了一种盲均衡器。
图 2 示出了本发明实施例提供的盲均衡器的结构,为了便于说明仅示出了与本发明实施例相关的部分。
该盲均衡器可以用于无线移动通信系统的接收机,可以是运行于这些接收机内的软件单元、硬件单元或者软硬件相结合的单元,其中:
权值更新单元 201 ,根据最陡下降梯度算法,为了使第一权值更新模块 201 的误差项最小且使第二权值更新模块 202 采用的局部后验概率密度函数( probability density function , p.d.f. )的对数值最大,更新权值向量;
滤波器 202 ,根据权值更新单元 201 更新后的权值向量,对接收到的信号向量进行均衡处理后输出 ,采用下式对接收到的信号向量进行均衡处理:
Figure PCTCN2011070029-appb-I000043
其中,上角标'
Figure PCTCN2011070029-appb-I000044
'表示矩阵转置,
Figure PCTCN2011070029-appb-I000045
为权值更新单元 201 更新后的权值向量,
Figure PCTCN2011070029-appb-I000046
为接收到的信号向量,
Figure PCTCN2011070029-appb-I000047
为进行均衡处理后输出的信号。
具体地,如图 2 所示,权值更新单元 201 包括第一权值更新模块 2011 、第二权值更新模块 2012 和权值合并模块 2013 :
第一权值更新模块 2011 , 采用 DSE-CMA 算法更新第一权值向量,具体采用如下迭代公式对第一权值向量进行更新:
Figure PCTCN2011070029-appb-I000048
其中,
Figure PCTCN2011070029-appb-I000049
表示第一权值更新模块 2011 在
Figure PCTCN2011070029-appb-I000050
时刻的权值向量;
Figure PCTCN2011070029-appb-I000051
为采用 DSE-CMA 算法进行权值向量更新的(正)迭代步长,它控制采用 DSE-CMA 算法进行权值向量更新的收敛速度,
Figure PCTCN2011070029-appb-I000052
为盲均衡器(也即滤波器 202 )的输出信号
Figure PCTCN2011070029-appb-I000053
Figure PCTCN2011070029-appb-I000054
为接收到的信号向量 , 上角标
Figure PCTCN2011070029-appb-I000055
表示取共轭运算;
Figure PCTCN2011070029-appb-I000056
表示采用 DSE-CMA 算法进行权值向量更新的误差项。具体地,
Figure PCTCN2011070029-appb-I000057
其中,
Figure PCTCN2011070029-appb-I000058
为采用 CMA 算法进行权值向量更新的误差项,
Figure PCTCN2011070029-appb-I000059
Figure PCTCN2011070029-appb-I000060
即在量化之前增加的随机信号,
Figure PCTCN2011070029-appb-I000061
表示抖动幅度,为正常数,
Figure PCTCN2011070029-appb-I000062
为恒模值,
Figure PCTCN2011070029-appb-I000063
Figure PCTCN2011070029-appb-I000064
Figure PCTCN2011070029-appb-I000065
分别是均匀分布在
Figure PCTCN2011070029-appb-I000066
上且服从独立同分布的抖动随机信号;
Figure PCTCN2011070029-appb-I000067
, sgn(.) 表示取符号操作,从而可以简化计算。
另外,
Figure PCTCN2011070029-appb-I000068
的选取与恒模值
Figure PCTCN2011070029-appb-I000069
、发送信号
Figure PCTCN2011070029-appb-I000070
和盲均衡器的输出信号
Figure PCTCN2011070029-appb-I000071
有关,把与这三个因素有关的值分别记为
Figure PCTCN2011070029-appb-I000072
Figure PCTCN2011070029-appb-I000073
Figure PCTCN2011070029-appb-I000074
。具体地,
Figure PCTCN2011070029-appb-I000075
Figure PCTCN2011070029-appb-I000076
Figure PCTCN2011070029-appb-I000077
其中,
Figure PCTCN2011070029-appb-I000078
表示 CMA 算法的误差项,
Figure PCTCN2011070029-appb-I000079
表示对应的眼图打开的均衡器输出集合,
Figure PCTCN2011070029-appb-I000080
表示发送信号
Figure PCTCN2011070029-appb-I000081
y 表示盲均衡器的输出信号
Figure PCTCN2011070029-appb-I000082
由于
Figure PCTCN2011070029-appb-I000083
影响算法的鲁棒性以及算法的稳态性能,比如,稳态剩余均方误差( Excess Mean Square Error, EMSE ),其取值范围通常选为
