WO2011135150A1 - Hidrogeles elaborados a base de polímeros aniónicos de origen natural - Google Patents

Hidrogeles elaborados a base de polímeros aniónicos de origen natural Download PDF

Info

Publication number
WO2011135150A1
WO2011135150A1 PCT/ES2011/070306 ES2011070306W WO2011135150A1 WO 2011135150 A1 WO2011135150 A1 WO 2011135150A1 ES 2011070306 W ES2011070306 W ES 2011070306W WO 2011135150 A1 WO2011135150 A1 WO 2011135150A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
hydrogel according
hydrogels
protein
active ingredient
Prior art date
Application number
PCT/ES2011/070306
Other languages
English (en)
French (fr)
Inventor
Rila Lopez Cebral
Begoña Seijo Rey
Alejandro Sanchez Barreiro
Maria Antonietta Casadei
Patrizia Paolicelli
Original Assignee
Universidade De Santiago De Compostela
Università Degli Studi Di Roma, La Sapienza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela, Università Degli Studi Di Roma, La Sapienza filed Critical Universidade De Santiago De Compostela
Publication of WO2011135150A1 publication Critical patent/WO2011135150A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/732Starch; Amylose; Amylopectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/733Alginic acid; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/735Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/737Galactomannans, e.g. guar; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/06Pectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/10Heparin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Definitions

