WO2011136221A1 - ガラス母材の製造方法および製造装置 - Google Patents

ガラス母材の製造方法および製造装置 Download PDF

Info

Publication number
WO2011136221A1
WO2011136221A1 PCT/JP2011/060164 JP2011060164W WO2011136221A1 WO 2011136221 A1 WO2011136221 A1 WO 2011136221A1 JP 2011060164 W JP2011060164 W JP 2011060164W WO 2011136221 A1 WO2011136221 A1 WO 2011136221A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica powder
base material
glass base
dissociation
producing
Prior art date
Application number
PCT/JP2011/060164
Other languages
English (en)
French (fr)
Inventor
景一 相曽
哲郎 和田
真史 浅尾
伸昭 折田
健 八木
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2011537766A priority Critical patent/JP4904441B2/ja
Priority to CN2011800110330A priority patent/CN102781860A/zh
Publication of WO2011136221A1 publication Critical patent/WO2011136221A1/ja
Priority to US13/525,572 priority patent/US20120301610A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01291Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process
    • C03B37/01294Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process by delivering pulverulent glass to the deposition target or preform where the powder is progressively melted, e.g. accretion

Definitions

  • the present invention relates to a glass base material manufacturing method and manufacturing apparatus.
  • Quartz glass-based optical fiber is usually manufactured by drawing an optical fiber preform made of quartz glass.
  • methods such as VAD (Vapor-phase Axial Deposition) method, OVD (Outside Vapor-phase Deposition) method, MCVD (Modified Chemical Vapor Deposition) method, plasma method and the like are widely used.
  • silicon tetrachloride is generally used as a raw material for quartz glass.
  • a porous glass base material is manufactured by making a silicon tetrachloride gas hydrolyze-react or oxidize in a flame, thereby producing
  • the porous glass preform is made into a transparent glass by performing a sintering process later, and becomes a transparent optical fiber preform for drawing.
  • silica powder When silica powder is used as a raw material, for example, a porous glass base material is manufactured by spraying and adhering silica powder together with a flame toward a starting material.
  • the silica powder used includes, for example, silica particles (fumed silica) synthesized by a flame hydrolysis reaction. Since fumed silica has a low impurity concentration, it is suitable as a raw material for a glass preform for optical fiber production that requires high purity characteristics.
  • JP 61-077631 A1 JP 2004-300006 A Japanese Patent Laid-Open No. 2005-255502 International Publication No. 2004/083139 JP 2001-294440 A Japanese Patent Laid-Open No. 2003-020243
  • silica powder containing particles as small as 5 to 50 nm, such as fumed silica is used as the silica powder
  • protruding deposits spots
  • the deposition surface is smooth.
  • optical fiber characteristics such as fluctuations in the outer diameter of the optical fiber and non-circularity of the cladding when an optical fiber is produced using this.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a glass base material manufacturing method and manufacturing apparatus capable of manufacturing a glass base material having a smooth surface.
  • a method for producing a glass base material according to the present invention is a method for producing a glass base material by depositing silica powder containing silica particles on a starting material, A transfer step of transferring the silica powder; a dissociation step of dissociating and dispersing the aggregates of silica particles contained in the silica powder being transferred in the transfer step; and the silica powder transferred and dissociated and dispersed in the aggregates of silica particles. And a deposition step of depositing on the starting material.
  • the glass base material manufacturing method according to the present invention is characterized in that, in the above invention, the dissociation step dissociates and disperses the aggregates by an air flow.
  • the glass base material manufacturing method according to the present invention is characterized in that, in the above invention, the dissociation step dissociates and disperses the aggregates by an ejector.
  • the glass base material manufacturing method according to the present invention is characterized in that, in the above invention, the dissociation step supplies an ejector gas composed of at least one of hydrogen, helium and oxygen to the ejector.
  • the glass base material manufacturing method according to the present invention is characterized in that, in the above invention, the dissociation step dissociates and disperses the aggregates by applying a physical impact force to the silica powder.
  • the glass base material manufacturing method according to the present invention is characterized in that, in the above invention, the dissociation step dissociates and disperses the aggregate so as to have a particle size of 1 ⁇ m or less.
  • the glass base material manufacturing method according to the present invention is characterized in that, in the above invention, the transfer step transfers silica powder using a carrier gas comprising at least one of hydrogen, helium, and oxygen. To do.
  • the glass base material manufacturing method according to the present invention is characterized in that, in the above-mentioned invention, before or after the dissociation step, a classification step of classifying the aggregates of the silica particles is included.
  • the method for producing a glass base material according to the present invention is a method for producing a glass base material by depositing silica powder containing silica particles on a starting material, the transport step for transporting silica powder, and the transport step A classification step of classifying the aggregates of silica particles contained in the silica powder being transferred, and a deposition step of depositing the transferred silica powder classified into the aggregates of silica particles on a starting material.
  • the glass base material manufacturing apparatus is an apparatus for manufacturing a glass base material by depositing silica powder containing silica particles on a starting material, the transfer device for transferring silica powder, and the transfer device. And a dissociation device that dissociates and disperses aggregates of silica particles contained in the silica powder being transferred by the transfer device, and a silica that is connected to the dissociation device and dissociates and disperses the aggregates of silica particles that are transferred And a deposition device for depositing the powder on the starting material.
  • the glass base material manufacturing apparatus is characterized in that, in the above invention, the dissociation apparatus provides an air flow for dissociating and dispersing the aggregates.
  • the glass base material manufacturing apparatus is characterized in that, in the above invention, the dissociation apparatus is an ejector.
  • the glass base material manufacturing apparatus is characterized in that, in the above invention, the ejector is supplied with an ejector gas composed of at least one of hydrogen, helium, and oxygen.
  • the glass base material manufacturing apparatus is characterized in that, in the above invention, the dissociation apparatus applies a physical impact force to the silica powder.
  • the transfer device supplies a carrier gas composed of at least one of hydrogen, helium, and oxygen for transferring the silica powder. It is characterized by.
  • the glass base material manufacturing apparatus comprises the classifying device for classifying the aggregates of the silica particles connected to the transfer device side or the deposition device side of the dissociation device in the above invention. It is characterized by.
  • the glass base material manufacturing apparatus is an apparatus for manufacturing a glass base material by depositing silica powder containing silica particles on a starting material, the transfer device for transferring silica powder, and the transfer device. And a classifying device for classifying the aggregates of silica particles contained in the silica powder being transferred by the transfer device, and a silica powder connected to the dissociating device and classifying the aggregates of the silica particles transferred And a deposition apparatus for depositing on the starting material.
  • FIG. 1 is a schematic diagram showing a configuration of a glass base material manufacturing apparatus according to Embodiment 1.
  • FIG. 2 is a schematic diagram illustrating another example of the dissociation apparatus.
  • FIG. 3 is a schematic diagram showing still another example of the dissociation apparatus.
  • FIG. 4 is a schematic view showing another example of the deposition apparatus.
  • FIG. 5 is a schematic diagram illustrating a configuration of a glass base material manufacturing apparatus according to the second embodiment.
  • FIG. 6 is a schematic diagram illustrating another example of the classification device.
  • FIG. 7 is a schematic diagram illustrating a configuration in which the dissociation apparatus is replaced with the classification apparatus illustrated in FIG. 5 in the glass base material manufacturing apparatus illustrated in FIG. 1.
  • FIG. 1 is a schematic diagram showing a configuration of a glass base material manufacturing apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, this manufacturing apparatus 100 includes a transfer device 10, a dissociation device 20 connected to the transfer device 10 via a transfer pipe P1, and a deposition device 30 connected to the dissociation device 20 via a transfer pipe P2. With.
  • the transfer device 10 includes a hopper 11 for storing the silica powder S, a powder quantitative supply device 12 having a transfer unit 12 a connected to the hopper 11, and a gas supply pipe 13 in the transfer unit 12 a of the powder quantitative supply device 12. And a three-way valve 17 connected to a transfer unit 12a of the powder fixed quantity supply device 12 via a transfer pipe 16.
  • the three-way valve 17 is connected to a transfer pipe 16, a transfer pipe P1, and a vent pipe P3 for connecting to a vent (not shown).
  • the powder quantitative supply device 12 for example, a powder supply pump, a table feeder, a screw feeder or the like can be used.
  • a powder pump the silica powder S fluidized in the hopper 11 is sent out by the pump and supplied to the transfer unit 12a.
  • the powder fixed quantity supply apparatus 12 is a table feeder, a screw feeder, etc.
  • the silica powder S is cut out from the hopper 11, and is supplied to the transfer part 12a.
  • fumed silica powder such as AEROSIL (registered trademark) from Evonik Degussa (or Nippon Aerosil Co., Ltd.) or HDK (registered trademark) from Tokuyama's Reolosil (registered trademark) or Wacker Chemie AG is used.
  • Fumed silica is generally synthetic silica particles produced by flame hydrolysis reaction using silicon tetrachloride as a raw material, and has a low impurity concentration. Therefore, fumed silica is suitable as a raw material for glass preforms for optical fibers that require high purity characteristics.