Figure PCTCN2011070029-appb-I000084
DSE-CMA 算法通过调节权值向量
Figure PCTCN2011070029-appb-I000085
以减少误差项,直到盲均衡器收敛为止。
第二权值更新模块 2012 ,以最大后验概率理论作为判决依据,采用 最陡下降梯度算法, 为 使局部后验 p.d.f. 的对数值最大,从而不断 更新第二权值向量直至收敛,具体采用如下迭代公式对第二权值向量进行更新:
Figure PCTCN2011070029-appb-I000086
其中,
Figure PCTCN2011070029-appb-I000087
表示 第二权值更新模块 2012 在
Figure PCTCN2011070029-appb-I000088
时刻的 权值向量;
Figure PCTCN2011070029-appb-I000089
表示进行权值向量更新的(正)迭代步长,它控制进行权值向量更新的收敛速度;
Figure PCTCN2011070029-appb-I000090
Figure PCTCN2011070029-appb-I000091
为 权值合并模块 2013 在
Figure PCTCN2011070029-appb-I000092
时刻的 权值向量 ,
Figure PCTCN2011070029-appb-I000093
表示噪声方差,其取值与信道的散布有关,
Figure PCTCN2011070029-appb-I000094
表示盲均衡器(也即滤波器 202 )输出的局部后验 p.d.f. 。第 二权值更新模块 2012 使用最陡下降梯度算法调整
Figure PCTCN2011070029-appb-I000095
,通过减小
Figure PCTCN2011070029-appb-I000096
的值从而最大化局部后验 p.d.f. 的对数值。
权值合并模块 2013 ,合并第一权值更新更新单元更新后的第一权值向量
Figure PCTCN2011070029-appb-I000097
和第二权值更新更新单元更新后的第二权值向量
Figure PCTCN2011070029-appb-I000098
,具体采用下式进行权值向量的合并:
Figure PCTCN2011070029-appb-I000099
其中, 第一权值更新模块 2011 和第二权值更新模块 2012 的抽头个数都为
Figure PCTCN2011070029-appb-I000100
Figure PCTCN2011070029-appb-I000101
Figure PCTCN2011070029-appb-I000102
Figure PCTCN2011070029-appb-I000103
Figure PCTCN2011070029-appb-I000104
的选取可以根据实际经验确定,经多次调试找到合适的取值以保证快速收敛和良好的稳态性能。例如,对于 QAM 信号,
Figure PCTCN2011070029-appb-I000105
的取值应该在 0 到 1 之间,一般
Figure PCTCN2011070029-appb-I000106
的取值比
Figure PCTCN2011070029-appb-I000107
的取值大一至两个数量级,才能使 第二权值更新模块 2012 能起到有效改善盲均衡器输出的作用。
本发明实施例提供的盲均衡器所处的盲均衡系 统的框图如图 3 所示。其中,发送信号
Figure PCTCN2011070029-appb-I000108
经过信道 10 响应后再通过加法器 30 叠加上高斯白噪声
Figure PCTCN2011070029-appb-I000109
,得到盲均衡器 20 的输入信号
Figure PCTCN2011070029-appb-I000110
Figure PCTCN2011070029-appb-I000111
为盲均衡器 20 的输出信号。
图 4 展示了 64QAM 局部软判决区域,其中方框区域表示划分后的局部软判决区域,空心点表示符号点,黑点表示盲均衡器的输出符号。如果盲均衡器的输出位于区域
Figure PCTCN2011070029-appb-I000112
内,则 第二权值更新模块 2012 利用此区域中的符号点构成的局部后验 p.d.f. 调整权值
Figure PCTCN2011070029-appb-I000113
,从而调整 盲均衡器的输出。应当认识到,其它阶数的软判决区域的划分类似于图 4 。从图 4 可以看出,第二权值更新模块 2012 通过划分判决区域可以减少后验概率密度函数的计算次数,即可以简化计算。
图 5 展示采用 16QAM 信号源时,根据本发明提供的盲均衡器进行均衡处理后,输出信号的码间干扰( Inter-Symbol Interference , ISI )仿真图, ISI 定义为:
Figure PCTCN2011070029-appb-I000114
其中,
Figure PCTCN2011070029-appb-I000115
为信道
Figure PCTCN2011070029-appb-I000116
的冲激响应,
Figure PCTCN2011070029-appb-I000117
表示盲均衡器对应的权值向量。
从图 5 可以看到,采用本发明实施例所提供的盲均衡器,与仅采用 DSE-CMA 进行权值向量更新的盲均衡器相比,收敛更快;且稳态时, ISI 更小。
实施例 2 :
