WO2011140822A1 - 工业加热炉 - Google Patents

工业加热炉 Download PDF

Info

Publication number
WO2011140822A1
WO2011140822A1 PCT/CN2011/000728 CN2011000728W WO2011140822A1 WO 2011140822 A1 WO2011140822 A1 WO 2011140822A1 CN 2011000728 W CN2011000728 W CN 2011000728W WO 2011140822 A1 WO2011140822 A1 WO 2011140822A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
chamber
radiation
heating furnace
radiation chamber
Prior art date
Application number
PCT/CN2011/000728
Other languages
English (en)
French (fr)
Inventor
江闽
李来所
顾彬
达健
徐宏祥
陆桂清
王卫华
范晓斌
许艺
张树陆
Original Assignee
中国石油化工集团
南京圣诺热管有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工集团, 南京圣诺热管有限公司 filed Critical 中国石油化工集团
Publication of WO2011140822A1 publication Critical patent/WO2011140822A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/006Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion
    • F23C3/008Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/10Disposition of burners to obtain a flame ring
    • F23C5/12Disposition of burners to obtain a flame ring for pulverulent fuel

Definitions

  • the invention relates to an industrial heating furnace, in particular to a vertical multi-purpose industrial heating furnace which can use coal water slurry as fuel or gas or fuel as fuel.
  • the heating furnace is especially suitable for chemical and petrochemical industries. Background technique
  • the common fuels for heating furnaces in the petrochemical and chemical industries include gas and high-sulfur oils such as residual oil and heavy oil.
  • the use of these high-sulfur fuels causes the sulfur dioxide emitted from the furnace to the atmosphere to exceed the standard, which seriously pollutes the environment around the plant. It has put a lot of pressure on environmental protection and pollution control.
  • the price of fuel will also rise, and the production costs of the petrochemical and chemical industries will continue to increase.
  • Replacing fuel oil with coal can alleviate the urgent need for oil. Research and practice have proved that coal water slurry is the most ideal coal product for coal instead of oil.
  • Coal water slurry is used as fuel to replace high sulfur oil such as residue currently used. It can effectively reduce environmental pollution, and the emission of sulfur dioxide can be reduced by more than 50%.
  • coal water slurry technology has been applied in many different types of boilers such as power station boilers, steam supply furnaces, city heating furnaces, coal mine chain furnaces, ceramic hot blast stoves, rolling steel heating furnaces, sintering furnaces, and puffing furnaces, but due to technical Difficulty, the application of coal water slurry in the heating furnace of petrochemical and chemical industry is still blank.
  • the oil-based coal slurry is generally composed of 65 ⁇ 70% solid coal powder and 30 ⁇ 35% water.
  • the existing fuel heating furnace generally does not have a separate combustion chamber, but only one combustion radiation chamber. In order to avoid coking caused by the heating medium in the furnace tube, the combustion radiation chamber The volumetric heat load and the cross-section heat load are both lower than that of the water coal. In such an oil-fired furnace, it is difficult to maintain a stable combustion-burning. Therefore, the ordinary-fuel-fueling furnace cannot directly change the coal-water slurry.
  • ZL03216769.5 discloses a heat-conducting oil furnace for burning coal water slurry, which is characterized in that the furnace is provided with a front combustion chamber not less than one quarter to one fifth of the entire furnace volume, and the coal water slurry is from a special burner. Squirting, after a large front combustion chamber, the high temperature and long stroke prolong the residence time of the coal water slurry in the furnace and increase the temperature of the fire zone. However, the front combustion chamber of the furnace is large, the payload is low, and the burner is traversed in one direction, so the design of 0 is not suitable for large petrochemical heat transfer oil furnaces. Summary of the invention
  • the object of the present invention is to design an industrial furnace capable of using coal water slurry as a raw material and meeting the needs of stable production in the petrochemical and chemical industries.
  • One of the problems to be solved by the present invention is to overcome the fact that the current five-fuel heating furnace cannot stably burn coal water slurry, and the coal water slurry boiler is not suitable for heating a medium that is easy to coke (such as heat transfer oil), and design a unique new industrial heating. Furnace, 'It can, stabilize the burning of coal water slurry and not easily coke the heated medium.
  • the second problem to be solved by the invention is to realize free switching between various fuels such as coal water slurry, fuel oil and gas, and design a fuel that can be used for both coal water slurry and fuel or gas, and can ensure fuel. Stabilizes the industrial heating furnace that burns with 0 fire and achieves heating effect, so that users can freely switch combustion coal water slurry, fuel oil or gas according to their own conditions, bringing great efficiency and convenience, meeting the needs of stable operation of petrochemical and chemical equipment. .
  • an industrial heating furnace comprising a furnace body and a slag bucket, the furnace body comprising a radiation chamber and a combustion chamber disposed at five sides below the radiation chamber,
  • the slag bucket is disposed under the combustion chamber, and the combustion chamber is disposed circumferentially with at least one burner for injecting fuel into the combustion chamber, and the inner wall of the radiation chamber 5 is disposed a furnace tube through which a heated medium flows,
  • the heating furnace characterized in that the combustion chamber and the radiation chamber are configured such that a volumetric thermal load of the combustion chamber is greater than a volumetric thermal load of the radiation chamber, Thereby the fuel is able to stabilize 0 combustion in the combustion chamber and the heated medium in the radiation chamber does not coke.
  • the volumetric heat load is defined as the average amount of heat input into the furnace unit volume per unit time.
  • the above-mentioned ⁇ - burning, burning - ⁇ ⁇ burning - H burning. burning ⁇ JU holding - higher volume heat load The radiant chamber is capable of maintaining a low volumetric thermal load so that the combustion chamber maintains a stable combustion of the coal water slurry without the radiant chamber coking the heated medium - such as the heat transfer oil.
  • the ratio of the volumetric thermal load of the combustion chamber to the volumetric thermal load of the radiation chamber is greater than 1.05.
  • the combustion chamber and the radiant chamber are configured such that the cross-sectional thermal load of the combustion chamber is also greater than the cross-sectional thermal load of the radiant chamber.
  • the section heat load is defined as the ratio of the heat input to the furnace per unit time to the cross-sectional area of the furnace. It can be seen that the cross-section thermal load of the combustion chamber or the radiant chamber is inversely proportional to its cross-sectional area with the input heat constant. Further, when the cross-sectional areas of the combustion chambers and/or the respective portions of the radiation chamber are not equal, the average cross-sectional area of the combustion chamber and/or the radiation chamber can be used.
  • each of the burners is provided with a coal water slurry nozzle, and a gas nozzle and/or a fuel nozzle are selectively disposed on each of the burners.
  • the nozzles of the burners may be arranged in a symmetrical circular shape on the inner wall of the combustion chamber. The tangentially arranged burner makes the fuel burn along the imaginary circle, which can form a rigid and powerful flame, which is beneficial to strengthen the convective heat transfer of the radiant chamber and supplement the weakened radiant heat transfer at the upper furnace tube, thus eliminating the need to arrange the vortex wall and the flame wall.
