WO2023106448A1 - 직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법 - Google Patents

직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법 Download PDF

Info

Publication number
WO2023106448A1
WO2023106448A1 PCT/KR2021/018554 KR2021018554W WO2023106448A1 WO 2023106448 A1 WO2023106448 A1 WO 2023106448A1 KR 2021018554 W KR2021018554 W KR 2021018554W WO 2023106448 A1 WO2023106448 A1 WO 2023106448A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
frequency domain
matrix
qam
fbmc
Prior art date
Application number
PCT/KR2021/018554
Other languages
English (en)
French (fr)
Inventor
조준호
장태준
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to PCT/KR2021/018554 priority Critical patent/WO2023106448A1/ko
Publication of WO2023106448A1 publication Critical patent/WO2023106448A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a signal transceiver using a quadrature amplitude modulation filter bank multi-carrier in a communication system, a transmission/reception method, and a reception circular filter design method.
  • FBMC Filter-Bank Multi-Carrier
  • SE spectral efficiency
  • OFDM Offset Quadrature Amplitude Modulation
  • QAM-FBMC has the fact that self-interference cannot be canceled by using a single prototype filter if the transmit prototype filter and transmit waveform parameters are chosen to yield the smallest time-frequency product like OQAM-FBMC.
  • research on QAM-FBMC communication systems has been largely developed in two directions.
  • One direction is a study that proposes a transceiver and transmission/reception method with various frequency efficiencies and self-interference levels by trade-off between out-of-band radiation performance and receiver complexity while keeping the time-frequency product to a minimum.
  • the other direction is a study that trades off the degree of self-interference and the complexity of the receiver while slightly sacrificing the time-frequency product while maintaining the same out-of-band radiation performance as OQAM-FBMC.
  • Most of the existing QAM-FBMC studies correspond to the former, and the present invention corresponds to the latter.
  • the present invention uses a single transmit circular filter and an excessive delay time, and unlike conventional receivers and receiving methods that use a received circular filter with high complexity, low self-interference reduction performance, or non-fixed, despite low complexity, the present invention It has a great difference in that it provides a transmitter and transmission method that achieves high self-interference reduction performance, a reception circular filter design method, and a receiver and reception method that uses this circular reception filter in a fixed manner.
  • the low out-of-band radiation performance of the transmission waveform requires a smaller number of guard sub-carriers when allocating sub-carriers to multiple-access users. Therefore, although the minimum time-frequency product is not reached, the final performance, the frequency efficiency, which is affected not only by the time-frequency product but also by the number of guard subcarriers, easily surpasses the frequency efficiency of the existing QAM-FBMC schemes when the number of multiple accesses increases. will go beyond
  • Patent Document 1 WO2016/072677A1 (2016.05.12.)
  • Patent Document 2 KR20160109933A (2016.09.21.)
  • Patent Document 3 KR20180062310A (2018.06.08.)
  • An object of the present invention is a transmitter, a transmission method, and a reception prototype capable of achieving high frequency efficiency and low self-interference while using a single transmission circular filter with low out-of-band radiation in a QAM-FBMC communication system with a time-frequency product greater than 1. It is to provide a filter design method, a receiver and a reception method using the received circular filter in a fixed manner.
  • a Quadrature Amplitude Modulation (QAM)-Filter-Bank Multi-Carrier (FBMC) transmitter receives a symbol sequence including a QAM symbol as an input and serial/parallel
  • a serial/parallel converter that converts (S/P: Serial-to-Parallel conversion) and allocates subcarriers to generate a sequence of symbol vectors of length M; receives the symbol vector as an input and generates a frequency domain signal vector of length N a frequency domain signal vector generator that generates a frequency domain signal vector, an IDFT unit that receives the frequency domain signal vector as an input and generates an IDFT (Inverse Discrete Fourier Transform) time domain signal vector of length N, and the time domain signal Generates a discrete-time complex basis signal by receiving a sequence of vectors as input, parallel-to-serial conversion (P/S), delaying by M+S, and overlap-sum (O/S). and a discrete time signal generator, where S is an excess delay time.
  • P/S parallel-to
  • the frequency domain signal vector generation unit receives the symbol vector as an input and uses an upsampling matrix of size KM ⁇ M to generate an upsampled vector having a length KM, a K-times upsampling unit, and the upsampling unit. and a frequency domain pulse shaping unit that receives the vector as an input and generates the frequency domain signal vector having a length of KM using a circulant matrix having a size of KM ⁇ M.
  • the frequency domain signal vector generator is expressed by the following equation
  • the frequency domain transmission matrix may be calculated by multiplying the circulant matrix and the upsampling matrix.
  • the upsampling matrix is the following equation
  • the circulant matrix is expressed by the following equation
  • the discrete-time complex basis signal is expressed by the following equation
  • the n-th component of the k-th discrete-time complex basis signal is expressed by the following equation
  • I the time-domain signal vector
  • the n-th component of the k-th discrete-time complex basis signal is expressed by the following equation
  • I the time-domain signal vector
  • a QAM-FBMC transmission method performed by a Quadrature Amplitude Modulation (QAM)-Filter-Bank Multi-Carrier (FBMC) transmitter includes a QAM symbol Serial-to-Parallel conversion (S/P) of a symbol sequence and allocating it to subcarriers to generate a sequence of symbol vectors of length M, and a frequency domain signal vector of length N using the symbol vector Generating a time-domain signal vector having a length N subjected to Inverse Discrete Fourier Transform (IDFT) using the frequency-domain signal vector, and using a sequence of the time-domain signal vector Parallel-to-Serial conversion (P/S), delay by M+S, and overlap-sum (O/S: Overlap-Sum) to generate a discrete-time complex basis signal - where S is greater than Is the delay time - includes.
  • S/P QAM symbol Serial-to-Parallel conversion
  • IFT Inverse Discrete Fourier Transform
  • a Quadrature Amplitude Modulation (QAM)-Filter-Bank Multi-Carrier (FBMC) receiver receives a discrete-time complex basis received signal as an input and performs windowing ) and serial-to-parallel conversion (S/P) to generate a sequence of time-domain received signal vectors having an extended observation length, and discrete the time-domain received signal vectors.
  • QAM Quadrature Amplitude Modulation
  • FBMC Binary Multi-Carrier
  • a DFT unit that generates a frequency domain received signal vector by performing Discrete Fourier Transform (DFT), and a frequency that generates a channel equalized vector by FD one-tap equalization of the frequency domain received signal vector
  • DFT Discrete Fourier Transform
  • a domain channel equalization unit a mismatched filter unit filtering the channel equalized vector with a mismatched filter to generate an estimated value of the transmitted symbol vector, and parallel/serial conversion of the estimated value of the transmitted symbol vector to transmit It includes a parallel / serial conversion unit that generates an estimate of the QAM symbol sequence.
  • the mismatch filter unit has the following equation
  • Produce an estimate of the transmitted symbol vector by is an estimate of the transmitted symbol vector, is the frequency domain reception matrix, is the channel equalized vector -,
  • the transpose matrix of the frequency domain reception matrix is expressed by the following equation
  • Is a transpose matrix of the frequency domain reception matrix is the size ⁇ is a downward circulative matrix, is the length is the frequency domain received circular vector, is the size is an upsampling matrix of ⁇ M, Im - can be.
  • the frequency domain received circular vector is the following equation
  • the frequency domain received circular vector is the following equation
  • each of the frequency domain received circular vectors has the following equation
  • a QAM-FBMC reception method performed by a Quadrature Amplitude Modulation (QAM)-Filter-Bank Multi-Carrier (FBMC) receiver includes discrete-time complex base reception receiving a signal as an input and generating a sequence of time-domain received signal vectors having an extended observation length through windowing and serial-to-parallel conversion (S/P); Generating a frequency domain received signal vector by performing a Discrete Fourier Transform (DFT) on the domain received signal vector, and performing FD one-tap equalization on the frequency domain received signal vector to obtain channel equalization.
  • DFT Discrete Fourier Transform
  • generating an estimate of the transmitted symbol vector is performed by the following equation
  • Produce an estimate of the transmitted symbol vector by is an estimate of the transmitted symbol vector, is the frequency domain reception matrix, is the channel equalized vector -,
  • the transpose matrix of the frequency domain reception matrix is expressed by the following equation
  • Is a transpose matrix of the frequency domain reception matrix is the size ⁇ is a downward circulative matrix, is the length is the frequency domain received circular vector, is the size is an upsampling matrix of ⁇ M, Im - can be.
  • the frequency domain received circular vector is the following equation
  • the frequency domain received circular vector is the following equation
  • said vector Is the vector based on the maximum allowable number of non-zero components of the frequency domain received circular vector It can be a vector of reduced size of
  • each of the frequency domain received circular vectors has the following equation
  • the disclosed technology may have the following effects. However, it does not mean that a specific embodiment must include all of the following effects or only the following effects, so it should not be understood that the scope of rights of the disclosed technology is limited thereby.
  • FIG. 1 is a block diagram showing the configuration of a QAM-FBMC transmitter with an excessive delay time according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a QAM-FBMC transmission method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of a QAM-FBMC receiver according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a QAM-FBMC receiving method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a QAM-FBMC frequency domain receive circular filter design method according to an embodiment of the present invention.
  • FIG. 7 is a graph showing a power spectrum of a QAM-FBMC transmission signal according to an embodiment of the present invention.
  • FIG. 8 is a graph showing frequency efficiency of a QAM-FBMC system according to an embodiment of the present invention.
  • 9 is a table comparing complexity of QAM-FBMC receivers according to an embodiment of the present invention.
  • FIG. 10 is a graph showing the size of an error vector of a QAM-FBMC receiver according to an embodiment of the present invention.
  • FIG. 11 is a graph showing a signal-to-noise and interference ratio of a QAM-FBMC receiver according to an embodiment of the present invention.
  • FIG. 12 is a graph showing bit error rates of 64-QAM symbols in a white Gaussian noise channel of a QAM-FBMC receiver according to an embodiment of the present invention.
  • FIG. 13 is a graph showing first components of QAM-FBMC transmission/reception circular vectors according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a QAM-FBMC transmitter having an excess delay time (S>0) according to an embodiment of the present invention
  • FIG. 2 is a discrete time signal generator (P/S & O) of FIG. /S: This is a block diagram showing parallel-to-serial and overlap-sum) in detail.
  • a QAM-FBMC transmitter 100 having an excess delay time (S>0) includes a serial/parallel converter (S/P) 110, a frequency domain signal vector It may include a generator 120, an IDFT unit (N-point IDFT) 130, and a discrete time signal generator (P/S & O/S) 140.
  • the frequency domain signal vector generator 120 may include an upsampling by K unit 121 and a frequency domain pulse shaping unit 123 .
  • the serial/parallel conversion unit 110 is a symbol sequence including QAM symbols ( ) as an input, serial-to-parallel conversion (S/P) is performed, and a symbol vector of length M is assigned to a subcarrier ( ) of columns ( ) to create
  • the subcarrier-allocated symbol vector ( ) may include M null zero components.
  • the frequency domain signal vector generator 120 may include an upsampling by K unit 121 and a frequency domain pulse shaping unit 123 .
  • K times upsampling unit 121 is the symbol vector ( ) as input and an upsampling matrix of size KM rows and M columns ( ) to an upsampled vector of length KM ( ) to create
  • the upsampling matrix ( ) can be defined by Equation 1.
  • the frequency domain pulse shaping unit 123 performs the upsampled vector ( ) as an input, and a frequency domain transmission circular vector of length KM ( ) to create a circulant matrix of size KM rows KM columns ( ) using the frequency domain pulse shaped vector of length KM ( ) to create
  • the circulant matrix ( ) can be defined by Equation 2.
  • the frequency domain signal vector generation unit 120 converts the serial/parallel vector of length M ( ) as an input and the length N of the frequency domain signal vector ( ) to create here Can be defined by Equation 4 as a frequency domain transmission (FD TX) matrix.
  • the IDFT unit 130 is a frequency domain signal vector of length N ( ) as an input and IDFTed a vector of length N ( ) to create
  • W N is a Discrete Fourier Transform (DFT) matrix of size N rows and N columns, and components (i, j) are defined by Equation 5 - where, , and the indices i and j satisfy 1 ⁇ i ⁇ N and 1 ⁇ j ⁇ N, respectively.
  • DFT Discrete Fourier Transform