为了减少相位偏移,并进一步提高收敛速度,作为本发明的一个优选实施例,第一权值更新模块 2011 根据 最陡下降梯度算法,把 CMA 误差项分为实部和虚部两部分,然后加入抖动随机信号并进行取符号操作,构成新的误差项, 为减小新的误差项从而不断更新第一权值向量直至收敛,即采用抖动符号误差-改进恒模算法( Dithered Signed-Error - Modified Constant Modulus Algorithm, DSE-MCMA )算法更新第一权值向量,具体地,采用如下迭代公式对第一权值向量进行更新:
Figure PCTCN2011070029-appb-I000118
其中,
Figure PCTCN2011070029-appb-I000119
表示第一权值更新模块 2011 在
Figure PCTCN2011070029-appb-I000120
时刻的权值向量;
Figure PCTCN2011070029-appb-I000121
为采用 DSE-MCMA 算法进行权值向量更新的(正)迭代步长,它控制采用 DSE-MCMA 算法进行权值向量更新的收敛速度,
Figure PCTCN2011070029-appb-I000122
为盲均衡器(也即滤波器 202 )的输出信号
Figure PCTCN2011070029-appb-I000123
Figure PCTCN2011070029-appb-I000124
为接收到的信号向量 , 上角标
Figure PCTCN2011070029-appb-I000125
表示取共轭运算;
Figure PCTCN2011070029-appb-I000126
表示采用 DSE-MCMA 算法进行权值向量更新的误差项。具体地,
Figure PCTCN2011070029-appb-I000127
其中,
Figure PCTCN2011070029-appb-I000128
为采用 MCMA 算法进行权值向量更新的误差项,将其分为实部和虚部,即
Figure PCTCN2011070029-appb-I000129
其中,实部
Figure PCTCN2011070029-appb-I000130
,虚部
Figure PCTCN2011070029-appb-I000131
Figure PCTCN2011070029-appb-I000132
Figure PCTCN2011070029-appb-I000133
其余部分与 DSE-CMA 算法相同。 DSE-MCMA 算法通过调整权值减小误差项,直至均衡器收敛。其中, 第一权值更新模块 2011 和第二权值更新模块 2012 的抽头个数 N 、
Figure PCTCN2011070029-appb-I000134
的取值与上述 DSE-CMA 算法中相同,可以依据多次实验后的经验值取。
在本发明实施例中, 第二权值更新模块 2012 、权值合并模块 2013 和 滤波器 202 的实现与实施例 1 中相同,仅仅是第一权值更新模块 2011 更新第一权值向量的算法有所改变。
图 6 展示采用 16QAM 信号源时,根据本发明实施例所提供的盲均衡器进行均衡处理后,输出信号的 ISI 仿真图。从图 6 可以看到,采用本发明实施例所提供的盲均衡器,由于减小了相位失真,其收敛速度比本发明实施例 1 提供的盲均衡器要快,且稳态性能更好。
另外,虽然为了简便,这里只仅给出了 16QAM 的仿真图,但是可以采用其它阶数的 QAM 来使用本发明提供的盲均衡器。
实施例 3 :
图 7 示出了本发明实施例提供的盲均衡处理方法的实现流程,详述如下:
在步骤 S701 中,采用 DSE-CMA 算法更新第一权值向量;
在步骤 S702 中,以最大后验概率理论作为判决依据,采用 最陡下降梯度算法, 为 使局部后验 p.d.f. 的对数值最大,更新第二权值向量 ;
在步骤 S703 中,合并更新后的第一权值向量和第二权值向量;
在步骤 S704 中,根据合并后得到的权值向量,对接收到的信号向量进行均衡处理后输出 ,采用下式对接收到的信号向量进行均衡处理:
Figure PCTCN2011070029-appb-I000135
其中,上角标'
Figure PCTCN2011070029-appb-I000136
'表示矩阵转置,
Figure PCTCN2011070029-appb-I000137
为步骤 S703 中合并后得到的权值向量,
Figure PCTCN2011070029-appb-I000138
为接收到的信号向量,
Figure PCTCN2011070029-appb-I000139
为进行均衡处理后输出的信号。
具体地,在步骤 S701 中,采用 DSE-CMA 算法更新第一权值向量时,具体采用如下迭代公式对第一权值向量进行更新:
Figure PCTCN2011070029-appb-I000140
其中,
Figure PCTCN2011070029-appb-I000141
表示在
Figure PCTCN2011070029-appb-I000142
时刻的权值向量;为采用 DSE-CMA 算法进行权值向量更新的(正)迭代步长,它控制采用 DSE-CMA 算法进行权值向量更新的收敛速度;
Figure PCTCN2011070029-appb-I000143
表示采用 DSE-CMA 算法进行权值向量更新的误差项;
Figure PCTCN2011070029-appb-I000144
表示输出信号
Figure PCTCN2011070029-appb-I000145
Figure PCTCN2011070029-appb-I000146
为接收到的信号向量;上角标
Figure PCTCN2011070029-appb-I000147
表示取共轭运算。具体地,
Figure PCTCN2011070029-appb-I000148