  • the inner wall lining of the combustion chamber is a multi-layer composite lining
  • the i hai multi-layer composite lining includes a refractory layer, a heat insulating layer and a heat insulating layer from the inside to the outside, and the refractory layer is resistant to high temperatures.
  • the industrial heating furnace of the present invention is obviously not limited to the use of the lining having the above structure, and can satisfy the requirements of the industrial heating furnace of the present invention for high temperature resistance, erosion resistance, effective heat preservation, and weight reduction.
  • a lining having any other suitable structure can be used.
  • At least a portion of the sump disposed below the combustion chamber may also be provided with the same inner wall lining as the combustion chamber, without departing from the basic principles of the present invention. Therefore, it will fall within the scope of the invention.
  • the heated medium is a single phase heated medium.
  • the single-phase heated medium means a heat-conductive medium in which no phase change occurs during the operation of the heating furnace. Taking a liquid heated medium as an example, if the heated medium is kept in a liquid phase during the operation of the heating furnace without being condensed into a solid or evaporated into a gas, the medium is referred to as a single-phase heated medium.
  • the present invention is mainly directed to a heating furnace using an easily coked heated medium such as a heat transfer oil, those skilled in the art will readily understand that Any other suitable heated medium may be used which deviates from the scope of the present invention, and may be either coked or less coked.
  • an industrial heating furnace comprising a furnace body and a slag bucket, the furnace body comprising a radiation chamber and a combustion chamber disposed below the radiation chamber, the slag bucket Provided below the combustion chamber, the combustion chamber is circumferentially provided with at least one burner for injecting fuel into the combustion chamber, and an inner wall of the radiation chamber is provided with a heated medium circulating therein a furnace tube, the industrial furnace characterized in that the combustion chamber and the radiation chamber are configured such that an effective volume of the combustion chamber is smaller than an effective volume of the radiation chamber, thereby enabling fuel to be in the combustion chamber Stable combustion and the heated medium within the radiation chamber does not coke.
  • the volumetric thermal load of the combustion chamber is necessarily greater than the volumetric thermal load of the radiation chamber (ie, the effective volume and the volumetric heat load) In inverse proportion).
  • the combustion chamber can maintain a high volumetric heat load while the furnace is operating and the radiation chamber can maintain a low volumetric heat load, thereby causing combustion
  • the chamber maintains stable combustion of the coal water slurry, and the radiation chamber does not cause the heated medium (such as heat transfer oil) to coke.
  • the effective volume of the radiation chamber is the internal volume of the radiation chamber itself, and the effective volume of the combustion chamber is usually calculated as the volume greater than its own internal volume, and the specific value of the volume is based on the heating.
  • the size, shape and combustion mode of the furnace vary.
  • the heating furnace is a tubular heating furnace with a circular cross section and the slag bucket is ideally conical
  • the effective volume of the combustion chamber is equal to its own internal volume plus the slag bucket, corresponding to a close to the combustion chamber.
  • the volume of the side 1/2 height More specifically, it is assumed that the internal volume of the slag bucket is ideally conical, and the total volume of the slag bucket is V!
  • the internal volume of the slag bucket is obviously not ideally conical, and the calculation should be based on the actual volume of the slag bucket to obtain the required volume parameters.
  • the ratio of the effective volume of the radiation chamber to the effective volume of the combustion chamber is greater than 1.05.
  • the combustion chamber and the radiation chamber such that the average cross-sectional area of the combustion chamber is smaller than the average cross-sectional area of the radiation chamber.
  • the input heat is constant or burning
  • the cross-section thermal load of the combustion chamber must be greater than the cross-sectional thermal load of the radiation chamber (ie, the average cross-sectional area is inversely proportional to the cross-sectional thermal load).
  • the cross-sectional areas of the various parts of the combustion chamber and/or the radiant chamber may not be equal, in which case the average cross-sectional area of the combustion chamber and/or the radiant chamber may be used instead of the actual cross-sectional area of each portion as a basis for calculation.
  • an industrial heating furnace comprising a furnace body and a slag bucket, the furnace body comprising a radiation chamber and a combustion chamber disposed below the radiation chamber, the slag bucket Provided below the combustion chamber, at least one burner for injecting fuel into the combustion chamber is disposed circumferentially on the combustion chamber, and an inner tube of the radiation chamber is provided with a furnace tube through which the heating medium flows
  • the industrial furnace is characterized in that the equivalent diameter of the combustion chamber is smaller than the equivalent diameter of the radiation chamber. It is known to those skilled in the art that industrial furnaces can have a variety of different cross-sectional shapes, such as circular, square, and the like.
  • the diameter of a circle equal to its cross-sectional area is the equivalent diameter of the combustion chamber and/or the radiant chamber.
  • the larger the equivalent diameter the larger the cross-sectional area. Accordingly, as described above, when the cross-sectional area of the combustion chamber is smaller than the cross-sectional area of the radiation chamber, the cross-sectional thermal load of the combustion chamber is necessarily larger than the cross-sectional thermal load of the radiation chamber.
  • the differential design of the cross-section thermal load also causes the combustion chamber to maintain a high thermal load while the furnace is operating while the radiant chamber maintains a low thermal load, thereby simultaneously solving the coking of the added medium and the coal-water slurry is not easily ignited and cannot The problem of stable combustion.
  • the equivalent diameter of the combustion chamber is 70% to 98% of the equivalent diameter of the radiation chamber, and more preferably, the equivalent diameter of the combustion chamber is 75 of the equivalent diameter of the radiation chamber. % ⁇ 95%.
  • FIG. 1 is a schematic view showing the structure of a furnace body of an industrial heating furnace according to the present invention.
  • Figure 2 is a plan view of Figure 1.
  • FIG. 3 is a schematic illustration of a burner structure in accordance with the present invention.
  • Figure 4 is a schematic illustration of the lining structure of a combustion chamber and/or a slag bucket in accordance with the present invention. detailed description
  • the industrial heating furnace of the present invention generally comprises a furnace body 6 and a slag bucket 1, the furnace body 6 comprising a combustion chamber 3 and a radiation chamber 4, wherein the combustion chamber 3 is below, the radiation chamber 4 above.