  • the average primary particle diameter definitive fumed silica has a about 7 nm ⁇ 50 nm, very small particle diameter, the specific surface area of about 50m 2 / g ⁇ 400m 2 / g according to particle size.
  • the carrier gas supply device 14 supplies the carrier gas G1, but the carrier gas G1 is preferably made of at least one of hydrogen, helium, and oxygen.
  • the dissociation device 20 includes a dissociation part 21 connected to the transfer pipes P1 and P2 and a gas supply pipe 22 for supplying the dissociation dispersion gas G3 into the dissociation part 21.
  • the dissociation and dispersion gas G3 is preferably made of at least one of hydrogen, helium, and oxygen.
  • the deposition apparatus 30 in the first embodiment has the same configuration as the deposition apparatus that manufactures the glass base material using the VAD method. That is, the deposition apparatus 30 includes a reaction vessel 31 having an exhaust port 31a, a pulling mechanism 32 that holds the starting material 1 and pulls it up while rotating, and a multi-tube burner 33 for depositing the silica powder S on the starting material 1. And.
  • the multi-tube burner 33 has a five-layer structure. The central portion, which is the first layer, is connected to the transfer pipe P2.
  • the second layer is argon gas (burner gas G4 1 ), the third layer is hydrogen gas (burner gas G4 2 ), the fourth layer is argon gas (burner gas G4 3 ), and the fifth layer is oxygen gas. (Burner gas G4 4 ) supply path.
  • the second to fifth layers are connected to a gas supply port 33a for supplying burner gases G4 1 to 4 4 .
  • the gas supply port 33a is configured to supply the burner gases G4 1 to 4 4 separately to the second to fifth layers.
  • the starting material 1 is, for example, a high-purity quartz glass rod.
  • the powder fixed quantity supply device 12 supplies the silica powder S in the hopper 11 to the transfer unit 12a.
  • the carrier gas supply device 14 supplies the carrier gas G1 to the transfer unit 12a via the gas supply pipe 13, and transfers the silica powder-containing carrier gas G2 containing the silica powder S supplied to the transfer unit 12a through the transfer pipe 16.
  • the silica powder-containing carrier gas G2 is sent to the transfer pipe P1 by switching the three-way valve 17.
  • the transfer pipe P1 transfers the silica powder-containing carrier gas G2 to the dissociation device 20.
  • the silica powder-containing carrier gas G2 is discharged from a vent (not shown) through the vent pipe P3 by switching the three-way valve 17.
  • the control of the amount of the silica powder S supplied to the transfer unit 12a is performed by adjusting the discharge amount of the silica powder in the fixed quantity supply apparatus. Made. Therefore, the discharge amount of the silica powder and the flow rate of the carrier gas G1 can be controlled independently. Thereby, the density
  • the silica powder S particularly fumed silica particles having a large specific surface area of about 50 m 2 / g to 400 m 2 / g
  • the primary particles aggregate It is easy to form a large particle size aggregate.
  • primary aggregates Alignment
  • secondary aggregates formed by physical aggregation of primary aggregates.
  • silica powder generally exists in the form of secondary aggregates or primary aggregates rather than primary particles.
  • fumed silica having an average primary particle diameter of 7 nm is used as the carrier gas.
  • the inside of the transfer pipe was transferred.
  • the particle size distribution at the time of transfer was measured using an on-line particle size distribution measuring device.
  • the particle diameter (median diameter) corresponding to 50% of the cumulative distribution curve was calculated from the obtained particle size distribution curve, and it was 17.5 ⁇ m. From this result, it is presumed that the fumed silica particles exist mainly in the state of primary aggregates or secondary aggregates in the carrier gas.
  • the dissociation apparatus 20 blows the dissociation / dispersion gas G3 in the dissociation part 21 against the silica powder-containing carrier gas G2 transferred from the transfer pipe P1, thereby dissociating and dispersing gas G3.
  • the agglomerates of silica powder S are dissociated and dispersed using interparticle collisions and shearing forces caused by the air current.
  • the silica powder S being transferred present in the silica powder-containing carrier gas G2 is dissociated and dispersed in aggregates, and the degree of aggregation of the aggregates is reduced.
  • the degree of dissociation and dispersion of the aggregate can be adjusted by, for example, the flow rate of the dissociation and dispersion gas G3, the structure of the dissociation part 21, and the like. For example, by increasing the flow rate of the dissociation / dispersion gas G3, collision between particles and collision between particles and a pipe inner wall are promoted, and the degree of aggregation is further reduced. Moreover, dissociation of the aggregate can be further promoted by forming the dissociation part 21 in a multistage structure. Moreover, dissociation of the aggregates can be further promoted by providing a throttling mechanism in the dissociation part 21 and changing the air flow rapidly.
  • the degree of dissociation / dispersion is preferably adjusted so that the secondary aggregate is dissociated to the particle size of the primary aggregate.
  • the transfer pipe P ⁇ b> 2 transfers the silica powder-containing carrier gas G ⁇ b> 2 containing the silica powder S with a reduced degree of aggregation to the deposition apparatus 30.
  • the multi-pipe burner 33 is supplied with the silica powder-containing carrier gas G 2 in the first layer through the transfer pipe P 2, and burner gases G 4 1 to G 4 in the second to fifth layers from the gas supply port 33 a. 4 is supplied.
  • the multi-tube burner 33 sprays the silica powder S1 in the silica powder-containing carrier gas G2 together with the burner flame F1 toward the starting material 1 that is pulled up while the pulling mechanism 32 rotates, and adheres to the surface of the starting material 1. Deposit.
  • the silica powder to be sprayed is dispersed in a state of primary aggregates or secondary aggregates, welding of the aggregates or melt densification of the aggregates occurs at the high temperature portion of the burner flame. .
  • giant particles having a particle size several orders of magnitude larger than the primary particle size are generated.
  • silica powder is deposited on the starting material, it causes problems such as generation of burrs on the deposition surface and deterioration of the flatness of the deposition surface.
  • the aggregate is dissociated and dispersed by the dissociation device 20, and the number of aggregates and the degree of aggregation are reduced.
  • the diameter of the fumed silica particles in the silica powder S1 to be converted also decreases.
  • the fumed silica particles are prevented from depositing on the surface of the starting material 1 in a state where a huge particle mass is formed.
  • the carrier gas and the unused silica powder S1 are exhausted from the exhaust port 31a of the reaction vessel 31 as the exhaust gas G5, so that the inside of the reaction vessel 31 is maintained in a state suitable for the deposition of the silica powder S1. .
  • a glass base material 2 having a deposition surface can be manufactured.
  • the carrier gas is supplied through the mesh at the lower part of the tank storing the silica powder as described in Patent Document 4, so that the silica powder in the tank is fluidized and contains the silica powder.
  • a method of transferring a carrier gas may be used.
  • a method of transferring the carrier gas containing silica powder by fluidizing the silica powder in the tank and sucking the fluidized silica powder and carrier gas by the negative pressure generating means may be used.
  • the silica powder discharge amount is controlled only by adjusting the flow rate of the carrier gas or the negative pressure generating gas supplied to the negative pressure generating means. The amount and the carrier gas flow rate are not controlled independently, but are proportional.
  • FIG. 2 is a schematic diagram illustrating another example of the dissociation apparatus.
  • the dissociation device 40 is an ejector, and includes an ejector body 41 connected to the transfer pipes P1 and P2, and a gas supply pipe 42 for supplying the ejector gas G6 to the ejector body 41.
  • the ejector gas G6 is preferably made of at least one of hydrogen, helium, and oxygen.
  • the dissociation device 40 is agglomerated by the collision between particles, the collision between the particles and the wall of the ejector body 41 or the transfer pipe P2, and the shear force applied to the aggregated particles, which are obtained by the ejector gas G6 and the suction force generated thereby. Aggregates can be dissociated and dispersed. Further, the dissociation device 40 can control the dispersibility of the particles by changing the flow rate of the ejector gas G6 supplied to the ejector body 41. In addition, as a structure of the ejector main body 41, it is good also as a mechanism which changes the clearance gap of an internal ejector part discretely, and it is good also as a mechanism which changes continuously. As the dissociation device, a device using a venturi that can dissociate and disperse the aggregates by the flow of gas, an orifice, a coil in which a transfer tube is spirally wound, and the like can be used.
  • FIG. 3 is a schematic diagram showing still another example of the dissociation apparatus.
  • the dissociation device 50 includes an impeller 51. By rotating the impeller 51 in the direction of the arrow, a physical impact force is applied to the aggregate to dissociate and disperse it.
  • each dissociation apparatus is provided in the immediate vicinity of the deposition apparatus because the dissociated and dispersed particles are prevented from reaggregating during transfer to the deposition apparatus.
  • FIG. 4 is a schematic view showing another example of the deposition apparatus.
  • the deposition apparatus 60 has the same configuration as the deposition apparatus that manufactures the glass base material using the OVD method. That is, the deposition apparatus 60 includes a reaction vessel 61 having an exhaust port 61a, a rotation mechanism (not shown) that holds and rotates the starting material 3, and a multi-tube burner 63 for depositing the silica powder S on the starting material 3. And.
  • the multi-tube burner 63 has a five-layer structure. The central portion, which is the first layer, is connected to the transfer pipe P2.
  • the second layer is argon gas (burner gas G7 1 ), the third layer is hydrogen gas (burner gas G7 2 ), the fourth layer is argon gas (burner gas G7 3 ), and the fifth layer is oxygen gas. (Burner gas G7 4 ) supply path.
  • Second layer - fifth layer is connected to the gas supply port 63a for supplying the burner gas G7 1 ⁇ 7 4.
  • Gas supply port 63a is the second layer - fifth layer of the layers in the burner gas G7 1 ⁇ 7 4 configured to supply separately.
  • the multi-tube burner 63 is supplied with the silica powder-containing carrier gas G2 supplied to the first layer by the transfer pipe P2 and having a reduced degree of agglomeration of the aggregates, and a gas supply port. Burner gases G7 1 to G7 4 are supplied to the second to fifth layers from 63a.
  • the multi-tube burner 63 sprays the silica powder S2 dispersed in the silica powder-containing carrier gas G2 together with the burner flame F2 while moving left and right along the longitudinal direction of the rotating starting material 3, and the starting material 3 It adheres and deposits on the surface of
  • the silica powder to be sprayed is dispersed in a state of primary aggregates or secondary aggregates, welding of the aggregates or melt densification of the aggregates occurs at the high temperature portion of the burner flame. .
  • giant particles having a particle size several orders of magnitude larger than the primary particle size are generated.
  • silica powder S2 When such huge particles are generated in a burner flame, when silica powder is deposited on the starting material, it causes problems such as generation of burrs on the deposition surface and deterioration of the flatness of the deposition surface.
  • the aggregates are dissociated and dispersed by the dissociation device, and the number of aggregates and the degree of aggregation are reduced. Therefore, the silica powder S2 is fused and integrated in the high temperature portion of the burner flame F2.
  • the diameter of fumed silica particles is also decreasing. As a result, the fumed silica particles are prevented from depositing on the surface of the starting material 3 in a state where a huge particle mass is formed.
  • a porous glass base material 4 having a deposited surface with good smoothness in which generation of irregularities on the deposited surface and deterioration of smoothness of the deposited surface are suppressed.
  • the carrier gas and the unused silica powder S2 are exhausted as the exhaust gas G8 from the exhaust port 61a of the reaction vessel 61, so that the inside of the reaction vessel 61 is maintained in a state suitable for the deposition of the silica powder S2. .
  • FIG. 5 is a schematic diagram showing a configuration of a glass base material manufacturing apparatus according to Embodiment 2 of the present invention.
  • the manufacturing apparatus 200 includes a classification device 70 inserted in the transfer pipe P ⁇ b> 1 on the transfer device 10 side of the deposition apparatus 30 in the manufacturing apparatus 100 according to the first embodiment shown in FIG. 1. It is a thing.
  • the classification device 70 includes a chamber 71.
  • the flow velocity of the passing gas decreases due to the rapid expansion of the volume in the chamber 71. Therefore, of the particles contained in the gas, particles having a large particle size settle in the lower part of the chamber 71. And only the small particle
  • the classification device 70 in the previous stage of the dissociation device 20, among the aggregates of the silica powder S contained in the silica powder-containing carrier gas G2 transferred by the transfer pipe P1, an aggregate having a large particle size (for example, 10 ⁇ m) As described above, it is possible to classify aggregates having a small particle diameter (for example, a single micron or less). As a result, only the aggregates having a small particle diameter are supplied to the dissociation apparatus 20, and therefore the degree of dissociation of the aggregates in the dissociation apparatus 20 can be further improved.
  • the classification device 70 may be inserted on the deposition device 30 side, which is a subsequent stage of the dissociation device 20. As a result, even if there are large-diameter particles that could not be sufficiently dissociated by the dissociation apparatus 20 or re-aggregated in the piping, they can be removed, so that the large-diameter particles are stored in the deposition apparatus 20. Can be more reliably prevented from being supplied.
  • FIG. 6 is a schematic diagram illustrating another example of the classification device.
  • the classifier 80 includes a baffle plate 82 in a chamber 81.
  • the classifying device 80 is of a type in which the gas flow is rapidly changed by the baffle plate 82 so that large-diameter particles that cannot follow the gas flow are settled and removed in the lower part of the chamber.
  • a cyclone classifier can be used as another example of the classification device.
  • classifiers can be said to have the same function as the dissociator from the viewpoint that only small-diameter particles can be separated and transferred. Therefore, it is also possible to use a classifier as an alternative to a dissociator.
  • FIG. 7 is a schematic diagram showing a configuration in which the dissociation apparatus 20 is replaced with a classification apparatus 70 shown in FIG. 5 in the glass base material manufacturing apparatus 100 shown in FIG. Even with this manufacturing apparatus 100A, the glass base material 2 having a deposited surface with good smoothness can be manufactured as in the first embodiment.
  • the large diameter particles removed by the classifier may be returned to the hopper 11 of the transfer device 10, for example. Thereby, the silica powder S can be used efficiently.
  • Example 1 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
  • a glass base material is obtained by replacing the dissociation device with the ejector shown in FIG. 2 and replacing the deposition device with the OVD method device shown in FIG. Manufactured.
  • silica powder fumed silica powder having an average primary particle diameter of 7 nm was used. This silica powder was transferred by a powder pump. The powder discharge amount was adjusted by the number of rotations of the pump, and the silica powder was sent out at a discharge amount of 12 g / min. Then, the discharged silica powder was transferred through the transfer tube as a silica powder-containing carrier gas by the carrier gas.
  • the ejector gas of the ejector As the ejector gas of the ejector as the dissociator, one of hydrogen, argon, helium, and oxygen was selected and used. And the dispersion degree of the aggregate in the silica powder containing carrier gas was adjusted with the flow volume of the ejector gas supplied to an ejector.
  • the carrier gas containing silica powder including the ejector gas is supplied to the first layer of the multi-tube burner, and the hydrogen gas and oxygen supplied to the third and fifth layers of the multi-tube burner are used.
  • the starting material was sprayed with a flame formed by gas.
  • the ejector gas is preferably an auxiliary combustion gas such as oxygen or a flammable gas such as hydrogen.
  • a gas with high conductivity is preferred. The reason is that welding to the starting material further proceeds by efficiently increasing the temperature of the silica particles in the burner flame.
  • the carrier gas species from the viewpoint of deposition efficiency, it is desirable to select a gas having a higher thermal conductivity in the case of an auxiliary combustion gas, a flammable gas, or an inert gas.
  • the glass base material made of porous glass deposited on the starting material was put into a quartz furnace core tube, and dehydration and sintering processes were performed in an atmosphere of helium and chlorine gas.
  • the obtained optical fiber preform was a transparent body without bubbles.
  • Example 2 As an embodiment of the present invention, in the manufacturing method having the configuration shown in FIG. 5, the dispersing device is replaced with a classifier having a baffle plate shown in FIG. 6, the dissociating device is replaced with an ejector shown in FIG.
  • the glass base material was manufactured by the apparatus replaced with the apparatus for OVD method shown in the above.
  • silica powder fumed silica powder having an average primary particle diameter of 7 nm was used. This silica powder was transferred by a powder pump. The powder discharge amount was adjusted by the number of rotations of the pump, and the silica powder was sent out at a discharge amount of 12 g / min. Then, the discharged silica powder was transferred through the transfer tube as a silica powder-containing carrier gas by the carrier gas.
  • a mixed gas of oxygen and argon was used as the ejector gas of the ejector as the dissociator. And the dispersion degree of the aggregate in the silica powder containing carrier gas was adjusted with the flow volume of the ejector gas supplied to an ejector.
  • the carrier gas containing silica powder including the ejector gas is supplied to the first layer of the multi-tube burner, and the hydrogen gas and oxygen supplied to the third and fifth layers of the multi-tube burner are used.
  • the starting material was sprayed with a flame formed by gas.
  • the glass base material made of porous glass deposited on the starting material was put into a quartz furnace core tube, and dehydration and sintering processes were performed in an atmosphere of helium and chlorine gas.
  • the obtained optical fiber preform was a transparent body without bubbles.
  • Example 2 (Comparative example) Next, in the production apparatus used in Example 1, the ejector as the dissociation apparatus was not operated, and the glass base material was produced in the same manner as Example 1 except for the other points.
  • Example 2 a glass base material made of porous glass deposited on the starting material was put into a quartz furnace core tube, and dehydration and sintering processes were performed in a helium and chlorine gas atmosphere.
  • the obtained glass base material contained closed pores inside, and the surface was in a state of severe irregularities reflecting the surface state at the time of deposition.
  • Example 1 it is preferable to dissociate and disperse the aggregate so as to have a particle size of 1 ⁇ m or less by adjusting the flow rate of the ejector gas. Moreover, it is more preferable to classify the aggregates as in Example 2.
  • the burner of the deposition apparatus may be provided with a mechanism as a dissociation apparatus. That is, for example, the multi-tube burner 33 of FIG. 1 may be provided with a supply pipe for supplying the dissociation / dispersion gas G3 to the first layer so as to perform dissociation dispersion in the first layer.
  • the dissociation device may be realized by another mechanism that applies an air current or a physical impact force, or may dissociate and disperse the aggregate using a centrifugal force generated by a cyclone or the like.
  • the burner in the deposition apparatus is not limited to the multi-tube burner, and may be a multi-nozzle burner, for example. Moreover, it is good also as a form which arrange
  • the present invention includes a configuration in which the above-described components are appropriately combined.
  • the glass base material manufacturing method and manufacturing apparatus according to the present invention are suitable for use in optical fiber manufacturing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

 シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する方法であって、シリカ粉末を移送する移送工程と、前記移送工程において移送中のシリカ粉末に含まれるシリカ粒子の凝集体を解離分散する解離工程と、前記移送され、シリカ粒子の凝集体を解離分散したシリカ粉末を出発材に堆積させる堆積工程と、を含む。これによって、平滑性が良好な表面を有するガラス母材を製造することができるガラス母材の製造方法および製造装置が提供される。

Description

ガラス母材の製造方法および製造装置
 本発明は、ガラス母材の製造方法および製造装置に関するものである。
 石英ガラス系光ファイバは、通常は石英ガラスからなる光ファイバ母材を線引きして製造される。この光ファイバ母材の製造方法としては、VAD(Vapor-phase Axial Deposition)法、OVD(Outside Vapor-phase Deposition)法、MCVD(Modified Chemical Vapor Deposition)法、プラズマ法等の方法が広く用いられている。これらの製造方法では、石英ガラスの原料として、四塩化珪素を用いることが一般的である。そして、四塩化珪素ガスを火炎中で加水分解反応または酸化反応させ、これによってシリカ微粒子を生成し、基材である出発材に堆積させることで、多孔質状のガラス母材を製造する。多孔質状のガラス母材は、後に焼結工程を行うことによって透明ガラス化され、線引きを行うための透明な光ファイバ母材となる。
 ここで、四塩化珪素は腐食性の強い物質であるため、原料供給系設備の保守、管理が煩雑である。また、加水分解や酸化反応の際に、塩化水素や塩素が発生し、これらガスの処理のための排ガス、排水処理の工程上、設備上の負担が発生する。そこで、四塩化珪素の代わりにシリカ(二酸化珪素)粉末を原料とするガラス母材の製造方法が検討されている(特許文献1~6参照)。シリカ粉末を原料として使用すれば、四塩化珪素を使用しなくてもよく、かつ塩化水素や塩素の発生がないので、上記の煩雑さや負担を軽減することができる。
 シリカ粉末を原料として使用する場合、たとえば出発材に向けて火炎とともにシリカ粉末を噴霧して固着・堆積させることで、多孔質状のガラス母材を製造する。使用するシリカ粉末は、たとえば火炎加水分解反応で合成したシリカ粒子(フュームドシリカ)を含むものである。フュームドシリカは、不純物濃度が低いため、高純度特性が要求される光ファイバ製造用のガラス母材の原料として好適である。
特開昭61-077631号公報 特開2004-300006号公報 特開2005-255502号公報 国際公開第2004/083139号 特開2001-294440号公報 特開2003-020243号公報
 しかしながら、シリカ粉末としてフュームドシリカのような粒子径が5nm~50nmと小さい粒子を含むシリカ粉末を使用した場合、堆積表面に突起状堆積物(ブツ)が発生したり、堆積表面の平滑性が劣化したりする場合があるという問題があった。このようなガラス母材におけるブツや、堆積表面の平滑性の劣化の存在は、これを用いて光ファイバを製造した場合に光ファイバの外径変動やクラッド部の非円化などの光ファイバ特性の劣化を引き起こす原因となる。
 本発明は、上記に鑑みてなされたものであって、平滑性が良好な表面を有するガラス母材を製造することができるガラス母材の製造方法および製造装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るガラス母材の製造方法は、シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する方法であって、シリカ粉末を移送する移送工程と、前記移送工程において移送中のシリカ粉末に含まれるシリカ粒子の凝集体を解離分散する解離工程と、前記移送され、シリカ粒子の凝集体を解離分散したシリカ粉末を出発材に堆積させる堆積工程と、を含むことを特徴とする。
 また、本発明に係るガラス母材の製造方法は、上記の発明において、前記解離工程は、気流によって前記凝集体を解離分散することを特徴とする。
 また、本発明に係るガラス母材の製造方法は、上記の発明において、前記解離工程は、エジェクタによって前記凝集体を解離分散することを特徴とする。
 また、本発明に係るガラス母材の製造方法は、上記の発明において、前記解離工程は、前記エジェクタに水素、ヘリウム、および酸素の少なくとも1種類からなるエジェクタガスを供給することを特徴とする。
 また、本発明に係るガラス母材の製造方法は、上記の発明において、前記解離工程は、前記シリカ粉末に物理的衝撃力を加えることによって前記凝集体を解離分散することを特徴とする。
 また、本発明に係るガラス母材の製造方法は、上記の発明において、前記解離工程は、前記凝集体を1μm以下の粒径になるように解離分散することを特徴とする。
 また、本発明に係るガラス母材の製造方法は、上記の発明において、前記移送工程は、水素、ヘリウム、および酸素の少なくとも1種類からなるキャリアガスを用いてシリカ粉末を移送することを特徴とする。
 また、本発明に係るガラス母材の製造方法は、上記の発明において、前記解離工程の前または後に、前記シリカ粒子の凝集体を分級する分級工程を含むことを特徴とする。
 また、本発明に係るガラス母材の製造方法は、シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する方法であって、シリカ粉末を移送する移送工程と、前記移送工程において移送中のシリカ粉末に含まれるシリカ粒子の凝集体を分級する分級工程と、前記移送され、シリカ粒子の凝集体を分級したシリカ粉末を出発材に堆積させる堆積工程と、を含むことを特徴とする。
 また、本発明に係るガラス母材の製造装置は、シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する装置であって、シリカ粉末を移送する移送装置と、前記移送装置に接続し、該移送装置によって移送中のシリカ粉末に含まれるシリカ粒子の凝集体を解離分散する解離装置と、前記解離装置に接続し、前記移送され、シリカ粒子の凝集体を解離分散したシリカ粉末を出発材に堆積させる堆積装置と、を備えることを特徴とする。
 また、本発明に係るガラス母材の製造装置は、上記の発明において、前記解離装置は、前記凝集体を解離分散するための気流を与えることを特徴とする。
 また、本発明に係るガラス母材の製造装置は、上記の発明において、前記解離装置は、エジェクタであることを特徴とする。
 また、本発明に係るガラス母材の製造装置は、上記の発明において、前記エジェクタは、水素、ヘリウム、および酸素の少なくとも1種類からなるエジェクタガスが供給されるものであることを特徴とする。
 また、本発明に係るガラス母材の製造装置は、上記の発明において、前記解離装置は、前記シリカ粉末に物理的衝撃力を加えることを特徴とする。
 また、本発明に係るガラス母材の製造装置は、上記の発明において、前記移送装置は、前記シリカ粉末を移送するための水素、ヘリウム、および酸素の少なくとも1種類からなるキャリアガスを供給することを特徴とする。
 また、本発明に係るガラス母材の製造装置は、上記の発明において、前記解離装置の前記移送装置側または前記堆積装置側に接続した、前記シリカ粒子の凝集体を分級する分級装置を備えることを特徴とする。
 また、本発明に係るガラス母材の製造装置は、シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する装置であって、シリカ粉末を移送する移送装置と、前記移送装置に接続し、該移送装置によって移送中のシリカ粉末に含まれるシリカ粒子の凝集体を分級する分級装置と、前記解離装置に接続し、前記移送され、シリカ粒子の凝集体を分級したシリカ粉末を出発材に堆積させる堆積装置と、を備えることを特徴とする。
 本発明によれば、粒子径が小さい粒子を含むシリカ粉末を使用した場合においても、平滑性が良好な表面を有するガラス母材を製造することができるという効果を奏する。
図1は、実施の形態1に係るガラス母材の製造装置の構成を示す模式図である。 図2は、解離装置の別の一例を示す模式図である。 図3は、解離装置のさらに別の一例を示す模式図である。 図4は、堆積装置の別の一例を示す模式図である。 図5は、実施の形態2に係るガラス母材の製造装置の構成を示す模式図である。 図6は、分級装置の別の一例を示す模式図である。 図7は、図1に示すガラス母材の製造装置において、解離装置を図5に示す分級装置に置き換えた構成を示す模式図である。