其中,
Figure PCTCN2011070029-appb-I000149
为采用 CMA 算法进行权值向量更新的误差项,
Figure PCTCN2011070029-appb-I000150
Figure PCTCN2011070029-appb-I000151
即在量化之前增加的随机信号,
Figure PCTCN2011070029-appb-I000152
表示抖动幅度,为正常数,
Figure PCTCN2011070029-appb-I000153
为恒模值,
Figure PCTCN2011070029-appb-I000154
Figure PCTCN2011070029-appb-I000155
Figure PCTCN2011070029-appb-I000156
分别是均匀分布在
Figure PCTCN2011070029-appb-I000157
上且服从独立同分布的抖动随机信号;
Figure PCTCN2011070029-appb-I000158
, sgn(.) 表示取符号操作,从而可以简化计算。
另外,
Figure PCTCN2011070029-appb-I000159
的选取与恒模值
Figure PCTCN2011070029-appb-I000160
、发送信号和盲均衡器的输出信号有关,把与这三个因素有关的值分别记为
Figure PCTCN2011070029-appb-I000161
Figure PCTCN2011070029-appb-I000162
Figure PCTCN2011070029-appb-I000163
。具体地,
Figure PCTCN2011070029-appb-I000164
Figure PCTCN2011070029-appb-I000165
Figure PCTCN2011070029-appb-I000166
其中,
Figure PCTCN2011070029-appb-I000167
表示 CMA 算法的误差项,
Figure PCTCN2011070029-appb-I000168
表示对应的眼图打开的均衡器输出集合,
Figure PCTCN2011070029-appb-I000169
表示发送信号
Figure PCTCN2011070029-appb-I000170
y 表示盲均衡器的输出信号
Figure PCTCN2011070029-appb-I000171
由于
Figure PCTCN2011070029-appb-I000172
影响算法的鲁棒性以及算法的稳态性能,例如稳态 EMSE ,其取值范围通常选为
Figure PCTCN2011070029-appb-I000173
在步骤 S702 中,更新第二权值向量时,具体采用如下迭代公式对第二权值向量进行更新:
Figure PCTCN2011070029-appb-I000174
其中,
Figure PCTCN2011070029-appb-I000175
表示 在
Figure PCTCN2011070029-appb-I000176
时刻的 权值向量;
Figure PCTCN2011070029-appb-I000177
表示进行权值向量更新的(正)迭代步长,它控制进行权值向量更新的收敛速度;
Figure PCTCN2011070029-appb-I000178
Figure PCTCN2011070029-appb-I000179
Figure PCTCN2011070029-appb-I000180
时刻进行均衡处理的 权值向量 ,
Figure PCTCN2011070029-appb-I000181
表示噪声方差,其取值与信道的散布有关,
Figure PCTCN2011070029-appb-I000182
表示进行均衡处理后输出的局部后验 p.d.f. 。通过使用最陡下降梯度算法调整
Figure PCTCN2011070029-appb-I000183
,通过减小
Figure PCTCN2011070029-appb-I000184
的值从而最大化局部后验 p.d.f. 的对数值。
在步骤 S703 中,具体采用下式进行权值向量的合并:
Figure PCTCN2011070029-appb-I000185
其中, 第一权值向量
Figure PCTCN2011070029-appb-I000186
和第二权值向量
Figure PCTCN2011070029-appb-I000187
的维数都为
Figure PCTCN2011070029-appb-I000188
Figure PCTCN2011070029-appb-I000189
Figure PCTCN2011070029-appb-I000190
Figure PCTCN2011070029-appb-I000191
Figure PCTCN2011070029-appb-I000192
的选取可以根据实际经验确定,经多次调试找到合适的取值以保证快速收敛和良好的稳态性能。例如,对于 QAM 信号,
Figure PCTCN2011070029-appb-I000193
的取值应该在 0 到 1 之间,一般
Figure PCTCN2011070029-appb-I000194
的取值比
Figure PCTCN2011070029-appb-I000195
的取值大一至两个数量级,才能使更新后的第二权值向量
Figure PCTCN2011070029-appb-I000196
起到有效改善盲均衡处理的性能。
当然,步骤 S701 和步骤 S702 的执行顺序可以交换,也可以同时执行。
实施例 4 :
