WO2011135747A1 - ベーンポンプ - Google Patents

ベーンポンプ Download PDF

Info

Publication number
WO2011135747A1
WO2011135747A1 PCT/JP2010/070444 JP2010070444W WO2011135747A1 WO 2011135747 A1 WO2011135747 A1 WO 2011135747A1 JP 2010070444 W JP2010070444 W JP 2010070444W WO 2011135747 A1 WO2011135747 A1 WO 2011135747A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil supply
passage
axial
rotor
hole
Prior art date
Application number
PCT/JP2010/070444
Other languages
English (en)
French (fr)
Inventor
隆一 榊原
喜久治 林田
清隆 太田原
祥正 久野
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Priority to CN201080015094.XA priority Critical patent/CN102365462B/zh
Priority to KR1020117019456A priority patent/KR101271036B1/ko
Priority to US13/138,400 priority patent/US8449277B2/en
Priority to EP10846307.6A priority patent/EP2602487B1/en
Priority to RU2011143786/06A priority patent/RU2490516C2/ru
Publication of WO2011135747A1 publication Critical patent/WO2011135747A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a vane pump, and more particularly to a vane pump in which an oil supply passage through which lubricating oil flows is formed inside a rotor, and the lubricating oil is intermittently supplied into the pump chamber by the rotation of the rotor.
  • a housing having a substantially circular pump chamber, a rotor that rotates at a position eccentric with respect to the center of the pump chamber, a vane that is rotated by the rotor and always divides the pump chamber into a plurality of spaces,
  • An oil supply passage that intermittently communicates with the pump chamber by rotation, an oil supply pipe that is connected to the oil supply passage and supplies lubricating oil from the hydraulic pump to the oil supply passage, and the oil supply passage communicates with the pump chamber by rotation of the rotor.
  • the oil supply passage includes a diameter direction oil supply hole provided in a diameter direction of the shaft portion of the rotor and a housing provided in communication with the pump chamber, and the rotation of the rotor intermittently opens the diameter direction oil supply hole.
  • the gas passage is provided in the shaft portion of the rotor in the diametrical direction and communicated with the oil supply passage; and the housing.
  • an axial gas groove in which the opening of the diametrical gas hole is intermittently communicated by rotation of the rotor, and the diametrical oil hole has an axial oiling hole.
  • a vane pump is known that is adapted to communicate with an axial gas groove when communicated with a groove. (Patent Document 1)
  • the vane pump when the rotor stops in a state where the diametrical oil supply hole of the oil supply passage is communicated with the axial oil supply groove, the lubricating oil inside the oil supply passage is drawn into the pump chamber by the negative pressure in the pump chamber. It becomes like this. If a large amount of lubricating oil is drawn into the pump chamber, an excessive load is applied to the vane to discharge the lubricating oil when the vane pump is started next, and the vane may be damaged.
  • the present invention prevents the air from being sucked into the pump chamber from the gas passage as much as possible even when the oil pressure of the lubricating oil supplied from the hydraulic pump to the oil supply passage is low.
  • the vane pump which can prevent that the drive torque of this increases is provided.
  • the present invention includes a housing having a substantially circular pump chamber, a rotor that rotates at a position eccentric with respect to the center of the pump chamber, a vane that is rotated by the rotor, and always partitions the pump chamber into a plurality of spaces,
  • An oil supply passage intermittently communicating with the pump chamber by the rotation of the rotor, an oil supply pipe connected to the oil supply passage for supplying lubricating oil from the hydraulic pump to the oil supply passage, and the oil supply passage pumped by the rotation of the rotor
  • the oil supply passage includes a diameter direction oil supply hole provided in a diameter direction of the shaft portion of the rotor and a housing provided in communication with the pump chamber, and the rotation of the rotor intermittently opens the diameter direction oil supply hole.
  • the gas passage is provided in the shaft portion of the rotor in the diametrical direction and communicated with the oil supply passage; and the housing. And an axial gas groove in which the opening of the diametrical gas hole is intermittently communicated by rotation of the rotor, and the diametrical oil hole has an axial oiling hole.
  • the flow passage area of the gas passage is S 1
  • the flow passage area of the oil supply passage is S 2
  • the flow passage area of the oil supply pipe is S 3
  • the diameter of the diameter direction oil supply hole is d 2
  • the axial oil supply groove in the rotation direction of the rotor is S 1 .
  • the flow passage area S 2 of the oil supply passage sets the range of S 1 ⁇ S 2 ⁇ 3 ⁇ S 1
  • the flow passage area S 3 of the oil supply pipe is set to a range of S 2 ⁇ S 3 ⁇ 3 ⁇ S 2
  • the axial oil groove width L is set in a range of d 2 ⁇ L ⁇ 4 ⁇ d 2 .
  • the flow passage area S 1 of the gas passage when the hydraulic pressure is high of the lubricating oil supplied to the oil supply passage from the hydraulic pump, to the outer space the lubricant through the gas passage, i.e. leaks in the inner space of the engine to reduce to, it is set to be as small as possible flow path area S 1.
  • the flow passage area S 2 of the oil supply passage, the flow passage area S 3 of the oil supply pipe, the diameter d 2 of the diameter direction oil supply hole, the width L of the oil groove in the rotational direction of the rotor, the required lubricating oil No particular attention was paid to these magnitude relationships from the standpoint that it should be supplied to the pump room.
  • the flow path area S 2 is set in a range of S 1 ⁇ S 2 ⁇ 3 ⁇ S 1 . That is, the flow passage area S 2 of the oil supply passage, by a small flow path area of less than three times as much as possible for small flow path area S 1 of the gas passage, and less likely to suck air.
  • the flow passage area S 2 of the oil supply passage disclosed in FIG. 3 of Patent Document 1 although the comparison of the drawings, setting the flow area S of about 16 times the size for one of the gas passage Has been.
  • the flow passage area S 2 of the oil supply passage, to the flow passage area S 1 of the gas passage is set larger that than, ensuring the required lubricating oil during operation beyond the idling vane pump pumps To be supplied to the room.
  • the flow passage area S 3 of the oil supply pipe is set in a range of S 2 ⁇ S 3 ⁇ 3 ⁇ S 2 with respect to the flow passage area S 2 of the oil supply passage set relatively small. is doing.
  • This which has to obtain a throttle effect by greater than the flow passage area S 2 of the flow passage area S 3 of the oil supply pipe oil supply passage, whereby the oil supply passage even with a small amount of lubricating oil during idling
  • the hydraulic pressure can be kept as high as possible.
  • the axial oil groove width L is set in a range of d 2 ⁇ L ⁇ 4 ⁇ d 2 .
  • the opening of the diametric oil supply hole intermittently crosses the axial oil supply groove by the rotation of the rotor, and is superposed and communicated when crossing the axial oil supply groove.