  • the discrete time signal generator 140 is a column of the time domain signal vector ( ) as an input, parallel-to-serial conversion (P/S), delay by M+S, and overlap-sum (O/S: Overlap-Sum) to obtain a discrete time complex base signal ( ) to create
  • P/S parallel-to-serial conversion
  • M+S delay by M+S
  • OFS overlap-sum
  • the n-th component of the discrete-time complex basis signal may be defined by Equation 6 using an excess delay time S(>0) in addition to a delay amount M used in a normal QAM-FBMC.
  • Equation 7 where the kth discrete-time complex basis signal ( The nth component of ) is the kth time domain signal vector ( ) can be defined by Equation 7 or by Equation 8 equivalent thereto.
  • FIG. 3 is a flowchart of a QAM-FBMC transmission method according to an embodiment of the present invention.
  • a QAM-FBMC transmission method may be performed by the QAM-FBMC transmitter 100 of FIG. 1 .
  • step S310 a symbol sequence including QAM symbols ( ) to serial/parallel conversion (S/P: Serial-to-Parallel conversion) and assigned to subcarriers to obtain a symbol vector of length M ( ) of columns ( ) to create
  • step S320 the symbol vector ( ) using the length N frequency domain signal vector ( ) to create At this time, the frequency domain transmission matrix ( ) is the frequency domain transmission circular vector ( ) and the downward circulant matrix.
  • step S330 the frequency domain signal vector ( ) using Inverse Discrete Fourier Transform (IDFT) time domain signal vector of length N ( ) to create
  • IDFT Inverse Discrete Fourier Transform
  • step S340 the column of the time domain signal vector ( ) is parallel-to-serial converted (P/S: Parallel-to-Serial conversion), delayed by M+S, and overlapped (O/S: Overlap-Sum) to discrete-time complex base signals ( ) to create
  • P/S Parallel-to-Serial conversion
  • O/S Overlap-Sum
  • the time domain signal vector ( ) and the discrete time transmission signal ( ) can be determined by Equation 6 using the excess time S(>0).
  • FIG. 4 is a block diagram showing the configuration of a QAM-FBMC receiver according to an embodiment of the present invention.
  • the QAM-FBMC receiver 400 includes a received signal conversion unit (Windowing & S / P) 410, a DFT unit ( A -point DFT) 420, a frequency domain equalization unit (FD Equalization) 430, a mismatched filtering unit 440, and a parallel/serial conversion unit (P/S) 450 may be included.
  • a received signal conversion unit Windowing & S / P
  • DFT unit A -point DFT
  • FD Equalization frequency domain equalization unit
  • mismatched filtering unit 440 a mismatched filtering unit
  • P/S parallel/serial conversion unit
  • the received signal conversion unit 410 is a discrete-time complex basis received signal ( ) as input and extended observation length length by applying an orthogonal window with In time domain received signal vector column ( ) to create
  • the kth vector of the time domain received vector sequence ( ) may be defined by Equation 9 when the front extension length (L pre ) and the rear extension length (L post ) are set as L add , respectively.
  • L add is may be chosen to be a multiple of 2.
  • the DFT unit 420 includes the time domain received vector ( ) as input -point DFT applied to the frequency domain received signal vector ( ) to create here -point DFT When is a multiple of 2, it can be performed computationally efficiently by applying a Fast Fourier Transform (FFT) algorithm.
  • FFT Fast Fourier Transform
  • the frequency domain equalizer 430 is a frequency domain received signal vector ( ) as input and a diagonal equalization matrix ( ) multiplied by the frequency domain single-tap equalized vector (FD one-tap equalization) ) to create
  • the diagonal equalization matrix ( ) can be defined by Equation 10.
  • Equation 11 and 13 Is a matrix obtained by diagonalizing an estimate of the frequency domain channel matrix, and the time domain channel matrix ( ), a matrix of the same size, which is an estimate of ( ), which can be defined by Equations 11 and 12, and the signal power ( ) is a signal vector including the inter-symbol interference ( ) of the correlation matrix ( ) can be converted to the frequency domain by Equation 13 and then defined as the average of the diagonal elements, is defined as the variance of the noise.
  • diag(diag( ⁇ )) is an operation that converts elements of a matrix other than diagonal elements to zero.
  • the mismatch filter unit 440 is a channel equalized vector ( ) as an input, the frequency domain reception (FD RX) matrix ( ) and the transmitted symbol vector ( ) unmatched filtered estimate of ( ) to create
  • the transposed matrix of the frequency domain reception matrix ( ) is the length is the frequency domain received circular vector ( ) can be defined by Equation 15 using
  • the size line is a downward circulative matrix with columns
  • the size is an upsampling matrix with rows M and columns am.
  • Parallel/serial conversion unit 450 is mismatched filtered vector ( ) to parallel/serial conversion, but excluding elements of null subcarrier positions that are not allocated by the subcarrier allocator of the transmitter, the QAM symbol (which is the input of the subcarrier allocator of the transmitter) ( ), which is an estimate of the symbol ( ) to create
  • FIG. 5 is a flowchart of a QAM-FBMC receiving method according to an embodiment of the present invention.
  • the QAM-FBMC receiving method according to an embodiment of the present invention may be performed by the QAM-FBMC receiver 400 of FIG. 4 .
  • step S510 a discrete-time complex basis received signal ( ) as an input, and a sequence of time-domain received signal vectors having an extended observation length through windowing and serial-to-parallel conversion (S/P) ( ) to create
  • step S530 the frequency domain received signal vector ( ) is frequency domain single-tap equalized to channel equalized vector ( ) to create
  • step S540 the channel equalized vector ( ) with a mismatched filter to obtain an estimate of the transmitted symbol vector ( ) to create
  • step S550 an estimate of the transmitted symbol vector ( Estimated value of the QAM symbol sequence transmitted by parallel/serial conversion of ) ( ) to create
  • FIG. 6 is a flowchart of a QAM-FBMC frequency domain receive circular filter design method according to an embodiment of the present invention.
  • a frequency domain transmission matrix ( ) and transmit parameters M, S, K, L add values and receive parameters , Use the value to receive a frequency domain received circular vector ( ) matrix to be used for the objective function of the least squares optimization problem and vector generate said matrix Can be defined by Equation 16.
  • Equation 17 the number of mutually interfering QAM-FBMC symbols (K W ) can be defined by Equation 17 and has a size of M
  • Equation 18 the number of mutually interfering QAM-FBMC symbols (K W ) can be defined by Equation 17 and has a size of M
  • Equation 18 the number of mutually interfering QAM-FBMC symbols (K W ) can be defined by Equation 17 and has a size of M
  • Equation 18 the column matrix A i,m
  • the size line is the downward circulative matrix of the columns is a matrix in which the diagonal component corresponding to the null subcarrier in the identity matrix of size M rows and M columns is changed to 0.
  • row N column matrix is the number of rows and columns of the zero matrix and the identity matrix defined by Equation 20 ( ) can be defined by Equation 21 using
  • a vector b i,m may be defined by Equation 23.
  • the frequency domain received circular vector (The objective function of the least squares optimization problem is the matrix and vector It can be defined by Equation 24 using
  • step S620 the frequency domain received circular vector of reduced size using the frequency domain transmission circular vector, transmission parameters, and reception parameters ( ) matrix to be used for the objective function of the optimization problem and vector , and the frequency domain received circular vector ( ) and the frequency domain received circular vector of the reduced size ( ) to the matrix ( ) to create said matrix and vector is the natural number M ', S' satisfying Equation 26 using the natural number J satisfying Equation 25 by M, S, Replace the above matrix with and vector It can be defined in such a way as to generate
  • N RX is the maximum allowable number of non-zero components of the received circular vector.
  • Equation 27 When is defined by Equations 27 and 28, the matrix class It can be defined by Equation 29 using , and the frequency domain received circular vector ( ) and the frequency domain received circular vector of the reduced size ( ) is connected by Equation 30.
  • the frequency domain received circular vector of the reduced size ( ), the objective function of the least squares optimization problem is the matrix vector It can be defined by Equation 31 using
  • step S630 a line search optimization problem consisting of two-stage constrained least squares optimization problems is solved to generate an optimal frequency domain received circular vector (q f,proposed ).
  • the first sub-optimization problem (SP1: Sub-Problem 1) of the line search optimization problem may be defined by Equation 32.
  • the one-norm of a vector Is
  • the sum of the absolute values of each component of the vector, and s is a variable used for line search.
  • the second sub-optimization problem (SP2: Sub-Problem 1) of the line search optimization problem may be defined by Equation 33.
  • vector here is a vector A vector obtained by taking the 0-norm for each component of is defined as a vector of the same length as is a solution obtained by solving the first suboptimization problem (SP1) with a given line search variable s, is the solution obtained by solving the second suboptimization problem (SP2) given the line search variable s.
  • the solution of the second sub-optimization problem (SP2) is the solution of the unconstrained least squares problem defined by Equation 34 ( ) and can be determined by substituting into Equation 35.
  • the line search optimization problem may be defined by Equation 36.
  • Equation 37 the objective function f (s) is the optimal solution ( ) can be defined by Equation 37 using
  • the upper limit of the search interval ( ) can be determined by solving the least squares optimization problem defined by Equation 38.
  • the optimal frequency domain received circular vector ( ), the optimal solution (s * ) of the line search problem is the solution of the second sub-optimization problem ( ) It can be determined by Equation 39 by substituting
  • the optimal frequency domain reception matrix ( ) is the frequency domain received circular vector ( ) can be determined by Equation 40 using
  • FIG. 7 is a graph showing a power spectral density (PSD) of a QAM-FBMC transmission signal according to an embodiment of the present invention.
  • PSD power spectral density
  • the power spectrum of QAM-FBMC according to an embodiment of the present invention has the same PSD as OQAM-FBMC using the PHYDYAD circular vector, and shows a much lower PSD than OFDM and normal QAM-FBMC.
  • SE spectral efficiency
  • the frequency efficiency of the QAM-FBMC system according to an embodiment of the present invention has the highest value as the number of uplink users exceeds 6 because the guard band width is the smallest.
  • 9 is a table comparing complexity of QAM-FBMC receivers according to an embodiment of the present invention.
  • QAM-FBMC employing a conventional matched filter and single-tap equalizer
  • QAM-FBMC employing an unmatched filter and single-tap equalizer according to an embodiment of the present invention
  • LMMSE Linear Minimum Mean Square Error
  • the computational complexity of QAM-FBMC with a square error receiver is expressed by calculating the number of complex sums and products, using transmit and receive parameters and Big-O notation.
  • the calculation complexity of the QAM-FBMC receiver according to an embodiment of the present invention is not significantly different from that of a receiver employing a matched filter having the lowest calculation complexity, but the calculation complexity of the QAM-FBMC receiver having a linear minimum mean square error receiver significantly lower than
  • EVM error vector magnitude
  • FIG. 10 shows QAM-FBMC employing a conventional matched filter and single-tap equalizer, QAM-FBMC employing an unmatched filter and single-tap equalizer according to an embodiment of the present invention, and Linear Minimum Mean Square Error (LMMSE).
  • the error vector size of a QAM-FBMC system with square error receiver is shown as a function of the number of non-zero received circular vector components (N RX ), which is a measure of sparsity.
  • the size of the error vector of the QAM-FBMC system is the relative observation length at the receiver when the time-frequency product (TF product) is 1.0625 ) by a factor of 2, it is very easy to achieve a value much smaller than the size of the error vector of the system to be compared in the range of 0 to N RX > 20.
  • the signal-to-noise and interference ratio of the QAM-FBMC system according to an embodiment of the present invention is a signal-to-noise ratio (SNR) when the number of non-zero received circular vector elements (N RX ) is 31. Noise Ratio) It shows performance that is not much different from the best performance up to 30 dB, and shows better performance than OQAM-FBMC in case of full-tap.
  • bit error rate (BER) of a 64-QAM symbol in a white Gaussian noise (AWGN) channel of a QAM-FBMC receiver according to an embodiment of the present invention bit energy versus noise It is a graph as a function of density (Eb/N0).
  • the bit error rate of the QAM-FBMC system according to an embodiment of the present invention is superior to that of the conventional QAM-FBMC and the QAM-FBMC system having a linear minimum mean square error receiver, and is almost CP-OFDM and OQAM-FBMC. It shows performance approaching the bit error rate of .
  • FIG. 13 is a graph showing first components of QAM-FBMC transmission/reception circular vectors according to an embodiment of the present invention.
  • the ratio of the length of the circular vector of the receiving end to the length of the circular vector of the transmitting end ( ) is set to 2 and the number of non-zero receive circular vector components (N RX ) is restricted to 31, the PHYDYAS filter is used for the frequency domain transmitted circular vector according to the embodiment of the present invention.