  • the inner wall of the radiation chamber 4 is provided (usually uniformly arranged) with a furnace tube 5 for absorbing radiant heat, and the heated medium circulates in the furnace tube 5, and a discharge port 7 is provided at the top of the radiation chamber 4.
  • furnace tube 5 shown in the drawing is disposed on the inner wall of the radiation chamber 4 in the vertical direction, that is, the vertical furnace tube; however, the technical solution of the present invention is not limited thereto, the furnace tube The direction, number, size, and arrangement of 5 can be changed as needed.
  • a plurality of burners 2 are arranged in a rounded manner around the combustion chamber 3.
  • Each of the burners 2 includes a coal water slurry nozzle 1 1 , a gas nozzle 10 and a fuel nozzle 9 for respectively spraying water coal into the combustion chamber. Pulp, gas and fuel.
  • the burner 2 shown in the drawings includes three fuel nozzles, it will be readily understood by those skilled in the art that the burner 2 may be adapted to the specific application or environment of the industrial furnace. It is provided to selectively include one or both of the gas nozzle 10 and the fuel nozzle 9.
  • the burner 2 should at least include a coal water slurry nozzle 1 1 for burning the coal water slurry.
  • the number of each nozzle can be varied as desired, and the manner of combustion can also be selected in any suitable manner other than tangential combustion without departing from the scope of the invention.
  • the volumetric thermal load of the combustion chamber 3 is designed to be greater than the volumetric thermal load of the radiation chamber 4.
  • the volumetric heat load is defined as the average amount of heat input into the furnace unit volume per unit time. That is, the volumetric thermal load of the combustion chamber 3 is the average heat input to the unit volume of the combustion chamber per unit time, and the volumetric thermal load of the radiation chamber 4 is the average heat input to the unit volume of the radiation chamber per unit time.
  • the effective volume of the combustion chamber 3 is set. The smaller than the effective volume of the radiation chamber 4, the bulk heat load of the combustion chamber 3 can be made larger than the volumetric heat load of the radiation chamber 4.
  • the effective volume of the radiation chamber 4 is the internal volume of the radiation chamber 4 itself, and the effective volume of the combustion chamber 3 is generally calculated according to the volume larger than its own internal volume, and the specific value of the volume depends on the size and shape of the furnace and Changes in factors such as the way of combustion.
  • the effective volume of the combustion chamber 3 is equal to the internal volume of the combustion chamber 3 plus the slag bucket 1 corresponding to the proximity
  • the volume of 1/2 height on one side of the combustion chamber ie, the volume of the upper half of the hopper 1 shown in Fig. 1).
  • the volumetric thermal load of the combustion chamber is necessarily greater than the volumetric thermal load of the radiation chamber.
  • the combustion chamber can maintain a high thermal load while the furnace is operating and the radiation chamber can maintain a low thermal load, thereby enabling the combustion chamber to The stable combustion of the coal water slurry is maintained, and the radiation chamber does not cause coking of the heated medium, such as the heat transfer oil.
  • the ratio of the volumetric thermal load of the combustion chamber 3 to the volumetric thermal load of the radiation chamber 4 can be designed to be greater than 1.05. Accordingly, the ratio of the effective volume of the radiation chamber 4 to the effective volume of the combustion chamber 3 can also be designed to be greater than 1.05.
  • the structure of the combustion chamber 3 and the radiation chamber 4 can also be designed such that the cross-sectional thermal load of the combustion chamber 3 is greater than the cross-sectional thermal load of the radiation chamber 4.
  • the cross-sectional thermal load is defined as the ratio of the heat input to the furnace per unit time to the cross-sectional area of the furnace.
  • the cross-sectional heat load of the combustion chamber 3 or the radiation chamber 4 is inversely proportional to the cross-sectional area thereof while the input heat is constant. Further, when the cross-sectional areas of the respective portions of the combustion chamber 3 and/or the radiation chamber 4 are not equal, the average sectional area or equivalent sectional area of the combustion chamber 3 and/or the radiation chamber 4 can be used.
  • a slag bucket 1 is connected to the lower portion of the combustion chamber 3, and the burned ash is discharged from the outlet 8 at the bottom of the slag bucket.
  • the village of the combustion chamber 3 of the present invention is a multi-layer composite lining, and the technical point is that the multi-layer composite lining is a refractory layer 18 with heavy castables from the surface of the fire facing the furnace wall, and is lightly poured.
  • At least a portion of the slag 1 disposed under the combustion chamber 3 may be disposed to have the same inner wall as the combustion chamber 3. lining.
  • the industrial heating furnace of the present invention is apparently ⁇ [! Use a county
  • the lining having the above structure can be used with any other suitable lining structure in the case where the industrial heating furnace of the present invention can satisfy the requirements of high temperature resistance, erosion resistance, effective heat preservation, and weight reduction.
  • the working process of the present invention is as follows:
  • the burner 2 of the industrial heating furnace of the present invention is arranged on the side of the combustion chamber 3, and heats the heated medium disposed in the furnace tube 5 in the radiation chamber 4 in the form of radiation heat exchange,
  • the heating medium enters from the inlet 15 of the furnace tube and exits from the outlet 12 of the furnace tube;
  • the generated flue gas is discharged from the outlet port 7 at the top of the radiation chamber 4 into the subsequent system;
  • the ash generated during the combustion process passes through the bottom of the combustion chamber 3
  • the slag bucket 1 is collected and discharged through the outlet 8 at the bottom of the slag bucket 1.
  • the heat load per unit volume in the combustion 3 ⁇ 4:3 is inevitably larger than that in the radiation chamber 4 when the input heat is constant - that is, the fuel consumed is constant.
  • the heat load per unit volume so that the combustion chamber 3 can maintain the stable combustion of the coal water slurry, and the radiation chamber 4 does not coke the heated medium (such as the heat transfer oil), thereby simultaneously solving the stable combustion of the coal water slurry and the heated medium.
  • the problem of coking is a problem of coking.
  • the present invention is not limited by the embodiments, and may be used in a specific application without departing from the basic principles of the present invention.
  • the invention has been described in connection with a tubular furnace, however, those skilled in the art can apply the invention to other non-circular sections without changing the physical solution of the present invention.
  • the furnace such as a square furnace.
  • the invention has been described in connection with a combustion chamber and a radiant chamber of equal or equal cross section, those skilled in the art will readily appreciate that the technical solution of the present invention is also applicable to a combustion chamber having a non-equal diameter or cross section. And/or other industrial furnaces for the radiation chamber.
  • those skilled in the art will also fall within the scope of the present invention without changing the physical technical solutions of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