  • the communication time that is, the overlap time becomes long, and air is easily sucked by the vacuum in the pump chamber, particularly when the oil pressure in the oil supply passage during idling is low. End up. From such a point of view, the axial oil supply groove width L is set to the above range to suppress air inhalation.
  • FIG. 3 The front view of the vane pump which shows the Example of this invention.
  • Sectional drawing in II-II in FIG. FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • the test result figure which tested the relationship between rotation speed and drive torque.
  • the test result figure which tested the relationship between the amount of oil supply to 2 A of pump chambers, and drive torque.
  • the vane pump 1 is fixed to a side of an automobile engine (not shown) and is used as a booster of a brake device (not shown). Negative pressure is generated.
  • the vane pump 1 includes a housing 2 in which a substantially circular pump chamber 2A is formed, a rotor 3 that is rotated by the driving force of the engine at a position that is eccentric with respect to the center of the pump chamber 2A, and the rotor 3 that rotates.
  • a vane 4 that always partitions 2A into a plurality of spaces and a cover 5 that closes the pump chamber 2A are provided.
  • an intake passage 6 for sucking gas from the booster in communication with the booster of the brake is provided above the pump chamber 2A, and sucked from the booster below the pump chamber 2A.
  • the intake passage 6 is provided with a check valve 8 for maintaining the negative pressure of the booster particularly when the engine is stopped.
  • the rotor 3 includes a cylindrical rotor portion 3A that rotates in the pump chamber 2A.
  • the outer periphery of the rotor portion 3A is provided so as to be in contact with the inner peripheral surface of the pump chamber 2A.
  • the intake passage 6 is located on the upstream side, and the discharge passage 7 is formed on the downstream side of the rotor portion 3A.
  • a groove 9 is formed in the diametrical direction in the rotor portion 3A, and the vane 4 is slidably moved along the groove 9 in a direction perpendicular to the axial direction of the rotor 3. And between the hollow part 3a formed in the center of 3 A of rotor parts, and the vane 4, the lubricating oil from the oil supply path mentioned later flows in.
  • caps 4a are provided at both ends of the vane 4, and the pump chamber 2A is always kept in two or three spaces by rotating the cap 4a while being in sliding contact with the inner peripheral surface of the pump chamber 2A. It comes to partition. Specifically, in the state of FIG. 1, the pump chamber 2A is partitioned by the vane 4 in the left-right direction in the figure, and in the right side of the figure, the pump chamber is partitioned in the vertical direction by the rotor portion 3A. It is divided into three spaces. When the vane 4 rotates from the state shown in FIG.
  • the pump chamber 2A has a space on the intake passage 6 side and a discharge passage. It will be partitioned into two spaces, the 7-side space.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1.
  • a shaft 3B constituting the rotor 3 is pivotally supported on the right side of the pump chamber 2A in the housing 2 in the figure.
  • a bearing portion 2B is formed, and the shaft portion 3B rotates integrally with the rotor portion 3A.
  • the cover 5 is provided at the left end of the pump chamber 2A, and the end surfaces on the left side of the rotor portion 3A and the vane 4 are rotated while being in sliding contact with the cover 5.
  • the end face on the right side of the vane 4 is configured to rotate while being in sliding contact with the inner surface on the bearing portion 2B side of the pump chamber 2A.
  • the bottom surface 9a of the groove 9 formed in the rotor 3 is formed slightly on the shaft portion 3B side from the surface in which the pump chamber 2A and the vane 4 are in sliding contact with each other, and there is a gap between the vane 4 and the bottom surface 9a. Is formed.
  • the shaft portion 3B protrudes to the right side in the drawing from the bearing portion 2B of the housing 2, and a coupling 10 that is rotated by a camshaft of the engine is connected to the protruding position, and the rotor 3 is connected to the camshaft. It is designed to rotate with the rotation of.
  • the shaft portion 3B is formed with an oil supply passage 11 through which lubricating oil is circulated.
  • the oil supply passage 11 is connected to a hydraulic pump driven by an engine (not shown) via an oil supply pipe 12.
  • the oil supply passage 11 includes an axial oil supply hole 11a formed in the axial direction of the shaft portion 3B, and a diameter oil supply hole 11b formed in the diameter direction of the shaft portion 3B in communication with the axial oil supply hole 11a.
  • the bearing portion 2B of the housing 2 is provided with an axial direction oil supply constituting an oil supply passage 11 formed so as to communicate the pump chamber 2A and the diameter direction oil supply hole 11b with a sliding portion with the shaft portion 3B.
  • a groove 11c is formed, and in this embodiment, the axial oil supply groove 11c is formed above the bearing portion 2B shown in FIG.
  • the lubricating oil from the axial oil supply hole 11a becomes the diametric oil supply hole 11b and the axial oil supply. It flows into the pump chamber 2A through the groove 11c, and flows into the hollow portion 3a of the rotor 3 from the gap between the vane 4 and the bottom surface of the groove 9.
  • the bearing 2B of the housing 2 has an axial direction in which a diametrical gas hole 13a communicates with an external space at a sliding portion with the shaft 3B.
  • a gas groove 13b is formed.
  • the position of the axial gas groove 13b is formed at a position rotated by 90 ° along the bearing portion 2B with respect to the axial oil groove 11c. Therefore, the diametric oil hole 11b of the oil passage 11 is axial.
  • the diameter direction gas hole 13a is communicated with the axial direction gas groove 13b at the same time as communicating with the oil supply groove 11c.
  • the vane pump 1 having the above configuration will be described below.
  • the vane 4 reciprocates in the groove 9 of the rotor 3 accordingly.
  • the volume of the pump chamber 2 ⁇ / b> A partitioned by the vane 4 changes its volume according to the rotation of the rotor 3.
  • the volume increases and negative pressure is generated in the pump chamber 2A, and gas is sucked from the booster through the intake passage 6 to boost the pressure. Negative pressure is generated in the device.
  • the sucked gas is then compressed as the volume of the space on the discharge passage 7 side decreases, and is discharged from the discharge passage 7.
  • the lubricating oil that has flowed into the pump chamber 2A flows into the hollow portion 3a of the rotor portion 3A from the gap between the bottom surface 9a of the groove 9 formed in the rotor portion 3A and the vane 4, and this lubricating oil
  • the gap between the groove 9 and the gap between the vane 4 and the cover 5 is injected into the pump chamber 2A to perform lubrication and sealing of the pump chamber 2A, and then the lubricating oil is discharged from the discharge passage 7 together with the gas. It has come to be.