为了减少相位偏移,并进一步提高收敛速度,作为本发明的一个优选实施例,在步骤 S7011 中,根据 最陡下降梯度算法,把 CMA 误差项分为实部和虚部两部分,然后加入抖动随机信号并进行取符号操作,构成新的误差项,为减小新的误差项从而不断地更 新第一权值向量直至收敛,即采用 DSE-MCMA 算法更新第一权值向量,具体地,采用如下迭代公式对第一权值向量进行更新:
Figure PCTCN2011070029-appb-I000197
其中,
Figure PCTCN2011070029-appb-I000198
表示在 n 时刻的权值向量;
Figure PCTCN2011070029-appb-I000199
为采用 DSE-MCMA 算法进行权值向量更新的(正)迭代步长,它控制采用 DSE-MCMA 算法进行权值向量更新的收敛速度;
Figure PCTCN2011070029-appb-I000200
表示采用 DSE-MCMA 算法进行权值向量更新的误差项。具体地,
Figure PCTCN2011070029-appb-I000201
其中,
Figure PCTCN2011070029-appb-I000202
为采用 MCMA 算法进行权值向量更新的误差项,将其分为实部和虚部,即
Figure PCTCN2011070029-appb-I000203
其中,实部
Figure PCTCN2011070029-appb-I000204
,虚部
Figure PCTCN2011070029-appb-I000205
Figure PCTCN2011070029-appb-I000206
Figure PCTCN2011070029-appb-I000207
其余部分与 DSE-CMA 算法相同。 DSE-MCMA 算法通过调整权值减小误差项,直至均衡器收敛。
在本发明实施例中, 第二权值向量更新、权值合并 的算法不变,仅仅是第一权值向量更新的算法有所改变。
在本发明中,通过采用最陡下降梯度算法,为减小误差项且使局部后验概率的对数值最大,更新权值向量,再根据更新后的权值向量对接收到的信号向量进行均衡处理后输出,实现了一种盲均衡器, 能够提高收敛速度和稳态性能。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以在存储于一计算机可读取存储介质中,所述的存储介质,如 ROM/RAM 、磁盘、光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种盲均衡器,其特征在于,所述盲均衡器包括权值更新单元和滤波器;
    所述权值更新单元包括:
    第一权值更新模块,用于 采用抖动符号误差 - 恒模算法更新第一权值向量;
    第二权值更新模块 ,用于 以最大后验概率理论作为判决依据,采用 最陡下降梯度算法, 为 使局部后验概率 密度函数 的对数值最大, 更新第二权值向量;以及
    权值合并模块 ,用 于合并更新后的所述 第一权值向量和第二权值向量 ;
    所述滤波器用于根据所述
    权值合并模块
    合并后得到的权值向量,对接收到的信号向量进行均衡处理后输出。
  2. 如权利要求 1 所述的盲均衡器,其特征在于,所述第一权值更新模块更新第一权值向量的公式为:
    Figure PCTCN2011070029-appb-I000208
    其中,
    Figure PCTCN2011070029-appb-I000209
    为所述第一权值更新模块在
    Figure PCTCN2011070029-appb-I000210
    时刻的权值向量,
    Figure PCTCN2011070029-appb-I000211
    为进行权值向量更新的迭代步长,
    Figure PCTCN2011070029-appb-I000212
    为进行权值向量更新的误差项,
    Figure PCTCN2011070029-appb-I000213
    为所述 滤波器 的输出信号
    Figure PCTCN2011070029-appb-I000214
    Figure PCTCN2011070029-appb-I000215
    为接收到的信号向量 , 上角标
    Figure PCTCN2011070029-appb-I000216
    表示取共轭运算;
    Figure PCTCN2011070029-appb-I000217
    其中,
    Figure PCTCN2011070029-appb-I000218
    为采用恒模算法进行权值向量更新的误差项,
    Figure PCTCN2011070029-appb-I000219
    Figure PCTCN2011070029-appb-I000220
    为在量化之前增加的随机信号,
    Figure PCTCN2011070029-appb-I000221
    为抖动幅度,
    Figure PCTCN2011070029-appb-I000222
    为恒模值,
    Figure PCTCN2011070029-appb-I000223
    Figure PCTCN2011070029-appb-I000224
    Figure PCTCN2011070029-appb-I000225
    分别是均匀分布在
    Figure PCTCN2011070029-appb-I000226
    上且服从独立同分布的抖动随机信号;
    Figure PCTCN2011070029-appb-I000227
    sgn(.)