Abstract

단수의 송신 원형 필터와 초과 지연 시간을 갖는 송신기와 송신 방법 제공하고, 복잡도가 높거나 자기 간섭 저감 성능이 낮거나 고정되지 않은 수신 원형 필터를 사용하는 기존의 수신기와 수신 방법과 달리 낮은 복잡도에도 불구하고 높은 자기 간섭 저감 성능에 도달하는 QAM-FBMC 수신기 및 수신 방법, 그리고 이러한 QAM-FBMC 수신기 및 수신 방법이 사용하는 고정된 수신 원형 벡터 설계 방법을 제공한다.

Description

직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법
본 발명은 통신 시스템에서 직교 진폭 변조 필터 뱅크 다중 반송파를 이용한 신호 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법에 관한 것이다.
5G 이동통신 표준 개발 당시 상하향 링크에서 높은 주파수 효율(SE: spectral efficiency)을 얻기 위해 필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 파형이 고려되었다. 특히 오프셋 직교 진폭 변조(OQAM: Offset Quadrature Amplitude Modulation) FBMC 파형은 가우시언 잡음하에서 자기 간섭(self-interference) 없이도 최소의 시간-주파수 곱(TF-product: Time-Frequency product)을 달성할 수 있음과 동시에 낮은 대역외 방사(OOBE: Out-Of-Band Emission)성능을 낼 수 있어, 4G와 5G에서 채택된, 역시 가우시언 잡음하에서 자기 간섭이 없는, 순환전치(CP: Cyclic-Prefix) 직교 주파수 분할 다중화(OFDM: Orthogonal Frequency-Division Multiplexing)에 비해 시간-주파수 곱과 대역외방사 양면에서 모두 장점을 가지는 파형이었다. 그러나 5G에서 전송속도 향상의 핵심 기술이 되는 다중 안테나(multi-antenna)의 사용시, 즉 OQAM-FBMC 파형이 다중 입출력(MIMO: multiple-input multiple-output) 채널을 통과하는 경우에는 기 연구 개발된 채널 부호화기와 복호화기를 직접적으로 적용하기가 어렵다는 단점이 대두되었으며, 이런 지적은 MIMO 채널에서도 기존의 부호화기와 복호화기가 직접적으로 적용 가능 한 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-FBMC의 연구로 이어지게 되었다.
그러나 QAM-FBMC는 OQAM-FBMC와 같은 최소의 시간-주파수 곱을 내도록 송신 원형 필터(transmit prototype filter)와 전송 파형 파라미터가 선택되는 경우에는 단수개의 원형 필터를 사용해서는 자기 간섭을 제거할 수 없다는 사실이 밝혀졌으며, 이에 따라 QAM-FBMC 통신 시스템 연구는 크게 두 가지 방향으로 전개되어 왔다. 한 방향은 시간-주파수 곱은 최소로 유지하면서 대역외 방사 성능과 수신기의 복잡도는 트레이드 오프(trade-off)시켜 다양한 주파수 효율과 자기 간섭 정도를 갖는 송수신기와 송수신 방식을 제안하는 연구이다. 다른 한 방향은 시간-주파수 곱을 조금 희생하되 대역외 방사 성능은 OQAM-FBMC와 같이 유지하면서 자기 간섭 정도와 수신기의 복잡도를 트레이드 오프 시키는 연구이다. 기존의 대부분의 QAM-FBMC 연구가 전자에 해당하며 본 발명은 후자에 해당한다.
본 발명은 단수의 송신 원형 필터와 초과 지연 시간을 사용하면서, 복잡도가 높거나 자기 간섭 저감 성능이 낮거나 고정되지 않은 수신 원형 필터를 사용하는 기존의 수신기와 수신 방법과 달리, 낮은 복잡도에도 불구하고 높은 자기 간섭 저감 성능에 도달하는 송신기 및 송신 방법, 수신 원형 필터 설계 방법과 이 수신 원형 필터를 고정적으로 사용하는 수신기 및 수신 방법을 제공한다는 점에서 큰 차별성을 갖는다.
특히, 본 발명을 다중 접속(Multiple-Access) 상향 링크(uplink)에 적용하면 송신 파형의 낮은 대역외 방사 성능은 다중 접속자들을 부반송파 할당시에 보다 적은 수의 보호 부반송파(guard sub-carrier) 수를 요구하므로, 비록 최소의 시간-주파수 곱에는 도달하지 못하지만 시간-주파수 곱뿐만 아니라 보호 부반송파 수에도 영향을 받는 최종적인 성능인 주파수 효율은 다중 접속자 수가 늘어 나면 기존의 QAM-FBMC 방식들의 주파수 효율을 쉽게 넘어서게 된다.
[선행기술문헌]
(특허문헌 1) WO2016/072677A1 (2016.05.12.)
(특허문헌 2) KR20160109933A (2016.09.21.)
(특허문헌 3) KR20180062310A (2018.06.08.)
본 발명의 목적은 시간-주파수 곱이 1보다 큰 QAM-FBMC 통신 시스템에서 대역외 방사가 적은 단수의 송신 원형 필터를 사용하면서도 높은 주파수 효율과 낮은 자기 간섭에 도달할 수 있는 송신기 및 송신 방법, 수신 원형 필터 설계 방법과 이 수신 원형 필터를 고정적으로 사용하는 수신기 및 수신 방법을 제공하는 것이다.
다만, 본 발명의 해결하고자 하는 과제는 이에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.
본 발명의 일 실시예에 따른 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 송신기는, QAM 심볼을 포함하는 심볼열을 입력으로 받아 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)하고 부반송파에 할당하여 길이 M인 심볼 벡터의 열을 생성하는 직렬/병렬 변환부와, 상기 심볼 벡터를 입력으로 받아 길이 N인 주파수 영역 신호 벡터를 생성하는 주파수 영역 신호 벡터 생성부와, 상기 주파수 영역 신호 벡터를 입력으로 받아 역 이산 푸리에 변환(IDFT: Inverse Discrete Fourier Transform)된 길이 N인 시간 영역 신호 벡터를 생성하는 IDFT부와, 상기 시간 영역 신호 벡터의 열을 입력으로 받아 병렬/직렬 변환(P/S: Parallel-to-Serial conversion)하고 M+S만큼 지연시켜 중첩합(O/S: Overlap-Sum)하여 이산 시간 복소 기저 신호를 생성하는 이산 시간 신호 생성부 - 여기서, S는 초과 지연 시간임 - 를 포함한다.
일 측면에 따르면, 상기 주파수 영역 신호 벡터 생성부는 상기 심볼 벡터를 입력으로 받아 크기 KM×M인 업샘플링 행렬을 이용하여 길이 KM인 업샘플링된 벡터를 생성하는 K배 업샘플링부, 및 상기 업샘플링된 벡터를 입력으로 받아 크기 KM×M인 순환 행렬을 이용하여 길이 KM인 상기 주파수 영역 신호 벡터를 생성하는 주파수 영역 펄스 성형부를 포함할 수 있다.
일 측면에 따르면, 상기 주파수 영역 신호 벡터 생성부는 하기의 수학식
Figure PCTKR2021018554-appb-I000001
에 의해 상기 주파수 영역 신호 벡터를 생성하되 - 여기서,
Figure PCTKR2021018554-appb-I000002
는 상기 주파수 영역 신호 벡터이고,
Figure PCTKR2021018554-appb-I000003
는 주파수 영역 송신 행렬이고,
Figure PCTKR2021018554-appb-I000004
는 상기 심볼 벡터임 -, 상기 주파수 영역 송신 행렬은 상기 순환 행렬과 상기 업샘플링 행렬의 곱에 의해 계산될 수 있다.
일 측면에 따르면, 상기 업샘플링 행렬은 하기의 수학식
Figure PCTKR2021018554-appb-I000005
에 의해 정의되고 - 여기서,
Figure PCTKR2021018554-appb-I000006
은 상기 업샘플링 행렬이고,
Figure PCTKR2021018554-appb-I000007
는 길이 KM인 k번째 표준 기저 벡터임 -,
상기 순환 행렬은 하기의 수학식
Figure PCTKR2021018554-appb-I000008
에 의해 정의되며 - 여기서,
Figure PCTKR2021018554-appb-I000009
는 상기 순환 행렬이고,
Figure PCTKR2021018554-appb-I000010
는 하방 순환 행렬이고,
Figure PCTKR2021018554-appb-I000011
는 PHYDYAS 필터를 이용하여 결정됨 -,
상기 하방 순환 행렬은 하기의 수학식
Figure PCTKR2021018554-appb-I000012
에 의해 정의될 수 있다.
일 측면에 따르면, 상기 이산 시간 복소 기저 신호는 하기의 수학식
Figure PCTKR2021018554-appb-I000013
에 의해 정의 - 여기서,
Figure PCTKR2021018554-appb-I000014
은 상기 이산 시간 복소 기저 신호이고,
Figure PCTKR2021018554-appb-I000015
은 k번째 이산 시간 복소 기저 신호의 n번째 성분임 - 될 수 있다.
일 측면에 따르면, 상기 k번째 이산 시간 복소 기저 신호의 n번째 성분은 하기의 수학식
Figure PCTKR2021018554-appb-I000016
에 의해 정의 - 여기서,
Figure PCTKR2021018554-appb-I000017
는 상기 시간 영역 신호 벡터임 - 될 수 있다.
일 측면에 따르면, 상기 k번째 이산 시간 복소 기저 신호의 n번째 성분은 하기의 수학식
Figure PCTKR2021018554-appb-I000018
에 의해 정의 - 여기서,
Figure PCTKR2021018554-appb-I000019
는 상기 시간 영역 신호 벡터임 - 될 수 있다.
본 발명의 일 실시예에 따른 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 송신기에 의해 수행되는 QAM-FBMC 송신 방법은, QAM 심볼을 포함하는 심볼열을 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)하고 부반송파에 할당하여 길이 M인 심볼 벡터의 열을 생성하는 단계와, 상기 심볼 벡터를 이용하여 길이 N인 주파수 영역 신호 벡터를 생성하는 단계와, 상기 주파수 영역 신호 벡터를 이용하여 역 이산 푸리에 변환(IDFT: Inverse Discrete Fourier Transform)된 길이 N인 시간 영역 신호 벡터를 생성하는 단계와, 상기 시간 영역 신호 벡터의 열을 이용하여 병렬/직렬 변환(P/S: Parallel-to-Serial conversion)하고 M+S만큼 지연시켜 중첩합(O/S: Overlap-Sum)하여 이산 시간 복소 기저 신호를 생성하는 단계 - 여기서, S는 초과 지연 시간임 - 를 포함한다.
본 발명의 일 실시예에 따른 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 수신기는, 이산 시간 복소 기저 수신 신호를 입력으로 받아 윈도잉(windowing) 및 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)을 통해 확장된 관측 길이를 갖는 시간 영역 수신 신호 벡터의 열을 생성하는 수신 신호 변환부와, 상기 시간 영역 수신 신호 벡터를 이산 푸리에 변환(DFT: Discrete Fourier Transform)하여 주파수 영역 수신 신호 벡터를 생성하는 DFT부와, 상기 주파수 영역 수신 신호 벡터를 주파수 영역 단일탭 등화(FD one-tap equalization)하여 채널 등화된 벡터를 생성하는 주파수 영역 채널 등화부와, 상기 채널 등화된 벡터를 부정합된 필터(mismatched filter)로 필터링하여 송신된 심볼 벡터의 추정치를 생성하는 부정합 필터부와, 상기 송신된 심볼 벡터의 추정치를 병렬/직렬 변환하여 송신된 QAM 심볼열의 추정치를 생성하는 병렬/직렬 변환부를 포함한다.
일 측면에 따르면, 상기 부정합 필터부는 하기의 수학식
Figure PCTKR2021018554-appb-I000020
에 의해 상기 송신된 심볼 벡터의 추정치를 생성하되 - 여기서,
Figure PCTKR2021018554-appb-I000021
는 상기 송신된 심볼 벡터의 추정치이고,
Figure PCTKR2021018554-appb-I000022
는 주파수 영역 수신 행렬이고,
Figure PCTKR2021018554-appb-I000023
는 상기 채널 등화된 벡터임 -,
상기 주파수 영역 수신 행렬의 전치 행렬은 하기의 수학식
Figure PCTKR2021018554-appb-I000024
에 의해 결정 - 여기서,
Figure PCTKR2021018554-appb-I000025
는 상기 주파수 영역 수신 행렬의 전치 행렬이고,
Figure PCTKR2021018554-appb-I000026
는 크기
Figure PCTKR2021018554-appb-I000027
×
Figure PCTKR2021018554-appb-I000028
인 하방 순환 행렬이고,
Figure PCTKR2021018554-appb-I000029
는 길이
Figure PCTKR2021018554-appb-I000030
인 주파수 영역 수신 원형 벡터이고,
Figure PCTKR2021018554-appb-I000031
는 크기
Figure PCTKR2021018554-appb-I000032
×M인 업샘플링 행렬이고,
Figure PCTKR2021018554-appb-I000033
임 - 될 수 있다.
일 측면에 따르면, 상기 주파수 영역 수신 원형 벡터는 하기의 수학식
Figure PCTKR2021018554-appb-I000034
에 의해 결정되는 목적 함수를 갖는 제약된 최소 제곱 최적화 문제의 해로 결정되고,
상기 행렬
Figure PCTKR2021018554-appb-I000035
는 하기의 수학식
Figure PCTKR2021018554-appb-I000036
에 의해 정의되고,
상기 벡터
Figure PCTKR2021018554-appb-I000037
는 하기의 수학식
Figure PCTKR2021018554-appb-I000038
에 의해 정의될 수 있다.
일 측면에 따르면, 상기 주파수 영역 수신 원형 벡터는 하기의 수학식
Figure PCTKR2021018554-appb-I000039
에 의해 결정되는 목적 함수를 갖는 제약된 최소 제곱 최적화 문제의 해의 도움을 받아 결정되고, 상기 행렬
Figure PCTKR2021018554-appb-I000040
는 상기 주파수 영역 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수에 기초한 상기 행렬
Figure PCTKR2021018554-appb-I000041
의 축소된 크기(reduced-size)의 행렬이고, 상기 벡터
Figure PCTKR2021018554-appb-I000042
는 상기 주파수 영역 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수에 기초한 상기 벡터