  • the rotor 3 stops accordingly and the intake from the booster is terminated.
  • the space on the intake passage 6 side partitioned by the vane 4 by the stop of the rotor 3 is stopped in a negative pressure state.
  • the opening of the diametric oil supply hole 11b and the axial oil supply groove are stopped. If it does not coincide with 11c, the lubricating oil in the axial oil supply hole 11a will not flow into the pump chamber 2A.
  • the pump chamber 2A has a negative pressure, so that the lubricating oil in the oil supply passage 11 is removed.
  • the flow passage area of the gas passage 13 is S 1
  • the flow passage area of the oil supply passage 11 is S 2
  • the flow passage area of the oil supply pipe 12 is S 3
  • the diameter direction oil supply hole is set in a range of S 1 ⁇ S 2 ⁇ 3 ⁇ S 1.
  • the flow passage area S 3 of the oil supply pipe is set to a range of S 2 ⁇ S 3 ⁇ 3 ⁇ S 2, further axial oil groove width L, d 2 ⁇ in the range of L ⁇ 4 ⁇ d 2
  • the oil pressure of the lubricating oil supplied from the hydraulic pump to the oil supply passage 11 is low, the air in the external space is prevented from being sucked into the pump chamber 2A from the gas passage 13 as much as possible.
  • the flow passage area S 1 of the gas passage 13 is to reduce the leakage of the lubricating oil to the external space through the gas passage 13 when the oil pressure of the lubricating oil supplied from the hydraulic pump to the oil supply passage 11 is high.
  • a is set to be the smallest possible flow path area S 1.
  • the flow passage area of the diameter direction gas hole 13a constituting the gas passage 13 Yes set as the flow area S 1, the flow path of the other axial gas groove 13b constituting the gas passage 13 area is set larger than the flow passage area S 1 in the diameter direction gas hole 13a.
  • the diameter direction gas hole 13a a hole as small as possible is preferable. However, in consideration of processing technology and cost, for example, a hole having a diameter of 1.5 mm is preferably used. In this case, the flow area of the diameter direction gas hole 13a S 1 is 1.77 mm 2 .
  • the flow area of the diametrical oil supply hole 11 b constituting the oil supply passage 11 is set as the flow passage area S 2 , and the other axial oil supply holes 11 a constituting the oil supply passage 11 are set. and the flow passage area of the axial oil grooves 11c are both is set larger than the flow passage area S 2 of the diameter direction oil supply hole 11b.
  • the flow passage area S 2 of the oil supply passage 11, by a small flow area for a small flow path area S 1 of the gas passage 13 is three times less, it can be difficult to suction the air .
  • the flow passage area S 2 of the oil supply passage 11, by setting larger than the flow passage area S 1 of the gas passage 13, are as required lubricating oil is reliably supplied to the pump chamber 2A.
  • the flow passage area S 3 of the oil supply pipe 12 is set larger than the flow passage area S 2 of the oil supply passage 11 described above.
  • the diameter of the hole of the oil supply pipe 12 for example, a hole of 3.5 mm is preferably employed.
  • the oil supply passage 11 if larger than the flow passage area S 2 of the flow passage area S 3 of the oil supply pipe 12 the oil supply passage 11, it is possible to expect the throttling effect due to the oil supply passage 11, whereby idling less lubricant Even in the amount, the oil pressure in the oil supply passage 11 can be kept as high as possible.
  • the width L of the axial oil supply groove 11c in the oil supply passage 11 is set in a range of d 2 ⁇ L ⁇ 4 ⁇ d 2 .
  • the width L of the axial oil supply groove 11c is greater than 2 mm and less than 10 mm. It becomes. If the axial direction oil groove width L is too large, the overlap time between the diameter direction oil hole 11b and the axial direction oil groove 11c becomes longer, especially when the oil pressure in the oil passage when idling is low, the air in the pump chamber is vacuumed. Is easily sucked in, the axial oil supply groove width L is set to the above range to prevent air from being sucked in.
  • FIG. 4 and 5 are diagrams showing test results, respectively.
  • FIG. 4 is a test result diagram for examining the relationship between the rotational speed and the drive torque.
  • the torque reduction rate (%) indicates how much the drive torque of the example of the present invention has increased or decreased with reference to the magnitude of the drive torque of the conventional example. It is shown by.
  • FIG. 5 is a test result diagram for testing the relationship between the amount of oil supplied to the pump chamber 2A and the drive torque.
  • the drive torque of the example of the present invention is determined based on the test result of the conventional example.
  • the degree of increase or decrease is indicated by the torque reduction rate (%).
  • the supply pressure of the lubricating oil is adjusted so that the oil supply amount is 0.3 to 0.4 L / min at each rotation speed, and the pump rotation speed is substantially constant in the test of FIG.
  • the supply pressure of the lubricating oil is adjusted so as to obtain the supply amount shown in FIG.
  • the ⁇ and ⁇ marks indicate examples of the present invention.
  • there the diameter of the diameter direction gas hole 13a as 1.5 mm, thus the flow passage area S 1 of the gas passage 13 is set to 1.77 mm 2.
  • the flow passage area S 3 of the oil supply pipe 12 Yes employ holes of 3.5 mm, thus the oil supply pipe passage area S 3 of 12 was set to 9.62mm 2, further axial oil grooves 11c in the oil supply passage 11
  • the width L is set to 7.5 mm.
  • the present invention embodiment ( ⁇ , ⁇ ) when to reduce the diameter of the diameter direction gas hole 13a to reduce the flow passage area S 2 of the oil supply passage 11 as oil supply passages compared to the prior art flow passage area S 2 is large 11, especially at low rotation region of about 500 rpm, it is possible to expect a large torque reduction rate.
  • Air which is in flow passage area S 2 is greater conventional example of the oil supply passage 11, the amount of air sucked into the pump room 2A is increased in accordance with the pump speed is 500 rpm or less, it sucked with the rotation of the vane 4
  • the driving torque increases with an increase in the amount of air sucked into the pump chamber 2A, whereas according to the present invention example, the amount of air sucked into the pump chamber 2A It can be reduced.
  • the torque reduction rate is larger than that of the conventional example, particularly in the region where the oil supply amount is small from 0.2 to 0.4 L / min. It is understood that you can expect.
  • the vane pump 1 having a plurality of vanes 4 as conventionally known is also applicable.
  • the application is not limited to the generation of negative pressure in the booster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 給油パイプ12からの潤滑油は、給油通路11の軸方向給油孔11a、直径方向給油孔11b、軸方向給油溝11cを介してポンプ室2Aに供給される。気体通路13は、直径方向気体孔13aと軸方向気体溝13bとを備え、直径方向気体孔13aは、直径方向給油孔11bが軸方向給油溝11cに連通された際に、軸方向気体溝13bに連通される。気体通路の流路面積をS、給油通路の流路面積をS、給油パイプの流路面積をS、直径方向給油孔の直径をd、ロータの回転方向における軸方向給油溝の幅をLとしたときに、給油通路の流路面積SをS<S≦3×Sの範囲に、給油パイプの流路面積SをS<S≦3×Sの範囲に、さらに給油溝幅Lをd<L<4×dの範囲に設定してある。 気体通路13から空気がポンプ室内に吸い込まれてエンジンの駆動トルクが増大するのを可及的に防止することができる。