工业加热炉 技术领域
本发明涉及一种工业加热炉, 具体涉及一种既可以水煤浆为燃料, 也可以燃气或燃油为燃料的立式多用途工业加热炉, 这种加热炉尤其 适用于化工及石化行业。 背景技术
目前, 石化、 化工行业加热炉的常用燃料包括燃气以及渣油、 重 油等高含硫油, 采用这些高含硫燃料, 导致加热炉向大气中排放的二 氧化硫超标, 严重污染了工厂周围的环境, 给环保和污染治理带来了 很大压力。 同时, 随着世界原油价格日益高涨, 燃油的价格也将随之 上涨, 石化、 化工行业的生产成本将会持续增加。 用煤代替燃油可以 緩解对石油的迫切需求, 研究及实践证明, 水煤浆是以煤代油的最理 想的煤炭产品, 以水煤浆为燃料代替目前通常使用的渣油等高含硫油, 可有效减少环境污染, 其中二氧化硫的排放量可减少 50%以上。 目前, 水煤浆技术已在电站锅炉、 供汽炉、 城市供暖炉、 煤矿链条炉、 陶瓷 热风炉、 轧钢加热炉、 烧结炉、 膨化炉等多种不同类型的锅炉中应用, 但由于技术上的难度, 水煤浆在石化、 化工行业加热炉中的应用还是 空白。 代油用水煤浆一般由 65 ~ 70 %的固体煤粉与 30 ~ 35%的水分组 成, 由于水分的存在, 水煤浆从加热蒸发到着火燃烧的时间延长, 为 了维持水煤浆的稳定燃烧, 需要满足一定的容积热负荷和截面热负荷。 由于燃料油常温就能维持稳定燃烧, 现有的燃油加热炉一般均不设独 立的燃烧室, 而是只有一个燃烧辐射室, 为了避免被加热介质在炉管 中发生结焦等现象, 燃烧辐射室的容积热负荷和截面热负荷都是比较 低一的 水煤^ 在这样-的燃油炉 -中很难维-持稳定燃-烧, 因此-普通-燃油加 炉不能直接改烧水煤浆。 现有技术中已存在用水煤浆代替燃油的多 种锅炉, 锅炉以水为被加热介质, 热量可以被迅速带走, 辐射室的容 积热负荷和截面热负荷均很高, 可维持水煤浆的稳定燃烧, 但是导热 油等被加热介质在辐射室容积热负荷和截面热负荷过高时会发生结 焦, 所以已公开的水煤浆锅炉并不适合用作石化行业的加热炉 (例如 -以一 由―为 4皮-加一热—企质—的-力 热 。 中国专利 ZL03262284.8 公开了一种新型的水煤浆热水锅炉,其特 点是燃烧辐射室和对流冷却室构成了类似动力锅炉的 Π型结构, 该锅
:. 采用旋焰墙、 折焰墙提高了燃烧辐射室的火焰充满度, 保证了水煤 浆的可靠着火和稳定燃烧, 但这样的设计必然导致炉膛热负荷很高,
5 容易结焦。 ZL03216769.5 公开了一种燃水煤浆的导热油炉, 其特点是 炉膛内设有不小于整个炉膛体积四分之一到五分之一的前置燃烧室, 水煤浆从专用燃烧器喷出, 经过较大的前置燃烧室, 遇高温和较长的 行程延长了水煤浆在炉膛中的停留时间, 提高了着火区的温度。 但该 炉的前置燃烧室较大, 有效载荷低, 且燃烧器朝一个方向横置, 这样0 的设计不适合用于大型的石化导热油炉。 发明内容
本发明的目的是设计一种能以水煤浆作原料且能满足石化、 化工 行业稳定生产需要的工业加热炉。 本发明要解决的问题之一是克服现5 省燃油加热炉不能稳定燃烧水煤浆, 而水煤浆锅炉又不适于加热容易 结焦的介质 (如导热油) , 设计一种独特的新型工业加热炉, '其可以 , 稳定燃烧水煤浆且不易使被加热介质结焦。 本发明要解决的问题之二 是实现水煤浆、 燃油、 燃气等多种燃料之间的自由切换, 设计一种既 可以水煤浆为燃料, 也可以燃油或燃气为燃料, 均能保证燃料稳定着0 火燃烧, 达到加热效果的工业加热炉, 从而使用户能够根据自身情况 自由切换燃烧水煤浆、 燃油或燃气, 带来极大的效率和便利, 满足石 化、 化工设备稳定运行的需要。
相应地, >据本发明的一个方面, 提供一种工业加热炉, 该工业 加热炉包括炉体和渣斗, 所述炉体包括辐射室和设置在所述辐射室下5 方的燃烧室, 所述渣斗设置在所述燃烧室下方, 所述燃烧室上沿周向 设—置有用吁-向所述—燃烧室内喷射燃料的-至少一个燃烧器,一所述-辐射室 5 内壁上设置有被加热介质在其中流通的炉管, 该加热炉的特征在于, 所述燃烧室和所述辐射室的结构设置成使得所述燃烧室的容积热负荷 . 大于所述辐射室的容积热负荷, 从而使燃料能够在所述燃烧室内稳定0 燃烧并且所述辐射室内的被加热介质不会结焦。 如本领域中已知的, 容积热负荷定义为单位时间内输入炉膛单位容积的平均热量。 上述设 ί -在燃—烧-^^燃 -的 H燃.烧^ JU 持―较高的容积热负荷而 辐射室能够保持较低的容积热负荷, 从而使燃烧室能维持水煤浆的稳 定燃烧, 而辐射室不会使被加热介质 - (如导热油) 结焦。
在优选实施方式中, 所述燃烧室的容积热负荷与所述辐射室的容 积热负荷的比值大于 1.05。
在更优选的实施方式中, 所述燃烧室和所述辐射室的结构设置成 得所述燃烧室的截面热负荷也大于所述辐射室的截面热负荷。 同样 如本领域中已知的, 截面热负荷定义为单位时间内输入炉膛的热量与 炉膛截面积的比值。 由此可见, 在输入热量不变的情况下, 燃烧室或 辐射室的截面热负荷与其截面积成反比。 此外, 当燃烧室和 /或辐射室 各个部分的截面积不相等时, 可以使用燃烧室和 /或辐射室的平均截面 积。
在更优选的实施方式中, 每个燃烧器上都设置有水煤浆喷嘴, 并 且每个燃烧器上还可选择性地设置燃气喷嘴和 /或燃油喷嘴。 进一步, 所述燃烧器的喷嘴在燃烧室的内壁上可以对称的切圓方式布置。 采用 切圆布置燃烧嘴使得燃料沿假想圓燃烧, 可形成刚性有力的火焰, 有 利于强化辐射室的对流传热, 补充上部炉管处削弱的辐射传热, 因而 无需布置旋焰墙和折焰墙。 ' 在更优选的实施方式中, 所述燃烧室的内壁衬里为多层复合衬里, i亥多层复合衬里自内而外包括耐火层、 隔热层和保温层, 并且该耐火 层由耐高温、 耐冲刷且质量较轻的材料制成。 本领域技术人员容易理 解的是, 本发明的工业加热炉显然不限于使用具有上述结构的衬里, 在能够满足本发明的工业加热炉对耐高温、 耐沖刷、 有效保温以及减 轻重量等要求的情况下, 可以使用具有其他任意合适结构的衬里。 另 夕卜, 根据锅炉的具体类型、 应用对象或环境等因素, 设置在燃烧室下 方的渣斗的至少一部分也可以设置成具有与燃烧室相同的内壁衬里, 这些都不背离本发明的基本原理, 因此都将落入本发明的范围之内。