Figure PCTKR2021018554-appb-I000043
의 축소된 크기의 벡터일 수 있다.
일 측면에 따르면, 상기 주파수 영역 수신 원형 벡터는 각각이 하기의 수학식
Figure PCTKR2021018554-appb-I000044
,
Figure PCTKR2021018554-appb-I000045
으로 정의되는 제 1 부최적화 문제(SP1)와 제 2 부최적화 문제(SP2)를 주어진 탐색 변수 s에서 풀어 주어진 탐색 변수 s에서의 해로 하는 2 단계(two-stage)의 제약된 선탐색 최적화 문제의 해(s*)를 결정하고, 하기의 수학식
Figure PCTKR2021018554-appb-I000046
에 의해 정의되는 최적의 주파수 영역 수신 원형 벡터로 결정될 수 있다.
본 발명의 일 실시예에 따른 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 수신기에 의해 수행되는 QAM-FBMC 수신 방법은, 이산 시간 복소 기저 수신 신호를 입력으로 받아 윈도잉(windowing) 및 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)을 통해 확장된 관측 길이를 갖는 시간 영역 수신 신호 벡터의 열을 생성하는 단계와, 상기 시간 영역 수신 신호 벡터를 이산 푸리에 변환(DFT: Discrete Fourier Transform)하여 주파수 영역 수신 신호 벡터를 생성하는 단계와, 상기 주파수 영역 수신 신호 벡터를 주파수 영역 단일탭 등화(FD one-tap equalization)하여 채널 등화된 벡터를 생성하는 단계와, 상기 채널 등화된 벡터를 부정합된 필터(mismatched filter)로 필터링하여 송신된 심볼 벡터의 추정치를 생성하는 단계와, 상기 송신된 심볼 벡터의 추정치를 병렬/직렬 변환하여 송신된 QAM 심볼열의 추정치를 생성하는 단계를 포함한다.
일 측면에 따르면, 상기 송신된 심볼 벡터의 추정치를 생성하는 단계는 하기의 수학식
Figure PCTKR2021018554-appb-I000047
에 의해 상기 송신된 심볼 벡터의 추정치를 생성하되 - 여기서,
Figure PCTKR2021018554-appb-I000048
는 상기 송신된 심볼 벡터의 추정치이고,
Figure PCTKR2021018554-appb-I000049
는 주파수 영역 수신 행렬이고,
Figure PCTKR2021018554-appb-I000050
는 상기 채널 등화된 벡터임 -,
상기 주파수 영역 수신 행렬의 전치 행렬은 하기의 수학식
Figure PCTKR2021018554-appb-I000051
에 의해 결정 - 여기서,
Figure PCTKR2021018554-appb-I000052
는 상기 주파수 영역 수신 행렬의 전치 행렬이고,
Figure PCTKR2021018554-appb-I000053
는 크기
Figure PCTKR2021018554-appb-I000054
×
Figure PCTKR2021018554-appb-I000055
인 하방 순환 행렬이고,
Figure PCTKR2021018554-appb-I000056
는 길이
Figure PCTKR2021018554-appb-I000057
인 주파수 영역 수신 원형 벡터이고,
Figure PCTKR2021018554-appb-I000058
는 크기
Figure PCTKR2021018554-appb-I000059
×M인 업샘플링 행렬이고,
Figure PCTKR2021018554-appb-I000060
임 - 될 수 있다.
일 측면에 따르면, 상기 주파수 영역 수신 원형 벡터는 하기의 수학식
Figure PCTKR2021018554-appb-I000061
에 의해 결정되는 목적 함수를 갖는 제약된 최소 제곱 최적화 문제의 해로 결정되고,
상기 행렬
Figure PCTKR2021018554-appb-I000062
는 하기의 수학식
Figure PCTKR2021018554-appb-I000063
에 의해 정의되고,
상기 벡터
Figure PCTKR2021018554-appb-I000064
는 하기의 수학식
Figure PCTKR2021018554-appb-I000065
에 의해 정의될 수 있다.
일 측면에 따르면, 상기 주파수 영역 수신 원형 벡터는 하기의 수학식
Figure PCTKR2021018554-appb-I000066
에 의해 결정되는 목적 함수를 갖는 제약된 최소 제곱 최적화 문제의 해의 도움을 받아 결정되고,
상기 행렬
Figure PCTKR2021018554-appb-I000067
는 상기 주파수 영역 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수에 기초한 상기 행렬
Figure PCTKR2021018554-appb-I000068
의 축소된 크기(reduced-size)의 행렬이고,
상기 벡터
Figure PCTKR2021018554-appb-I000069
는 상기 주파수 영역 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수에 기초한 상기 벡터
Figure PCTKR2021018554-appb-I000070
의 축소된 크기의 벡터일 수 있다.
일 측면에 따르면, 상기 주파수 영역 수신 원형 벡터는 각각이 하기의 수학식
Figure PCTKR2021018554-appb-I000071
,
Figure PCTKR2021018554-appb-I000072
으로 정의되는 제 1 부최적화 문제(SP1)와 제 2 부최적화 문제(SP2)를 주어진 탐색 변수 s에서 풀어 주어진 탐색 변수 s에서의 해로 하는 2 단계(two-stage)의 제약된 선탐색 최적화 문제의 해(s*)를 결정하고, 하기의 수학식
Figure PCTKR2021018554-appb-I000073
에 의해 정의되는 최적의 주파수 영역 수신 원형 벡터로 결정될 수 있다.
개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
전술한 본 발명의 실시예들에 따른 QAM-FBMC 송수신기, 송수신 방법 및 수신 원형 필터 벡터 설계 방법에 따르면, 자기 간섭이 적으면서도 저복잡도로 높은 주파수 효율에 도달할 수 있다.
도 1은 본 발명의 일 실시예에 따른 초과 지연 시간을 갖는 QAM-FBMC 송신기의 구성을 나타낸 블록도이다.
도 2는 도 1의 시간 영역 신호 생성부(P/S + O/S)의 입력(
Figure PCTKR2021018554-appb-I000074
)과 출력(
Figure PCTKR2021018554-appb-I000075
)간의 관계를 상세하게 나타낸 블록도이다.
도 3은 본 발명의 일 실시예에 따른 QAM-FBMC 송신 방법의 순서도이다.
도 4는 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 구성을 나타낸 블록도이다.
도 5는 본 발명의 일 실시예에 따른 QAM-FBMC 수신 방법의 순서도이다.
도 6은 본 발명의 일 실시예에 따른 QAM-FBMC 주파수 영역 수신 원형 필터 설계 방법의 순서도이다.
도 7은 본 발명의 일 실시예에 따른 QAM-FBMC 송신 신호의 전력 스펙트럼을 나타낸 그래프이다.
도 8은 본 발명의 일 실시예에 따른 QAM-FBMC 시스템의 주파수 효율을 나타낸 그래프이다.
도 9는 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 복잡도를 비교한 표이다.
도 10은 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 오류 벡터 크기를 나타낸 그래프이다
도 11은 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 신호 대 잡음 및 간섭의 비를 나타낸 그래프이다.
도 12는 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 백색 가우시언 잡음 채널에서의 64-QAM 심볼의 비트 오류율을 나타낸 그래프이다.
도 13은 본 발명의 일 실시예에 따른 QAM-FBMC 송수신 원형 벡터의 첫 성분들을 나타낸 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.
그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 본 발명이 속하는 기술분야에서 통상의 지식을 가진 사람이 본 발명을 쉽게 실시할 수 있도록 명확하고 상세하게 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 초과 지연 시간(S>0)을 갖는 QAM-FBMC 송신기의 구성을 나타낸 블록도이고, 도 2는 도 1의 이산 시간 신호 생성부(P/S & O/S: parallel-to-serial and overlap-sum)를 상세하게 나타낸 블록도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 초과 지연 시간(S>0)을 갖는 QAM-FBMC 송신기(100)는 직렬/병렬 변환부(S/P)(110), 주파수 영역 신호 벡터 생성부(120), IDFT부(N-point IDFT)(130) 및 이산 시간 신호 생성부(P/S & O/S)(140)를 포함할 수 있다. 주파수 영역 신호 벡터 생성부(120)는 K 배 업샘플링부(Upsampling by K)(121) 및 주파수 영역 펄스 성형부(FD Pulse Shaping)(123)를 포함할 수 있다.
직렬/병렬 변환부(110)는 QAM 심볼을 포함하는 심볼열(
Figure PCTKR2021018554-appb-I000076
)을 입력으로 받아 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)하고 부반송파에 할당하여 길이 M인 심볼 벡터(
Figure PCTKR2021018554-appb-I000077
)의 열(
Figure PCTKR2021018554-appb-I000078
)을 생성한다. 상기 부반송파 할당된 심볼 벡터(
Figure PCTKR2021018554-appb-I000079
)는 Mnull개의 영(zero)성분을 포함할 수 있다.
주파수 영역 신호 벡터 생성부(120)는 K배 업샘플링부(Upsampling by K)(121)와 주파수 영역 펄스 성형부(FD pulse shaping)(123)를 포함할 수 있다.
K배 업샘플링부(121)는 상기 심볼 벡터(
Figure PCTKR2021018554-appb-I000080
)를 입력으로 받아 크기 KM행 M열인 업샘플링 행렬(
Figure PCTKR2021018554-appb-I000081
)을 이용하여 길이 KM인 업샘플링된 벡터(
Figure PCTKR2021018554-appb-I000082
)를 생성한다. 상기 업샘플링 행렬(
Figure PCTKR2021018554-appb-I000083
)은 수학식 1에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000001
여기서
Figure PCTKR2021018554-appb-I000084
는 길이 KM인 k번째 표준 기저 벡터이다.
주파수 영역 펄스 성형부(123)는 상기 업샘플링된 벡터(
Figure PCTKR2021018554-appb-I000085
)를 입력으로 받아 길이 KM인 주파수 영역 송신 원형 벡터(
Figure PCTKR2021018554-appb-I000086
)를 사용하여 만든 크기 KM행 KM열인 순환 행렬(
Figure PCTKR2021018554-appb-I000087
)을 이용하여 길이 KM인 주파수 영역 펄스 성형된 벡터(
Figure PCTKR2021018554-appb-I000088
)를 생성한다. 상기 순환 행렬(
Figure PCTKR2021018554-appb-I000089
)은 수학식 2에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000002
여기서
Figure PCTKR2021018554-appb-I000090
는 잘 알려진 PHYDYAS 필터를 이용하여 결정될 수 있으며
Figure PCTKR2021018554-appb-I000091
는 하방 순환 행렬(circular down-shift matrix)로 수학식 3에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000003
이하에서 N = KM이다.
따라서 상기 주파수 영역 신호 벡터 생성부(120)는 길이 M인 상기 직렬/병렬 변환된 벡터(
Figure PCTKR2021018554-appb-I000092
)를 입력으로 받아 길이 N인 상기 주파수 영역 신호 벡터(
Figure PCTKR2021018554-appb-I000093
)를 생성한다. 여기서
Figure PCTKR2021018554-appb-I000094
는 주파수 영역 송신(FD TX) 행렬로 수학식 4에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000004
IDFT부(130)는 상기 길이 N인 주파수 영역 신호 벡터(
Figure PCTKR2021018554-appb-I000095
)를 입력으로 받아 IDFT된 길이 N인 벡터(
Figure PCTKR2021018554-appb-I000096
)를 생성한다. 여기서 WN는 크기 N행 N열인 이산 푸리에 변환(DFT: Discrete Fourier Transform) 행렬로 수학식 5에 의해 (i, j) 성분이 정의 - 여기서,
Figure PCTKR2021018554-appb-I000097
이며 인덱스 i, j는 각각 1≤i≤N, 1≤j≤N 을 만족함 - 될 수 있다.
Figure PCTKR2021018554-appb-M000005
도 2를 참조하면, 이산 시간 신호 생성부(140)는 상기 시간 영역 신호 벡터의 열(
Figure PCTKR2021018554-appb-I000098
)을 입력으로 받아 병렬/직렬 변환(P/S: Parallel-to-Serial conversion)하고 M+S 만큼 지연시켜 중첩합(O/S: Overlap-Sum)하여 이산 시간 복소 기저 신호(
Figure PCTKR2021018554-appb-I000099
)를 생성한다. 여기서 상기 이산 시간 복소 기저 신호의 n번째 성분은 통상의 QAM-FBMC에서 사용되는 지연량(M)에 추가하여 초과 지연 시간(excess delay) S(>0)를 사용하여 수학식 6에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000006
여기서 k번째 이산 시간 복소 기저 신호(
Figure PCTKR2021018554-appb-I000100
)의 n번째 성분은 상기 k번째 시간 영역 신호 벡터(
Figure PCTKR2021018554-appb-I000101