Description

ベーンポンプ
 本発明はベーンポンプに関し、より詳しくは、ロータ内部に潤滑油の流通する給油通路が形成され、ロータの回転によって間欠的に潤滑油をポンプ室内に供給するベーンポンプに関する。
 従来、略円形のポンプ室を備えたハウジングと、ポンプ室の中心に対して偏心した位置で回転するロータと、ロータによって回転し、ポンプ室を常に複数の空間に区画するベーンと、上記ロータの回転により間欠的にポンプ室と連通する給油通路と、この給油通路に接続され、油圧ポンプからの潤滑油を給油通路に供給する給油パイプと、上記ロータの回転により上記給油通路がポンプ室と連通したときに、該ポンプ室と外部空間とを連通させる気体通路とを備え、
 上記給油通路は、上記ロータの軸部にその直径方向に設けられた直径方向給油孔と、上記ハウジングに設けられてポンプ室に連通するとともに、ロータの回転により上記直径方向給油孔の開口が間欠的に重合連通される軸方向給油溝とを備え、また上記気体通路は、上記ロータの軸部にその直径方向に設けられて上記給油通路に連通する直径方向気体孔と、上記ハウジングに設けられて外部空間に連通するとともに、ロータの回転により上記直径方向気体孔の開口が間欠的に重合連通される軸方向気体溝とを備え、上記直径方向気体孔は、直径方向給油孔が軸方向給油溝に連通された際に、軸方向気体溝に連通されるようになっているベーンポンプが知られている。(特許文献1)
 上記ベーンポンプにおいては、給油通路の直径方向給油孔が軸方向給油溝に連通された状態でロータが停止した際には、ポンプ室内部の負圧により給油通路内部の潤滑油がポンプ室内に引き込まれるようになる。そして仮に、多量の潤滑油がポンプ室内に引き込まれると、次にベーンポンプを始動する際に、その潤滑油を排出するためにベーンに過大な荷重が加わり、ベーンが破損するおそれがある。
 しかるに上記構成を有するベーンポンプにおいては、給油通路の直径方向給油孔が軸方向給油溝に連通された状態でロータが停止した際には、これと同時に気体通路の直径方向気体孔が軸方向気体溝に連通されるようになっているので、気体通路から外部空間の空気をポンプ室内に流入させることができる。したがって、それによってポンプ室内の負圧を解消することができるので、ポンプ室内に大量の潤滑油が入り込むのを防止することができる。
特開2006-226164号公報
 しかしながら上記ベーンポンプにおいては、エンジンのアイドリング時のように油圧ポンプから給油通路に供給される潤滑油の油圧が低い時に、気体通路から外部空間の空気がポンプ室内に吸い込まれてしまい、エンジンの駆動トルクを増大させてしまうことが判明した。
 本発明はそのような事情に鑑み、油圧ポンプから給油通路に供給される潤滑油の油圧が低くても、気体通路から空気がポンプ室内に吸い込まれることを可及的に防止し、それによってエンジンの駆動トルクが増大するのを防止できるようにしたベーンポンプを提供するものである。
 すなわち本発明は、略円形のポンプ室を備えたハウジングと、ポンプ室の中心に対して偏心した位置で回転するロータと、ロータによって回転し、ポンプ室を常に複数の空間に区画するベーンと、上記ロータの回転により間欠的にポンプ室と連通する給油通路と、この給油通路に接続され、油圧ポンプからの潤滑油を給油通路に供給する給油パイプと、上記ロータの回転により上記給油通路がポンプ室と連通したときに、該ポンプ室と外部空間とを連通させる気体通路とを備え、
 上記給油通路は、上記ロータの軸部にその直径方向に設けられた直径方向給油孔と、上記ハウジングに設けられてポンプ室に連通するとともに、ロータの回転により上記直径方向給油孔の開口が間欠的に重合連通される軸方向給油溝とを備え、また上記気体通路は、上記ロータの軸部にその直径方向に設けられて上記給油通路に連通する直径方向気体孔と、上記ハウジングに設けられて外部空間に連通するとともに、ロータの回転により上記直径方向気体孔の開口が間欠的に重合連通される軸方向気体溝とを備え、上記直径方向気体孔は、直径方向給油孔が軸方向給油溝に連通された際に、軸方向気体溝に連通されるようになっているベーンポンプにおいて、
 上記気体通路の流路面積をS、給油通路の流路面積をS、給油パイプの流路面積をS、直径方向給油孔の直径をd、ロータの回転方向における軸方向給油溝の幅をLとしたときに、
 給油通路の流路面積Sを、S<S≦3×Sの範囲に設定するとともに、
 給油パイプの流路面積Sを、S<S≦3×Sの範囲に設定し、
 さらに軸方向給油溝幅Lを、d<L<4×dの範囲に設定したことを特徴とするものである。
 一般に、上記気体通路の流路面積Sは、油圧ポンプから給油通路に供給される潤滑油の油圧が高い時に、その潤滑油が気体通路を介して外部空間に、すなわちエンジンの内部空間に漏洩するのを低減するために、できるだけ小さな流路面積Sとなるように設定されている。
 他方、従来は、上記給油通路の流路面積S、給油パイプの流路面積S、直径方向給油孔の直径d、ロータの回転方向における給油溝の幅Lについては、所要の潤滑油がポンプ室に供給されればよいとの観点から、こられの大小関係には格別の注意は払われていなかった。
 しかるに本発明においては、油圧ポンプから給油通路に供給される潤滑油の油圧が低い時に、気体通路から外部空間の空気がポンプ室内に吸い込まれることを可及的に防止するために、給油通路の流路面積Sを、S<S≦3×Sの範囲に設定している。すなわち給油通路の流路面積Sを、気体通路のできるだけ小さな流路面積Sに対して3倍以内の小さな流路面積とすることにより、空気を吸い込みにくくしている。なお、上記特許文献1の図3に開示された給油通路の流路面積Sは、図面上の比較ではあるが、気体通路の流路面積Sに対して約16倍の大きさに設定されている。
 他方、上記給油通路の流路面積Sは、気体通路の流路面積Sに対して、それよりは大きく設定して、ベーンポンプのアイドリングを超えた運転中に所要の潤滑油が確実にポンプ室に供給されるようにしている。
 次に、本発明においては、給油パイプの流路面積Sを、相対的に小さく設定した給油通路の流路面積Sに対して、S<S≦3×Sの範囲に設定している。これは、給油パイプの流路面積Sを給油通路の流路面積Sよりも大きくすることによって絞り効果を得るようにしたものであり、それによってアイドリング時の少ない潤滑油量でも給油通路における油圧をできるだけ高く保つことができるようにしてある。
 さらに本発明においては、軸方向給油溝幅Lを、d<L<4×dの範囲に設定してある。上記直径方向給油孔の開口は、ロータの回転により間欠的に軸方向給油溝を横切るようになり、その横切る際に重合されて連通されるようになっている。しかるに、軸方向給油溝幅Lをあまり大きくすると、連通されている時間すなわちオーバーラップ時間が長くなり、特にアイドリング時の給油通路の油圧が低い時に、ポンプ室の真空により空気が吸い込まれやすくなってしまう。
 このような観点から、軸方向給油溝幅Lを上記範囲に設定して、空気が吸い込まるのを抑制している。
本発明の実施例を示すベーンポンプの正面図。 図1におけるII-IIでの断面図。 図2におけるIII-IIIでの断面図。 回転数と駆動トルクとの関係を試験した試験結果図。 ポンプ室2Aへの給油量と駆動トルクとの関係を試験した試験結果図。
 以下図示実施例について本発明を説明すると、図1、図2は本発明にかかるベーンポンプ1を示し、このベーンポンプ1は図示しない自動車のエンジンの側面に固定され、図示しないブレーキ装置の倍力装置に負圧を発生させるようになっている。
