WO2011137584A1 - 微型光谱仪的光学机构 - Google Patents

微型光谱仪的光学机构 Download PDF

Info

Publication number
WO2011137584A1
WO2011137584A1 PCT/CN2010/072462 CN2010072462W WO2011137584A1 WO 2011137584 A1 WO2011137584 A1 WO 2011137584A1 CN 2010072462 W CN2010072462 W CN 2010072462W WO 2011137584 A1 WO2011137584 A1 WO 2011137584A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
reflective surface
micro
waveguide plate
optical signal
Prior art date
Application number
PCT/CN2010/072462
Other languages
English (en)
French (fr)
Inventor
柯正浩
Original Assignee
台湾超微光学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台湾超微光学股份有限公司 filed Critical 台湾超微光学股份有限公司
Priority to CN2010800644812A priority Critical patent/CN102869963A/zh
Priority to PCT/CN2010/072462 priority patent/WO2011137584A1/zh
Priority to US13/642,264 priority patent/US9122014B2/en
Publication of WO2011137584A1 publication Critical patent/WO2011137584A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating

Definitions

  • the present invention relates to an optical mechanism for a miniature spectrometer, and more particularly to an optical mechanism for a micro spectrometer that allows an optical signal to be transmitted in a waveguide to avoid divergence of the optical signal.
  • a spectrometer is a non-destructive instrument that can be used, for example, to identify the composition and characteristics of a substance. After the light is applied to the material, the principle of light reflection, and the difference in reflection, absorption or penetration of different frequency bands of the light within the material composition, the spectrometer receives the light reflected from the material and presents a corresponding spectrum. Since different substances will reveal the spectrum of individual features, the composition and characteristics of the substance can be identified.
  • FIG. 1 is a schematic diagram of a conventional spectrometer.
  • the traditional spectrometer 500 is easy to cause the light to be concentrated and diverged due to multiple reflections, free space of divergence and long path of light travel, and even the traditional spectrometer is not easy to be cleaned of stray light. It will cause too much background noise for the corresponding image. Both of the above disadvantages will affect the image quality produced by the detector 508, and the accuracy of the latter circuit when determining the magnitude of the light intensity at different wavelengths is reduced. Summary of the invention
  • the invention mainly provides an optical mechanism of a miniature spectrometer, which utilizes an optical channel to make the spectrometer's light more concentrated and less prone to divergence, thereby improving the accuracy of the subsequent stage circuit in judging the light intensity of different wavelengths. .
  • the so-called miniature spectrometer has a micro-diffraction grating, which is generally fabricated by microelectromechanical process (MEMS), semiconductor process, Lithographie GaVanoformung Abformung (LIGA) or other processes.
  • MEMS microelectromechanical process
  • LIGA Lithographie GaVanoformung Abformung
  • the grating height of the micro-diffraction grating is generally about several tens of micrometers to several hundreds of micrometers.
  • the grating profile is a curved surface, and the optical signal after being split can be focused on the image capturing component of the rear end without saving.
  • Focusing mirror of traditional spectrometer (of course, if a planar micro-diffraction grating is used, the focusing mirror cannot be omitted, otherwise the image capturing component will become very
  • the width is sufficient to receive the complete signal), but also because the height of the micro-diffraction grating is generally much smaller than that of the conventional spectrometer, the amount of optical signal that can be split to reach the micro-diffraction grating is of course small, so that the amount of light can be Fully utilized, constructing an appropriate light path to concentrate incident light becomes a major challenge for miniature spectrometers.
  • an optical mechanism of a miniature spectrometer comprising an input portion, an upper waveguide plate, a lower waveguide plate and a micro-diffraction grating.
  • the input unit is for receiving an optical signal.
  • the upper waveguide plate has a first reflecting surface.
  • the lower waveguide plate is disposed substantially parallel to the upper waveguide plate and has a second reflective surface, wherein the first reflective surface is opposite to the second reflective surface.
  • An optical path is formed between the first reflective surface and the second reflective surface to cause an optical signal from the input to travel within the optical channel.
  • the micro-diffraction grating is used to separate the optical signal transmitted in the optical channel into a plurality of spectral components and direct the spectral components to the image capturing assembly.
  • Figure 1 is a schematic diagram of a conventional spectrometer.
  • FIG. 2 is an exploded perspective view showing the optical mechanism of the micro spectrometer according to the first embodiment of the present invention.
  • Figure 3 is a schematic illustration of light traveling in the optical path of the optical mechanism of the microspectrometer of Figure 2.
  • 4 is a schematic view showing an example of an upper waveguide plate.
  • Fig. 5 is a schematic view showing an example of a slit plate.
  • FIG. 6 is an exploded perspective view showing the optical mechanism of the micro spectrometer according to the second embodiment of the present invention.
  • Figure 7 is a schematic view showing the extinction mechanism of the matting assembly of Figure 6.
  • first protective film 122 First reflecting surface
  • FIG. 2 is an exploded perspective view of the optical mechanism of the micro spectrometer according to the first embodiment of the present invention
  • FIG. 3 is a schematic view showing the light traveling in the optical path of the optical mechanism of the micro spectrometer of FIG. Please refer to FIG. 2 and FIG. 3 for the description of this embodiment below.
  • the optical mechanism 100 of the micro spectrometer includes an input portion 110, an upper waveguide plate 120, a lower waveguide plate 130, and a micro diffraction grating 160.
  • the back end of the optical mechanism 100 of the micro spectrometer may further include an image capturing assembly 150.
  • the components of this embodiment are described in more detail below.
  • the input 110 in the optical mechanism 100 of the micro spectrometer is used to receive an optical signal 50.
  • the upper waveguide plate 120 has a first reflective surface 122.
  • the lower waveguide plate 130 is disposed substantially parallel to the upper waveguide plate 120 and has a second reflective surface 132, wherein the first reflective surface 122 is opposite to the second reflective surface 132.
  • An optical channel 140 is formed between the first reflective surface 122 and the second reflective surface 132 to allow the optical signal 50 from the input portion 110 to travel within the optical channel 140.
  • the optical channel 140 formed between the two reflecting surfaces 132 is generally a cavity type, which is different from the principle of total reflection used for transmitting light in the optical fiber. The present invention limits optical signals to repeated reflections between the reflecting surfaces.
  • the micro-diffraction grating 160 is used to separate the optical signal 50 transmitted in the optical channel 140 into a plurality of spectral components 51, and direct the spectral components 51 to the image capturing component 150 to obtain corresponding images.
  • the material of the upper waveguide plate 120 and the lower waveguide plate 130 is, for example, stainless steel, silicon chip, glass, optical disk or hard disk.
  • a high-reflection film may be disposed on the first reflective surface 122 and the second reflective surface 132 to solve the problem.
  • the material of the highly reflective film is an aluminum film.
  • the flatness and reflectance of the surface of the reflective surface are reduced, and the first reflective surface 122 and the second reflective surface are provided.
  • a first protective film and a second protective film are respectively disposed on the high reflection film of the surface 132, and the material of the protective film is, for example, silicon dioxide.
  • the upper waveguide plate 120 may have a high reflection film 120a and a first protection film 120b as shown in FIG.
  • the materials exemplified in the present embodiment are not intended to limit the spirit and scope of the present invention.
  • the input portion 110 includes, for example, a slit plate 134 having a slit 136 as shown in FIG. After the optical signal 50 is incident by the slit 136, it is directed toward the micro-diffraction grating 160 via the optical channel 140.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal- ⁇ xide-Semiconductor
  • the width of the slit 136 is, for example, about 25 micrometers ( ⁇ m), and the height is, for example, about 150 micrometers ( ⁇ m), and the distance between the first reflective surface 122 and the second reflective surface 132 is, for example, about 100 to 150 micrometers (um). .
  • the first The height difference between the local maximum point and the local minimum point of the reflecting surface 122 and the second reflecting surface 132 is, for example, about one tenth of a wavelength to about one tenth of a wavelength to achieve high flatness, and the first reflecting surface 122
  • the reflectance with the second reflecting surface 132 is, for example, 90%.
  • the optical path of the optical signal 50 traveling from the slit plate 134 to the micro-diffraction grating 160 is, for example, 28 millimeters (mm), and the light traveling path from the micro-diffraction grating 160 to the image capturing assembly 150 is about 40 mm. (mm).
  • the optical mechanism 100 of the micro spectrometer of the present embodiment is compared with the conventional spectrometer 500 shown in FIG. 1.
  • the light of the conventional spectrometer 500 is transmitted through the cavity in the spectrometer 500, and there is a possibility that the light is divergent and the optical signal is too weak to be stray light.
  • the problem of excessive interference, and the spectrometer 500 occupies a large volume.
  • the optical signal 50 By causing the optical signal 50 to travel in the optical channel 140, the light of the spectrometer is more concentrated and less divergent, and the efficiency of the optical mechanism 100 of the micro spectrometer can be effectively improved.
  • the optical mechanism 100 of the micro spectrometer of the embodiment can be additionally provided with a suitable stray light removing mechanism (described in detail below), it is less affected by stray light, so that the image capturing assembly 150 can be more generated. Accurate image, when the corresponding image is transmitted to the subsequent circuit, the accuracy of the subsequent physical or biochemical significance of the optical signal at different wavelengths can be further improved.
  • FIG. 6 is an exploded perspective view showing the optical mechanism of the micro spectrometer according to the second embodiment of the present invention
  • FIG. 7 is a schematic view showing the extinction mechanism of the extinction assembly of FIG.
  • the embodiment is different from the first embodiment in that the optical mechanism 200 of the micro spectrometer further includes a first matting component 270 and a second extinction component 272.
  • One side of the cross-section of the first matt component 270 and the second matte component 272 is serrated, and the zigzag sides face the optical channel 140.
  • one side 270a of the first matting component 270 and one side 272a of the second matting component 272 face the light tunnel 140.
  • the first extinction assembly 270 and the second extinction assembly 272 are respectively disposed on both sides of the optical channel 140 for absorbing an optical signal emitted from the input portion 110 by an angle greater than a specific angle.
  • this particular angle is, for example, an angle of 0, which is related to the sawtooth structure of the first matt component 270 and the second matte component 272. It is assumed that the angle of travel from the optical signal 52 is greater than the angle ⁇ . When the angle of travel away from the optical signal 52 is greater than the angle ⁇ , the offset optical signal 52 may impinge into one of the triangular recesses of the sawtooth structure.
  • the serrated structure of the matte assembly can be made weak by the off-axis optical signal 52 as reflected in the notch of the sawtooth structure as shown in FIG. In this way, the off-axis optical signal 52, which would otherwise cause the stray light signal, can be eliminated by the sawtooth structure, thereby making the desired spectral component clearer and clearer.
  • the rest of the embodiment is the same as the first embodiment, and therefore will not be described again.
  • the optical mechanism of the micro spectrometer disclosed in the above embodiments of the present invention regulates the optical signal entering from the input portion to travel in the optical path between the upper and lower waveguide plates, so that the optical signal is more concentrated and less likely to diverge.
  • the optical signal with too large incident angle can be eliminated, thereby reducing the stray light reaching the image capturing component, so that the desired spectral components are not interfered by stray light, resulting in clearer Image.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种微型光谱仪的光学机构,包括一输入部、一上波导板、一下波导板及一微型绕射光栅。输入部是用来接收一光学信号并将光学信号射出到光学机构的内部。上波导板具有一第一反射面。下波导板实质上平行于上波导板设置,并具有一第二反射面,其中第一反射面与第二反射面相对。在第一反射面与第二反射面之间形成一光通道,使来自于输入部的光学信号在光通道内行进。微型绕射光栅用以将于光通道中传送的光学信号分离为多个光谱分量,并使该些光谱分量射向该光谱仪后端的一影像撷取组件。

Description

微型光谱仪的光学机构 技术领域
本发明是有关于一种微型光谱仪的光学机构, 且特别是有关于一种让光学 信号可以在一波导之中传递以避免该光学信号发散的微型光谱仪的光学机构。 背景技术
光谱仪是一种非破坏性的检测仪器, 其例如可应用于辨认物质的成份组成与 特性。 于将光线打到物质上之后, 利用光反射的原理, 以及物质内组成结构对 光不同频段的反射、 吸收或穿透的差异, 光谱仪接收从此物质反射的光线之后, 会呈现对应的光谱。 由于不同物质会显现个别特征的光谱, 如此进而得以辨认 物质的成份组成与特性。
请参照图 1, 其绘示乃一种传统光谱仪的示意图。 光线射入光谱仪 500之后, 在自由空间之中射向一准直面镜 502使光线转为平行光并射向光栅 504。经由光 栅 504分光后的光线再由聚焦镜 506聚焦后, 射向检测器 508以检测不同波长 的光强度的大小, 以产生对应的影像。 但传统的光谱仪 500很容易因为多次的 反射、 发散的自由空间与过长的光行进路径, 而造成光线不集中与发散的状况, 甚且, 于传统的光谱仪不易被消除干净的杂散光将会造成对应影像的背景噪声 过多。 以上两种缺点都将会影响检测器 508所产生的影像品质, 而使后级电路 于对不同波长的光强度的大小进行判断时的正确度降低。 发明内容
本发明主要提供一种微型光谱仪的光学机构, 其利用一光通道, 使得光谱 仪的光线更为集中, 不易发散, 可使提高后级电路于对不同波长的光强度的大 小进行判断时的正确度。
所谓的微型光谱仪, 其中具有一微型绕射光栅, 该微型绕射光栅一般是由 微机电制程(MEMS)、 半导体制程、 光刻电铸模造(Li thographie GaVanoformung Abformung, LIGA) 或其它制程所制造出来, 微型绕射光栅的光栅高度一般约有 数十微米至数百微米, 一般而言, 其光栅轮廓为一曲面可以将被分光后的光学 信号聚焦于后端的影像撷取组件之上而省去传统光谱仪的聚焦镜(当然如果采 用平面的微型绕射光栅, 则聚焦镜即不能省略, 否则影像撷取组件就要变得很 宽才足以接收到完整的信号), 但也因为微型绕射光栅的高度一般比传统光谱仪 小很多, 能够抵达微型绕射光栅而被分光的光学信号的量当然就很少, 为使进 光量可以充分被利用, 建构一个适当的光通道以集中入射光线便成为微型光谱 仪的重大挑战。
根据本发明的一方面, 提出一种微型光谱仪的光学机构, 包括一输入部、 一上波导板、 一下波导板及一微型绕射光栅。 输入部是用来接收一光学信号。 另外, 上波导板具有一第一反射面。 下波导板实质上平行于上波导板设置, 并 具有一第二反射面, 其中第一反射面与第二反射面相对。 在第一反射面与第二 反射面之间形成一光通道, 使来自于输入部的光学信号在光通道内行进。 微型 绕射光栅用以将于光通道中传送的光学信号分离为多个光谱分量, 并使该些光 谱分量射向影像撷取组件。
为让本发明的上述内容能更明显易懂, 下文特举较佳实施例, 并配合附图, 作详细说明如下: 附图概述
图 1绘示为一种传统光谱仪的示意图。
图 2是绘示本发明第一实施例的微型光谱仪的光学机构的立体分解图。 图 3绘示光线于图 2微型光谱仪的光学机构的光通道中行进的示意图。 图 4绘示乃上波导板的一例的示意图。
图 5绘示狭缝板的一例的示意图。
图 6绘示乃本发明第二实施例的微型光谱仪的光学机构的立体分解图。 图 7是绘示图 6中消光组件的消光机制的示意图。
【主要组件符号说明】
50: 光学信号
51: 光谱分量
52: 偏离光学信号
100、 200: 微型光谱仪的光学机构
110: 输入部
120: 上波导板
120a: 高反射膜
120b : 第一保护膜 122: 第一反射面
130: 下波导板
132: 第二反射面
134: 狭缝板
136: 狭缝
140: 光通道
150: 影像撷取组件
160: 微型绕射光栅
270: 第一消光组件
270a : 第一消光组件的
272: 第二消光组件
272a : 第二消光组件的
500: 光谱仪
502: 准直面镜
504: 光栅
506: 聚焦镜
508: 检测器
Θ: 角度 本发明的最佳实施方案
以下是提出实施例进行详细说明, 实施例仅用以作为范例说明, 并不会限 缩本发明欲保护的范围。 此外, 实施例中的附图省略不必要的组件, 以清楚显 示本发明的技术特点。 第一实施例
请参照图 2及图 3,图 2是本发明第一实施例的微型光谱仪的光学机构的立 体分解图, 而图 3绘示光线于图 2微型光谱仪的光学机构的光通道中行进的示 意图。 以下关于本实施例的说明请参照图 2与图 3。 微型光谱仪的光学机构 100 包括一输入部 110、 一上波导板 120、 一下波导板 130及一微型绕射光栅 160。 微 型光谱仪的光学机构 100后端可更包含一影像撷取组件 150。 本实施例各组件更 详细的说明如下。 微型光谱仪的光学机构 100中的输入部 110是用来接收一光学信号 50。 上 波导板 120具有一第一反射面 122, 下波导板 130实质上平行于上波导板 120设 置, 并具有一第二反射面 132, 其中第一反射面 122与第二反射面 132相对。 第 一反射面 122与第二反射面 132之间形成一光通道 140, 使来自于输入部 110的 光学信号 50在光通道 140内行进, 如图 3所示, 上述第一反射面 122与第二反 射面 132间形成的光通道 140—般为空腔式,有别于光线在光纤中传送所采用的 全反射原理, 本发明是将光学信号限制在该些反射面间反复反射而向前传送, 但亦可填满适当的介质 (例如玻璃、 塑料、 或压克力等)供光学信号在当中反复反 射而向前传送。 微型绕射光栅 160用以将于光通道 140中传送的光学信号 50分 离为多个光谱分量 51, 并使此些光谱分量 51射向影像撷取组件 150以取得对应 的影像。
如上所述的微型光谱仪的光学机构 100, 其中上波导板 120与下波导板 130 必须具有良好的平整度与反射率, 才可使光学信号 50在上波导板 120与下波导 板 130之间行进时, 达到最低的损耗与最佳的光源集中效果。 因此, 上波导板 120及下波导板 130的材质例如是不锈钢、 硅芯片、 玻璃、 光盘片或硬盘片。 此 外, 如果上波导板 120及下波导板 130所使用的材料反射率未达所需的标准, 可 在第一反射面 122与第二反射面 132上分别设置一层高反射膜以解决此问题,较 佳地高反射膜的材料为铝膜。
为了防止第一反射面 122与第二反射面 132的表面随着时间发生氧化、锈蚀、 粗糙等情形,而降低反射面表面的平整度与反射率,可在第一反射面 122与第二 反射面 132的高反射膜上分别设置第一保护膜与第二保护膜,保护膜的材料例如 是二氧化硅。 兹以上波导板 120为例说明, 上波导板 120上可以具有高反射膜 120a与第一保护膜 120b, 如图 4所示。 本实施例所举例的材料非用以限缩本发 明的精神与范围, 任何可以达到相同目的与效果的材料皆可应用于本实施例中 上述的影像撷取组件 150例如为一电荷耦合组件 (Charge Coupled Device, CCD)或互补式金氧半组件 (Complementary Metal-〇xide-Semiconductor, CMOS ) 。 而输入部 110例如包含一狭缝板 134, 狭缝板 134具有一狭缝 136, 如图 5所示 。 光学信号 50由狭缝 136射入后, 是经由光通道 140射向微型绕射光栅 160。
狭缝 136的宽度例如约为 25微米(μ ιη), 高度例如约为 150微米( μ m), 而 第一反射面 122与第二反射面 132的间距例如约为 100至 150微米( u m)。 第一 反射面 122与第二反射面 132的局部最高点与局部最低点的高度差例如为十分之 一波长至三十分之一波长左右, 以达到高平整度的要求,而第一反射面 122与第 二反射面 132的反射率则例如为 90%。 光学信号 50从狭缝板 134行进至微型绕 射光栅 160的光行进路径例如为 28毫米 (mm), 而从微型绕射光栅 160行进至影 像撷取组件 150的光行进路径则约为 40毫米 (mm)。
本实施例的微型光谱仪的光学机构 100与图 1所示的传统光谱仪 500相较, 传统光谱仪 500的光线于光谱仪 500内的腔体传送,很可能有发散而造成光信号 太弱致受到杂散光过度干扰的问题,而且光谱仪 500占用的体积较大。通过使光 学信号 50于光通道 140行进, 可使得光谱仪的光线更为集中, 不易发散, 可以 有效地提高微型光谱仪的光学机构 100的效率。此外, 由于本实施例的微型光谱 仪的光学机构 100可以另外加上适当的杂散光消除机构 (详下述), 因而较不会受 到杂散光的影响, 故更可让影像撷取组件 150产生更精确的影像, 当对应影像传 给后级电路时, 后续以不同波长的光强度进行光学信号所代表的物理或生化意 义的判断的正确度可以更加提高。 第二实施例
请参照图 6及图 7,图 6绘示乃本发明第二实施例的微型光谱仪的光学机构 的立体分解图, 图 7是图 6中消光组件的消光机制的示意图。 以下说明请同时 参照图 6与图 7。 本实施例与第一实施例不同之处在于, 微型光谱仪的光学机构 200更包括一第一消光组件 270与一第二消光组件 272。 第一消光组件 270与第 二消光组件 272的横切面的一侧边呈锯齿状, 该些锯齿状侧边面向光通道 140 。例如第一消光组件 270的一侧边 270a与第二消光组件 272的一侧边 272a面向 光通道 140。第一消光组件 270与第二消光组件 272分别配置于光通道 140的两 侧,用以吸收从输入部 110射出的射出角度大于一特定角度的光学信号。举例来 说, 此特定角度例如为角度 0, 其与第一消光组件 270与第二消光组件 272的 锯齿状结构相关。假设偏离光学信号 52的行进角度大于角度 Θ 。 当偏离光学信 号 52的行进角度大于角度 Θ 时, 偏离光学信号 52可能会射入锯齿状结构的其 中一个三角形凹口中。 消光组件的锯齿状结构可以让如图 7中的偏离光学信号 52在锯齿状结构的凹口中来回反射而耗弱。 如此一来, 原本会造成杂散光信号 的偏离光学信号 52皆可由锯齿状结构而消弭, 进而使所欲得到的光谱分量更为 清楚分明。 本实施例其余部分皆与第一实施例相同, 因此不予赘述。 本发明上述实施例所揭露的微型光谱仪的光学机构, 规范从输入部进入的 光学信号, 于上下波导板之间的光通道中行进, 如此可让光学信号更为集中且 不易发散。 再搭配上锯齿状的消光组件更可让入射角度过大的光学信号被消弭, 进而减少到达影像撷取组件的杂散光, 使得所欲得到的光谱分量不会受到杂散 光的干扰, 得到更清晰的影像。
综上所述, 虽然本发明已以较佳实施例揭露如上, 然其并非用以限定本发 明。 本发明所属技术领域中具有通常知识者, 在不脱离本发明的精神和范围内, 当可作各种的更动与润饰。 因此, 本发明的保护范围当以权利要求所界定的为 准。

Claims

权 利 要 求
1. 一种微型光谱仪的光学机构, 包括:
一输入部, 用以接收一光学信号并将该光学信号射出到该光学机构的内部 一上波导板, 具有一第一反射面;
一下波导板, 实质上平行于该上波导板设置, 并具有一第二反射面, 该第 一反射面与该第二反射面相对, 该第一反射面与该第二反射面之间形成一光通 道, 使来自于该输入部的该光学信号在该光通道内行进; 以及
一微型绕射光栅, 用以将该输入部射出的该光学信号分离为多个光谱分量, 供该光谱仪后端的一影像撷取组件接收利用。
2. 如权利要求 1所述的微型光谱仪的光学机构, 其特征在于, 更包括一第 一消光组件与一第二消光组件分别配置于该光通道的两侧, 该第一消光组件与 该第二消光组件的横切面的一侧边呈锯齿状, 该些锯齿状侧边面向该光通道, 用以吸收射出角度大于一特定角度的该光学信号。
3. 如权利要求 1所述的微型光谱仪的光学机构, 其特征在于, 该第一反射 面与该第二反射面上分别具有一高反射膜。
4. 如权利要求 3所述的微型光谱仪的光学机构, 其特征在于, 该些高反射 膜包含一铝膜。
5. 如权利要求 3所述的微型光谱仪的光学机构, 其特征在于, 更包括一第 一保护膜及一第二保护膜, 分别设置于该第一反射面与该第二反射面的该些高 反射膜上。
6. 如权利要求 5所述的微型光谱仪的光学机构, 其特征在于, 该第一保护 膜及该第二保护膜的材质为二氧化硅。
7. 如权利要求 1所述的微型光谱仪的光学机构, 其特征在于, 该上波导板 及该下波导板的材质为不锈钢、 硅芯片、 玻璃、 光盘片或硬盘片。
8. 如权利要求 1所述的微型光谱仪的光学机构, 其特征在于, 该影像撷取 组件为电荷耦合组件(Charge Coupled Device, CCD)或互补式金氧半组件
( Complementary Metal-Oxide-Semiconductor, CMOS ) 。
9. 如权利要求 1所述的微型光谱仪的光学机构, 其特征在于, 该输入部包 含一狭缝, 该光学信号由该狭缝射出后, 经由该光通道射向该光栅。
10. 如权利要求 1所述的微型光谱仪的光学机构, 其特征在于, 该光通道 为空腔式。
11. 如权利要求 1所述的微型光谱仪的光学机构, 其特征在于, 该光通道 更以玻璃、 塑料或压克力填满。
PCT/CN2010/072462 2010-05-05 2010-05-05 微型光谱仪的光学机构 WO2011137584A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800644812A CN102869963A (zh) 2010-05-05 2010-05-05 微型光谱仪的光学机构
PCT/CN2010/072462 WO2011137584A1 (zh) 2010-05-05 2010-05-05 微型光谱仪的光学机构
US13/642,264 US9122014B2 (en) 2010-05-05 2010-05-05 Optical mechanism of miniaturized optical spectrometers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/072462 WO2011137584A1 (zh) 2010-05-05 2010-05-05 微型光谱仪的光学机构

Publications (1)

Publication Number Publication Date
WO2011137584A1 true WO2011137584A1 (zh) 2011-11-10

Family

ID=44903571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072462 WO2011137584A1 (zh) 2010-05-05 2010-05-05 微型光谱仪的光学机构

Country Status (3)

Country Link
US (1) US9122014B2 (zh)
CN (1) CN102869963A (zh)
WO (1) WO2011137584A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293961A1 (en) * 2010-05-07 2013-11-07 Cheng-Hao KO Optical System and Reflection Type Diffraction Grating Thereof
US10393586B2 (en) 2016-07-12 2019-08-27 Oto Photonics Inc. Spectrometer and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091827B2 (en) 2012-07-09 2015-07-28 Luxtera, Inc. Method and system for grating couplers incorporating perturbed waveguides
US10782479B2 (en) 2013-07-08 2020-09-22 Luxtera Llc Method and system for mode converters for grating couplers
CN103557939B (zh) * 2013-09-26 2015-12-09 中国科学院安徽光学精密机械研究所 小型红外光栅光谱仪
WO2016115720A1 (zh) * 2015-01-23 2016-07-28 台湾超微光学股份有限公司 光谱仪及其光输入部
US20160282558A1 (en) * 2015-03-27 2016-09-29 Intel Corporation Optical higher-order mode frustration in a rib waveguide
JP2017187603A (ja) * 2016-04-05 2017-10-12 ミツミ電機株式会社 1軸回転アクチュエーター
DE102017206066A1 (de) * 2017-04-10 2018-10-11 Anvajo GmbH Spektrometer
CN109491073B (zh) * 2019-01-25 2021-06-15 深圳市捷迅光电有限公司 一种光学的滤波器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262282A (ja) * 1991-02-18 1992-09-17 Nec Corp レーザ光入射方向検出装置
WO1997027460A1 (de) * 1996-01-25 1997-07-31 Mueller Joerg Miniaturisiertes optisches dünnschichtwellenleiterspektrometer
CN1315656A (zh) * 2000-03-29 2001-10-03 中国科学院长春光学精密机械与物理研究所 新型集成光路结构光谱仪及其集成光路组件的制备方法
CN101263372A (zh) * 2005-05-17 2008-09-10 霍尼韦尔国际公司 光学微型光谱仪
CN100468045C (zh) * 2004-07-09 2009-03-11 鸿富锦精密工业(深圳)有限公司 光栅光谱仪

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274706A (en) * 1979-08-30 1981-06-23 Hughes Aircraft Company Wavelength multiplexer/demultiplexer for optical circuits
EP0282878B1 (de) * 1987-03-16 1995-06-14 Siemens Aktiengesellschaft Anordnung für ein integriert-optisches Spektrometer und Verfahren zur Herstellung eines solchen Spektrometers
US5424826A (en) * 1993-07-30 1995-06-13 Control Development, Inc. Wideband optical micro-spectrometer system
GB9416223D0 (en) * 1994-08-11 1994-10-05 Ridyard Andrew W Radiation detector
KR100445905B1 (ko) * 2001-12-13 2004-08-25 한국전자통신연구원 다중파장 광 전송 시스템에서 광 신호 성능 측정 장치 및그 방법
US20100239436A1 (en) * 2005-05-17 2010-09-23 Honeywell International Inc. A thermal pump
TWI345050B (en) * 2007-08-03 2011-07-11 Oto Photonics Inc Optical system and method of manufacturing the same
TWI325492B (en) * 2007-03-16 2010-06-01 Cheng Hao Ko Optical system
CN101382666A (zh) * 2007-09-03 2009-03-11 柯正浩 光学系统及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262282A (ja) * 1991-02-18 1992-09-17 Nec Corp レーザ光入射方向検出装置
WO1997027460A1 (de) * 1996-01-25 1997-07-31 Mueller Joerg Miniaturisiertes optisches dünnschichtwellenleiterspektrometer
CN1315656A (zh) * 2000-03-29 2001-10-03 中国科学院长春光学精密机械与物理研究所 新型集成光路结构光谱仪及其集成光路组件的制备方法
CN100468045C (zh) * 2004-07-09 2009-03-11 鸿富锦精密工业(深圳)有限公司 光栅光谱仪
CN101263372A (zh) * 2005-05-17 2008-09-10 霍尼韦尔国际公司 光学微型光谱仪

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293961A1 (en) * 2010-05-07 2013-11-07 Cheng-Hao KO Optical System and Reflection Type Diffraction Grating Thereof
US9372290B2 (en) * 2010-05-07 2016-06-21 Yung-Chuan Wu Spectrum analyzer and reflection type diffraction grating thereof
US10393586B2 (en) 2016-07-12 2019-08-27 Oto Photonics Inc. Spectrometer and manufacturing method thereof

Also Published As

Publication number Publication date
US9122014B2 (en) 2015-09-01
US20130294727A1 (en) 2013-11-07
CN102869963A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2011137584A1 (zh) 微型光谱仪的光学机构
US10883874B2 (en) Dual coupler device, spectrometer including the dual coupler device, and non-invasive biometric sensor including the spectrometer
US8957374B2 (en) Systems and methods for measuring birefringence in glass and glass-ceramics
KR102491854B1 (ko) 분광기
JP2020529005A (ja) 光拒絶フォトニック構造
JP6524269B2 (ja) ビームスプリッタ、および電磁放射によって励起可能な試料を検査するための構造
TW201728895A (zh) 光學感測模組
JP2009300424A (ja) 分光モジュール及び分光モジュールの製造方法
TW201137328A (en) Optical mechanism of miniaturized optical spectrometer
JP2009198255A (ja) チューナブルフィルタとこれを用いた、光源装置、スペクトル測定装置
US20110037978A1 (en) Miniaturized Confocal Spectrometer
WO2016006211A1 (ja) 生体成分情報測定装置
JP7486178B2 (ja) 分光分析装置
JP2008026127A (ja) 分光ユニット、気象観測ライダーシステム
JP6064468B2 (ja) 光学モジュール及び電子機器
JP2012002817A (ja) 表面プラズモン共鳴センサモジュール及びそれを含むセンシングシステム
CN207423365U (zh) 光谱仪及光谱检测系统
JP6441172B2 (ja) 表面増強ラマン散乱ユニット
CN114207391A (zh) 信号采集光谱仪
Lieber et al. Comparison of Raman spectrograph throughput using two commercial systems: Transmissive versus reflective
JP4496838B2 (ja) 分光装置及び全反射ラマン分光装置
JP6176327B2 (ja) ラマン分光分析装置
JP2014052594A (ja) 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器
WO2021106299A1 (ja) 光学ユニット及び膜厚計測装置
JP2012078110A (ja) コリメータ光源およびそれを用いた表面プラズモン共鳴センサー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064481.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13642264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850953

Country of ref document: EP

Kind code of ref document: A1