)를 이용하여 수학식 7에 의해 또는 이와 등가인 수학식 8에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000007
Figure PCTKR2021018554-appb-M000008
상기 이산 시간 복소 기저 신호(
Figure PCTKR2021018554-appb-I000102
)를 연속 시간 실수 대역 통과 QAM-FBMC 신호(
Figure PCTKR2021018554-appb-I000103
)로 변환하는 동작은 본 발명이 속하는 기술분야에서 널리 알려진 기술이므로 본 명세서에서는 그 설명을 생략하기로 한다.
도 3은 본 발명의 일 실시예에 따른 QAM-FBMC 송신 방법의 순서도이다.
본 발명의 일 실시예에 따른 QAM-FBMC 송신 방법은 도 1의 QAM-FBMC 송신기(100)에 의해 수행될 수 있다.
도 3을 참조하면, 단계 S310에서는, QAM 심볼을 포함하는 심볼열(
Figure PCTKR2021018554-appb-I000104
)을 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)하고 부반송파에 할당하여 길이 M인 심볼 벡터(
Figure PCTKR2021018554-appb-I000105
)의 열(
Figure PCTKR2021018554-appb-I000106
)을 생성한다.
단계 S320에서는, 상기 심볼 벡터(
Figure PCTKR2021018554-appb-I000107
)를 이용하여 길이 N인 주파수 영역 신호 벡터(
Figure PCTKR2021018554-appb-I000108
)를 생성한다. 이때 주파수 영역 송신 행렬(
Figure PCTKR2021018554-appb-I000109
)은 주파수 영역 송신 원형 벡터(
Figure PCTKR2021018554-appb-I000110
)와 하방 순환 행렬을 사용하여 결정될 수 있다.
단계 S330에서는, 상기 주파수 영역 신호 벡터(
Figure PCTKR2021018554-appb-I000111
)를 이용하여 역 이산 푸리에 변환(IDFT: Inverse Discrete Fourier Transform)된 길이 N인 시간 영역 신호 벡터(
Figure PCTKR2021018554-appb-I000112
)를 생성한다.
단계 S340에서는, 상기 시간 영역 신호 벡터의 열(
Figure PCTKR2021018554-appb-I000113
)을 병렬/직렬 변환(P/S: Parallel-to-Serial conversion)하고 M+S만큼 지연시켜 중첩합(O/S: Overlap-Sum)하여 이산 시간 복소 기저 신호(
Figure PCTKR2021018554-appb-I000114
)를 생성한다. 이때 상기 시간 영역 신호 벡터(
Figure PCTKR2021018554-appb-I000115
)의 성분들과 상기 이산 시간 송신 신호(
Figure PCTKR2021018554-appb-I000116
)의 성분들의 관계는 초과 시간 S(>0)를 이용하여 수학식 6에 의해 결정될 수 있다.
도 4는 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 구성을 나타낸 블록도이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 QAM-FBMC 수신기(400)는 수신 신호 변환부(Windowing & S/P)(410), DFT부(
Figure PCTKR2021018554-appb-I000117
-point DFT)(420), 주파수 영역 등화부(FD Equalization)(430), 부정합 필터부(Mismatched Filtering)(440), 병렬/직렬 변환부(P/S)(450)를 포함할 수 있다.
수신 신호 변환부(410)는 이산 시간 복소 기저 수신 신호(
Figure PCTKR2021018554-appb-I000118
)를 입력으로 받아 확장된 관측 길이
Figure PCTKR2021018554-appb-I000119
를 갖는 직각 윈도를 적용하여 길이
Figure PCTKR2021018554-appb-I000120
인 시간 영역 수신 신호 벡터열(
Figure PCTKR2021018554-appb-I000121
)을 생성한다. 상기 시간 영역 수신 벡터열의 k번째 벡터(
Figure PCTKR2021018554-appb-I000122
)는 앞쪽 확장 길이(Lpre)와 뒤쪽 확장 길이(Lpost)를 각각 Ladd로 놓는 경우 수학식 9에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000009
여기서 Ladd
Figure PCTKR2021018554-appb-I000123
가 2의 배수가 되도록 선택될 수 있다.
DFT부(420)는 상기 시간 영역 수신 벡터(
Figure PCTKR2021018554-appb-I000124
)를 입력으로 받아
Figure PCTKR2021018554-appb-I000125
-point DFT를 적용하여 주파수 영역 수신 신호 벡터(
Figure PCTKR2021018554-appb-I000126
)를 생성한다. 여기서
Figure PCTKR2021018554-appb-I000127
-point DFT는
Figure PCTKR2021018554-appb-I000128
가 2의 배수인 경우 FFT(Fast Fourier Transform) 알고리즘을 적용하여 계산 효율적으로 수행될 수 있다.
주파수 영역 등화부(430)는 주파수 영역 수신 신호 벡터(
Figure PCTKR2021018554-appb-I000129
)를 입력으로 받아 대각 등화 행렬(
Figure PCTKR2021018554-appb-I000130
)을 곱하여 주파수 영역 단일탭 등화(FD one-tap equalization)된 벡터(
Figure PCTKR2021018554-appb-I000131
)를 생성한다. 여기서 상기 대각 등화 행렬(
Figure PCTKR2021018554-appb-I000132
)은 수학식 10에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000010
여기서
Figure PCTKR2021018554-appb-I000133
는 주파수 영역 채널 행렬의 추정치를 대각화한 행렬로서 상기 시간 영역 채널 행렬(
Figure PCTKR2021018554-appb-I000134
)의 추정치인 같은 크기의 행렬(
Figure PCTKR2021018554-appb-I000135
)로부터 수학식 11과 수학식 12에 의해 정의될 수 있으며 신호 파워(
Figure PCTKR2021018554-appb-I000136
)는 상기 심볼간 간섭이 포함된 신호 벡터(
Figure PCTKR2021018554-appb-I000137
)의 상관 행렬(
Figure PCTKR2021018554-appb-I000138
)을 수학식 13에 의해 주파수 영역으로 변환한 후 대각요소들의 평균으로 정의할 수 있으며
Figure PCTKR2021018554-appb-I000139
는 잡음의 분산으로 정의된다. 수학식 11과 수학식 13에서 사용된 행렬 T는 Ladd = Lpre = Lpost를 사용할 경우 수학식 14에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000011
Figure PCTKR2021018554-appb-M000012
여기서 diag(diag(·)) 는 대각 성분외의 행렬의 성분을 영으로 바꾸는 연산이다.
Figure PCTKR2021018554-appb-M000013
Figure PCTKR2021018554-appb-M000014
부정합 필터부(440)는 채널 등화된 벡터(
Figure PCTKR2021018554-appb-I000140
)를 입력으로 받아 주파수 영역 수신(FD RX) 행렬(
Figure PCTKR2021018554-appb-I000141
)을 곱하여 송신된 심볼 벡터(
Figure PCTKR2021018554-appb-I000142
)의 부정합 필터링된 추정치(
Figure PCTKR2021018554-appb-I000143
)를 생성한다. 여기서 상기 주파수 영역 수신 행렬의 전치 행렬(
Figure PCTKR2021018554-appb-I000144
)은 길이
Figure PCTKR2021018554-appb-I000145
인 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000146
)를 이용하여 수학식 15에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000015
여기서
Figure PCTKR2021018554-appb-I000147
는 크기
Figure PCTKR2021018554-appb-I000148
Figure PCTKR2021018554-appb-I000149
열인 하방 순환 행렬이고
Figure PCTKR2021018554-appb-I000150
는 크기
Figure PCTKR2021018554-appb-I000151
행 M열인 업샘플링 행렬이며
Figure PCTKR2021018554-appb-I000152
이다.
병렬/직렬 변환부(450)는 부정합 필터링 된 벡터(
Figure PCTKR2021018554-appb-I000153
)를 병렬/직렬 변환하되 송신기의 부반송파 할당부에서 할당되지 않은 널(null) 부반송파 위치의 요소를 제외하고 상기 송신단의 부반송파 할당부의 입력인 QAM 심볼(
Figure PCTKR2021018554-appb-I000154
)의 추정치인 심볼(
Figure PCTKR2021018554-appb-I000155
)을 생성한다.
도 5는 본 발명의 일 실시예에 따른 QAM-FBMC 수신 방법의 순서도이다.
본 발명의 일 실시예에 따른 QAM-FBMC 수신 방법은 도 4의 QAM-FBMC 수신기(400)에 의해 수행될 수 있다.
도 5을 참조하면, 단계 S510에서는, 이산 시간 복소 기저 수신 신호(
Figure PCTKR2021018554-appb-I000156
)를 입력으로 받아 윈도잉(windowing) 및 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)을 통해 확장된 관측 길이를 갖는 시간 영역 수신 신호 벡터의 열(
Figure PCTKR2021018554-appb-I000157
)을 생성한다.
단계 S520에서는 상기 시간 영역 수신 신호 벡터(
Figure PCTKR2021018554-appb-I000158
)를 이산 푸리에 변환(DFT: Discrete Fourier Transform)하여 주파수 영역 수신 신호 벡터(
Figure PCTKR2021018554-appb-I000159
)를 생성한다.
단계 S530에서는 상기 주파수 영역 수신 신호 벡터(
Figure PCTKR2021018554-appb-I000160
)를 주파수 영역 단일탭 등화하여 채널 등화된 벡터(
Figure PCTKR2021018554-appb-I000161
)를 생성한다.
단계 S540에서는 상기 채널 등화된 벡터(
Figure PCTKR2021018554-appb-I000162
)를 부정합된 필터(mismatched filter)로 필터링하여 송신된 심볼 벡터의 추정치(
Figure PCTKR2021018554-appb-I000163
)를 생성한다.
단계 S550에서는 상기 송신된 심볼 벡터의 추정치(
Figure PCTKR2021018554-appb-I000164
)를 병렬/직렬 변환하여 송신된 QAM 심볼열의 추정치(
Figure PCTKR2021018554-appb-I000165
)를 생성한다.
도 6은 본 발명의 일 실시예에 따른 QAM-FBMC 주파수 영역 수신 원형 필터 설계 방법의 순서도이다.
도 6을 참조하면, 단계 S610에서는, 주파수 영역 송신 행렬(
Figure PCTKR2021018554-appb-I000166
)과 송신 파라미터 M, S, K, Ladd 값 및 수신 파라미터
Figure PCTKR2021018554-appb-I000167
,
Figure PCTKR2021018554-appb-I000168
값을 사용하여 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000169
)의 최소 제곱 최적화 문제의 목적 함수에 사용될 행렬
Figure PCTKR2021018554-appb-I000170
과 벡터
Figure PCTKR2021018554-appb-I000171
를 생성한다. 상기 행렬
Figure PCTKR2021018554-appb-I000172
는 수학식 16에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000016
여기서 상호 간섭하는 QAM-FBMC 심볼수(KW)는 수학식 17에 의해 정의될 수 있고 크기 M행
Figure PCTKR2021018554-appb-I000173
열인 행렬 Ai,m은 수학식 18에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000017
Figure PCTKR2021018554-appb-M000018
여기서
Figure PCTKR2021018554-appb-I000174
는 크기
Figure PCTKR2021018554-appb-I000175
Figure PCTKR2021018554-appb-I000176
열의 하방 순환 행렬이며
Figure PCTKR2021018554-appb-I000177
은 크기 M행 M열의 단위행렬에서 널(null) 부반송파에 해당하는 대각성분을 0으로 바꾼 행렬이며
Figure PCTKR2021018554-appb-I000178
는 수학식 19에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000019
여기서
Figure PCTKR2021018554-appb-I000179
행 N열 행렬
Figure PCTKR2021018554-appb-I000180
는 수학식 20에 의해 정의되는 영행렬과 단위행렬의 행과 열의 수(
Figure PCTKR2021018554-appb-I000181
)를 사용하여 수학식 21에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000020
Figure PCTKR2021018554-appb-M000021
상기 벡터
Figure PCTKR2021018554-appb-I000182
는 수학식 22에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000022
여기서 길이
Figure PCTKR2021018554-appb-I000183
인 벡터 bi,m는 수학식 23에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000023
여기서
Figure PCTKR2021018554-appb-I000184
는 크로네커 델타(Kronecker delta) 함수이다.
상기 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000185
최소 제곱 최적화 문제의 목적 함수는 상기 행렬
Figure PCTKR2021018554-appb-I000186
와 벡터
Figure PCTKR2021018554-appb-I000187
를 사용하여 수학식 24에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000024
단계 S620에서는, 주파수 영역 송신 원형 벡터와 송신 파라미터, 수신 파라미터를 사용하여 축소된 크기의 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000188
)의 최적화 문제의 목적 함수에 사용될 행렬
Figure PCTKR2021018554-appb-I000189
과 벡터
Figure PCTKR2021018554-appb-I000190
을 생성하고, 상기 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000191
)와 상기 축소된 크기의 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000192
)를 연결하는 행렬 (
Figure PCTKR2021018554-appb-I000193
)을 생성한다. 상기 행렬
Figure PCTKR2021018554-appb-I000194
과 벡터
Figure PCTKR2021018554-appb-I000195
은 수학식 25를 만족하는 자연수 J를 사용하여 수학식 26를 만족하는 자연수 M', S'과
Figure PCTKR2021018554-appb-I000196
으로 M, S,
Figure PCTKR2021018554-appb-I000197
를 대체하여 상기 행렬
Figure PCTKR2021018554-appb-I000198
와 벡터
Figure PCTKR2021018554-appb-I000199
를 생성하는 방식으로 정의될 수 있다.
Figure PCTKR2021018554-appb-M000025
여기서 NRX는 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수이다.
Figure PCTKR2021018554-appb-M000026
상기 행렬
Figure PCTKR2021018554-appb-I000200
은 크기
Figure PCTKR2021018554-appb-I000201
Figure PCTKR2021018554-appb-I000202
열 행렬
Figure PCTKR2021018554-appb-I000203
Figure PCTKR2021018554-appb-I000204
가 수학식 27와 수학식 28에 의해 정의될 때, 상기 행렬
Figure PCTKR2021018554-appb-I000205
Figure PCTKR2021018554-appb-I000206
을 사용하여 수학식 29에 의해 정의될 수 있으며, 상기 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000207
)와 상기 축소된 크기의 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000208
)를 수학식 30에 의해 연결한다.
Figure PCTKR2021018554-appb-M000027
Figure PCTKR2021018554-appb-M000028
Figure PCTKR2021018554-appb-M000029
Figure PCTKR2021018554-appb-M000030
상기 축소된 크기의 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000209
)의 최소 제곱 최적화 문제의 목적 함수는 상기 행렬
Figure PCTKR2021018554-appb-I000210
벡터
Figure PCTKR2021018554-appb-I000211
을 사용하여 수학식 31에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000031
단계 S630에서는, 2 단계(two-stage)의 제약된 최소 제곱 최적화 문제들로 이루어진 선 탐색(line search) 최적화 문제를 풀어 최적의 주파수 영역 수신 원형 벡터(qf,proposed)를 생성한다. 상기 선 탐색(line search) 최적화 문제의 제 1 부최적화 문제 (SP1: Sub-Problem 1)는 수학식 32에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000032
여기서
Figure PCTKR2021018554-appb-I000212
벡터의 1-노름 (one-norm)
Figure PCTKR2021018554-appb-I000213
Figure PCTKR2021018554-appb-I000214
벡터의 각 성분의 절대값의 합이고 s는 선탐색에 사용되는 변수이고
Figure PCTKR2021018554-appb-I000215
는 주어진 선탐색 변수 s에서 제 1 부최적화 문제의 해이다.
상기 선 탐색(line search) 최적화 문제의 제 2 부최적화 문제 (SP2: Sub-Problem 1)는 수학식 33에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000033
여기서 벡터
Figure PCTKR2021018554-appb-I000216
는 벡터
Figure PCTKR2021018554-appb-I000217
의 성분별로 0-노름을 취하여 얻은 벡터
Figure PCTKR2021018554-appb-I000218
와 같은 길이의 벡터로 정의되고
Figure PCTKR2021018554-appb-I000219
는 제 1 부최적화 문제(SP1)를 주어진 선탐색 변수 s에서 풀어 얻은 해이고
Figure PCTKR2021018554-appb-I000220
는 제 2 부최적화 문제(SP2)를 주어진 선탐색 변수 s에서 풀어 얻은 해이다. 상기 제 2 부최적화 문제(SP2)의 해는 수학식 34에 의해 정의되는 제약 없는 최소 제곱 문제의 해(
Figure PCTKR2021018554-appb-I000221
)를 구해 수학식 35에 대입하여 결정될 수 있다.
Figure PCTKR2021018554-appb-M000034
Figure PCTKR2021018554-appb-M000035
여기서
Figure PCTKR2021018554-appb-I000222
는 크기
Figure PCTKR2021018554-appb-I000223
Figure PCTKR2021018554-appb-I000224
열인 행렬로 단위 행렬
Figure PCTKR2021018554-appb-I000225
의 대각성분 중 벡터
Figure PCTKR2021018554-appb-I000226
의 0 성분에 해당하는 열을 제거하여 얻은 행렬로 정의된다.
상기 선 탐색(line search) 최적화 문제는 수학식 36에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000036
여기서 목적함수 f(s)는 상기 제 2 부최적화 문제(SP2)의 최적해(
Figure PCTKR2021018554-appb-I000227
)를 사용하여 수학식 37에 의해 정의될 수 있다.
Figure PCTKR2021018554-appb-M000037
여기서 탐색 구간의 상한(
Figure PCTKR2021018554-appb-I000228
)는 수학식 38으로 정의되는 최소 제곱(least squares) 최적화 문제의 해를 구하여 결정될 수 있다.
Figure PCTKR2021018554-appb-M000038
상기 최적의 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000229
)를 생성하는 단계는, 상기 선탐색 문제의 최적해(s*)를 상기 제 2 부최적화 문제의 해(
Figure PCTKR2021018554-appb-I000230
)에 대입하여 수학식 39로 결정될 수 있다
Figure PCTKR2021018554-appb-M000039
상기 최적의 주파수 영역 수신 행렬(
Figure PCTKR2021018554-appb-I000231
)은 상기 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000232
)를 사용하여 수학식 40에 의해 결정될 수 있다.
Figure PCTKR2021018554-appb-M000040
도 7은 본 발명의 일 실시예에 따른 QAM-FBMC 송신 신호의 전력 스펙트럼(PSD: Power Spectral Density)을 나타낸 그래프이다.
도 7은 부반송파를 600개 할당할 때, OFDM, 통상의 QAM-FBMC, OQAM-FBMC, 그리고 본 발명의 실시예에 따른 QAM-FBMC의 전력 스펙트럼을 도시한다. 도 7에 따르면 본 발명의 실시예에 따른 QAM-FBMC의 전력 스펙트럼은 PHYDYAD 원형 벡터를 사용하는 OQAM-FBMC와 같은 PSD를 가지며, OFDM과 통상의 QAM-FBMC보다 매우 낮은 PSD를 보인다.
도 8은 본 발명의 일 실시예에 따른 QAM-FBMC 시스템의 주파수 효율(SE; Spectral Efficiency)의 근사값을 나타낸 그래프이다.
도 8은 부반송파를 600개 할당할 때, 상향 링크의 사용자 수(#users)가 증가함에 따라 통상의 QAM-FBMC, 선형 최소 평균 제곱 오차(LMMSE: Linear Minimum Mean Square Error) 수신기를 가지는 QAM-FBMC, 그리고 본 발명의 실시예에 따른 QAM-FBMC 시스템의 주파수 효율의 근사값(SEapprox: approximate value of Spectral Efficiency)을 도시한다. 도 8에 따르면 본 발명의 실시예에 따른 QAM-FBMC 시스템의 주파수 효율은 보호 대역 (guard band) 폭이 가장 작기 때문에 상향 링크 사용자수가 6을 넘어서면서 가장 높은 값을 가진다.
도 9는 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 복잡도를 비교한 표이다.
도 9는 통상의 정합 필터와 단일탭 등화기를 채용한 QAM-FBMC, 본 발명의 실시예에 따른 부정합 필터와 단일탭 등화기를 채용한 QAM-FBMC, 그리고 선형 최소 평균 제곱 오차(LMMSE: Linear Minimum Mean Square Error) 수신기를 가지는 QAM-FBMC의 계산복잡도를 복소수 합과 곱의 개수를 계산하여 송수신 파라미터와 큰 O(Big-O) 표기법을 사용하여 나타낸다. 도 9에 따르면 본 발명의 실시예에 따른 QAM-FBMC 수신기의 계산 복잡도는 계산 복잡도가 가장 낮은 정합 필터를 채용한 수신기와 큰 차이가 없으나 선형 최소 평균 제곱 오차 수신기를 가지는 QAM-FBMC 수신기의 계산 복잡도 보다 현저히 낮다.
도 10은 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 오류 벡터 크기(EVM: Error Vector Magnitude)를 나타낸 그래프이다.
도 10은 통상의 정합 필터와 단일탭 등화기를 채용한 QAM-FBMC, 본 발명의 실시예에 따른 부정합 필터와 단일탭 등화기를 채용한 QAM-FBMC, 그리고 선형 최소 평균 제곱 오차(LMMSE: Linear Minimum Mean Square Error) 수신기를 가지는 QAM-FBMC 시스템의 오류 벡터 크기를 희소성(sparsity)을 나타내는 척도인 0이 아닌 수신 원형 벡터 성분 수(NRX)의 함수로서 도시한다. 도 10에 따르면 본 발명의 실시예에 따른 QAM-FBMC 시스템의 오류 벡터 크기는 시간-주파수 곱(TF product)이 1.0625인 경우 수신기에서 상대적인 관측 길이(
Figure PCTKR2021018554-appb-I000233
)를 2배로 확장함으로써 비교 대상이 되는 시스템의 오류 벡터 크기보다 매우 작은 값을 0이 NRX>20 인 범위에서 매우 쉽게 달성한다.
도 11은 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 신호 대 잡음 및 간섭의 비(SINR: Signal-to-Interference-plus-Noise Ratio)를 나타낸 그래프이다. 도 11에 따르면 본 발명의 실시예에 따른 QAM-FBMC 시스템의 신호 대 잡음 및 간섭의 비는 0이 아닌 수신 원형 벡터 성분 수(NRX)가 31인 경우 신호 대 잡음비(SNR: Signal-to-Noise Ratio) 30 dB까지 최고의 성능과 차이 큰 차이 없는 성능을 보이며, 전체 탭(full-tap)일 경우 OQAM-FBMC 보다 뛰어난 성능을 보인다.
도 12는 본 발명의 일 실시예에 따른 QAM-FBMC 수신기의 백색 가우시언 잡음(AWGN: Additive White Gaussian Noise) 채널에서의 64-QAM 심볼의 비트 오류율(BER: Bit Error Rate)을 비트 에너지 대 잡음 밀도(Eb/N0)의 함수로 나타낸 그래프이다. 도 12에 따르면 본 발명의 실시예에 따른 QAM-FBMC 시스템의 비트 오류율은 통상의 QAM-FBMC 그리고 선형 최소 평균 제곱 오차 수신기를 가지는 QAM-FBMC 시스템의 비트 오류율 보다 뛰어나며 거의 CP-OFDM과 OQAM-FBMC의 비트 오류율에 근접하는 성능을 보인다.
도 13은 본 발명의 일 실시예에 따른 QAM-FBMC 송수신 원형 벡터의 첫 성분들을 나타낸 그래프이다. 도 13에 따르면 수신단 원형 벡터의 길이 대 송신단 원형 벡터의 길이 비(
Figure PCTKR2021018554-appb-I000234
)를 2로 설정하고 0이 아닌 수신 원형 벡터 성분 수(NRX)를 31로 제약한 경우, 주파수 영역 송신 원형 벡터에 PHYDYAS 필터를 사용하여 본 발명의 실시예에 따른 주파수 영역 수신 원형 벡터(
Figure PCTKR2021018554-appb-I000235
)를 최적화하였을 때 첫 30개의 성분을 보여 준다.
이상에서 도면 및 실시예를 참조하여 설명하였지만, 본 발명의 보호범위가 상기 도면 또는 실시예에 의해 한정되는 것을 의미하지는 않으며 해당 기술 분야의 숙련된 당업자는 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
[부호의 설명]
100: 초과 지연 시간을 갖는 QAM-FBMC 송신기
110: 직렬/병렬 변환부
120: 주파수 영역 신호 벡터 생성부
121: K 배 업샘플링부
123: 주파수 영역 펄스 성형부
130: IDFT부
140: 이산 시간 신호 생성부
400: QAM-FBMC 수신기
410: 수신 신호 변환부
420: DFT부
430: 주파수 영역 등화부
440: 부정합 필터부
450: 병렬/직렬 변환부

Claims (18)

  1. 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 송신기에 있어서,
    QAM 심볼을 포함하는 심볼열을 입력으로 받아 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)하고 부반송파에 할당하여 길이 M인 심볼 벡터의 열을 생성하는 직렬/병렬 변환부;
    상기 심볼 벡터를 입력으로 받아 길이 N인 주파수 영역 신호 벡터를 생성하는 주파수 영역 신호 벡터 생성부;
    상기 주파수 영역 신호 벡터를 입력으로 받아 역 이산 푸리에 변환(IDFT: Inverse Discrete Fourier Transform)된 길이 N인 시간 영역 신호 벡터를 생성하는 IDFT부; 및
    상기 시간 영역 신호 벡터의 열을 입력으로 받아 병렬/직렬 변환(P/S: Parallel-to-Serial conversion)하고 M+S만큼 지연시켜 중첩합(O/S: Overlap-Sum)하여 이산 시간 복소 기저 신호를 생성하는 이산 시간 신호 생성부 - 여기서, S는 초과 지연 시간임 -;
    를 포함하는, QAM-FBMC 송신기.
  2. 제1항에 있어서,
    상기 주파수 영역 신호 벡터 생성부는
    상기 심볼 벡터를 입력으로 받아 크기 KM×M인 업샘플링 행렬을 이용하여 길이 KM인 업샘플링된 벡터를 생성하는 K배 업샘플링부, 및
    상기 업샘플링된 벡터를 입력으로 받아 크기 KM×M인 순환 행렬을 이용하여 길이 KM인 상기 주파수 영역 신호 벡터를 생성하는 주파수 영역 펄스 성형부
    를 포함하는, QAM-FBMC 송신기.
  3. 제2항에 있어서,
    상기 주파수 영역 신호 벡터 생성부는 하기의 수학식
    Figure PCTKR2021018554-appb-I000236
    에 의해 상기 주파수 영역 신호 벡터를 생성하되 - 여기서,
    Figure PCTKR2021018554-appb-I000237
    는 상기 주파수 영역 신호 벡터이고,
    Figure PCTKR2021018554-appb-I000238
    는 주파수 영역 송신 행렬이고,
    Figure PCTKR2021018554-appb-I000239
    는 상기 심볼 벡터임 -,
    상기 주파수 영역 송신 행렬은 상기 순환 행렬과 상기 업샘플링 행렬의 곱에 의해 계산되는, QAM-FBMC 송신기.
  4. 제3항에 있어서,
    상기 업샘플링 행렬은 하기의 수학식
    Figure PCTKR2021018554-appb-I000240
    에 의해 정의되고 - 여기서,
    Figure PCTKR2021018554-appb-I000241
    은 상기 업샘플링 행렬이고,
    Figure PCTKR2021018554-appb-I000242
    는 길이 KM인 k번째 표준 기저 벡터임 -,
    상기 순환 행렬은 하기의 수학식
    Figure PCTKR2021018554-appb-I000243
    에 의해 정의되며 - 여기서,
    Figure PCTKR2021018554-appb-I000244
    는 상기 순환 행렬이고,
    Figure PCTKR2021018554-appb-I000245
    는 하방 순환 행렬이고,
    Figure PCTKR2021018554-appb-I000246
    는 PHYDYAS 필터를 이용하여 결정됨 -,
    상기 하방 순환 행렬은 하기의 수학식
    Figure PCTKR2021018554-appb-I000247
    에 의해 정의되는, QAM-FBMC 송신기.
  5. 제1항에 있어서,
    상기 이산 시간 복소 기저 신호는 하기의 수학식
    Figure PCTKR2021018554-appb-I000248
    에 의해 정의되는 - 여기서,
    Figure PCTKR2021018554-appb-I000249
    은 상기 이산 시간 복소 기저 신호이고,
    Figure PCTKR2021018554-appb-I000250
    은 k번째 이산 시간 복소 기저 신호의 n번째 성분임 -, QAM-FBMC 송신기.
  6. 제5항에 있어서,
    상기 k번째 이산 시간 복소 기저 신호의 n번째 성분은 하기의 수학식
    Figure PCTKR2021018554-appb-I000251
    에 의해 정의되는 - 여기서,
    Figure PCTKR2021018554-appb-I000252
    는 상기 시간 영역 신호 벡터임 -, QAM-FBMC 송신기.
  7. 제5항에 있어서,
    상기 k번째 이산 시간 복소 기저 신호의 n번째 성분은 하기의 수학식
    Figure PCTKR2021018554-appb-I000253
    에 의해 정의되는 - 여기서,
    Figure PCTKR2021018554-appb-I000254
    는 상기 시간 영역 신호 벡터임 -, QAM-FBMC 송신기.
  8. 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 송신기에 의해 수행되는 QAM-FBMC 송신 방법에 있어서,
    QAM 심볼을 포함하는 심볼열을 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)하고 부반송파에 할당하여 길이 M인 심볼 벡터의 열을 생성하는 단계;
    상기 심볼 벡터를 이용하여 길이 N인 주파수 영역 신호 벡터를 생성하는 단계;
    상기 주파수 영역 신호 벡터를 이용하여 역 이산 푸리에 변환(IDFT: Inverse Discrete Fourier Transform)된 길이 N인 시간 영역 신호 벡터를 생성하는 단계; 및
    상기 시간 영역 신호 벡터의 열을 병렬/직렬 변환(P/S: Parallel-to-Serial conversion)하고 M+S만큼 지연시켜 중첩합(O/S: Overlap-Sum)하여 이산 시간 복소 기저 신호를 생성하는 단계 - 여기서, S는 초과 지연 시간임 -;
    를 포함하는, QAM-FBMC 송신 방법.
  9. 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 수신기에 있어서,
    이산 시간 복소 기저 수신 신호를 입력으로 받아 윈도잉(windowing) 및 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)을 통해 확장된 관측 길이를 갖는 시간 영역 수신 신호 벡터의 열을 생성하는 수신 신호 변환부;
    상기 시간 영역 수신 신호 벡터를 이산 푸리에 변환(DFT: Discrete Fourier Transform)하여 주파수 영역 수신 신호 벡터를 생성하는 DFT부;
    상기 주파수 영역 수신 신호 벡터를 주파수 영역 단일탭 등화(FD one-tap equalization)하여 채널 등화된 벡터를 생성하는 주파수 영역 채널 등화부;
    상기 채널 등화된 벡터를 부정합된 필터(mismatched filter)로 필터링하여 송신된 심볼 벡터의 추정치를 생성하는 부정합 필터부; 및
    상기 송신된 심볼 벡터의 추정치를 병렬/직렬 변환하여 송신된 QAM 심볼열의 추정치를 생성하는 병렬/직렬 변환부;
    를 포함하는, QAM-FBMC 수신기.
  10. 제9항에 있어서,
    상기 부정합 필터부는 하기의 수학식
    Figure PCTKR2021018554-appb-I000255
    에 의해 상기 송신된 심볼 벡터의 추정치를 생성하되 - 여기서,
    Figure PCTKR2021018554-appb-I000256
    는 상기 송신된 심볼 벡터의 추정치이고,
    Figure PCTKR2021018554-appb-I000257
    는 주파수 영역 수신 행렬이고,
    Figure PCTKR2021018554-appb-I000258
    는 상기 채널 등화된 벡터임 -,
    상기 주파수 영역 수신 행렬의 전치 행렬은 하기의 수학식
    Figure PCTKR2021018554-appb-I000259
    에 의해 결정되는 - 여기서,
    Figure PCTKR2021018554-appb-I000260
    는 상기 주파수 영역 수신 행렬의 전치 행렬이고,
    Figure PCTKR2021018554-appb-I000261
    는 크기
    Figure PCTKR2021018554-appb-I000262
    ×
    Figure PCTKR2021018554-appb-I000263
    인 하방 순환 행렬이고,
    Figure PCTKR2021018554-appb-I000264
    는 길이
    Figure PCTKR2021018554-appb-I000265
    인 주파수 영역 수신 원형 벡터이고,
    Figure PCTKR2021018554-appb-I000266
    는 크기
    Figure PCTKR2021018554-appb-I000267
    ×M인 업샘플링 행렬이고,
    Figure PCTKR2021018554-appb-I000268
    임 -, QAM-FBMC 수신기.
  11. 제10항에 있어서,
    상기 주파수 영역 수신 원형 벡터는 하기의 수학식
    Figure PCTKR2021018554-appb-I000269
    에 의해 결정되는 목적 함수를 갖는 제약된 최소 제곱 최적화 문제의 해로 결정되고,
    상기 행렬
    Figure PCTKR2021018554-appb-I000270
    는 하기의 수학식
    Figure PCTKR2021018554-appb-I000271
    에 의해 정의되고,
    상기 벡터
    Figure PCTKR2021018554-appb-I000272
    는 하기의 수학식
    Figure PCTKR2021018554-appb-I000273
    에 의해 정의되는, QAM-FBMC 수신기.
  12. 제11항에 있어서,
    상기 주파수 영역 수신 원형 벡터는 하기의 수학식
    Figure PCTKR2021018554-appb-I000274
    에 의해 결정되는 목적 함수를 갖는 제약된 최소 제곱 최적화 문제의 해의 도움을 받아 결정되고,
    상기 행렬
    Figure PCTKR2021018554-appb-I000275
    는 상기 주파수 영역 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수에 기초한 상기 행렬
    Figure PCTKR2021018554-appb-I000276
    의 축소된 크기(reduced-size)의 행렬이고,
    상기 벡터
    Figure PCTKR2021018554-appb-I000277
    는 상기 주파수 영역 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수에 기초한 상기 벡터
    Figure PCTKR2021018554-appb-I000278
    의 축소된 크기의 벡터인, QAM-FBMC 수신기.
  13. 제11항에 있어서,
    상기 주파수 영역 수신 원형 벡터는 각각이 하기의 수학식
    Figure PCTKR2021018554-appb-I000279
    ,
    Figure PCTKR2021018554-appb-I000280
    으로 정의되는 제 1 부최적화 문제(SP1)와 제 2 부최적화 문제(SP2)를 주어진 탐색 변수 s에서 풀어 주어진 탐색 변수 s에서의 해로 하는 2 단계(two-stage)의 제약된 선탐색 최적화 문제의 해(s*)를 결정하고, 하기의 수학식
    Figure PCTKR2021018554-appb-I000281
    에 의해 정의되는 최적의 주파수 영역 수신 원형 벡터로 결정되는, QAM-FBMC 수신기.
  14. 직교 진폭 변조(QAM: Quadrature Amplitude Modulation)-필터 뱅크 다중 반송파(FBMC: Filter-Bank Multi-Carrier) 수신기에 의해 수행되는 QAM-FBMC 수신 방법에 있어서,
    이산 시간 복소 기저 수신 신호를 윈도잉(windowing) 및 직렬/병렬 변환(S/P: Serial-to-Parallel conversion)을 통해 확장된 관측 길이를 갖는 시간 영역 수신 신호 벡터의 열을 생성하는 단계;
    상기 시간 영역 수신 신호 벡터를 이산 푸리에 변환(DFT: Discrete Fourier Transform)하여 주파수 영역 수신 신호 벡터를 생성하는 단계;
    상기 주파수 영역 수신 신호 벡터를 주파수 영역 단일탭 등화(FD one-tap equalization)하여 채널 등화된 벡터를 생성하는 단계;
    상기 채널 등화된 벡터를 부정합된 필터(mismatched filter)로 필터링하여 송신된 심볼 벡터의 추정치를 생성하는 단계; 및
    상기 송신된 심볼 벡터의 추정치를 병렬/직렬 변환하여 송신된 QAM 심볼열의 추정치를 생성하는 단계;
    를 포함하는, QAM-FBMC 수신 방법.
  15. 제14항에 있어서,
    상기 송신된 심볼 벡터의 추정치를 생성하는 단계는 하기의 수학식
    Figure PCTKR2021018554-appb-I000282
    에 의해 상기 송신된 심볼 벡터의 추정치를 생성하되 - 여기서,
    Figure PCTKR2021018554-appb-I000283
    상기 송신된 심볼 벡터의 추정치이고,
    Figure PCTKR2021018554-appb-I000284
    는 주파수 영역 수신 행렬이고,
    Figure PCTKR2021018554-appb-I000285
    는 상기 채널 등화된 벡터임 -,
    상기 주파수 영역 수신 행렬의 전치 행렬은 하기의 수학식
    Figure PCTKR2021018554-appb-I000286
    에 의해 결정되는 - 여기서,
    Figure PCTKR2021018554-appb-I000287
    는 상기 주파수 영역 수신 행렬의 전치 행렬이고,
    Figure PCTKR2021018554-appb-I000288
    는 크기
    Figure PCTKR2021018554-appb-I000289
    ×
    Figure PCTKR2021018554-appb-I000290
    인 하방 순환 행렬이고,
    Figure PCTKR2021018554-appb-I000291
    는 길이
    Figure PCTKR2021018554-appb-I000292
    인 주파수 영역 수신 원형 벡터이고,
    Figure PCTKR2021018554-appb-I000293
    는 크기
    Figure PCTKR2021018554-appb-I000294
    ×M인 업샘플링 행렬이고,
    Figure PCTKR2021018554-appb-I000295
    임 -, QAM-FBMC 수신 방법.
  16. 제15항에 있어서,
    상기 주파수 영역 수신 원형 벡터는 하기의 수학식
    Figure PCTKR2021018554-appb-I000296
    에 의해 결정되는 목적 함수를 갖는 제약된 최소 제곱 최적화 문제의 해로 결정되고,
    상기 행렬
    Figure PCTKR2021018554-appb-I000297
    는 하기의 수학식
    Figure PCTKR2021018554-appb-I000298
    에 의해 정의되고,
    상기 벡터
    Figure PCTKR2021018554-appb-I000299
    는 하기의 수학식
    Figure PCTKR2021018554-appb-I000300
    에 의해 정의되는, QAM-FBMC 수신 방법.
  17. 제16항에 있어서,
    상기 주파수 영역 수신 원형 벡터는 하기의 수학식
    Figure PCTKR2021018554-appb-I000301
    에 의해 결정되는 목적 함수를 갖는 제약된 최소 제곱 최적화 문제의 해의 도움을 받아 결정되고,
    상기 행렬
    Figure PCTKR2021018554-appb-I000302
    는 상기 주파수 영역 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수에 기초한 상기 행렬
    Figure PCTKR2021018554-appb-I000303
    의 축소된 크기(reduced-size)의 행렬이고,
    상기 벡터
    Figure PCTKR2021018554-appb-I000304
    는 상기 주파수 영역 수신 원형 벡터의 0 아닌 성분의 최대 허용 개수에 기초한 상기 벡터
    Figure PCTKR2021018554-appb-I000305
    의 축소된 크기의 벡터인, QAM-FBMC 수신 방법.
  18. 제16항에 있어서,
    상기 주파수 영역 수신 원형 벡터는 각각이 하기의 수학식
    Figure PCTKR2021018554-appb-I000306
    ,
    Figure PCTKR2021018554-appb-I000307
    으로 정의되는 제 1 부최적화 문제(SP1)와 제 2 부최적화 문제(SP2)를 주어진 탐색 변수 s에서 풀어 주어진 탐색 변수 s에서의 해로 하는 2 단계(two-stage)의 제약된 선탐색 최적화 문제의 해(s*)를 결정하고, 하기의 수학식
    Figure PCTKR2021018554-appb-I000308
    에 의해 정의되는 최적의 주파수 영역 수신 원형 벡터로 결정되는, QAM-FBMC 수신 방법.
PCT/KR2021/018554 2021-12-08 2021-12-08 직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법 WO2023106448A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/018554 WO2023106448A1 (ko) 2021-12-08 2021-12-08 직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/018554 WO2023106448A1 (ko) 2021-12-08 2021-12-08 직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법

Publications (1)

Publication Number Publication Date
WO2023106448A1 true WO2023106448A1 (ko) 2023-06-15

Family

ID=86730722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018554 WO2023106448A1 (ko) 2021-12-08 2021-12-08 직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법

Country Status (1)

Country Link
WO (1) WO2023106448A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140127949A (ko) * 2013-04-26 2014-11-05 삼성전자주식회사 필터뱅크기반 다중반송파 통신시스템에서의 데이터 송수신 방법 및 장치
KR20150035424A (ko) * 2013-09-27 2015-04-06 삼성전자주식회사 필터뱅크 기반 다중 반송파 통신 시스템에서 변조 신호 전송을 위한 송수신 방법 및 장치
KR20160129563A (ko) * 2015-04-30 2016-11-09 삼성전자주식회사 필터 뱅크에 기반한 단일 캐리어 주파수 분할 다중접속 시스템에서 통신 장치 및 방법
US20170171010A1 (en) * 2014-08-13 2017-06-15 Huawei Technologies Co., Ltd. Fbmc signal transmitting method and receiving method, transmitter and receiver
US20200313950A1 (en) * 2019-01-18 2020-10-01 National Tsing Hua University Receiver of filter bank multicarrier communication system based on discrete hartley transform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140127949A (ko) * 2013-04-26 2014-11-05 삼성전자주식회사 필터뱅크기반 다중반송파 통신시스템에서의 데이터 송수신 방법 및 장치
KR20150035424A (ko) * 2013-09-27 2015-04-06 삼성전자주식회사 필터뱅크 기반 다중 반송파 통신 시스템에서 변조 신호 전송을 위한 송수신 방법 및 장치
US20170171010A1 (en) * 2014-08-13 2017-06-15 Huawei Technologies Co., Ltd. Fbmc signal transmitting method and receiving method, transmitter and receiver
KR20160129563A (ko) * 2015-04-30 2016-11-09 삼성전자주식회사 필터 뱅크에 기반한 단일 캐리어 주파수 분할 다중접속 시스템에서 통신 장치 및 방법
US20200313950A1 (en) * 2019-01-18 2020-10-01 National Tsing Hua University Receiver of filter bank multicarrier communication system based on discrete hartley transform

Similar Documents

Publication Publication Date Title
WO2016209045A1 (en) Method and apparatus of signal transmission and reception in a filter bank multiple carrier system
WO2011139081A2 (en) Apparatus and method for transmitting and receiving of cyclic shift parameter for supporting orthogonality in mimo environment
WO2016163855A1 (en) Method for multiplexing uplink information
WO2016028050A1 (en) Method and system for sending a reference signal, method and system for receiving a reference signal
WO2011040792A2 (en) Lte-a system and uplink power control method thereof
WO2016159431A1 (ko) 실수 m진 신호 부호화 방법, 및 이를 이용한 부호화 장치
WO2010021471A2 (en) Communication system including base stations and terminal for multi-cell cooperative communication
WO2014069710A1 (ko) 포락선 검출 궤환 방식의 저비용 디지털 전치왜곡 장치 및 그 방법
EP2443764A2 (en) Communication method and apparatus using codebook in mimo system
WO2012093904A2 (ko) 셀룰러 네트워크에서의 간섭 정렬 방법 및 장치
WO2021125833A1 (en) Method and apparatus for ss/pbch block patterns in higher frequency ranges
WO2021071215A1 (en) Method for transmitting reference signal and apparatus using the same
WO2018194233A1 (ko) 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
WO2019221388A1 (ko) 무선 통신 시스템에서 채널 추정 방법 및 장치
WO2022075724A1 (ko) 원격 간섭 관리 참조 신호를 제공하기 위한 방법, 장치 및 저장 매체
WO2023106448A1 (ko) 직교 진폭 변조 필터 뱅크 다중 반송파 통신 시스템에서 낮은 자기 간섭 및 높은 주파수 효율에 도달하기 위한 송수신기, 송수신 방법 및 수신 원형 필터 설계 방법
WO2022075826A1 (en) Method and apparatus for configuring parameters of a port selection codebook
WO2018155795A1 (ko) 듀얼 편광 안테나를 포함하는 uca 안테나를 사용하는 통신 장치
WO2018016718A2 (ko) 필터뱅크 다중 반송파 시스템에서 첨두 대 평균전력 비를 감소시키기 위한 장치 및 방법
WO2012026727A2 (ko) 프리앰블을 이용하여 특성 정보를 공유하는 통신 방법, 상기 프리앰블을 생성하는 방법, 상기 방법들이 적용되는 통신 시스템
WO2011002260A2 (en) Rotating reference codebook that is used in a multiple-input multiple-output (mimo) communication system
WO2011083900A1 (en) Codebook design method for multiple-input multiple-output (mimo) communication system and method for using the codebook
WO2023003149A1 (ko) 스펙트럼 공유 멀티-뉴멀롤로지를 이용한 신호 송신 방법 및 그 방법을 수행하는 전자 장치
WO2024019341A1 (ko) 멀티-뉴머롤로지를 지원하는 mimo 시스템에서 선형 결합기를 포함하는 수신 장치 및 이의 동작 방법
WO2017065531A1 (ko) 고속 무선 통신을 위한 g-ofdm을 이용한 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967321

Country of ref document: EP

Kind code of ref document: A1