 このベーンポンプ1は略円形のポンプ室2Aの形成されたハウジング2と、ポンプ室2Aの中心に対して偏心した位置でエンジンの駆動力によって回転するロータ3と、上記ロータ3によって回転し、ポンプ室2Aを常に複数の空間に区画するベーン4と、上記ポンプ室2Aを閉鎖するカバー5とを備えている。
 上記ハウジング2には、ポンプ室2Aの上方に上記ブレーキの倍力装置と連通して倍力装置からの気体を吸引するための吸気通路6と、ポンプ室2Aの下方に倍力装置から吸引された気体を排出するための排出通路7とがそれぞれ設けられている。そして、上記吸気通路6には特にエンジン停止の際、倍力装置の負圧を保持するために逆止弁8が設けられている。
 上記ロータ3はポンプ室2A内で回転する円筒状のロータ部3Aを備え、当該ロータ部3Aの外周はポンプ室2Aの内周面に接するように設けられ、当該ロータ部3Aの回転に対して上流側に上記吸気通路6が位置し、ロータ部3Aよりも下流側に排出通路7が形成されている。
 またロータ部3Aには直径方向に溝9が形成されており、上記ベーン4を当該溝9内に沿ってロータ3の軸方向と直交する方向に摺動自在に移動させるようになっている。そしてロータ部3Aの中央に形成された中空部3aとベーン4との間には、後述する給油通路からの潤滑油が流入するようになっている。
 さらに、上記ベーン4の両端にはキャップ4aが設けられており、このキャップ4aを常にポンプ室2Aの内周面に摺接させながら回転させることで、ポンプ室2Aを常時2または3つの空間に区画するようになっている。
 具体的に言うと、図1の状態ではポンプ室2Aはベーン4によって図示左右方向に区画されており、さらに図示右方側の空間では、ポンプ室はロータ部3Aによって上下方向に区画され、合計で3つの空間に区画されている。
 この図1の状態からロータ3の回転によってベーン4がポンプ室2Aの中心とロータ3の回転中心とを結ぶ位置の近傍まで回転すると、ポンプ室2Aは上記吸気通路6側の空間と、排出通路7側の空間との2つの空間に区画されることとなる。
 図2は上記図1におけるII-II部についての断面図を示しており、この図においてハウジング2におけるポンプ室2Aの図示右方側には、上記ロータ3を構成する軸部3Bを軸支するための軸受部2Bが形成されており、上記軸部3Bは上記ロータ部3Aと一体に回転するようになっている。
 そして上記ポンプ室2Aの左端には上記カバー5が設けられており、上記ロータ部3Aおよびベーン4の図示左方側の端面はこのカバー5に摺接しながら回転するようになっており、また上記ベーン4の右方側の端面はポンプ室2Aの軸受部2B側の内面に摺接しながら回転するようになっている。
 また上記ロータ3に形成された溝9の底面9aは、ポンプ室2Aとベーン4の摺接する面よりも若干軸部3B側に形成されており、ベーン4と当該底面9aとの間に間隙が形成されている。
 さらに、上記軸部3Bはハウジング2の軸受部2Bより図示右方側に突出しており、この突出した位置にはエンジンのカムシャフトによって回転するカップリング10が連結され、上記ロータ3は上記カムシャフトの回転によって回転するようになっている。
 そして軸部3Bにはその内部に潤滑油を流通させる給油通路11を形成してあり、この給油通路11は給油パイプ12を介して図示しないエンジンによって駆動される油圧ポンプに接続されている。
 上記給油通路11は、軸部3Bの軸方向に形成した軸方向給油孔11aと、この軸方向給油孔11aに連通して軸部3Bの直径方向に穿設した直径方向給油孔11bとを備えている。
 また上記ハウジング2の軸受部2Bには、上記軸部3Bとの摺動部に上記ポンプ室2Aと上記直径方向給油孔11bとを連通させるように形成された給油通路11を構成する軸方向給油溝11cが形成されており、本実施例では当該軸方向給油溝11cを上記軸受部2Bの図2で示す上方に形成している。
 この構成により、図2に示すように直径方向給油孔11bの開口部が軸方向給油溝11cに重合して連通すると、軸方向給油孔11aからの潤滑油が直径方向給油孔11bおよび軸方向給油溝11cを介してポンプ室2A内へと流入し、上記ベーン4と溝9の底面との間隙から、ロータ3の中空部3a内に流入するようになっている。
 そして本実施例のベーンポンプ1は、ロータ3の回転により上記給油通路11がポンプ室2Aと連通したときに、より具体的には直径方向給油孔11bの開口部が軸方向給油溝11cに重合した際に、上記ポンプ室2Aを外部空間に連通させる気体通路13を備えている。
 上記気体通路13は、上記給油通路11を構成する軸方向給油孔11aを貫通させて軸部3Bに穿設した直径方向気体孔13aを備えており、この直径方向気体孔13aは、上記給油通路11の直径方向給油孔11bと90度位置をずらして形成してある。
 さらに図2のIII-III部における断面図を図3に示すと、上記ハウジング2の軸受部2Bには、軸部3Bとの摺動部に直径方向気体孔13aを外部空間に連通させる軸方向気体溝13bが形成されている。
 この軸方向気体溝13bの位置は上記軸方向給油溝11cに対し、軸受部2Bに沿って90°回転した位置に形成されており、このため上記給油通路11の直径方向給油孔11bが軸方向給油溝11cと連通するのと同時に、直径方向気体孔13aが軸方向気体溝13bと連通するようになっている。
 以上の構成を有するベーンポンプ1について、以下にその動作を説明すると、従来のベーンポンプ1と同様、エンジンの作動によってロータ3が回転すると、それに伴ってロータ3の溝9内を往復動しながらベーン4も回転し、当該ベーン4によって区画されたポンプ室2Aの空間はロータ3の回転に応じてその容積を変化させる。
 その結果、上記吸気通路6側のベーン4によって区画された空間では、容積が増大してポンプ室2A内に負圧が生じ、吸気通路6を介して倍力装置から気体が吸引されて倍力装置に負圧が生じる。そして吸引された気体はその後排出通路7側の空間の容積が減少することで圧縮され、排出通路7より排出されるようになっている。
 一方、ベーンポンプ1の始動とともに潤滑油がエンジンによって駆動される油圧ポンプから給油パイプ12を介して給油通路11に供給されており、この潤滑油はロータ3の回転によって直径方向給油孔11bとハウジング2の軸方向給油溝11cとが連通したときに、ポンプ室2A内に流入するようになっている。
 ポンプ室2Aに流入した潤滑油は、上記ロータ部3Aに形成された溝9部の底面9aとベーン4との間隙からロータ部3Aの中空部3aへと流入し、この潤滑油はベーン4と溝9との間隙や、ベーン4とカバー5との間隙からポンプ室2A内に噴出してこれらの潤滑とポンプ室2Aのシールを行っており、その後潤滑油は上記気体とともに排出通路7から排出されるようになっている。
 上記運転状態からエンジンを停止させると、それに応じてロータ3が停止し、倍力装置からの吸気が終了する。
 ここで、ロータ3の停止によってベーン4によって区画された上記吸気通路6側の空間は負圧状態のまま停止することとなるが、このとき上記直径方向給油孔11bの開口部と軸方向給油溝11cとが一致していなければ、軸方向給油孔11a内の潤滑油がポンプ室2A内に流入してしまうことはない。
 これに対し、直径方向給油孔11bの開口部と軸方向給油溝11cとが一致した状態でロータ3が停止すると、ポンプ室2Aは負圧となっているため、給油通路11内の潤滑油がポンプ室2A内に大量に流入しようとする。
