WO2011136073A1 - ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法 - Google Patents
ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法 Download PDFInfo
- Publication number
- WO2011136073A1 WO2011136073A1 PCT/JP2011/059573 JP2011059573W WO2011136073A1 WO 2011136073 A1 WO2011136073 A1 WO 2011136073A1 JP 2011059573 W JP2011059573 W JP 2011059573W WO 2011136073 A1 WO2011136073 A1 WO 2011136073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- polymer
- mass
- sensitive composition
- examples
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0757—Macromolecular compounds containing Si-O, Si-C or Si-N bonds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
Definitions
- the present invention relates to a positive radiation sensitive composition, an interlayer insulating film for a display element, and a method for forming the same.
- the display element is generally provided with an interlayer insulating film for the purpose of insulating between wirings arranged in layers.
- an interlayer insulating film for the purpose of insulating between wirings arranged in layers.
- positive radiation-sensitive compositions are widely used because the number of steps for obtaining a necessary pattern shape is small and a material having sufficient flatness is preferable.
- a display element such as a TFT type liquid crystal display element using an interlayer insulating film includes a step of forming a transparent electrode film on the interlayer insulating film and further forming a liquid crystal alignment film thereon. It is manufactured after. In this case, since the interlayer insulating film is exposed to high temperature conditions in the process of forming the transparent electrode film, sufficient heat resistance is required.
- TFT-type liquid crystal display elements have become larger in screen size, higher in brightness, higher in definition, faster in response, thinner in thickness, and so on.
- miniaturization technique of a resist pattern is desired.
- the resist pattern is miniaturized, if the processing time is slightly longer than the optimum time in the dry etching process using an etching gas, the resist is likely to be scraped or peeled off.
- an acrylic polymer that generates a carboxyl group and a polymer having a functional group that reacts with the carboxyl group see Japanese Patent Application Laid-Open No. 2009-98673
- a polysiloxane material in an acrylic resin is used.
- a technique (see Japanese Patent Application Laid-Open No. 2009-98661 and Japanese Patent Application Laid-Open No. 2009-116223) using the added material as a component of the radiation-sensitive resin composition has been proposed.
- the present invention has been made based on the above circumstances, and its purpose is an interlayer insulating film for a display element having high dry etching resistance in addition to sufficient surface hardness, refractive index, heat resistance and transparency. And a positive radiation sensitive composition having sufficient radiation sensitivity, an interlayer insulating film for display elements formed from the composition, and a method for forming the same.
- a polymer comprising a structural unit (I) having a group represented by the following formula (1) and an epoxy group-containing structural unit (II) in the same or different polymer molecules (hereinafter referred to as “[A] Also referred to as "polymer”), [B] A positive-type radiation-sensitive composition containing a siloxane polymer and [C] a photoacid generator.
- R 1 and R 2 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, provided that the hydrogen atom of the alkyl group, cycloalkyl group and aryl group is A part or all of them may be substituted, and R 1 and R 2 are not both hydrogen atoms, and R 3 is an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, or —M ( R 3m ) is a group represented by 3. M is Si, Ge or Sn, each R 3m is independently an alkyl group, and R 1 and R 3 are linked to form a ring. An ether structure may be formed, provided that a part or all of the hydrogen atoms of these groups represented by R 3 may be substituted.)
- the positive radiation sensitive composition can ensure sufficient radiation sensitivity by blending [B] siloxane polymer in addition to the [A] polymer and [C] photoacid generator of the above specific structure, It is possible to form a cured film such as an interlayer insulating film that satisfies the surface hardness, refractive index, heat resistance and transparency in a well-balanced manner and has high dry etching resistance.
- the siloxane polymer is preferably a hydrolysis-condensation product of a hydrolyzable silane compound represented by the following formula (2).
- R 4 is a non-hydrolyzable organic group having 1 to 20 carbon atoms.
- R 5 is an alkyl group having 1 to 4 carbon atoms.
- N is an integer of 0 to 3) it is. However, if R 4 and R 5 is plural, may be different even plurality of R 4 and R 5 are identical.
- the surface is secured while ensuring sufficient radiation sensitivity.
- An interlayer insulating film for a display element with further improved hardness and dry etching resistance can be formed.
- the mass ratio of the [A] polymer to the sum of the [A] polymer and the [B] siloxane polymer is preferably 5% by mass or more and 95% by mass or less.
- the positive radiation-sensitive composition is suitable as a material for forming an interlayer insulating film for display elements. Further, the present invention suitably includes an interlayer insulating film for a display element formed from the positive radiation sensitive composition.
- the method for forming an interlayer insulating film for a display element includes: (1) The process of forming the coating film of the said positive type radiation sensitive composition on a board
- the positive radiation sensitive composition has good radiation sensitivity
- the formed interlayer insulating film for display elements has high dry etching resistance, so that a large dry etching margin can be secured. Even if it is a display element interlayer insulation film for a large display device that has been difficult to process uniformly and in a short time in the past, an interlayer insulation film for a display element having a fine and elaborate pattern is easily formed. can do. Furthermore, it is possible to obtain an interlayer insulating film for a display element that satisfies a good balance of surface hardness, refractive index, heat resistance and transparency.
- the positive radiation sensitive composition of the present invention has sufficient radiation sensitivity by containing the [A] polymer, the [B] siloxane polymer, and the [C] photoacid generator. .
- the positive radiation sensitive composition of the present invention contains a [A] polymer, a [B] siloxane polymer, and a [C] photoacid generator. Moreover, the said positive type radiation sensitive composition may contain [D] surfactant and [E] adhesion
- the polymer contains the structural unit (I) and the epoxy group-containing structural unit (II) in the same or different polymer molecules. Moreover, the other structural unit may be included as needed.
- the embodiment of the [A] polymer containing the structural unit (I) and the epoxy group-containing structural unit (II) is not particularly limited. For example, (i) containing the structural unit (I) and the epoxy group in the same polymer molecule When both of the structural units (II) are contained and [A] one polymer molecule is present in the polymer; (Ii) The structural unit (I) is contained in one polymer molecule, and the epoxy group-containing structural unit (II) is contained in a polymer molecule different from the structural unit (I).
- the polymer unit includes both the structural unit (I) and the epoxy group-containing structural unit (II) in one polymer molecule, and includes the structural unit (I) in a different polymer molecule.
- the epoxy group-containing structural unit (II) is contained in different polymer molecules, and [A] three kinds of polymer molecules are present in the polymer;
- [A] the polymer may contain 2 or more types of each structural unit.
- each structural unit will be described in detail.
- the group represented by the above formula (1) exists as a group (acid dissociable group) that dissociates in the presence of an acid to generate a polar group.
- the acid-dissociable group is dissociated by the acid generated from the photoacid generator, and as a result, the [A] polymer which is insoluble in alkali becomes alkali-soluble.
- the acid dissociable group has an acetal structure or a ketal structure that is relatively stable with respect to an alkali, and these are dissociated by the action of an acid.
- R ⁇ 1 > and R ⁇ 2 > are respectively independently a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group. However, one part or all part of the hydrogen atom which the said alkyl group, a cycloalkyl group, and an aryl group have may be substituted. Further, there is no case where R 1 and R 2 are both hydrogen atoms.
- R 3 is an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, or a group represented by —M (R 3m ) 3 . This M is Si, Ge, or Sn.
- R 3m is each independently an alkyl group.
- R 1 and R 3 may be linked to form a cyclic ether structure. However, one part or all part of the hydrogen atom which these groups represented by R ⁇ 3 > have may be substituted.
- Examples of the alkyl group represented by R 1 and R 2 include linear and branched alkyl groups having 1 to 30 carbon atoms.
- the alkyl chain may have an oxygen atom, a sulfur atom, or a nitrogen atom.
- Examples of the linear and branched alkyl group having 1 to 30 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, and an n-octyl group.
- N-dodecyl group, n-tetradecyl group, n-octadecyl group, etc. linear alkyl group, i-propyl group, i-butyl group, t-butyl group, neopentyl group, 2-hexyl group, 3-hexyl group And a branched alkyl group such as.
- Examples of the cycloalkyl group represented by R 1 and R 2 include a cycloalkyl group having 3 to 20 carbon atoms.
- the cycloalkyl group having 3 to 20 carbon atoms may be polycyclic and may have an oxygen atom in the ring.
- Examples of the cycloalkyl group having 3 to 20 carbon atoms include cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, bornyl group, norbornyl group, adamantyl group and the like.
- Examples of the aryl group represented by R 1 and R 2 include an aryl group having 6 to 14 carbon atoms.
- the aryl group having 6 to 14 carbon atoms may be a single ring, a structure in which single rings are linked, or a condensed ring.
- Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group.
- Examples of the optionally substituted alkyl group, cycloalkyl group and aryl group represented by R 1 and R 2 include a halogen atom, a hydroxyl group, a nitro group, a cyano group, a carboxyl group, a carbonyl group, a cyclo group.
- alkyl group eg, cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl, cyclooctyl, bornyl group, norbornyl group, adamantyl group, etc.
- aryl group eg, phenyl group, naphthyl group, etc.
- alkoxy group eg, methoxy group
- an acyl group for example, an acetyl group, a propionyl group
- a siloxy group an acyloxy group
- the alkyl group, cycloalkyl group, and aryl group represented by R 3 for example, the groups exemplified for R 1 and R 2 can be applied.
- the substituent for these groups for example, the groups exemplified as the substituents for the optionally substituted alkyl group, cycloalkyl group and aryl group represented by R 1 and R 2 can be applied.
- the aralkyl group represented by R 3 include an aralkyl group having 7 to 20 carbon atoms.
- the aralkyl group having 7 to 20 carbon atoms include benzyl group, phenethyl group, naphthylmethyl group, naphthylethyl group and the like.
- Examples of the group represented by -M (R 3m ) 3 include a trimethylsilanyl group and a trimethylgermyl group.
- the substituent which may substitute part or all of the hydrogen atoms of the aralkyl group represented by R 3 or the group represented by —M (R 3m ) 3 the above substituents are preferably employed. be able to.
- the substituent of this group for example, the groups exemplified as the substituents of the optionally substituted alkyl group, cycloalkyl group and aryl group represented by R 1 and R 2 can be applied.
- Examples of the group having a cyclic ether structure that may be formed by linking R 1 and R 3 include 2,2-oxetanediyl group, 2,2-tetrahydrofurandiyl group, 2-tetrahydropyrandiyl group, 2 -Dioxanediyl group and the like.
- the structural unit (I) can have an acetal structure or a ketal structure by having a functional group that should have an acetal structure or a ketal structure by bonding to another carbon atom.
- Examples of the functional group that should have an acetal structure by bonding to the other carbon atom include 1-methoxyethoxy group, 1-ethoxyethoxy group, 1-n-propoxyethoxy group, and 1-i-propoxyethoxy.
- 1-ethoxyethoxy group 1-cyclohexyloxyethoxy group, 2-tetrahydropyranyloxy group, 1-n-propoxyethoxy group, and 2-tetrahydropyranyloxy group are preferable.
- Examples of the functional group that should have a ketal structure by bonding to the other carbon atom include 1-methyl-1-methoxyethoxy group, 1-methyl-1-ethoxyethoxy group, 1-methyl-1 -N-propoxyethoxy group, 1-methyl-1-i-propoxyethoxy group, 1-methyl-1-n-butoxyethoxy group, 1-methyl-1-i-butoxyethoxy group, 1-methyl-1-sec -Butoxyethoxy group, 1-methyl-1-t-butoxyethoxy group, 1-methyl-1-cyclopentyloxyethoxy group, 1-methyl-1-cyclohexyloxyethoxy group, 1-methyl-1-norbornyloxyethoxy group 1-methyl-1-bornyloxyethoxy group, 1-methyl-1-phenyloxyethoxy group, 1-methyl-1- (1-na (Tiloxy) ethoxy group, 1-methyl-1-benzyloxyoxy group, 1-methyl-1-phenethyloxyethoxy group, 1-cyclohexyl-1-me
- 1-methyl-1-methoxyethoxy group and 1-methyl-1-cyclohexyloxyethoxy group are preferable.
- Examples of the structural unit (I) having the acetal structure or ketal structure include structural units represented by the following formulas (1-1) to (1-3).
- R ′ is a hydrogen atom or a methyl group.
- R 1 , R 2 and R 3 have the same meaning as in the above formula (1).
- Examples of the monomer that gives the structural unit (I) represented by the above formulas (1-1) to (1-3) include 1-alkoxyalkyl (meth) acrylate, 1- (cycloalkyloxy) alkyl (meta ) Acrylate, 1- (haloalkoxy) alkyl (meth) acrylate, 1- (aralkyloxy) alkyl (meth) acrylate, tetrahydropyranyl (meth) acrylate and other (meth) acrylate acetal structure-containing monomers; 2,3-di (1- (trialkylsilanyloxy) alkoxy) carbonyl) -5-norbornene, 2,3-di (1- (trialkylgermyloxy) alkoxy) carbonyl) -5-norbornene, 2, 3-di (1-alkoxyalkoxycarbonyl) -5-norbornene, 2,3-di (1- (cycloalkyloxy) alkoxycarbonyl) -5-
- 1-alkoxyalkyl (meth) acrylate, tetrahydropyranyl (meth) acrylate, 1-alkoxyalkoxystyrene and tetrahydropyranyloxystyrene are preferable, and 1-alkoxyalkyl (meth) acrylate is more preferable.
- Specific monomers that give the structural unit (I) represented by the above formulas (1-1) to (1-3) include, for example, 1-ethoxyethyl methacrylate, 1-methoxyethyl methacrylate, 1-n- Butoxyethyl methacrylate, 1-isobutoxyethyl methacrylate, 1-t-butoxyethyl methacrylate, 1- (2-chloroethoxy) ethyl methacrylate, 1- (2-ethylhexyloxy) ethyl methacrylate, 1-n-propoxyethyl methacrylate, 1
- a methacrylate-based acetal structure-containing monomer such as cyclohexyloxyethyl methacrylate, 1- (2-cyclohexylethoxy) ethyl methacrylate, 1-benzyloxyethyl methacrylate, 2-tetrahydropyranyl methacrylate; 1-ethoxyethyl acrylate, 1-
- Acetal structure-containing monomer 2,3-di (1- (trimethylsilanyloxy) ethoxy) carbonyl) -5-norbornene, 2,3-di (1- (trimethylgermyloxy) ethoxy) carbonyl) -5-norbornene, 2,3- Di (1-methoxyethoxycarbonyl) -5-norbornene, 2,3-di (1- (cyclohexyloxy) ethoxycarbonyl) -5-norbornene, 2,3-di (1- (benzyloxy) ethoxycarbonyl) -5
- a monomer containing a norbornene-based acetal structure such as norbornene; p or m-1-ethoxyethoxystyrene, p or m-1-methoxyethoxystyrene, p or m-1-n-butoxyethoxystyrene, p or m-1-isobutoxyethoxys
- the monomer giving the structural unit (I) is preferably 1-ethoxyethyl methacrylate, 1-n-butoxyethyl methacrylate, 2-tetrahydropyranyl methacrylate or 1-benzyloxyethyl methacrylate.
- the monomer that gives the structural unit (I) commercially available monomers may be used, or those synthesized by a known method may be used.
- the monomer that gives the structural unit (I) represented by the above formula (1-1) is synthesized by reacting (meth) acrylic acid with vinyl ether in the presence of an acid catalyst as shown in the following formula. can do.
- R ′, R 1 and R 3 have the same meaning as in the above formula (1-1).
- R 21 and R 22 are the same as R 2 in the above formula (1-1) as —CH (R 21 ) (R 22 ).
- the content of the structural unit (I) in the polymer is not particularly limited as long as the polymer [A] is alkali-soluble by an acid and exhibits the desired heat resistance of the cured film.
- the polymer molecule contains both the structural unit (I) and the epoxy group-containing structural unit (II)
- the monomer charge ratio with respect to all structural units contained in the [A] polymer is 5% by mass or more and 70% by mass. % By mass or less is preferable, 10% by mass to 60% by mass is more preferable, and 20% by mass to 50% by mass is particularly preferable.
- the one polymer molecule having the structural unit (I) contains the structural unit (I) and the other polymer molecule contains the epoxy group-containing structural unit (II), the one polymer molecule having the structural unit (I)
- the content of the structural unit (I) in is preferably 40% by mass or more and 99% by mass or less, more preferably 50% by mass or more and 98% by mass with respect to the total structural units contained in the polymer molecule. % Or less is more preferable, and 55 mass% or more and 95 mass% or less are especially preferable.
- Epoxy group-containing structural unit (II) The epoxy group-containing structural unit (II) is not particularly limited as long as it is a structural unit derived from an epoxy group-containing monomer. [A] When the polymer contains the epoxy group-containing structural unit (II) in the molecule, the surface hardness and heat resistance of the cured film obtained from the positive radiation-sensitive composition can be further increased.
- the epoxy group in this specification is a concept including an oxiranyl group (1,2-epoxy structure) and an oxetanyl group (1,3-epoxy structure).
- Monomers that give the epoxy group-containing structural unit (II) include, for example, glycidyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, 3-methyl-3,4-epoxybutyl acrylate, methacryl 3-ethyl-3,4-epoxybutyl acid, 5,6-epoxyhexyl (meth) acrylate, 5-methyl-5,6-epoxyhexyl methacrylate, 5-ethyl-5,6-epoxyhexyl methacrylate, (Meth) acrylic acid 6,7-epoxyheptyl, 3,4-epoxycyclohexyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate, 3,4-epoxycyclohexylethyl (meth) acrylate, methacrylic acid 3,4-epoxycyclohexylpropyl, 3,4-epoxycyclohexylbuty
- glycidyl methacrylate, 2-methylglycidyl methacrylate, 3,4-epoxycyclohexyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate, 3- (methacryloyloxymethyl) -3 -Methyloxetane and 3- (methacryloyloxymethyl) -3-ethyloxetane are preferred from the viewpoints of copolymerization reactivity with other monomers and developability of the positive radiation-sensitive composition.
- the content of the epoxy group-containing structural unit (II) in the polymer is not particularly limited as long as the desired heat resistance of the interlayer insulating film for display elements is exhibited, and the structural unit ( When I) and the epoxy group-containing structural unit (II) are included, the monomer charge ratio is preferably 10% by mass or more and 60% by mass or less with respect to all the structural units contained in the [A] polymer. More preferably, the content is greater than or equal to 55% and less than or equal to 55% by weight, particularly preferably greater than or equal to 20% and less than or equal to 50%.
- the content of the epoxy group-containing structural unit (II) with respect to all the structural units contained in the molecule is preferably 20% by mass to 80% by mass, more preferably 30% by mass to 70% by mass, as a monomer charge ratio. Preferably, 35 mass% or more and 65 mass% or less are especially preferable.
- the polymer may contain other structural units other than the structural unit (I) and the structural unit (II) as long as the effects of the present invention are not impaired.
- monomers that give structural units include carboxyl groups or derivatives thereof, and monomers having hydroxyl groups.
- Examples of the monomer having a carboxyl group or a derivative thereof include acrylic acid, methacrylic acid, crotonic acid, 2-acryloyloxyethyl succinic acid, 2-methacryloyloxyethyl succinic acid, 2-acryloyloxyethyl hexahydrophthalic acid, Examples thereof include monocarboxylic acids such as 2-methacryloyloxyethyl hexahydrophthalic acid; dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid and itaconic acid; and acid anhydrides of the above dicarboxylic acids.
- Examples of the monomer having a hydroxyl group include acrylic acid-2-hydroxyethyl ester, acrylic acid-3-hydroxypropyl ester, acrylic acid-4-hydroxybutyl ester, and acrylic acid-4-hydroxymethylcyclohexylmethyl ester.
- methacrylic acid hydroxyalkyl esters such as methacrylic acid-4-hydroxymethyl-cyclohexylmethyl ester.
- acrylic acid-2-hydroxyethyl ester acrylic acid--from the viewpoint of copolymerization reactivity with other monomers and the heat resistance of the obtained interlayer insulating film for display elements.
- 3-hydroxypropyl ester, acrylic acid-4-hydroxybutyl ester, methacrylic acid-2-hydroxyethyl ester, methacrylic acid-4-hydroxybutyl ester, acrylic acid-4-hydroxymethyl-cyclohexylmethyl ester, methacrylic acid-4- Hydroxymethyl-cyclohexylmethyl ester is preferred.
- Examples of other monomers include acrylic acid alkyl esters such as methyl acrylate and i-propyl acrylate; Alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate; Cyclohexyl acrylate, 2-methylcyclohexyl acrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl acrylate, acrylic acid-2- (tricyclo [5.2.1.0 2, 6 ] Acrylic alicyclic alkyl ester such as decan-8-yloxy) ethyl, isobornyl acrylate; Cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, tricyclo [5.2.1.0 2,6 ] decane-8-yl methacrylate, methacrylic acid-2- (tricyclo [5.2.1.0 2, 6 ] decane-8-
- styrene, 4-isopropenylphenol, tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, tetrahydrofurfuryl methacrylate, 1,3-butadiene 4-acryloyloxymethyl-2-methyl-2-ethyl-1,3-dioxolane, N-cyclohexylmaleimide, N-phenylmaleimide, and benzyl methacrylate are copolymerized with monomers having the above-mentioned reactive functional groups This is preferable in terms of reactivity and developability of the positive radiation-sensitive composition.
- the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 2.0 ⁇ 10 3 to 1.0 ⁇ 10 5 , more preferably 5.0 ⁇ 10. 3 to 5.0 ⁇ 10 4 .
- Mw weight average molecular weight
- GPC gel permeation chromatography
- the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 2.0 ⁇ 10 3 to 1.0 ⁇ 10 5 , more preferably 5.0 ⁇ 10 3 to 5.0 ⁇ 10. 4 .
- Mn of a polymer By making Mn of a polymer into the said specific range, the cure reactivity at the time of hardening of the coating film of the said positive type radiation sensitive composition can be improved.
- the molecular weight distribution (Mw / Mn) of the polymer is preferably 3.0 or less, more preferably 2.6 or less.
- Mw / Mn of the polymer By setting Mw / Mn of the polymer to 3.0 or less, the developability of the obtained interlayer insulating film for display elements can be enhanced.
- the positive-type radiation-sensitive composition containing a polymer can easily form a desired pattern shape without causing a development residue during development.
- the polymer can be synthesized by radical copolymerization of monomers giving the above structural units. For example, when synthesizing a polymer [A] containing both the structural unit (I) and the epoxy group-containing structural unit (II) in the same polymer molecule, a monomer and an epoxy group that give the structural unit (I) What is necessary is just to copolymerize using the mixture containing the monomer which gives containing structural unit (II).
- the structural unit (I) when the [A] polymer having the structural unit (I) in one polymer molecule and the epoxy group-containing structural unit (II) in a different polymer molecule is synthesized, the structural unit (I).
- the polymer solution containing the monomer that gives the epoxy group-containing structural unit (II) is obtained by radically polymerizing a polymerizable solution containing the monomer that gives the structural unit (I) to obtain a polymer molecule having the structural unit (I). May be radically polymerized to obtain a polymer molecule having an epoxy group-containing structural unit (II), and finally, both may be mixed to obtain a polymer [A].
- Examples of the solvent used in the polymerization reaction of the polymer include the solvents exemplified in the section of preparation of the composition described later.
- radical polymerization initiators those generally known as radical polymerization initiators can be used.
- azo compounds are preferred, and 2,2'-azobis- (2,4-dimethylvaleronitrile) and 2,2'-azobis- (methyl 2-methylpropionate) are more preferred.
- the peroxide may be used together with a reducing agent to form a redox initiator.
- a molecular weight modifier may be used to adjust the molecular weight.
- the molecular weight modifier include halogenated hydrocarbons such as chloroform and carbon tetrabromide; mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, thioglycolic acid; Xanthogens such as xanthogen sulfide and diisopropylxanthogen disulfide; terpinolene, ⁇ -methylstyrene dimer and the like.
- the siloxane polymer is not particularly limited as long as it is a polymer having a siloxane bond. This [B] siloxane polymer forms a cured product by self-condensation by heating.
- the siloxane polymer is preferably a hydrolysis-condensation product of a hydrolyzable silane compound represented by the above formula (2).
- a hydrolysis condensate of the hydrolyzable silane compound represented by the above formula (2) as the [B] siloxane polymer the surface is secured while ensuring sufficient radiation sensitivity.
- An interlayer insulating film for a display element with further improved hardness and dry etching resistance can be formed.
- the hydrolyzable silane compound in the present specification is usually hydrolyzed by heating in the temperature range of room temperature (about 25 ° C.) to about 100 ° C. in the presence of non-catalyst and excess water.
- a silane compound having a hydrolyzable group capable of generating a silanol group or a silane compound having a hydrolyzable group capable of forming a siloxane condensate refers to a group that does not cause hydrolysis or condensation and exists stably under such hydrolysis conditions.
- hydrolyzable condensate of the hydrolyzable silane compound refers to a hydrolyzed condensate obtained by reacting and condensing some silanol groups of the hydrolyzed silane compound.
- R 4 is a non-hydrolyzable organic group having 1 to 20 carbon atoms.
- R 5 is an alkyl group having 1 to 4 carbon atoms.
- n is an integer of 0 to 3.
- R 4 and R 5 is plural, a plurality of R 4 and R 5 may each be the same or different.
- Examples of the non-hydrolyzable organic group having 1 to 20 carbon atoms represented by R 4 include one or more unsubstituted alkyl groups having 1 to 12 carbon atoms (vinyl group, (meth) acryloyl group or epoxy group). An aryl group having 6 to 12 carbon atoms and an aralkyl group having 7 to 12 carbon atoms are preferred.
- R 4 may contain a structural unit having a hetero atom. Examples of such a structural unit include ether, ester, sulfide and the like.
- Examples of the alkyl group having 1 to 4 carbon atoms represented by R 5 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and a butyl group. Among these, a methyl group and an ethyl group are preferable from the viewpoint of easy hydrolysis.
- n is preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 1. When n is an integer of 0 to 2, the hydrolysis / condensation reaction proceeds more easily, and as a result, the speed of the curing reaction due to the self-condensation of [B] siloxane polymer is further increased, and thus the obtained display.
- the surface hardness and heat resistance of the element interlayer insulating film can be further improved.
- the hydrolyzable silane compound represented by the above formula (2) is a silane compound substituted with four hydrolyzable groups, substituted with one non-hydrolyzable group and three hydrolyzable groups.
- hydrolyzable silane compound represented by the above formula (2) examples include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraphenoxy, as silane compounds substituted with four hydrolyzable groups, for example.
- silane compounds substituted with one non-hydrolyzable group and three hydrolyzable groups chlorotrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltri-i-propoxysilane, methyltributoxy Silane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-i-propoxysilane, ethyltributoxysilane, butyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri -N-propoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-me
- silane compounds substituted with 4 hydrolyzable groups 1 silane compound substituted with 1 non-hydrolyzable group and 3 hydrolyzable groups are preferred, and 1 non-hydrolyzed group More preferred is a silane compound substituted with a functional group and three hydrolyzable groups, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltri-i-propoxysilane, methyltributoxysilane, phenyltrimethoxy Silane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltributoxysilane, butyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacrylic Roxypropyltriethoxysilane is particularly preferred
- the hydrolyzable silane compound represented by the above formula (2) As a condition for hydrolyzing and condensing the hydrolyzable silane compound represented by the above formula (2), at least a part of the hydrolyzable silane compound represented by the above formula (2) is hydrolyzed and hydrolyzed. Although it does not specifically limit as long as it converts a functional group into a silanol group and causes a condensation reaction, for example, it is used for hydrolysis and condensation of the hydrolyzable silane compound represented by the above formula (2)
- the water to be used is preferably water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved.
- the amount of water used is preferably 0.1 mol to 3 mol with respect to 1 mol of the total amount of hydrolyzable groups (—OR 5 ) of the hydrolyzable silane compound represented by the above formula (2), More preferably, it is 0.3 mol to 2 mol, and particularly preferably 0.5 mol to 1.5 mol. By using such an amount of water, the hydrolysis / condensation reaction rate can be optimized.
- the solvent that can be used for hydrolysis / condensation of the hydrolyzable silane compound represented by the above formula (2) is usually the same as the solvent used for the preparation of the positive radiation sensitive composition described later. Can be used.
- ethylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propionic acid esters are preferable, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, More preferred are propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, and methyl 3-methoxypropionate.
- the hydrolysis / condensation reaction of the hydrolyzable silane compound represented by the above formula (2) is preferably an acid catalyst (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, Phosphoric acid, acidic ion exchange resins, various Lewis acids), basic catalysts (eg, nitrogen-containing compounds such as ammonia, primary amines, secondary amines, tertiary amines, pyridine; basic ion exchange resins; sodium hydroxide It is carried out in the presence of a catalyst such as a carbonate such as potassium carbonate; a carboxylate such as sodium acetate; various Lewis bases; or an alkoxide (eg, zirconium alkoxide, titanium alkoxide, aluminum alkoxide).
- an acid catalyst for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid,
- the aluminum alkoxide tri-i-propoxyaluminum, tetra-i-propoxyaluminum, or the like can be used.
- the amount of the catalyst used is preferably 0.5 parts by mass or less, more preferably 0.00001 parts by mass to 100 parts by mass of the hydrolyzable silane compound from the viewpoint of promoting the hydrolysis / condensation reaction. 0.3 parts by mass.
- the reaction temperature in the hydrolysis / condensation of the hydrolyzable silane compound represented by the above formula (2) is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. to 150 ° C.
- the reaction time is preferably 30 minutes to 24 hours, more preferably 1 hour to 12 hours. By setting such reaction temperature and reaction time, the hydrolysis / condensation reaction can be performed most efficiently.
- the reaction may be carried out in one step by adding the hydrolyzable silane compound, water and catalyst to the reaction system at one time, or the hydrolyzable silane compound, water and catalyst may be added several times.
- the hydrolysis and condensation reaction may be carried out in multiple stages by adding them separately in the reaction system.
- a dehydrating agent is added, and then water and generated alcohol can be removed from the reaction system by evaporation.
- the dehydrating agent used at this stage generally has a positive radiation-sensitive composition because excess water is adsorbed or included to completely consume the dehydrating capacity or is removed by evaporation. It does not fall within the category of [I] dehydrating agent to be added later.
- the Mw of the hydrolysis condensate of the hydrolyzable silane compound represented by the above formula (2) is usually preferably 5.0 ⁇ 10 2 to 1.0 ⁇ 10 4 , and 1.0 ⁇ 10 3 to 5. 0 ⁇ 10 3 is more preferable.
- Mw 5.0 ⁇ 10 2 or more
- Mw 1.0 ⁇ 10 4 or less
- the mass ratio of the [A] polymer to the total of the [A] polymer and the [B] siloxane polymer is preferably 5% by mass or more and 95% by mass or less.
- the photoacid generator is a compound that generates an acid upon irradiation with radiation.
- the radiation for example, visible light, ultraviolet light, far ultraviolet light, electron beam, X-ray or the like can be used.
- the positive-type radiation-sensitive composition contains an [A] polymer having an acid-dissociable group and a [C] photoacid generator, so that the positive-type radiation-sensitive composition has a positive-type radiation-sensitive property. Can be demonstrated.
- the inclusion form of the photoacid generator in the positive radiation-sensitive composition is a compound form as described later (hereinafter also referred to as “[C] photoacid generator” where appropriate). It may be in the form of acid generating groups incorporated as part of a polymer or other polymer, or both forms.
- Examples of the photoacid generator include onium salts, trihalomethyltriazine compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, phosphorus oxo acid ester compounds, sulfonimide compounds, sulfonebenzotriazole compounds, and oxime sulfonate compounds. .
- each of these [C] photo-acid generators can be used individually or in combination of 2 or more types.
- the photoacid generator does not contain a quinonediazide compound.
- onium salt examples include diphenyliodonium salt, triphenylsulfonium salt, sulfonium salt, benzothiazonium salt, ammonium salt compound, phosphonium salt compound, and tetrahydrothiophenium salt.
- diphenyliodonium salt examples include diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, diphenyliodonium Butyltris (2,6-difluorophenyl) borate, 4-methoxyphenylphenyliodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium hexafluoroarsenate Bis (4-tert-butylphenyl) iodonium trifluoro Tansul
- triphenylsulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium camphorsulfonic acid, triphenylsulfonium tetrafluoroborate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, triphenylsulfonium. And butyl tris (2,6-difluorophenyl) borate.
- sulfonium salt examples include alkylsulfonium salts, benzylsulfonium salts, dibenzylsulfonium salts, substituted benzylsulfonium salts, and the like.
- alkylsulfonium salt examples include 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, dimethyl-4- (benzyloxycarbonyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (Benzoyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroarsenate, dimethyl-3-chloro-4-acetoxyphenylsulfonium hexafluoroantimonate, and the like.
- benzylsulfonium salt examples include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, benzyl-4-methoxyphenyl Methylsulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyphenyl Examples include methylsulfonium hexafluorophosphate.
- dibenzylsulfonium salt examples include dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, 4-acetoxyphenyldibenzylsulfonium hexafluoroantimonate, dibenzyl-4-methoxyphenylsulfonium.
- Hexafluoroantimonate dibenzyl-3-chloro-4-hydroxyphenylsulfonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-t-butylphenylsulfonium hexafluoroantimonate, benzyl-4-methoxybenzyl- 4-hydroxyphenylsulfonium hexafluorophosphate and the like.
- substituted benzylsulfonium salts include p-chlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, and p-chlorobenzyl-4-hydroxyphenylmethyl.
- benzothiazonium salt examples include 3-benzylbenzothiazonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluorophosphate, 3-benzylbenzothiazonium tetrafluoroborate, 3- (p-methoxybenzyl) ) Benzothiazonium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazonium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazonium hexafluoroantimonate, and the like.
- ammonium salt compound examples include tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, tetrabutylammonium hydrogen sulfate, tetraethylammonium tetrafluoroborate, tetraethylammonium p-toluenesulfonate, N, N-dimethyl-N-benzyl.
- Anilinium hexafluoroantimonate N, N-dimethyl-N-benzylanilinium tetrafluoroborate, N, N-dimethyl-N-benzylpyridinium hexafluoroantimonate, N, N-diethyl-N-benzyltrifluoromethanesulfonate, N, N-dimethyl-N- (4-methoxybenzyl) pyridinium hexafluoroantimonate, N, N-diethyl- - (4-methoxybenzyl) preparative Luigi hexafluoroantimonate and the like.
- Examples of the phosphonium salt compound include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
- tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona.
- Trihalomethyltriazine compound examples include haloalkyl group-containing hydrocarbon compounds and haloalkyl group-containing heterocyclic compounds.
- diazomethane compounds examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (p-tolylsulfonyl) diazomethane, bis (2,4-xylylsulfonyl) diazomethane, Bis (p-chlorophenylsulfonyl) diazomethane, methylsulfonyl-p-toluenesulfonyldiazomethane, cyclohexylsulfonyl (1,1-dimethylethylsulfonyl) diazomethane, bis (1,1-dimethylethylsulfonyl) diazomethane, phenylsulfonyl (benzoyl) diazomethane,
- sulfone compound examples include ⁇ -ketosulfone compounds, ⁇ -sulfonylsulfone compounds, diaryldisulfone compounds, and the like.
- sulfonic acid ester compounds examples include alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates.
- Phosphooxoester compounds include, for example, trialkyl phosphate esters, triaryl phosphate esters, dialkyl phosphate esters, monoalkyl phosphate esters, trialkyl phosphite esters, triaryl phosphite esters, dialkyl phosphite esters. , Monoalkyl phosphites, hypophosphites and the like.
- sulfonimide compound examples include N- (trifluoromethylsulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (4-methylphenylsulfonyloxy) succinimide, N- (2-trifluoromethylphenylsulfonyloxy).
- sulfonebenzotriazole compound examples include 1-trifluoromethanesulfonyloxybenzotriazole, 1-nonafluorobutylsulfonyloxybenzotriazole, 1- (4-methylphenylsulfonyloxy) -benzotriazole, and the like.
- oxime sulfonate compound for example, a compound containing an oxime sulfonate group represented by the following formula (3) is preferable.
- R ⁇ C1> is a linear or branched alkyl group, a cycloalkyl group, or an aryl group. However, in these groups, some or all of the hydrogen atoms may be substituted.
- the linear or branched alkyl group represented by R C1 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
- the linear or branched alkyl group having 1 to 10 carbon atoms may be substituted.
- Examples of the substituent include an alkoxy group having 1 to 10 carbon atoms and 7,7-dimethyl-2-oxonorbornyl.
- a preferred alicyclic group is a bicycloalkyl group.
- the aryl group represented by R C1 is preferably an aryl group having 6 to 11 carbon atoms, and more preferably a phenyl group or a naphthyl group.
- the aryl group may be substituted, and examples of the substituent include an alkyl group having 1 to 5 carbon atoms, an alkoxy group, and a halogen atom.
- an oxime sulfonate compound represented by the following formula (4) is preferable.
- R ⁇ C1> is synonymous with said formula (3).
- X is an alkyl group, an alkoxy group, or a halogen atom.
- m is an integer of 0 to 3. However, when there are a plurality of Xs, the plurality of Xs may be the same or different.
- the alkyl group that can be represented by X is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
- the alkoxy group represented by X is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
- the halogen atom represented by X is preferably a chlorine atom or a fluorine atom.
- m 0 or 1 is preferable.
- a compound in which m is 1, X is a methyl group, and the substitution position of X is ortho is preferable.
- Examples of the oxime sulfonate compound represented by the above formula (4) include compounds represented by the following formulas (4-1) to (4-5).
- the photoacid generator is preferably an oxime sulfonate compound or an onium salt from the viewpoint of sensitivity and solubility.
- oxime sulfonate compound a compound represented by the above formula (3) is more preferable, a compound represented by the above formula (4) is particularly preferable, and commercially available products of the above formulas (4-1) to ( The compound represented by 4-5) is most preferable.
- onium salt tetrahydrothiophenium salt and benzylsulfonium salt are more preferable, and 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate Is particularly preferred.
- the content of the [C] photoacid generator in the composition is the sum of the [A] polymer and the [B] siloxane polymer when the [C] photoacid generator is a [C] photoacid generator.
- the amount is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass.
- a surfactant can be added to improve the coating property of the positive radiation-sensitive composition, reduce coating unevenness, and improve film thickness uniformity.
- Examples of the surfactant include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. These [D] surfactants can be used individually or in combination of 2 or more types.
- a compound having a fluoroalkyl group and / or a fluoroalkylene group in at least one of the terminal, main chain and side chain is preferable.
- fluorosurfactants include, for example, BM-1000, BM-1100 (above, manufactured by BM CHEMIE), MegaFuck F142D, F172, F173, F183, F178, F191, F191, and F471.
- F476 (above, manufactured by Dainippon Ink and Chemicals), Fluorard FC-170C, FC-171, FC-430, FC-431 (above, manufactured by Sumitomo 3M), Surflon S-112, S-113, S-131, S-141, S-145, S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-106 (and above) Asahi Glass), F-top EF301, EF303, EF352 (above, manufactured by Shin-Akita Kasei), Footent FT-100, FT-110 FT-140A, FT-150, FT-250, FT-251, FT-300, FT-310, FT-400S, FTX-218, FT-251 (above, Neos) Etc.
- silicone surfactants include, for example, Torresilicone DC3PA, DC7PA, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, SH-190, SH-193, SZ-6032, SF-8428, DC-57, DC-190, DC-190, SH 8400 FLUID (above, manufactured by Toray Dow Corning Silicone), TSF-4440, TSF-4300, TSF-4445, TSF-4446, TSF-4460, TSF-4442 (Above, GE Toshiba Silicone), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
- Nonionic surfactants include, for example, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, and the like.
- Polyflow No. 57, 95 manufactured by Kyoeisha Chemical
- the content of the [D] surfactant in the positive radiation sensitive composition is preferably 0.01 parts by mass or more and 10 parts by mass with respect to 100 parts by mass in total of the [A] polymer and the [B] siloxane polymer. It is not more than part by mass, and more preferably not less than 0.05 part by mass and not more than 5 parts by mass. [D] By setting the content of the surfactant in the specific range, the coating property of the positive radiation-sensitive composition can be optimized.
- Adhesion aids In the positive-type radiation-sensitive composition, in order to improve the adhesion between an inorganic material serving as a substrate, for example, a silicon compound such as silicon, silicon oxide and silicon nitride, a metal such as gold, copper and aluminum, and an insulating film [ E] Adhesion aids can be used.
- a functional silane coupling agent is preferably used.
- functional silane coupling agents include silane coupling agents having reactive substituents such as carboxyl groups, methacryloyl groups, isocyanate groups, epoxy groups (preferably oxiranyl groups), thiol groups, and the like. These [E] adhesion assistants can be used alone or in combination of two or more.
- Examples of functional silane coupling agents include trimethoxysilylbenzoic acid, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -glycidoxypropyltri Examples include methoxysilane, ⁇ -glycidoxypropylalkyldialkoxysilane, ⁇ -chloropropyltrialkoxysilane, ⁇ -mercaptopropyltrialkoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like.
- ⁇ -glycidoxypropyltrimethoxysilane ⁇ -glycidoxypropylalkyldialkoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane are preferred. .
- the content of the [E] adhesion assistant in the positive radiation sensitive composition is preferably 0.5 parts by mass or more and 20 parts by mass with respect to a total of 100 parts by mass of the [A] polymer and the [B] siloxane polymer. It is used in an amount of 1 part by mass or less and more preferably 10 parts by mass or less. [E] By making the amount of the adhesion assistant in the above specific range, the adhesion between the formed interlayer insulation film for display elements and the substrate is improved.
- the diffusion length of the acid generated from the [C] photoacid generator by exposure can be appropriately controlled, and the pattern developability can be improved. Can be good.
- the basic compound can be arbitrarily selected from those used in chemically amplified resists, and examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and carboxylic acid quaternary ammonium salts. Can be mentioned.
- These [F] basic compounds can be used alone or in combination of two or more.
- Examples of the aliphatic amine include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, dicyclohexylamine, Examples include dicyclohexylmethylamine.
- aromatic amine examples include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
- heterocyclic amine examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4 -Dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, pyrazole , Pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4,3,0] -5-nonene, 1,8-diazabicyclo [5,3,0] -7undecene Etc.
- Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, and tetra-n-hexylammonium hydroxide.
- carboxylic acid quaternary ammonium salts include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, and tetra-n-butylammonium benzoate.
- the [F] basic compound is preferably a heterocyclic amine, more preferably 4-dimethylaminopyridine or 1,5-diazabicyclo [4,3,0] -5-nonene.
- the content of the [F] basic compound in the positive radiation sensitive composition is 0.001 part by mass to 1 part by mass with respect to 100 parts by mass in total of the [A] polymer and the [B] siloxane polymer. Preferably, 0.005 to 0.2 parts by mass is more preferable. [F] By making content of a basic compound into the said specific range, pattern developability improves more.
- a quinonediazide compound is a compound that generates a carboxylic acid upon irradiation with radiation.
- a condensate of a phenolic compound or an alcoholic compound (hereinafter also referred to as “mother nucleus”) and 1,2-naphthoquinonediazidesulfonic acid halide can be used.
- mother nucleus a condensate of a phenolic compound or an alcoholic compound
- 1,2-naphthoquinonediazidesulfonic acid halide can be used.
- mother nucleus examples include trihydroxybenzophenone, tetrahydroxybenzophenone, pentahydroxybenzophenone, hexahydroxybenzophenone, (polyhydroxyphenyl) alkane, and other mother nuclei.
- trihydroxybenzophenone examples include 2,3,4-trihydroxybenzophenone and 2,4,6-trihydroxybenzophenone.
- examples of tetrahydroxybenzophenone include 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,3,4,3′-tetrahydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,3 , 4,2′-tetrahydroxy-4′-methylbenzophenone, 2,3,4,4′-tetrahydroxy-3′-methoxybenzophenone, and the like.
- pentahydroxybenzophenone examples include 2,3,4,2 ', 6'-pentahydroxybenzophenone.
- Examples of hexahydroxybenzophenone include 2,4,6,3 ', 4', 5'-hexahydroxybenzophenone, 3,4,5,3 ', 4', 5'-hexahydroxybenzophenone, and the like.
- Examples of (polyhydroxyphenyl) alkanes include bis (2,4-dihydroxyphenyl) methane, bis (p-hydroxyphenyl) methane, tris (p-hydroxyphenyl) methane, 1,1,1-tris (p-hydroxy).
- Phenyl) ethane bis (2,3,4-trihydroxyphenyl) methane, 2,2-bis (2,3,4-trihydroxyphenyl) propane, 1,1,3-tris (2,5-dimethyl-) 4-hydroxyphenyl) -3-phenylpropane, 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol, bis (2,5-dimethyl) -4-hydroxyphenyl) -2-hydroxyphenylmethane, 3,3,3 ', 3'-tetramethyl-1,1'-spirobi Den -5,6,7,5 ', 6', 7'-hexanol, 2,2,4-trimethyl -7,2 ', 4'-trihydroxy flavan like.
- mother nuclei examples include 2-methyl-2- (2,4-dihydroxyphenyl) -4- (4-hydroxyphenyl) -7-hydroxychroman, 1- [1- (3- ⁇ 1- (4- Hydroxyphenyl) -1-methylethyl ⁇ -4,6-dihydroxyphenyl) -1-methylethyl] -3- (1- (3- ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ -4, 6-dihydroxyphenyl) -1-methylethyl) benzene and 4,6-bis ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ -1,3-dihydroxybenzene.
- 1,2-naphthoquinone diazide sulfonic acid halide 1,2-naphthoquinone diazide sulfonic acid chloride is preferable.
- 1,2-naphthoquinone diazide sulfonic acid chloride examples include 1,2-naphthoquinone diazide-4-sulfonic acid chloride, 1,2-naphthoquinone diazide-5-sulfonic acid chloride, and the like. Of these, 1,2-naphthoquinonediazide-5-sulfonic acid chloride is preferred.
- 1,2-naphthoquinonediazide sulfonic acid halide preferably 30 mol% to 85 mol based on the number of OH groups in the phenolic compound or alcoholic compound.
- 1,2-naphthoquinonediazide sulfonic acid halide corresponding to mol%, more preferably 50 mol% to 70 mol% can be used.
- the condensation reaction can be carried out by a known method.
- Examples of the quinonediazide compound include 1,2-naphthoquinonediazidesulfonic acid amides in which the ester bond of the mother nucleus exemplified above is changed to an amide bond, such as 2,3,4-triaminobenzophenone-1,2-naphthoquinonediazide- 4-sulfonic acid amide and the like are also preferably used.
- the amount of the [G] quinonediazide compound used is preferably such that the total of [C] photoacid generator and [G] quinonediazide compound is 100 parts by mass with respect to the total of 100 parts by mass of [A] polymer and [B] siloxane polymer. 1 to 30 parts by weight, more preferably 1 to 20 parts by weight.
- the positive radiation-sensitive composition includes [H] a heat-sensitive acid generator or a heat-sensitive base generator, as necessary, as long as the effects of the present invention are not impaired.
- [H] heat-sensitive acid generator or heat-sensitive base generator is heated to convert the [B] siloxane polymer (preferably a hydrolysis-condensation product of the hydrolyzable silane compound represented by the above formula (2)) to self. It is defined as a compound capable of releasing an acidic active substance or a basic active substance that acts as a catalyst for condensation / curing.
- the heat-sensitive acid generator or the heat-sensitive base generator is an acidic active substance or a pre-baking at a relatively low temperature (for example, 70 ° C. to 120 ° C.) in the coating film forming process of the positive radiation sensitive composition. Those which do not release a basic active substance and have a property of releasing an acidic active substance or a basic active substance during post-baking at a relatively high temperature (for example, 120 ° C. to 250 ° C.) in a heating step after development are preferable. These [H] heat-sensitive acid generators or heat-sensitive base generators can be used alone or in combination of two or more.
- the compounds listed in the description of the [C] photoacid generator can be suitably applied. Whether light or heat is sensitive can be selected by adjusting the exposure amount and temperature.
- Examples of the [H] heat-sensitive base generator include 2-nitrobenzylcyclohexylcarbamate, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, N- (2-nitrobenzyloxycarbonyl) pyrrolidine, bis [ [(2-nitrobenzyl) oxy] carbonyl] hexane-1,6-diamine, triphenylmethanol, O-carbamoylhydroxyamide, O-carbamoyloxime, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, hexaamminecobalt (III) tris (triphenylmethylborate) Etc.
- 2-nitrobenzylcyclohexylcarbamate
- the amount of the heat-sensitive acid generator or the heat-sensitive base generator used is preferably 0.1 to 20 parts by weight with respect to a total of 100 parts by weight of the [A] polymer and [B] siloxane polymer. More preferably, it is 1 to 10 parts by mass.
- a dehydrating agent is defined as a substance that can convert water into a substance other than water by a chemical reaction or trap water by physical adsorption or inclusion.
- a dehydrating agent moisture entering from the environment or the result of condensation of [B] siloxane polymer in the heating step after development of the positive radiation-sensitive composition The generated moisture can be reduced.
- the storage stability of the composition can be improved.
- the condensation reactivity of the [B] siloxane polymer can be increased and the heat resistance of the positive radiation-sensitive composition can be improved.
- Examples of such [I] dehydrating agents include carboxylic acid esters, acetals (including ketals), carboxylic acid anhydrides, and the like.
- orthocarboxylic acid ester and carboxylic acid silyl ester are preferable.
- orthocarboxylic acid esters include, for example, methyl orthoformate, ethyl orthoformate, propyl orthoformate, butyl orthoformate, methyl orthoacetate, ethyl orthoacetate, propyl orthoacetate, butyl orthoacetate, methyl orthopropionate, ethyl orthopropionate, etc. Is mentioned.
- orthoformates such as methyl orthoformate are preferred.
- the carboxylic acid silyl ester include trimethylsilyl acetate, tributylsilyl acetate, trimethylsilyl formate, and trimethylsilyl oxalate.
- a reaction product of a ketone and an alcohol a reaction product of a ketone and a dialcohol, or a ketene silyl acetal is preferable.
- the reaction product of ketones and alcohol include dimethyl acetal, diethyl acetal, dipropyl acetal, and the like.
- carboxylic acid anhydrides examples include formic anhydride, acetic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, and acetic acid benzoic anhydride. Of these carboxylic acid anhydrides, acetic anhydride and succinic anhydride are preferred from the viewpoint of dehydration effect.
- the amount of the dehydrating agent to be used is preferably 0.001 to 10 parts by mass, more preferably 0.001 parts by mass with respect to 100 parts by mass in total of the [A] polymer and [B] siloxane polymer.
- the amount is 01 parts by mass to 5 parts by mass, and particularly preferably 0.03 parts by mass to 1 part by mass.
- the storage stability of a positive radiation sensitive composition can be improved by making the usage-amount of a dehydrating agent into the said specific range.
- the positive-type radiation-sensitive composition is dissolved by mixing [A] polymer, [B] siloxane polymer, [C] photoacid generator, a suitable component as necessary, and other optional components in a solvent. Alternatively, it is prepared in a dispersed state.
- the positive radiation-sensitive composition can be prepared by mixing each component at a predetermined ratio in a solvent.
- a solvent in which each component is uniformly dissolved or dispersed and does not react with each component is preferably used.
- the solvent include alcohols, ethers, glycol ethers, ethylene glycol alkyl ether acetates, diethylene glycol alkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionate, aromatic Examples include hydrocarbons, ketones, and other esters. In addition, these solvents can be used alone or in combination of two or more.
- alcohols examples include methanol, ethanol, benzyl alcohol, 2-phenylethyl alcohol, 3-phenyl-1-propanol and the like.
- ethers examples include tetrahydrofuran.
- glycol ethers examples include ethylene glycol monomethyl ether and ethylene glycol monoethyl ether.
- ethylene glycol alkyl ether acetates examples include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate.
- diethylene glycol alkyl ether examples include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether.
- propylene glycol monoalkyl ether examples include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether and the like.
- propylene glycol monoalkyl ether acetates examples include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate and the like.
- propylene glycol monoalkyl ether propionate examples include propylene monoglycol methyl ether propionate, propylene glycol monoethyl ether propionate, propylene glycol monopropyl ether propionate, propylene glycol monobutyl ether propionate and the like. .
- aromatic hydrocarbons examples include toluene and xylene.
- ketones include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone and the like.
- esters examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, hydroxy Methyl acetate, ethyl hydroxyacetate, hydroxybutyl acetate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate 2-methyl-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate Methyl propoxya
- ethers such as dialkyl ethers, diethylene glycol alkyl ethers, Ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, ketones and esters are preferred, especially diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, methyl cellosolve acetate, ethyl cellosolve Acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether Acetate, propylene glycol monoethyl ether acetate, cyclohexanone, propyl acetate, i-propyl acetate, butyl acetate, ethyl
- the solid content concentration of the positive radiation-sensitive composition can be arbitrarily set according to the purpose of use and desired film thickness, but is preferably 10% by mass or more and 70% by mass or less, more preferably 30% by mass. % To 60% by mass.
- the positive radiation-sensitive composition is suitable as a material for forming an interlayer insulating film for display elements. Further, the present invention suitably includes an interlayer insulating film for a display element formed from the positive radiation sensitive composition.
- the method for forming an interlayer insulating film for a display element includes: (1) The process of forming the coating film of the said positive type radiation sensitive composition on a board
- the positive radiation sensitive composition has good radiation sensitivity
- the formed interlayer insulating film for display elements has high dry etching resistance, so that a large dry etching margin can be secured. Even if it is a display element interlayer insulating film for a large display device, which has conventionally been difficult to process uniformly and in a short time, an interlayer insulating film for a display element having a fine and elaborate pattern is easily formed. can do. Furthermore, it is possible to obtain an interlayer insulating film for a display element that satisfies a good balance of surface hardness, refractive index, heat resistance and transparency. Hereinafter, each process is explained in full detail.
- the coating surface is preferably removed by pre-baking the coating surface to form a coating film.
- the coating method include spraying, roll coating, spin coating (spin coating), slit die coating, and bar coating. Of these, the spin coating method and the slit die coating method are preferable, and the slit die coating method is more preferable.
- Examples of the substrate include glass, quartz, silicone, and resin.
- Examples of the resin include polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, polyimide, cyclic olefin ring-opening polymer, and hydrogenated products thereof.
- Prebaking conditions vary depending on the type of each component, the blending ratio, etc., but can be about 70 ° C. to 120 ° C. and about 1 to 10 minutes.
- Step (2) In this step, at least a part of the formed coating film is exposed to radiation and exposed. When exposing, it exposes normally through the photomask which has a predetermined pattern.
- the radiation used for exposure the radiation used for the [C] photoacid generator is suitable. Of these radiations, radiation having a wavelength in the range of 190 nm to 450 nm is preferable, and radiation containing ultraviolet light of 365 nm is more preferable. Energy of exposure intensity at the wavelength 365nm radiation, by the value measured by luminometer (OAI model356, OAI Optical Ltd.
- Step (3) the coating film irradiated with the radiation is developed. By developing the coated film after exposure, unnecessary portions (radiation irradiated portions) are removed to form a predetermined pattern.
- an alkaline aqueous solution is preferable.
- the alkali include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide. .
- An appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant can be added to the alkaline aqueous solution.
- concentration of alkali in the aqueous alkali solution is preferably from 0.1% by mass to 5% by mass from the viewpoint of obtaining appropriate developability.
- Examples of the developing method include a liquid piling method, a dipping method, a rocking dipping method, and a shower method.
- the development time varies depending on the composition of the positive radiation sensitive composition, but is about 10 seconds to 180 seconds. Following such development processing, for example, washing with running water is performed for 30 seconds to 90 seconds, and then a desired pattern can be formed by, for example, air drying with compressed air or compressed nitrogen.
- Step (4) In this step, the developed coating film is heated.
- a heating device such as a hot plate or an oven is used for heating, and the patterned thin film is heated to accelerate the curing reaction of the [A] polymer and [B] siloxane polymer, thereby obtaining a cured product. it can.
- the heating temperature is, for example, about 120 ° C. to 250 ° C.
- the heating time varies depending on the type of heating device, for example, it is about 5 to 30 minutes for a hot plate and about 30 to 90 minutes for an oven.
- the step baking method etc. which perform a heating process 2 times or more can also be used.
- a patterned thin film corresponding to the target display element interlayer insulating film can be formed on the surface of the substrate.
- the use of the cured film is not limited to the interlayer insulating film for display elements, and can also be used as a spacer or a protective film.
- the film thickness of the formed interlayer insulating film for display elements is preferably 0.1 ⁇ m to 8 ⁇ m, more preferably 0.1 ⁇ m to 6 ⁇ m, and particularly preferably 0.1 ⁇ m to 4 ⁇ m.
- the temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the polymer (A-1).
- the Mw of the polymer (A-1) was 9,000.
- the solid content concentration of the polymer solution was 32.1% by mass.
- the temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the polymer (A-2).
- Mw of the polymer (A-2) was 9,000.
- the solid content concentration of the polymer solution was 31.3% by mass.
- the solution temperature was set to 40 ° C., and evaporation was performed while maintaining the temperature, thereby removing ion-exchanged water and methanol generated by hydrolysis and condensation.
- a hydrolysis-condensation product (B-1) was obtained.
- Mw of the obtained hydrolyzed condensate (B-1) was 3,000, and Mw / Mn was 2.
- the solid content concentration of the hydrolysis-condensation product (B-1) was 40.5% by mass.
- Photoacid generator C-1 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate
- C-2 benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate
- C-3 (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile (Ciba Specialty Chemicals, IRGACURE PAG 103)
- C-4 (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile (Ciba Specialty Chemicals, IRGACURE PAG 108)
- C-5 (5-p-Toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) aceton
- D-1 Silicone surfactant (manufactured by Toray Dow Corning Silicone, SH 8400 FLUID)
- D-2 Fluorosurfactant (Neos, Aftergent FTX-218)
- Adhesion aid E-1 ⁇ -glycidoxypropyltrimethoxysilane
- E-2 ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane
- E-3 ⁇ -methacryloxypropyltrimethoxysilane
- Example 1 [A] 70 parts by mass of a solution containing (A-1) as a polymer (an amount corresponding to the solid content), [B] 30 parts by mass of (B-1) as a siloxane polymer, [C] a photoacid generator (C-1) 4 parts by mass as [D] surfactant (D-1) 0.20 part by mass and [E] (E-1) 3.0 parts by mass as adhesion assistant Then, a positive radiation sensitive composition was prepared by filtering through a membrane filter having a pore diameter of 0.2 ⁇ m.
- Example 2 to 14 and Comparative Examples 1 to 6 Each positive-type radiation-sensitive composition was prepared in the same manner as in Example 1 except that the types and blending amounts of each component were as described in Table 1. In Table 1, “-” indicates that the corresponding component was not used.
- Hexamethyldisilazane (HMDS) was applied on a 550 ⁇ 650 mm chromium-deposited glass and heated at 60 ° C. for 1 minute.
- Each positive radiation sensitive composition is applied onto the chromium-deposited glass after HMDS treatment using a slit die coater (manufactured by Tokyo Ohka Kogyo Co., Ltd., TR6322105-CL), and the ultimate pressure is set to 100 Pa under vacuum. After removing the solvent at, the film was further pre-baked at 90 ° C. for 2 minutes to form a coating film having a thickness of 3.0 ⁇ m.
- the coating film was irradiated with radiation through the mask having a 60 ⁇ m line and space (10 to 1) pattern with the exposure amount being changed. . Then, it developed for 80 second at 25 degreeC with 0.4 mass% tetramethylammonium hydroxide aqueous solution. Next, washing with running ultrapure water for 1 minute was performed, followed by drying to form a pattern on the chromium-deposited glass substrate after the HMDS treatment. At this time, the exposure amount necessary for completely dissolving the 6 ⁇ m space pattern was defined as radiation sensitivity (J / m 2 ). When this value was 500 (J / m 2 ) or less, it was judged that the sensitivity was good.
- a cured film was formed on the silicon substrate in the same manner as in the evaluation of the radiation sensitivity except that the exposure was not performed through a mask.
- the pencil hardness (surface hardness) of the cured film was measured by 8.4.1 pencil scratch test of JIS K-5400-1990. When this value is 3H or more, it can be said that the surface hardness as the interlayer insulating film for display elements is good, and it has sufficient curability.
- Heat-resistant(%) (
- Transmissivity (%) A cured film was formed on the glass substrate in the same manner as in the evaluation of the surface hardness except that a glass substrate (Corning 7059, manufactured by Corning) was used instead of the silicon substrate.
- the light transmittance (%) of the glass substrate having the cured film was measured at a wavelength in the range of 400 nm to 800 nm using a spectrophotometer (150-20 type double beam, manufactured by Hitachi, Ltd.). When the minimum light transmittance was 95% or more, it was judged that the transmittance was good.
- a cured film formed from a positive radiation-sensitive composition containing all of [A] polymer, [B] siloxane polymer, and [C] photoacid generator is a comparative example. It was found that the dry etching resistance was improved as compared with the cured film obtained from the composition. In addition, it has been found that a cured film sufficiently satisfying heat resistance, transparency, surface hardness and refractive index can be formed. Moreover, the cured film formed from the said positive type radiation sensitive composition is compared with the cured product formed from the composition of the comparative example containing a [G] quinonediazide compound instead of a [C] photo-acid generator. It was also found that the dry etching resistance was excellent.
- the positive radiation sensitive compositions of Examples 1 to 10 in which the mass ratio of the [A] polymer to the total of the [A] polymer and the [B] siloxane polymer is 5% by mass or more and 95% by mass or less. It was found that the cured film formed in (1) had higher resistance to dry etching and higher refractive index than the cured films obtained from the compositions of Examples 11 to 14 outside the above specific range. Thereby, it turned out that it is preferable that the mass ratio of the [A] polymer with respect to the sum total of a [A] polymer and a [B] siloxane polymer is 5 mass% or more and 95 mass% or less.
- the positive radiation-sensitive composition of the present invention can form an interlayer insulating film for display elements having high dry etching resistance. Further, the positive radiation sensitive composition of the present invention has a sufficient radiation sensitivity and can form an interlayer insulating film for a display element that sufficiently satisfies heat resistance, transparency, surface hardness and refractive index. Therefore, the positive radiation sensitive composition is suitably used for forming a display element interlayer insulating film for a display element.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Materials For Photolithography (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
[A]同一又は異なる重合体分子中に、下記式(1)で表される基を有する構造単位(I)とエポキシ基含有構造単位(II)とを含む重合体(以下、「[A]重合体」とも称する)、
[B]シロキサンポリマー、並びに
[C]光酸発生体
を含有するポジ型感放射線性組成物である。
(1)当該ポジ型感放射線性組成物の塗膜を基板上に形成する工程、
(2)上記塗膜の少なくとも一部に放射線を照射する工程、
(3)上記放射線が照射された塗膜を現像する工程、及び
(4)上記現像された塗膜を加熱する工程
を有する。
本発明のポジ型感放射線性組成物は、[A]重合体、[B]シロキサンポリマー及び[C]光酸発生体を含有する。また、当該ポジ型感放射線性組成物は好適成分として、[D]界面活性剤及び[E]密着助剤、[F]塩基性化合物、[G]キノンジアジド化合物を含有してもよい。さらに、本発明の効果を損なわない限りにおいて、その他の任意成分を含有してもよい。以下、各成分を詳述する。
[A]重合体は、同一又は異なる重合体分子中に、構造単位(I)とエポキシ基含有構造単位(II)とを含んでいる。また、必要に応じてその他の構造単位を含んでいてもよい。構造単位(I)及びエポキシ基含有構造単位(II)を含む[A]重合体の態様としては特に限定されず、例えば
(i)同一の重合体分子中に構造単位(I)及びエポキシ基含有構造単位(II)の両方を含んでおり、[A]重合体中に1種の重合体分子が存在する場合;
(ii)一の重合体分子中に構造単位(I)を含み、それとは異なる重合体分子中にエポキシ基含有構造単位(II)を含んでおり、[A]重合体中に2種の重合体分子が存在する場合;
(iii)一の重合体分子中に構造単位(I)及びエポキシ基含有構造単位(II)の両方を含むと共に、それとは異なる重合体分子中に構造単位(I)を含み、これらとはさらに異なる重合体分子中にエポキシ基含有構造単位(II)を含んでおり、[A]重合体中に3種の重合体分子が存在する場合;
(iv)(i)~(iii)に規定の重合体分子に加え、[A]重合体中にさらに別の1種又は2種以上の重合体分子を含む場合等が挙げられる。上記いずれの場合であっても本発明の効果を享受することができる。なお、[A]重合体は、各構造単位を2種以上含んでいてもよい。以下、各構造単位を詳述する。
構造単位(I)では、上記式(1)で表される基が、酸の存在下で解離して極性基を生じる基(酸解離性基)として存在しているので、放射線の照射により[C]光酸発生体から生じた酸により酸解離性基が解離し、その結果、アルカリ不溶性であった[A]重合体はアルカリ可溶性となる。上記酸解離性基は、アルカリに対しては比較的安定なアセタール構造又はケタール構造を有しており、これらが酸の作用によって解離することとなる。
1-アルコキシアルキル(メタ)アクリレート、1-(シクロアルキルオキシ)アルキル(メタ)アクリレート、1-(ハロアルコキシ)アルキル(メタ)アクリレート、1-(アラルキルオキシ)アルキル(メタ)アクリレート、テトラヒドロピラニル(メタ)アクリレート等の(メタ)アクリレート系アセタール構造含有単量体;
2,3-ジ(1-(トリアルキルシラニルオキシ)アルコキシ)カルボニル)-5-ノルボルネン、2,3-ジ(1-(トリアルキルゲルミルオキシ)アルコキシ)カルボニル)-5-ノルボルネン、2,3-ジ(1-アルコキシアルコキシカルボニル)-5-ノルボルネン、2,3-ジ(1-(シクロアルキルオキシ)アルコキシカルボニル)-5-ノルボルネン、2,3-ジ(1-(アラルキルオキシ)アルコキシカルボニル)-5-ノルボルネン等のノルボルネン系アセタール構造含有単量体;
1-アルコキシアルコキシスチレン、1-(ハロアルコキシ)アルコキシスチレン、1-(アラルキルオキシ)アルコキシスチレン、テトラヒドロピラニルオキシスチレン等のスチレン系アセタール構造含有単量体が挙げられる。
1-エトキシエチルメタクリレート、1-メトキシエチルメタクリレート、1-n-ブトキシエチルメタクリレート、1-イソブトキシエチルメタクリレート、1-t-ブトキシエチルメタクリレート、1-(2-クロルエトキシ)エチルメタクリレート、1-(2-エチルヘキシルオキシ)エチルメタクリレート、1-n-プロポキシエチルメタクリレート、1-シクロヘキシルオキシエチルメタクリレート、1-(2-シクロヘキシルエトキシ)エチルメタクリレート、1-ベンジルオキシエチルメタクリレート、2-テトラヒドロピラニルメタクリレート等のメタクリレート系アセタール構造含有単量体;
1-エトキシエチルアクリレート、1-メトキシエチルアクリレート、1-n-ブトキシエチルアクリレート、1-イソブトキシエチルアクリレート、1-t-ブトキシエチルアクリレート、1-(2-クロルエトキシ)エチルアクリレート、1-(2-エチルヘキシルオキシ)エチルアクリレート、1-n-プロポキシエチルアクリレート、1-シクロヘキシルオキシエチルアクリレート、1-(2-シクロヘキシルエトキシ)エチルアクリレート、1-ベンジルオキシエチルアクリレート、2-テトラヒドロピラニルアクリレート等のアクリレート系アセタール構造含有単量体;
2,3-ジ(1-(トリメチルシラニルオキシ)エトキシ)カルボニル)-5-ノルボルネン、2,3-ジ(1-(トリメチルゲルミルオキシ)エトキシ)カルボニル)-5-ノルボルネン、2,3-ジ(1-メトキシエトキシカルボニル)-5-ノルボルネン、2,3-ジ(1-(シクロヘキシルオキシ)エトキシカルボニル)-5-ノルボルネン、2,3-ジ(1-(ベンジルオキシ)エトキシカルボニル)-5-ノルボルネン等のノルボルネン系アセタール構造含有単量体;
p又はm-1-エトキシエトキシスチレン、p又はm-1-メトキシエトキシスチレン、p又はm-1-n-ブトキシエトキシスチレン、p又はm-1-イソブトキシエトキシスチレン、p又はm-1-(1,1-ジメチルエトキシ)エトキシスチレン、p又はm-1-(2-クロルエトキシ)エトキシスチレン、p又はm-1-(2-エチルヘキシルオキシ)エトキシスチレン、p又はm-1-n-プロポキシエトキシスチレン、p又はm-1-シクロヘキシルオキシエトキシスチレン、p又はm-1-(2-シクロヘキシルエトキシ)エトキシスチレン、p又はm-1-ベンジルオキシエトキシスチレン等のスチレン系アセタール構造含有単量体等が挙げられる。なお、これらの単量体は単独又は2種以上を使用することができる。
エポキシ基含有構造単位(II)としては、エポキシ基含有単量体に由来する構造単位であれば特に限定されない。[A]重合体が分子中にエポキシ基含有構造単位(II)を含むことで、当該ポジ型感放射線性組成物から得られる硬化膜の表面硬度及び耐熱性をさらに高めることができる。なお、本明細書のエポキシ基とは、オキシラニル基(1,2-エポキシ構造)及びオキセタニル基(1,3-エポキシ構造)を含む概念である。
(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル、アクリル酸3-メチル-3,4-エポキシブチル、メタクリル酸3-エチル-3,4-エポキシブチル、(メタ)アクリル酸5,6-エポキシヘキシル、メタクリル酸5-メチル-5,6-エポキシヘキシル、メタクリル酸5-エチル-5,6-エポキシヘキシル、(メタ)アクリル酸6,7-エポキシヘプチル、メタクリル酸3,4-エポキシシクロへキシル、メタクリル酸3,4-エポキシシクロへキシルメチル、(メタ)アクリル酸3,4-エポキシシクロへキシルエチル、メタクリル酸3,4-エポキシシクロへキシルプロピル、メタクリル酸3,4-エポキシシクロへキシルブチル、(メタ)アクリル酸3,4-エポキシシクロへキシルヘキシル、アクリル酸3,4-エポキシシクロへキシルメチル、アクリル酸3,4-エポキシシクロへキシルエチル、アクリル酸3,4-エポキシシクロへキシルプロピル、アクリル酸3,4-エポキシシクロへキシルブチル、アクリル酸3,4-エポキシシクロへキシルヘキシル等のオキシラニル基含有(メタ)アクリル系化合物;
o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、α-メチル-o-ビニルベンジルグリシジルエーテル、α-メチル-m-ビニルベンジルグリシジルエーテル、α-メチル-p-ビニルベンジルグリシジルエーテル等のビニルベンジルグリシジルエーテル類;
o-ビニルフェニルグリシジルエーテル、m-ビニルフェニルグリシジルエーテル、p-ビニルフェニルグリシジルエーテル等のビニルフェニルグリシジルエーテル類;
3-アクリロイルオキシメチルオキセタン、3-アクリロイルオキシメチル-3-メチルオキセタン、3-アクリロイルオキシメチル-3-エチルオキセタン、3-アクリロイルオキシメチル-3-フェニルオキセタン、3-(2-アクリロイルオキシエチル)オキセタン、3-(2-アクリロイルオキシエチル)-3-エチルオキセタン、3-(2-アクリロイルオキシエチル)-3-エチルオキセタン、3-(2-アクリロイルオキシエチル)-3-フェニルオキセタン、3-メタクリロイルオキシメチルオキセタン、3-メタクリロイルオキシメチル-3-メチルオキセタン、3-メタクリロイルオキシメチル-3-エチルオキセタン、3-メタクリロイルオキシメチル-3-フェニルオキセタン、3-(2-メタクリロイルオキシエチル)オキセタン、3-(2-メタクリロイルオキシエチル)-3-エチルオキセタン、3-(2-メタクリロイルオキシエチル)-3-エチルオキセタン、3-(2-メタクリロイルオキシエチル)-3-フェニルオキセタン、2-アクリロイルオキシメチルオキセタン、2-アクリロイルオキシメチル-2-メチルオキセタン、2-アクリロイルオキシメチル-2-エチルオキセタン、2-アクリロイルオキシメチル-2-フェニルオキセタン、2-(2-アクリロイルオキシエチル)オキセタン、2-(2-アクリロイルオキシエチル)-2-エチルオキセタン、2-(2-アクリロイルオキシエチル)-2-エチルオキセタン、2-(2-アクリロイルオキシエチル)-2-フェニルオキセタン、2-メタクリロイルオキシメチルオキセタン、2-メタクリロイルオキシメチル-2-メチルオキセタン、2-メタクリロイルオキシメチル-2-エチルオキセタン、2-メタクリロイルオキシメチル-2-フェニルオキセタン、2-(2-メタクリロイルオキシエチル)オキセタン、2-(2-メタクリロイルオキシエチル)-2-エチルオキセタン、2-(2-メタクリロイルオキシエチル)-2-エチルオキセタン、2-(2-メタクリロイルオキシエチル)-2-フェニルオキセタン等のオキセタニル基含有(メタ)アクリル系化合物等が挙げられる。これらの単量体は、単独又は2種以上を組み合わせて用いることができる。
[A]重合体は、本発明の効果を損なわない範囲において、構造単位(I)及び構造単位(II)以外のその他の構造単位を含んでいてもよい。
アクリル酸メチル、アクリル酸i-プロピル等のアクリル酸アルキルエステル;
メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸t-ブチル等のメタクリル酸アルキルエステル;
アクリル酸シクロヘキシル、アクリル酸-2-メチルシクロヘキシル、アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル、アクリル酸-2-(トリシクロ[5.2.1.02,6]デカン-8-イルオキシ)エチル、アクリル酸イソボルニル等のアクリル酸脂環式アルキルエステル;
メタクリル酸シクロヘキシル、メタクリル酸-2-メチルシクロヘキシル、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル、メタクリル酸-2-(トリシクロ[5.2.1.02,6]デカン-8-イルオキシ)エチル、メタクリル酸イソボルニル等のメタクリル酸脂環式アルキルエステル;
アクリル酸フェニル、アクリル酸ベンジル等のアクリル酸のアリールエステル及びアクリル酸のアラルキルエステル;
メタクリル酸フェニル、メタクリル酸ベンジル等のメタクリル酸のアリールエステル及びメタクリル酸のアラルキルエステル;
マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等のジカルボン酸ジアルキルエステル;
メタクリル酸テトラヒドロフルフリル、メタクリル酸テトラヒドロフリル、メタクリル酸テトラヒドロピラン-2-メチル等の酸素1原子を含む不飽和複素五員環メタクリル酸エステル及び不飽和複素六員環メタクリル酸エステル;
4-メタクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-メタクリロイルオキシメチル-2-メチル-2-イソブチル-1,3-ジオキソラン、4-メタクリロイルオキシメチル-2-シクロヘキシル-1,3-ジオキソラン、4-メタクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-メタクリロイルオキシメチル-2-メチル-2-イソブチル-1,3-ジオキソラン等の酸素2原子を含む不飽和複素五員環メタクリル酸エステル;
4-アクリロイルオキシメチル-2,2-ジメチル-1,3-ジオキソラン、4-アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-アクリロイルオキシメチル-2、2-ジエチル-1,3-ジオキソラン、4-アクリロイルオキシメチル-2-メチル-2-イソブチル-1,3-ジオキソラン、4-アクリロイルオキシメチル-2-シクロペンチル-1,3-ジオキソラン、4-アクリロイルオキシメチル-2-シクロヘキシル-1,3-ジオキソラン、4-アクリロイルオキシエチル-2-メチル-2-エチル-1,3-ジオキソラン、4-アクリロイルオキシプロピル-2-メチル-2-エチル-1,3-ジオキソラン、4-アクリロイルオキシブチル-2-メチル-2-エチル-1,3-ジオキソラン等の酸素2原子を含む不飽和複素五員環アクリル酸エステル;
スチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-メトキシスチレン、4-イソプロペニルフェノール等のビニル芳香族化合物;
N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-スクシンイミジル-3-マレイミドベンゾエート、N-スクシンイミジル-4-マレイミドブチレート、N-スクシンイミジル-6-マレイミドカプロエート、N-スクシンイミジル-3-マレイミドプロピオネート、N-(9-アクリジニル)マレイミド等のN位置換マレイミド;
1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン等の共役ジエン系化合物;
アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、塩化ビニル、塩化ビニリデン、酢酸ビニル等のその他の不飽和化合物が挙げられる。
装置:GPC-101(昭和電工製)
カラム:GPC-KF-801、GPC-KF-802、GPC-KF-803及びGPC-KF-804を結合
移動相:テトラヒドロフラン
カラム温度:40℃
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
[A]重合体は、上記各構造単位を与える単量体のラジカル共重合により合成できる。例えば、同一の重合体分子に構造単位(I)及びエポキシ基含有構造単位(II)の両方を含む[A]重合体を合成する場合は、構造単位(I)を与える単量体とエポキシ基含有構造単位(II)を与える単量体とを含む混合物を用いて共重合させればよい。一方、一の重合体分子に構造単位(I)を有し、かつそれとは異なる重合体分子にエポキシ基含有構造単位(II)を有する[A]重合体を合成する場合は、構造単位(I)を与える単量体を含む重合性溶液をラジカル重合させて構造単位(I)を有する重合体分子を得ておき、別途エポキシ基含有構造単位(II)を与える単量体を含む重合性溶液をラジカル重合させてエポキシ基含有構造単位(II)を有する重合体分子を得て、最後に両者を混合して[A]重合体とすればよい。
[B]シロキサンポリマーは、シロキサン結合を有するポリマーである限り特に限定されない。この[B]シロキサンポリマーは、加熱により自己縮合することで硬化物を形成する。
4個の加水分解性基で置換されたシラン化合物として、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラフェノキシシラン、テトラベンジロキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン等;
1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物として、クロロトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-i-プロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ-i-プロポキシシラン、エチルトリブトキシシラン、ブチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ-n-プロポキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等;
2個の非加水分解性基と2個の加水分解性基とで置換されたシラン化合物として、ジクロロジメトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ジブチルジメトキシシラン等;
3個の非加水分解性基と1個の加水分解性基とで置換されたシラン化合物として、トリクロロメトキシシラン、トリブチルメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリブチルエトキシシラン等が挙げられる。
[C]光酸発生体は、放射線の照射によって酸を発生する化合物である。放射線としては、例えば可視光線、紫外線、遠紫外線、電子線、X線等を使用できる。当該ポジ型感放射線性組成物が、酸解離性基を有する[A]重合体と[C]光酸発生体を含有することで、当該ポジ型感放射線性組成物はポジ型の感放射線特性を発揮することができる。[C]光酸発生体の当該ポジ型感放射線性組成物における含有形態としては、後述するような化合物の形態(以下、適宜「[C]光酸発生剤」とも称する)でも、[A]重合体又は他の重合体の一部として組み込まれた酸発生基の形態でも、これらの両方の形態でもよい。
オニウム塩としては、例えばジフェニルヨードニウム塩、トリフェニルスルホニウム塩、スルホニウム塩、ベンゾチアゾニウム塩、アンモニウム塩化合物、ホスホニウム塩化合物、テトラヒドロチオフェニウム塩等が挙げられる。
トリハロメチルトリアジン化合物としては、例えばハロアルキル基含有炭化水素化合物、ハロアルキル基含有ヘテロ環状化合物等が挙げられる。
ジアゾメタン化合物としては、例えばビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p-トリルスルホニル)ジアゾメタン、ビス(2,4-キシリルスルホニル)ジアゾメタン、ビス(p-クロロフェニルスルホニル)ジアゾメタン、メチルスルホニル-p-トルエンスルホニルジアゾメタン、シクロヘキシルスルホニル(1,1-ジメチルエチルスルホニル)ジアゾメタン、ビス(1,1-ジメチルエチルスルホニル)ジアゾメタン、フェニルスルホニル(ベンゾイル)ジアゾメタン等が挙げられる。
スルホン化合物としては、例えばβ-ケトスルホン化合物、β-スルホニルスルホン化合物、ジアリールジスルホン化合物等が挙げられる。
スルホン酸エステル化合物としては、例えばアルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等が挙げられる。
リンオキソ酸エステル化合物としては、例えばトリアルキルリン酸エステル、トリアリールリン酸エステル、ジアルキルリン酸エステル、モノアルキルリン酸エステル、トリアルキル亜リン酸エステル、トリアリール亜リン酸エステル、ジアルキル亜リン酸エステル、モノアルキル亜リン酸エステル、次亜リン酸エステル等が挙げられる。
スルホンイミド化合物としては、例えばN-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(カンファスルホニルオキシ)スクシンイミド、N-(4-メチルフェニルスルホニルオキシ)スクシンイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N-(4-フルオロフェニルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(カンファスルホニルオキシ)フタルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N-(2-フルオロフェニルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(カンファスルホニルオキシ)ジフェニルマレイミド、4-メチルフェニルスルホニルオキシ)ジフェニルマレイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)ジフェニルマレイミド、N-(4-フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N-(4-フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N-(フェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(4-メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(ノナフルオロブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(カンファスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(トリフルオロメチルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(4-メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(4-メチルフェニルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(4-フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(4-フルオロフェニルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシルイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、N-(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、N-(4-メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、N-(4-フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(カンファスルホニルオキシ)ナフチルジカルボキシルイミド、N-(4-メチルフェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(フェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(4-フルオロフェニルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(ペンタフルオロエチルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(ヘプタフルオロプロピルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(ノナフルオロブチルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(エチルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(プロピルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(ブチルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(ペンチルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(ヘキシルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(ヘプチルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(オクチルスルホニルオキシ)ナフチルジカルボキシルイミド、N-(ノニルスルホニルオキシ)ナフチルジカルボキシルイミド等が挙げられる。
スルホンベンゾトリアゾール化合物としては、例えば1-トリフルオロメタンスルホニルオキシベンゾトリアゾール、1-ノナフルオロブチルスルホニルオキシベンゾトリアゾール、1-(4-メチルフェニルスルホニルオキシ)-ベンゾトリアゾール等が挙げられる。
オキシムスルホネート化合物としては、例えば下記式(3)で表されるオキシムスルホネート基を含有する化合物が好ましい。
[D]界面活性剤は、当該ポジ型感放射線性組成物の塗布性の改善、塗布ムラの低減、膜厚均一性を改良するために添加することができる。[D]界面活性剤としては、例えばフッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤等が挙げられる。これらの[D]界面活性剤は、単独又は2種以上を組み合わせて使用することができる。
当該ポジ型感放射線性組成物においては、基板となる無機物、例えばシリコン、酸化シリコン、窒化シリコン等のシリコン化合物、金、銅、アルミニウム等の金属と絶縁膜との接着性を向上させるために[E]密着助剤を使用することができる。このような密着助剤としては、官能性シランカップリング剤が好ましく使用される。官能性シランカップリング剤の例としては、カルボキシル基、メタクリロイル基、イソシアネート基、エポキシ基(好ましくはオキシラニル基)、チオール基等の反応性置換基を有するシランカップリング剤等が挙げられる。これらの[E]密着助剤は、単独又は2種以上を組み合わせて使用することができる。
当該ポジ型感放射線性組成物が、[F]塩基性化合物を含有することで、露光により[C]光酸発生体から発生した酸の拡散長を適度に制御することができパターン現像性を良好にできる。塩基性化合物としては、化学増幅レジストで用いられるものから任意に選択して使用でき、例えば脂肪族アミン、芳香族アミン、複素環式アミン、4級アンモニウムヒドロキシド、カルボン酸4級アンモニウム塩等が挙げられる。これらの[F]塩基性化合物は、単独又は2種以上を組み合わせて使用することができる。
[G]キノンジアジド化合物は放射線の照射によりカルボン酸を発生する化合物である。キノンジアジド化合物としては、フェノール性化合物又はアルコール性化合物(以下、「母核」とも称する)と1,2-ナフトキノンジアジドスルホン酸ハライドとの縮合物を用いることができる。これらの[G]キノンジアジド化合物は、単独又は2種以上を組み合わせて使用することができる。
当該ポジ型感放射線性組成物は、上記[A]~[G]成分に加え、本発明の効果を損なわない範囲で必要に応じて[H]感熱性酸発生剤又は感熱性塩基発生剤、[I]脱水剤等のその他の任意成分を含有してもよい。
[H]感熱性酸発生剤又は感熱性塩基発生剤は、加熱により、[B]シロキサンポリマー(好ましくは上記式(2)で表される加水分解性シラン化合物の加水分解縮合物)を、自己縮合・硬化させる際の触媒として作用する酸性活性物質又は塩基性活性物質を放出することができる化合物と定義される。このような[H]感熱性酸発生剤又は感熱性塩基発生剤を用いることで、得られる表示素子用層間絶縁膜の表面硬度及び耐熱性をより向上させることができる。なお、[H]感熱性酸発生剤又は感熱性塩基発生剤としては、ポジ型感放射線性組成物の塗膜形成工程における比較的低温(例えば70℃~120℃)のプレベーク時には酸性活性物質又は塩基性活性物質を放出せず、現像後の加熱工程における比較的高温(例えば120℃~250℃)のポストベーク時に酸性活性物質又は塩基性活性物質を放出する性質を有するものが好ましい。これらの[H]感熱性酸発生剤又は感熱性塩基発生剤は、単独又は2種以上を組み合わせて使用することができる。
[I]脱水剤は、水を化学反応により水以外の物質に変換することができるか、又は水を物理吸着若しくは包接によりトラップすることができる物質として定義される。当該ポジ型感放射線性組成物が[I]脱水剤を含有することで、環境から侵入する水分、又はポジ型感放射線性組成物の現像後の加熱工程における[B]シロキサンポリマーの縮合の結果発生する水分を低減することができる。その結果、組成物の保存安定性を向上させることができる。さらに、[B]シロキサンポリマーの縮合の反応性を高め、ポジ型感放射線性組成物の耐熱性を向上させることができると考えられる。このような[I]脱水剤としては、例えばカルボン酸エステル、アセタール類(ケタール類を含む)、カルボン酸無水物等が挙げられる。
当該ポジ型感放射線性組成物は、溶媒に[A]重合体、[B]シロキサンポリマー、[C]光酸発生体、必要に応じて好適成分、及びその他の任意成分を混合することによって溶解又は分散させた状態に調製される。例えば溶媒中で、各成分を所定の割合で混合することにより、当該ポジ型感放射線性組成物を調製できる。
当該ポジ型感放射線性組成物は、表示素子用層間絶縁膜の形成材料として好適である。また、本発明には、当該ポジ型感放射線性組成物から形成される表示素子用層間絶縁膜も好適に含まれる。
(1)当該ポジ型感放射線性組成物の塗膜を基板上に形成する工程、
(2)上記塗膜の少なくとも一部に放射線を照射する工程、
(3)上記放射線が照射された塗膜を現像する工程、及び
(4)上記現像された塗膜を加熱する工程
を有する。
本工程では、基板上に当該ポジ型感放射線性組成物の溶液又は分散液を塗布した後、好ましくは塗布面をプレベークすることによって溶媒を除去して塗膜を形成する。塗布方法としては、例えばスプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法等が挙げられる。これらのうち、スピンコート法、スリットダイ塗布法が好ましく、スリットダイ塗布法がより好ましい。
本工程では、上記形成された塗膜の少なくとも一部に放射線を照射し露光する。露光する際には、通常所定のパターンを有するフォトマスクを介して露光する。露光に使用される放射線としては、[C]光酸発生体に対して用いられる放射線が好適である。これらの放射線のうち、波長が190nm~450nmの範囲にある放射線が好ましく、365nmの紫外線を含む放射線がより好ましい。露光量としては、放射線の波長365nmにおける強度を、照度計(OAI model356、OAI Optical Associates製)により測定した値で、300J/m2~3,000J/m2が好ましく、300J/m2~2,000J/m2がより好ましく、400J/m2~1,000J/m2が特に好ましい。
本工程では、上記放射線が照射された塗膜を現像する。露光後の塗膜を現像することにより、不要な部分(放射線の照射部分)を除去して所定のパターンを形成する。現像工程に使用される現像液としては、アルカリ性の水溶液が好ましい。アルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア等の無機アルカリ;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩等が挙げられる。
本工程では、上記現像された塗膜を加熱する。加熱には、ホットプレート、オーブン等の加熱装置を用い、パターニングされた薄膜を加熱することで、[A]重合体及び[B]シロキサンポリマーの硬化反応を促進して、硬化物を得ることができる。加熱温度としては、例えば120℃~250℃程度である。加熱時間としては、加熱機器の種類により異なるが、例えばホットプレートでは5分~30分間程度、オーブンでは30分~90分間程度である。また、2回以上の加熱工程を行うステップベーク法等を用いることもできる。このようにして、目的とする表示素子用層間絶縁膜に対応するパターン状薄膜を基板の表面上に形成できる。なお、上記硬化膜の用途としては、表示素子用層間絶縁膜に限定されず、スペーサーや保護膜としても利用することができる。
[合成例1]
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)7質量部、ジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸5質量部、1-エトキシエチルメタクリレート40質量部、スチレン5質量部、メタクリル酸グリシジル40質量部、2-ヒドロキシエチルメタクリレート10質量部、及びα-メチルスチレンダイマー3質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し重合体(A-1)を含む重合体溶液を得た。重合体(A-1)のMwは9,000であった。重合体溶液の固形分濃度は、32.1質量%であった。
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)7質量部、ジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸5質量部、2-テトラヒドロピラニルメタクリレート40質量部、スチレン5質量部、メタクリル酸グリシジル40質量部、2-ヒドロキシエチルメタクリレート10質量部及びα-メチルスチレンダイマー3質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し重合体(A-2)を含む重合体溶液を得た。重合体(A-2)のMwは9,000であった。重合体溶液の固形分濃度は、31.3質量%であった。
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(2-メチルプロピオン酸メチル)7質量部、プロピレングリコールモノメチルエーテルアセテート200質量部を仕込んだ。引き続き1-n-ブトキシエチルメタクリレート67質量部、メタクリル酸ベンジル23質量部、メタクリル酸10質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を80℃に上昇させ、この温度を6時間保持し重合体(a-1)を含む重合体溶液を得た。重合体(a-1)のMwは9,000であった。重合体溶液の固形分濃度は、30.3質量%であった。
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(2-メチルプロピオン酸メチル)7質量部、プロピレングリコールモノメチルエーテルアセテート200質量部を仕込んだ。引き続き1-ベンジルオキシエチルメタクリレート90質量部、メタクリル酸2-ヒドロキシエチル6質量部、メタクリル酸4質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を80℃に上昇させ、この温度を6時間保持し重合体(a-2)を含む重合体溶液を得た。重合体(a-2)のMwは9,000であった。重合体溶液の固形分濃度は、31.2質量%であった。
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(2-メチルプロピオン酸メチル)7質量部、プロピレングリコールモノメチルエーテルアセテート200質量部を仕込んだ。引き続き2-テトラヒドロピラニルメタクリレート85質量部、メタクリル酸2-ヒドロキシエチル7質量部、メタクリル酸8質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を80℃に上昇させ、この温度を6時間保持し重合体(a-3)を含む重合体溶液を得た。重合体(a-3)のMwは10,000であった。重合体溶液の固形分濃度は、29.2質量%であった。
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)7質量部、ジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸グリシジル52質量部、メタクリル酸ベンジル48質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を80℃に上昇させ、この温度を6時間保持し重合体(aa-1)を含む重合体溶液を得た。重合体(aa-1)のMwは10,000であった。重合体溶液の固形分濃度は、32.3質量%であった。
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)7質量部、ジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸3,4-エポキシシクロヘキシルメチル45質量部、メタクリル酸ベンジル45質量部、メタクリル酸10質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を80℃に上昇させ、この温度を6時間保持し重合体(aa-2)を含む重合体溶液を得た。重合体(aa-2)のMwは10,000であった。重合体溶液の固形分濃度は、33.2質量%であった。
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(2,4-ジメチルバレロニトリル)7質量部及びジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続き1-n-ブトキシエチルメタクリレート35質量部、メタクリル酸ベンジル35質量部、メタクリル酸グリシジル30質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を80℃に上昇させ、この温度を6時間保持し重合体(aa-3)を含む重合体溶液を得た。重合体(aa-3)のMwは10,000であった。重合体溶液の固形分濃度は、32.3質量%であった。
冷却管及び攪拌機を備えたフラスコに、2,2’-アゾビス(イソブチロニトリル)5質量部、t-ドデカンチオール5質量部、プロピレングリコールモノメチルエーテルアセテート150質量部仕込んだ。その後、メタクリル酸30質量部、ベンジルメタクリレート35質量部、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル35質量部を仕込み、室温でしばらく攪拌し、フラスコ内を窒素置換した後、70℃で5時間加熱攪拌した。次に、得られた溶液にメタクリル酸グリシジル15質量部、ジメチルベンジルアミン1質量部、p-メトキシフェノール0.2質量部添加し、100℃で4時間加熱攪拌し、重合体(CA-1)溶液を得た。重合体(CA-1)のMwは5,000であり、Mw/Mnは2であった。重合体溶液の固形分濃度は38.0質量%であった。
[合成例10]
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、引き続きメチルトリメトキシシラン30質量部、フェニルトリメトキシシラン23質量部及びシュウ酸0.5質量部を仕込み、溶液温度が60℃になるまで加熱した。溶液温度が60℃に到達後、イオン交換水18質量部を仕込み、75℃になるまで加熱し、3時間保持した。次いで脱水剤としてオルト蟻酸メチル28質量部を加え、1時間攪拌した。さらに溶液温度を40℃にし、温度を保ちながらエバポレーションすることで、イオン交換水及び加水分解縮合で発生したメタノールを除去した。以上により、加水分解縮合物(B-1)を得た。得られた加水分解縮合物(B-1)のMwは3,000であり、Mw/Mnは2であった。加水分解縮合物(B-1)の固形分濃度は40.5質量%であった。
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、引き続きメチルトリメトキシシラン22質量部、γ-グリシドキシプロピルトリメトキシシラン12質量部、フェニルトリメトキシシラン20質量部及びテトラ-i-プロポキシアルミニウム0.1質量部を仕込み、合成例10と同様に操作して、加水分解縮合物(B-2)を得た。得られた加水分解縮合物(B-2)のMwは3,200であり、Mw/Mnは2であった。加水分解縮合物(B-2)の固形分濃度は39.8質量%であった。
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、引き続きメチルトリメトキシシラン22質量部、3-メタクリロキシプロピルトリメトキシシラン12質量部、フェニルトリメトキシシラン20質量部及びシュウ酸0.5質量部を仕込み、合成例10と同様に操作して、加水分解縮合物(B-3)を得た。得られた加水分解縮合物(B-3)のMwは2,400であり、Mw/Mnは2であった。加水分解縮合物(B-3)の固形分濃度は41.0質量%であった。
以下、実施例及び比較例のポジ型感放射線性組成物の調製に用いた成分を詳述する。
C-1:4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート
C-2:ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート
C-3:(5-プロピルスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル(チバ・スペシャルティー・ケミカルズ製、IRGACURE PAG 103)
C-4:(5-オクチルスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル(チバ・スペシャルティー・ケミカルズ製、IRGACURE PAG 108)
C-5:(5-p-トルエンスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル(チバ・スペシャルティー・ケミカルズ製、IRGACURE PAG 121)
C-6:(カンファースルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル(チバ・スペシャルティー・ケミカルズ製、CGI1380)
C-7:(5-オクチルスルフォニルオキシイミノ)-(4-メトキシフェニル)アセトニトリル(チバ・スペシャルティー・ケミカルズ製、CGI725)
D-1:シリコーン系界面活性剤(東レダウコーニングシリコーン製、SH 8400 FLUID)
D-2:フッ素系界面活性剤(ネオス製、フタージェントFTX-218)
E-1:γ-グリシドキシプロピルトリメトキシシラン
E-2:β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン
E-3:γ-メタクリロキシプロピルトリメトキシシラン
F-1:4-ジメチルアミノピリジン
F-2:1,5-ジアザビシクロ[4,3,0]-5-ノネン
G-1:1,1,1-トリ(p-ヒドロキシフェニル)エタン(1.0モル)と1,2-ナフトキノンジアジド-5-スルホン酸クロリド(2.0モル)との縮合物
[A]重合体としての(A-1)を含む溶液70質量部(固形分に相当する量)、[B]シロキサンポリマーとしての(B-1)30質量部、[C]光酸発生剤としての(C-1)4質量部、[D]界面活性剤としての(D-1)0.20質量部及び[E]密着助剤としての(E-1)3.0質量部を混合し、孔径0.2μmのメンブランフィルタで濾過することにより、ポジ型感放射線性組成物を調製した。
各成分の種類及び配合量を表1に記載の通りとした以外は、実施例1と同様に操作して各ポジ型感放射線性組成物を調製した。なお、表1中の「-」は、該当する成分を使用しなかったことを示す。
調製した各ポジ型感放射線性組成物を用いて、下記の評価を実施した。結果を表1にあわせて示す。
550×650mmのクロム成膜ガラス上に、ヘキサメチルジシラザン(HMDS)を塗布し、60℃にて1分間加熱した。このHMDS処理後のクロム成膜ガラス上に、各ポジ型感放射線性組成物をスリットダイコーター(東京応化工業製、TR632105-CL)を用いて塗布し、到達圧力を100Paに設定して真空下で溶媒を除去した後、さらに90℃において2分間プレベークすることによって、膜厚3.0μmの塗膜を形成した。続いて、露光機(キヤノン製、MPA-600FA)を用い、60μmのライン・アンド・スペース(10対1)のパターンを有するマスクを介して、塗膜に対し露光量を変量として放射線を照射した。その後、0.4質量%のテトラメチルアンモニウムヒドロキシド水溶液にて25℃において80秒間現像した。次いで、超純水で1分間流水洗浄を行い、その後乾燥することにより、HMDS処理後のクロム成膜ガラス基板上にパターンを形成した。このとき、6μmのスペース・パターンが完全に溶解するために必要な露光量を放射線感度(J/m2)とした。この値が500(J/m2)以下の場合に感度が良好と判断した。
マスクを介して露光しなかった以外は、上記放射線感度の評価と同様に操作して、シリコン基板上に硬化膜を形成した。JIS K-5400-1990の8.4.1鉛筆引っかき試験により硬化膜の鉛筆硬度(表面硬度)を測定した。この値が3H以上である場合、表示素子用層間絶縁膜としての表面硬度が良好と判断し、十分な硬化性を有するといえる。
上記表面硬度の評価と同様に操作して、シリコン基板上に硬化膜を形成し、得られた硬化膜の屈折率(%)を、Auto EL IV NIR III(ルドルフリサーチ製)エリプソメーターを用いて633nmで測定した。この値が1.50以上のとき、表示素子用層間絶縁膜としての屈折率は実用上問題ないレベルであると判断した。
上記表面硬度の評価と同様に操作して、シリコン基板上に硬化膜を形成し、得られた硬化膜の膜厚(T2)を測定した。次いで、この硬化膜が形成されたシリコン基板を、クリーンオーブン内にて240℃で1時間追加ベークした後、当該硬化膜の膜厚(t2)を測定し、下記式から追加ベークによる膜厚変化率(%)を算出し、これを耐熱性(%)とした。
耐熱性(%)=(|t2-T2|/T2)×100
この値が3%以下のとき、耐熱性は良好であると判断した。
シリコン基板の代わりにガラス基板(コーニング7059、コーニング製)を用いたこと以外は、上記表面硬度の評価と同様に操作して、ガラス基板上に硬化膜を形成した。この硬化膜を有するガラス基板の光線透過率(%)を、分光光度計(150-20型ダブルビーム、日立製作所製)を用いて400nm~800nmの範囲の波長で測定した。最低光線透過率が95%以上の時、透過率は良好であると判断した。
上記表面硬度の評価と同様に操作して、シリコン基板上に硬化膜を形成し、ドライエッチング装置(CDE-80N、芝浦メカトロニクス製)を用い、エッチングガスCF450mL/分、O210mL/分、出力400mW、エッチング時間90秒の条件でドライエッチングを行い、処理前後の膜厚(μm)の測定を行った。膜厚減少量が1.0μm以下のとき、耐ドライエッチング性は良好であると判断した。
Claims (6)
- [A]同一又は異なる重合体分子中に、下記式(1)で表される基を有する構造単位(I)とエポキシ基含有構造単位(II)とを含む重合体、
[B]シロキサンポリマー、及び
[C]光酸発生体
を含有するポジ型感放射線性組成物。
- [A]重合体と[B]シロキサンポリマーの合計に対する[A]重合体の質量比が5質量%以上95質量%以下である請求項1に記載のポジ型感放射線性組成物。
- 表示素子用層間絶縁膜の形成に用いられる請求項1に記載のポジ型感放射線性組成物。
- (1)請求項4に記載のポジ型感放射線性組成物の塗膜を基板上に形成する工程、
(2)上記塗膜の少なくとも一部に放射線を照射する工程、
(3)上記放射線が照射された塗膜を現像する工程、及び
(4)上記現像された塗膜を加熱する工程
を有する表示素子用層間絶縁膜の形成方法。 - 請求項4に記載のポジ型感放射線性組成物から形成される表示素子用層間絶縁膜。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012512783A JP5817717B2 (ja) | 2010-04-28 | 2011-04-18 | ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法 |
CN201180021318.2A CN102870047B (zh) | 2010-04-28 | 2011-04-18 | 正型感射线性组合物、显示元件用层间绝缘膜及其形成方法 |
KR1020127026080A KR101404005B1 (ko) | 2010-04-28 | 2011-04-18 | 포지티브형 감방사선성 조성물, 표시 소자용 층간 절연막 및 그 형성 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010104250 | 2010-04-28 | ||
JP2010-104250 | 2010-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011136073A1 true WO2011136073A1 (ja) | 2011-11-03 |
Family
ID=44861380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/059573 WO2011136073A1 (ja) | 2010-04-28 | 2011-04-18 | ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5817717B2 (ja) |
KR (1) | KR101404005B1 (ja) |
CN (1) | CN102870047B (ja) |
TW (1) | TWI620025B (ja) |
WO (1) | WO2011136073A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012108403A (ja) * | 2010-11-19 | 2012-06-07 | Fujifilm Corp | 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置 |
JP2013061616A (ja) * | 2011-08-19 | 2013-04-04 | Fujifilm Corp | ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、液晶表示装置、及び、有機el表示装置 |
JP2013064828A (ja) * | 2011-09-16 | 2013-04-11 | Fujifilm Corp | ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置 |
JPWO2011142391A1 (ja) * | 2010-05-13 | 2013-07-22 | 日産化学工業株式会社 | 感光性樹脂組成物およびディスプレイ装置 |
JP2013231868A (ja) * | 2012-04-27 | 2013-11-14 | Fujifilm Corp | 化学増幅型ポジ型感光性樹脂組成物および層間絶縁膜 |
JP2014115386A (ja) * | 2012-12-07 | 2014-06-26 | Tokyo Ohka Kogyo Co Ltd | レジスト組成物及びレジストパターン形成方法 |
WO2015037695A1 (ja) * | 2013-09-13 | 2015-03-19 | 富士フイルム株式会社 | 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置 |
JP2016121311A (ja) * | 2014-12-25 | 2016-07-07 | Jsr株式会社 | 硬化膜形成用組成物、硬化膜、表示素子及び硬化膜の形成方法 |
JP2016128901A (ja) * | 2014-11-21 | 2016-07-14 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | ポジ型感光性樹脂組成物及びそれより調製される硬化膜 |
JP2018025799A (ja) * | 2016-08-11 | 2018-02-15 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | 化学増幅型感光性樹脂組成物及びそれから製造された絶縁膜 |
US10890846B2 (en) | 2015-11-06 | 2021-01-12 | Rohm And Haas Electronic Materials Korea Ltd | Photosensitive resin composition and cured film prepared therefrom |
JP2021092700A (ja) * | 2019-12-11 | 2021-06-17 | 株式会社カネカ | ポジ型感光性組成物、パターン硬化膜およびその製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI459145B (zh) * | 2013-04-26 | 2014-11-01 | Chi Mei Corp | 光硬化性聚矽氧烷組成物、保護膜及具有保護膜的元件 |
KR101599954B1 (ko) | 2013-08-08 | 2016-03-04 | 제일모직 주식회사 | 실리카계 절연층 형성용 조성물, 실리카계 절연층 및 실리카계 절연층의 제조방법 |
TWI524150B (zh) * | 2014-06-27 | 2016-03-01 | 奇美實業股份有限公司 | 感光性樹脂組成物、保護膜及具有保護膜之元件 |
KR102635564B1 (ko) | 2016-05-03 | 2024-02-08 | 동우 화인켐 주식회사 | 포지티브형 감광성 수지 조성물 및 이로부터 제조된 절연막 |
KR102654731B1 (ko) * | 2017-09-28 | 2024-04-03 | 제이에스알 가부시끼가이샤 | 감방사선성 수지 조성물 및 그의 용도 |
JP7253883B2 (ja) * | 2018-07-03 | 2023-04-07 | 東京応化工業株式会社 | レジスト組成物及びレジストパターン形成方法 |
KR20210052431A (ko) * | 2018-08-31 | 2021-05-10 | 도레이 카부시키가이샤 | 수지 조성물, 그의 경화막 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004264623A (ja) * | 2003-03-03 | 2004-09-24 | Jsr Corp | 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズ、ならびにそれらの形成方法 |
JP2008170937A (ja) * | 2006-12-14 | 2008-07-24 | Toray Ind Inc | 感光性シロキサン組成物およびその製造方法、並びにそれから形成された硬化膜および硬化膜を有する素子 |
WO2008149947A1 (ja) * | 2007-06-05 | 2008-12-11 | Fujifilm Corporation | ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法 |
WO2009041619A1 (ja) * | 2007-09-28 | 2009-04-02 | Fujifilm Corporation | ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法 |
JP2009229892A (ja) * | 2008-03-24 | 2009-10-08 | Jsr Corp | 感放射線性樹脂組成物、ならびに層間絶縁膜およびマイクロレンズの製造方法 |
-
2011
- 2011-04-18 CN CN201180021318.2A patent/CN102870047B/zh active Active
- 2011-04-18 KR KR1020127026080A patent/KR101404005B1/ko active IP Right Grant
- 2011-04-18 JP JP2012512783A patent/JP5817717B2/ja active Active
- 2011-04-18 WO PCT/JP2011/059573 patent/WO2011136073A1/ja active Application Filing
- 2011-04-27 TW TW100114576A patent/TWI620025B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004264623A (ja) * | 2003-03-03 | 2004-09-24 | Jsr Corp | 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズ、ならびにそれらの形成方法 |
JP2008170937A (ja) * | 2006-12-14 | 2008-07-24 | Toray Ind Inc | 感光性シロキサン組成物およびその製造方法、並びにそれから形成された硬化膜および硬化膜を有する素子 |
WO2008149947A1 (ja) * | 2007-06-05 | 2008-12-11 | Fujifilm Corporation | ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法 |
WO2009041619A1 (ja) * | 2007-09-28 | 2009-04-02 | Fujifilm Corporation | ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法 |
JP2009229892A (ja) * | 2008-03-24 | 2009-10-08 | Jsr Corp | 感放射線性樹脂組成物、ならびに層間絶縁膜およびマイクロレンズの製造方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5818022B2 (ja) * | 2010-05-13 | 2015-11-18 | 日産化学工業株式会社 | 感光性樹脂組成物およびディスプレイ装置 |
JPWO2011142391A1 (ja) * | 2010-05-13 | 2013-07-22 | 日産化学工業株式会社 | 感光性樹脂組成物およびディスプレイ装置 |
JP2012108403A (ja) * | 2010-11-19 | 2012-06-07 | Fujifilm Corp | 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置 |
JP2013061616A (ja) * | 2011-08-19 | 2013-04-04 | Fujifilm Corp | ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、液晶表示装置、及び、有機el表示装置 |
JP2013064828A (ja) * | 2011-09-16 | 2013-04-11 | Fujifilm Corp | ポジ型感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置 |
JP2013231868A (ja) * | 2012-04-27 | 2013-11-14 | Fujifilm Corp | 化学増幅型ポジ型感光性樹脂組成物および層間絶縁膜 |
JP2014115386A (ja) * | 2012-12-07 | 2014-06-26 | Tokyo Ohka Kogyo Co Ltd | レジスト組成物及びレジストパターン形成方法 |
WO2015037695A1 (ja) * | 2013-09-13 | 2015-03-19 | 富士フイルム株式会社 | 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置 |
JPWO2015037695A1 (ja) * | 2013-09-13 | 2017-03-02 | 富士フイルム株式会社 | 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置 |
JP2016128901A (ja) * | 2014-11-21 | 2016-07-14 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | ポジ型感光性樹脂組成物及びそれより調製される硬化膜 |
JP2016121311A (ja) * | 2014-12-25 | 2016-07-07 | Jsr株式会社 | 硬化膜形成用組成物、硬化膜、表示素子及び硬化膜の形成方法 |
US10890846B2 (en) | 2015-11-06 | 2021-01-12 | Rohm And Haas Electronic Materials Korea Ltd | Photosensitive resin composition and cured film prepared therefrom |
TWI739767B (zh) * | 2015-11-06 | 2021-09-21 | 南韓商羅門哈斯電子材料韓國公司 | 感光性樹脂組成物、自其製備之固化膜、及使用該感光性樹脂組成物形成圖案之方法 |
JP2018025799A (ja) * | 2016-08-11 | 2018-02-15 | 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. | 化学増幅型感光性樹脂組成物及びそれから製造された絶縁膜 |
JP2021092700A (ja) * | 2019-12-11 | 2021-06-17 | 株式会社カネカ | ポジ型感光性組成物、パターン硬化膜およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102870047B (zh) | 2016-03-02 |
TWI620025B (zh) | 2018-04-01 |
KR101404005B1 (ko) | 2014-06-05 |
CN102870047A (zh) | 2013-01-09 |
TW201202852A (en) | 2012-01-16 |
JP5817717B2 (ja) | 2015-11-18 |
KR20120124496A (ko) | 2012-11-13 |
JPWO2011136073A1 (ja) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5817717B2 (ja) | ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法 | |
JP5454321B2 (ja) | ポジ型感放射線性組成物、層間絶縁膜及びその形成方法 | |
KR101854683B1 (ko) | 포지티브형 감방사선성 조성물, 층간 절연막 및 그 형성 방법 | |
JP4844695B2 (ja) | 吐出ノズル式塗布法用ポジ型感放射線性組成物、表示素子用層間絶縁膜及びその形成方法 | |
JP6094406B2 (ja) | 感放射線性樹脂組成物、硬化膜、発光素子、波長変換フィルムおよび発光層の形成方法 | |
KR101396265B1 (ko) | 포지티브형 감방사선성 조성물, 표시 소자용 층간 절연막 및 그 형성 방법 | |
JP4591625B1 (ja) | ポジ型感放射線性組成物、層間絶縁膜及びその形成方法 | |
JP5105073B2 (ja) | 感放射線性樹脂組成物、ならびに層間絶縁膜およびマイクロレンズの製造方法 | |
JP5703819B2 (ja) | 液晶表示素子、ポジ型感放射線性組成物、液晶表示素子用層間絶縁膜及びその形成方法 | |
JP2017171748A (ja) | 硬化膜、表示素子、硬化膜形成用材料及び硬化膜の形成方法 | |
JP5630068B2 (ja) | ポジ型感放射線性組成物、層間絶縁膜及びその形成方法 | |
JP5510347B2 (ja) | ポジ型感放射線性組成物、層間絶縁膜及びその形成方法 | |
JP2011191344A (ja) | ポジ型感放射線性樹脂組成物、層間絶縁膜及びその形成方法 | |
JP5967178B2 (ja) | 液晶表示素子の製造方法 | |
JP5772184B2 (ja) | 感放射線性樹脂組成物、表示素子用層間絶縁膜及びその形成方法 | |
JP5655529B2 (ja) | 感放射線性樹脂組成物、層間絶縁膜及び層間絶縁膜の形成方法 | |
JP5772181B2 (ja) | 感放射線性樹脂組成物、表示素子用層間絶縁膜及びその形成方法 | |
KR20140069944A (ko) | 포지티브형 감광성 수지 조성물 및 이로부터 제조된 경화막 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180021318.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11774856 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012512783 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127026080 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11774856 Country of ref document: EP Kind code of ref document: A1 |