在更优选的实施方式中, 所述被加热介质是单相被加热介质。 此 处, 单相被加热介质意指在加热炉工作过程中不发生相变的导热介质。 以液态被加热介质为例, 如果在加热炉工作过程中, 该被加热介质始 保持为液相, 而没有凝结为固体或蒸发为气体, 那么该介质便被称 为单相被加热介质。 此外, 尽管本发明主要针对使用易结焦被加热介 质 (如导热油) 的加热炉, 但是本领域技术人员容易理解的是, 在不 偏离本发明的范围的情况下, 可以使用其他任意合适的被加热介质, 这些被加热介质可以是易结焦的, 也可以是不易结焦的。
根据本发明的另一个方面, 提供一种工业加热炉, 该工业加热炉 包括炉体和渣斗, 所述炉体包括辐射室和设置在所述辐射室下方的燃 疵室, 所述渣斗设置在所述燃烧室下方, 所述燃烧室上沿周向设置有 ' ¾于向所述燃烧室内喷射燃料的至少一个燃烧器, 所述辐射室的内壁 上设置有被加热介质在其中流通的炉管, 该工业加热炉的特征在于, 所述燃烧室和所述辐射室的结构设置成使得所述燃烧室的有效容积小 于所述辐射室的有效容积, 从而使燃料能够在所述燃烧室内稳定燃烧 并且所述辐射室内的被加热介质不会结焦。 在输入热量一定或燃烧等 量燃料的情况下, 当燃烧室的有效容积小于辐射室的有效容积时, 燃 烧室的容积热负荷必然大于辐射室的容积热负荷 (即, 有效容积与容 积热负荷成反比) 。 如上所述, 当燃烧室的容积热负荷大于辐射室的 容积热负荷时, 在加热炉运行时燃烧室能够保持较高的容积热负荷而 辐射室能够保持较低的容积热负荷, 从而使燃烧室能维持水煤浆的稳 定燃烧, 而辐射室不会使被加热介质 - (如导热油) 结焦。 关于此点, 要强调的是, 辐射室的有效容积即为辐射室自身的内部容积, 而燃 ¾室的有效容积通常按照大于其自身内部容积的容积来计算, 并且该 容积的具体数值根据加热炉的大小、 形状以及燃烧方式等因素而变化。 举例来说, 当加热炉为圓形截面的管式加热炉并且其渣斗为理想的圓 锥形时, 燃烧室的有效容积等于其自身内部容积加上渣斗的、 对应于 靠近燃烧室一侧的 1/2高度的容积。 更具体地说, 假设渣斗的内部容积 为理想的圆锥形, 渣斗总容积 V! = 1/3 R2H, 而另夕卜 1/2 高度 (即, 不靠近燃烧室一侧的 1/2 高度) 的容积 V2 = 1/3 π ( 1/2R ) 21/2Η = 1/3 π Ι 2Η1/8 , 那么, 靠近燃烧室一侧的 1/2 高度的容积应当为 V = V! - V2 =-7/8V!,一即靠近-燃烧-室一侧的- 1 /-2-高度的 -容积为揸斗总容积的- -7/8。 当然, 在实践中, 渣斗的内部容积显然不可能为理想的圓锥形, 此时 应当根据渣斗的实际容积进行计算, 得出所需的容积参数。 在优选实 施方式中, 所述辐射室的有效容积与所述燃烧室的有效容积的比值大 1.05。
此外, 也可以将所述燃烧室和辐射室的结构设置成使得所述燃烧 室的平均截面积小于所述辐射室的平均截面积。 在输入热量一定或燃 烧等量燃料的情况下, 当燃烧室的平均截面积小于辐射室的平均截面 积时, 燃烧室的截面热负荷必然大于辐射室的截面热负荷 (即, 平均 截面积与截面热负荷成反比) 。 如上所述, 燃烧室和 /或辐射室的各个 部分的截面积可能并不相等, 此时可以使用燃烧室和 /或辐射室的平均 截面积来代替每个部分的实际截面积作为计算依据。
根据本发明的又一个方面, 提供一种工业加热炉, 该工业加热炉 '包括炉体和渣斗, 所述炉体包括辐射室和设置在所述辐射室下方的燃 烧室, 所述渣斗设置在所述燃烧室下方, 所述燃烧室上沿周向设置有 用于向所述燃烧室内喷射燃料的至少一个燃烧器, 所迷辐射室的内壁 上设置有被加热介质在其中流通的炉管, 该工业加热炉的特征在于, 所述燃烧室的等效直径小于所述辐射室的等效直径。 本领域技术人员 已知的是, 工业加热炉可具有各种不同的截面形状, 例如圓形、 方形 等。 当工业加热炉的燃烧室和 /或辐射室为非圆形截面时, 与其截面积 大小相等的圆的直径即为该燃烧室和 /或辐射室的等效直径。 显然, 等 效直径越大, 其截面积就越大。 相应地, 如上所述, 当燃烧室的截面 积小于辐射室的截面积时, 燃烧室的截面热负荷必然大于辐射室的截 面热负荷。 这种截面热负荷的差异设计也会使得在加热炉运行时燃烧 室保持较高的热负荷而辐射室保持较低的热负荷, 从而同时解决被加 ¾介质结焦和水煤浆不易着火且不能稳定燃烧的难题。
在优选实施方式中, 所述燃烧室的等效直径为所述辐射室等效直 径的 70% ~ 98%,更优选地所述燃烧室的等效直径为所述辐射室等效直 径的 75% ~ 95%。
再者, 本领域技术人员容易理解的是, 在不偏离本发明的基本原 理的前提下, 上述根据本发明的不同方面描述的实施方式之间可以进 行组合。 例如, 根据本发明第一方面的各个优选实施方式的附加技术 特 -征显然-可以应 -用到根据本发-明第二和第三方面的 -实施方-式中,- -反之 亦然。 ^ 明, 所述实施方式和附图仅作为用于解释本发明的示例, 而不应当对 本发明的范围构成任何限制。 附图说明 此处描述的附图仅用于图示目的, 并非旨在以任何方式限制本发 明、 其应用或用途, 附图中:
图 1是根据本发明的工业加热炉的炉体结构示意图。
图 2是图 1的俯视图。
图 3是根据本发明的燃烧器结构的示意图。
图 4是根据本发明的燃烧室和 /或渣斗的衬里结构示意图。 具体实施方式
下面结合优选实施方式更详细地描述本发明, 然而本发明并不受 这些实施方式的限制。
如图 1、 图 2和图 3所示, 本发明的工业加热炉总体上包括炉体 6 和渣斗 1 , 炉体 6包括燃烧室 3和辐射室 4, 其中燃烧室 3在下, 辐射 室 4在上。 辐射室 4的内壁上设置 (通常为均匀布置) 有吸收辐射热 的炉管 5, 被加热介质在炉管 5内循环流通, 辐射室 4的顶部设有出烟 口 7。 应当指出的是, 尽管图中所示的炉管 , 5是沿竖直方向设置在辐射 室 4的内壁上, 即立式炉管; 但是, 本发明的技术方案并不局限于此, 炉管 5的方向、 数量、 尺寸以及布置方式等均可以根据需要而改变。
燃烧室 3的四周以切圆方式布置有多个燃烧器 2,每个燃烧器 2都 包括水煤浆喷嘴 1 1、 燃气喷嘴 10和燃油喷嘴 9, 这些喷嘴分别用于向 燃烧室内喷射水煤浆、 燃气和燃油。 关于此点, 应当指出的是, 尽管 图中所示的燃烧器 2 包括三个燃料喷嘴, 但是本领域技术人员容易理 解的是, 根据该工业加热炉的具体应用场合或环境, 燃烧器 2 可设置 为选择性地包括燃气喷嘴 10和燃油喷嘴 9中的一种或两种。 通常情况 下, 燃烧器 2至少应当包括水煤浆喷嘴 1 1 , 以便燃烧水煤浆。 此外, 每种喷嘴的数量可以根据需要改变, 并且燃烧方式也可以选择切圓燃 烧之外的其他任何合适的方式, 这些都不偏离本发明的范围。
根据本发明, 将燃烧室 3的容积热负荷设计为大于辐射室 4的容 积热负荷。 如本领域中已知的, 容积热负荷定义为单位时间内输入炉 膛单位容积的平均热量。 也就是说, 燃烧室 3 的容积热负荷为单位时 间内输入燃烧室单位容积的平均热量, 而辐射室 4 的容积热负荷为单 位时间内输入辐射室单位容积的平均热量。 具体而言, 在燃料消耗量 乡合定 (即, 输入热量给定) 的情况下, 通过将燃烧室 3 的有效容积设 计成小于辐射室 4的有效容积, 便可以使燃烧室 3 的容积热负荷大于 辐射室 4的容积热负荷。 其中, 辐射室 4的有效容积为辐射室 4 自身 的内部容积, 而燃烧室 3 的有效容积通常按照大于其自身内部容积的 容积来计算, 并且该容积的具体数值根据加热炉的大小、 形状以及燃 烧方式等因素而变化。 举例来说, 当加热炉为圓形截面的管式加热炉 并且其渣斗为理想的圆锥形时, 燃烧室 3 的有效容积等于燃烧室 3 的 内部容积加上渣斗 1的、对应于靠近燃烧室一侧的 1/2高度的容积(即, 图 1 所示渣斗 1 的上半部分的容积) 。 在输入热量一定或燃烧等量燃 料的情况下, 当燃烧室的有效容积小于辐射室的有效容积时, 燃烧室 的容积热负荷必然大于辐射室的容积热负荷。 如上所述, 当燃烧室的 容积热负荷大于辐射室的容积热负荷时, 在加热炉运行时燃烧室能够 保持较高的热负荷而辐射室能够保持较低的热负荷, 从而使燃烧室能 够维持水煤浆的稳定燃烧, 而辐射室不会使被加热介质 -如导热油发 生结焦。
优选的是, 可将燃烧室 3 的容积热负荷与辐射室 4的容积热负荷 的比率设计成大于 1.05。 相应地, 也可以将辐射室 4的有效容积与燃 烧室 3的有效容积的比率设计成大于 1.05。
此外, 还可以将燃烧室 3和辐射室 4 的结构设计成使得燃烧室 3 的截面热负荷大于辐射室 4 的截面热负荷。 同样如本领域中已知的, 截面热负荷定义为单位时间内输入炉膛的热量与炉膛截面积的比值。
此可见, 在输入热量不变的情况下, 燃烧室 3或辐射室 4的截面热 负荷与其截面积成反比。 此外, 当燃烧室 3和 /或辐射室 4的各个部分 的截面积不相等时, 可以使用燃烧室 3和 /或辐射室 4的平均截面积或 等效截面积。
继续参阅图 1 , 燃烧室 3的下部连接有渣斗 1, 燃烧后的灰渣从渣 斗底部的出口 8排出炉外。 如图 4所示, 本发明的燃烧室 3的村里为 多层复合衬里, 其技术要点在于多层复合衬里自迎火面向炉壁依次为 采用重质浇注料的耐火层 18、采用轻质浇注料的隔热层 19以及采用气 硬性浇注料的保温层 20。 并且, 根据锅炉的具体类型、 应用对象或环 境等因素, 设置在燃烧室 3下方的渣斗 1 的至少一部分 (尤其是靠近 燃烧室 3 的部分) 也可以设置成具有与燃烧室 3相同的内壁衬里。 本 领域技术人员容易理解的是, 本发明的工业加热炉显然 ^^[!用一县 有上述结构的衬里, 在能够满足本发明的工业加热炉对耐高温、 耐冲 刷、 .有效保温以及减轻重量等要求的情况下, 可以使用具有其他任意 合适的衬里结构。
本发明的工作过程如下: 本发明的工业加热炉的燃烧器 2 布置在 燃烧室 3 侧面, 燃烧时以辐射换热的形式加热布置在辐射室 4 内的炉 管 5 内的被加热介质, 被加热介质从炉管入口 15 进, 从炉管出口 12 出; 产生的烟气从辐射室 4 顶部的出烟口 7 排入后续系统; 燃烧过程 中产生的灰渣通过布置在燃烧室 3 底部的渣斗 1 收集并通过渣斗 1底 部的出口 8 排放。如上所述,由于燃烧室 3 的有效容积小于辐射室 4 的 有效容积, 因此在输入热量一定 -即所消耗燃料一定的情况下, 燃烧 ¾: 3 内单位容积的热负荷必然大于辐射室 4 内单位容积的热负荷, 从 而使燃烧室 3 能维持水煤浆的稳定燃烧, 而辐射室 4不会使被加热介 质 (如导热油) 结焦, 进而同时解决了水煤浆稳定燃烧和被加热介质 结焦的问题。
尽管上面结合优选实施方式描述了本发明的技术方案,然而本发明 并不受这些实施方式的限制, 在不偏离本发明的基本原理的前提下, 特定 用场合或 境。 > 例如 ^尽管 发明是结合圓形 ^面的管式工 加热炉来描述的, 但是在不改变本发明的实体技术方案的前提下, 本 领域技术人员可以将本发明应用于具有其他非圓截面的加热炉, 例如 方形炉。 此外, 尽管本发明是结合等直径或等截面的燃烧室和辐射室 来描述的, 但是本领域技术人员容易理解的是, 本发明的技术方案也 可应用于具有非等直径或截面的燃烧室和 /或辐射室的其他工业加热 炉。 再者, 在不改变本发明的实体技术方案的情况下, 本领域技术人 技术方案也将落入本发明的范围之内。

Claims

权 利 要 求
1、 一种工业加热炉, 包括炉体 (6) 和渣斗 ( 1 ) , 所述炉体 (6) 包括辐射室 (4) 和设置在所述辐射室 (4) 下方的燃烧室 (3) , 所述
5 渣斗 ( 1 )设置在所述燃烧室 (3 ) 下方, 所述燃烧室 (3) 上沿周向设 置有用于向所述燃烧室 (3 ) 内喷射燃料的至少一个燃烧器 (2) , 所 述辐射室 (4) 的内壁上设置有被加热介质在其中流通的炉管 (5) , 其特征在于, 所述燃烧室 (3 ) 和所述辐射室 (4) 的结构设置成 使得所述燃烧室 (3 ) 的容积热负荷大于所述辐射室 (4) 的容积热负 10 荷,从而使燃料能够在所述燃烧室(3 )内稳定燃烧并且所述辐射室(4) 内的被加热介质不会结焦。
2、 根据权利要求 1所述的工业加热炉, 其特征在于, 所述燃烧室 ( 3) 的容积热负荷与所述辐射室 (4) 的容积热负荷的比值大于 1.05。
3、 根据权利要求 2所述的工业加热炉, 其特征在于, 所述燃烧室 15 ( 3) 和所述辐射室 (4) 的结构设置成使得所述燃烧室 (3) 的截面热 负荷也大于所述辐射室 (4) 的截面热负荷。
4、根据权利要求 1至 3中任一项所述的工业加热炉,其特征在于, 每个燃烧器 (2) 上都设置有水煤浆喷嘴 ( 11 ) , 并且每个燃烧器 (2) 上还可选择性地设置燃气喷嘴 ( 10) 和 /或燃油喷嘴 (9) 。
20 5、根据权利要求 1至 3中任一项所述的工业加热炉,其特征在于, 所述燃烧室 (3) 的内壁衬里为多层复合衬里, 该多层复合衬里自内而 外包括耐火层 ( 18 ) 、 隔热层 ( 19) 和保温层 (20) , 并且该耐火层 。( 18) 由耐高温、 耐冲刷且质量较轻的材料制成。
i
6、根据权利要求 5所述的工业加热炉,其特征在于, 所述渣斗( 1 )
25 的至少一部分设置有与所述燃烧室 (3 ) 相同的内壁衬里。
_ 一
7、根据权利要求 1至 3中任一项所述的工业加热炉,其特征在于, . 所述被加热介质是单相被加热介质。
8、 一种工业加热炉, 包括炉体 (6) 和渣斗 ( 1 ) , 所述炉体 (6) 包括辐射室 (4) 和设置在所述辐射室 (4) 下方的燃烧室 (3) , 所述 30 渣斗 ( 1 )设置在所述燃烧室 (3) 下方, 所述燃烧室 (3 ) 上沿周向设 置有用于向所述燃烧室 (3 ) 内喷射燃料的至少一个燃烧器 (2) , 所 述辐射室 (4) 的内壁上设置有被加热介质在其中流通的炉管 _i_5—)_,. 其特征在于, 所述燃烧室 (3 ) 和所述辐射室 (4) 的结构设置成 使得所述燃烧室 (3 ) 的有效容积小于所述辐射室 (4) 的有效容积, 从而使燃料能够在所述燃烧室 (3 ) 内稳定燃烧并且^述辐射室 (4) 内的被加热介质不会结焦。
9、 根据权利要求 8所述的工业加热炉, 其特征在于, 所述辐射室
(4) 的有效容积与所述燃烧室 (3) 的有效容积的比值大于 1.05。
10、 根据权利要求 9 所述的工业加热炉, 其特征在于, 所述燃烧 室 (3) 和所述辐射室 (4) 的结构设置成使得所述燃烧室 (3) 的平均 截面积小于所述辐射室 (4) 的平均截面积。
11、 根据权利要求 8至 10中任一项所述的工业加热炉, 其特征在 于, 每个燃烧器 (2) 上都设置有水煤浆喷嘴 ( 11 ) , 并且每个燃烧器 ( 2) 上还可选择性地设置燃气喷嘴 ( 10) 和 /或燃油喷嘴 (9) 。
12、 根据权利要求 8至 10中任一项所述的工业加热炉, 其特征在 于, 所述燃烧室 (3) 的内壁衬里为多层复合衬里, 该多层复合衬里自 内而外包括耐火层 ( 18) 、 隔热层 ( 19) 和保温层 ( 20) , 并且该耐 火层 ( 18) 由耐高温、 耐冲刷且质量较轻的材料制成。
13、 根据权利要求 12所述的工业加热炉, 其特征在于, 所述渣斗 ( 1 ) 的至少一部分设置有与所述燃烧室 (3) 相同的内壁衬里。
14、 根据权利要求 8至 10中任一项所述的工业加热炉, 其特征在 于, 所述被加热介质是单相被加热介质。
15、 一种工业加热炉, 包括炉体(6)和渣斗 ( 1 ) , 所述炉体(6) 包括辐射室 (4) 和设置在所述辐射室 (4) 下方的燃烧室 (3) , 所述 渣斗 ( 1 )设置在所述燃烧室 (3) 下方, 所述燃烧室 (3) 上沿周向设 置有用于向所述燃烧室 (3 ) 内喷射燃料的至少一个燃烧器 (2) , 所 述辐射室 (4) 的内壁上设置有被加热介质在其中流通的炉管 (5) , 其特征在于, 所述燃烧室 (3 ) 的等效直径小于所述辐射室 (4) 的等效直径。
16、 根据权利要求 15所述的工业加热炉, 其特征在于, 所述燃烧 室 (3) 的等效直径为所述辐射室 (4) 等效直径的 70% ~ 98%。
17、 根据权利要求 16所述的工业加热炉, 其特征在于, 所述燃烧 室 (3 ) 的等效直径为所述辐射室 (4) 等效直径的 75%~95%。
18、 根据权利要求 15至 17 中任一项所述的工业加热炉, 其特征 在于, 每个燃烧器 (2) 上都设置有水煤浆喷嘴( 11 ) , 并且每个燃烧 器 (2) 上还可选择性地设置燃气喷嘴 ( 10) 和 /或燃油喷嘴 (9) 。
19、 根据权利要求 15至 17中任一项所述的工业加热炉, 其特征 在于, 所述燃烧室 (3) 的内壁衬里为多层复合衬里, 该多层复合衬里 自内而外包括耐火层 ( 18) 、 隔热层 ( 19) 和保温层 (20) , 并且该 耐火层 ( 18) 由耐高温、 耐沖刷且质量较轻的材料制成。
20、 根据权利要求 19所述的工业加热炉, 其特征在于, 所述渣斗 ( 1 ) 的至少一部分设置有与所述燃烧室 (3)相同的内壁衬里。
21、根据权利要求 15至 17中任一项所述的工业加热炉, 其特征在 于, 所述被加热介质是单相被加热介质。
PCT/CN2011/000728 2010-05-10 2011-04-25 工业加热炉 WO2011140822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010176259.3 2010-05-10
CN2010101762593A CN101852550B (zh) 2010-05-10 2010-05-10 管式工业加热炉

Publications (1)

Publication Number Publication Date
WO2011140822A1 true WO2011140822A1 (zh) 2011-11-17

Family

ID=42804149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000728 WO2011140822A1 (zh) 2010-05-10 2011-04-25 工业加热炉

Country Status (2)

Country Link
CN (1) CN101852550B (zh)
WO (1) WO2011140822A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852550B (zh) * 2010-05-10 2012-11-07 中国石油化工集团公司 管式工业加热炉
CN109058978A (zh) * 2018-09-29 2018-12-21 青岛特利尔环保股份有限公司 双燃料锅炉系统
CN109737748B (zh) * 2019-01-16 2020-07-14 东营市成功石油科技有限责任公司 一种管式工业加热炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB983641A (en) * 1961-05-25 1965-02-17 Babcock & Wilcox Ltd Improvements in vapour generating units adapted for firing by solid and gaseous fuels
JP2001289512A (ja) * 2000-04-03 2001-10-19 Corona Corp 暖房装置
CN2620218Y (zh) * 2003-04-25 2004-06-09 姜贵利 燃水煤浆的导热油炉
CN101109504A (zh) * 2007-08-28 2008-01-23 南京圣诺热管有限公司 以水煤浆为燃料的化学工业加热炉
CN101251299A (zh) * 2008-03-14 2008-08-27 葛京鹏 一种旋风分离燃烧蓄热管式加热炉
CN101852550A (zh) * 2010-05-10 2010-10-06 中国石油化工集团公司 管式工业加热炉

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349603A (ja) * 1986-08-18 1988-03-02 Sumitomo Metal Ind Ltd 加熱炉設備
US6269755B1 (en) * 1998-08-03 2001-08-07 Independent Stave Company, Inc. Burners with high turndown ratio
CN2628876Y (zh) * 2003-05-17 2004-07-28 刘月平 新型的水煤浆热水锅炉
CN2689067Y (zh) * 2004-02-20 2005-03-30 云南电力建设工程服务有限公司 一种采用鼓泡床燃烧方式的稻壳炭化炉
CN2900531Y (zh) * 2005-05-13 2007-05-16 中国石油天然气华东勘察设计研究院 新型中间炉管圆筒形管式加热炉
CN2835810Y (zh) * 2005-08-26 2006-11-08 新疆蓝宇水煤浆有限公司 节能水煤浆旋风加热炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB983641A (en) * 1961-05-25 1965-02-17 Babcock & Wilcox Ltd Improvements in vapour generating units adapted for firing by solid and gaseous fuels
JP2001289512A (ja) * 2000-04-03 2001-10-19 Corona Corp 暖房装置
CN2620218Y (zh) * 2003-04-25 2004-06-09 姜贵利 燃水煤浆的导热油炉
CN101109504A (zh) * 2007-08-28 2008-01-23 南京圣诺热管有限公司 以水煤浆为燃料的化学工业加热炉
CN101251299A (zh) * 2008-03-14 2008-08-27 葛京鹏 一种旋风分离燃烧蓄热管式加热炉
CN101852550A (zh) * 2010-05-10 2010-10-06 中国石油化工集团公司 管式工业加热炉

Also Published As

Publication number Publication date
CN101852550A (zh) 2010-10-06
CN101852550B (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
CN101504144B (zh) 三相全能混燃炉
CN101334164B (zh) 一种工业锅炉的燃烧方法
CN104154519B (zh) 一种醇基燃料蒸汽锅炉
CN101586805B (zh) 一种生物质颗粒燃料燃烧装置
CN101608793A (zh) 空气和煤气双蓄热的蓄热式燃烧器
CN201137928Y (zh) 单蓄热式燃烧装置
WO2011140822A1 (zh) 工业加热炉
CN201081395Y (zh) 一种节能立式锅炉
CN105674241A (zh) 定容式洁净煤燃烧装置
CN107477569A (zh) 一种环保节能的燃煤炉及其炊事采暖方法和用途
CN207585343U (zh) 一种u型传热盘管加热炉
CN202013015U (zh) 立式半煤气正烧采暖供热锅炉
CN105444144B (zh) 用于燃用油页岩的300mwcfb锅炉及布局方法
CN205424879U (zh) 用于燃用油页岩的300mwcfb锅炉
CN201066197Y (zh) 具有尾部加热装置的导热油加热炉
CN207585342U (zh) 十字形布局的管式加热炉
CN204006637U (zh) 水煤浆热水锅炉
CN209180921U (zh) 生物质直燃热水锅炉
CN204006633U (zh) 一种模块式对流受热面水火管锅炉
CN202885230U (zh) 大型煤粉燃烧热水锅炉
CN101109504A (zh) 以水煤浆为燃料的化学工业加热炉
CN205606538U (zh) 一种纯烧糠醛渣的循环流化床锅炉
CN2929562Y (zh) 一种节能锅炉
CN201434501Y (zh) 吊胆折流式燃煤半气化环保节能锅炉
CN201462955U (zh) 节能反烧式家用采暖炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/04/2013).

122 Ep: pct application non-entry in european phase

Ref document number: 11780045

Country of ref document: EP

Kind code of ref document: A1