    表示取符号操作。
  3. 如权利要求1所述的盲均衡器,其特征在于,所述第二权值更新模块更新第二权值向量的公式为:
    Figure PCTCN2011070029-appb-I000228
    其中,
    Figure PCTCN2011070029-appb-I000229
    为所述
    第二权值更新模块在
    Figure PCTCN2011070029-appb-I000230
    时刻的权值向量;
    Figure PCTCN2011070029-appb-I000231
    为进行权值向量更新的迭代步长;
    Figure PCTCN2011070029-appb-I000232
    Figure PCTCN2011070029-appb-I000233
    为所述
    权值合并模块在
    Figure PCTCN2011070029-appb-I000234
    时刻的权值向量,
    Figure PCTCN2011070029-appb-I000235
    为噪声方差,
    Figure PCTCN2011070029-appb-I000236
    为所述滤波器输出的局部后验
    概率
    密度函数 。
  4. 如权利要求1所述的盲均衡器,其特征在于,所述滤波器 采用下式对接收到的信号向量进行均衡处理:
    Figure PCTCN2011070029-appb-I000237
    其中,上角标'
    Figure PCTCN2011070029-appb-I000238
    '表示矩阵转置,
    Figure PCTCN2011070029-appb-I000239
    为所述
    权值合并模块
    合并后得到的权值向量,
    Figure PCTCN2011070029-appb-I000240
    为接收到的信号向量,
    Figure PCTCN2011070029-appb-I000241
    为进行均衡处理后输出的信号
  5. 如权利要求 1 所述的盲均衡器,其特征在于,所述第二权值更新模块进行权值向量更新所采用的迭代步长比所述第一权值更新模块进行权值向量更新所采用的迭代步长大一至两个数量级。
  6. 如权利要求 1 所述的盲均衡器,其特征在于,所述第一权值更新模块 采用抖动符号误差 - 改进恒模算法更新第一权值向量。
  7. 如权利要求 6 所述的盲均衡器,其特征在于,所述第一权值更新模块更新第一权值向量的公式为:
    Figure PCTCN2011070029-appb-I000242
    其中,
    Figure PCTCN2011070029-appb-I000243
    为所述第一权值更新模块在
    Figure PCTCN2011070029-appb-I000244
    时刻的权值向量;
    Figure PCTCN2011070029-appb-I000245
    为进行权值向量更新的迭代步长,
    Figure PCTCN2011070029-appb-I000246
    为所述滤波器的输出信号
    Figure PCTCN2011070029-appb-I000247
    Figure PCTCN2011070029-appb-I000248
    为接收到的信号向量 , 上角标
    Figure PCTCN2011070029-appb-I000249
    表示取共轭运算;
    Figure PCTCN2011070029-appb-I000250
    为进行权值向量更新的误差项,
    Figure PCTCN2011070029-appb-I000251
    Figure PCTCN2011070029-appb-I000252
    为采用改进恒模算法进 行权值向量更新的误差项,
    Figure PCTCN2011070029-appb-I000253
    ,实部
    Figure PCTCN2011070029-appb-I000254
    ,虚部
    Figure PCTCN2011070029-appb-I000255
    ; 而
    Figure PCTCN2011070029-appb-I000256
    Figure PCTCN2011070029-appb-I000257
    Figure PCTCN2011070029-appb-I000258
    为在量化之前增加的随机信号,
    Figure PCTCN2011070029-appb-I000259
    为抖动幅度,
    Figure PCTCN2011070029-appb-I000260
    为恒模值,
    Figure PCTCN2011070029-appb-I000261
    Figure PCTCN2011070029-appb-I000262
    Figure PCTCN2011070029-appb-I000263
    分别是均匀分布在
    Figure PCTCN2011070029-appb-I000264
    上且服从独立同分布的抖动随机信号;
    Figure PCTCN2011070029-appb-I000265
    , sgn(.) 表示取符号操作 。
  8. 一种盲均衡处理方法,其特征在于,所述方法包括下述步骤:
    采用抖动符号误差 - 恒模算法更新第一权值向量;
    以最大后验概率理论作为判决依据,采用 最陡下降梯度算法, 为 使局部后验概率 密度函数 的对数值最大,更新第二权值向量 ;
    合并更新后的第一权值向量和第二权值向量;
    根据合并后得到的权值向量,对接收到的信号向量进行均衡处理后输出。
  9. 如权利要求 8 所述的方法,其特征在于,所述更新第二权值向量的公式为:
    Figure PCTCN2011070029-appb-I000266
    其中,
    Figure PCTCN2011070029-appb-I000267
    为 在
    Figure PCTCN2011070029-appb-I000268
    时刻的 权值向量;
    Figure PCTCN2011070029-appb-I000269
    为进行权值向量更新的迭代步长;
    Figure PCTCN2011070029-appb-I000270
    Figure PCTCN2011070029-appb-I000271
    为噪声方差,
    Figure PCTCN2011070029-appb-I000272
    Figure PCTCN2011070029-appb-I000273
    时刻进行均衡处理的 权值向量,
    Figure PCTCN2011070029-appb-I000274
    为进行均衡处理后输出的局部后验 概率 密度函数 。
  10. 如权利要求 8 所述的方法,其特征在于, 采用抖动符号误差 - 改进恒模算法更新所述第一权值向量。
PCT/CN2011/070029 2010-05-13 2011-01-04 一种盲均衡器及盲均衡处理方法 WO2011140833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010171519.8 2010-05-13
CN 201010171519 CN101854317A (zh) 2010-05-13 2010-05-13 一种盲均衡器及盲均衡处理方法

Publications (1)

Publication Number Publication Date
WO2011140833A1 true WO2011140833A1 (zh) 2011-11-17

Family

ID=42805591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070029 WO2011140833A1 (zh) 2010-05-13 2011-01-04 一种盲均衡器及盲均衡处理方法

Country Status (2)

Country Link
CN (1) CN101854317A (zh)
WO (1) WO2011140833A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162738A (zh) * 2015-07-30 2015-12-16 南京信息工程大学 一种卫星信道复数神经多项式网络盲均衡系统及方法
CN113259284A (zh) * 2021-05-13 2021-08-13 中南大学 一种基于Bagging和长短期记忆网络的信道盲均衡方法及系统
CN114095320A (zh) * 2021-11-11 2022-02-25 西安电子科技大学 基于动量分数阶多模盲均衡算法的信道均衡方法
CN114826842A (zh) * 2022-03-27 2022-07-29 西安电子科技大学 非高斯噪声下多进制正交调幅信号多模盲均衡方法及系统
CN114826841A (zh) * 2022-03-27 2022-07-29 西安电子科技大学 基于多模算法的低复杂度高斯-牛顿盲均衡方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854317A (zh) * 2010-05-13 2010-10-06 深圳大学 一种盲均衡器及盲均衡处理方法
CN102255834A (zh) * 2011-07-05 2011-11-23 电子科技大学 一种快速收敛的半盲均衡方法
CN102904643B (zh) * 2012-10-11 2016-03-30 复旦大学 适用于qdb频谱压缩偏振复用信号的多模盲均衡方法
CN103873405B (zh) * 2014-02-28 2017-08-29 北京遥测技术研究所 一种基于apsk调制信号幅值的恒模盲均衡方法
FR3030963B1 (fr) * 2014-12-18 2017-12-29 Continental Automotive France Egalisateur aveugle de canal
CN107786475B (zh) * 2016-08-26 2020-04-10 深圳市中兴微电子技术有限公司 盲均衡误差计算方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806398A (zh) * 2003-07-16 2006-07-19 三星电子株式会社 移动通讯系统中用自适应天线阵列接收数据的设备和方法
CN101854317A (zh) * 2010-05-13 2010-10-06 深圳大学 一种盲均衡器及盲均衡处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806398A (zh) * 2003-07-16 2006-07-19 三星电子株式会社 移动通讯系统中用自适应天线阵列接收数据的设备和方法
CN101854317A (zh) * 2010-05-13 2010-10-06 深圳大学 一种盲均衡器及盲均衡处理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHE, WEN ET AL.: "A Hybrid Maximum Likehood and Probability Data Association MIMO Detection Algorithm", JOURNAL OF JILIN UNIVERSITY (ENGINEERING AND TECHNOLOGY EDITION), vol. 38, no. 5, September 2008 (2008-09-01), pages 1175 - 1180 *
LIU, SHUNLAN ET AL.: "New Blind Equalization Algorithm Based on Concurrent SCA and SDD", JOURNAL OF DATA ACQUISITION & PROCESSING, vol. 23, no. 5, September 2008 (2008-09-01), pages 537 - 541 *
SCHNITER, P. ET AL.: "The Dithered Signed-Error Constant Modulus Algorithm", PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, vol. 6, 15 May 1998 (1998-05-15), pages 3353 - 3356 *
ZHANG, CHENGYU ET AL.: "Low Complexity Blind Equalization Algorithm Based on Probability Density Function", JOURNAL OF DALIAN MARITIME UNIVERSITY, vol. 34, no. 3, August 2008 (2008-08-01), pages 43 - 50 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162738A (zh) * 2015-07-30 2015-12-16 南京信息工程大学 一种卫星信道复数神经多项式网络盲均衡系统及方法
CN105162738B (zh) * 2015-07-30 2018-11-27 南京信息工程大学 一种卫星信道复数神经多项式网络盲均衡系统及方法
CN113259284A (zh) * 2021-05-13 2021-08-13 中南大学 一种基于Bagging和长短期记忆网络的信道盲均衡方法及系统
CN113259284B (zh) * 2021-05-13 2022-05-24 中南大学 一种基于Bagging和长短期记忆网络的信道盲均衡方法及系统
CN114095320A (zh) * 2021-11-11 2022-02-25 西安电子科技大学 基于动量分数阶多模盲均衡算法的信道均衡方法
CN114826842A (zh) * 2022-03-27 2022-07-29 西安电子科技大学 非高斯噪声下多进制正交调幅信号多模盲均衡方法及系统
CN114826841A (zh) * 2022-03-27 2022-07-29 西安电子科技大学 基于多模算法的低复杂度高斯-牛顿盲均衡方法及系统
CN114826841B (zh) * 2022-03-27 2023-12-05 西安电子科技大学 基于多模算法的低复杂度高斯-牛顿盲均衡方法及系统
CN114826842B (zh) * 2022-03-27 2024-04-12 西安电子科技大学 非高斯噪声下多进制正交调幅信号多模盲均衡方法及系统

Also Published As

Publication number Publication date
CN101854317A (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
WO2011140833A1 (zh) 一种盲均衡器及盲均衡处理方法
WO2017222140A1 (ko) Cnn 기반 인루프 필터를 포함하는 부호화 방법과 장치 및 복호화 방법과 장치
US4847797A (en) Adaptive blind equilization method and device
WO2013055046A2 (ko) 통신/방송 시스템에서 데이터 송수신 장치 및 방법
US6151358A (en) Method and apparatus, and computer program for producing filter coefficients for equalizers
WO2016163855A1 (en) Method for multiplexing uplink information
US20120134407A1 (en) Adaptive equalization with group delay
WO2004077670A1 (en) Nonlinear filter
US20130230092A1 (en) Sparse and reconfigurable floating tap feed forward equalization
CA2529551A1 (en) Updating adaptive equalizer coefficients using known or predictable bit patterns distributed among unknown data
WO2020218769A1 (en) Reluctance force compensation for loudspeaker control
WO2017111362A1 (ko) 임의의 길이를 가지는 폴라 코드를 이용한 harq 수행 방법
EP1295448B1 (en) Channel equalizer
EP1776814A1 (en) Method for calculating filter coefficients for an equaliser in a communication receiver using hermitian optimisation
JP3625205B2 (ja) 適応等化器及び受信装置
WO2019027142A1 (ko) 동적 네트워크에서 네트워크 형성 방법 및 장치
WO2021256843A1 (ko) 동형 암호문에 대한 통계 연산 수행하는 장치 및 방법
WO2022164095A1 (en) Method and apparatus for signal processing
US20050047779A1 (en) Post-detection, fiber optic dispersion compensation using adjustable inverse distortion operator employing trained or decision-based parameter adaptation (estimation)
WO2023106448A1 (ko) 직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법
Endres et al. Carrier independent blind initialization of a DFE
WO2023219271A1 (ko) 통신 시스템 또는 방송 시스템에서 미래 제약을 이용한 극부호의 복호화를 위한 장치 및 방법
KR100227804B1 (ko) 가변 적응 상수를 이용한 채널 등화기 및 채널 등화기의 탭 계수 갱신방법
WO2024019341A1 (ko) 멀티-뉴머롤로지를 지원하는 mimo 시스템에서 선형 결합기를 포함하는 수신 장치 및 이의 동작 방법
WO2022034967A1 (ko) 적응형 지연 다이버시티 필터와, 이를 이용하는 에코 제거 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780055

Country of ref document: EP

Kind code of ref document: A1