 しかしながら、上記直径方向給油孔11bの開口部と軸方向給油溝11cとが一致した際には、これと同時に上記直径方向気体孔13aと軸方向気体溝13bとが一致するようになっているので、この直径方向気体孔13aから大気が流入されてポンプ室2A内の負圧を解消するようになり、それによって大量の潤滑油がポンプ室2A内に流入するのを防止することができる。
 しかして、上記構成を有するベーンポンプ1においては、上記気体通路13の流路面積をS、給油通路11の流路面積をS、給油パイプ12の流路面積をS、直径方向給油孔11bの直径をd、ロータ3の回転方向における軸方向給油溝の幅をLとしたときに、給油通路の流路面積Sを、S<S≦3×Sの範囲に設定するとともに、給油パイプの流路面積Sを、S<S≦3×Sの範囲に設定し、さらに軸方向給油溝幅Lを、d<L<4×dの範囲に設定して、油圧ポンプから給油通路11に供給される潤滑油の油圧が低い時に、気体通路13から外部空間の空気がポンプ室2A内に吸い込まれることを可及的に防止するようにしている。
 上記気体通路13の流路面積Sは、油圧ポンプから給油通路11に供給される潤滑油の油圧が高い時に、その潤滑油が気体通路13を介して外部空間に漏洩するのを低減するために、できるだけ小さな流路面積Sとなるように設定してある。
 本実施例の場合、気体通路13を構成する直径方向気体孔13aの流路面積を上記流路面積Sとして設定してあり、気体通路13を構成する他の軸方向気体溝13bの流路面積は、直径方向気体孔13aの流路面積Sよりも大きく設定してある。
 この直径方向気体孔13aとしてはなるべく小さな孔が好ましいが、加工技術やコストとの兼ね合いにより、例えば直径1.5mmの孔を採用することが好ましく、この場合、直径方向気体孔13aの流路面積Sは1.77mmとなる。
 次に、本実施例においては、給油通路11を構成する直径方向給油孔11bの流路面積を上記流路面積Sとして設定してあり、給油通路11を構成する他の軸方向給油孔11a及び軸方向給油溝11cの流路面積は、いずれも直径方向給油孔11bの流路面積Sよりも大きく設定してある。
 上記直径方向給油孔11bとしては、例えば直径d=2mm~2.5mmの孔を採用することが好ましく、この場合、直径方向給油孔11bの流路面積Sは3.14~4.91mmとなる。すなわちこの場合、直径方向給油孔11bと直径方向気体孔13aとの流路面積比は、S=1.8×S~2.8×Sとなる。
 このように、給油通路11の流路面積Sを、気体通路13の小さな流路面積Sに対して3倍以内となる小さな流路面積とすることにより、空気を吸い込みにくくすることができる。一方、給油通路11の流路面積Sを、気体通路13の流路面積Sよりは大きく設定することにより、所要の潤滑油が確実にポンプ室2Aに供給されるようにしてある。
 次に、本実施例においては、給油パイプ12の流路面積Sを、上述した給油通路11の流路面積Sよりも大きく設定してある。
 上記給油パイプ12の孔の直径としては、例えば3.5mmの孔を採用することが好ましく、この場合、給油パイプ12の流路面積Sは9.62mmとなる。すなわち本実施例では、給油パイプ12と供給通路11との流路面積比は、S=2.0×S~3×Sの範囲となる。
 このように、給油パイプ12の流路面積Sを給油通路11の流路面積Sよりも大きくすれば、給油通路11による絞り効果を期待することができ、それによってアイドリング時の少ない潤滑油量でも給油通路11における油圧をできるだけ高く保つことができるようになる。
 さらに本実施例においては、上記給油通路11における軸方向給油溝11cの幅Lを、d<L<4×dの範囲に設定してある。本実施例の場合、上記直径方向給油孔11bの直径をd=2mm~2.5mmの範囲に設定しているので、軸方向給油溝11cの幅Lは、2mmより大きく、10mm未満の範囲となる。
 上記軸方向給油溝幅Lをあまり大きくすると、直径方向給油孔11bと軸方向給油溝11cとのオーバーラップ時間が長くなり、特にアイドリング時の給油通路の油圧が低い時に、ポンプ室の真空により空気が吸い込まれやすくなるので、軸方向給油溝幅Lを上記範囲に設定して、空気が吸い込まるのを抑制している。
 図4、図5はそれぞれ試験結果を示した図である。図4は回転数と駆動トルクとの関係を試験した試験結果図で、従来例の駆動トルクの大きさを基準として本発明例のものの駆動トルクがどの程度増減したかをトルク低減率(%)で示してある。
 また図5はポンプ室2Aへの給油量と駆動トルクとの関係を試験した試験結果図で、図4の場合と同様に、従来例の試験結果を基準として本発明例のものの駆動トルクがどの程度増減したかをトルク低減率(%)で示してある。
 上記図4の試験においては、各回転数で給油量が0.3~0.4L/分となるように潤滑油の供給圧力を調整し、また図5の試験においてはポンプ回転数を略一定に保ちながら(約300rpm)、図5に示す供給量が得られるように潤滑油の供給圧力を調整している。
 図4、図5における◇印と□印は本発明例を示しており、◇印のものは直径方向給油孔11bの直径dを2mm(流路面積S=3.14mm)とし、□印のものは2.5mm(流路面積S=4.91mm)としてある。また従来例の直径方向給油孔の直径は、3mm(流路面積S=7.07mm)としてある。
 さらに各図において(従来例を含めて)、上記直径方向気体孔13aの直径を1.5mmとしてあり、したがって気体通路13の流路面積Sは1.77mmに設定してある。また給油パイプ12の流路面積Sは3.5mmの孔を採用してあり、したがって給油パイプ12の流路面積Sは9.62mmとし、さらに上記給油通路11における軸方向給油溝11cの幅Lは、7.5mmとしてある。
 図4に示す試験結果から理解されるように、本発明例(◇、□)のように直径方向気体孔13aの直径を小さくして給油通路11の流路面積Sを小さくすると、給油通路11の流路面積Sが大きい従来例に比較して、特に500rpm程度の低回転領域において、大きなトルク低減率を期待することができる。
 これは、給油通路11の流路面積Sが大きい従来例では、ポンプ回転数が500回転以下となるに従ってポンプ室2Aに吸い込まれる空気量が増大し、ベーン4の回転に伴って吸い込んだ空気を再びポンプ室2Aの外部に排出するために、ポンプ室2Aに吸い込まれる空気量の増大に伴って駆動トルクが大きくなるのに対し、本発明例によれば、ポンプ室2Aに吸い込まれる空気量を低減できることを示している。
 また図5に示す試験結果からは、本発明例(◇、□)によれば、特に給油量が小さな0.2~0.4L/分の領域において、従来例に比較して大きなトルク低減率を期待できることが理解される。
 なお、上記各実施例では1枚のベーン4を備えたベーンポンプ1を用いて説明を行っていたが、従来知られるような複数枚のベーン4を備えたベーンポンプ1であっても適用可能であり、またその用途も倍力装置に負圧を発生させるためだけに限られないのは言うまでもない。
 1 ベーンポンプ        2 ハウジング
 2A ポンプ室         2B 軸受部
 3 ロータ           3A ロータ部
 3B 軸部           4 ベーン
 11 給油通路         11a 軸方向給油孔
 11b 直径方向給油孔     11c 軸方向給油溝
 12 給油パイプ        13 気体通路
 13a 直径方向気体孔     13b 軸方向気体溝