 以下に、図面を参照して本発明に係るガラス母材の製造方法および製造装置の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
(実施の形態1)
 図1は、本発明の実施の形態1に係るガラス母材の製造装置の構成を示す模式図である。図1に示すように、この製造装置100は、移送装置10と、移送装置10に移送管P1を介して接続した解離装置20と、解離装置20に移送管P2を介して接続した堆積装置30とを備える。
 はじめに移送装置10について説明する。移送装置10は、シリカ粉末Sを貯留するホッパー11と、ホッパー11に接続した、移送部12aを有する粉体定量供給装置12と、粉体定量供給装置12の移送部12aにガス供給管13を介して接続したキャリアガス供給装置14と、粉体定量供給装置12の移送部12aに移送管16を介して接続した三方弁17とを備えている。なお、三方弁17は、移送管16と、移送管P1と、不図示のベントに接続するための通気管P3とに接続している。
 粉体定量供給装置12としては、例えば、粉体用ポンプや、テーブルフィーダ、スクリューフィーダ等の定量供給装置が使用できる。粉体用ポンプの場合は、ホッパー11内で流動化させたシリカ粉末Sを、ポンプにより送り出して移送部12aに供給する。また、粉体定量供給装置12がテーブルフィーダ、スクリューフィーダ等の場合は、ホッパー11からシリカ粉末Sを切り出して移送部12aに供給する。
 シリカ粉末Sとしては、エボニック デグサ社(または日本アエロジル社)のAEROSIL(登録商標)粉末や、トクヤマのレオロシール(登録商標)またはWacker Chemie AG社のHDK(登録商標)等のフュームドシリカ粉末が使用可能である。フュームドシリカは、一般的に、四塩化珪素を原料として、火炎加水分解反応により作製した合成シリカ粒子であり、不純物濃度が低い。そのため、フュームドシリカは、高純度特性が要求される光ファイバ用ガラス母材の原料として好適である。フュームドシリカおける平均一次粒子径は、7nm~50nm程度と、非常に小粒径であり、粒子径に応じて50m/g~400m/g程度の比表面積を有する。
 キャリアガス供給装置14は、キャリアガスG1を供給するものであるが、キャリアガスG1は、水素、ヘリウム、および酸素の少なくとも1種類からなるものであることが好ましい。
 つぎに解離装置20について説明する。解離装置20は、移送管P1、P2に接続した解離部21と、解離部21内に解離分散用ガスG3を供給するためのガス供給管22とを備えている。解離分散用ガスG3は、水素、ヘリウム、および酸素の少なくとも1種類からなるものであることが好ましい。
 つぎに堆積装置30について説明する。本実施の形態1における堆積装置30は、VAD法を用いてガラス母材を製造する堆積装置と同様の構成を有する。すなわち、この堆積装置30は、排気口31aを有する反応容器31と、出発材1を保持し、回転させながら引き上げる引き上げ機構32と、出発材1にシリカ粉末Sを堆積させるための多重管バーナ33とを備えている。なお、多重管バーナ33は5層構造となっている。1層目である中央部は移送管P2に接続している。また、2層目がアルゴンガス(バーナ用ガスG4)、3層目が水素ガス(バーナ用ガスG4)、4層目がアルゴンガス(バーナ用ガスG4)、5層目が酸素ガス(バーナ用ガスG4)の供給路となっている。2層目~5層目は、バーナ用ガスG4~4を供給するためのガス供給口33aに接続している。ガス供給口33aは2層目~5層目の各層にバーナ用ガスG4~4を別々に供給するように構成されている。また、出発材1は、たとえば純度の高い石英ガラス棒である。
 つぎに、この製造装置100を用いて本発明の実施の形態に係る製造方法を実施する場合について説明する。
 まず、移送装置10において、粉体定量供給装置12は、ホッパー11内のシリカ粉末Sを移送部12aに供給する。キャリアガス供給装置14は、ガス供給管13を介してキャリアガスG1を移送部12aに供給し、移送部12aに供給されたシリカ粉末Sを含んだシリカ粉末含有キャリアガスG2を、移送管16を介して三方弁17に移送する。シリカ粉末含有キャリアガスG2は、三方弁17の切り替えによって、移送管P1に送出される。移送管P1は、シリカ粉末含有キャリアガスG2を解離装置20に移送する。シリカ粉末含有キャリアガスG2を移送管P1に送出しない場合は、三方弁17の切り替えによって、通気管P3を介して不図示のベントからシリカ粉末含有キャリアガスG2を排出する。
 なお、粉体定量供給装置12として、上述したような各種定量供給装置を用いた場合、移送部12a供給するシリカ粉末Sの量の制御は、定量供給装置におけるシリカ粉末吐出量を調整することによりなされる。したがって、シリカ粉末吐出量とキャリアガスG1の流速は独立に制御することができる。これによって、シリカ粉末含有キャリアガスG2に分散させるシリカ粉末Sの濃度およびシリカ粉末Sの移送量を、自由かつ容易に調整することができる。
 ここで、シリカ粉末S、特に50m/g~400m/g程度の大きな比表面積を有するフュームドシリカの粒子を含む場合は、一般的に凝集性が高く、一次粒子同士が凝集して、大粒径の凝集体を形成しやすい。凝集体の形態としては、一次粒子同士が熱溶着あるいは化学結合して形成された一次凝集体(Aggregate)、および、さらに一次凝集体が物理凝集して形成された二次凝集体(Agglomerate)が知られている。また、気体中や液体中では、シリカ粉末は、一般的に一次粒子であるよりは、二次凝集体や一次凝集体の状態で存在することが知られている。
 たとえば、本発明者らが、キャリアガスでシリカ粉末を移送する場合にキャリアガス中に存在するシリカ粉末の状態を評価するため、平均一次粒子径が7nmのフュームドシリカを、空気をキャリアガスとして、移送管内を移送した。このとき、移送の際の粒度分布をオンライン粒度分布測定装置を用いて測定した。得られた粒度分布曲線から積算分布曲線の50%に相当する粒子径(メジアン径)を算出したところ、17.5μmであった。この結果から、キャリアガス中では、フュームドシリカの粒子は、主に一次凝集体または二次凝集体の状態で存在しているものと推測される。
 したがって、シリカ粉末含有キャリアガスG2中のシリカ粉末Sは、一次凝集体、あるいは、または二次凝集体の状態で存在していると考えられる。そこで、本実施の形態では、解離装置20は、移送管P1から移送されたシリカ粉末含有キャリアガスG2に対して、解離部21内において、解離分散用ガスG3を吹き付けて、解離分散用ガスG3の気流による粒子間衝突やせん断力を用いて、シリカ粉末Sの凝集体を解離分散させるようにしている。これによって、シリカ粉末含有キャリアガスG2中に存在する、移送中のシリカ粉末Sは、凝集体が解離分散され、凝集体の凝集の程度が低減されたものとなる。この凝集体の解離分散の程度は、たとえば解離分散用ガスG3の流速や、解離部21の構造などによって調整することができる。たとえば、解離分散用ガスG3の流速を高めることで、粒子間衝突や粒子と配管内壁との衝突が促進され、凝集の程度がより低減されたものになる。また、解離部21を多段構造にすることで、凝集体の解離をより促進することができる。また、解離部21に絞り機構を設け、気流を急激に変化させることで、凝集体の解離をより促進することができる。なお、解離分散の程度は、二次凝集体が一次凝集体の粒子径程度にまで解離された状態に調整されることが望ましい。
 つぎに、移送管P2は、凝集の程度が低減されたシリカ粉末Sを含有するシリカ粉末含有キャリアガスG2を堆積装置30に移送する。堆積装置30においては、多重管バーナ33は、移送管P2により1層目にシリカ粉末含有キャリアガスG2を供給されるとともに、ガス供給口33aから2~5層目にバーナ用ガスG4~G4を供給される。そして、多重管バーナ33は、引き上げ機構32が回転させながら引き上げる出発材1に向けて、シリカ粉末含有キャリアガスG2中のシリカ粉末S1をバーナ火炎F1とともに噴霧し、出発材1の表面に固着、堆積させる。
 ここで、噴霧されるシリカ粉末が、一次凝集体、または二次凝集体の状態で多く分散している場合、バーナ火炎の高温部で、凝集体同士の溶着や凝集体の溶融緻密化が起こる。その結果、1次粒子径よりも数桁以上も大きな粒子径を有する巨大粒子が生成される。このような巨大粒子がバーナ火炎中で生成されると、シリカ粉末を出発材に堆積させた際、堆積表面でのブツの発生や、堆積表面の平坦性の劣化等の問題を引き起こす。
 これに対して本実施の形態のシリカ粉末S1は、解離装置20によって、凝集体が解離分散され、凝集体の数や凝集の程度が低減されたものなので、バーナ火炎F1の高温部で溶融一体化するシリカ粉末S1中のフュームドシリカ粒子の径も減少している。その結果、フュームドシリカ粒子が巨大な粒子塊を形成した状態で出発材1の表面に堆積することが抑制される。これによって、堆積表面のブツの発生や堆積表面の平滑性の劣化が抑制された、平滑性が良好な堆積表面を有する多孔質状のガラス母材2を製造することができる。
 なお、キャリアガスや、使用されなかったシリカ粉末S1は、反応容器31の排気口31aから排気ガスG5として排気されるため、反応容器31内はシリカ粉末S1の堆積に適切な状態に保たれる。
 以上説明したように、本実施の形態1に係る製造方法および製造装置によれば、シリカ粉末S1の堆積表面におけるブツの発生や平滑性の劣化を抑制することができるので、平滑性が良好な堆積表面を有するガラス母材2を製造することができる。
 なお、移送装置10としては、特許文献4に記載のような、シリカ粉末を貯留するタンク下部のメッシュを通じてキャリアガスを供給することで、タンク内のシリカ粉末を流動化させ、シリカ粉末を含有するキャリアガスを移送する方式のものでもよい。また、同様に、タンク内のシリカ粉末を流動化させ、流動化したシリカ粉末とキャリアガスとを負圧発生手段により吸引することにより、シリカ粉末を含有するキャリアガスを移送する方式のものでもよい。なお、これらの方式を用いる場合は、シリカ粉末吐出量の制御は、キャリアガスの流量または負圧発生手段に供給する負圧発生用ガスの流量を調整することによってのみなされるため、シリカ粉末吐出量とキャリアガス流量は独立に制御せず、比例関係となる。
 また、解離装置は上記実施の形態のものに限られない。図2は、解離装置の別の一例を示す模式図である。図2に示すように、この解離装置40は、エジェクタであって、移送管P1、P2に接続したエジェクタ本体41と、エジェクタ本体41にエジェクタガスG6を供給するためのガス供給管42とを備えている。エジェクタガスG6は、後述するように水素、ヘリウム、および酸素の少なくとも1種類からなるものが好ましい。
 解離装置40は、エジェクタガスG6とそれにより発生した吸引力によって得られる、粒子同士の衝突、粒子とエジェクタ本体41内または移送管P2内の壁面との衝突、凝集粒子に加わるせん断力によって、凝集体を解離分散することができる。また、解離装置40は、エジェクタ本体41に供給するエジェクタガスG6の流量を変えることによって、粒子の分散性を制御することができる。なお、エジェクタ本体41の構造として、内部のエジェクタ部の隙間を離散的に変える機構としても良いし、連続的に変える機構としても良い。また、解離装置としては、エジェクタと同様に気体の流動によって凝集体を解離分散できるベンチュリ、オリフィス、移送管を螺旋状に巻いたコイルなどを用いた装置を使用することができる。
 図3は、解離装置のさらに別の一例を示す模式図である。解離装置50は、インペラ51を備えている。インペラ51を矢印の方向に回転させることによって、凝集体に物理的衝撃力を加えて、解離分散させるものである。
 なお、上記の各解離装置は、堆積装置の直近に設ければ、解離分散させた粒子が、堆積装置への移送中に再凝集することが防止されるので好ましい。
 また、図4は、堆積装置の別の一例を示す模式図である。図4に示すように、この堆積装置60は、OVD法を用いてガラス母材を製造する堆積装置と同様の構成を有する。すなわち、この堆積装置60は、排気口61aを有する反応容器61と、出発材3を保持し、回転させる不図示の回転機構と、出発材3にシリカ粉末Sを堆積させるための多重管バーナ63とを備えている。多重管バーナ63は5層構造となっている。1層目である中央部は移送管P2に接続している。また、2層目がアルゴンガス(バーナ用ガスG7)、3層目が水素ガス(バーナ用ガスG7)、4層目がアルゴンガス(バーナ用ガスG7)、5層目が酸素ガス(バーナ用ガスG7)の供給路となっている。2層目~5層目は、バーナ用ガスG7~7を供給するためのガス供給口63aに接続している。ガス供給口63aは2層目~5層目の各層にバーナ用ガスG7~7を別々に供給するように構成されている。
 この堆積装置60においては、多重管バーナ63は、移送管P2により1層目に供給された、凝集体の凝集の程度が低減されたシリカ粉末含有キャリアガスG2を供給されるとともに、ガス供給口63aから2層目~5層目にバーナ用ガスG7~G7を供給される。そして、多重管バーナ63は、回転する出発材3の長手方向に沿って左右に移動しながら、シリカ粉末含有キャリアガスG2中に分散されたシリカ粉末S2をバーナ火炎F2とともに噴霧し、出発材3の表面に、固着、堆積させる。ここで、噴霧されるシリカ粉末が、一次凝集体、または二次凝集体の状態で多く分散している場合、バーナ火炎の高温部で、凝集体同士の溶着や凝集体の溶融緻密化が起こる。その結果、一次粒子径よりも数桁以上も大きな粒子径を有する巨大粒子が生成される。このような巨大粒子がバーナ火炎中で生成されると、シリカ粉末を出発材に堆積させた際、堆積表面でのブツの発生や、堆積表面の平坦性の劣化等の問題を引き起こす。これに対してシリカ粉末S2は、解離装置によって、凝集体が解離分散され、凝集体の数や凝集の程度が低減されたものなので、バーナ火炎F2の高温部で溶融一体化するシリカ粉末S2中のフュームドシリカ粒子の径も減少している。その結果、フュームドシリカ粒子が巨大な粒子塊を形成した状態で出発材3の表面に堆積することが抑制される。これによって、堆積表面のブツの発生や堆積表面の平滑性の劣化が抑制された、平滑性が良好な堆積表面を有する多孔質状のガラス母材4を製造することができる。なお、キャリアガスや、使用されなかったシリカ粉末S2は、反応容器61の排気口61aから排気ガスG8として排気されるため、反応容器61内はシリカ粉末S2の堆積に適切な状態に保たれる。
(実施の形態2)
 図5は、本発明の実施の形態2に係るガラス母材の製造装置の構成を示す模式図である。図5に示すように、この製造装置200は、図1に示した実施の形態1に係る製造装置100において、堆積装置30の移送装置10側の移送管P1の途中に分級装置70を介挿したものである。分級装置70はチャンバー71を備えている。
 分級装置70では、チャンバー71における容積の急激な拡大により、通過するガスの流速が減少する。そのため、ガスに含まる粒子のうち粒径の大きな粒子はチャンバー71の下部に沈降する。そして、ガス流に追従した小径粒子のみが外部に供給される。
 したがって、解離装置20の前段に分級装置70を設けることにより、移送管P1で移送されるシリカ粉末含有キャリアガスG2に含まれるシリカ粉末Sの凝集体のうち、大粒径の凝集体(たとえば10μm以上、数十μm程度)と小粒径の凝集体(たとえばシングルミクロン以下)とを分級することができる。これによって、小粒径の凝集体のみが解離装置20に供給されるので、解離装置20における凝集体の解離の程度をより改善することができる。
 なお、分級装置70は、解離装置20の後段である堆積装置30側に介挿してもよい。これによって、解離装置20で十分に解離できなかった、もしくは、配管中で再凝集してしまった大径粒子があったとしても、これを除去することができるので、堆積装置20に大径粒子が供給されることを、より確実に防ぐこともできる。
 分級装置の構造、方式は上記のものに限られない。図6は、分級装置の別の一例を示す模式図である。この分級装置80は、チャンバー81内に邪魔板82を備えている。分級装置80は、この邪魔板82でガス流を急激に変化させることによって、ガス流に追従できない大径粒子をチャンバー下部に沈降させ、除去する方式のものである。また、分級装置のさらに別の一例として、サイクロン式の分級機を使用することができる。
 これら分級装置は、小径粒子のみを分離して移送できるという観点から、解離装置と同様な機能を有していると言える。そのため、分級装置を解離装置の代替として用いることも可能である。
 図7は、図1に示すガラス母材の製造装置100において、解離装置20を図5に示す分級装置70に置き換えた構成を示す模式図である。この製造装置100Aを用いても、実施の形態1と同様に、平滑性が良好な堆積表面を有するガラス母材2を製造することができる。
 分級装置によって除去された大径粒子は、例えば、移送装置10のホッパー11に戻してもよい。これによって、シリカ粉末Sを効率的に利用することができる。
(実施例1)
 以下、本発明の実施例、比較例によって本発明をさらに具体的に説明する。本発明の実施例1として、図1に示す構成の製造方法において、解離装置を図2に示すエジェクタに置き換え、堆積装置を図4に示すOVD法用の装置に置き換えた装置によって、ガラス母材を製造した。
 シリカ粉末として、平均一次粒子径が7nmであるフュームドシリカ粉末を使用した。このシリカ粉末を粉体用ポンプにより移送させた。粉末吐出量は、ポンプの回転数により調整し、12g/分の吐出量でシリカ粉末を送り出した。そして、キャリアガスによって、吐出したシリカ粉末をシリカ粉末含有キャリアガスとして移送管内を移送した。
 解離装置としてのエジェクタのエジェクタガスとして、水素、アルゴン、ヘリウム、および酸素のうち1つを選択して使用した。そして、エジェクタに供給するエジェクタガスの流量により、シリカ粉末含有キャリアガス中の凝集体の分散度合いを調整した。
 OVD法用の堆積装置においては、エジェクタガスも含んだシリカ粉末含有キャリアガスを多重管バーナの1層目に供給し、多重管バーナの3層目、5層目に供給された水素ガス、酸素ガスにより形成する火炎とともに、出発材に噴霧させた。
 その結果、製造したガラス母材の多孔質ガラスの表面には、ブツは皆無で、平坦で滑らかな状態の堆積面が得られた。また、堆積した多孔質ガラスの質量を多重管バーナに供給したシリカ粉末の質量で割った堆積収率は、エジェクタガスとしてアルゴンを使用した場合で44%、ヘリウムを使用した場合で53%、酸素を使用した場合で82%、水素を使用した場合で85%であった。この結果が示すように、堆積効率の観点からは、エジェクタガスとしては、酸素などの助燃性ガス、あるいは水素などの可燃性ガスが好適であり、不活性ガスの場合は、ヘリウムのようにより熱伝導率が大きいガスが好適である。その理由は、バーナ火炎中で効率良くシリカ粒子の温度を上昇させることで、出発材への溶着がより進行するためである。同様に、キャリアガス種としても、堆積効率の観点から、助燃性ガス、あるいは可燃性ガス、不活性ガスの場合には、より熱伝導率が大きいガスを選択することが望ましい。
 つぎに、出発材に堆積した多孔質ガラスからなるガラス母材を、石英製炉心管内に投入し、ヘリウム、塩素ガス雰囲気で脱水、焼結工程を行った。得られた光ファイバ母材は、気泡のない透明体であった。
 また、ガラス母材の一部をサンプリングし、SEM(走査型電子顕微鏡)撮影により、多孔質体を形成する粒子を観察した。すると、一部、数十nm~数百nm程度の粒径の粒子が観測されたものの、原料であるシリカ粉末の一次粒子径を反映した大きさの粒子群が殆どであった。
(実施例2)
 本発明の実施例として、図5に示す構成の製造方法において、分散装置を図6に示す邪魔板を備えた分級装置に置き換え、解離装置を図2に示すエジェクタに置き換え、堆積装置を図4に示すOVD法用の装置に置き換えた装置によって、ガラス母材を製造した。
 シリカ粉末として、平均一次粒子径が7nmであるフュームドシリカ粉末を使用した。このシリカ粉末を粉体用ポンプにより移送させた。粉末吐出量は、ポンプの回転数により調整し、12g/分の吐出量でシリカ粉末を送り出した。そして、キャリアガスによって、吐出したシリカ粉末をシリカ粉末含有キャリアガスとして移送管内を移送した。
 解離装置としてのエジェクタのエジェクタガスとして、酸素とアルゴンとの混合ガスを使用した。そして、エジェクタに供給するエジェクタガスの流量により、シリカ粉末含有キャリアガス中の凝集体の分散度合いを調整した。
 OVD法用の堆積装置においては、エジェクタガスも含んだシリカ粉末含有キャリアガスを多重管バーナの1層目に供給し、多重管バーナの3層目、5層目に供給された水素ガス、酸素ガスにより形成する火炎とともに、出発材に噴霧させた。
 その結果、製造したガラス母材の多孔質ガラスの表面には、ブツは皆無で、平坦で滑らかな状態の堆積面が得られた。
 つぎに、出発材に堆積した多孔質ガラスからなるガラス母材を、石英製炉心管内に投入し、ヘリウム、塩素ガス雰囲気で脱水、焼結工程を行った。得られた光ファイバ母材は、気泡のない透明体であった。
 また、ガラス母材の一部をサンプリングし、SEM撮影により、多孔質体を形成する粒子を観察した。すると、殆どが原料であるシリカ粉末の一次粒子径を反映した大きさの粒子群で構成されており、大きな粒径の粒子でも百nm程度の粒径であった。
(比較例)
 つぎに、実施例1で使用した製造装置において、解離装置としてのエジェクタを動作させず、その他の点については実施例1と同様にしてガラス母材を製造した。
 すると、堆積装置において、出発材に接触するものの、付着せずに反撥して下方に落下するシリカ粒子が多数観測された。また、製造したガラス母材の多孔質ガラスの表面には、ブツが多数発生し、凹凸が激しい堆積面状態であった。また、堆積した多孔質ガラス堆積収率は、41%であった。
 つぎに、実施例1と同様に、出発材に堆積した多孔質ガラスからなるガラス母材を、石英製炉心管内に投入し、ヘリウム、塩素ガス雰囲気で脱水、焼結工程を行ったところ、得られたガラス母材は、内部に閉気孔を含み、表面は、堆積時の表面状態を反映して、凹凸の激しい状態であった。
 また、ガラス母材の一部をサンプリングし、SEM撮影により、多孔質体を形成する粒子を観察したところ、原料であるフュームドシリカ粉末の一次粒子径を反映した粒子群、数十nm~数百nm程度の粒径の粒子に加え、μmオーダーから数十μmの粒径の巨大粒子が多数観測された。このような巨大粒子の生成が、ブツの生成、堆積面の平坦性の劣化を引き起こしたものと考えられる。したがって、実施例1のように、エジェクタガスの流量の調整などによって、凝集体を1μm以下の粒径になるように解離分散させることが好ましい。また、実施例2のように、さらに凝集体の分級を行うことがより好ましい。
 なお、上記実施の形態により本発明が限定されるものではない。たとえば、堆積装置のバーナが解離装置としての機構を備えるようにしてもよい。すなわち、たとえば図1の多重管バーナ33に、その1層目に対して解離分散用ガスG3を供給するための供給管を設けて、1層目内で解離分散を行うようにしてもよい。
 また、解離装置は、気流や物理的衝撃力を加える他の機構によって実現してもよいし、サイクロン等により発生した遠心力を利用して凝集体を解離分散させるものでもよい。
 また、堆積装置におけるバーナは、多重管バーナに限定されず、たとえば、マルチノズルバーナでもよい。また、シリカ粉末を噴霧するノズルと、このノズルの横側あるいは周囲に火炎を形成させるためのバーナとを独立に配置し、ノズルから噴霧したシリカ粉末をバーナ火炎により加熱する形態としても良い。
 また、上記の各構成要素を適宜組み合わせて構成したものも本発明に含まれる。
 以上のように、本発明に係るガラス母材の製造方法および製造装置は、光ファイバの製造に利用して好適なものである。
 1、3 出発材
 2、4 ガラス母材
 10 移送装置
 11 ホッパー
 12 粉体定量供給装置
 12a 移送部
 13 ガス供給管
 14 キャリアガス供給装置
 16 移送管
 17 三方弁
 20 解離装置
 21 解離部
 22、42 ガス供給管
 30、60 堆積装置
 31、61 反応容器
 31a、61a 排気口
 32 引き上げ機構
 33、63 多重管バーナ
 33a、63a ガス供給口
 40、50 解離装置
 41 エジェクタ本体
 51 インペラ
 70、80 分級装置
 71、81 チャンバー
 82 邪魔板
 100、100A、200 製造装置
 F1、F2 バーナ火炎
 G1 キャリアガス
 G2 シリカ粉末含有キャリアガス
 G3 解離分散用ガス
 G4~4、G7~7 バーナ用ガス
 G5、G8 排気ガス
 G6 エジェクタガス
 P1、P2 移送管
 P3 通気管
 S、S1、S2 シリカ粉末

Claims (17)

  1.  シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する方法であって、
     シリカ粉末を移送する移送工程と、
     前記移送工程において移送中のシリカ粉末に含まれるシリカ粒子の凝集体を解離分散する解離工程と、
     前記移送され、シリカ粒子の凝集体を解離分散したシリカ粉末を出発材に堆積させる堆積工程と、
     を含むことを特徴とするガラス母材の製造方法。
  2.  前記解離工程は、気流によって前記凝集体を解離分散することを特徴とする請求項1に記載のガラス母材の製造方法。
  3.  前記解離工程は、エジェクタによって前記凝集体を解離分散することを特徴とする請求項1に記載のガラス母材の製造方法。
  4.  前記解離工程は、前記エジェクタに水素、ヘリウム、および酸素の少なくとも1種類からなるエジェクタガスを供給することを特徴とする請求項3に記載のガラス母材の製造方法。
  5.  前記解離工程は、前記シリカ粉末に物理的衝撃力を加えることによって前記凝集体を解離分散することを特徴とする請求項1に記載のガラス母材の製造方法。
  6.  前記解離工程は、前記凝集体を1μm以下の粒径になるように解離分散することを特徴とする請求項1~5のいずれか一つに記載のガラス母材の製造方法。
  7.  前記移送工程は、水素、ヘリウム、および酸素の少なくとも1種類からなるキャリアガスを用いてシリカ粉末を移送することを特徴とする請求項1~6のいずれか一つに記載のガラス母材の製造方法。
  8.  前記解離工程の前または後に、前記シリカ粒子の凝集体を分級する分級工程を含むことを特徴とする請求項1~7のいずれか一つに記載のガラス母材の製造方法。
  9.  シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する方法であって、
     シリカ粉末を移送する移送工程と、
     前記移送工程において移送中のシリカ粉末に含まれるシリカ粒子の凝集体を分級する分級工程と、
     前記移送され、シリカ粒子の凝集体を分級したシリカ粉末を出発材に堆積させる堆積工程と、
     を含むことを特徴とするガラス母材の製造方法。
  10.  シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する装置であって、
     シリカ粉末を移送する移送装置と、
     前記移送装置に接続し、該移送装置によって移送中のシリカ粉末に含まれるシリカ粒子の凝集体を解離分散する解離装置と、
     前記解離装置に接続し、前記移送され、シリカ粒子の凝集体を解離分散したシリカ粉末を出発材に堆積させる堆積装置と、
     を備えることを特徴とするガラス母材の製造装置。
  11.  前記解離装置は、前記凝集体を解離分散するための気流を与えることを特徴とする請求項10に記載のガラス母材の製造装置。
  12.  前記解離装置は、エジェクタであることを特徴とする請求項10に記載のガラス母材の製造装置。
  13.  前記エジェクタは、水素、ヘリウム、および酸素の少なくとも1種類からなるエジェクタガスが供給されるものであることを特徴とする請求項12に記載のガラス母材の製造装置。
  14.  前記解離装置は、前記シリカ粉末に物理的衝撃力を加えることを特徴とする請求項10に記載のガラス母材の製造装置。
  15.  前記移送装置は、前記シリカ粉末を移送するための水素、ヘリウム、および酸素の少なくとも1種類からなるキャリアガスを供給することを特徴とする請求項10~14のいずれか一つに記載のガラス母材の製造装置。
  16.  前記解離装置の前記移送装置側または前記堆積装置側に接続した、前記シリカ粒子の凝集体を分級する分級装置を備えることを特徴とする請求項10~15のいずれか一つに記載のガラス母材の製造装置。
  17.  シリカ粒子を含むシリカ粉末を出発材に堆積させてガラス母材を製造する装置であって、
     シリカ粉末を移送する移送装置と、
     前記移送装置に接続し、該移送装置によって移送中のシリカ粉末に含まれるシリカ粒子の凝集体を分級する分級装置と、
     前記解離装置に接続し、前記移送され、シリカ粒子の凝集体を分級したシリカ粉末を出発材に堆積させる堆積装置と、
     を備えることを特徴とするガラス母材の製造装置。
PCT/JP2011/060164 2010-04-26 2011-04-26 ガラス母材の製造方法および製造装置 WO2011136221A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011537766A JP4904441B2 (ja) 2010-04-26 2011-04-26 ガラス母材の製造方法および製造装置
CN2011800110330A CN102781860A (zh) 2010-04-26 2011-04-26 玻璃母材的制造方法及制造装置
US13/525,572 US20120301610A1 (en) 2010-04-26 2012-06-18 Method of producing glass preform and apparatus for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010101280 2010-04-26
JP2010-101280 2010-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/525,572 Continuation US20120301610A1 (en) 2010-04-26 2012-06-18 Method of producing glass preform and apparatus for producing the same

Publications (1)

Publication Number Publication Date
WO2011136221A1 true WO2011136221A1 (ja) 2011-11-03

Family

ID=44861519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060164 WO2011136221A1 (ja) 2010-04-26 2011-04-26 ガラス母材の製造方法および製造装置

Country Status (4)

Country Link
US (1) US20120301610A1 (ja)
JP (1) JP4904441B2 (ja)
CN (1) CN102781860A (ja)
WO (1) WO2011136221A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259034A (ja) * 1997-01-17 1998-09-29 Shin Etsu Chem Co Ltd 光ファイバ用ガラス母材の製造装置及び製造方法
JP2000203865A (ja) * 1999-01-12 2000-07-25 Shin Etsu Chem Co Ltd 多孔質ガラス母材の製造容器
JP2000233933A (ja) * 1999-02-12 2000-08-29 Shin Etsu Chem Co Ltd 多孔質ガラス母材の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954431A (en) * 1974-09-26 1976-05-04 Bell Telephone Laboratories, Incorporated Optical glass and its production
US4872895A (en) * 1986-12-11 1989-10-10 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating articles which include high silica glass bodies
US6859364B2 (en) * 2000-06-06 2005-02-22 Matsushita Refrigeration Company Portable information appliance
US7198247B2 (en) * 2000-07-31 2007-04-03 Shin-Etsu Quartz Products Co., Ltd. Mandrel for producing quartz glass and production method for optical fiber mother material, optical fiber and quartz glass body using the same
EP1604957A4 (en) * 2003-03-19 2011-09-07 Sumitomo Electric Industries PROCESS FOR PRODUCING GLASS MATERIAL
DE102006059316A1 (de) * 2006-12-15 2008-06-19 Evonik Degussa Gmbh Dispersion von hochoberflächigem Siliciumdioxid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259034A (ja) * 1997-01-17 1998-09-29 Shin Etsu Chem Co Ltd 光ファイバ用ガラス母材の製造装置及び製造方法
JP2000203865A (ja) * 1999-01-12 2000-07-25 Shin Etsu Chem Co Ltd 多孔質ガラス母材の製造容器
JP2000233933A (ja) * 1999-02-12 2000-08-29 Shin Etsu Chem Co Ltd 多孔質ガラス母材の製造方法

Also Published As

Publication number Publication date
JP4904441B2 (ja) 2012-03-28
JPWO2011136221A1 (ja) 2013-07-22
CN102781860A (zh) 2012-11-14
US20120301610A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
EP1808417B1 (en) Method for fabricating glass bodies using an aerosol delivery system
US9630162B1 (en) Reactor and method for production of nanostructures
US8635888B2 (en) Particle deposition system and method
US20090123357A1 (en) Method for making silica nanoparticles by flame spray pyrolysis adopting two-fluid nozzle
JP7282691B2 (ja) 微粒子の製造方法
US20040187525A1 (en) Method and apparatus for making soot
JP5362382B2 (ja) 光ファイバ用母材の製造方法及び光ファイバ用母材製造用バーナ
US20180016180A1 (en) Method and apparatus for continuous or batch preform and optical fiber production
JP4904441B2 (ja) ガラス母材の製造方法および製造装置
WO2003070652A1 (fr) Verre optique et procede de fabrication de celui-ci
TW201936933A (zh) 銀微粒子之製造方法及銀微粒子
WO2004083139A1 (ja) ガラス材の製造方法
US20110059837A1 (en) Method for producing synthetic quartz glass
JP3790105B2 (ja) 炎とレーザーとを用いた微粒子の製造方法
WO2006077782A1 (ja) 多孔質ガラス母材の製造方法及び堆積用バーナ
EP1700832A1 (en) A method of producing glass of optical quality
JP2010155732A (ja) 高周波誘導熱プラズマトーチを用いた光ファイバプリフォームの製造方法及び装置
JP2011016111A (ja) 無機質球状化粒子の製造装置および製造方法
JPH0222137A (ja) 合成石英母材の製造方法
JP2003034521A (ja) 微細球状シリカ粉末の製造方法
JP5168772B2 (ja) ガラス微粒子堆積体の製造方法
JP2012036014A (ja) 多孔質ガラス母材の製造方法および製造装置
JP2004300006A (ja) 多孔質ガラス微粒子堆積体の製造法
JP2005041772A (ja) ガラス微粒子堆積体の製造方法及びガラス微粒子生成用バーナ
JP2003342041A (ja) 光ファイバ母材並びにその製造方法および製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011033.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011537766

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11775002

Country of ref document: EP

Kind code of ref document: A1