  • the present invention relates to the development of hydrogels comprising at least one naturally occurring polymer endowed with a negative electrical charge and at least one natural constituent molecule of the human organism capable of acting as a cationic crosslinker of the above polymer without establishing chemical bonds therewith.
  • the present invention relates to the development of a process for the preparation of this type of hydrogels and the uses thereof.
  • Hydrogel-type polymeric systems have enormous potential clearly recognized in numerous fields having aroused great interest especially in the biomedical and cosmetic field.
  • the potential of available hydrogels is currently limited in some fields.
  • tissue engineering it should be noted for his enormous interest and such important repercussions on health and economy, that of tissue engineering.
  • challenges include the need to have hydrogels with adequate mechanical, chemical and biological properties (Khademhosseini et al., PNAS 103, 2006, 2480-2487).
  • hydrogels based on hyaluronic acid This is a natural constituent biomaterial of our own organism, known for its biodegradability and bioresistance and its role in cellular functions such as adhesion, proliferation and migration, with the consequent potential in tissue engineering.
  • the hydrogel production techniques currently available make their chemical modification necessary in order to be effectively integrated into a hydrogel. It is clear that this need means that the product finally used is no longer the constituent of our own agency, but a semi-synthetic product on which the criteria of the corresponding regulatory agencies will have to be applied before considering its use. This occurs for example with the hyaluronic methacrylate recently proposed by Gerecht et al.
  • one of the techniques for making hydrogels consists of ionic crosslinking.
  • This technique has interesting advantages, standing out for its softness and for being a fast, economical, easily reproducible and scalable technique that requires very simple technology, all aspects of undoubted interest to the industry. With this technique it is possible to make alginate-based hydrogels, a material that is ionically cross-linked with calcium ions, giving rise to insoluble structures in aqueous media.
  • this type of agents can also lead to the cross-linking and inactivation of the active ingredient itself that is intended to be associated with the system, especially if they are molecules with amino groups, as in the case of peptides and proteins, such as factors of cell growth All these problems of aldehydes and chemical crosslinking agents are described in the literature. Based on the above, the inventors have developed a new type of gels that can only be developed using constituents of our own organism as a cationic crosslinker. Unlike gels such as alginate, which can be crosslinked using inorganic ions, the use of such compounds allows hydrogels to be developed with a wide variety of components that have the following characteristics and give the gels formed the advantages mentioned below. :
  • Hyaluronic or chondroitin are not only highly biocompatible, but also have activity on their own without the need to associate any active ingredient.
  • hyaluronic acid for the treatment of osteoarthritis and in the preparation of artificial tears has been described, several of these formulations being commercialized.
  • hyaluronic acid and chondroitin have the ability to stimulate cell proliferation through interactions with cellular receptors such as CD44 and to protect DNA against oxidation reactions (Zhao et al., International Journal of Oncology, 32 , 2008, 1 159-1 167), an interaction that can be used to direct elaborate systems based on said components towards cells that overexpress said receptor, as is the case with many tumor cells (Tool, Nature reviews, 4, 2004 , 528-539).
  • amines used as crosslinkers are natural components of cells and body fluids and play a fundamental role in the processes of cell proliferation and differentiation and of synthesis of biological macromolecules.
  • its ability to inhibit oxidative stress in living beings and promote its longevity has recently been described (Eisenberg et al., Nature Cell Biology, 1 1 (1 1), 2009, 1305-1314).
  • cells are able to synthesize the amines that needed for cell growth processes, cell internalization mechanisms that allow them to obtain these amines from the bloodstream have been described. These mechanisms are influenced by proteoglycans such as chondroitin sulfate and hyaluronic acid (Belting M. Et al.
  • the hydrogels of the present invention make it possible to incorporate, among the components of the hydrogels, protein molecules. This fact is of particular interest.
  • proteins such as albumin facilitates the association of active ingredients, especially lipophilic ingredients, due to the known ability to bind many drugs to this plasma protein (Goodman &Gilman's The Pharmacological Basis of Therapeutics, McGraw Hill; Maham A et al. Protein-based nanomedicine platforms for drug delivery. Small. 5, 2009, 1706-21)
  • proteins with enzymatic activity such as catalase and superoxide dismutase, which are responsible for eliminating from the cells the so-called “reactive oxygen species” or "ROS”, generated in the cells as a result of the use of oxygen for metabolic purposes, and that can cause damage to proteins and intracellular lipids, which can even lead to cell death.
  • ROS reactive oxygen species
  • the present invention relates to new hydrogels characterized by their simplicity, versatility and the possibility of incorporating exclusively biomaterials that are natural constituents of the human body itself. In this way, the present invention is directed to the elaboration of hydrogel systems with both biomedical and cosmetic, hygiene, nutritional and surface coating applications.
  • hydrogel refers to a three-dimensional macromolecular structure swollen with an aqueous medium that is insoluble in said medium, due to its arrangement as a reticulated lattice Encyclopedia of Controlled Drug Delivery (Edith Mathiowitz, Ed., John Wiley & Sons, Inc., New York, 1999).
  • This definition encompasses structures that have numerous biomedical and pharmaceutical applications, among others. However, it is necessary to specify that this definition does not include nanoaggregates or polymeric microaggregates that could be framed within more recent concepts such as those of micro or nanohydrogels.
  • a first essential aspect of the invention relates to hydrogels comprising the following elements: (a) at least one anionic polymer of natural origin; Y
  • anionic polymer means any polymer with a net negative charge, including in that definition those anionic polymers on which modifications such as enzymatic or chemical fragmentation or derivatization have been made.
  • the anionic polymer is selected from the group consisting of hyaluronic acid, colominic acid, polysalic acid, chondroitin, queratane, dextrans, heparin, carrageenans, furcelerans, alginates, agar agar, glucomannan, gellan garrofin, guar gum, tragacanth gum, gum arabic , xanthan gum, karaya gum, pectins, celluloses, starches, sorbitan esters, as well as salts or fragments thereof or derivatives thereof or any combination thereof.
  • Hyaluronan is a linear polymer that comprises the repetition of a disaccharide structure formed by the alternate addition of D-glucuronic acid and DN-acetylglucosamine, linked alternating beta-1, 4 and beta-1, 3 glucosidic bonds as shown in The following formula:
  • n represents the degree of polymerization, that is, the number of disaccharide units in the hyaluronan chain.
  • hyaluronic acid with a wide range of molecular weights can be used.
  • High molecular weight hyaluronic acid is commercially available, while lower molecular weight can be obtained by fragmentation of high molecular weight hyaluronic acid, using, for example, a hyaluronidase enzyme.
  • hyaluronic acid, hyaluronic acid, hyaluronan includes either hyaluronic acid or a conjugate base thereof (hyaluronate).
  • This conjugate base may be an alkali salt of hyaluronic acid including inorganic salts such as, for example, sodium, potassium, calcium, ammonium, magnesium, aluminum and lithium salts, organic salts such as basic amino acid salts at neutral pH, preferably said salts are pharmaceutically acceptable.
  • the alkaline salt is the sodium salt of hyaluronic acid.
  • the family of polysalic acids is composed of linear polymers consisting of residues of N-acetylneuraminic acid (Neu5Ac; also known as sialic acid), a constituent natural cell and tissue, linked by glycosidic bonds a- (2 ⁇ 8).
  • N-acetylneuraminic acid residue has a carboxyl group, responsible for the negative charge of colominic acid, as shown in the following formula:
  • Dextran sulfate is a complex glucan (polysaccharide) consisting of units of glucose molecules, each containing approximately one formula:
  • Dextran sulfate is prepared by dextran sulfation and subsequent purification by methods known to a person skilled in the art.
  • Heparin is a substance of natural origin from the family of glycosaminoglycans whose chemical structure includes the repetition of units monomeric disaccharides of 2-O-sulfo-aL-iduronic acid and 2-deoxy-2-sulfamido- aD-glucopyranosyl-6-O-sulfate, represented below:
  • n is an integer and represents the degree of polymerization, that is, the number of monomer units in the heparin chain.
  • Fractional or low molecular weight heparin is produced by chemical or enzymatic depolymerization of conventional heparins.
  • heparins are enoxaparin, parnaparin, dalteparin and nadroparin, as well as their salts such as sodium and calcium salts.
  • Heparin derivatives may also be employed in the composition of the hydrogels of the present invention. These derivatives are known in the state of the art and originate as a result of the reactivity of the different functional groups present in the molecule. Thus, N-acetylated, O-decarboxylated, oxidized or reduced heparins are widely known.
  • Chondroitin sulfate is a sulfated glucosaminoglycan (GAG) composed of a chain of alternating sugars. It is normally bound to proteins as part of a proteoglycan. It is represented by the following structure:
  • n is an integer and represents the degree of polymerization, that is, the number of disaccharide units in the chondroitin sulfate chain and in which Ri, R 2 and R 3 are independently hydrogen or an S0 3 group H.
  • Each monosaccharide can be left unsulfated, sulfated once, or sulfated twice. Sulfation is mediated by specific sulfotransferases.
  • chondroitin sulfate includes all its different isomers and derivatives, as well as combinations thereof.
  • chondroitin sulfate is selected from the following substances and combinations thereof:
  • - Chondroitin B sulfate which is also called dermatan sulfate.
  • This substance is composed of linear repeating units containing N-acetylgalactosamine and either L-iduronic acid or glucuronic acid, and each disaccharide can be sulfated once or sulfated twice. It is present mostly in the skin, but it is also found in blood vessels, heart valves, tendons and lungs.
  • chondroitin sulfate also includes organic and inorganic salts thereof.
  • such salts are prepared, for example, by reacting the basic form of this compound with a stoichiometric amount of the appropriate acid in water or in an organic solvent or in a mixture of both.
  • non-aqueous media such as ether, ethyl acetate, ethanol, isopropanol or acetonitrile are preferred.
  • inorganic salts include, for example, sodium, potassium, calcium, ammonium, magnesium, aluminum and lithium salts
  • organic salts include, for example, ethylenediamine, ethanolamine, A /, A / -dialkylene-ethanolamine salts, triethanolamine, glucamine and basic amino acids.
  • the salts are pharmaceutically acceptable.
  • chondroitin depend largely on the properties of the global proteoglycan of which it is a part. These functions can be broadly divided into regulatory and structural roles. However, this division is not absolute and some proteoglycans can play both structural and regulatory roles.
  • chondroitin sulfate is a major component of the extracellular matrix, and is important for maintaining the structural integrity of the tissue. As a part of an aggrecan, chondroitin sulfate is a major component of cartilage. The highly charged and compact packaging sulfate groups of chondroitin sulfate generate electrostatic repulsions that provide much of the cartilage's resistance to compression.
  • Keratane sulfate is a sulfated glucosaminoglycan similar to chondroitin sulfate in which the sulfate group is found in glucuronic acid. Specifically, it is made up of galactose and GlcNAc-6-sulfate, linked by a ⁇ -1,4 link.
  • the carrageenan or carrageenan is formed by galactose and / or anhydrogalactose units, sulfated or not, linked by alternate bonds a-1, 3 and ⁇ -1, 4.
  • anhydrogalactose groups several types of carrageenan are distinguished, with clearly distinct hydrocolloid properties.
  • all types of carrageenan are included. Some of these include for example the Kappa, Iota and Lambda carrageenans
  • Glucomannan is a water-soluble polysaccharide of natural origin.
  • the chemistry structure of this compound consists of a linear polymer chain with a small proportion of branches. Specifically, it is made up of D-mannose and D-glucose units linked by ⁇ -1, 4 bonds in a ratio of 1 .6: 1, respectively.
  • the glucomannan used is a negatively charged glucomannan derivative selected from the phosphorylated, carboxymethyl and dicarboxy-glucomannan derivatives.
  • Gellan gum is a water-soluble polysaccharide of natural origin. The chemical structure of this compound consists of a polymer chain consisting of units of a-L-rhamnosium, ⁇ -D-glucuronic acid and two units of ⁇ -D-glucose.
  • n is an integer and represents the degree of polymerization, that is, the number of monomer units in the gellan gum chain.
  • the polymer may be in a partially acetylated form. Depending on its degree of acetylation, gellan gum provides gels with different mechanical properties.
  • gellan gum includes all its different derivatives, as well as combinations thereof.
  • the cationic crosslinking agent is an amine of general formula (I):
  • the amine is selected from spermine, spermidine, salts thereof or any combination thereof. These amines are natural components of cells and body fluids and play a fundamental role in the processes of cell proliferation and differentiation and of synthesis of biological macromolecules.
  • the hydrogels of the present invention are characterized by being formed through an ionic interaction mechanism that causes the crosslinking of the components of said gels as a result of the addition of a positively charged crosslinking agent.
  • a positively charged crosslinking agent In addition to being a simple procedure, the use of organic solvents or toxic auxiliary substances is not required.
  • the presence of the cationic crosslinking agent allows cross-linking of the anionic polymer by an ionic gelation process.
  • the weight ratio crosslinking agent / anionic polymer is between 0.05 / 1 and 0.5 / 1, preferably between 0.2 / 1 and 0.4 / 1.
  • the hydrogel additionally comprises at least one protein.
  • the protein is selected from the group consisting of albumin, gelatin, collagen, atelocholagen, enzymatic proteins, globular proteins of the alpha-globulin type, globular proteins of the beta-globulin type, glycoproteins and protamines, derivatives thereof or any combination of the same.
  • the enzymatic proteins are selected from the group consisting of fibrin, fibrinogen, thrombin and prothrombin. Even more preferably, the enzyme protein is prothrombin.
  • alpha-type globular proteins are selected from the group consisting of orosomucoid or alpha-1-glycoprotein, LDL and haptoglobin.
  • beta-globulin-type globular proteins are selected from the group consisting of angiostatin and plasmin.
  • glycoproteins are mucins.
  • Collagen is a fibrous protein with triple helix structure. It is present in connective tissue, where its fibers form structures that resist tensile forces, thanks to its capacity for compaction and stretching. It also plays a fundamental role in maintaining the morphology of tissues and organs, since the cells interact with the collagen of the extracellular matrix both mechanically and chemically, which produces remarkable effects on the tissue architecture. Collagen instead of being a unique protein, is considered a family of closely related but genetically distinct molecules. Several types of collagen are described like this:
  • Type I collagen It is found abundantly in the dermis, bone, tendon, dentin and cornea. It occurs in striated fibrils of 20 to 100 nm in diameter, grouping together to form larger collagen fibers. Its major subunits are constituted by alpha chains of two types, which differ slightly in their amino acid composition and sequence. One of which is designated as alfal chain and the other, alpha2 chain. It is synthesized by fibroblasts, chondroblasts and osteoblasts. Its main function is that of stretch resistance.
  • Type II collagen It is found mostly in cartilage, but it also occurs in the embryonic cornea and in the notochord, in the nucleus pulposus and in the vitreous humor of the eye. In cartilage it forms fine fibrils of 10 to 20 nanometers, but in Other microenvironments can form larger fibrils, morphologically indistinguishable from type I collagen. They consist of three alpha2 chains of a single type. It is synthesized by chondroblast. Its main function is resistance to intermittent pressure.
  • Type III collagen Abundant in loose connective tissue, blood vessel walls, skin dermis and stroma of several glands. It is an important constituent of 50 nanometer fibers that have traditionally been called reticular fibers. It consists of a unique class of alpha3 string. It is synthesized by smooth muscle cells, fibroblasts, glia. Its function is to support the expandable organs.
  • Type IV collagen It is the collagen that forms the basal lamina that underlies the epithelia. It is a collagen that does not polymerize in fibrils, but forms a felt of randomly oriented molecules, associated with proteoglycans and with the structural proteins laminin and fibronectin. It is synthesized by epithelial and endothelial cells. Its main function is the support and filtration.
  • Type V collagen Present in most interstitial tissue. It is associated with type I.
  • Type VI collagen Present in most interstitial tissue. It serves as an anchor for cells in their environment. It is associated with type I.
  • Type VII collagen It is found in the basal lamina.
  • Type VIII collagen Present in some endothelial cells.
  • Type IX collagen It is found in mature articular cartilage. Interact with type II.
  • Type X collagen Present in hypertrophic and mineralized cartilage.
  • Type XI collagen It is found in cartilage. Interact with types II and IX.
  • Type XII collagen Present in tissues subject to high stresses, such as tendons and ligaments. Interact with types I and III.
  • Type XIII collagen It is found as a protein associated with the cell membrane. Interact with types I and III.
  • Atelocholagen is highly purified type I collagen and treated with the enzyme pepsinase.
  • the collagen molecule has an amino acid sequence called telopeptide, both at its N-terminal end, and at its C-terminal end. These telopeptides are primarily responsible for the antigenicity of collagen.
  • Pepsinase treated atelocollagen therefore has a lower immunogenicity, and is used clinically with a wide variety of applications, including wound healing-regeneration, vascular prosthesis, bone cartilage substitute and hemostatic agent.
  • Gelatin is a polymer of natural origin that is obtained from collagen, by irreversible partial hydrolysis of it.
  • gelatin type A obtained by acid hydrolysis
  • gelatin type B obtained by alkaline hydrolysis.
  • its molecular structure it has some functional groups (carboxyl, imidazole, amino, guanidino) that ionize in aqueous solution according to their pKa value and the pH value of the medium.
  • gelatin type A has a greater amount of ionizable basic groups than acid groups and its isoelectric point is between 9 and 9.4.
  • isoelectric point is an important property of jellies as it gives an idea of what its behavior will be under certain pH conditions.
  • the jelly has, as noted above, interesting properties from the physical-chemical point of view as it has a wide range of isoelectric points according to the process by which it was obtained, and a large number of functional groups that allow its modification . For example, it is possible to increase its positive charge by amination or decrease it by thiolation, which offers the possibility of improving the interaction with the therapeutic molecules that will be associated in systems containing this material and, in addition, allows modulating the interaction capacity with the biological surfaces of the organism.
  • Albumin is a protein with a molecular weight of approximately 66.5 kDa and isoelectric point of approximately 4.9. It is the main protein present in the blood plasma. Like other plasma proteins, albumin is synthesized in the liver, being responsible for osmotic blood pressure. When degraded, its amino acids provide nutrients to peripheral tissues. It carries a large number of endogenous and exogenous components and It participates in metabolic processes such as the solubilization of fatty acids, so it is essential in lipid metabolism. Numerous active ingredients, including lipophilic ingredients bind to this plasma protein (Goodman &Gilman's The Pharmacological Basis of Therapeutics, McGraw Hill; Maham A et al. Protein-based nanomedicine platforms for drug delivery. Small. 5, 2009, 1706-21) .
  • Albumin is a very soluble acid type protein, stable in a wide pH range (4-9) and at temperatures at which other proteins would undergo denaturation. It has amino and carboxyl groups that offer the possibility of being chemically modified or of coupling ligands such as other proteins, antibodies, carbohydrates and drugs. Being an easily available, biodegradable material, devoid of toxicity and immune responses, they make it an ideal candidate as a biomaterial for vehiculizing active ingredients.
  • Fibrinogen is a soluble protein in blood plasma, its length is 46 nm and its molecular weight is 340 kDa. It is a fibrillar molecule, and at its ends it has strongly negative charges. These ends repel other molecules of the compound, preventing aggregation. It is composed of three pairs of polypeptide chains, specifically 2 Aa, 2 ⁇ and 2 ⁇ ( ⁇ , ⁇ , ⁇ ) 2 chains linked by disulfide bonds. These chains are genetically linked and regulated in a coordinated manner in humans.
  • Fibrin is a fibrillar protein. It has the ability to form three-dimensional networks and plays an important role in the coagulation process
  • thromboplastin forms aggregates with other fibrin molecules, forming a soft clot. It is normally found in the blood in an inactive form, fibrinogen, which by the action of an enzyme called thrombin is transformed into fibrin.
  • thrombin is a glycoprotein enzyme, from the peptidases group. It is formed by two polypeptide chains of 36 and 259 amino acids respectively, joined by a disulfide bridge. It is obtained from a precursor, prothrombin, in a reaction catalyzed by the enzyme thromboplastin, in the presence of calcium ions (Ca ++). It has a molecular weight of
  • This enzyme is not part of the blood, but is formed as part of the blood coagulation process, and helps fibrinogen degradation into fibrin monomers.
  • Prothrombin is a blood plasma protein, it is part of the coagulation process by reacting it with the enzyme "thromboplastin", an enzyme located inside the thrombocytes, released by breaking the fragile cell membrane of the thrombocytes. This stage also involves the Ca ++ cation (calcium), acting as a coenzymatic factor.
  • thromboplastin an enzyme located inside the thrombocytes, released by breaking the fragile cell membrane of the thrombocytes. This stage also involves the Ca ++ cation (calcium), acting as a coenzymatic factor.
  • LDL is a lipoprotein that transports cholesterol through the body, to be used by different cells.
  • Haptoglobin is an acute phase protein and a transporter protein. It transports free hemoglobin (Hb) to its site of degradation in the reticuloendothelial system. It is a protein with genetic polymorphism: essentially there are three phenotypes Hp 1 -1, Hp 2-1 and Hp 2-2. It is a glycoprotein composed of four polypeptide chains 2 light ⁇ chains and 2 ⁇ chains. Haptoglobin can bind oxyhemoglobin, methemoglobin, a hemoglobin chains, ⁇ / ⁇ dimers and hemoglobin H without heme.
  • Angiostatin is a 38 kDa fragment, a larger protein, plasmin (a plasminogen fragment) forming three to five modules with contiguous Kringle domains. Each module contains two small beta sheets and three disulfide bonds.
  • Mucin is mucopolysaccharide, the main ingredient of mucus. Mucin is found in most mucus secretory glands and is the lubricant that protects body surfaces from friction or erosion.
  • the hydrogel further comprises a system for the administration of active ingredients, comprising microparticles and / or nanoparticles.
  • the micro particles have a size between 1 and 1000 micrometers.
  • the nanoparticles are smaller than 1 micrometer.
  • microparticles and / or nanoparticles in turn comprise:
  • the ionic polymer is selected from the group consisting of hyaluronic acid, colominic acid, polysalic acid, chondroitin, queratane, dextrans, heparin, carrageenans, furcelerans, alginates, agar agar, glucomannan, gellan gum, garrofin gum, guar gum, gum tragacanth, gum arabic, xanthan gum, karaya gum, pectins, celluloses, starches and sorbitan esters, as well as salts, fragments thereof, derivatives thereof or any combination thereof.
  • the crosslinking agent is selected from an amine of general formula (I) as described above and salts of citrate, tripol phosphate or sulfate.
  • microparticles and / or nanoparticles may comprise other anionic or cationic polymers that allow modulating the surface charge thereof.
  • the hydrogel additionally comprises at least one active ingredient.
  • active ingredient refers to any ingredient or cell that is used in the treatment, cure, prevention or diagnosis of a disease or that is used to improve the physical and mental well-being of humans and animals, as well as that ingredient or cell that is intended to destroy, prevent action, counteract or neutralize, any harmful organism or entity, or any ingredient or cell that is used as cosmetic or hygiene, as well as that ingredient or cell that is intended to regenerate tissues or in tissue engineering or cell therapy.
  • the hydrogels object of the present invention are suitable for associating active ingredients regardless of the solubility characteristics thereof. The association capacity will depend on the corresponding active ingredient, but in general terms it will be high both for hydrophilic ingredients, and for those of marked hydrophobic character.
  • the active ingredient is selected from hormones, peptides, proteins, proenzymes or zymogens, enzymes, coenzymes, vitamins, lipid or lipophilic compounds, hydrophilic compounds, saccharide compounds, nucleic acid or nucleotide compounds such as oligonucleotides, polynucleotides and cells. or combinations thereof.
  • the active ingredient can:
  • a growth factor such as a growth factor
  • a growth factor such as a growth factor
  • a nucleic acid derivative such as a DNA plasmid, oligonucleotide, interfering RNA or a polynucleotide.
  • the DNA plasmid is one that incorporates genetic material to be introduced into cells and express proteins or that acts as an RNA precursor.
  • the active ingredient is selected from a growth factor, siRNA and a plasmid.
  • Growth factor growth factors are a family of molecules, mostly of a protein nature. The main function of growth factors is the stimulation of cell proliferation by regulating the cell cycle. They also contribute to the maintenance of cell survival, the stimulation of cell migration, cell differentiation and even apoptosis. Growth factors perform their function at a very low concentration in the biological environment. They act by binding to cellular receptors located in the cell membrane that transmit the signal from outside to inside the cell, by coupling different protein kinases that phosphorylate and activate a signal cascade that ends with the activation of one or more genes ( signal transduction).
  • Plasmid Plasmids are circular or linear extrachromosomal DNA molecules, which replicate and transcribe independently of chromosomal DNA.
  • They have a double helix structural conformation and their size varies from 1 to 250 kb. They are normally present in bacteria, although sometimes eukaryotic organisms (such as yeasts) are also found, and their number can vary from a single copy to a few hundred per cell.
  • RNAi interference a mechanism of post-transcriptional silencing of specific genes in all cells, called ribotransference, RNA or RNAi interference (acronym for the English name RNA interfence). This is specifically exercised by RNA molecules that, being complementary to a messenger RNA, lead to its degradation. It must then be distinguished between interference by RNA (RNAi), biological mechanism or experimental technique that takes advantage of it, and interfering RNA, RNA molecule that exerts RNA interference, and can be of several types: siRNA, miRNA or piRNA.
  • siRNA (acronym in English for small interfering RNA, in Spanish for small RNA interference or RNA silencing), is a type of interfering RNA with a length of 20 to 25 nucleotides, and is highly specific for the nucleotide sequence of your target messenger RNA. Thus, siRNA interferes with the expression of a specific gene, reducing it. In addition, siRNAs also act in other RNAi-related pathways, such as in antiviral defense or in the organization of chromatin structure in a genome.
  • the active ingredient is selected from superoxide dismutase, catalase and prednisolone.
  • SOD Superoxide dismutase
  • - SOD1 located in the cell cytoplasm, is a 32.5 KDa molecular weight homodimer and contains copper and zinc in its active center.
  • - SOD2 located in the mitochondria, is a tetramer, and contains manganese in its active center.
  • SOD3 is found in extracellular fluid, is a tetramer, and contains copper and zinc in its active center.
  • the SOD is SOD1.
  • Catalase Enzyme that catalyzes the conversion of hydrogen peroxide into water and 0 2 . It is located in the peroxisomes of almost all cell types. It is a tetramer formed by four polypeptide chains, each of which has a length of 500 amino acids, and each of which binds a porphyrin group. Coordinated to each of the porphyrin groups there is an iron atom, which will be responsible for the interaction with hydrogen peroxide.
  • Prednisolone It is a corticosteroid (corticosteroids are hormones of the steroid group, and are produced by the cortex of the adrenal glands) used therapeutically as an anti-inflammatory and immunosuppressant. It is a fat-soluble compound of molecular weight 360.44 g / mol. According to a preferred embodiment the proportion of the active ingredient incorporated in the gels is equal to or less than 25% by weight with respect to the total weight of the hydrogel components. However, the appropriate proportion will depend in each case on the active ingredient to be incorporated, the indication for which it is used and the administration efficiency. According to another preferred embodiment, the proportion of active ingredient is between 1 and 20% by weight.
  • the hydrogels of the present invention additionally comprise at least one label.
  • a label that element, compound, cell or set of cells that allows to carry out a study of its location, to obtain an image, signal or information of the place or places where it is distributed, to determine a biochemical parameter , immunological or metabolic or make a diagnosis.
  • markers are a fluorescent molecule, such as fluorescein or Texas Red; quantum dots; a radioactive isotope; a contrast agent, for example radiological, resonance or tomography; a membrane antigen; a staining agent, etc.
  • the hydrogel additionally comprises at least one compound capable of facilitating or reinforcing the effect of the active ingredient, such as for example an adjuvant, an immunomodulator (immunosuppressant or immunostimulator) or any combination thereof.
  • a compound capable of facilitating or reinforcing the effect of the active ingredient such as for example an adjuvant, an immunomodulator (immunosuppressant or immunostimulator) or any combination thereof.
  • the hydrogel additionally comprises at least one compound that interacts with biological components and / or with affinity for one or more receptors existing in living beings and / or that acts as a receptor for some biological component, such as an antibody, an aptamer, a surface receptor or any combination thereof.
  • some biological component such as an antibody, an aptamer, a surface receptor or any combination thereof.
  • the hydrogel additionally comprises at least one stabilizing compound of the lipid, fatty or oily, saccharide type, an amino acid or protein derivative, an ethylene oxide derivative, a morpholino type compound or any combination thereof.
  • the hydrogel additionally comprises at least one compound sensitive to chemical polymerization or polymerization induced by UV / Vis radiation (photopolymerization), heat (thermal polymerization), microwaves, ultrasound and X-rays.
  • the hydrogel comprises additionally emollient agents, preservatives, fragrance substances, anti-acne agents, anti-fungal agents, antioxidants, deodorants, antiperspirants, anti-dandruff agents, depigmenting agents, bleaching agents, anti-seborrheic agents, dyes, tanning lotions, UV light absorbers, or any combination of same.
  • the hydrogel is in lyophilized or dehydrated form.
  • the hydrogel is used for the preparation of a medicament.
  • the invention relates to a pharmaceutical composition comprising at least one hydrogel as described in the present invention and a pharmaceutically acceptable carrier.
  • the compounds and compositions of the present invention can be used together with other medicaments in combination therapies.
  • the other drugs may be part of the same composition or of a different composition, for administration at the same time or at different times.
  • Another preferred embodiment relates to a surface coating composition comprising at least the hydrogel of the invention.
  • Another preferred embodiment relates to a nutritional composition comprising at least the hydrogel of the invention.
  • Said nutritional composition may be a food, a dietary supplement or a nutritional supplement.
  • Nutritional compositions may include milk, yogurts, fruit and vegetable juices, desserts, baby products or dehydrated products.
  • the hydrogels are added to the nutritional composition by mixing and homogenization according to the technical procedure to produce each product. Additionally, other components such as vitamins can be added to the nutritional composition. Examples of these compounds are vitamins of group A, B, C, D, E or mixtures thereof.
  • Another preferred embodiment relates to a medical device comprising at least the hydrogel of the invention.
  • Another preferred embodiment relates to a cosmetic composition comprising at least one hydrogel of the invention.
  • a second essential aspect of the present invention relates to the use of the hydrogel in the manufacture of a medicament.
  • it refers to the use of the hydrogel for use in tissue engineering, regenerative medicine and cell therapy.
  • it refers to the use of the hydrogel as a marker.
  • the hydrogel for oral, oral, sublingual, topical, ocular, nasal, pulmonary, otic, vaginal, intrauterine, rectal, enteric, or parenteral administration.
  • the hydrogels have the additional advantage of being stable in acidic medium (0.1 N HCI) and simulated intestinal fluid, so that they can reach the intestinal epithelial tissue without undergoing any degradation and release the active ingredient there associated.
  • it refers to the use of the hydrogel in the preparation of a cosmetic or personal hygiene product for administration on skin, hair and hair system, nails, lips, external genital organs, teeth or mucous membranes.
  • hydrogel for the association thereto of different forms of release of active ingredients, such as micro and nanoparticular systems.
  • hydrogel for gene therapy, silencing or genetic interference, or genetic vaccination.
  • the hydrogel refers to the use of the hydrogel to produce the association, expansion or activation of cell populations or to manipulate or alter the biological characteristics of both autologous, allogeneic, xenogenic or cell culture living cells and subsequently using said cells or groups.
  • cell phones to obtain a therapeutic, diagnostic, preventive or regenerative purpose, or to modify the production of compounds by said cells, or to adapt and associate them effectively with microparticles or microcapsules, matrices and scaffolds.
  • a further aspect of the invention is represented by the case in which the gel composition is used as such because it allows the manufacture of a viscoelastic composition.
  • Such viscoelastic composition is useful, for example in surgery or ocular therapy, as a substitute for synovial fluid and as eye drops and, as indicated above, the present invention makes it possible to adjust viscoelastic properties for such uses.
  • it refers to the use of the hydrogel to facilitate, stimulate or modify the production of compounds by cells, for the purpose of biotechnological production.
  • it refers to the use of the hydrogel for the purpose of hygiene or aesthetics, to neutralize or eliminate ectoparasites, to perfume, modify the appearance of the body surface and / or correct body odors and / or protect it or keep it in good condition.
  • it refers to the use of the hydrogel to modify, correct or introduce organoleptic properties or improve stability in a medicament or in a cosmetic or personal hygiene product.
  • the hydrogel for the manufacture of a viscoelastic composition useful in surgery or eye therapy, as eye drops or as a substitute for synovial fluid, or some component of the joints.
  • the hydrogel refers to the use of the hydrogel to condition, modify or restore the characteristics of water, food or nutritional supplements, as well as to modify, correct or introduce new organoleptic properties or improve their stability and to facilitate or make possible the administration of food or nutrients to living beings.
  • a third essential aspect of the present invention relates to a process for the preparation of the hydrogel comprising the following steps: a) preparing an aqueous solution of at least one anionic polymer of natural origin; b) preparing an aqueous solution of a cationic crosslinking agent; and c) mixing under stirring the solutions obtained in a) and b) with spontaneous formation of the gel.
  • the incorporation of the polymer or anionic polymers is carried out by aqueous solution thereof or the same at a concentration of between 100 and 0.1 mg / ml, more preferably between 50 and 1 mg / ml and even more preferably between 10 and 5 mg / ml
  • the cationic crosslinking agent is dissolved in water at a concentration of between 100 and 0.01 mg / ml, preferably between 50 and 0.05 mg / ml; more preferably between 10 and 0.1 mg / ml, even more preferably between 4 and 1 mg / ml.
  • an aqueous solution of at least one protein is additionally prepared and incorporated into one of the solutions obtained in a) and b) whose components are of the same electrical charge as the protein or are added on the gel already formed.
  • the incorporation of the protein or proteins is carried out by aqueous solution of the same or the same at a concentration of between 100 and 0.1 mg / ml, more preferably between 50 and 1 mg / ml and even more preferably between 10 and 2 mg / ml
  • At least one of the solutions of the hydrogel constituents is heated before being mixed.
  • the process further comprises the addition of an active ingredient, and / or a compound capable of facilitating or reinforcing the effect of the active ingredient, and / or a compound capable of interacting with biological components and / or a compound capable of act as a receptor of some biological component and / or a stabilizing compound, in solution a) if it is anionic in nature or in solution b) if it is cationic in nature, or it is added to the gels already formed.
  • all the compounds that can be incorporated into the gel system of the invention mentioned above can be added to the solutions of the constituent polymers of the gels prior to their formation or they can be added to the hydrogels. once formed.
  • the active ingredient and / or the aforementioned components that the hydrogel can additionally comprise is dissolved or suspended in one of the solutions a) or b), depending on the charge it has, that is, if it has a negative charge it dissolves or is suspended in the solution a) and, on the contrary, it has a positive charge, it dissolves or suspends in solution b).
  • said active ingredient and / or components is added to the hydrogels once formed.
  • said active ingredient and / or components is added to the hydrogels included in a micro or nanoparticular system.
  • the micro or nanoparticular system is incorporated into the hydrogel in the same way as described for the incorporation of active ingredients, so that if it lacks a charge it can be incorporated into any of the solutions, but if it has a negative charge it is suspended. in solution a) and, on the contrary, it has a positive charge, it is suspended in solution b).
  • said active ingredient and / or components is previously added to the protein or proteins that may optionally be included among its components or to another of the system components.
  • these can be dissolved or suspended first in a small volume of an organic solvent, of an oil or lipophilic or lipophilic compound, or of a mixture of water and the aforementioned compounds, which is then it will add to one of the above-mentioned aqueous solutions, so that the concentration by weight of the organic solvent in the final solution is always less than 25%. In such a case, the organic solvent has to be removed from the system, unless it is pharmaceutically acceptable.
  • lipophilic ingredients can also be associated with proteins incorporated into the hydrogel, as is the case with albumin. Said association with proteins can be carried out prior to the formation of the hydrogel or once formed.
  • the process comprises an additional step after step c) in which the gel is subjected to a total or partial dehydration process (lyophilization or drying, respectively) in order to preserve them during storage to preserve its initial characteristics and the volumes of product to be handled are reduced.
  • a total or partial dehydration process lyophilization or drying, respectively
  • the degree of cross-linking of the hydrogels can increase with this process, since an approximation between the polymer chains can take place, which could facilitate the increase in the degree of polymer crosslinking, as well as the effect of the agent being enhanced.
  • crosslinker The lyophilization or drying process leads, respectively, to a totally or partially dehydrated product.
  • the process comprises an additional step in which the partially dehydrated or lyophilized gel is regenerated.
  • the partially dehydrated or lyophilized gel is regenerated.
  • the regenerated hydrogel retains the properties that characterize the fresh or freshly prepared hydrogel (prior to subjecting it to a dehydration treatment).
  • hydrogels object of the present invention is a consequence of a controlled process of ionotropic cross-linking of the components having opposite charge.
  • ionic or ionotropic crosslinking hydrogels of predetermined, homogeneous, adjustable and reproducible physicochemical properties are obtained, regardless of whether or not any active ingredient is associated.
  • the cross-linking is carried out in a medium at controlled pH and / or ionic strength, which is carried out by dissolving the constituents of the gels in buffered aqueous media.
  • the pH of said solutions is between 5 and 8.
  • Figure 1 Represents the use of spermidine in the preparation of hydrogels based on anionic polymers of natural origin, preparation that is not possible using inorganic ions such as calcium: Photographic image in which it is observed how using spermidine forms a hydrogel that conserves its consistency and does not fall when the test tube in which it has been formed is turned, remaining on the upper part (image on the left). On the contrary, in the image on the right a non-gelled solution with calcium ions is observed and, consequently, when the test tube is turned, it falls as such a solution to the lower part of the tube.
  • inorganic ions such as calcium
  • Figure 2 Represents the variation of the viscosity ( ⁇ ) of the gels (F14, F15 and F16) against the shear stress (y).
  • Figure 3 Represents the modulation of the viscoelastic properties of the hydrogels by an appropriate selection of its components: Variation of the elastic (G ') and viscous (G ") modules of the gels (F14, F15 and F16) versus frequency (F).
  • Figure 5 Represents developed hydrogels capable of efficiently and homogeneously associating genetic material: Photographic images showing the incorporation of siRNA labeled with the fluorescence marker cy3 with the characteristic pinkish color that shows natural light (A) or with fluorescence emitted by said labeled siRNA when the fluorescence microscopy technique is used (ECLIPSE-NIKON 80j microscope, Japan) (B).
  • Figure 6 Represents the flow curves of formulations F34, F33 and F32, which have different concentrations of albumin in their composition (5, 12.5 and 20 mg / ml, respectively).
  • Figure 7 Represents the oscillation curves of formulations F34, F33 and F32, which have different concentrations of albumin in their composition (5, 12.5 and 20 mg / ml, respectively).
  • Figure 9 Represents the flow curves of formulations F35, F36, F37 and F32, which present different concentrations of spermidine in their composition (0.5, 0.65, 1 and 2 mg / ml, respectively).
  • Figure 10 Represents the oscillation curves of the formulations F35, F36, F37 and F32, which present different concentrations of spermidine in their composition (0.5, 0.65, 1 and 2 mg / ml, respectively).
  • Figure 11 Represents the flow curves of the formulations with different glycosaminoglycans in their composition: F38, dextran sulfate; F39, hyaluronic acid; F32, chondroitin sulfate.
  • Figure 12 Represents the oscillation curves of the formulations with different glycosaminoglycans in their composition: F38, dextran sulfate; F39, hyaluronic acid; F32, chondroitin sulfate.
  • Figure 19 Comparison of the STD-MNR spectra of the albumin-prednisolone complex and the free albumin with the 1 H-NMR spectrum of the free prednisolone.
  • Figure 20 Image obtained by confocal microscopy (20 magnification) of the F32 formulation containing cells labeled with DAPI fluorochrome (left) and of the natural F32 formulation (right).
  • Figure 21 Images obtained by SEM (300 magnification) of formulation F32 (left) and formulation F35 (right).
  • Figure 22 Images obtained by SEM (300 magnifications) of formulation F32 (top left), formulation F35 (top right) and formulation F40 (bottom center).
  • Figure 24 A) Oscillation curve of the F32 formulation containing two different amounts of precursor of the octocalcium hydroxyapatite phosphate (5 and 20 mg). B) Image of hydrogel F32 incorporating in its structure 20 mg of precursor of hydroxyapatite phosphate octocalcium.
  • FIG. 27 Flow curves of hydrogel formulations that include different proteins in their composition: F16 with albumin (G1), F17 with gelatin (G2) and F17 ' with succinylated gelatin (G3).
  • FIG. 28 Oscillation curves of hydrogel formulations that include different proteins in their composition: F16 with albumin (G1), F17 with gelatin (G2) and F17 ' with succinylated gelatin (G3).
  • Figure 29 Photographic images of a hydrogel that includes colominic acid after preparation (A) and cut with a spatula (B).
  • Figure 31 Biodistribution of the Gadolinium contrast agent included in the hydrogel in mouse cervical sections, using the fSEMS-MRI (Fast Spin-Echo Multi-Slice) technique. Images taken of two sections or slices of different depths (12 and 8) after 40, 50 and 70 minutes of application of the Gadolinium associated to the hydrogel.
  • fSEMS-MRI Fest Spin-Echo Multi-Slice
  • Figure 32 Photographic images showing the appearance of the skin of the shaved cervical area of a mouse (above) and image of the same shaved area over which the hydrogel formulation loaded with the gadolinium paramagnetic contrast agent has been administered (down).
  • Figure 33 Swing curve of the F32 formulation as the temperature increases.
  • Figure 34 Image obtained by fluorescence microscopy (16 magnifications) of the F32 formulation without cell colonization (upper image) or colonized with fibroblasts (lower image). The fluorescent dots are due to the product derived from the metabolization of calcein by the viable cells included in the gel.
  • Figure 35 Vitamin B12 release profile from formulation F32 (crosslinked with spermidine) and from a formulation F42, of a composition similar to F32 but crosslinked with spermine (phosphate buffer release pH 7.4)
  • hydrogels have been characterized according to their viscoelastic properties, using a Haake RheoStress 300 Rotational rheometer (Germany) equipped with a Haake DC10 thermostat at a temperature of 37.0 ⁇ 0.1 ° C.
  • the different polymers were purchased from different commercial houses: carrageenan (Gelymar, Providencia, Santiago, Chile), chondroitin sulfate (Sigma Aldrich, Madrid Spain), dermatan sulfate (Calbiochem, Merck , CA, USA), glucomannan (Shimizu Chemical, Japan), gellan gum (Sigma Aldrich, Madrid Spain), bovine albumin (Sigma Aldrich, Madrid Spain), gelatin (Sigma Aldrich, Madrid Spain), polyglycerol (Hyperpolymers GmbH, sod ( Sigma Aldrich, Madrid, Spain), catalase (Sigma Aldrich, Madrid, Spain), spermidine (Sigma Aldrich, Madrid, Spain), spermine (Sigma Aldrich, Madrid, Spain).
  • Prednisolone was acquired in Sigma Aldrich (Italy) and the siRNA at MWG Biotech AG (Ebersbeg, Germany).
  • Example 1 Use of spermidine to prepare hydrogels based on naturally occurring anionic polymers, a preparation that is not possible using inorganic ions such as calcium. Hydrogels were prepared using gellan gum, chondroitin sulfate and albumin as ingredients, according to the procedure previously described. The cationic molecule spermidine or calcium chloride were used as crosslinking agents. For this, solutions of gellan gum (5 mg / mL), chondroitin sulfate (6 mg / mL), spermidine (0.67 mg / mL) and albumin (5 mg / mL) in HEPES 20 buffer were prepared mM pH 7.4.
  • Example 2 Preparation of hydroqeles based on different anionic polymers of natural origin by cross-linking with spermidine.
  • hydrogels were prepared using different anionic polymers of natural origin by cross-linking with spermidine.
  • one or more proteins, specifically albumin or gelatin, were incorporated into the composition.
  • Tables 1-5 collect the components of the gels formed.
  • Dermatan sulfate 0.4 0.1 0.06 0.036 0.072 Albumin 0 0.2 0.2 0.1 0.1
  • Example 3 Modulation of the viscoelastic properties of hydroqeles through an adequate selection of its components.
  • hydrogels made from chondroitin sulfate and gellan gum described in the previous example as formulations F14, F15 and F16 were subjected to evaluation of their viscoelastic properties.
  • Figure 2 shows, regardless of the composition all formulations have a similar viscosity, which is suitable for a topical application of said hydrogels.
  • the viscoelastic properties of said hydrogels can be modulated by proper selection of their composition.
  • Example 4 Hydroqeles capable of associating an active ingredient, even when it has lipophilic character v, likewise, are capable of giving rise to the subsequent release of the associated active ingredient.
  • Gellan gels and chondroitin sulfate were prepared by associating an active ingredient, selecting prednisolone for this purpose. Taking into account that it is a lipophilic molecule, it was previously associated with albumin. For this, 20 mg of prednisolone was dissolved in a solution of albumin in methanol (10 mg / ml).
  • the albumine-prednisolone system was resuspended in 20 mM HEPES buffer pH 7.4 (5 mg / ml) and the colloidal dispersion obtained was mixed with a solution in 20 mM HEPES buffer pH 7.4 of gellane ( 5 mg / ml) and chondroitin sulfate (6 mg / ml). 1.2 mL was added to the resulting mixture of a solution of spermidine in 20 mM HEPES buffer pH 7.4 (2 mg / ml), under magnetic stirring, giving rise to the spontaneous formation of hydrogels associating the active ingredient prednisolone (proportion of 7% by weight with respect to the components ).
  • the gels obtained were subjected to an in vitro release study in phosphate buffer pH 7.4. For this, 3.2 g of said gels were taken and incubated under sink conditions at 37.0 ⁇ 0.1 ° C in 500 ml of said release medium in a dissolution apparatus (Sotax AT7 Smart, Switzerland) under stirring at 100 rpm .
  • Example 5 Incorporation into the composition of the hydrogels of enzymes of interest in cosmetics, reqenerative medicine and tissue engineering.
  • Hydrogels were prepared in whose composition the antioxidant enzymes catalase and superoxide dismutase were included. For this, it was dissolved in 20 mM HEPES buffer (pH 7.4) and 1 ml of this 5 mg / ml concentration solution was mixed with 1 ml of carrageenan solution in 20 mM HEPES buffer pH 7.4 (5 mg / ml) . On the resulting mixture, 0.3 ml of a spermidine solution in 20 mM HEPES buffer (2 mg / ml) was added, under magnetic stirring, resulting in spontaneous hydrogel formation. The components of said hydrogels are collected in Tables 6-7.
  • Example 6 Preparation with spermidine of hydrogels capable of associating genetic material.
  • Hydrogels were prepared in whose composition interference RNA was included, labeled with the fluorescence marker cy3 (excitation wavelength: 550 nm and emission wavelength: 570 nm).
  • the gel of example F16 (Table 4) was prepared and an amount of siRNA corresponding to 2.5% of the total mass thereof was incorporated therein. The siRNA was added to the solution of negative components, prior to gel formation.
  • Hydrogels were prepared using atelocollagen (Koken, Japan) and albumin ingredients, according to the procedure previously described.
  • the cationic spermidine molecule was used as the crosslinking agent.
  • hydrogels In the preparation of the hydrogels, 1 mL of the spermidine solution over 2 mL of the atelocollagen solution was added under magnetic stirring, and then 1.2 mL of the albumin solution was added, resulting in the ratio of components indicated in the Table 9 and a final pH of 7.4. Said hydrogels have rheological appearance and characteristics similar to those already described in the previous examples.
  • Example 8 Modulation of the viscoelastic and mechanical properties of hydroqeles by modifying formulation parameters (temperature, agitation, contact surface and concentration of components).
  • the temperature, agitation, contact surface and component concentration parameters were modified with respect to those collected in the previous examples.
  • the F32 formulation was developed.
  • For its preparation solutions were prepared in 20 mM HEPES pH 7.4 of the different components.
  • 1 ml of gellan solution (5 mg / ml) and 0.6 ml of chondroitin sulfate solution (6 mg / ml) previously heated to 60 ° C were mixed in a beaker, keeping the mixture at 60 ° C under constant magnetic stirring in thermostated water bath.
  • hydrogels M13 to M24 were selected from the mixture design to carry out a load study of the active ingredient norfloxacin, an antimicrobial agent with high albumin affinity.
  • hydrogel fragments of 1 1 .6 mm were cut and a fixed concentration solution of norfloxacin (0.01 mg / mL) was immersed for 3 hours, recording the absorbance (273 nm) of the solution loading after this time and correlating it with the amount of drug incorporated by the formulation (Table 12).
  • Example 11 Incorporation and release of water-soluble drugs.
  • the incorporation of theophylline, vitamin B12 and myoglobin hydrogels has been considered Model assets and the study of their release profiles.
  • the model active ingredients were incorporated into the hydrogel in an amount corresponding to 20% of the total mass of the system, after dissolving them in the chondroitin sulfate solution, prior to the formation of the hydrogel.
  • Figures 13, 14 and 15 show the comparisons of the release profiles of the three active ingredients indicated above, at the different pHs and temperatures studied.
  • Figure 16 we can see an image of the F32 formulation loaded with vitamin B12 after having been analyzed in the rheometer, in which the homogeneous distribution of the drug, reddish in color, in the hydrogel is clearly seen and how it maintains its consistency after the incorporation of said drug. This demonstrates the ability of hydrogels to incorporate and release active ingredients of low stability.
  • Figures 18 and 19 indicate the peaks that do not appear when the STD spectrum of the albumin solution is analyzed, but which do when the STD spectrum corresponding to the liposoluble drug-albumin complex is analyzed, and which are also presented at level of chemical shifts coinciding with those of the 1 H-NMR spectrum of the drug suspension, thus demonstrating the formation of a liposoluble albumin-drug complex through the interaction of both components.
  • Example 14 Cell colonization tests of the hydroqel.
  • cornea cells were plated (DMEM / F-12 culture medium with GlutaMAX, incubation at 37 ° C under 5% C0 2 atmosphere and 95% air). After 48 hours of incubation the culture medium was removed, subsequently performing a fluorescent staining of the hydrogel and the possible cells associated or included therein, with the DAPI fluorochrome (358/461 nm), which has a high affinity for the genetic material (material included inside all cells).
  • the fluorescence emitted by this hydrogel and the possible associated or included cells was analyzed under a confocal microscope (Leica SCS Confocal Microscope TCS-SP2, LEICA Microsystems Heidelberg GmbH, Mannheim, Germany), using the hydrogel without associated cells as a negative control.
  • Figure 20 which compares the fluorescence emitted by the hydrogel that includes cells with which the hydrogel emits without them, demonstrates that colonization of the hydrogel has been produced by the cornea cells studied.
  • Example 15 Development of hydrogels using spermine as a crosslinker.
  • Formulation F32 has been prepared using spermine as a crosslinker, instead of spermidine, which resulted in a new hydrogel formulation that we will call F42.
  • the new formulation F42 has a lower G 'value, with respect to the crosslinking with spermidine (around 400 Pa in the case of F42, compared to 1200 Pa in the case of formulation F32) (Graphs no shown) but, as in the case of the latter, decreasing the concentration of crosslinker decreased the G 'of the system, although to a lesser extent (data not shown).
  • Example 16 Analysis of the microstructure of the hydrogels by scanning electron microscopy.
  • Example 17 Dehydration and subsequent swelling of dried hydrogels.
  • hydrogel formulations indicated in Table 13 were dried in an oven, at 37 ° C for 3 hours. Subsequently, they were weighed and placed in 75 ml of aqueous solution, keeping the system in incubation at 37 ° C for 24 hours. After this time the different formulations were reweighed.
  • the degree of swelling of the hydrogels was calculated as the difference between the weight after swelling (W) and the initial weight of the dried hydrogel (W 0 ):
  • Freshly prepared gels were frozen under different conditions and subjected to a 48-hour long lyophilization cycle. They were subsequently weighed and placed in 75 ml of aqueous fluid. The whole was kept in incubation at 37 ° C for 24 hours. After this time the different formulations were reweighed. The swelling index was calculated using the equation described in the previous section.
  • Example 18 Release of active ingredients by hydroqols previously dehydrated in whole or in part by freeze drying or drying in an oven, respectively.
  • Figure 23 shows a comparison of vitamin B12 release profiles from fresh gels (immediately after processing) and the gels after being subjected to total or partial dehydration, by freeze drying or drying in an oven, respectively. The results presented in this figure show the ability of the dehydrated gels totally or partially by any of the techniques used (freeze drying or drying in the oven) to release the active ingredients associated with them.
  • Example 19 Modification of the organoleptic properties of the hydroqeles.
  • the hydrogels described in the present invention are capable of incorporating ingredients that modify the organoleptic properties in their structure, being susceptible to the changes they cause in said properties.
  • various trials of inclusion of the vanillin flavoring ingredient in the formulations have been made, verifying that they acquire vanilla aroma after such inclusion, without their structure or consistency showing apparent signs of modification.
  • vanilla powder (Sigma, Spain) was incorporated into the solution of negative polymers of the F32 formulation in an amount equivalent to 10% of the total polymeric mass of the system.
  • Example 20 Preparation of hydroqeles from polymers modified with phosphate groups.
  • Example 21 Incorporation of hydroxyapatite precursors to hydrogels.
  • Octacalcium phosphate (Ca 8 H2 (P0 4 ) 6.5H 2 0), (OCP)
  • OCP has been proposed as a precursor in the formation of hydroxyapatitic minerals in bone and tooth. Therefore, in a particular embodiment, we have included this compound in the hydrogels.
  • OCP has been synthesized first, following the procedure described below: 50 ml of a 0.04M solution of NaH 2 P0 4 in distilled water previously heated to 70 ° C were prepared, then added to this solution, slowly and under constant magnetic stirring, 50 ml of a 0.04M solution of Ca (CH 3 COO) 2 .
  • the solid compound obtained is the OCP which, once lyophilized, has been incorporated into the F32 hydrogel formulation.
  • Example 22 Release of growth factors from hydrogels.
  • vascular endothelial growth factor specifically VEGF 12 6 (Merck, USA)
  • VEGF vascular endothelial growth factor
  • 1 ml of hydrogel was prepared in accordance with that described in Example 8, with 25 ⁇ of solution in distilled water of the VEGF-I26 factor (concentration 20 ng / ml) being added to the solution of negative polymers.
  • 3 ml of distilled water was incorporated as a release medium and the medium was kept at room temperature (25 ° C) under static conditions. After 2 and 4 hours of incubation, 300 ⁇ of the release medium was removed and 300 ⁇ of distilled water was restored to the system.
  • the VEGF 12 6 released in both samples was quantified with the help of an enzyme-linked immunosorbent assay (ELISA) specific to this factor (Calbiochem, Canada), thus determining the percentage of factor released from the formulation F32 at both times studied.
  • ELISA enzyme-linked immunosorbent assay
  • the absorbance of the samples and of the calibration standards was determined by means of a plate reader (Biorad 680 Microplate Reader, Japan), following the instructions of the ELISA Kit.
  • the absorbance values obtained by the corresponding targets were subtracted from the absorbance values obtained and the definitive values were entered in the curve of calibration (obtained following the protocol described by the kit), with which the concentration values were determined.
  • the results show (Figure 25), as in previous examples, a gradual release of the active ingredient incorporated into the formulation.
  • Example 23 Incorporation of nanoparticles into the hydroqeles and release of growth factors therefrom.
  • a nanoparticle formulation was prepared associating the growth factor VEGF-126.
  • the components of said nanoparticles were the natural anionic polymer dextran and the endogenous cationic polyamine spermine and the manufacturing technique employed was ionic gelation, following the procedure described in patent application WO2010049562 A1.
  • 300 ⁇ of a solution of spermine in water (concentration 0.5 mg / ml) was added to 600 ⁇ of a solution of dextran in water (concentration 1 mg / ml) on which 25 ⁇ of solution had previously been incorporated into water of growth factor VEGF 12 6 (20 ng / ml).
  • the whole was kept under constant magnetic stirring, at room temperature, for 30 minutes.
  • the resulting colloidal suspension (average size of 100 nm, Zetasizer® 3000HS, Malvern Instruments, UK) was centrifuged for one hour, at 4 ° C and 14000 rpm, after which time the supernatant was removed.
  • the supernatants resulting from the centrifugation of the nanoparticle suspensions were analyzed with the help of a specific ELISA kit for this factor (Calbiochem, Canada), subtracting the value of the corresponding targets (the absorbance of white nanoparticle suspension supernatants).
  • a specific ELISA kit for this factor Calbiochem, Canada
  • zeta potential determined using a negative Zetasizer® 3000HS, Malvern Instruments, UK
  • Example 24 Incorporation of natural glycosylated proteins to hydrogels.
  • a hydrogel formulation similar to F32 was prepared but using the glycinated mucin protein (porcine stomach mucin type III Sigma, Italy) instead of the globular albumin protein, in equal concentration.
  • glycinated mucin protein pH 8.
  • globular albumin protein pH 8.
  • Example 25 Incorporation of modified proteins into hydrogels.
  • Succinylated gelatin was synthesized. To do this, 2 g of gelatin was solubilized in 16 ml of anhydrous DMSO at a temperature of 37 ° C. After the dissolution process was finished, 9 ml of a solution of succinic anhydride (6 mg / ml) in anhydrous DMSO was added. The whole was kept at 37 ° C for one hour, under constant magnetic stirring. After this time, the polymer was subjected to thorough dialysis in distilled water, and then lyophilized. The incorporation of succinyl groups to the gelatin was checked by different methods (isoelectric point, TBNS, magnetic resonance).
  • Example 26 Incorporation of photopolymerization sensitive compounds in hydrogels.
  • Hydrogels containing the dextran-methacrylate polymer (DS-MET) (donated by researchers from the Sapienza Universitá di Roma), sensitive to photopolymerization in the presence of UV light, have been prepared.
  • DS-MET dextran-methacrylate polymer
  • Example 27 Hydroqeles that include colominic acid.
  • hydrogels were developed using gelane and colominic acid as negative components of the system, spermidine being the crosslinker thereof.
  • 0.71 ml of gellan gum solution in HEPES pH 7.4 20 mM (5 mg / ml) and 0.71 ml of colominic acid solution in HEPES pH 7.4 20 mM (6 mg / ml) were mixed, keeping the whole in a 60 ° C water bath under constant magnetic stirring for a few seconds, after which 0.43 ml of spermidine solution in HEPES pH 7.4 20 mM (2.62 mg / ml) was added.
  • the system was left 5 minutes at room temperature and subsequently kept 20 minutes at 4 ° C, after which time the gelation was completed. A totally transparent and good consistency hydrogel was thus obtained, which allowed it, for example, to be suspended in a spatula without breaking.
  • compositions to F32 could also be prepared, substituting chondroitin sulfate for colominic acid, in equal concentration and volume. This formulation was very similar in appearance to the F32.
  • Figure 29 shows a photographic image of said gel after its preparation and cut with a spatula.
  • Example 29 Biodistribution of a paramagnetic contrast agent for Magnetic Resonance Imaging (MRI) associated with hydroqeles after topical administration and safety of said hydroqel formulation.
  • MRI Magnetic Resonance Imaging
  • the present example refers to the application of hydrogels in diagnosis.
  • a paramagnetic contrast agent the trisodium pentahydrate salt of Gadolinium triethylenetetraminohexaacetate (Sigma, Spain) was incorporated into the F32 formulation as described in Example 11, in the amount of 5 mg.
  • the hydrogel was taken a quarter of it and placed in the shaved cervical region of an anesthetized mouse (anesthesia with isofluoran gas) and monitored by a vital signs control system.
  • the contrast agent (gadolinium), which is seen without difficulty because it generates a clearer area in the MRI image, penetrates to the inner layers of the animal's skin, confirming the potential of hydrogels for the administration of ingredients topically in general, and contrast agents in particular. Thanks to the performance of this experiment, it has also been possible to verify the safety of the hydrogel formulation studied, when it was verified that it did not cause any type of alteration in the mouse skin during the experiment, as shown in Figure 32.
  • Example 30 Effect of temperature variation on the structure of hydroqeles.
  • the mechanical behavior, in oscillatory regime, of the F32 hydrogel was varied by varying the temperature of the rheometer.
  • the temperature of the rheometer has been increased from 10 to 60 ° C in 30 steps of 1 minute, keeping the oscillation frequency constant (1 Hz).
  • the modules G 'and G "of the hydrogel do not vary, as can be seen in Figure 33. Therefore, it is possible from these results deduce the interest of the hydrogels of the present invention in applications in which a variation in temperature can modify the characteristics of conventional hydrogels making them inadequate or not useful.
  • Example 31 Cell viability tests after colonization of the hydrogel with fibroblasts.
  • W3T3 fibroblast plates DMEM culture medium enriched with fetal bovine serum, incubation at 37 ° C under 5% C0 2 atmosphere and 95% air
  • the culture medium was removed, determining the viability of the cells included in said hydrogels.
  • 3 ml of fibroblasts dissolved in culture medium 100 mM calcein concentration was added to the hydrogel. After 20 minutes of incubation the hydrogel including fibroblasts was observed under fluorescence microscopy.
  • Figure 34 shows the fluorescence microscope image of the F32 gel without cells included and the gel colonized with fibroblasts, observing in this last image the fluorescence points that demonstrate cell viability. Similar results were obtained in the case of the F39 gel.

Abstract

La presente invención se refiere a hidrogeles que comprenden: (a) al menos un polímero de origen natural dotado de carga eléctrica negativa; (b) al menos una molécula constituyente natural del organismo humano capaz de actuar como reticulante catiónico del polímero o los polímeros anteriores. Al uso de los mismos como medicamentos, productos sanitarios o en ingeniería de tejidos o medicina regenerativa, o con aplicaciones cosméticas, de higiene, nutricionales y de recubrimiento de superficies así como a procedimientos para su preparación.

Description

HIDROGELES ELABORADOS A BASE DE POLÍMEROS AMONICOS DE ORIGEN
NATURAL
CAMPO DE LA INVENCIÓN
La presente invención se refiere al desarrollo de hidrogeles que comprenden al menos un polímero de origen natural dotado de carga eléctrica negativa y al menos una molécula constituyente natural del organismo humano capaz de actuar como reticulante catiónico del polímero anterior sin establecer enlaces químicos con el mismo.
El carácter natural y las especiales propiedades de los componentes habilita nuevos usos a los geles constituidos de los mismos, bien sea por sí mismos o bien asociando ingredientes activos.
Además la presente invención se refiere al desarrollo de un procedimiento para la preparación de este tipo de hidrogeles y a los usos de los mismos.
ANTECEDENTES DE LA INVENCIÓN Los sistemas poliméricos de tipo hidrogel presentan un enorme potencial claramente reconocido en numerosos campos habiendo despertado un gran interés sobre todo en el ámbito biomédico y cosmético. Sin embargo, pese a los grandes avances experimentados en el diseño de hidrogeles y la enorme versatilidad de algunos de ellos, en la actualidad el potencial de los hidrogeles disponibles se encuentra limitado en algunos campos. Entre estos campos hay que señalar por su enorme interés y repercusiones tan importantes en la salud y economía, el de la ingeniería de tejidos. Concretamente, y a pesar de los significativos avances que ha experimentado este campo, existen desafíos que deben de resolverse si se pretende conseguir una aplicación clínica amplia. Dichos desafíos incluyen la necesidad de disponer de hidrogeles con propiedades mecánicas, químicas y biológicas adecuadas (Khademhosseini et al., PNAS 103, 2006, 2480-2487). Dos son las estrategias a seguir para abordar este desafío, que pueden ser desarrolladas por separado o de modo combinado. Por un lado, la síntesis de nuevos materiales que permitan el desarrollo de geles con características más ventajosas (Langer, Molecular Therapy, 1 , 2000, 12-15). En este sentido, en los últimos años se ha llevado a cabo el desarrollo de numerosos polímeros con tal finalidad. Por otro lado, el desarrollo de estrategias de elaboración de hidrogeles que permitan aprovechar el potencial de biomateriales de reconocido interés, pero que con las técnicas actuales de elaboración de hidrogeles no pueden ser incorporados en un hidrogel de modo eficaz. Esta segunda estrategia se caracteriza por haber sido escasamente explorada.
Un ejemplo ilustrativo de la situación y limitaciones anteriormente descritas es el correspondiente a los hidrogeles basados en ácido hialurónico. Éste es un biomaterial constituyente natural de nuestro propio organismo, conocido por su biodegradabilidad y bioresistencia y su papel en funciones celulares como la adhesión, proliferación y migración, con el consiguiente potencial en ingeniería de tejidos. No obstante, las técnicas de elaboración de hidrogeles actualmente disponibles hacen necesaria su modificación química para poder ser integrado eficazmente en un hidrogel. Es evidente que esta necesidad hace que el producto finalmente empleado no sea ya el constituyente de nuestro propio organismo, sino un producto semisintético sobre el cual habrá que aplicar los criterios de las correspondientes agencias regulatorias antes de pensar en su utilización. Esto ocurre por ejemplo con el hialurónico-metacrilato propuesto recientemente por Gerecht et al. (Gerecht et al., PNAS 104, 2007, 1 1298- 1 1303), quienes también han desarrollado dextrano-metacrilato y polietilenglicol- diacrilato con similar objetivo (Yeh et al., Biomaterials 27, 2006, 5391 -5398).
Tal y como señalan los autores citados anteriormente, una de las técnicas de elaboración de hidrogeles consiste en la reticulación iónica. Esta técnica posee interesantes ventajas, destacando por su suavidad y por ser una técnica rápida, económica, fácilmente reproducible y escalable y que requiere de una tecnología muy simple, aspectos todos ellos de indudable interés para la industria. Con dicha técnica es posible elaborar hidrogeles a base de alginato, material que se retícula iónicamente con iones calcio dando lugar a estructuras insolubles en medio acuoso. No obstante, no ha sido desarrollada para la elaboración de hidrogeles basados en otros materiales de origen natural, con los que únicamente es posible obtener complejos con calcio suspendidos en medios acuosos, pero no sistemas hidrogel, De este modo, para la obtención de auténticos hidrogeles es necesario recurrir a reticulación covalente mediada por agentes químicos como glutaraldehído o carbodiimida cuando lo que se pretende es obtener hidrogeles constituidos por otros biopolímeros hidrosolubles (Ikada, J.R. Soc. Interface 3, 2006, 589-601 ) (Tabata, J.R. Soc. Interface 6, 2009, S31 1 -S324). Esta característica ha conducido a una situación de cierto olvido de la reticulación iónica incluso en revisiones que describen las técnicas de elaboración de hidrogeles para ingeniería de tejidos (Khademhosseini and Langer, Biomaterials 28, 2007, 5087-5092) (Tabata, J.R. Soc. Interface 6, 2009, S31 1-S324). No obstante, es necesario recordar que la reticulación química covalente presenta serios inconvenientes. Concretamente, es una técnica que se basa en la formación de enlaces covalentes estabilizantes debido al empleo de agentes del grupo de los aldehidos, que se caracterizan por su toxicidad y por no ser aceptados para su empleo en humanos. Además, este tipo de agentes pueden dar lugar también a la reticulación e inactivación del propio ingrediente activo que se pretende asociar al sistema, sobre todo si se trata de moléculas con grupos amino, como en el caso de péptidos y proteínas, tales como factores de crecimiento celular. Todos estos problemas de los aldehidos y agentes reticulantes químicos se encuentran descritos en la literatura. En base a lo anteriormente expuesto, los inventores han desarrollado un nuevo tipo de geles que únicamente pueden ser desarrollados utilizando constituyentes de nuestro propio organismo a modo de reticulantes catiónicos. A diferencia de geles como los de alginato, que sí pueden ser reticulados empleando iones inorgánicos, la utilización de tales compuestos permite desarrollar hidrogeles con una gran variedad de componentes que presentan las siguientes características y aportan a los geles formados las ventajas que se mencionan a continuación:
- El hialurónico o condroitina no sólo son altamente biocompatibles, sino que también presentan actividad por sí mismos sin necesidad de asociar ningún ingrediente activo. De hecho, además de su reconocido potencial en cosmética y estética, se ha descrito la utilización de hialurónico para el tratamiento de osteoartritis y en la preparación de lágrimas artificiales, encontrándose comercializadas varias de estas formulaciones. Por otro lado, el acido hialurónico y la condroitina presentan la capacidad de estimular la proliferación celular a través de interacciones con receptores celulares como el CD44 y de proteger al ADN frente a reacciones de oxidación (Zhao et al., International Journal of Oncology, 32, 2008, 1 159-1 167), interacción que puede ser utilizada para dirigir sistemas elaborados a base de dichos componentes hacia células que sobre- expresan dicho receptor, como es el caso de muchas células tumorales (Tool, Nature reviews, 4, 2004, 528-539).
- Además de actuar como potenciales reticulantes catiónicos, Las aminas de origen natural empleadas como reticulantes son componentes naturales de las células y fluidos corporales y desempeñan un papel fundamental en los procesos de proliferación y diferenciación celular y de síntesis de macromoléculas biológicas. Además, recientemente ha sido descrito su capacidad de inhibir el stress oxidativo en seres vivos y promover su longevidad (Eisenberg et al., Nature Cell Biology, 1 1 (1 1 ), 2009, 1305-1314). Aunque las células son capaces de sintetizar las aminas que necesitan para los procesos de crecimiento celular, han sido descritos mecanismos de internalización celular que les permiten obtener estas aminas del torrente sanguíneo. Estos mecanismos están influenciados por proteoglucanos como el sulfato de condroitina y el ácido hialurónico (Belting M. Et al. Biochem J 1999, 338, 317-323). Por lo tanto, parece lógico suponer un efecto biológico sinérgico entre los propios constituyentes de los geles objeto de la presente invención y los agentes reticulantes empleados en su elaboración, sin necesidad de que se encuentre presente otro tipo de ingrediente activo.
Lo anteriormente expuesto supone una clara ventaja en ingeniería de tejidos, medicina regenerativa e incluso cosmética. Por otro lado, la presencia de espermina o espermidina permite la incorporación en la composición de los geles de material genético, debido a la conocida capacidad que presentan de interacción con dicho material (Rider et al., Amino Acids, 33, 2007, 231-240). La posibilidad de incorporación de material genético resulta especialmente atractiva, teniendo en cuenta que se trata de ingredientes activos de enorme versatilidad. Ello ha conducido a que, en los últimos años se haya sugerido el interés de desarrollar plataformas capaces de liberar plásmidos ADN conteniendo genes que codifican factores de crecimiento (Griffith and Naughton, Science 295, 2002, 1009-1014), habida cuenta de la frágil naturaleza de las proteínas en general y de dichos factores en particular. - Los hidrogeles de la presente invención permiten incorporar entre los componentes de los hidrogeles, moléculas proteicas. Este hecho resulta de particular interés. Por un lado, la incorporación de proteínas como la albúmina facilita la asociación de ingredientes activos, especialmente las ingredientes lipofílicas, debido a la conocida capacidad de unión de muchos fármacos a esta proteína plasmática (Goodman & Gilman's The Pharmacological Basis of Therapeutics, McGraw Hill; Maham A et al. Protein-based nanomedicine platforms for drug delivery. Small. 5, 2009, 1706-21 ) Esto representa una clara ventaja a las ya aportadas por hidrogeles convencionales, habida cuenta que éstos se caracterizan por el elevado contenido en agua y por la consiguiente dificultad de asociar a los mismos ingredientes lipofílicos (Peppas et al., Eur J Pharm Biopharm. 50, 2000, 27-46). Por otro lado, las proteínas incorporadas pueden tener especial interés en medicina regenerativa o ingeniería de tejidos. Así, por ejemplo, existen proteínas con actividad enzimática, como la catalasa y la superóxido dismutasa, que son las encargadas de eliminar de las células las denominadas "especies de oxígeno reactivas" o "ROS", generadas en las células como resultado de la utilización del oxígeno con fines metabólicos, y que pueden causar daños a proteínas y a lípidos intracelulares, los cuales pueden conducir incluso a la muerte celular. Estas enzimas son muy eficientes eliminando de las células elevadas cantidades de las mencionadas ROS, lo cual es especialmente importante en situaciones en las que los niveles de producción de estas sustancias se ven aumentados, como ocurre cuando las células de un tejido se ven sometidas a algún tipo de estrés o contaminación por microorganismos (Li, Z et al. Published-Ahead-of- Print on October 15, 2009 by Journal of Andrology; Shukla MR. Journal of Basic Microbiology 2009, 49, 1-5; Siwale, RC et al. Journal of Drug Targeting, 2009; 17(9): 710-718).
DESCRIPCIÓN DE LA INVENCIÓN La presente invención se refiere a nuevos hidrogeles caracterizados por su simplicidad, versatilidad y por la posibilidad que presentan de incorporar en exclusiva biomateriales que son constituyentes naturales del propio organismo humano. De este modo, la presente invención se dirige a la elaboración de sistemas de tipo hidrogel con aplicaciones tanto biomédicas como cosméticas, de higiene, nutricionales y de recubrimiento de superficies.
El término hidrogel hace referencia a una estructura macromolecular tridimensional hinchada con un medio acuoso que resulta insoluble en dicho medio, debido a su disposición como entramado reticulado Encyclopedia of Controlled Drug Delivery (Edith Mathiowitz, Ed., John Wiley & Sons, Inc., New York, 1999). Esta definición engloba a estructuras que presentan numerosas aplicaciones biomédicas y farmacéuticas, entre otras. No obstante, es necesario precisar que esta definición no incluye a nanoagregados o microagregados poliméricos que podrían ser encuadrados dentro de conceptos más recientes como los de micro o nanohidrogeles.
A diferencia de lo que ocurre con polímeros como el alginato, que es posible gelificar recurriendo a iones inorgánicos, con los polímeros naturales empleados en la presente invención únicamente es posible llevar a cabo su reticulación bajo la forma de un hidrogel y no un simple complejo en suspensión en un medio líquido, mediante la utilización de compuestos aminados, como la espermina y espermidina. La utilización de tales compuestos, además de resultar indispensable para la formación de los mencionados hidrogeles, aporta a los mismos las ventajas que se mencionan a continuación:
- Permiten la obtención de geles constituidos por biomateriales constitutivos de nuestro propio organismo, como el hialurónico o condroitina, que hasta la fecha sólo podían incorporarse en geles previa modificación de los mismos para dar lugar a productos semisintéticos o mediante el empleo de ingredientes conocidos por su toxicidad. Los inventores han comprobado que los reticulantes iónicos clásicos como el calcio no permiten tal desarrollo, como se recoge en los correspondientes ejemplos. La ventaja del citado desarrollo se encuentra relacionada no sólo con la biocompatibilidad de los materiales mencionados, sino también con las propias características que presentan los mismos de por sí y sin necesidad de asociar ningún ingrediente activo, que los hace útiles en el tratamiento de osteoartritis y en la preparación de lágrimas artificiales, encontrándose comercializadas varias de estas formulaciones.
- Supone la presencia en los hidrogeles de las citadas aminas de origen natural, para las cuales se han descrito la capacidad de inhibir el stress oxidativo en seres vivos y promover su longevidad. Esto supone una clara ventaja en ingeniería de tejidos, medicina regenerativa e incluso cosmética.
- Permite la incorporación en la composición de los geles de proteínas como la albúmina, que a su vez facilita la asociación de ingredientes activos lipofílicos. Esto representa una clara ventaja a las ya aportadas por hidrogeles convencionales, habida cuenta que éstos se caracterizan por la dificultad de asociar a los mismos ingredientes lipofílicos.
- Permite la incorporación en la composición de los geles de proteínas como la catalasa y la superóxido dismutasa, lo cual puede tener especial interés en medicina regenerativa o ingeniería de tejidos, debido a sus especiales propiedades.
- Permite la incorporación en la composición de los geles de material genético, habida cuenta de la conocida capacidad que presentan de interacción con dicho material.
Por lo tanto un primer aspecto esencial de la invención se refiere a hidrogeles que comprenden los siguientes elementos: (a) al menos un polímero aniónico de origen natural; y
(b) al menos un agente reticulante catiónico de origen natural; donde los componentes se encuentran entrecruzados mediante interacciones de tipo electrostático.
Por el término "polímero aniónico" se entiende cualquier polímero con una carga neta negativa, incluyendo en dicha definición aquellos polímeros aniónicos sobre los que se han efectuado modificaciones tales como fragmentación enzimática o química o derivatización. El polímero aniónico se selecciona del grupo formado por ácido hialurónico, ácido colomínico, polisiálico, condroitina, queratano, dextranos, heparina, carragenanos, furceleranos, alginatos, agar agar, glucomanano, goma gelano, goma garrofín, goma guar, goma tragacanto, goma arábiga, goma xantano, goma karaya, pectinas, celulosas, almidones, ésteres de sorbitano, así como sales o fragmentos de los mismos o derivados de los mismos o cualquier combinación de los mismos.
El hialuronano es un polímero lineal que comprende la repetición de una estructura de disacárido formada por la adición alterna de ácido D-glucurónico y D-N- acetilglucosamina, unidos alternando enlaces beta-1 ,4 y beta-1 ,3 glucosídicos tal como se muestra en la siguiente fórmula:
Figure imgf000008_0001
en la que el número entero n representa el grado de polimerización, es decir, el número de unidades de disacárido en la cadena de hialuronano.
En el contexto de la presente invención, se puede emplear ácido hialurónico con un amplio intervalo de pesos moleculares. El ácido hialurónico de elevado peso molecular está comercialmente disponible, mientras que el de peso molecular inferior puede obtenerse mediante la fragmentación del ácido hialurónico de elevado peso molecular, utilizando, por ejemplo, una enzima hialuronidasa.
El término "hialurónico, ácido hialurónico, hialuronano" tal como se utiliza presente descripción incluye o bien el ácido hialurónico o bien una base conjugada del mismo (hialuronato). Esta base conjugada puede ser una sal alcalina del ácido hialurónico que incluyen sales inorgánicas tales como, por ejemplo, sales de sodio, potasio, calcio, amonio, magnesio, aluminio y litio, sales orgánicas tales como sales de aminoácidos básicos a pH neutro, preferiblemente dichas sales son farmacéuticamente aceptables. En una realización preferida de la invención, la sal alcalina es la sal de sodio del ácido hialurónico.
La familia de los ácidos polisiálicos, término que incluye al ácido colomínico, se encuentra integrada por polímeros lineales constituidos por residuos de ácido N- acetilneuraminico (Neu5Ac; también conocido como ácido siálico), un constituyente natural de células y tejidos, unidos por enlaces glicosídicos a-(2→8). Cada residuo de ácido N-acetilneuraminico posee un grupo carboxilo, responsable de la carga negativa del ácido colomínico, tal y como se muestra en la siguiente fórmula:
Figure imgf000009_0001
Se trata de un material de indudable interés en el campo farmacéutico y cosmético, por ser biocompatible y biodegradable, no inmunogénico, cuyos productos de degradación no son tóxicos (Gregoriadis G et al. Cell. Mol. Life Sci. 2000, 57, 1964-1969). Por otro lado, los ácidos polisiálicos están caracterizados por tener, entre otras propiedades, una semivida plasmática muy larga, por lo que han sido propuestos como alternativa a los derivados de polietilenglicol para prolongar el tiempo de permanencia en el plasma de fármacos y sistemas de liberación de ingredientes activos, como los liposomas. De hecho, en la patente "WO/2008/033253 - Liposome complexes containing pharmaceutical agents and methods" se recurre a su empleo para modificar en superficie liposomas preformados. Por último, teniendo en cuenta sus características estructurales, este material ofrece la posibilidad de su modificación, por ejemplo de la introducción de grupos amino y consiguiente cationización.
El sulfato de dextrano es un glucano (polisacárido) complejo constituido por unidades de moléculas de glucosa, cada una de las cuales contiene aproximadament uiente fórmula:
Figure imgf000009_0002
El sulfato de dextrano se prepara mediante sulfatación de dextrano y posterior purificación mediante procedimientos de sobra conocidos por un experto en la materia.
La heparina es una sustancia de origen natural de la familia de los glicosaminoglicanos cuya estructura química comprende la repetición de unidades monoméricas disacáridas de ácido 2-O-sulfo-a-L-idurónico y 2-deoxi-2-sulfamido- a-D-glucopiranosil-6-O-sulfato, representada a continuación:
Figure imgf000010_0001
oscv OH
donde n es un número entero y representa el grado de polimerización, es decir, el número de unidades monoméricas en la cadena de heparina.
En el contexto de la presente invención, es posible emplear tanto la heparina fraccionada como la no fraccionada. La heparina tradicional o no fraccionada se distingue claramente de la heparina fraccionada o de bajo peso molecular. La primera de ellas es una sustancia natural presente en todos los vertebrados. Ambos tipos de heparina se pueden utilizar en forma de base libre o en forma de sal, como por ejemplo su sal sódica o calcica.
La heparina fraccionada o de bajo peso molecular se produce por despolimerización química o enzimática de heparinas convencionales. Ejemplos de este tipo de heparinas son enoxaparina, parnaparina, dalteparina y nadroparina, así como sus sales tales como las sales de sodio y calcio.
Los derivados de heparina también pueden ser empleados en la composición de los hidrogeles de la presente invención. Estos derivados son conocidos en el estado de la técnica y se originan como consecuencia de la reactividad de los diferentes grupos funcionales presentes en la molécula. Así, heparinas N- acetiladas, O-descarboxiladas, oxidadas o reducidas son ampliamente conocidas.
El sulfato de condroitina es un glucosaminoglucano (GAG) sulfatado compuesto por una cadena de azúcares alternados. Se encuentra normalmente unido a proteínas como parte de un proteoglucano. Se representa mediante la siguiente estructura:
Figure imgf000010_0002
en la que n es un número entero y representa el grado de polimerización, es decir, el número de unidades de disacáridos en la cadena de sulfato de condroitina y en la que R-i, R2 y R3 son independientemente hidrógeno o un grupo S03H. Cada monosacárido puede dejarse sin sulfatar, sulfatarse una vez, o sulfatarse dos veces. La sulfatación está mediada por sulfotransferasas específicas.
En el contexto de la presente invención, el término "sulfato de condroitina" incluye todos sus diferentes isómeros y derivados, así como combinaciones de los mismos.
En una realización particular, el sulfato de condroitina se selecciona entre las siguientes sustancias y combinaciones de las mismas:
- sulfato de condroitina A que está sulfatado predominantemente en el carbono 4 del azúcar N-acetilgalactosamina (GalNAc) y que también se conoce como sulfato de 4-condroitina (Ri=H, R2=S03H y R3=H)
- sulfato de condroitina B que se denomina también sulfato de dermatano. Esta sustancia está compuesta por unidades de repetición lineales que contienen N-acetilgalactosamina y o bien ácido L-idurónico o bien ácido glucurónico, y cada disacárido puede estar sulfatado una vez o sulfatado dos veces. Está presente mayoritariamente en la piel, pero también se encuentra en vasos sanguíneos, válvulas cardíacas, tendones y pulmones.
- sulfato de condroitina C que está sulfatado predominantemente en el carbono 6 del azúcar GalNAc y que se conoce también como sulfato de 6- condroitina
Figure imgf000011_0001
R2=H y R3=H);
- sulfato de condroitina D que está sulfatado predominantemente en el carbono 2 del ácido glucurónico y en el carbono 6 del azúcar GalNAc y se conoce también como sulfato de 2,6-condroitina
Figure imgf000011_0002
R2=H y R3= S03H);
- sulfato de condroitina E que está sulfatado predominantemente en los carbonos 4 y 6 del azúcar GalNAc y se conoce también como sulfato de
4,6-condroitina (R1=S03H, R2= S03H y R3=H);
El término "sulfato de condroitina" también incluye sales orgánicas e inorgánicas del mismo. Generalmente, tales sales se preparan, por ejemplo, mediante reacción de la forma básica de este compuesto con una cantidad estequiométrica del ácido apropiado en agua o en un disolvente orgánico o en una mezcla de los dos. Generalmente, se prefieren medios no acuosos tales como éter, acetato de etilo, etanol, isopropanol o acetonitrilo. Ejemplos de sales inorgánicas incluyen, por ejemplo, sales de sodio, potasio, calcio, amonio, magnesio, aluminio y litio, y las sales orgánicas incluyen, por ejemplo, sales de etilendiamina, etanolamina, A/,A/-dialquileno-etanolamina, trietanolamina, glucamina y aminoácidos básicos. Preferiblemente las sales son farmacéuticamente aceptables.
Las funciones de la condroitina dependen en buena parte de las propiedades del proteoglucano global del que es una parte. Estas funciones pueden dividirse de forma amplia en papeles reguladores y estructurales. Sin embargo, esta división no es absoluta y algunos proteoglucanos pueden desempeñar papeles tanto estructurales como reguladores.
Con respecto a su papel estructural, el sulfato de condroitina es un componente principal de la matriz extracelular, y es importante para mantener la integridad estructural del tejido. Como una parte de un agrecano, el sulfato de condroitina es un componente principal del cartílago. Los grupos sulfato sumamente cargados y de empaquetamiento compacto del sulfato de condroitina generan repulsiones electrostáticas que proporcionan mucha de la resistencia del cartílago a la compresión.
El sulfato de queratano es un glucosaminoglicano sulfatado similar al sulfato de condroitina en el que el grupo sulfato se encuentra en el glucurónico. Concretamente, se encuentra constituido por galactosa y GlcNAc-6-sulfato, unidos mediante un enlace β-1 ,4.
Se encuentra principalmente en córnea, cartílago y hueso. A nivel de las articulaciones ayuda a absorber impactos mecánicos, disminuyendo los efectos de éstos sobre estructuras circundantes. Participa en el desarrollo del sistema nervioso central y en los mecanismos de protección que se activan cuando en éste se produce un daño.
Figure imgf000012_0001
La carragenina o carragenano está formada por unidades de galactosa y/o de anhidrogalactosa, sulfatadas o no, unidas por enlaces alternos a-1 ,3 y β-1 ,4. Dependiendo del grado de sulfatación, de las posiciones de los grupos sulfato y de la presencia de grupos de anhidrogalactosa se distinguen varios tipos de carragenano, con propiedades como hidrocoloides claramente distintas. A mayor proporción de grupos sulfato, la solubilidad es mayor, y a mayor proporción de grupos de anhidrogalactosa la solubilidad es menor. En el contexto de la presente invención, están incluidos todos los tipos de carrageno. Algunos de estos incluyen por ejemplo los carragenanos kappa, iota y lambda
(k, i y I).
El glucomanano es un polisacárido soluble en agua de origen natural. La estructura de química de este compuesto consiste en una cadena polimérica lineal con una pequeña proporción de ramificaciones. En concreto, está formado por unidades de D-manosa y D-glucosa unidas por enlaces β-1 ,4 en una proporción de 1 .6:1 , respectivamente.
En una realización particular de la invención, el glucomanano empleado es un derivado de glucomanano con carga negativa seleccionado entre los derivados fosforilados, carboximetil y dicarboxi-glucomananos. La goma gelano es un polisacárido soluble en agua de origen natural. La estructura de química de este compuesto consiste en una cadena polimérica formada por unidades de a-L-ramnosio, β-D-acido glucuronico y dos unidades de β-D-glucosa.
Se representa mediante la siguiente estructura:
Figure imgf000013_0001
donde n es un número entero y representa el grado de polimerización, es decir, el número de unidades monoméricas en la cadena de goma gelano. El polímero puede encontrarse en forma parcialmente acetilada. Dependiendo de su grado de acetilación, la goma gelano proporciona geles con propriedades mecánicas distintas.
En el contexto de la presente invención, el término "goma gelano" incluye todos sus diferentes derivados, así como combinaciones de los mismos.
El agente reticulante catiónico es una amina de fórmula general (I):
H2N-[(CH2)x-NH-(CH2)y]z-NH2, donde x, y y z toman, independientemente, un valor comprendido entre 1 y 66. Preferentemente, x, y y z, independientemente, presentan un valor comprendido entre 1 y 10.
De forma más preferente, la amina se selecciona entre espermina, espermidina, sales de las mismas o cualquier combinación de las mismas. Estas aminas son componentes naturales de las células y fluidos corporales y desempeñan un papel fundamental en los procesos de proliferación y diferenciación celular y de síntesis de macromoléculas biológicas.
Por otro lado, la conocida capacidad de estas poliaminas de interaccionar con el material genético y protegerlo (Rider et al., Amino Acids, 33, 2007, 231-240) permite una fácil incorporación del mismo a formulaciones en cuya composición figuren dichas aminas.
Los hidrogeles de la presente invención se caracterizan por haberse formado a través de un mecanismo de interacción iónica que provoca la reticulación de los componentes de dichos geles como consecuencia de la adición de un agente reticulante de carga positiva. Además de ser un procedimiento sencillo, no se requiere el uso de disolventes orgánicos o de sustancias auxiliares tóxicas. La presencia del agente reticulante catiónico permite el entrecruzamiento del polímero aniónico mediante un proceso de gelificación iónica.
Según una realización preferida, la relación en peso agente reticulante/polímero aniónico está comprendida entre 0.05/1 y 0.5/1 , preferentemente entre 0.2/1 y 0.4/1. Según una realización preferida, el hidrogel comprende adicionalmente al menos una proteína. De manera preferida la proteína se selecciona del grupo formado por albúmina, gelatina, colágeno, atelocolageno, proteínas enzimáticas, proteínas globulares del tipo alfa-globulina, proteínas globulares del tipo beta-globulina, glicoproteínas y protaminas, derivados de las mismas o cualquier combinación de las mismas. De manera preferida, las proteínas enzimáticas se seleccionan del grupo formado por fibrina, fibrinógeno, trombina y protrombina. De manera aún más preferida, la proteína enzimática es la protrombina.
De manera preferida, las proteínas globulares de tipo alfa se seleccionan del grupo formado por orosomucoide o alfa-1-glicoproteína, LDL y haptoglobina. De manera preferida, las proteínas globulares de tipo beta-globulina se seleccionan del grupo formado por angiostatina y plasmina.
De manera preferida las glicoproteínas son mucinas.
El colágeno es una proteína fibrosa con estructura de triple hélice. Está presente en el tejido conectivo, donde sus fibras forman estructuras que resisten las fuerzas de tracción, gracias a su capacidad de compactación y de estiramiento. Juega además un papel fundamental en el mantenimiento de la morfología de tejidos y órganos, ya que las células interactúan con el colágeno de la matriz extracelular tanto mecánica como químicamente, lo que produce notables efectos sobre la arquitectura tisular. El colágeno en lugar de ser una proteína única, se considera una familia de moléculas estrechamente relacionadas pero genéticamente distintas. Se describen así varios tipos de colágeno:
Colágeno tipo I: Se encuentra abundantemente en la dermis, el hueso, el tendón, la dentina y la córnea. Se presenta en fibrillas estriadas de 20 a 100 nm de diámetro, agrupándose para formar fibras colágenas mayores. Sus subunidades mayores están constituidas por cadenas alfa de dos tipos, que difieren ligeramente en su composición de aminoácidos y en su secuencia. A uno de los cuales se designa como cadena alfal y al otro, cadena alfa2. Es sintetizado por fibroblastos, condroblastos y osteoblastos. Su función principal es la de resistencia al estiramiento.
Colágeno tipo II: Se encuentra sobre todo en el cartílago, pero también se presenta en la córnea embrionaria y en la notocorda, en el núcleo pulposo y en el humor vitreo del ojo. En el cartílago forma fibrillas finas de 10 a 20 nanómetros, pero en otros microambientes puede formar fibrillas más grandes, indistinguibles morfológicamente del colágeno tipo I. Están constituidas por tres cadenas alfa2 de un único tipo. Es sintetizado por el condroblasto. Su función principal es la resistencia a la presión intermitente. Colágeno tipo III: Abunda en el tejido conjuntivo laxo, en las paredes de los vasos sanguíneos, la dermis de la piel y el estroma de varias glándulas. Es un constituyente importante de las fibras de 50 nanómetros que se han llamado tradicionalmente fibras reticulares. Está constituido por una clase única de cadena alfa3. Es sintetizado por las células del músculo liso, fibroblastos, glía. Su función es la de sostén de los órganos expandibles.
Colágeno tipo IV: Es el colágeno que forma la lámina basal que subyace a los epitelios. Es un colágeno que no se polimeriza en fibrillas, sino que forma un fieltro de moléculas orientadas al azar, asociadas a proteoglicanos y con las proteínas estructurales laminina y fibronectina. Es sintetizado por las células epiteliales y endoteliales. Su función principal es la de sostén y filtración.
Colágeno tipo V: Presente en la mayoría del tejido intersticial. Se asocia con el tipo I. Colágeno tipo VI: Presente en la mayoría del tejido intersticial. Sirve de anclaje de las células en su entorno. Se asocia con el tipo I.
Colágeno tipo VII: Se encuentra en la lámina basal. Colágeno tipo VIII: Presente en algunas células endoteliales. Colágeno tipo IX: Se encuentra en el cartílago articular maduro. Interactúa con el tipo II. Colágeno tipo X: Presente en cartílago hipertrófico y mineralizado. Colágeno tipo XI: Se encuentra en el cartílago. Interactúa con los tipos II y IX. Colágeno tipo XII: Presente en tejidos sometidos a altas tensiones, como los tendones y ligamentos. Interactúa con los tipos I y III. Colágeno tipo XIII: Se encuentra como una proteína asociada a la membrana celular. Interactúa con los tipos I y III.
El atelocolageno es colágeno de tipo I altamente purificado y tratado con la enzima pepsinasa. La molécula de colágeno posee una secuencia aminoacídica llamada telopéptido, tanto en su extremo N- terminal, como en su extremo C- terminal. Estos telopéptidos son los principales responsables de la antigenicidad del colágeno. El atelocolágeno tratado con pepsinasa tiene por tanto una menor inmunogenicidad, y es usado clínicamente con una gran variedad de aplicaciones, incluyendo curación-regeneración de heridas, prótesis vascular, substitutivo de cartílago óseo y agente hemostático. La gelatina es un polímero de origen natural que se obtiene a partir del colágeno, por hidrólisis parcial irreversible del mismo. Se conocen dos tipos diferentes de gelatina: gelatina tipo A, obtenida por hidrólisis ácida y gelatina tipo B, obtenida por hidrólisis alcalina. En lo que refiere a su estructura molecular, posee algunos grupos funcionales (carboxilo, imidazol, amino, guanidino) que se ionizan en solución acuosa según su valor de pKa y el valor de pH del medio. De esta forma, la gelatina tipo A tiene una mayor cantidad de grupos básicos ionizables que grupos ácidos y su punto isoeléctrico se encuentra entre 9 y 9.4. Durante el proceso de hidrólisis alcalina la mayoría de grupos amida se convierten en grupos carboxilo, presentando puntos isoeléctricos comprendidos entre 4.8 y 5.1 . El punto isoeléctrico es una propiedad importante de las gelatinas ya que da una idea de cuál va a ser su comportamiento en determinadas condiciones de pH. Es un material biocompatible y biodegradable, relativamente barato, que se puede obtener libre de pirógenos y es considerado un excipiente GRAS (Generally Recognized As Safe) por la FDA. Además, se encuentra comercialmente disponible gelatina obtenida mediante tecnología de ADN recombinante, con la cual se evitan eventuales riesgos relacionados con reacciones de tipo alérgico, además de que en esta gelatina el peso molecular es uniforme y no hay variabilidad interlote. Esto es importante, pues normalmente esta variabilidad limita el empleo de biopolímeros naturales para la elaboración de geles, ya que complica mucho la estandarización y escalado de las técnicas de elaboración de los mismos. La gelatina posee, tal como se señaló anteriormente, interesantes propiedades desde el punto de vista físico-químico ya que presenta un amplio rango de puntos isoeléctricos según el proceso por el cual ha sido obtenida, y una gran cantidad de grupos funcionales que permiten su modificación. Por ejemplo, es posible incrementar su carga positiva mediante aminación o disminuirla mediante tiolación, lo que ofrece la posibilidad de mejorar la interacción con las moléculas terapéuticas que serán asociadas en sistemas que contengan este material y, además, permite modular la capacidad de interacción con las superficies biológicas del organismo.
La albúmina es una proteína con un peso molecular de aproximadamente 66.5 kDa y punto isoeléctrico de aproximadamente 4.9. Es la principal proteína presente en el plasma sanguíneo. Al igual que las demás proteínas del plasma, la albúmina es sintetizada en el hígado, siendo la responsable de la presión osmótica de la sangre. Al degradarse, sus aminoácidos proveen nutrientes a los tejidos periféricos. Transporta un gran número de componentes endógenos y exógenos y participa en procesos metabólicos como la solubilización de ácidos grasos, por lo que es esencial en el metabolismo de lípidos. Numerosos ingredientes activos, incluyendo ingredientes lipofílicos se unen a esta proteína plasmática (Goodman & Gilman's The Pharmacological Basis of Therapeutics, McGraw Hill; Maham A et al. Protein-based nanomedicine platforms for drug delivery. Small. 5, 2009, 1706-21 ).
La albúmina es una proteína tipo ácida muy soluble, estable en un amplio rango de pH (4 - 9) y a temperaturas en que otras proteínas sufrirían desnaturalización. Posee grupos amino y carboxilo que ofrecen la posibilidad de ser modificados químicamente o de acoplar ligandos como otras proteínas, anticuerpos, carbohidratos y fármacos. Por ser un material fácilmente disponible, biodegradable, carente de toxicidad y de respuestas de tipo inmune, la hacen un candidato ideal como biomaterial para vehiculizar ingredientes activos.
Con la introducción de la ingeniería genética en la producción de proteínas, se ha desarrollado albúmina sérica recombinante, la cual ha demostrado ser segura y comparable en términos de farmacocinética y farmacodinamia con la proteína nativa.
El Fibrinógeno es una proteína soluble del plasma sanguíneo, su longitud es de 46 nm y su peso molecular de 340 kDa. Es una molécula fibrilar, y en sus extremos tiene cargas fuertemente negativas. Estos extremos repelen a otras moléculas del compuesto, previniendo la agregación. Está compuesta por tres pares de cadenas de polipéptidos, concretamente 2 cadenas Aa, 2 Ββ y 2γ (Αα,Ββ,γ)2 unidas por enlaces disulfuro. Estas cadenas están genéticamente ligadas y reguladas en forma coordinada en el ser humano.
Es responsable de la formación de los coágulos de sangre. Cuando se produce una herida se desencadena la transformación del fibrinógeno en fibrina, gracias a la actividad de plaquetas. Asimismo, da lugar a un matriz provisional de extrema importancia en los lugares donde se han producido heridas, jugando además un papel crucial en los procesos de reparación de éstas.
La Fibrina es una proteína fibrilar. Tiene la capacidad de formar redes tridimensionales y desempeña un importante papel en el proceso de coagulación
(forma agregados con otras moléculas de fibrina, formando un coágulo blando). Normalmente se encuentra en la sangre en una forma inactiva, el fibrinógeno, el cual por la acción de una enzima llamada trombina se transforma en fibrina. La Trombina es una enzima glucoproteínica, del grupo de las peptidasas. Está formada por dos cadenas de polipéptidos de 36 y 259 aminoácidos respectivamente, unidas por un puente disulfuro. Se obtiene a partir de un precursor, la protrombina, en una reacción catalizada por la enzima tromboplastina, en presencia de iones calcio (Ca++). Tiene un peso molecular de
33.70 kDa. Esta enzima no es parte de la sangre, sino que se forma como parte del proceso de coagulación sanguínea, y ayuda a la degradación del fibrinógeno a monómeros de fibrina.
La Protrombina es una proteína del plasma sanguíneo, forma parte del proceso de coagulación mediante la reacción de ésta con la enzima "tromboplastina", una enzima ubicada en el interior de los trombocitos, liberada al romperse la frágil membrana celular de los trombocitos. En esta etapa también participa el catión Ca++ (calcio), actuando como factor coenzimático.
La LDL es una lipoproteína que transporta el colesterol por el cuerpo, para que sea utilizado por distintas células.
La haptoglobina es una proteína de fase aguda y una proteína transportadora. Transporta a la hemoglobina (Hb) libre hasta su sitio de degradación en el sistema reticuloendotelial. Es una proteína con polimorfismo genético: esencialmente hay tres fenotipos Hp 1 -1 , Hp 2-1 y Hp 2-2. Es una glicoproteína compuesta por cuatro cadenas polipeptídicas 2 cadenas α livianas y 2 cadenas β .La haptoglobina puede unir oxihemoglobina, metahemoglobina, cadenas a de hemoglobina, dímeros α/β y hemoglobina H sin hemo. Su función fisiológica es prevenir la pérdida renal de hemoglobina y así, de hierro formando un complejo Hb-Hp de alto peso molecular que no es filtrado a nivel glomerular. La angiostatina es un fragmento de 38 kDa una proteína de mayor tamaño, la plasmina (un fragmento de plasminógeno) conformando tres a cinco módulos con dominios Kringle contiguos. Cada módulo contiene dos pequeñas láminas beta y tres enlaces disulfuro.
La mucina es mucopolisacárido, ingrediente principal del moco. La mucina se encuentra en la mayoría de las glándulas secretoras de moco y es el lubricante que protege las superficies corporales de la fricción o erosión.
Según otra realización preferida, el hidrogel comprende adicionalmente, un sistema para la administración de ingredientes activos, que comprende micropartículas y/o nanopartículas. De manera preferida, las micro partículas tienen un tamaño comprendido entre 1 y 1000 micrómetros. De manera preferida, las nanopartículas tienen un tamaño inferior a 1 micrómetro.
En una realización preferida, las micropartículas y/o nanopartículas comprenden a su vez:
- al menos un polímero iónico, y
- al menos un agente reticulante iónico con la condición de que la carga es opuesta a la del polímero, donde los componentes de las micropartículas y/o nanopartículas se encuentran entrecruzados mediante interacciones de tipo electrostático.
En una realización preferida, el polímero iónico se selecciona del grupo formado por ácido hialurónico, ácido colomínico, polisiálico, condroitina, queratano, dextranos, heparina, carragenanos, furceleranos, alginatos, agar agar, glucomanano, goma gelano, goma garrofín, goma guar, goma tragacanto, goma arábiga, goma xantano, goma karaya, pectinas, celulosas, almidones y ásteres de sorbitano, así como sales, fragmentos de los mismos, derivados de los mismos o cualquier combinación de los mismos.
En otra realización preferida, el agente reticulante se selecciona entre una amina de fórmula general (I) como se describió anteriormente y sales de citrato, tripol ¡fosfato o sulfato.
Adicionalmente las micropartículas y/o nanopartículas pueden comprender otros polímeros aniónicos o catiónicos que permiten modular la carga superficial de las mismas.
Según otra realización preferida, el hidrogel comprende adicionalmente al menos un ingrediente activo.
El término "ingrediente activo" se refiere a cualquier ingrediente o célula que se utiliza en el tratamiento, cura, prevención o diagnóstico de una enfermedad o que se utiliza para mejorar el bienestar físico y mental de seres humanos y animales, así como aquel ingrediente o célula que se destina a destruir, impedir la acción, contrarrestar o neutralizar, cualquier organismo o entidad nocivos, o bien cualquier ingrediente o célula que se utiliza como cosmético o de higiene, así como aquel ingrediente o célula que se destina a regenerar tejidos o en ingeniería de tejidos o en terapia celular. Los hidrogeles objeto de la presente invención son adecuados para asociar ingredientes activos independientemente de las características de solubilidad de los mismos. La capacidad de asociación dependerá del ingrediente activo correspondiente, pero en términos generales será elevada tanto para ingredientes hidrófilos, como para los de marcado carácter hidrófobo.
En una realización particular, el ingrediente activo se selecciona entre hormonas, péptidos, proteínas, proenzimas o zimógenos, enzimas, coenzimas, vitaminas, compuestos lipidíeos o lipofílicos, compuestos hidrofilicos, compuestos sacarídicos, compuestos de ácidos nucleicos o nucleótidos como oligonucleótidos, polinucleótidos y células o bien combinaciones de los mismos.
De forma preferida, el ingrediente activo puede:
- tener actividad antifúngica, antiséptica o antinflamatoria,
- ser de aplicación, en ingeniería de tejidos, medicina regenerativa o en terapia celular, como por ejemplo un factor de crecimiento, - ser de interés en cosmética o higiene, como por ejemplo un péptido o proteína, o bien un derivado de ácido nucleico, tal como un plásmido de ADN, oligonucleótido, ARN de interferencia o un polinucleótido. El plásmido de ADN es aquel que incorpora material genético para ser introducido en células y expresar proteínas o bien que actúe como precursor de RNA. En este mismo sentido según una realización preferida, el ingrediente activo se selecciona entre un factor de crecimiento, siRNA y un plásmido.
Factor de crecimiento: los factores de crecimiento son una familia de moléculas, la mayoría de naturaleza proteica. La función principal de los factores de crecimiento es la estimulación de la proliferación celular mediante la regulación del ciclo celular. Además contribuyen al mantenimiento de la supervivencia celular, a la estimulación de la migración celular, de la diferenciación celular e incluso la apoptosis. Los factores de crecimiento desempeñan su función a muy baja concentración en el medio ambiente biológico. Actúan uniéndose a receptores celulares situados en la membrana celular que transmiten la señal del exterior al interior de la célula, mediante el acoplamiento de diferentes proteína quinasas que se fosforilan y que activan una cascada de señales que acaba con la activación de uno o varios genes (transducción de señales). Plásmido: Los plásmidos son moléculas de ADN extracromosómico circular o lineal, que se replican y transcriben independientemente del ADN cromosómico. Poseen una conformación estructural en doble hélice y su tamaño varía desde 1 a 250 kb. Están presentes normalmente en bacterias, aunque en algunas ocasiones también se encuentran organismos eucariotas (como las levaduras), y su número puede variar desde una sola copia hasta algunos cientos por célula.
El hecho de que sean capaces de reproducirse de manera independiente del ADN cromosomal, así como su relativamente fácil manipulación y la posibilidad de inserción de nuevas secuencias genéticas, han potenciado su creciente uso en ingeniería genética.
Relacionado con el ARN existe en todas las células un mecanismo de silenciamiento post-transcripcional de genes específicos, denominado ribotransferencia, interferencia por ARN o RNAi (acrónimo del nombre inglés RNA interfence). Ésta es ejercida concretamente por moléculas de ARN que, siendo complementarias a un ARN mensajero, conducen a la degradación de éste. Debe entonces distinguirse entre interferencia por ARN (RNAi), mecanismo biológico o técnica experimental que lo aprovecha, y ARN interferente, molécula de ARN que ejerce interferencia por ARN, y puede ser de varios tipos: siRNA, miRNA o piRNA. Concretamente, el siRNA (acrónimo en inglés de small interfering RNA, en español ARN pequeño de interferencia o ARN de silenciamiento), es un tipo de ARN interferente con una longitud de 20 a 25 nucleótidos, y es altamente específico para la secuencia de nucleótidos de su ARN mensajero diana. De este modo, el siRNA interfiere con la expresión de un gen específico, reduciéndola. Además, los siRNAs también actúan en otras rutas relacionadas con el RNAi, como en la defensa antiviral o en la organización de la estructura de la cromatina en un genoma.
En otra realización más preferida, el ingrediente activo se selecciona entre superóxido dismutasa, catalasa y prednisolona.
Superóxido dismutasa (SOD): :Esta enzima cataliza la dismutación de superóxido en oxígeno y peróxido de hidrógeno. Existe en las células de los organismos en diferentes isoformas. En humanos existen tres isoformas:
- SOD1 , ubicada en el citoplasma celular, es un homodímero de peso molecular 32.5 KDa y contiene cobre y zinc en su centro activo. - SOD2, localiza en la mitocondria, es un tetrámero, y contiene manganeso en su centro activo.
- SOD3, se encuentra en el líquido extracelular, es un tetrámero, y contiene cobre y zinc en su centro activo. De manera preferida la SOD es la SOD1.
Catalasa: Enzima que cataliza la conversión de peróxido de hidrógeno en agua y 02. Se localiza en los peroxisomas de casi todos los tipos celulares. Es un tetrámero formado por cuatro cadenas polipeptídicas, cada una de las cuales tiene una longitud de 500 aminoácidos, y a cada una de las cuales se une un grupo porfirina. Coordinado a cada uno de los grupos porfirina existe un átomo de hierro, que será el responsable de la interacción con el peróxido de hidrógeno.
El pH óptimo de actuación de esta enzima se encuentra alrededor de 7, esto hace que tome especial relevancia el hecho de que las composiciones tipo hidrogel descritas en este documento hayan sido obtenidas a un pH 7.4, el cual, como se ha comprobado, no varía con el tiempo.
Prednisolona: Es un corticosteroide (los corticosteroides son hormonas del grupo de los esteroides, y son producidas por la corteza de las glándulas suprarrenales) utilizado terapéuticamente como anti-inflamatorio e inmunosupresor. Es un compuesto liposoluble de peso molecular 360.44 g/mol. Según una realización preferida la proporción del ingrediente activo incorporado en los geles es igual o inferior al 25% en peso con respecto al peso total de los componentes del hidrogel. Sin embargo, la proporción adecuada dependerá en cada caso del ingrediente activo que va a incorporarse, la indicación para la que se utiliza y la eficiencia de administración. Según otra realización preferida, la proporción de ingrediente activo se encuentra entre 1 y 20% en peso.
En otra realización preferida, los hidrogeles de la presente invención comprenden, adicionalmente, al menos un marcador. En la presente invención se entiende como marcador aquel elemento, compuesto, célula o conjunto de células que permita realizar un estudio de localización del mismo, obtener una imagen, señal o información del lugar o los lugares en los que se distribuye, determinar un parámetro bioquímico, inmunológico o metabólico o bien realizar un diagnóstico. Son ejemplos de marcadores una molécula fluorescente, como por ejemplo fluoresceína o Texas Red; quantum dots; un isótopo radiactivo; un agente de contraste, por ejemplo radiológico, de resonancia o de tomografía; un antígeno de membrana; un agente de tinción, etc..
Según otra realización preferida, el hidrogel comprende adicionalmente al menos un compuesto capaz de facilitar o reforzar el efecto del ingrediente activo, tal como por ejemplo un adyuvante, un inmunomodulador (inmunosupresor o inmunoestimulador) o cualquier combinación de los mismos.
Según otra realización preferida, el hidrogel comprende adicionalmente al menos un compuesto que interacciona con componentes biológicos y/o con afinidad por uno o varios receptores existentes en los seres vivos y/o que actúa como receptor de algún componente biológico, tales como un anticuerpo, un aptámero, un receptor de superficie o cualquier combinación de los mismos. Algunas de las funciones de estos compuestos que interaccionan con componentes biológicos pueden ser la realización de un estudio de localización de dichos componentes biológicos o receptores, obtención de una imagen, señal o información del lugar o los lugares en los que se encuentran, determinación de un parámetro bioquímico, inmunológico o metabólico o bien realizar un diagnóstico.
Según otra realización preferida, el hidrogel comprende adicionalmente al menos un compuesto estabilizante de tipo lipídico, graso u oleoso, sacarídico, un derivado de aminoácido o proteico, un derivado de óxido de etileno, un compuesto de tipo morfolino o cualquier combinación de los mismos.
Según otra realización preferida, el hidrogel comprende adicionalmente al menos un compuesto sensible a polimerización química o polimerización inducida por radiación UV/Vis (fotopolimerización), calor (polimerización térmica), microondas, ultrasonidos y rayos X. Según otra realización preferida, el hidrogel comprende adicionalmente agentes emolientes, conservantes, sustancias de fragancia, agentes antiacné, agentes antifúngicos, antioxidantes, desodorantes, antitranspirantes, agentes contra la caspa, despigmentantes, agentes blanqueadores, agentes antiseborreicos, tintes, lociones bronceadoras, absorbentes de luz UV, o cualquier combinación de los mismos. Según otra realización preferida el hidrogel se encuentra en forma liofilizada o deshidratado.
Según otra realización preferida el hidrogel se usa para la preparación de un medicamento. Según otra realización preferida, la invención se refiere a una composición farmacéutica que comprende al menos un hidrogel como se describe en la presente invención y un vehículo farmacéuticamente aceptable.
Los compuestos y composiciones de la presente invención pueden ser empleados junto con otros medicamentos en terapias combinadas. Los otros fármacos pueden formar parte de la misma composición o de otra composición diferente, para su administración al mismo tiempo o en tiempos diferentes.
Otra realización preferida se refiere a una composición de recubrimiento de superficies que comprende al menos el hidrogel de la invención. Otra realización preferida se refiere a una composición nutricional que comprende al menos el hidrogel de la invención.
Dicha composición nutricional puede ser un alimento, un suplemento dietético o un suplemento nutricional. Las composiciones nutricionales pueden incluir leche, yogures, zumos de fruta y de vegetales, postres, productos infantiles o productos deshidratados. La adición de los hidrogeles a la composición nutricional se realiza mediante mezcla y homogenización según el procedimiento técnico para elaborar cada producto. Adicionalmente, otros componentes tales como las vitaminas pueden añadirse a la composición nutricional. Ejemplos de estos compuestos son vitaminas del grupo A, B, C, D, E o mezclas de las mismas. Otra realización preferida se refiere a un producto sanitario que comprende al menos el hidrogel de la invención.
Otra realización preferida se refiere a una composición cosmética que comprende al menos un hidrogel de la invención.
Un segundo aspecto esencial de la presente invención se refiere al uso del hidrogel en la fabricación de un medicamento.
Según otra realización preferida se refiere al uso del hidrogel para su empleo en ingeniería de tejidos, medicina regenerativa y terapia celular.
Según otra realización preferida se refiere al uso del hidrogel como marcador.
Según otra realización preferida se refiere al uso del hidrogel para su administración por vía oral, bucal, sublingual, tópica, ocular, nasal, pulmonar, ótica, vaginal, intrauterina, rectal, entérica, o parenteral. Cuando la composición se administra por vía oral, los hidrogeles presentan la ventaja adicional de ser estables en medio ácido (HCI 0.1 N) y fluido intestinal simulado, por lo que pueden alcanzar el tejido epitelial intestinal sin sufrir degradación alguna y liberar allí el ingrediente activo asociado. Según una realización preferida se refiere al uso del hidrogel en la preparación de un producto cosmético o de higiene personal para la administración sobre piel, sistema piloso y capilar, uñas, labios, órganos genitales externos, dientes o mucosas.
Según una realización preferida se refiere al uso del hidrogel para la asociación al mismo de diferentes formas de liberación de ingredientes activos, tales como sistemas micro y nanoparticulares.
Según una realización preferida se refiere al uso del hidrogel para terapia génica, silenciamiento o interferencia genética, o vacunación genética.
Según una realización preferida se refiere al uso del hidrogel para producir la asociación, expansión o activación de poblaciones celulares o para manipular o alterar las características biológicas de células vivas tanto autólogas, como alogénicas, xenogénicas o de cultivos celulares y posteriormente emplear dichas células o grupos celulares para obtener un efecto terapéutico, diagnóstico, preventivo o con fines regenerativos, o para modificar la producción de compuestos por dichas células, o para adaptarlas y asociarlas de modo efectivo a micropartículas o microcápsulas, matrices y andamiajes.
Un aspecto adicional de la invención está representado por el caso en que la composición de gel se utiliza como tal porque permite la fabricación de una composición viscoelástica. Tal composición viscoelástica es útil, por ejemplo en la cirugía o terapia ocular, como un sustituto de fluido sinovial y como gotas oculares y, como se ha indicado anteriormente, la presente invención hace posible ajustar a medida las propiedades viscoelásticas para tales usos.
Según una realización preferida se refiere al uso del hidrogel para facilitar, estimular o modificar la producción de compuestos por células, con fin de producción biotecnológica. Según una realización preferida se refiere al uso del hidrogel con la finalidad de higiene o estética, para neutralizar o eliminar ectoparásitos, para perfumar, modificar el aspecto de la superficie corporal y/o corregir olores corporales y/o protegerla o mantenerla en buen estado. Según una realización preferida se refiere al uso del hidrogel para modificar, corregir o introducir propiedades organolépticas o mejorar la estabilidad en un medicamento o en un producto cosmético o de higiene personal.
Según una realización preferida se refiere al uso del hidrogel para la fabricación de una composición viscoelástica útil en la cirugía o terapia ocular, como gotas oculares o como un sustituto de fluido sinovial, o de algún componente de las articulaciones.
Según una realización preferida se refiere al uso del hidrogel para acondicionar, modificar o restablecer las características de agua, alimentos o suplementos nutricionales, así como para modificar, corregir o introducir nuevas propiedades organolépticas o mejorar la estabilidad de los mismos y para facilitar o hacer posible la administración de alimentos o nutrientes a seres vivos.
Un tercer aspecto esencial de la presente invención se refiere a un procedimiento para la preparación del hidrogel que comprende las siguientes etapas: a) preparar una disolución acuosa de al menos un polímero aniónico de origen natural; b) preparar una disolución acuosa de un agente reticulante catiónico; y c) mezclar bajo agitación las disoluciones obtenidas en a) y b) con formación espontánea del gel.
La incorporación del polímero o los polímeros aniónicos se lleva a cabo mediante disolución acuosa del mismo o los mismos a una concentración de entre 100 y 0.1 mg/ml, más preferiblemente entre 50 y 1 mg/ml y aún más preferiblemente entre 10 y 5 mg/ml.
El agente reticulante catiónico se disuelve en agua a una concentración de entre 100 y 0.01 mg/ml, preferiblemente entre 50 y 0.05 mg/ml; más preferiblemente entre 10 y 0.1 mg/ml, aún más preferiblemente entre 4 y 1 mg/ml.
Según una realización preferida, adicionalmente se prepara una disolución acuosa de al menos una proteína y se incorpora a una de las soluciones obtenidas en a) y b) cuyos componentes sean de la misma carga eléctrica que la proteína o se adiciona sobre el gel ya formado. La incorporación de la proteína o proteínas se lleva a cabo mediante disolución acuosa de la misma o las mismas a una concentración de entre 100 y 0.1 mg/ml, más preferiblemente entre 50 y 1 mg/ml y aún más preferiblemente entre 10 y 2 mg/ml.
Según otra realización preferida, al menos una de las disoluciones de los constituyentes del hidrogel se calienta antes de ser mezcladas.
Según otra realización preferida, el procedimiento comprende además la adición de un ingrediente activo, y/o un compuesto capaz de facilitar o reforzar el efecto del ingrediente activo, y/o un compuesto capaz de interaccionar con componentes biológicos y/o un compuesto capaz de actuar como receptor de algún componente biológico y/o un compuesto estabilizante, en la disolución a) si es de naturaleza aniónica o en la disolución b) si es de naturaleza catiónica, o bien se adiciona sobre los geles ya formados.
Según otra realización preferida, todos los compuestos que pueden ser incorporados al sistema de geles de la invención mencionados anteriormente, se pueden adicionar a las soluciones de los polímeros constituyentes de los geles previamente a la formación de los mismos o bien pueden ser adicionados a los hidrogeles una vez formados.
El ingrediente activo y/o los componentes citados anteriormente que adicionalmente puede comprender el hidrogel es disuelto o suspendido en una de las disoluciones a) o b), dependiendo de la carga que posea, es decir, si presenta carga negativa se disuelve o suspende en la disolución a) y, si por el contrario, presenta carga positiva, se disuelve o suspende en la disolución b).
En una variante del procedimiento, dicho ingrediente activo y/o componentes se adiciona a los hidrogeles una vez formados.
En otra variante del procedimiento, dicho ingrediente activo y/o componentes se adiciona a los hidrogeles incluido en un sistema micro o nanoparticular. En este caso, el sistema micro o nanoparticular se incorpora al hidrogel del mismo modo que se ha descrito para la incorporación de ingredientes activos, de modo que si carece de carga se puede incorporar en cualquiera de las disoluciones, pero si posee carga negativa se suspende en la disolución a) y, si por el contrario, presenta carga positiva, se suspende en la disolución b).
En otra variante del procedimiento, dicho ingrediente activo y/o componentes se adiciona previamente a la proteína o proteínas que opcionalmente puede incluirse entre sus componentes o a otro de los componentes de los sistemas. En el caso de ingredientes lipofílicos, éstos pueden ser disueltos o suspendidos en primer lugar en un pequeño volumen de un disolvente orgánico, de un aceite o compuesto lipídico o lipofílico, o de una mezcla de agua y los compuestos anteriormente mencionados, el cual seguidamente se adicionará a una de las disoluciones acuosas mencionadas con anterioridad, de forma que la concentración en peso del disolvente orgánico en la disolución final sea siempre menor al 25%. En un caso de este tipo, el disolvente orgánico tiene que extraerse del sistema, a menos que sea farmacéuticamente aceptable. Por otro lado, los ingredientes lipofílicos también pueden asociarse a proteínas incorporadas al hidrogel, como es el caso de la albúmina. Dicha asociación a proteínas puede llevarse a cabo previamente a la formación del hidrogel o bien una vez formado.
Según otra realización preferida, el procedimiento comprende una etapa adicional después de la etapa c) en el que el gel se somete a un proceso de deshidratación total o parcial (liofilización o desecación, respectivamente) con el fin de preservarlas durante su almacenamiento para que conserven sus características iniciales y se reduzcan los volúmenes de producto que van a manipularse. Por otra parte, el grado de reticulación de los hidrogeles puede aumentar con este proceso, ya que puede tener lugar una aproximación entre las cadenas poliméricas, lo que podría facilitar que aumente el grado de entrecruzamiento polimérico, así como que se potencie el efecto del agente reticulante. El proceso de liofilización o desecación conduce, respectivamente, a un producto deshidratado total o parcialmente.
Según otra realización preferida, el procedimiento comprende una etapa adicional en la que se regenera el gel deshidratado parcialmente o liofilizado. De este modo es posible deshidratar el hidrogel para hacerlo más estable durante el almacenamiento y posteriormente regenerar o recuperar el hidrogel mediante un proceso de hidratación. El hidrogel regenerado conserva las propiedades que caracterizan al hidrogel fresco o recién preparado (previo a someterlo a un tratamiento de deshidratación).
La formación de los hidrogeles objeto de la presente invención es consecuencia de un proceso controlado de entrecruzamiento ionotrópico de los componentes que presentan carga opuesta. Fruto de dicho proceso controlado, denominado reticulación iónica o ionotrópica, se obtienen hidrogeles de propiedades físico-químicas predeterminadas, homogéneas, ajustables y reproducibles, con independencia de que se asocie o no ingrediente activo alguno.
En una variante de la invención la reticulación se realiza en un medio a pH y/o fuerza iónica controlados, que se lleva a cabo mediante disolución de los contituyentes de los geles en medios acuosos tamponados. De forma preferente el pH de dichas disoluciones esta comprendido entre 5 y 8.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención.
A continuación, para una mayor comprensión de las características y ventajas de la presente invención, se hará referencia a una serie de ejemplos que de forma explicativa completen la descripción anterior, sin suponer en modo alguno que ésta se vea limitada a los mismos.
BREVE DESCRIPCIÓN DE LAS FIGURAS.
Figura 1. Representa el uso de espermidina en la preparación de hidrogeles a base de polímeros aniónicos de origen natural, preparación que no resulta posible empleando iones inorgánicos como el calcio: Imagen fotográfica en la que se observa cómo empleando espermidina se forma un hidrogel que conserva su consistencia y no cae al voltear el tubo de ensayo en el que se ha formado, quedando en la parte superior (imagen de la izquierda). Por el contrario, en la imagen de la derecha se observa una disolución no gelificada con iones calcio y que, consiguientemente, al voltear el tubo de ensayo cae como tal solución a la parte baja del tubo.
Figura 2. Representa la variación de la viscosidad (η) de los geles (F14, F15 y F16) frente al esfuerzo de corte (y).
Figura 3. Representa la modulación de las propiedades viscoelásticas de los hidrogeles mediante una adecuada selección de sus componentes: Variación de los módulos elástico (G') y viscoso (G") de los geles (F14, F15 y F16) frente a la frecuencia (f).
Figura 4: Representa hidrogeles desarrollados capaces de liberar un ingrediente activo previamente asociado a los mismos, incluso teniendo éste carácter lipofílico: Liberación de prednisolona a partir de hidrogeles elaborados empleando goma gelano y sulfato de condroitina. (n=3).
Figura 5: Representa hidrogeles desarrollados capaces de asociar eficazmente y de manera homogénea material genético: Imágenes fotográficas en las que se evidencia la incorporación de siRNA marcado con el marcador de fluorescencia cy3 con el característico color rosáceo que muestra a luz natural (A) o bien con la fluorescencia emitida por dicho siRNA marcado cuando se recurre a la técnica de microscopía de fluorescencia (microscopio ECLIPSE-NIKON 80j, Japan) (B).
Figura 6. Representa las curvas de flujo de las formulaciones F34, F33 y F32, que presentan diferentes concentraciones de albúmina en su composición (5, 12.5 y 20 mg/ml, respectivamente).
Figura 7. Representa las curvas de oscilación de las formulaciones F34, F33 y F32, que presentan diferentes concentraciones de albúmina en su composición (5, 12.5 y 20 mg/ml, respectivamente).
Figura 8. Imagen de la formulación F32 tras el análisis reológico a 37° C.
Figura 9. Representa las curvas de flujo de las formulaciones F35, F36, F37 y F32, que presentan diferentes concentraciones de espermidina en su composición (0.5, 0.65, 1 y 2 mg/ml, respectivamente).
Figura 10. Representa las curvas de oscilación de las formulaciones F35, F36, F37 y F32, que presentan diferentes concentraciones de espermidina en su composición (0.5, 0.65, 1 y 2 mg/ml, respectivamente).
Figura 11. Representa las curvas de flujo de las formulaciones con diferentes glicosaminoglicanos en su composición: F38, sulfato de dextrano; F39, ácido hialurónico; F32, sulfato de condroitino.
Figura 12. Representa las curvas de oscilación de las formulaciones con diferentes glicosaminoglicanos en su composición: F38, sulfato de dextrano; F39, ácido hialurónico; F32, sulfato de condroitino.
Figura 13. Representa las curvas de liberación a pH = 7.4 de los ingredientes activos modelo teofilina, vitamina B12 y mioglobina de la formulación F32.
Figura 14. Representa las curvas de liberación a pH = 5.4 de los ingredientes activos modelo teofilina, vitamina B12 y mioglobina de la formulación F32.
Figura 15. Representa las curvas de liberación a pH = 5.5 de la vitamina B12 de la formulación F32, a dos Tas 25° C y 37° C.
Figura 16. Imagen del hidrogel F32 cargado con vitamina B12 después de haber sido analizado en el reómetro.
Figura 17. Perfil de liberación del ketoconazol de la formulación F32.
Figura 18. Comparación de los espectros STD-MNR del complejo albúmina- ketoconazol y de la albúmina libre con el espectro 1 H-RMN del ketoconazol libre.
Figura 19. Comparación de los espectros STD-MNR del complejo albúmina- prednisolona y de la albúmina libre con el espectro 1H-RMN de la prednisolona libre. Figura 20. Imagen obtenida mediante microscopía confocal (20 aumentos) de la formulación F32 conteniendo células marcadas con el fluorocromo DAPI (izda.) y de la formulación F32 natural (dcha). Figura 21. Imágenes obtenidas mediante SEM (300 aumentos) de la formulación F32 (izquierda) y de la formulación F35 (derecha).
Figura 22. Imágenes obtenidas mediante SEM (300 aumentos) de la formulación F32 (arriba izquierda), de la formulación F35 (arriba derecha) y de la formulación F40 (abajo centro).
Figura 23. Representa las curvas de liberación (pH = 7.4) del ingrediente activo modelo vitamina B12, a partir del gel F32 fresco o deshidratado mediante liofilización o desecación en estufa (n=3).
Figura 24. A) Curva de oscilación de la formulación F32 conteniendo dos cantidades diferentes de precursor de la hidroxiapatita fosfato octocálcico (5 y 20 mg). B) Imagen del hidrogel F32 incorporando en su estructura 20 mg de precursor de la hidroxiapatita fosfato octocálcico.
Figura 25. Perfil de liberación en agua del factor de crecimiento VEGF126 a partir de la formulación F32 (n=3).
Figura 26. Perfil de liberación en PBS (pH = 7.4) del factor de crecimiento VEGF126 asociado en nanopartículas incluidas en la formulación de hidrogel F32 (n=3).
Figura 27. Curvas de flujo de las formulaciones de hidrogeles que incluyen diferentes proteínas en su composición: F16 con albúmina (G1 ), F17 con gelatina (G2) y F17'con gelatina succinilada (G3).
Figura 28. Curvas de oscilación de las formulaciones de hidrogeles que incluyen diferentes proteínas en su composición: F16 con albúmina (G1 ), F17 con gelatina (G2) y F17'con gelatina succinilada (G3).
Figura 29. Imágenes fotográficas de un hidrogel que incluye ácido colomínico tras su preparación (A) y cortado con una espátula (B).
Figura 30. Curvas de liberación (pH = 7.4) de los ingredientes activos modelo vitamina B12 y teofilina simultáneamente a partir de la misma formulación hidrogel (F32) (n=3). Figura 31. Biodistribución del agente de contraste Gadolinio incluido en el hidrogel en secciones cervicales de ratón, haciendo uso de la técnica fSEMS-MRI (Fast Spin-Echo Multi-Slice). Imágenes tomadas de dos secciones o slices de diferente profundidad (12 y 8) tras 40, 50 y 70 minutos de aplicación del Gadolinio asociado al hidrogel.
Figura 32. Imágenes fotográficas en las que se aprecia el aspecto de la piel de la zona cervical rasurada de un ratón (arriba) e imagen de la misma zona rasurada sobre la que se ha administrado la formulación hidrogel cargada con el agente de contraste paramagnético gadolinio (abajo).
Figura 33. Curva de oscilación de la formulación F32 a medida que aumenta la temperatura. Figura 34. Imagen obtenida mediante microscopía de fluorescencia (16 aumentos) de la formulación F32 sin colonización celular (imagen superior) o colonizada con fibroblastos (imagen inferior). Los puntos fluorescentes se deben al producto derivado de la metabolización de calceína por parte de las células viables incluidas en el gel. Figura 35: Perfil de liberación de vitamina B12 a partir de la formulación F32 (reticulada con espermidina) y a partir de una formulación F42, de composición similar a la F32 pero reticulada con espermina (liberación en tampón fosfato pH 7.4)
EJEMPLOS Como procedimiento común a los ejemplos detallados a continuación, se han caracterizado los hidrogeles en función de sus propiedades viscoelásticas, utilizando para tal fin un reómetro Haake RheoStress 300 Rotational (Alemania) equipado con un termostato Haake DC10 a una temperatura de 37.0 ± 0.1 °C.
Los diferentes polímeros, tal y como se utilizan en los siguientes ejemplos, fueron adquiridos a diferentes casas comerciales: carragenina (Gelymar, Providencia, Santiago, Chile), sulfato de condroitina (Sigma Aldrich, Madrid Spain), sulfato de dermatano (Calbiochem, Merck, CA, USA), glucomanano (Shimizu Chemical, Japan), goma gelano (Sigma Aldrich, Madrid Spain), albúmina bovina (Sigma Aldrich, Madrid Spain), gelatina (Sigma Aldrich, Madrid Spain), poliglicerol (Hyperpolymers GmbH, sod (Sigma Aldrich, Madrid, España), catalasa (Sigma Aldrich, Madrid, España), espermidina (Sigma Aldrich, Madrid, España), espermina (Sigma Aldrich, Madrid, España). La prednisolona fue adquirida en Sigma Aldrich (Italia) y el siRNA en MWG Biotech AG (Ebersbeg, Alemania).
En los siguientes ejemplos, así como durante toda la presente memoria descriptiva, las cantidades de cada uno de los ingredientes se expresan en porcentaje en peso referido a la masa total de ingredientes empleados.
Ejemplo 1 : Uso de espermidina para preparar hidrogeles a base de polímeros aniónicos de origen natural, preparación que no es posible empleando iones inorgánicos como el calcio. Se prepararon hidrogeles empleando como ingredientes goma gelano, sulfato de condroitina y albúmina, según el procedimiento previamente descrito. Como agentes reticulantes se emplearon la molécula catiónica espermidina o bien cloruro de calcio. Para ello se prepararon disoluciones de goma gelano (5 mg/mL), sulfato de condroitina (6 mg/mL), espermidina (0,67 mg/mL) y albúmina (5 mg/mL) en tampon HEPES 20 mM pH 7,4. Todos los componentes de carga negativa se mezclaron dando lugar a una relación en masa goma gelano:albúmina:sulfato de condroitina de 1 :1 :0,72. La disolución resultante se mezcló con 1 ,2 mL (0,8 mg) de la disolución de espermidina o bien con 1 ,2 mL (2,4 mg) de la disolución de calcio en tampon HEPES 20 mM pH 7,4, bajo agitación magnética. Empleando espermidina como agente reticulante se obtuvieron de modo espontáneo geles, como muestra la Figura 1. No obstante, cuando se empleó CaCI2 no se produjo gelificación, observándose en la misma Figura 1 un medio totalmente líquido.
Ejemplo 2: Preparación de hidroqeles a base de diferentes polímeros aniónicos de origen natural mediante reticulación con espermidina.
Se prepararon diversas formulaciones de hidrogeles empleando diferentes polímeros aniónicos de origen natural mediante reticulación con espermidina. Opcionalmente se incorporó a la composición una o varias proteínas, concretamente albúmina o gelatina. Las Tablas 1 -5 recogen los componentes de los geles formados.
Tabla 1. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina (Formulaciones F1 a F4).
FORMULACION F1 F2 F3 F4
INGREDIENTES % peso % % %
peso peso peso
Carragenina 0.2 0.2 0.2 0.2
Sulfato de condroitina 0 0.036 0.072 0.1
Gelatina 0.1 0.1 0.1 0.1
Albúmina 0.1 0.1 0.1 0.1
Espermidina 0.024 0.024 0.024 0.024
Figure imgf000035_0001
Tabla 2. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina (Formulaciones F5 a F8).
Figure imgf000035_0002
Tabla 3. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina (Formulaciones F9 a F13).
FORMULACION F9 F10 F11 F12 F13
INGREDIENTES % peso % % % %
peso peso peso peso
Carragenina 0.2 0.2 0.2 0.2 0.2
Sulfato de dermatano 0.4 0.1 0.06 0.036 0.072 Albúmina 0 0.2 0.2 0.1 0.1
Gelatina 0.25 0 0 0 0
Espermidina 0.04 0.02 0.024 0.024 0.024
Agua desionizada 99.1 99.48 99.52 99.64 99.6
Tabla 4. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina (Formulaciones F14 a F17).
Figure imgf000036_0001
Tabla 5. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina (Formulaciones F18 a F21 ).
FORMULACION F18 F19 F20 F21
INGREDIENTES % peso % % % peso peso peso
Goma gelano 0.1 0.1 0.14 0.14
Sulfato de dermatano 0.1 0.1 0.1 0.1
Albúmina 0.14 0 0.14 0
Gelatina 0 0.14 0 0.14
Espermidina 0.034 0.034 0.034 0.034
Agua desionizada 99.63 99.63 99.59 99.59
Ejemplo 3: Modulación de las propiedades viscoelásticas de los hidroqeles mediante una adecuada selección de sus componentes.
Los hidrogeles elaborados a base de sulfato de condroitina y goma gelano descritos en el ejemplo anterior como formulaciones F14, F15 y F16 fueron sometidos a evaluación de sus propiedades viscoelásticas. Como muestra la Figuras 2, independientemente de la composición todas las formulaciones presentan una viscosidad similar, la cual resulta adecuada para una aplicación tópica de dichos hidrogeles. Sin embargo, tal y como muestra la Figura 3, las propiedades viscoelásticas de dichos hidrogeles pueden ser moduladas mediante una adecuada selección de su composición.
Ejemplo 4: Los hidroqeles capaces de asociar un ingrediente activo, incluso cuando éste tiene carácter lipofílico v, asimismo, son capaces de dar lugar a la liberación posterior del ingrediente activo asociado. Se prepararon geles de gelano y sulfato de condroitina asociando un ingrediente activo, seleccionando para tal fin la prednisolona. Teniendo en cuenta que se trata de una molécula lipofílica se procedió previamente a asociarla a albúmina. Para ello se disolvieron 20 mg de prednisolona en una disolución de albúmina en metanol (10 mg/ml). Tras la evaporación del metanol, el sistema albumina-prednisolona fue resuspendido en tampon HEPES 20 mM pH 7,4 (5 mg/ml) y la dispersión coloidal obtenida se mezcló con una disolución en tampon HEPES 20 mM pH 7,4 de gelano (5 mg/ml) y sulfato de condroitina (6 mg/ml). A la mezcla resultante se adicionaron 1 ,2 mL de una disolución de espermidina en tampon HEPES 20 mM pH 7,4 (2 mg/ml), bajo agitación magnética, dando lugar a la formación espontánea de hidrogeles asociando el ingrediente activo prednisolona (proporción de 7 % en peso con respecto a los componentes). Los geles obtenidos fueron sometidos a un estudio de liberación in vitro en tampón fosfato pH 7,4. Para ello, se tomaron 3,2 g de dichos geles y se incubaron en condiciones sink a 37.0±0.1 °C en 500 mi de dicho medio de liberación en un aparato de disolución (Sotax AT7 Smart, Switzerland) sometidos a agitación de 100 rpm. A diferentes tiempos se determinó la prednisolona liberada al medio, mediante una técnica HPLC (Perkin-Elmer Series 200 LC pump, 235 Diode Array Detector, USA) Merck Hibar LiChrocart (250-4, 5μιη) columna RP"18,mezcla MeOH/H20 (7:3), flujo 0.6 mL/min y se cuantificó a una λ=245 nm frente a la correspondiente recta de calibrado (y = 91 ,168 x - 0,1008). La Figura 4 muestra el correspondiente perfil de liberación. Como puede comprobarse, los geles desarrollados son capaces de liberar el ingrediente activo lipofílico previamente asociado a los mismos.
Ejemplo 5: Incoporación en la composición de los hidrogeles de enzimas de interés en cosmética, medicina reqenerativa e ingeniería de tejidos.
Se prepararon hidrogeles en cuya composición se incluyeron las enzimas antioxidantes catalasa y superóxido dismutasa. Para ello se procedió a su disolución en tampón HEPES 20 mM (pH 7.4) y 1 mi de esta solución de concentración 5 mg/ml se mezcló con 1 mi de solución de carragenina en tampón HEPES 20 mM pH 7.4 (5 mg/ml). Sobre la mezcla resultante se adicionaron 0.3 mi de una disolución de espermidina en tampón HEPES 20 mM (2 mg/ml), bajo agitación magnética, dando lugar a la formación espontánea de hidrogeles. Los componentes de dichos hidrogeles se recogen en las Tablas 6-7.
Tabla 6. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina, incluyendo en su composición enzimas de interés en cosmética, medicina regenerativa e ingeniería de tejidos (Formulaciones F22 a F24).
FORMULACION F22 F23 F24
INGREDIENTES % peso % %
peso peso Carragenina 0.17 0.17 0.17
Sulfato de condroitina 0 0.03 0
Albúmina 0.1 0.17 0 superóxido dismutasa 0.05 0.05 0.17
Espermidina 0.02 0.02 0.02
Agua desionizada 99.66 99.56 99.64
Tabla 7. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina, incluyendo en su composición enzimas de interés en cosmética, medicina regenerativa e ingeniería de tejidos (Formulaciones F25 a F27).
FORMULACION F25 F26 F27
INGREDIENTES % peso % %
peso peso
Carragenina 0.17 0.17 0.17
Sulfato de condroitina 0 0.03 0
Albúmina 0.1 0.17 0
Catalasa 0.05 0.05 0.17
Espermidina 0.02 0.02 0.02
Agua desionizada 99.66 99.56 99.64 Tabla 8. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina, incluyendo en su composición enzimas de interés en cosmética, medicina regenerativa e ingeniería de tejidos (Formulaciones F28 a F29).
Figure imgf000040_0001
Ejemplo 6: Preparación con espermidina de hidrogeles capaces de asociar material genético.
Se prepararon hidrogeles en cuya composición se incluyó ARN de interferencia, marcado con el marcador de fluorescencia cy3 (longitud de onda de excitación: 550 nm y longitud de onda de emisión: 570 nm). Para ello se procedió a la preparación del gel del ejemplo F16 (Tabla 4) y se incorporó a éste una cantidad de siRNA que se correspondía con un 2.5 % de la masa total del mismo. El siRNA se añadió a la solución de componentes negativos, previamente a la formación del gel.
Del gel resultante se obtuvieron imágenes fotográficas en las que se evidencia la incorporación de siRNA marcado con el marcador de fluorescencia cy3 con el característico color rosáceo que muestra a luz natural (Figura 5A) o bien con la fluorescencia emitida por dicho siRNA marcado cuando se recurre a la técnica de microscopía de fluorescencia (microscopio ECLIPSE-NIKON 80j, Japan) (Figura 5B). Ejemplo 7: Empleo de espermidina para preparar hidroqeles constituidos exclusivamente por componentes naturales del organismo humano.
Se prepararon hidrogeles empleando como ingredientes atelocolágeno (Koken, Japan) y albúmina, según el procedimiento previamente descrito. Como agente reticulante se empleó la molécula catiónica espermidina. Para ello se prepararon disoluciones de atelocolágeno (5 mg/mL en HCL 0.001 M pH = 3), albúmina (5 y 10 mg/mL), y espermidina (4 mg/mL) en tampon HEPES 20 mM pH 7,4. En la preparación de los hidrogeles se añadió 1 mL de la solución de espermidina sobre 2 mL de la solución de atelocolágeno bajo agitación magnética y, a continuación, se añadieron 1.2 mL de la solución de albúmina, resultando la relación de componentes la indicada en la Tabla 9 y un pH final de 7.4. Dichos hidrogeles presentan aspecto y características reológicas similares a las ya descritas en los ejemplos previos.
Tabla 9. Componentes de los hidrogeles obtenidos mediante reticulación con espermidina y constituidos exclusivamente por componentes naturales del organismo humano (Formulaciones F30 a F31 ).
Figure imgf000041_0001
Ejemplo 8. Modulación de las propiedades viscoelásticas v mecánicas de los hidroqeles mediante modificación de parámetros de formulación (temperatura, agitación, superficie de contacto v concentración de componentes).
Con objeto de modular las propiedades mecánicas de los hidrogeles se procedió a la modificación de los parámetros de formulación temperatura, agitación, superficie de contacto y concentración de componentes con respecto a los recogidos en los ejemplos anteriores. Como resultado de dicho estudio se desarrolló la formulación F32. Para su elaboración se prepararon disoluciones en HEPES 20 mM pH 7.4 de los distintos componentes. Seguidamente, se mezclaron en un vaso de precipitados 1 mi de solución de gelano (5 mg/ml) y 0.6 mi de solución de sulfato de condroitino (6 mg/ml) previamente calentadas a 60 °C, manteniéndose la mezcla a 60 °C bajo agitación magnética constante en baño de agua termostatizado. Paralelamente se procedió a mezclar en otro vaso de precipitados 1.3 mi de solución de albúmina (20 mg/ml) y 0.6 mi de solución de espermidina (2 mg/ml), manteniéndose esta mezcla a 37°C unos minutos. A continuación se incorporó esta segunda mezcla sobre la primera. La mezcla final se mantuvo bajo agitación magnética unos segundos, refrigerándose después en nevera a 4 °C durante 20 minutos, produciéndose la completa gelificación del sistema.
Siguiendo el protocolo descrito anteriormente se prepararon diferentes hidrogeles variando los siguientes parámetros de formulación:
I) Contenido de albúmina de la formulación: Concentraciones de albúmina de 20 mg/ml, 12.5 mg/ml y 5 mg/ml dieron lugar a las formulaciones denominadas F32, F33 y F34, respectivamente. Como se aprecia en las Figuras 6 y 7, estas formulaciones vieron aumentados los valores de los parámetros tanto viescoelásticas como mecánicos estudiados con respecto a las descritas en los ejemplos anteriores, aumentando asimismo estos parámetros a medida que aumentó la cantidad de albúmina incorporada a los sistemas. Además, y pese a su elevado contenido en agua (superior al 98 %), la consistencia de estos hidrogeles se mantiene incluso tras haber sido sometidos a ensayos de reología. Concretamente, la Figura 8 muestra una imagen de la formulación F32 tras haber sido recogida del reómetro con una espátula, observándose su transparencia y consistencia.
II) Contenido de reticulante empleado: Los parámetros de formulación del hidrogel F32 fueron modificados reduciendo el contenido de reticulante empleado, dando lugar a las formulaciones F35, F36 y F37 (concentraciones de espermidina 0.5, 0.65 y 1 mg/ml, respectivamente). En las Figuras 9 y ÍO se puede ver la variación de las características viscoelásticas y mecánicas de los diferentes sistemas, apreciándose una clara disminución de los valores del módulo elástico (G') de los hidrogeles con la disminución del contenido de reticulante.
III) Finalmente, la sustitución del sulfato de condroitino por sulfato de dextrano o ácido hialurónico dio lugar a las formulaciones F38 y F39, respectivamente. En las Figuras 11 y 12 podemos ver la variación en las características viscoelásticas y mecánicas de los sistemas en función del glucosaminoglucano utilizado, apreciándose que en los tres casos éstas serían potencialmente interesantes para su aplicación en el campo biomédico.
Ejemplo 9. Análisis de la textura de los hidroqeles.
Para realizar el análisis de textura se prepararon diferentes formulaciones hidrogel atendiendo al diseño de mezclas indicado en la Tabla 10, y se sometieron a ensayos de compresión a una velocidad constante (Texturometro T.A. XT Plus, Stable Micro Systems Ltd. Surrey, U. K.). Los resultados se recogen en la Tabla 11.
Tabla 10. Diseño de mezclas de las formulaciones hidrogel estudiadas en este e emplo.
Figure imgf000043_0001
Figure imgf000044_0001
Tabla 11. Resultados del análisis texturométrico de los hidrogeles descritos diseño de mezclas Tabla ~\ 0).
Figure imgf000044_0002
M12 1 ,32 0,60 0,80 0,32 M30 0,39 0,25
M13 0,56 0,38 M31 0,41 0,29
M14 0,57 0,36 M32 0,43 0,31
M15 0,64 0,47 0,36 0,27 M33 0,90 0,56 0,51
M16 0,51 0,30 M34 0,36 0,85 0,27
M17 0,84 0,73 0,49 0,46 M35 0,95 0,59 0,59
M18 0,81 0,43 M36 0,54 1 ,05 0,41
Ejemplo 10. Ensayo de carga de norfloxacino.
A partir de los datos de textura obtenidos, se seleccionaron los hidrogeles M13 a M24 del diseño de mezclas para llevar a cabo un estudio de carga del ingrediente activo norfloxacino, agente antimicrobiano de elevada afinidad por la albúmina.
Para la realización de este experimento se cortaron fragmentos de hidrogel de 1 1 .6 mm y se sumergieron durante 3 horas en 5 mi una disolución de concentración fija de norfloxacino (0.01 mg/mL), registrándose la absorbancia (273 nm) de la solución de carga tras este tiempo y correlacionándose ésta con la cantidad de fármaco incorporada por la formulación (Tabla 12).
Tabla 12. Cantidad de norfloxacino incorporada por cada formulación estudiada tras 3 horas de ensayo de carga.
Cantidad de norfloxacino
Formulación
incorporada (mg)
M13 0,0015 ± 0,0002
M14 0,0013 ± 0,0001
M15 0,0014 ± 0,0000
M16 0,001 1 ± 0,0000
M17 0,0013 ± 0,0003
M18 0,0012 ± 0,0001
M19 0,0014 ± 0,0000
M20 0,0012 ± 0,0001
M21 0,0014 ± 0,0000
M22 0,0012 ± 0,0000 M23 0,0013 ± 0,0001
M24 0,0013 ± 0,0004
Ejemplo 11. Incorporación v liberación de fármacos hidrosolubles.
Para evaluar el potencial de la formulación F32 como sistema de liberación de fármacos hidrosolubles de baja estabilidad, como vitaminas o proteínas, se ha planteado la incorporación a los hidrogeles de teofilina, vitamina B12 y mioglobina (de menor a mayor tamaño molecular) como los ingredientes activos modelo y el estudio de sus perfiles de liberación. Para la realización de estos estudios los ingredientes activos modelo fueron incorporadas en el hidrogel en una cantidad correspondiente al 20 % de la masa total del sistema, previa disolución de los mismas en la solución de condroitín sulfato, con anterioridad a la formación del hidrogel. Como medio de liberación se utilizaron 50 mi (manteniendo Condiones Sink) de dos tampones de diferente pH: tampón SIF pH = 7.4 (0.05 M), que proporciona un valor de pH considerado como fisiológico, y tampón acetato pH = 5.4 (0.01 M), el cual se puede considerar similar al pH a nivel de la superficie de la piel y de algunas mucosas. Además, se ha querido evaluar la influencia de la temperatura en el proceso, para lo cual se ha estudiado el perfil de liberación de vitamina B12 en tampón acetato (pH = 5.4) a dos temperaturas diferentes, 25° C y 37° C.
A diferentes tiempos se retiraron 5 mi de muestra de medio de liberación del sistema, restituyendo de inmediato 5 mi de medio nuevo. Posteriormente, se procedió a la medida de la absorbancia de las muestras a la longitud de onda adecuada (276 nm teofilina, 361 nm vitamina B12 y 210 nm mioglobina) y, con ayuda de la recta de calibrado correspondiente, se determinó la concentración del ingrediente activo modelo en las muestras de liberación.
En las Figuras 13, 14 y 15 se representan gráficamente las comparaciones de los perfiles de liberación de los tres ingredientes activos indicados anteriormente, a los diferentes pHs y temperaturas estudiadas. Además, en la Figura 16 podemos ver una imagen de la formulación F32 cargada con vitamina B12 tras haber sido analizada en el reómetro, en la cual se aprecia claramente la distribución homogénea del fármaco, de color rojizo, en el hidrogel y como éste mantiene su consistencia tras la incorporación de dicho fármaco. Queda así evidenciada la capacidad de los hidrogeles para incorporar y liberar ingredientes activos de baja estabilidad. Ejemplo 12. Incorporación v liberación de fármacos liposolubles.
Se ha querido evaluar si la formulación F32 conserva la capacidad de vehiculización de fármacos liposolubles indicada en el Ejemplo 4, para ello en este caso se ha seleccionado el ingrediente activo ketoconazol. El procedimiento de incorporación del fármaco en el hidrogel ha pasado por la preparación de complejos albúmina-fármaco, para lo que se disolvieron 20 mg de ketoconazol en 5 mi de MeOH (la concentración final será de 4 mg/ml). A continuación se disolvieron 100 mg de albúmina en 278 mi de agua, y se mezclaron ambas disoluciones, evaporando el disolvente orgánico y liofilizando el conjunto. El liófilo obtenido se resuspendió en 5 mi de HEPES 20 mM (pH=7.4), y se utilizó en la preparación de la formulación F32 en el lugar de la solución de albúmina natural.
La determinación de la cantidad de ketoconazol liberado se llevó a cabo mediante HPLC, a partir de las áreas de los picos obtenidos a 240 nm (tiempo de retención = 7.2 min), utilizando la columna RP-18 Merck Hibar LiChrocart (250-4, 5μιη) y una mezcla de MeOH:H20:(CH3-CH2)2NH (80%-19%-1 % v/v/v) como fase móvil. El flujo se mantuvo constante a 0.8 ml/min. La recta de calibrado se obtuvo previamente, partiendo de una solución estándar de ketoconazol. La Figura 17 demuestra la capacidad del sistema de incorporar y liberar el fármaco liposoluble estudiado.
Ejemplo 13. Caracterización de la interacción albúmina-fármaco liposoluble.
Con el objeto de determinar si existe interacción entre el fármaco liposoluble y la albúmina de los hidrogeles se sometieron muestras de dos fármacos liposolubles modelo (ketoconazol y prednisolona), junto con la albúmina y con mezclas físicas de los mismos, al análisis mediante resonancia magnética nuclear, utilizando la técnica espectroscópica Diferencia de la Transferencia de Saturación (STD-NMR, según sus siglas en inglés) (Espectrómetro Varían Inova 750, Varían Corporation, USA). Gracias a esta técnica es posible identificar la interacción entre potenciales ligandos, en este caso fármacos liposolubles, y su proteína-receptor, que en este caso sería la albúmina, ya que sólo muestra señales de moléculas que presentan cierta afinidad de unión.
Para la preparación de la muestra problema se disolvieron 50 mg de albúmina en 500 mi de D20, tras lo cual se incorporaron 0.3 mi EtOH conteniendo una cantidad de fármaco disuelto equivalente al 20% en peso de la albúmina (lo que se corresponde con 10 mg de fármaco). Se utilizaron además dos muestras control, correspondientes a una solución de albúmina tratada con EtOH (5 mg) en D20 (0.6 mi) y a una suspensión de fármaco (5 mg) en D20 (0.6 mi), la cual se sometió a la determinación de su espectro 1H-RMN.
En las Figuras 18 y 19 se señalan los picos que no aparecen cuando se analiza el espectro STD de la solución de albúmina, pero que sí lo hacen cuando se analiza el espectro STD correspondiente al complejo albúmina-fármaco liposoluble, y que se presentan además a nivel de desplazamientos químicos coincidentes con los del espectro 1H-RMN de la suspensión del fármaco, quedando así evidenciada la formación de un complejo albúmina-fármaco liposoluble mediante la interacción de ambos componentes.
Ejemplo 14. Pruebas de colonización celular del hidroqel.
Utilizando la formulación F32 a modo de base se cultivaron en placa células de cornea (medio de cultivo DMEM/F-12 con GlutaMAX, incubación a 37° C en atmósfera de 5% de C02 y 95% de aire). Tras 48 horas de incubación se retiró el medio de cultivo, realizándose posteriormente una tinción fluorescente del hidrogel y las posibles células asociadas o incluidas en el mismo, con el fluorocromo DAPI (358/461 nm), el cual posee elevada afinidad por el material genético (material incluido en el interior de todas las células). La fluorescencia emitida por este hidrogel y las posibles células asociadas o incluidas en el mismo fue analizada al microscopio confocal (Microscopio Confocal Espectral Leica TCS-SP2, LEICA Microsystems Heidelberg GmbH, Mannheim, Alemania), utilizándose el hidrogel sin células asociadas como control negativo. La Figura 20, que compara la fluorescencia emitida por el hidrogel que incluye células con la que emite el hidrogel sin ellas, demuestra que se ha producido la colonización del mismo por parte de las células de córnea estudiadas.
Ejemplo 15. Desarrollo de hidrogeles utilizando espermina como reticulante.
Se ha preparado la formulación F32 utilizando espermina como reticulante, en lugar de espermidina, lo que dio lugar a una nueva formulación hidrogel que denominaremos F42. Así, se observó que la nueva formulación F42 presenta un valor de G' menor, respecto a la reticulada con espermidina (alrededor de 400 Pa en el caso de F42, frente a los 1200 Pa en el caso de la formulación F32) (Gráficos no mostrados) pero que, como en el caso de ésta, al disminuir la concentración de reticulante disminuía el G' del sistema, aunque en menor medida (datos no mostrados).
Asimismo, se realizaron con F42 estudios de liberación utilizando las mismas moléculas, el mismo procedimiento y los mismos medios tamponados que en el caso de F32 (Ejemplo 11). Los resultados mostraron unos perfiles de liberación similares, como se aprecia en la figura 35 para la liberación de la vitamina B12 a partir de dichos hidrogeles
Ejemplo 16. Análisis de la microestructura de los hidrogeles mediante Microscopía Electrónica de Barrido.
Diferentes formulaciones de hidrogeles recogidas en la Tabla 13 fueron deshidratados parcial o totalmente. Para ello se recurrió, respectivamente, a desecación en estufa o a liofilización. Posteriormente se analizó su microestructura con ayuda de un Microscopio Electrónico de Barrido (EVO LS15 Cari Zeiss SMT, Alemania).
Tabla 13. Composición de las formulaciones hidrogel estudiadas en este ejemplo.
Figure imgf000049_0001
Las formulaciones hidrogel secadas en estufa, a 37°C durante 3 horas, no presentan la estructura porosa descrita para los hidrogeles naturales, como muestra la Figura 21. Por el contrario, como muestra la Figura 22, el análisis de los hidrogeles liofilizados
(ciclo largo de liofilización de 48 horas) demostró que éstos sí mantienen una estructura porosa, así como que existen diferencias en las cantidades de un determinado componente en función de la región analizada, cosa que no ocurre en el caso de las formulaciones desecadas en estufa.
Ejemplo 17. Deshidratación y posterior hinchamiento de los hidrogeles desecados.
Diferentes formulaciones de hidrogeles fueron deshidratadas parcial o totalmente (Tabla 13). Para ello se recurrió a desecación en estufa o a liofilización, respectivamente. Posteriormente se evaluó la capacidad de los hidrogeles deshidratados de reincorporar fluidos acuosos en su estructura, mediante la determinación de su grado de hinchamiento.
I) Hidrogeles desecados en estufa:
Las formulaciones hidrogel indicadas en la Tabla 13 se secaron en estufa, a 37°C durante 3 horas. Posteriormente se pesaron y se colocaron en 75 mi de solución acuosa, manteniéndose el sistema en incubación a 37° C durante 24 horas. Al cabo de este tiempo se volvieron a pesar las diferentes formulaciones.
El grado de hinchamiento de los hidrogeles (Q) se calculó como la diferencia entre el peso tras el hinchamiento (W) y el peso inicial del hidrogel seco (W0):
W - Wo
Q (%) = x 100
Wo
Durante el estudio de las propiedades de hinchamiento se utilizaron diferentes medios:
- Agua miliQ
- NaCI 0,1 M
- Tampón SIF pH = 7,4
- Tampón MES 50 mM, pH = 5.5
- HCI 0.1 M, pH = 1.
Los resultados permitieron comprobar que todas las formulaciones estudiadas presentan capacidad de hinchamiento tras su desecación en estufa (Tabla 14), asimismo se observó que la variación de las concentraciones de reticulante (espermidina) o de principal polímero negativo (goma gelano) da lugar a variaciones en el grado de hinchamiento de los sistemas, mientras que la variación de las concentraciones de proteína (albúmina) o de glucosaminoglucano (sulfato de condroitino) apenas tiene influencia en el mismo.
Tabla 14. Datos de hinchamiento en agua de las formulaciones de la Tabla 10 desecadas en estufa.
Formulación Grado de hinchamiento (Q %)
F32 1070,16 ± 75,71 F35 1860,15 ± 51 ,03
F40 553,16 ± 10,73
Los datos de hinchamiento en diferentes medios han permitido concluir (Tabla 15) que a pHs intermedios el grado de hinchamiento sufre ligeras diferencias, sin embargo una bajada acusada del pH da lugar a una disminución importante del mismo, efecto probablemente debido a la desnaturalización de la proteína constituyente del sistema en estas condiciones. También se aprecia en la Tabla 15 que la fuerza iónica apenas influye en el grado de hinchamiento.
Tabla 15. Datos de hinchamiento en diferentes medios de la formulación F32.
Figure imgf000051_0001
II) Hidrogeles liofilizados.
Los geles recién preparados se congelaron en diferentes condiciones y se sometieron a un ciclo largo de liofilización de 48 horas. Posteriormente se pesaron y se colocaron en 75 mi de fluido acuoso. El conjunto se mantuvo en incubación a 37° C durante 24 horas. Al cabo del este tiempo se volvieron a pesar las diferentes formulaciones. El índice de hinchamiento se calculó utilizando la ecuación descrita en el apartado anterior.
Los resultados se muestran en la Tabla 16, donde se aprecia que, como en el caso de los geles desecados en estufa, la variación de la concentraciones de reticulante o del principal polímero negativo dan lugar a variaciones en el grado de hinchamiento de los sistemas, mientras que la variación de las concentraciones de proteína o glucosaminoglucano apenas influyen en el mismo.
Tabla 16. Datos de hinchamiento en agua de las formulaciones de la Tabla 10 liofilizadas. Formulación Grado de hinchamiento (%)
F32 1592,98 ± 83,32
F35 3364,31 ± 48,85
F40 899,18 ± 1 1 ,01
Ejemplo 18. Liberación de ingredientes activos por parte de los hidroqeles previamente deshidratados de forma total o parcial mediante liofilización o desecación en estufa, respectivamente.
Para este ensayo se tomó como modelo la vitamina B12 (Sigma, España), que se incorporó a la formulación F32 según lo descrito en el Ejemplo 11. Posteriormente los hidrogeles cargados con vitamina B12 se deshidrataron mediante liofilización o bien en estufa según las condiciones anteriormente descritas. Tras la deshidratación se sometieron las formulaciones a ensayos de liberación en tampón SIF pH = 7.4 (0.05 M), también según lo descrito en el Ejemplo 11. La Figura 23 muestra una comparación de los perfiles de liberación de la vitamina B12 a partir de los geles frescos (inmediatamente tras su elaboración) y de los geles tras ser sometidos a deshidratación total o parcial, mediante liofilización o desecación en estufa, respectivamente. Los resultados presentados en dicha figura evidencian la capacidad de los geles deshidratados total o parcialmente mediante cualquiera de las técnicas empleadas (liofilización o desecación en estufa) de liberar los ingredientes activos asociados a los mismos.
Ejemplo 19. Modificación de las propiedades organolépticas de los hidroqeles. Los hidrogeles descritos en la presente invención son capaces de incorporar ingredientes modificadores de las propiedades organolépticas en su estructura, siendo susceptibles a los cambios que éstas provocan en dichas propiedades. Así, se han hecho diversos ensayos de inclusión del ingrediente aromatizante vainillina en las formulaciones, comprobándose que éstas adquieren aroma a vainilla tras dicha inclusión, sin que su estructura o consistencia muestre signos aparentes de modificación. Para la incorporación del aromatizante se incorporó la vainilla en polvo (Sigma, España) a la solución de polímeros negativos de la formulación F32 en una cantidad equivalente al 10% de la masa total polimérica del sistema. Ejemplo 20. Preparación de hidroqeles a partir de polímeros modificados con grupos fosfato.
En ejemplos anteriores se ha descrito la formación de hidrogeles utilizando como principal polímero negativo del sistema compuestos con grupos sulfato o con grupos carboxilato en su estructura. Sin embargo, dado los efectos positivos que han demostrado tener los polímeros fosfatados para determinadas aplicaciones, en una realización particular se ha modificado el polímero aniónico goma gelano, que contiene grupos carboxilato, transformando parte de estos grupos carboxilato en grupos fosfato. Para ello, primero se disolvieron 60 mg de gelano en 30 mi de la solución de MES pH=5.5 (50 mM) y, a continuación, se añadieron los reactivos EDC (180 mg) y NHS (53.88 mg). Posteriormente se disolvieron 300 mg de O-phosphoethanolamine en 3 mi de MES pH=5.5 (50 mM), dando lugar a una disolución transparente que se añadió a la disolución anteriormente descrita. Se dejó el conjunto reaccionando 24 horas, tras las cuales se sometió a 48 horas de diálisis frente a agua destilada. La incorporación de grupos fosfato al polímero natural fue confirmada mediante el análisis de los correspondientes espectros de Resonancia Magnética Nuclear (Bruker 750, USA). Todos los reactivos citados anteriormente se obtuvieron de Sigma (España).
Tras la modificación del polímero se ha preparado una formulación similar en composición a la F32 pero incluyendo la goma gelano modificada con grupos fosfato en el lugar de la goma gelano natural, comprobándose la obtención de hidrogeles transparentes y de consistencia similar a los descritos para la goma gelano natural y que se aprecia en la Figura 8.
Ejemplo 21. Incorporación de precursores de la hidroxiapatita a los hidrogeles.
El fosfato octacálcico (Ca8H2(P04)6.5H20), (OCP), ha sido propuesto como precursor en la formación de minerales hidroxiapatíticos en hueso y diente. Por ello, en una realización particular, hemos incluido este compuesto en los hidrogeles. Para ello, en primer lugar se ha sintetizado OCP, siguiendo el procedimiento que se describe a continuación: Se prepararon 50 mi de una disolución 0,04M de NaH2P04 en agua destilada previamente calentada hasta los 70 °C, posteriormente se adicionaron a esta disolución, lentamente y bajo agitación magnética constante, 50 mi de una solución 0,04M de Ca(CH3COO)2. El compuesto sólido obtenido es el OCP que, una vez liofilizado, ha sido incorporado a la formulación de hidrogel F32. La incorporación de OCP al hidrogel se efectuó empleando dos cantidades diferentes de OCP (5 y 20 mg), que se han incorporado a la solución de polímeros negativos del sistema, previamente a la formación del gel. En la Figura 24 se muestran los valores de G' y G" obtenidos mediante el análisis reológico de las formulaciones. Asimismo, en la Tabla 17 se muestran los valores numéricos correspondientes al análisis texturométrico de las formulaciones. En la Figura 25 se puede ver, además, el aspecto de una de estos nuevos hidrogeles.
Tabla 17. Resultados del análisis texturométrico de la formulación F32 incluyendo el precursor de la hidroxiapatita fosfato octocálcico en su estructura.
Figure imgf000054_0001
E= modulo de Young
σ= fuerza de compresión
Ejemplo 22. Liberación de factores de crecimiento a partir de los hidrogeles.
Se estudió la liberación de un factor de crecimiento endotelial vascular (VEGF, según sus siglas en inglés), concretamente del factor VEGF126 (Merck, USA), a partir de la formulación hidrogel F32. Para ello se preparó 1 mi de hidrogel de acuerdo con lo descrito en el Ejemplo 8, adicionándose 25 μΙ de disolución en agua destilada del factor VEGF-I26 (concentración 20 ng/ml) a la disolución de polímeros negativos. Una vez formado el hidrogel se incorporó como medio de liberación 3 mi de agua destilada y se mantuvo el medio a Ta ambiente (25 °C) en condiciones estáticas. Tras 2 y 4 horas de incubación se retiraron 300 μΙ del medio de liberación y se restituyeron al sistema 300 μΙ de agua destilada. El VEGF126 liberado en ambas muestras fue cuantificado con ayuda de un ensayo por inmunoabsorción ligado a enzimas (ELISA, según sus siglas en inglés) específico para este factor (Calbiochem, Canadá), pudiendo determinarse así el porcentaje de factor liberado de la formulación F32 a los dos tiempos estudiados. Para ello se determinó por espectofotometría, con ayuda de un lector de placas (Biorad 680 Microplate Reader, Japan), la absorbancia de las muestras y de los patrones de calibrado, siguiendo las instrucciones del Kit de ELISA. A los valores de absorbancia obtenidos se restó la absorbancia proporcionada por los correspondientes blancos y los valores definitivos se introdujeron en la curva de calibración (obtenida siguiendo el protocolo descrito por el kit), con la cual se determinaron los valores de concentración. Los resultados muestran (Figura 25), al igual que en ejemplos anteriores, una liberación gradual del ingrediente activo incorporado a la formulación. Ejemplo 23. Incorporación de nanopartículas a los hidroqeles v liberación de factores de crecimiento a partir de las mismas.
Se preparó una formulación de nanopartículas asociando el factor de crecimiento VEGF-126. Los componentes de dichas nanopartículas fueron el polímero aniónico natural dextrano y la poliamina endógena catiónica espermina y la técnica de elaboración empleada fue la gelificación iónica, siguiendo el procedimiento descrito en la solicitud de patente WO2010049562 A1 . Para su preparación se adicionaron 300 μΙ de una disolución de espermina en agua (concentración 0.5 mg/ml) a 600 μΙ de una disolución de dextrano en agua (concentración 1 mg/ml) sobre los que previamente se habían incorporado 25 μΙ de disolución en agua del factor de crecimiento VEGF126 (20 ng/ml). El conjunto se mantuvo bajo agitación magnética constante, a temperatura ambiente, durante 30 minutos. La suspensión coloidal resultante (tamaño medio de 100 nm, Zetasizer® 3000HS, Malvern Instruments, UK) se centrifugó durante una hora, a 4° C y 14000 rpm, tiempo tras el cual se retiró el sobrenadante. Los sobrenadantes resultantes de la centrifugación de las suspensiones de nanopartículas fueron analizadas con ayuda de un kit de ELISA específico para este factor (Calbiochem, Canadá), restándose el valor de los correspondientes blancos (la absorbancia de sobrenadantes de suspensiones de nanopartículas blancas). Así, con ayuda de la curva de calibrado correspondiente, elaborada de acuerdo a las instrucciones del kit de ELISA, se determinó que la cantidad de factor presente en los sobrenadantes estudiados era de un 5.6% de la cantidad de factor incluida durante la formación de las nanopartículas. Es decir, un 95.4 % de VEGF126 se encontraba asociado a las nanopartículas presentes en los sedimentos.
En una segunda etapa se preparó la formulación hidrogel F32 incluyendo la suspensión de las nanopartículas anteriores asociado el factor de crecimiento. Teniendo en cuenta que las nanopartículas presentan una carga superficial (potencial zeta, determinado haciendo uso de un Zetasizer® 3000HS, Malvern Instruments, UK) negativa (-25±3 mV), se incorporaron en la disolución de los polímeros negativos, gelano y condroitin sulfato. Seguidamente, se pusieron los hidrogeles (25 mg) a liberar en 6 mi de PBS pH = 7.4. y se tomaron 10 μΙ de muestra de medio de liberación a las 8, 24 y 48 horas, incorporándose en cada ocasión 10 μΙ de PBS fresco al medio de liberación. Posteriormente, con ayuda de la curva de calibrado correspondiente y haciendo las correcciones adecuadas con los correspondientes blancos (medio de liberación de nanopartículas blancas incluidas en hidrogeles), se calculó la concentración de factor en las diferentes muestras. En la Figura 26 podemos ver el perfil de liberación del VEGF1 26 de las nanopartículas incorporadas en la formulación F32.
Ejemplo 24. Incorporación de proteínas qlicosiladas naturales a los hidrogeles.
Se preparó una formulación hidrogel similar a la F32 pero utilizando la proteína glicosilada mucina (mucina de estómago porcino tipo III Sigma, Italia) en lugar de la proteína globular albúmina, en igual concentración. Se obtuvo así un hidrogel muy similar en apariencia al hidrogel F32 (Figura 8) pero más translúcido, lo cual se puede asociar a las características de las disoluciones de este tipo de proteínas glicosiladas.
Ejemplo 25. Incorporación de proteínas modificadas a los hidrogeles.
Se sintetizó gelatina succinilada. Para ello se solubilizaron 2 g de gelatina en 16 mi de DMSO anhidro a una temperatura de 37° C. Una vez finalizado el proceso de disolución, se añadieron 9 mi de una disolución de anhídrido succínico (6 mg/ml) en DMSO anhidro. El conjunto se mantuvo a 37° C durante una hora, bajo agitación magnética constante. Transcurrido este tiempo, el polímero fue sometido a diálisis exhaustiva en agua destilada, y a continuación fue liofilizado. La incorporación de grupos succinilo a la gelatina fue comprobada por diferentes métodos (punto isoeléctrico, TBNS, resonancia magnética). Con esta proteína modificada se procedió a la preparación de una formulación de hidrogel similar a la FU, incorporando gelatina succinalada en lugar de gelatina natural, en igual concentración, y se denominó a esta nueva formulación FU'. En las figuras 27 y 28 podemos ver la comparación de los análisis reológicos de tres formulaciones similares, pero que incluyen una proteína diferente en cada caso: albúmina (F16), gelatina (F17) y gelatina succinilada (F17').
Ejemplo 26. Incorporación de compuestos sensibles a fotopolimerización en los hidrogeles.
Se han preparado hidrogeles conteniendo el polímero dextrano-metacrilato (DS-MET) (donado por investigadores de la Sapienza Universitá di Roma), sensible a fotopolimerización en presencia de luz UV. Para ello se prepararon 1 .8 mi de disolución 6 mg/ml de condroitin sulfato en HEPES 20 mM (pH = 7.4) y 1.6 mi de disolución 5 mg/ml de gelano en HEPES 20 mM, a los que se añadieron 200 mg de DS-MET disueltos en 0.6 mi de HEPES 20 mM (pH = 7.4), manteniendo el conjunto a 60° C. Posteriormente se añadieron 0.75 mi de solución 2 mg/ml de espermidina en HEPES 20 mM (pH = 7.4). Tras 20 minutos en nevera el conjunto gelificó. De esta forma se obtuvo un hidrogel que fue sometido a análisis reológico en fresco o bien tras su exposición a luz UV. Además se preparó y analizó reológicamente un hidrogel conteniendo un catalizador de la polimerización, mediante incorporación de 150 μΙ de solución al 20 % p/v del catalizador Irgacure en N-metilpirrolidona.
El análisis reológico de las formulaciones anteriores no permitió determinar grandes diferencias entre ellas. No obstante, una propiedad en la que sí se observó variación de modo cualitativo, fue en la adhesividad, que en los sistemas que incluían DEX-SE se veía aumentada. De estos últimos sistemas se espera por otra parte que tengan un mayor tiempo de biodegradación, lo que podría ser interesante para determinadas aplicaciones.
Ejemplo 27. Hidroqeles que incluyen ácido colomínico.
Se desarrollaron diferentes hidrogeles que incluyen ácido colomínico.
Por un lado, se desarrollaron hidrogeles utilizando gelano y ácido colomínico como componentes negativos del sistema, siendo la espermidina el reticulante del mismo. Para ello, se mezclaron 0.71 mi de disolución de goma gelano en HEPES pH 7.4 20 mM (5 mg/ml) y 0.71 mi de disolución de ácido colomínico en HEPES pH 7.4 20 mM (6 mg/ml), manteniéndose el conjunto en un baño de agua a 60° C bajo agitación magnética constante durante unos segundos, tras los cuales se añadieron 0.43 mi de disolución de espermidina en HEPES pH 7.4 20 mM (2.62 mg/ml). El sistema se dejó 5 minutos a temperatura ambiente y posteriormente se mantuvo 20 minutos a 4° C, tiempo tras el cual se completó la gelificación. Se obtuvo así un hidrogel totalmente transparente y de buena consistencia, la cual le permitió, por ejemplo, quedar suspendido en una espátula sin romperse.
También se pudo preparar una formulación parecida en composición a la F32, sustituyendo el condroitin sulfato por ácido colomínico, en igual concentración y volumen. Esta formulación resultó muy similar en apariencia a la F32. La Figura 29 muestra una imagen fotográfica de dicho gel tras su preparación y cortado con una espátula.
Asimismo, se preparó otra formulación similar en composición a la F32 pero en la que que, adicionalmente, se incorporaron 0.43 mi de disolución de ácido colomínico en HEPES pH 7.4 20 mM (6 mg/ml), lo cual dio lugar a una formulación similar en apariencia y consistencia a F32. Ejemplo 28. Liberación simultánea de varios ingredientes activos a partir de los hidroqeles.
Para este ensayo se tomó como ingredientes activos modelo la vitamina B12 y la teofilina (Sigma, España), que se incorporaron a la formulación F32 según lo descrito en el Ejemplo 11, en cantidad de 5 mg cada una, sumando un total de 10 mg de ingredientes activos incorporados a la formulación F32. Una vez formados, los hidrogeles se sometieron a ensayos de liberación en tampón SIF pH = 7.4 (0.05 M), también según lo descrito en el Ejemplo 11. La Figura 30 muestra una comparación de los perfiles de liberación de ambos ingredientes activos modelo incorporados en la misma formulación. Los resultados presentados en dicha figura evidencian la capacidad de dicha formulación de incluir y liberar más de un ingrediente activo al mismo tiempo.
Ejemplo 29. Biodistribución de un agente de contraste paramaqnético para Resonancia Magnética de Imagen (MRI) asociado a los hidroqeles tras su administración tópica e inocuidad de dicha formulación hidroqel.
El presente ejemplo se refiere a la aplicación de los hidrogeles en diagnosis. Para ello se incorporó un agente de contraste paramagnético, la sal trisódica pentahidratada del Gadolinio trietiletertetraminohexaacetato (Sigma, España) a la formulación F32 según lo descrito en el Ejemplo 11, en cantidad de 5 mg. Una vez formado, el hidrogel se tomó la cuarta parte del mismo y se colocó en la región cervical rasurada de un ratón anestesiado (anestesia con gas isofluorano) y monitorizado mediante un sistema de control de signos vitales. Al cabo de 40, 50 y 70 minutos se siguió la evolución del contraste en secciones cervicales del animal a diferentes profundidades, haciendo uso de la técnica fSEMS-MRI (Fast Spin-Echo Multi-Slice-Magnetic Resonance Imaging) con contraste T1 (TR= 500 ms (TR tiempo de repetición entre scans sucesivos), TE= 10 ms (TE duración del eco de espín), tiempo acumulación = 6 min.) para los ROIs seleccionados, en un equipo espectrómetro Agilent Varían VNMRS de 1 1 .7 T (500 MHz frecuencia resonancia protón) y distintos accesorios utilizados para estudios de MRI in vivo. Cada imagen se adquirió con 256 x 256 puntos. Del análisis de las imágenes que muestra la Figura 31 se puede concluir que el agente de contraste (gadolinio), que se ve sin dificultad porque genera una zona más clara en la imagen MRI, penetra hasta las capas internas de la piel del animal, confirmando el potencial de los hidrogeles para la administración de ingredientes por vía tópica en general, y de agentes de contraste en particular. Gracias a la realización de este experimento también se ha podido constatar la inocuidad de la formulación hidrogel estudiada, al comprobarse que la misma no causó ningún tipo de alteración en la piel del ratón durante la realización de experimento, como se aprecia en la Figura 32.
Ejemplo 30. Efecto de la variación de la temperatura sobre la estructura de los hidroqeles.
Para comprobar el posible efecto de variaciones de la temperatura del entorno sobre las características de estas nuevas formulaciones hidrogel se ha procedido al análisis del comportamiento mecánico, en régimen oscilatorio, del hidrogel F32 variando la temperatura del reómetro. Para ello se ha ido aumentando dicha temperatura del reómetro desde los 10 a los 60°C en 30 pasos de 1 minuto, manteniendo constante la frecuencia de oscilación (1 Hz). Así se ha podido comprobar que, para temperaturas que van desde los 10 a los 60° C, los módulos G' y G" del hidrogel no varían, como se puede apreciar en la Figura 33. Por lo tanto, de dichos resultados es posible deducir el interés de los hidrogeles de la presente invención en aplicaciones en las que una variación de temperatura puede modificar las características de hidrogeles convencionales haciéndolos inadecuados o no útiles.
Ejemplo 31. Pruebas de viabilidad celular tras la colonización del hidrogel con fibroblastos. Utilizando las formulaciones F32 y F39 a modo de base se cultivaron en placa fibroblastos W3T3 (medio de cultivo DMEM enriquecido con suero fetal bovino, incubación a 37° C en atmósfera de 5% de C02 y 95% de aire). Tras 48 horas de incubación se retiró el medio de cultivo, determinándose la viabilidad de las células incluidas en dichos hidrogeles. Para ello se añadió al hidrogel incluyendo fibroblastos 3 ml_ de calceína disuelta en medio de cultivo (concentración de calceína 100 mM). Tras 20 minutos de incubación se observó al microscopio de fluorescencia el hidrogel incluyendo fibroblastos. El efecto de la calceína sobre las células permite comprobar la viabilidad celular, habida cuenta de que únicamente cuando las células permanecen vivas internalizan la calceína y son capaces de metabolizarla, dando lugar a un compuesto fluorescente. De este modo, de la observación de puntos fluorescentes en el miscroscopio de fluorescencia es posible deducir la viabilidad celular. En la Figura 34 se observa la imagen en microscopio de fluorescencia del gel F32 sin células incluidas y el gel colonizado con fibroblastos, observándose en esta última imagen los puntos de fluorescencia que demuestran la viabilidad celular. Resultados similres se obtuvieron en el caso del gel F39.

Claims

REIVINDICACIONES.
1. Hidrogel que comprende:,
(a) al menos un polímero aniónico de origen natural; y
(b) al menos un agente reticulante catiónico de origen natural; donde los componentes se encuentran entrecruzados mediante interacciones de tipo electrostático.
2. El hidrogel según la reivindicación 1 , que comprende donde el polímero aniónico se selecciona del grupo formado por ácido hialurónico, ácido colomínico, polisiálico, condroitina, queratano, dextranos, heparina, carragenanos, furceleranos, alginatos, agar agar, glucomanano, goma gelano, goma garrofín, goma guar, goma tragacanto, goma arábiga, goma xantano, goma karaya, pectinas, celulosas, almidones y ásteres de sorbitano, así como sales o fragmentos de los mismos o derivados de los mismos o cualquier combinación de los mismos.
3. El hidrogel según cualquiera de las reivindicaciones 1 ó 2, donde el agente reticulante catiónico es un compuesto de fórmula general (I):
H2N-[(CH2)x-NH-(CH2)y]z-NH2, )
donde x, y y z toman, independientemente, un valor comprendido entre 1 y 66.
4. El hidrogel según la reivindiciación 3, donde x, y y z toman, independientemente, un valor comprendido entre 1 y 10.
5. El hidrogel según cualquiera de las reivindicaciones 3 ó 4 donde el compuesto de fórmula general (I) se selecciona entre espermina y espermidina, cualquier sal de las mismas o cualquier combinación de las mismas.
6. El hidrogel según cualquiera de las reivindicaciones 1 a 5, donde la relación en peso agente reticulante/polímero aniónico está comprendida entre 0,05/1 y 0,5/1 .
7. El hidrogel según cualquiera de las reivindicaciones 1 a 6, donde la relación en peso agente reticulante/polímero aniónico está comprendida entre 0,2/1 y 0,4/1.
8. El hidrogel según cualquiera de las reivindicaciones 1 a 7, que comprende adicionalmente al menos una proteína.
9. El hidrogel según la reivindicación 8 donde la proteína se selecciona del grupo formado por albúmina, gelatina, colágeno, atelocolágeno, proteínas enzimáticas, proteínas globulares del tipo alfa-globulina, proteínas globulares del tipo beta- globulina, glicoproteínas y protaminas, derivados de las mismas o cualquier combinación de las mismas.
10. El hidrogel según la reivindicación 9, donde las proteínas enzimáticas se seleccionan del grupo formado por fibrina, fibrinógeno, trombina y protrombina.
1 1 . El hidrogel según cualquiera de las reivindicaciones 9 ó 10, donde la proteína enzimática es la protrombina.
12. El hidrogel según la reivindicación 9, donde las proteínas globulares de tipo alfa se seleccionan del grupo formado por orosomucoide, LD y haptoglobina.
13. El hidrogel según la reivindicación 9, donde las proteínas globulares de tipo beta se seleccionan del grupo formado por angiostatina y plasmina.
14. El hidrogel según la reivindicación 9, donde las glicoproteínas son mucinas.
15. El hidrogel según cualquiera de las reivindicaciones 1 a 14, que comprende adicionalmente un sistema para la administración de ingredientes activos que comprende micropartículas y/o nanopartículas.
16. El hidrogel según la reivindicación 15, donde las micropartículas y/o las nanopartículas tienen un tamaño comprendido entre 1 y 1000 micrómetros e inferior a 1 micrómetro respectivamente.
17. El hidrogel según cualquiera de las reivindicaciones 15 ó 16, donde las micropartículas y/o las nanopartículas comprenden:
- al menos un polímero iónico; y
- al menos un agente reticulante con la condición de que la carga sea opuesta a la del polímero iónico; donde los componentes de las micropartículas y/o nanopartículas se encuentran entrecruzados mediante interacciones de tipo electrostático.
18. El hidrogel según la reivindicación 17, donde las micropartículas y/o nanopartículas comprenden otros polímeros iónicos.
19. El hidrogel según cualquiera de las reivindicaciones 1 a 18, que comprende adicionalmente al menos un ingrediente activo.
20. El hidrogel según la reivindicación 19, donde el ingrediente activo se selecciona del grupo formado por hormonas, péptidos, proteínas, proenzimas o zimógenos, enzimas, coenzimas, vitaminas, compuestos lipidíeos o lipofílicos, compuestos hidrofílicos, compuestos sacarídicos, compuestos de ácidos nucléicos o nucleótidos como oligonucleótidos, polinucleótidos y células o cualquier combinación de los mismos.
21 . El hidrogel según la reivindicación 20, donde el ingrediente activo se selecciona entre un factor de crecimiento, siRNA y un plásmido.
22. El hidrogel según la reivindicación 20, donde el ingrediente activo se selecciona entre la enzima superóxido dismutasa, catalasa y prednisolona.
23. El hidrogel según cualquiera de las reivindicaciones 19 a 22, donde el ingrediente activo está en una proporción igual o inferior al 25% en peso respecto al peso total de los componentes del hidrogel.
24. El hidrogel según cualquiera de las reivindicaciones 19 a 23, donde el ingrediente activo está en una proporción de entre el 1 y el 20% en peso respecto al peso total de los componentes del hidrogel.
25. El hidrogel según cualquiera de las reivindicaciones 1 a 24, que comprende adicionalmente al menos un marcador.
26. El hidrogel según la reivindicación 25, donde el marcador se selecciona del grupo formado por moléculas fluorescentes, quantum dots, isótopos radioactivos, agentes de contraste, un antígeno de membrana o un agente de tinción.
27. El hidrogel según cualquiera de las reivindicaciones 1 a 26, que comprende adicionalmente al menos un adyuvante o un inmunomodulador o cualquier combinación de los mismos.
28. El hidrogel según cualquiera de las reivindicaciones 1 a 27, que comprende adicionalmente al menos un anticuerpo, un aptámero, un receptor de superficie o cualquier combinación de los mismos.
29. El hidrogel según cualquiera de las reivindicaciones 1 a 28, que comprende adicionalmente al menos un compuesto estabilizante de tipo lipídico, graso u oleoso, sacarídico, un derivado de aminoácido o proteico, un derivado de óxido de etileno, un compuesto de tipo morfolino o cualquier combinación de los mismos.
30. El hidrogel según cualquiera de las reivindicaciones 1 a 29, que comprende adicionalmente al menos un compuesto sensible a polimerización química o polimerización inducida por radiación UV/Vis, calor, microondas, ultrasonidos y rayos X.
31 . El hidrogel según cualquiera de las reivindicaciones 1 a 30, que comprende adicionalmente agentes emolientes, conservantes, sustancias de fragancia, agentes antiacné, agentes antifúngicos, antioxidantes, desodorantes, antitranspirantes, agentes contra la caspa, despigmentantes, agentes blanqueadores, agentes antiseborreicos, tintes, lociones bronceadoras, absorbentes de luz UV, o cualquier combinación de los mismos.
32. El hidrogel según cualquiera de las reivindicaciones 1 a 31 , caracterizado porque se encuentra en forma liofilizada o deshidratado.
33. El hidrogel según cualquiera de las reivindicaciones 1 a 32 para la preparación de un medicamento.
34. Composición farmacéutica que comprende al menos el hidrogel según cualquiera de las reivindicaciones 1 a 33 y un vehículo farmacéuticamente aceptable.
35. Composición de recubrimiento de superficies que comprende al menos el hidrogel según cualquiera de las reivindicaciones 1 a 32.
36. Composición nutricional que comprende al menos el hidrogel según cualquiera de las reivindicaciones 1 a 32.
37. Composición cosmética que comprende al menos el hidrogel según cualquiera de las reivindicaciones 1 a 32.
38. Producto sanitario que comprende al menos el hidrogel según cualquiera las reivindicaciones 1 a 32.
39. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32 en la fabricación de un medicamento.
40. Uso del hidrogel según la reivindicación 39 para ingeniería de tejidos, medicina regenerativa y terapia celular.
41. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32 como marcador.
42. Uso de la composición según cualquiera de las reivindicaciones 34 a 37 o del producto sanitario de la reivindicación 38, para su administración por vía oral, bucal, sublingual, tópica, ocular, nasal, pulmonar, ótica, vaginal, intrauterina, rectal, entérica o parenteral.
43. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32, en la preparación de un producto cosmético o de higiene personal para la administración sobre piel, sistema piloso y capilar, uñas, labios, órganos genitales externos, dientes o mucosas.
44. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32 para la asociación al mismo de diferentes formas de liberación de ingredientes activos, tales como sistemas micro y nanoparticulares.
45. Uso del hidrogel según la reivindicación 39, para terapia génica, silenciamiento o interferencia genética, o vacunación genética.
46. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32 para producir la asociación, expansión o activación de poblaciones celulares o para manipular o alterar las características biológicas de células vivas tanto autólogas, como alogénicas, xenogénicas o de cultivos celulares.
47. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32, para facilitar, estimular o modificar la producción de compuestos por células, con fin de producción biotecnológica.
48. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32, con la finalidad de higiene o estética, para neutralizar o eliminar ectoparásitos, para perfumar, modificar el aspecto de la superficie corporal y/o corregir olores corporales y/o protegerla o mantenerla en buen estado.
49. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32, para modificar, corregir o introducir propiedades organolépticas o mejorar la estabilidad en un medicamento o en un producto cosmético o de higiene personal.
50. Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32, para la fabricación de una composición viscoelástica útil en la cirugía o terapia ocular.
51 . Uso del hidrogel según cualquiera de las reivindicaciones 1 a 32, pa acondicionar, modificar o restablecer las características de agua, alimentos suplementos nutricionales, así como para modificar, corregir o introducir nuevas propiedades organolépticas o mejorar la estabilidad de los mismos y para facilitar o hacer posible la administración de alimentos o nutrientes a seres vivos.
52. Un procedimiento para la preparación del hidrogel según cualquiera de las reivindicaciones 1 a 32, que comprende las siguientes etapas: a) preparar una disolución acuosa de al menos un polímero aniónico de origen natural; b) preparar una disolución acuosa de un agente reticulante catiónico; y c) mezclar bajo agitación las disoluciones obtenidas en a) y b) con formación espontánea del gel.
53. El procedimiento según la reivindicación 52, donde la concentración de la disolución acuosa del polímero aniónico es de 100 a 0,1 mg/ml.
54. El procedimiento según cualquiera de las reivindicaciones 52 ó 53, donde la concentración de la disolución acuosa del polímero aniónico es de 50 a 1 mg/ml.
55. El procedimiento según cualquiera de las reivindicaciones 52 a 54, donde la concentración de la disolución acuosa del polímero aniónico es de 10 a 5 mg/ml.
56. El procedimiento según cualquiera de las reivindicaciones 52 a 55, donde la concentración del agente reticulante catiónico es de 100 a 0,01 mg/ml.
57. El procedimiento según cualquiera de las reivindicaciones 52 a 56, donde la concentración del agente reticulante catiónico es de 50 a 0,05 mg/ml.
58. El procedimiento según cualquiera de las reivindicaciones 52 a 57, donde la concentración del agente reticulante catiónico es de 10 a 0,1 mg/ml.
59. El procedimiento según cualquiera de las reivindicaciones 52 a 58, donde la concentración de la disolución acuosa del reticulante catiónico es de 4 a 1 mg/ml.
60. El procedimiento según cualquiera de las reivindicaciones 52 a 59, donde adicionalmente se prepara una disolución acuosa de al menos una proteína y se incorpora a una de las soluciones obtenidas en a) y b) cuyos componentes sean de la misma carga eléctrica que la proteína o se adiciona sobre el gel ya formado.
61 . El procedimiento según la reivindicación 60, donde la concentración de la disolución acuosa de la proteína es de 100 a 0,1 mg/ml.
62. El procedimiento según cualquiera de las reivindicaciones 60 ó 61 , donde la concentración de la disolución acuosa de la proteína es de 50 a 1 mg/ml.
63. El procedimiento según cualquiera de las reivindicaciones 60 a 62, donde la concentración de la disolución acuosa de la proteína es de 10 a 2 mg/ml.
64. El procedimiento según cualquiera de las reivindicaciones 52 a 63 donde al menos una de las disoluciones de los componentes del hidrogel se calienta antes de ser mezcladas.
65. El procedimiento según cualquiera de las reivindicaciones 52 a 64, que comprende además la adición de un ingrediente activo, y/o un compuesto capaz de facilitar o reforzar el efecto del ingrediente activo, y/o un compuesto que interacciona con componentes biológicos y/o con afinidad por un receptor existente en los seres vivos y/o que actúa como receptor de algún componente biológico y/o un compuesto estabilizante, en la disolución a) si es de naturaleza aniónica o en la disolución b) si es de naturaleza catiónica, o bien se adiciona a los geles ya formados.
66. El procedimiento según la reivindicación 65, donde el ingrediente activo y/o el resto de los componentes se adicionan a los hidrogeles junto con un sistema micro o nanoparticular.
67. El procedimiento según la reivindicación 65, donde el ingrediente activo y/o el resto de los componentes se adicionan previamente a la proteína o proteínas.
68. El procedimiento según cualquiera de las reivindicaciones 52 a 67, donde adicionalmente tras la etapa c), se lleva a cabo una etapa d) en la cual el hidrogel se somete a un proceso de deshidratación total o parcial.
69. El procedimiento según la reivindicación 68, donde adicionalmente se lleva a cabo una etapa de regeneración del hidrogel deshidratado total o parcialmente.
PCT/ES2011/070306 2010-04-28 2011-04-28 Hidrogeles elaborados a base de polímeros aniónicos de origen natural WO2011135150A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030624A ES2368307B1 (es) 2010-04-28 2010-04-28 Hidrogeles elaborados a base de polímeros aniónicos de origen natural.
ESP201030624 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011135150A1 true WO2011135150A1 (es) 2011-11-03

Family

ID=44860922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070306 WO2011135150A1 (es) 2010-04-28 2011-04-28 Hidrogeles elaborados a base de polímeros aniónicos de origen natural

Country Status (2)

Country Link
ES (1) ES2368307B1 (es)
WO (1) WO2011135150A1 (es)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997014A1 (fr) * 2012-10-24 2014-04-25 Teoxane Composition sterile dermo-injectable
CN103881701A (zh) * 2013-12-30 2014-06-25 安徽师范大学 一种磷光能量转移体系,其合成方法,用途以及凝血酶的检测方法
GB2523863A (en) * 2013-09-06 2015-09-09 Biocompatibles Ltd Imageable polymers
EP3070057A1 (en) 2015-03-16 2016-09-21 Omya International AG Process for the purification of water
US10307493B2 (en) 2013-03-15 2019-06-04 Biocompatible UK Limited Imageable embolic microsphere
US10350295B2 (en) 2013-09-06 2019-07-16 Biocompatibles Uk Ltd. Radiopaque polymers
US10434214B2 (en) 2011-09-06 2019-10-08 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US10463595B2 (en) 2008-09-02 2019-11-05 Allergan Holdings France S.A.S. Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US10624988B2 (en) 2011-06-03 2020-04-21 Allergan Industrie, Sas Dermal filler compositions including antioxidants
US10722444B2 (en) 2014-09-30 2020-07-28 Allergan Industrie, Sas Stable hydrogel compositions including additives
US10806821B2 (en) 2010-01-13 2020-10-20 Allergan Industrie, Sas Heat stable hyaluronic acid compositions for dermatological use
US10905797B2 (en) 2010-03-22 2021-02-02 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US10994049B2 (en) 2011-06-03 2021-05-04 Allergan Industrie, Sas Dermal filler compositions for fine line treatment
US11000626B2 (en) 2011-06-03 2021-05-11 Allergan Industrie, Sas Dermal filler compositions including antioxidants
US11083684B2 (en) 2011-06-03 2021-08-10 Allergan Industrie, Sas Dermal filler compositions
US11844878B2 (en) 2011-09-06 2023-12-19 Allergan, Inc. Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102011336B1 (ko) * 2015-12-31 2019-08-16 인터올리고 주식회사 약물 전달 및 안정화를 위한 복합체 및 그 제조방법
CN107915849B (zh) * 2017-11-08 2020-06-19 青岛农业大学 一种纳米复合水凝胶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008572A1 (en) * 2003-04-29 2005-01-13 Ales Prokop Nanoparticular tumor targeting and therapy
KR20090112150A (ko) * 2008-04-23 2009-10-28 한국화학연구원 음이온성 고분자와 양이온성 고분자를 함유한 온도감응형하이드로 젤
WO2010049562A1 (es) * 2008-10-28 2010-05-06 Universidade De Santiago De Compostela Sistemas nanoparticulares elaborados a base de polímeros aniónicos.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008572A1 (en) * 2003-04-29 2005-01-13 Ales Prokop Nanoparticular tumor targeting and therapy
KR20090112150A (ko) * 2008-04-23 2009-10-28 한국화학연구원 음이온성 고분자와 양이온성 고분자를 함유한 온도감응형하이드로 젤
WO2010049562A1 (es) * 2008-10-28 2010-05-06 Universidade De Santiago De Compostela Sistemas nanoparticulares elaborados a base de polímeros aniónicos.

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A.PROKOP ET AL.: "Hydrogel-based colloidal polymeric system for protein and drug delivery: Physical and chemical characterization, permeability control and applications", ADV. POLYM. SCI., vol. 160, 2002, pages 119 - 173 *
DATABASE WPI 6 September 2011 Derwent World Patents Index; AN 2009-Q93137 *
M. HAMIDI ET AL.: "Hydrogel nanoparticles in drug delivery", ADV. DRUG DELIVERY REV., vol. 60, 2008, pages 1638 - 1649 *
S. YUAN ET AL.: "Alginate-chondroitin sulfate hydrogels", PROCEED. INT. SYMP. CONTROL. REL. BIOACT. MATER., vol. 23, 1996, pages 238 - 239 *
T. COVIELLO ET AL.: "Polysaccharide hydrogels for modified release formulations", J. CONTROLLED RELEASE, vol. 119, 2007, pages 5 - 24 *
T. KUSHIBIKI ET AL.: "Controlled released of plasmid DNA from hydrogels prepared from gelatin cationized by different amine compounds", J. CONTROLLED RELEASE, vol. 112, 2006, pages 249 - 256 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10463595B2 (en) 2008-09-02 2019-11-05 Allergan Holdings France S.A.S. Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US11154484B2 (en) 2008-09-02 2021-10-26 Allergan Holdings France S.A.S. Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US10806821B2 (en) 2010-01-13 2020-10-20 Allergan Industrie, Sas Heat stable hyaluronic acid compositions for dermatological use
US10905797B2 (en) 2010-03-22 2021-02-02 Allergan, Inc. Polysaccharide and protein-polysaccharide cross-linked hydrogels for soft tissue augmentation
US10994049B2 (en) 2011-06-03 2021-05-04 Allergan Industrie, Sas Dermal filler compositions for fine line treatment
US11083684B2 (en) 2011-06-03 2021-08-10 Allergan Industrie, Sas Dermal filler compositions
US10624988B2 (en) 2011-06-03 2020-04-21 Allergan Industrie, Sas Dermal filler compositions including antioxidants
US11000626B2 (en) 2011-06-03 2021-05-11 Allergan Industrie, Sas Dermal filler compositions including antioxidants
US11844878B2 (en) 2011-09-06 2023-12-19 Allergan, Inc. Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation
US11833269B2 (en) 2011-09-06 2023-12-05 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US10434214B2 (en) 2011-09-06 2019-10-08 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
AU2013336274B2 (en) * 2012-10-24 2017-08-24 Teoxane Dermal injectable sterile composition
RU2653729C2 (ru) * 2012-10-24 2018-05-14 Теоксан Дермальная инъецируемая стерильная композиция
US10307362B2 (en) 2012-10-24 2019-06-04 Teoxane SA Dermal injectable sterile composition
US9907739B2 (en) 2012-10-24 2018-03-06 Teoxane Dermal injectable sterile composition
FR2997014A1 (fr) * 2012-10-24 2014-04-25 Teoxane Composition sterile dermo-injectable
WO2014064632A1 (en) * 2012-10-24 2014-05-01 Teoxane Dermal injectable sterile composition
US10307493B2 (en) 2013-03-15 2019-06-04 Biocompatible UK Limited Imageable embolic microsphere
US11672876B2 (en) 2013-03-15 2023-06-13 Biocompatibles Uk Limited Imageable embolic microsphere
GB2523863B (en) * 2013-09-06 2017-05-24 Biocompatibles Uk Ltd Imageable polymers
US10568967B2 (en) 2013-09-06 2020-02-25 Biocompatibles Uk Ltd. Radiopaque polymers
US10556022B2 (en) 2013-09-06 2020-02-11 Biocompatibles Uk Ltd. Imageable polymers
US10350295B2 (en) 2013-09-06 2019-07-16 Biocompatibles Uk Ltd. Radiopaque polymers
US10098972B2 (en) 2013-09-06 2018-10-16 Biocompatibles Uk Ltd. Imageable polymers
US9895452B2 (en) 2013-09-06 2018-02-20 Biocompatibles Uk Limited Imageable polymers
CN105517582A (zh) * 2013-09-06 2016-04-20 生物兼容英国有限公司 可成像聚合物
GB2523863A (en) * 2013-09-06 2015-09-09 Biocompatibles Ltd Imageable polymers
CN103881701A (zh) * 2013-12-30 2014-06-25 安徽师范大学 一种磷光能量转移体系,其合成方法,用途以及凝血酶的检测方法
US10722444B2 (en) 2014-09-30 2020-07-28 Allergan Industrie, Sas Stable hydrogel compositions including additives
WO2016146404A1 (en) 2015-03-16 2016-09-22 Omya International Ag Process for the purification of water
EP3070057A1 (en) 2015-03-16 2016-09-21 Omya International AG Process for the purification of water

Also Published As

Publication number Publication date
ES2368307B1 (es) 2012-10-17
ES2368307A1 (es) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2011135150A1 (es) Hidrogeles elaborados a base de polímeros aniónicos de origen natural
Zhang et al. Rational design of smart hydrogels for biomedical applications
Zhou et al. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications
Pettinelli et al. Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications
WO2010049562A1 (es) Sistemas nanoparticulares elaborados a base de polímeros aniónicos.
Kotla et al. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system
Pakzad et al. Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma
Sudha et al. Beneficial effects of hyaluronic acid
ES2601812T3 (es) Derivados de polímero alto, biocompatible, modificado con sulfhidrilo, de baja modificación, material reticulado del mismo y usos de dicho material
KR101554758B1 (ko) 다당류 젤 제형
Cimen et al. Injectable and self-healable pH-responsive gelatin–PEG/laponite hybrid hydrogels as long-acting implants for local cancer treatment
ES2725207T3 (es) Preparación y/o formulación de proteínas reticuladas con polisacáridos
EP2121026B1 (en) Novel injectable chitosan mixtures forming hydrogels
Sharma et al. Chondroitin Sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering
Tabasum et al. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review
ES2894829T3 (es) Tratamiento de superficies mediante polímeros solubles en agua y lípidos/liposomas
Valachová et al. Hyaluronan in medical practice
KR20150111372A (ko) 주사 시술용 보형물
CN113454166A (zh) 基于多糖和两性离子聚合物的水凝胶组合物及其使用方法
US20150080333A1 (en) Hyaluronic acid particles and their use in biomedical applications
CN106714780A (zh) 热凝胶组合物
US11707473B2 (en) Method for the manufacture and use of a bionic hydrogel composition for medical applications
Abourehab et al. Chondroitin sulfate-based composites: a tour d’horizon of their biomedical applications
ES2403544B2 (es) Sistemas nanoparticulares elaborados a base de ésteres de sorbitán.
Grieco et al. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774460

Country of ref document: EP

Kind code of ref document: A1