Claims (3)

  1.  略円形のポンプ室を備えたハウジングと、ポンプ室の中心に対して偏心した位置で回転するロータと、ロータによって回転し、ポンプ室を常に複数の空間に区画するベーンと、上記ロータの回転により間欠的にポンプ室と連通する給油通路と、この給油通路に接続され、油圧ポンプからの潤滑油を給油通路に供給する給油パイプと、上記ロータの回転により上記給油通路がポンプ室と連通したときに、該ポンプ室と外部空間とを連通させる気体通路とを備え、
     上記給油通路は、上記ロータの軸部にその直径方向に設けられた直径方向給油孔と、上記ハウジングに設けられてポンプ室に連通するとともに、ロータの回転により上記直径方向給油孔の開口が間欠的に重合連通される軸方向給油溝とを備え、また上記気体通路は、上記ロータの軸部にその直径方向に設けられて上記給油通路に連通する直径方向気体孔と、上記ハウジングに設けられて外部空間に連通するとともに、ロータの回転により上記直径方向気体孔の開口が間欠的に重合連通される軸方向気体溝とを備え、上記直径方向気体孔は、直径方向給油孔が軸方向給油溝に連通された際に、軸方向気体溝に連通されるようになっているベーンポンプにおいて、
     上記気体通路の流路面積をS、給油通路の流路面積をS、給油パイプの流路面積をS、直径方向給油孔の直径をd、ロータの回転方向における軸方向給油溝の幅をLとしたときに、
     給油通路の流路面積Sを、S<S≦3×Sの範囲に設定するとともに、
     給油パイプの流路面積Sを、S<S≦3×Sの範囲に設定し、
     さらに軸方向給油溝幅Lを、d<L<4×dの範囲に設定したことを特徴とするベーンポンプ。
  2.  上記給油通路は、上記ロータ内部にその軸方向に設けられて上記給油パイプに連通する軸方向給油孔を備えており、上記直径方向給油孔は、この軸方向給油孔に連通していることを特徴とする請求項1に記載のベーンポンプ。
  3.  上記直径方向気体孔は、上記軸方向給油孔に連通していることを特徴とする請求項2に記載のベーンポンプ。
PCT/JP2010/070444 2010-04-27 2010-11-17 ベーンポンプ WO2011135747A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080015094.XA CN102365462B (zh) 2010-04-27 2010-11-17 叶片泵
KR1020117019456A KR101271036B1 (ko) 2010-04-27 2010-11-17 베인 펌프
US13/138,400 US8449277B2 (en) 2010-04-27 2010-11-17 Vane pump having a passage area ratio between an oil supply passage area and a gas passage area
EP10846307.6A EP2602487B1 (en) 2010-04-27 2010-11-17 Vane pump
RU2011143786/06A RU2490516C2 (ru) 2010-04-27 2010-11-17 Лопастной насос

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-102249 2010-04-27
JP2010102249A JP5447149B2 (ja) 2010-04-27 2010-04-27 ベーンポンプ

Publications (1)

Publication Number Publication Date
WO2011135747A1 true WO2011135747A1 (ja) 2011-11-03

Family

ID=44861080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070444 WO2011135747A1 (ja) 2010-04-27 2010-11-17 ベーンポンプ

Country Status (7)

Country Link
US (1) US8449277B2 (ja)
EP (1) EP2602487B1 (ja)
JP (1) JP5447149B2 (ja)
KR (1) KR101271036B1 (ja)
CN (1) CN102365462B (ja)
RU (1) RU2490516C2 (ja)
WO (1) WO2011135747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104597A1 (ru) * 2014-01-07 2015-07-16 Станиславс МИРОПОЛЕЦС Трохоидальный насос

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063681A1 (de) * 2012-10-22 2014-05-01 Ixetic Bad Homburg Gmbh Intermittierende kupplungsbeölung
ITTO20121157A1 (it) * 2012-12-27 2014-06-28 Vhit Spa Sistema di lubrificazione per una pompa per vuoto rotativa.
JP2014190312A (ja) * 2013-03-28 2014-10-06 Taiho Kogyo Co Ltd ベーンポンプのベーン
JP5799058B2 (ja) * 2013-07-30 2015-10-21 三桜工業株式会社 負圧ポンプ及びシリンダヘッドカバー
US9803640B2 (en) * 2013-10-07 2017-10-31 Sanoh Industrial Co., Ltd. Negative pressure pump and cylinder head cover
JP6210859B2 (ja) * 2013-11-22 2017-10-11 三桜工業株式会社 負圧ポンプ及びシリンダヘッドカバー
WO2016192782A1 (en) * 2015-06-02 2016-12-08 Pierburg Pump Technology Gmbh Automotive vacuum pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226164A (ja) 2005-02-16 2006-08-31 Taiho Kogyo Co Ltd ベーンポンプ
JP2009185699A (ja) * 2008-02-06 2009-08-20 Toyota Motor Corp バキュームポンプ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU383882A1 (ru) * 1971-01-08 1973-05-23 Авторы изобретени витель Роторный вакуумный насос-компрессор
RU2266430C2 (ru) * 2003-11-26 2005-12-20 Открытое акционерное общество Научно-производственное объединение "Искра" Агрегат компрессорный ротационно-пластинчатый
JP4733356B2 (ja) * 2004-03-10 2011-07-27 トヨタ自動車株式会社 気体用ベーンポンプおよびその運転方法
JP2006118424A (ja) * 2004-10-21 2006-05-11 Toyota Motor Corp バキュームポンプ
JP4022773B2 (ja) * 2005-02-16 2007-12-19 大豊工業株式会社 ベーンポンプ
JP3849799B2 (ja) * 2005-02-16 2006-11-22 大豊工業株式会社 ベーンポンプ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226164A (ja) 2005-02-16 2006-08-31 Taiho Kogyo Co Ltd ベーンポンプ
JP2009185699A (ja) * 2008-02-06 2009-08-20 Toyota Motor Corp バキュームポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104597A1 (ru) * 2014-01-07 2015-07-16 Станиславс МИРОПОЛЕЦС Трохоидальный насос

Also Published As

Publication number Publication date
RU2011143786A (ru) 2013-05-10
KR101271036B1 (ko) 2013-06-04
CN102365462B (zh) 2014-10-15
EP2602487A1 (en) 2013-06-12
JP2011231676A (ja) 2011-11-17
CN102365462A (zh) 2012-02-29
RU2490516C2 (ru) 2013-08-20
US8449277B2 (en) 2013-05-28
KR20110125639A (ko) 2011-11-21
EP2602487B1 (en) 2018-07-04
JP5447149B2 (ja) 2014-03-19
US20120156076A1 (en) 2012-06-21
EP2602487A4 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5447149B2 (ja) ベーンポンプ
JP3874300B2 (ja) ベーンポンプ
RU2480627C1 (ru) Лопастной насос
KR101364025B1 (ko) 축방향 지지부재를 갖는 스크롤 압축기
JP4733356B2 (ja) 気体用ベーンポンプおよびその運転方法
JPH08312582A (ja) 圧縮機の逆転防止装置
US20110176909A1 (en) Vehicle hydraulic control unit
JP4646629B2 (ja) ベーンロータリ型空気ポンプ
US9322403B2 (en) Compressor
JP2009036137A (ja) 可変容量型ベーンポンプ
WO2014141888A1 (ja) 可変容量型ベーンポンプ
WO2014051102A1 (ja) スクロール圧縮機
JPWO2020084666A1 (ja) ベーンポンプ装置
JP2006194111A (ja) ベーンロータリ圧縮機
JP2006118424A (ja) バキュームポンプ
EP2857688B1 (en) Rotary compressor
JP2005337208A (ja) ベーンロータリ型空気ポンプ
US20130236346A1 (en) Two step compressor unit and compressor system having the same
JP4142906B2 (ja) 気体圧縮機
JP6462265B2 (ja) 開放型圧縮機
JP2006046203A (ja) ベーンロータリ型空気ポンプ
WO2016129334A1 (ja) 気体圧縮機
JP2004052608A (ja) 気体圧縮機
JP2005069094A (ja) 回転式圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015094.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13138400

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117019456

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6493/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010846307

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011143786

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE