WO2011132990A2 - Pepck 과발현 형질전환 복제 개과 동물 및 이의 생산방법 - Google Patents

Pepck 과발현 형질전환 복제 개과 동물 및 이의 생산방법 Download PDF

Info

Publication number
WO2011132990A2
WO2011132990A2 PCT/KR2011/002944 KR2011002944W WO2011132990A2 WO 2011132990 A2 WO2011132990 A2 WO 2011132990A2 KR 2011002944 W KR2011002944 W KR 2011002944W WO 2011132990 A2 WO2011132990 A2 WO 2011132990A2
Authority
WO
WIPO (PCT)
Prior art keywords
pepck
canine
egg
nuclear transfer
cells
Prior art date
Application number
PCT/KR2011/002944
Other languages
English (en)
French (fr)
Other versions
WO2011132990A3 (ko
Inventor
황우석
Original Assignee
Hwang Woo-Suk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hwang Woo-Suk filed Critical Hwang Woo-Suk
Publication of WO2011132990A2 publication Critical patent/WO2011132990A2/ko
Publication of WO2011132990A3 publication Critical patent/WO2011132990A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0273Cloned vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0362Animal model for lipid/glucose metabolism, e.g. obesity, type-2 diabetes

Definitions

  • the present invention relates to a transgenic cloned canine overexpressing PEPCK (Phosphoenol Pyruvate Carboxykinase) and a method of producing the same. More specifically, the present invention overexpresses PEPCK produced by transplanting a canine-derived somatic cell nucleus transformed with PEPCK gene into a denuclearized egg, a method of producing a canine animal, and a method of producing the same and transplanting the nuclear transplanted egg into a fallopian tube of a surrogate mother.
  • the present invention relates to a transgenic cloned canine animal and a production method thereof.
  • Diabetes is the most common metabolic disease, a complex disease involving a number of factors. About 5-8% of the population has diabetes. Diabetes mellitus is caused by various causes such as heredity, virus, or harmful compounds. It is caused by an increase in blood sugar due to problems with insulin, a hormone that lowers blood sugar by secreting from pancreatic beta cells. Diabetes is a type 1 diabetes (insulin-dependent diabetes mellitus) caused by the destruction of pancreatic beta cells and an absolute lack of insulin.
  • type 2 diabetes noninsulin-dependent diabetes mellitus
  • type 2 diabetes noninsulin-dependent diabetes mellitus
  • it can damage the eyes (diabetic retinopathy), kidney (diabetic nephropathy), and diabetic neuropathy
  • Control of glucose production is one of the main aspects of diabetes treatment.
  • Type 2 diabetes shows high levels of postprandial and fasting blood glucose (Consoli, A. et al., J. Diabetes 38, 550-7, 1989; Shulman, GI Am. J. Card. 84 (Suppl. 1A) : 3J-10J, 1999).
  • Excess hepatic glucose production (HGP) is associated with fasting hyperglycemia specifically observed in patients with type 2 diabetes (Gastadeli, A. et al., Diabetes 49: 1367-1373, 2000).
  • Glucose synthesis is believed to be a major pathway for increased glucose production (Defronzo. R. A. et al., Diabetes Care 15: 318-367, 1992).
  • PEPCK Phosphoenolpyruvate carboxykinase
  • the present invention transforms a somatic cell line derived from a canine animal with a PEPCK gene to prepare a donor nucleus cell, removes a nucleus from a mature egg of a canine animal, and adds the donor nucleus cell to the denuclear egg. After microinjection and electrofusion to prepare a nuclear transfer embryo of a canine animal transformed with the PEPCK gene, using this nuclear transfer embryo to produce a transgenic cloned canine animal overexpressing the PEPCK gene, to complete the present invention.
  • KCTC 11360BP canine nuclear transfer embryo
  • Still another object of the present invention is to prepare a donor nucleated cell comprising the steps of: (a) transforming a somatic cell line derived from a canine animal with a PEPCK encoding nucleic acid; (b) removing nuclei from mature eggs of canine animals; (c) a method of producing a nuclear transfer embryo in a canine animal transformed with a PEPCK gene comprising the step of microinjecting and electrofusion of the donor nucleated cells of step (a) into the denuclear egg of step (b).
  • Still another object of the present invention is to provide a method for producing a transgenic cloned canine animal that overexpresses PEPCK, comprising the step of grafting the nuclear transfer embryo into the fallopian tube of the surrogate mother to give birth.
  • Still another object of the present invention is to provide a transgenic cloned canine animal that overexpresses the PEPCK produced by the above method.
  • the present invention provides a canine nuclear transfer embryo (KCTC 11360BP) formed by transplanting a canine animal-derived somatic nucleus transformed with a nucleic acid encoding PEPCK into a denuclearized egg.
  • KCTC 11360BP canine nuclear transfer embryo
  • the present invention comprises the steps of (a) preparing a donor nucleated cell comprising the step of transforming the somatic cell lines derived from canine animal with PEPCK encoding nucleic acid; (b) removing nuclei from mature eggs of canine animals; (c) a method of producing a nuclear transfer embryo in a canine animal transformed with a PEPCK gene comprising the step of microinjecting and electrofusion of the donor nucleated cells of step (a) into the denuclear egg of step (b).
  • the present invention provides a method for producing a transgenic cloned canine animal overexpressing PEPCK comprising the step of transplanting the nuclear transfer egg into the fallopian tube of the surrogate mother.
  • the present invention also provides a transgenic cloned canine animal that overexpresses the PEPCK produced by the above method.
  • Cloned canine animals that overexpress PEPCK obtainable according to the present invention can be used as a diabetic animal model in clinical trials of new diabetes therapeutics, and are expected to contribute to the development of diabetes therapeutics as well as antidiabetic effects.
  • Figure 1 shows the activity of PEPCK promoter in dogs in H41IIE cells.
  • Figure 2 shows the activity of the dog PEPCK promoter in H41IIE cells by Western blot analysis.
  • Figure 3 shows a schematic diagram of the recombinant expression vector pGL3_dPEPCK according to the present invention.
  • Figure 4 shows the results of PCR analysis of the genomic DNA of the transgenic donor cells and transformed cloned dogs.
  • Figure 5 shows the results of confirming the expression of EGFP under normal light (a) and fluorescence (b) (left dog: normal cloned dog Boston Tare, right dog: transformed cloned beagle).
  • Figure 6a to 6c shows the results of the microsatellite analysis of the donor nucleus, cloned dogs and surrogate mother, donor nucleus and DMP-108. It can be seen that the peak value of DMP110 is the same, and this shows that the donor nucleus and the copy mutant are genetically identical.
  • Figures 7a to 7b is confirmed by PCR that the presence of the foreign gene PEPCK in the seven breeders produced by the natural breeding of the replica and the normal bitches.
  • nuclear transplant' refers to a genetic engineering technology that artificially binds nuclear DNA of another cell to a cell without a nucleus to have the same trait.
  • nuclear transplant refers to an egg into which donor nucleated cells are introduced or fused.
  • the term 'cloning' is a genetic engineering technique that creates a new individual with the same set of genes as one individual.
  • cells, embryonic cells, fetal cells and / or animal cells may be combined with nuclear DNA sequences of other cells. It means having a substantially identical nuclear DNA sequence.
  • 'donor nucleus cell refers to a cell or cell nucleus that delivers the nucleus to a nucleus pulposus that is a nuclear receptor.
  • nucleated egg' used in the present invention refers to an egg whose original nucleus is removed through a denuclearization process and which receives a nucleus from a donor nucleus cell.
  • 'mature egg' refers to an egg that has reached the second period of meiosis.
  • 'denuclear egg' refers to the removal of the nucleus of an egg.
  • the term 'fusion' refers to the binding of a donor nucleated cell to a lipid membrane portion of a nucleus cell.
  • the lipid membrane can be the plasma membrane or nuclear membrane of a cell. Fusion can occur by applying electrical stimulation when the donor nucleus and nucleus ova are located adjacent to each other or when the donor nucleus cells are located in the perivitelline space of the nucleus ova.
  • the term 'activation' refers to stimulating cells to divide before, during, and after the nuclear transfer stage.
  • the present invention refers to stimulating cells to divide after the nuclear transfer step.
  • 'canine animals' may include dogs, wolves, foxes, jackals, coyote, hunters and raccoons. Preferably dogs or wolves are included.
  • the dog is known to be domesticated by wild wolves, and thus wolf and dog have the same number of chromosomes and similar changes in gestation and sex hormones (Seal US et al., Biology Reproduction, 1979, 21: 1057-). 1066).
  • Step 1 Preparation of Donor Nuclear Cells Transformed with Nucleic Acids Encoding PEPCK
  • the full length promoter sequence of SEQ ID NO: 1 is as follows.
  • the -2349 promoter and the -746 promoter, and in particular, the -746 promoter were confirmed to strongly induce the expression of the coding sequence under its control. Therefore, in the present invention, it is preferable to transform the PEPCK encoding nucleic acid by operably linking with the -746 promoter variant.
  • the PEPCK gene can be prepared by PCR using a genomic DNA of a specific individual as a template and oligonucleotides having complementary nucleotide sequences at both ends thereof with reference to known PEPCK genes of the individual. Can be. Alternatively, the compounds may be chemically synthesized by referring to the nucleotide sequence of the PEPCK gene of a specific known individual, or may be prepared using a commercially available automated DNA synthesizer (eg, which can be purchased with BioSearch, Applied Biosystems TM, etc.). have. In the present invention, the PEPCK gene is derived from a canine animal, preferably a dog.
  • the vector should be in the form of a recombinant expression vector.
  • the recombinant expression vector is a control sequence (e.g., promoter, secretory sequence, enhancer, upstream activation sequence, transcription) capable of functioning in PEPCK encoding nucleic acid and canine pancreatic beta cells in a commercially available base vector (i.e., backbone vector). And terminators).
  • the recombinant expression vector preferably includes a selection marker.
  • antibiotic resistance genes such as kanamycin resistance gene, neomycin resistance gene and green fluorescent protein may be used.
  • the PEPCK coding nucleic acid includes a base sequence derived from hepatocytes of beagle dogs
  • the promoter includes a promoter removed from the full-length promoter naturally present in the dog's PEPCK gene up to -746 bases, and the selection marker, a recombinant expression vector 'pGL3-dPEPCK' comprising a neomycin resistance gene and a green fluorescent protein.
  • pGL3-Basic Promega Co., Madison, WI, US
  • somatic cells derived from canines can be used as donor nucleated cells.
  • the somatic cells used in the present invention may be obtained from embryonic cells, fetus cells, juvenile cells, and adult cells of canine animals.
  • Somatic cells that can be used in the present invention include, but are not limited to, cumulus cells, epithelial cells, fibroblasts, nerve cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, erythrocytes, macrophages, monocytes, muscle Cells, B lymphocytes, T lymphocytes, embryonic stem cells, embryonic germ cells, fetal cells, fetal cells and embryonic cells.
  • the somatic cells used in the present invention may be adult, natural or fibroblasts of a replied fetus. More preferred are fibroblasts of normal fetuses in the present invention.
  • Somatic cells provided as donor nucleated cells can be obtained from a method for preparing a surgical specimen or a biopsy specimen, and single cells can be obtained from the specimen using known methods. For example, aseptically dissecting a portion of tissue from a subject animal to obtain the surgical specimen or biopsy specimen, which is finely chopped, treated with collagenase, and then cultured in a tissue culture medium. . After 3-4 days of incubation in the tissue culture medium, it is confirmed that it grows in the culture dish, and when fully grown, some of them are frozen and stored in liquid nitrogen for later use, and others are continuously cultured for use in nuclear transfer. Is carried out. It is preferable that the cells to be used for nuclear transfer by continuing cultivation are prevented from growing excessively on the premise of 10 passages or less.
  • the culture culture medium in the above may be known in the art, for example, TCM-199, DMEM (Dulbecco's modified Eagle's medium) and the like.
  • the above-mentioned donor nucleated cells are transformed with a recombinant expression vector containing the prepared PEPCK encoding nucleic acid.
  • Transformation may proceed according to known methods, for example calcium phosphate transfection, electrophoresis, transduction, DEAE-dextran mediated transfection ), Microinjection, cationic lipid-transfection, ballistic introduction, and the like.
  • a recombinant expression vector comprising a PEPCK encoding nucleic acid is introduced into the cell by the transformation, and then into the nucleus and then inserted into genomic DNA at the time of fission.
  • the genomic DNA of the somatic cell line of the canine naturally contains the PEPCK gene, but according to the present invention, as the foreign PEPCK encoding nucleic acid is artificially introduced, the PEPCK gene will be over-expressed when compared to wild-type canine animals.
  • the foreign PEPCK encoding nucleic acid when the foreign PEPCK encoding nucleic acid is located under the control of a promoter capable of inducing its overexpression (e.g., the -746 variant described above), the PEPCK gene will be more overexpressed.
  • 'overexpression' means that a large amount is expressed compared to wild-type canine animals.
  • Canines unlike other mammals, stay in the fallopian tubes for several hours after ovulation, and immature eggs become mature eggs.
  • the egg is ovulated to mature eggs, the second phase of metaphase II, while the canine egg is ovulated to the first period of meiosis and stays in the fallopian tube for 48-120 hours. It is characterized by a maturation process.
  • many researchers have studied (Lee et al, Reprod. Domest. Anim., 42 (6): 561-5, 2007; Lee et al, Zygote, 15 (4): 347-53, 2007
  • maturation efficiency of eggs is still low in canines. Therefore, it is most preferable to recover mature eggs in canine animals and use them as nucleus-nucleated eggs for somatic cell nuclear transfer.
  • the method of determining ovulation time in canine animals to recover mature eggs is not limited to this, for example, but is determined by the optimal method when judging keratinous epithelial cells by 70% or more through vaginal cell smear test. There are methods of checking the growth and development of follicles in real time through ultrasound images and determining the appropriate time by measuring plasma progesterone.
  • the degree of oocyte maturation by measuring the concentration of progesterone in the blood of the donor dog providing the nucleus pulmonary egg.
  • concentration of progesterone is 4.0 to 7.5 ng / mL is considered as the ovulation day to recover the egg.
  • concentration of the plasma progesterone is lower than the concentration of plasma progesterone determined to be the ovulation day at the time of recovery of the general egg known.
  • a surgical method including anesthetizing a subject animal and then opening it may be used.
  • the tubal resection is a method of surgically cutting the fallopian tube and perfusing the embryo collection medium into the fallopian tube to obtain a perfusion solution and recovering the egg from the perfusion solution.
  • mature oocytes in vivo can be recovered by mounting the catheter in the fallopian tube and injecting perfusion fluid into the fallopian tube-uterine junction using a needle. This method does not damage the fallopian tube, so the animal that gives the egg can be used for the next estrus.
  • the recovery of mature eggs in vivo uses a catheterized method that does not damage the fallopian tubes.
  • the front of the needle developed by the present inventors is rounded so that the egg can be recovered by using a 16 gauge zone (Sonde) that can be easily attached to the entrance of the fallopian tube.
  • the egg-recovering needle which has been rounded, is inserted into the oviduct and perfused with the oocyte-recovering medium at the oviduct-uterine junction so that the perfusion solution flows into the egg-recovering needle, and the perfusion solution is examined under a microscope. This method is used to obtain mature eggs by speculum.
  • denuclearization of the nucleus pulposus can be carried out using two methods.
  • One method is to remove the cumulus cells of mature nucleated pulmonary eggs, and then use a microneedle to incise a portion of the zona pellucida of the nucleus pulposus to form an incision through which the first pole, the nucleus and cytoplasm of the egg (as little as possible Quantity).
  • Another method is to remove the oocytes of the nucleus pulposus egg, then stain the egg and remove the nucleus of the first polar body and the egg using aspiration pipet.
  • denuclearization is carried out by the squeezing method (Enucleation), which is required to form an incision in the egg. This is done by immobilizing the nucleus pulmonary egg with a holding micropipette and then removing the first pole, the egg nucleus and some cytoplasm.
  • Endcleation the squeezing method
  • a more specific method is as follows. For example, after the incision is rotated to position the incision vertically, the fixation pipette is positioned at the bottom of the egg so that the egg cannot move downward, and then the incision pipette is pressed on the egg to include the first polar body. 10-30% denuclearization of the cytoplasm.
  • the incision of the egg is rotated vertically in the 3 o'clock direction, and then the fixation pipette and the incision pipette are pressed from the top and bottom to perform 10-30% denucleation of the cytoplasm including the first polar body.
  • the denuclearized group 1 eggs are washed with TCM-W and placed in TCM 199 (B-1) for IVM until nuclear transfer. Since the egg after denuclearization is very fragile, use a mouse pipette with an inner diameter of at least 300 ⁇ m to ensure that the cytoplasm of the egg does not escape through the incision after the operation.
  • Step 3 Microinjection and Fusion / Activation of Donor Nucleus Cells
  • Microinjection of donor nucleated cells into denuclearized eggs can be performed by injecting donor nucleated cells between the cytoplasm and the zona pellucida of denuclearized eggs using a transplant pipette.
  • the denucleated oocytes in which the microinjection of the donor nucleus cells are completed are electrically fused with the donor nucleus cells using a cell manipulator.
  • the current may be alternating current or direct current, and may be carried out under a voltage of 1.5 to 4.0 kV / cm.
  • Preferably it is DC voltage 1.9-2.2kv / cm, More preferably, it is 2.1kv / cm,
  • the time is 15-45 kV, More preferably, 30 kV,
  • the recovery number is 1-3 times, More preferably, Can be performed twice.
  • Fusion by electric stimulation of donor nuclear cells and eggs can be carried out in the medium for fusion.
  • a medium containing mannitol, Mg 2 SO 4 , HEPES, and BSA may be used.
  • 0.2-0.3 M mannitol solution, 0.4-0.6 mM HEPES (addition of 0.01-0.2 mM CaCl 2 and 0.01-0.2 mM MgSO 4 ) is performed in a medium in which 0.05-0.1% (w / v) BSA is mixed.
  • BSA 0.05-0.1% (w / v) BSA is mixed.
  • Step 4 Activation of the Fusion Nuclear Transfer Egg
  • Activation of the fused nuclear transfer embryo refers to the process of resuming the cell cycle stopped during the second meiosis during the in vitro maturation stage. To this end, the high activity of MPF, CSF, etc., which stops the cell cycle, should be lowered, and the low activity of APC, which promotes metastasis from the second period of meiosis, should be increased.
  • the concentration of Ca 2+ ions in cells must be increased to induce chromosome condensation and embryonic development.
  • physical methods include mechanical stimulation, heat, and direct current.
  • Chemical methods include ethanol, inositol triphosphate, Ca 2+ or Sr 2+ , cytokalcin B, calcium ionophore, 6-dimethylaminopurine, cycloheximide, and pobol 12-myristate 13-acetate.
  • the chemical method preferably, a method of treating DMAP (6-dimethylaminopurine) to the fused eggs for 2-4 hours may be used.
  • an electrical activation method it can be performed 1-3 times for 30-60 mA under a DC voltage of 1.5 to 2.5 kV / cm.
  • Example 1 Construction of a promoter capable of inducing overexpression of PEPCK
  • Example 1-1 Cell culture
  • Rat hepatocytes (H4IIE) sold at the ATCC institute were maintained at 37 ° C. in DMEM (50 U / ml penicillin and 50 / ml streptomycin) with 10% FBS.
  • Example 1-2 Construction of a Promoter and Recombinant Expression Vector Comprising the Same
  • PEPCK promoter plasmid Several sites of the PEPCK promoter were made from genomic DNA of beagle dog fibroblasts, including NheI at the 5 'end and NcoI at the 3' end. The amplified fragments were cut out with NheI, NcoI restriction enzymes and transferred to pGL3-basic vector without promoter (Promega Co., Madison, Wis., USA) to construct a "recombinant pGL3_PEPCK promoter plasmid".
  • Transient transfection was performed using lipofectamin TM 2000.
  • H4IIE cells were transfected with Rous sarcoma virus (RSV) -lacZ plasmid with luciferase constructs. Briefly, during the day before transfection, 3 ⁇ 10 5 cells were cultured in a 6 well tissue dish and 0.5 ⁇ g of RSV-lacZ plasmid and 4 ⁇ g of luciferase construct were transduced into the cells in serum-free conditions. Specified.
  • RSV Rous sarcoma virus
  • promoter variants removed to -2349 nt and -746 nt from the full-length promoter naturally present in the PEPCK gene increased luciferase activity by 110- and 130-fold, respectively.
  • promoter variants removed to -3180 nt and -1018 nt from the PEPCK promoter did not induce a significant increase in luciferase activity.
  • the luciferase activity was the strongest in the promoter variants removed from the full-length PEPCK promoter up to -2349 nt and -746 nt.
  • Example 1-4 Western blotting
  • H4IIE rat liver tumor cell lines were obtained and washed through cold sterile solution of 0.9% NaCl, and proteins were isolated via Pro-prep (InTron. Inc., Seoul, Korea). 30 ⁇ g of cytosolic protein per lane was electrophoresed on 10% SDS-poly acrylamide gel electrophoresis (PAGE) gel, and polyvinylidene fluoride (PVDF) transfer membrane (Perkin Elmer Co.) via TransBlot Cell (TE-22, Hoefer co.). , Wellesley, MA).
  • PAGE SDS-poly acrylamide gel electrophoresis
  • PVDF polyvinylidene fluoride
  • the transferred blot was blocked in TBS-T with 5% fat free milk for 120 minutes and reacted with PEPCK (diluted 1: 500, CAYMAN) or GAPDH (diluted 1: 2000, Assay Design Inc.) primary antibody. After washing the blot membrane using a buffer, and reacted with a quantitative horseradish peroxidase-conjugated secondary antibody (diluted 1: 2500, Santa Cruz, CA, USA) for 1 hour at room temperature. The blot membrane was washed again, reacted with ECL chemiluminescent reagent (Amersham Biosciences), and developed on Biomax TM Light film (Kodak) for 1-5 minutes.
  • PEPCK diluted 1: 500, CAYMAN
  • GAPDH diluted 1: 2000, Assay Design Inc.
  • Examples 1-3 the promoter variants removed from the full-length PEPCK promoter up to -2349 nt and -746 nt showed the strongest activity.
  • Examples 1-4 it was examined whether -2349 nt and -746 nt variants in DePC (dexamethasone) induced PEPCK expression in PEPCK expression induced by the PEPCK promoter.
  • DePC depolymer induced PEPCK expression in PEPCK expression induced by the PEPCK promoter.
  • H4IIE cells were treated with 1 mM Dex for 24 hours
  • PEPCK expression levels increased compared to cells in the absence of Dex.
  • Significant increase in PEPCK expression was observed in the presence of Dex in transfected cells.
  • PEPCK expression levels were higher in -746 nt variants than in -2349 nt variants in the PEPCK promoter in the presence of Dex (FIG. 2). This result is consistent with Example 1-3, where the -746 nt variant had the highest luciferase activity.
  • PEPCK expression cassette plasmids were constructed in several steps.
  • PEPCK cDNA was prepared as a template for hepatocytes of beagle dogs, and the primer was 5'-cccccatggcgaggtcatcccaaaacaag-3 '(SEQ ID NO: 10) and the reverse primer 5'-ccctctagagggtctgatcacatctggct- 3 '(SEQ ID NO: 11).
  • the amplified fragment was cut with NcoI, XbaI restriction enzyme and transferred to recombinant pGL3_PEPCK promoter plasmid.
  • EGFP was constructed with pIRES2_EGFP (BD Biosciences Clontech, USA) as a template, primer 5′-end EcoRV, 3′-end forward primer 5'-gatatccacaaccatggtgagcaagggcga-3 '(SEQ ID NO: 12) and reverse primer 5' It was amplified using -cggatccttacttgtacagctcgtccatgcc-3 '(SEQ ID NO: 13).
  • Amplified fragments were cut out with EcoRV, BamHI restriction enzymes and transferred to pIRES Neo vector (BD Biosciences Clontech, USA).
  • the selection cassette was amplified using recombinant pIRES EGFP Neo plasmid.
  • the primer was amplified using the forward primer 5'-ggacgcgttgacattgattattgact-3 '(SEQ ID NO: 14) and the reverse primer 5'-gcgctagctagaggtcgacggtatac-3' (SEQ ID NO: 15) including MulI at the 5 'end and NheI at the 3' end.
  • the amplified fragment was cut with MulI, NheI restriction enzyme and transferred to the recombinant pGL3_PEPCK promoter PEPEK cDNA plasmid.
  • Each sequence base was identified by nucleotide sequencing (Genotech Co. Ltd., Daejeon, Korea).
  • fetal fibroblasts were recovered from fetuses isolated by caesarean section from 30-day-old gestational embryos through fertilization and embryo transfer, and adult cells were biopsied from the abdominal skin tissue of adult dogs.
  • Establishment of re-replicated fetal fibroblasts confirms pregnancy by ultrasound of 30-day-old dogs after pregnancy through transplantation of cloned eggs.
  • fibroblasts are established from fetuses isolated from caesarean section. The cells thus obtained were chemically and physically washed, and then cultured in Dulbecco's Modified Eagles' Medium (DMEM) until they were at least 90% cold in a culture dish and frozen in liquid nitrogen.
  • DMEM Dulbecco's Modified Eagles' Medium
  • the overexpressed construct of the PEPCK gene prepared in Example 2-1 was linearized with MulI restriction enzyme treatment.
  • the linearized fragments were sorted and transfected into the donor nucleated cells established in Example 2-1.
  • the donor nucleated cells were cultured in a culture dish so that the growth rate covered the surface area of 70-80% of the culture dish.
  • the overexpression of the PEPCK gene and Lipofactamine 2000 were mixed in the cell culture at a ratio of 1 ⁇ g: 5 ⁇ l and allowed to stand at room temperature for 20 minutes before dispensing.
  • the cultures were replaced with DMEM supplemented with 350 ⁇ g / ml G-418 and incubated for 4 weeks to sort neomysin resistant cells among these cells.
  • DMEM fetal
  • DMEM fetal-derived fibroblasts
  • cell lines that consistently express EGFP fluorescence were selected and screening of these cell lines was performed via PCR.
  • Example 2-5 Canine cloning
  • the oocytes were treated with 5 ⁇ g / ml bisbenzimide to stain the nucleus of the egg and somatic cell nuclear transfer was performed.
  • Micro-manipulation of the oocytes from which the oocytes were removed was injected with donor nuclei into denuclearized oocytes into the urethral cavity, followed by electrical stimulation with 0.26M mannitol solution 0.5mM HEPES, 0.1mM CaCl 2 and 0.1mM MgSO 4 ). Electrical activity and fusion were performed. Electrofusion was performed using BTX Electro-Cell Manipulator 2001 to provide electrical stimulation at 30 Hz with two direct current voltages of 1.9, 2.0, 2.1 or 2.2 kV / cm.
  • Example 2-6 Surgical implantation of cloned eggs in surrogate mother
  • the cells of the litter were compared with those of surrogate mother cells, donor nucleated cells and egg donor dogs.
  • GDNA was extracted from each sample and paternity was performed through 10 markers (PEZ1, PEZ 3, PEZ 5, PEZ 6, PEZ 8, PEZ 12, PEZ 20, FHC 2010, FHC 2054, and FHC 2079). .
  • genomic DNA of the cells and the transgenic dog umbilical cord were isolated through the G-DEX TM IIc genomic DNA extraction kit (Intron Biotechnology, Suwon, Korea). 1 ⁇ g of genomic DNA was amplified through a 20 ⁇ l PCR reaction containing 1 unit of Ex-Taq polymerase (TaKaRa, Japan.), 2 mM dNTP, 10 pmol of specific primers. The PCR reaction proceeded by separating the double strands at 95 ° C. for 30 seconds, binding the primers to the single strands at 62 ° C. for 30 seconds, and continuing the base at 72 ° C. for 1 or 3 minutes.
  • Primers for the selection cassette are forward primer 5'- catgaagcagcacgacttct-3 '(a primer, SEQ ID NO: 16) and reverse primer 5'-cctaggaatgctcgtcaaga-3' (b primer, SEQ ID NO: 17), and for PEPCK expression cassette
  • Primers are forward primer 5'-tcctataggccttggctg-3 '(c primer, SEQ ID NO: 18) and reverse primer 5'-gggtctgatcacatctggct-3' (d primer, SEQ ID NO: 19).
  • PCR products (8 ⁇ l) were electrophoresed on 0.7% agarose gel, stained with ethidium bromide, and photographed under UV-illumination. Photos were scanned with Gel Doc EQ (Bio-rad Laboratories, Inc.).
  • FIG. 3 (A) The structure of the PEPCK expression cassette construct and the selection cassette construct in the overexpressed construct of the PEPCK gene prepared in Example 2-1 can be seen in Figure 3 (A).
  • Selective cassette constructs include CMV, EGFP, Neo.
  • the PEPCK expression cassette construct contains -749 nt of the PEPCK promoter, PEPCK cDNA gene, SV40 poly A signal. Screening of transfected cell lines was performed via PCR.
  • a and b primers were used to amplify the ⁇ 1 kb fragment containing the Neo site and EGFP ( Figure 3 (B)).
  • c primer and d primer were used to amplify the ⁇ 2.7 kb and 5.2 kb fragments (FIG. 3 (C)).
  • the 5.2 kb fragment contains an endogenous PEPCK site and the 2.7 kb fragment contains a PEPCK expression cassette site.
  • the cell colonies thus identified were expanded, frozen at a concentration of 0.6 ⁇ 10 6 cells via secondary and quantitative identification and used for nuclear replacement.
  • Candidate genomic DNA was isolated from the umbilical cord of candidate transgenic puppies. As a result, of the three animals, two positive animals (number 1 and number 3) were identified (FIG. 3).
  • a SDT S; Voltage kV, D; Energization time (usec), T; Number of energization
  • 336 dog cloned eggs were made and transplanted into 23 surrogate mothers.
  • Adult fibroblasts replied fetal fibroblasts and normal fetal fibroblasts were used as donor nuclei, respectively, and their nuclear fusion rates were 96.7%, 97.5% and 77.3%.
  • the litter yield from each cell was 11.1%, 30% and 50%, and the litter replication efficiency was significantly higher when normal fetal fibroblasts were used.
  • normal fetal fibroblasts were used as donor nuclei
  • healthy cloned beagle dogs of 380 g and 360 g of body weight were produced at birth, and paternity was confirmed to match the donor nucleus.
  • Example 3-4 Aspects of produced cloning
  • Example 2-8 PCR was performed in the same manner as in Example 2-8 and Example 3-1 to see whether PEPCK, a foreign gene, was present in seven litters born by cross-bringing the PEPCK overexpressing transgenic cloned dog (DMP110), a diabetic disease model, with a normal female. It was confirmed through.
  • DMP110 transgenic cloned dog
  • PEPCK was present in blood and semen samples of cloned dog DMP110, and the presence of the foreign gene PEPCK in the offspring 2, 3, and 7 of its offspring. It was confirmed that the foreign gene PEPCK is normally inherited.
  • Cloned canines that overexpress PEPCK obtainable according to the invention can be used as a diabetic animal model in clinical trials of new diabetes therapeutics. Therefore, it will contribute to the development of diabetes treatment without side effects as well as diabetes treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 PEPCK (Phosphoenol Pyruvate Carboxykinase)를 과발현하는 형질전환 복제 개과 동물 및 이의 생산방법에 관한 것이다. 보다 구체적으로 본 발명은 PEPCK 유전자로 형질전환된 개과 동물 유래 체세포 핵을 탈핵된 난자에 이식하여 형성된 개과 동물의 핵 이식란과 이의 생산방법 및 상기 핵 이식란을 대리모의 난관에 이식하여 생산된 PEPCK를 과발현하는 형질전환 복제 개과 동물 및 이의 생산방법에 관한 것이다. 본 발명에 따른 PEPCK 유전자를 과발현하는 형질전환 복제 개과 동물은 당뇨병 동물 모델로서, 제2형 당뇨병의 유전적 원인 규명과 진단 시약 및 치료제 개발에 이용될 수 있다.

Description

PEPCK 과발현 형질전환 복제 개과 동물 및 이의 생산방법
본 발명은 PEPCK(Phosphoenol Pyruvate Carboxykinase)를 과발현하는 형질전환 복제 개과 동물 및 이의 생산방법에 관한 것이다. 보다 구체적으로 본 발명은 PEPCK 유전자로 형질전환된 개과 동물 유래 체세포 핵을 탈핵된 난자에 이식하여 형성된 개과 동물의 핵 이식란과 이의 생산방법 및 상기 핵 이식란을 대리모의 난관에 이식하여 생산된 PEPCK를 과발현하는 형질전환 복제 개과 동물 및 이의 생산방법에 관한 것이다.
우리나라도 경제가 발달하면서 식생활의 변화, 스트레스, 공해, 인스턴트 식품의 피해 등으로 대사성 질환이 지속적으로 증가하고 있는 추세이며, 특히 당뇨병(diabetes mellitus)의 발병 및 당뇨병으로 인한 사망률이 매년 증가하고 있는 추세이다. 당뇨병의 유병률은 인종이나 종족 생활환경 등에 따라 차이가 있으나, 경제가 발전하고 생활양식이 서구화됨에 따라 전세계적으로 유병률이 증가하고 있다. 우리나라에서도 1970년 1% 미만으로 추정되던 당뇨병 유병률이 1980년대 말에는 약 3%, 1990년대에는 5-8%로 점차 증가하는 추세에 있다 (대한당뇨병학회, 당뇨병학, 서울, 고려의학, 1998). 우리나라 사람들은 서구인에 비하여 췌장 베타세포의 인슐린 분비 능력이 낮은 것으로 보고되고 있으며, 비만형이 많은 것이 특징으로 되어 있다.
당뇨병은 가장 흔한 대사성 질환으로, 여러 가지 요인들이 관여된 복잡한 질환으로, 전체 인구의 약 5~8% 정도가 당뇨병을 앓고 있다. 당뇨병은 유전, 바이러스 또는 유해 화합물 등의 여러 원인에 의해 유발되는데 췌장 베타세포에서 분비되어 혈당을 낮추는 호르몬인 인슐린 (insulin)에 문제가 생겨 혈당이 증가되어 유발되는 질환이다. 당뇨병은 췌장 베타세포가 파괴되어 인슐린의 절대량이 부족하여 유발하는 제1형 당뇨병 (Type 1 diabetes, insulin-dependent diabetes mellitus)과, 생체 내 인슐린에 대한 수용체 및 신호전달에 관련된 물질의 이상으로 인슐린의 효율이 떨어지는 제2형 당뇨병 (Type 2 diabetes, noninsulin-dependent diabetes mellitus)으로 구분할 수 있으며, 적절한 치료 없이 오랫동안 지속되면 눈(diabetic retinopathy), 신장(diabetic nephropathy), 신경(diabetic neuropathy) 등의 손상을 유발하여 결국 죽음에 이르게 하는 질환이다 (Harrison, T.R. Diabetes Mellitus; Principles of Internal Medicine 11th ed. 1778-1797, 1987; Mahler, R.J. et al, Type 2 Diabetes Mellitus : Update of diagnosis, pathophysiology, and treatment. J. Clin. Endocrinol. Metab. 84(4), 1165~1169, 1999).
글루코오스 생산의 제어는 당뇨병 치료의 주요 측면 중 하나이다. 제2형 당뇨병에서는 식후 및 공복시 혈액 글루코오스가 높은 수준을 보인다 (Consoli, A. et al., J. Diabetes 38, 550-7, 1989; Shulman, GI Am. J. Card. 84 (Suppl. 1A):3J-10J, 1999). 과도한 간 글루코오스 생산(HGP)이 제2형 당뇨병 환자에서 특이적으로 관찰되는 공복 고혈당증과 관련이 있다 (Gastadeli, A. et al., Diabetes 49:1367-1373, 2000). 글루코오스 신합성이 글루코오스 생산 증가의 주요 경로인 것으로 여겨지고 있다 (Defronzo. R. A. et al., Diabetes Care 15:318-367, 1992).
포스포엔올피루베이트 카르복시키나제 (PEPCK)는 글루코오스 신합성 경로에 있어서 주요한 조절 효소이다. PEPCK는 이러한 경로에 있어서 플럭스 제어-속도 제한 효소로 여겨지기 때문에 (Cimbala, A. L. et al., J.Biol.Chem. 257:7629-7636, 1982), 이 효소의 억제는 글루코오스 항상성을 개선시키기 위한 새로운 방안이 될 것이다. 글루코오스 신합성의 억제를 통한 간의 글루코오스 생산을 제어하기 위한 이전의 시도는 HGP를 억제하는 메트포르민과 같은 비구아나드제로 한정된다 (Derfronzo, R.A. et al., Diabetes Review 6:89-131, 1998). 그러나, 메트포르민은 위장관 장애 및 락트산 과다증과 같은 부작용을 갖는 것으로 알려져 있다. PEPCK의 억제는 우수한 역가를 제공하고, 부작용을 감소시키고, 제2형 당뇨병에 대한 새로운 치료법을 제공할 것이다. 따라서 PEPCK를 과발현하여 당뇨병이 유발된 동물 모델이 필요할 것이다.
본 발명자는 당뇨병 동물 모델을 제조하기 위하여 개과 동물에서 유래한 체세포주를 PEPCK 유전자로 형질전환시켜 공여핵원세포를 준비하고, 개과 동물의 성숙난자로부터 핵을 제거하고, 상기 탈핵 난자에 상기 공여핵원세포를 미세주입하고 전기 융합시켜 PEPCK 유전자로 형질전환된 개과 동물의 핵 이식란을 제조한 후 이 핵 이식란을 이용하여 PEPCK 유전자를 과발현하는 형질전환 복제 개과 동물을 생산하고, 본 발명을 완성하기에 이르렀다.
본 발명의 목적은 PEPCK (Phosphoenol Pyruvate Carboxykinase)를 코딩하는 핵산으로 형질전환된 개과 동물 유래 체세포 핵을 탈핵된 난자에 이식하여 형성된 개과 동물의 핵 이식란 (KCTC 11360BP)을 제공하는데 있다.
본 발명의 또 다른 목적은 (a) 개과 동물에서 유래한 체세포주를 PEPCK 코딩 핵산으로 형질전환시키는 단계를 포함하여 공여핵원세포를 준비하는 단계; (b) 개과 동물의 성숙난자로부터 핵을 제거하는 단계; (c) 상기 (b) 단계의 탈핵 난자에 (a) 단계의 공여핵원세포를 미세주입하고 전기 융합시키는 단계를 포함하는 PEPCK 유전자로 형질전환된 개과 동물의 핵 이식란의 생산방법을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 핵 이식란을 대리모의 난관에 이식하여 산자를 출생하는 단계를 포함하는 PEPCK를 과발현하는 형질전환 복제 개과 동물의 생산방법을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 방법에 의하여 생산된 PEPCK를 과발현하는 형질전환 복제 개과 동물을 제공하는데 있다.
상기 과제를 해결하기 위하여, 본 발명은 PEPCK (Phosphoenol Pyruvate Carboxykinase)를 코딩하는 핵산으로 형질전환된 개과 동물 유래 체세포 핵을 탈핵된 난자에 이식하여 형성된 개과 동물의 핵 이식란 (KCTC 11360BP)을 제공한다.
또한 본 발명은 (a) 개과 동물에서 유래한 체세포주를 PEPCK 코딩 핵산으로 형질전환시키는 단계를 포함하여 공여핵원세포를 준비하는 단계; (b) 개과 동물의 성숙난자로부터 핵을 제거하는 단계; (c) 상기 (b) 단계의 탈핵 난자에 (a) 단계의 공여핵원세포를 미세주입하고 전기 융합시키는 단계를 포함하는 PEPCK 유전자로 형질전환된 개과 동물의 핵 이식란의 생산방법을 제공한다.
또한 본 발명은 상기 핵 이식란을 대리모의 난관에 이식하여 산자를 출생하는 단계를 포함하는 PEPCK를 과발현하는 형질전환 복제 개과 동물의 생산방법을 제공한다.
또한 본 발명은 상기 방법에 의하여 생산된 PEPCK를 과발현하는 형질전환 복제 개과 동물을 제공한다.
앞서 주지된 바와 같이 당업계에 공지된 많은 당뇨병 치료제들이 심각한 부작용을 유발하고 있다. 당뇨병은 만성 질환이기 때문에 치료제 또한 장기간 복용하여야 한다는 점을 감안하면 당뇨병 치료제는 부작용으로부터 자유로워야 한다.
본 발명에 따라 수득 가능한 PEPCK를 과 발현하는 복제 개과 동물은 새로운 당뇨병 치료제의 임상 시험에 당뇨병 동물 모델로서 이용할 수 있어 당뇨 치료 효과뿐만 아니라 부작용이 없는 당뇨병 치료제를 개발하는데 기여할 것으로 예상된다.
도 1은 H41IIE 세포에서 개의 PEPCK 프로모터의 활성을 나타낸 것이다.
도 2는 H41IIE 세포에서 개의 PEPCK 프로모터의 활성을 웨스턴 블롯 분석으로 나타낸 것이다.
도 3은 본 발명에 따른 재조합 발현 벡터 pGL3_dPEPCK의 모식도를 나타낸 것이다.
도 4는 형질전환 공여핵원세포와 형질전환된 복제견의 유전체 DNA에 대한 PCR 분석 결과를 나타낸 것이다.
도 5는 일반광(a)과 형광(b)하에서 EGFP의 발현 유무를 확인한 결과를 나타낸 것이다(좌측견: 일반 복제견 보스턴 테이러, 우측견: 형질전환 복제견 비글).
도 6a 내지 6c는 공여핵원, 복제자견과 대리모의 Microsatellite 분석 결과를 나타낸 것으로, 공여핵원과 DMP-108. DMP110 피크값이 같음을 알 수 있고, 이를 통해 공여핵원과 복제산자가 유전적으로 일치함을 밝혔다.
도 7a 내지 도 7b는 복제 수캐와 일반 암캐의 자연교배로 생산된 7마리의 산자에서 외래 유전자인 PEPCK가 존재함을 PCR을 통해 확인한 것이다.
본 발명에서 사용된 용어 '핵 이식'은 핵이 없는 세포에 다른 세포의 핵 DNA를 인공적으로 결합시켜 동일한 형질을 갖도록 하는 유전자 조작기술을 말한다.
본 발명에서 사용된 용어 '핵 이식란'은 공여핵원세포가 도입 또는 융합된 난자를 말한다.
본 발명에서 사용된 용어 '복제'는 한 개체와 동일한 유전자 세트를 가진 새로운 개체를 만드는 유전자 조작기술로서 특히 본 발명에서는 세포, 배아 세포, 태아 세포 및/또는 동물 세포가 다른 세포의 핵 DNA 서열과 실질적으로 동일한 핵 DNA 서열을 갖는 것을 말한다.
본 발명에서 사용된 용어 '공여핵원세포'는 핵 수용체인 수핵 난자로 핵을 전달하는 세포 또는 세포의 핵을 말한다.
본 발명에서 사용된 용어 '수핵 난자'는 탈핵 과정을 통해 본래의 핵이 제거되고 공여핵원세포로부터 핵을 전달받는 난자를 말한다.
본 발명에서 사용된 용어 '성숙 난자'는 제2차 감수분열 중기까지 도달한 난자를 말한다.
본 발명에서 사용된 용어 '탈핵 난자'는 난자의 핵이 제거된 것을 말한다.
본 발명에서 사용된 용어 '융합'은 공여핵원세포와 수핵 난자의 지질막 부분의 결합을 의미한다. 예를 들어, 지질막은 세포의 플라스마 막 또는 핵막이 될 수 있다. 융합은 공여핵원세포와 수핵 난자가 서로 인접하게 위치해 있는 경우 또는 공여핵원세포가 수핵 난자의 위란강 (perivitelline space) 내에 위치해 있는 경우에 전기적 자극을 가함으로써 일어날 수 있다.
본 발명에서 사용된 용어 '활성화'는 핵 전이 단계 전, 핵 전이 단계 동안 및 핵 전이 단계 후에 세포가 분열하도록 자극을 주는 것을 말한다. 바람직하게는, 본 발명에서는 핵 전이 단계 후 세포가 분열하도록 자극을 주는 것을 말한다.
본 발명에서 '개과 동물'로는 개, 늑대, 여우, 재칼, 코요테, 승냥이 및 너구리가 포함될 수 있다. 바람직하게는 개 또는 늑대가 포함된다. 상기 개는 야생의 늑대가 가축화된 것으로 알려져 있으며 이에 따라 늑대와 개는 염색체 수가 동일하고 임신기간, 성 호르몬의 변화가 유사한 양상을 나타낸다 (Seal US et al., Biology Reproduction, 1979, 21:1057-1066).
제1단계: PEPCK를 코딩하는 핵산으로 형질전환된 공여핵원세포의 제조
(1) PEPCK(Phosphoenol Pyruvate Carboxykinase)를 과발현시킬 수 있는 프로모터의 제작
본 발명에서는, PEPCK의 과발현을 유도할 수 있는 프로모터를 제작하기 위해, PEPCK 유전자에 천연적으로 존재하는 전장의 프로모터(from nucleotides -3180 ~ +1 = 전사 시작 부위; 서열번호 1)와 이 전장의 프로모터로부터 -3180부터 -2349 염기까지, -3180부터 -1018 염기까지, -3180부터 -746 염기까지가 각각 제거된 프로모터를 제작하였다. 서열번호 1의 전장의 프로모터 서열은 하기와 같다.
-3180 gctagccatg gcttcctttc cactgtttac ctggaaggca
-3140 gctgttccct gcccccactc tcacctgctc acaccttttg agtcttggcc attctagact
-3080 gctgtgcagt ttccatggtg ccttctcagc ttccctgctc cacacaggct ttccagagtc
-3020 ctgctccctc cctcctcgga tcctgaggac agccaggctg cagcttcaac agcaacaaat
-2960 gtgcgtggaa cctcacaagg agaagtgaag acgttaactt tggagttgga aactattttt
-2900 ttctgtgtct actgcctcct tctccttctt tcagcaaaaa caattttgtc tgggttcaac
-2840 tttgtatatg gtattaaaag gaggagcagt cttgcatctt aagccagcct cgagaagtta
-2780 ggaggtcccc atggcattta ttgcagaagt gacaaatgca gcccatactg ggagaccatt
-2720 accattatga tttacacagt ccccgttggg ccctatcaac actgggatag ggacgccggg
-2660 gtggctcagg gcctgccttt ggctcaggtt gttatcctgg ggtccaggat cgagtcccac
-2600 atcgggctcc ctgcgaggag cctgtttctc cctttaccta tgtctctgcc tctctctgtg
-2540 tgtctctcgt gaataagtga ataaataaaa tttttaaaaa acaaaacact gggataagcg
-2480 aactttgtcc atacttctgc cgcgtgtcct caacatcctg gcttctgtct gcatcactct
-2420 tttccaacgg actcagtact ttcaggtaaa tctgcaacct gatgtttgcc ttttcatgtt
-2360 attttgaggg acagttgcaa aggaataatg ccagccttcc ctggggtcag tgtgaataat
-2300 taagcaattg gcggggggca gtggtagcct cctgttccta cattttaatc gagctggcta
-2240 tttctctcca ggaagactcc aaacataaac accttgaatt tatgggtagc atttagaacc
-2180 acaaataagt tctggtttct catttttgtt ttcaatctat gtgctcttcg agggaatgaa
-2120 acctatcaca gttttatcag caaaatggga atctctaccc atttggtgag atggaccgca
-2060 ctggcataaa tgtgtgtgtt gctgtgcatt tgaatggcta atttcactgg tgtcagatgc
-2000 taagacagtg tccctcagca actgaacatt acgtcgtagt tgaatttcga catgacacaa
-1940 acttatatgg ttggcagcgc cactaagaat gaaatctggg gacctaaatg ggaaataatt
-1880 ttaaactaaa tgaaaacctc agtttatact gaaagattca attggttaaa tacaaatctg
-1820 ggggggatcc ctgggtggct cagaggttta gtgcctgcct tcggcccagg gtgtgatcct
-1760 ggagtcctgg gatcgagtcc cgcgtcgggc tcccagcatg gagcctgctt ctccctctgc
-1700 ctgtgtctct gcctctttct ccctctctct gtgtatctca tgaataaata aaataaaaat
-1640 attaaaaaat acaaatctgg gtaaatgaga cattggaata ggttggcaat tttggtggaa
-1580 gttggtgatg tgtgtatacc taatgtcaca atgggaacca aggcttaagg ggtagtcctt
-1520 cagatattct tggtctgaga ttgccattcc caaagccttg tattcctata gctccttaag
-1460 gacacagtca cagaattatc tctgcacacc ccacgtggga ggcaggcaaa tccctaccca
-1400 ccgtcctcca aagcacaggg tgcccactga ctgcactgtt gggttccctg tgaagagtgg
-1340 gagcctggcc ccaagctcct gacttctcac ccagtgctct caaaatgcca gcaagtagca
-1280 ccagagttca ctgaattgga ctgaagttct tatggcttgc aaagcgaatt ctttacagct
-1220 ggcataaagg tctcattgct caagtgtaat ctagcaaaac caccaagccc cctcccctcc
-1160 ccagacgctc agactctcaa gggcattgag aagtgtgcag tcatcttttt gtagctgcat
-1100 ccagcccaga actacttgga gaatatatgg aaagttccag aaaagagaat ggcacctcac
-1040 aagggacagc atggtgaggt gctccagatc cccagtggct tatgttccaa tcttccctct
-980 atcactctac aaccaggagt tgggagtagc cacttggcct gcacgcattc agtgcctacc
-920 gtgtgctagg aaccgtacag acaaaaaata acaggacagg cagagattct tgcccttgga
-860 gagtttatat ttggggtggt gggcacacag gggagactca gtaaggttat tagccctccg
-800 ttaggtctgg acttttgcta atgagccaaa tgtttattta catttgggca catccttcct
-740 ataggccttg gctgtgtggt gacacctcac cactgctgtg ttttgtcagc cagcagccat
-680 cggtacacag aatgtgctgc caataaccct tgatgtccgg aaggtgttcc cgccagcctt
-620 gcaggatccc acctgcctgt cagtggaagg acggagtgtt ttacatcagc agtgaactgg
-560 gtcaaagttt agtcaatcac aagttgtgta agaacttgct gtggctggtc taaggacaaa
-500 ggcctcccag cactcattaa caactatctg ttcaatgatt atctccctgg ggcttattgt
-440 ggtgagcccg tccagaagca tgacggacag tggccatgat ccaaagtcct gcccctgacg
-380 tcagagacga gcctccctgg gtgtagccga ggggtggggc ctttctcctc aatgggattt
-320 aagaccagga ggctctgcga cccaacagcg agcacggcct tcccactggg aacgcacggc
-260 tactagcagg aagaaccgcg aaaagaaacc cttggatctc tcatcgaggt catcccaaaa
-200 caagaacagt aggtagagat ttttaattta cgtttctaaa aattacagag gtaacaccaa
-140 cccgtttcct tttctcctta gagcttcggc tgtctcgtga tgtgtcaccc aaagaagcat
-80 gtggagtttc tttgagggtg tctgtcattt tgttcaagga gcctgtgttt tctgtttcag
-20 gaagccttgg tgtcaagctt
이렇게 제작된 프로모터들 중에서 -2349 프로모터와 -746 프로모터, 그 중에서도 특히, -746 프로모터가 이의 조절하에 있는 코딩 서열의 발현을 강하게 유도함을 확인하였다. 따라서, 본 발명에서는 PEPCK 코딩 핵산을 -746 프로모터 변이체와 작동가능하게 연결하여 형질전환시키는 것이 바람직하다.
(2) PEPCK 코딩 핵산을 포함한 재조합 발현 벡터의 제작
PEPCK 유전자는 특정 개체의 게놈 DNA를 주형으로, 공지된 그 개체의 PEPCK 유전자의 염기서열을 참조하여 이들의 양 말단 부분에 상보적인 염기서열을 가진 올리고뉴클레오타이드를 프라이머로 이용하여 PCR을 실시함으로써 제조할 수 있다. 또는, 공지된 특정 개체의 PEPCK 유전자의 염기서열을 참조하여 화학적으로 합성하거나, 상업적으로 입수 가능한 자동 DNA 합성기 (예, 바이오서치, 어플라이드 바이오시스템TM 등으로 구입할 수 있는 것)를 이용하여 제조할 수도 있다. 본 발명에서 PEPCK 유전자는 개과 동물, 바람직하게는 개로부터 유래된 것이다.
본 발명에서 PEPCK 코딩 핵산을 벡터에 클로닝하여 공여핵원세포로 형질전환시키는 것이 적합하다. 본 발명은 개과 동물의 췌장 베타세포에서 PEPCK 유전자를 과발현시키는 것이므로 벡터는 재조합 발현 벡터 형태이어야 한다. 상기 재조합 발현 벡터는 상업적으로 입수 가능한 기본 벡터 (즉, 백본 벡터)에 PEPCK 코딩 핵산과 개과의 췌장 베타세포에서 기능을 발휘할 수 있는 조절 서열 (예, 프로모터, 분비 서열, 인핸서, 업스트림 활성화 서열, 전사종결인자 등)에 작동 가능하게 연결하여 제조할 수 있다. 특히 재조합 발현 벡터는 선택 마커를 포함하는 것이 바람직하며, 선택 마커로는 가나마이신 저항성 유전자, 네오마이신 저항성 유전자와 같은 항생제 저항성 유전자와 녹색 형광 단백질 등이 이용될 수 있다.
본 발명에서는 한 양태로서, 기본 벡터로서 상업적으로 입수 가능한 pGL3-Basic (Promega Co., Madison, WI, US)을 이용하여, PEPCK 코딩 핵산으로는 비글견의 간세포에서 유래된 염기서열을 포함하고, 프로모터로는 개의 PEPCK 유전자에 천연적으로 존재하는 전장의 프로모터로부터 -746 염기까지 제거된 프로모터를 포함하고, 선택 마커로는 네오마이신 저항성 유전자와 녹색 형광 단백질을 포함하는 재조합 발현 벡터 ‘pGL3-dPEPCK’를 제조하였다 (도 3 참조).
(3) 개과 동물로부터 유래한 공여핵원세포의 제조
공여핵원세포로는 개과 동물로부터 유래된 체세포가 사용될 수 있다. 구체적으로, 본 발명에서 사용된 체세포로는 개과 동물의 배아세포(embryonic cell), 태아세포(fetus cell), 유세포(juvenile cell), 성체세포(adult cell)로부터 수득될 수 있다.
본 발명에서 사용될 수 있는 체세포로는 예를 들면, 이에 한정되지는 않으나 난구세포, 상피세포, 섬유아세포, 신경세포, 각질세포, 조혈세포, 멜라닌 세포, 연골세포, 적혈구, 마크로파지, 단구세포, 근육세포, B 림프구, T 림프구, 배아 줄기세포, 배아 생식세포, 태아세포, 태좌세포 및 배아세포 등이 있다.
보다 바람직하게, 본 발명에서 사용되는 체세포는 성체, 자연개체 또는 재복제된 태아의 섬유아세포일 수 있다. 본 발명에서는 일반 태아의 섬유아세포가 보다 더 바람직하다.
공여핵원세포로 제공되는 체세포는 외과용 표본 또는 생체검사용 표본을 제조하는 방법으로부터 수득될 수 있으며 상기 표본으로부터 공지된 방법을 사용하여 단일세포를 수득할 수 있다. 예를 들면, 대상동물로부터 조직의 일부를 무균적으로 절개하여 상기 외과용 표본 또는 생체검사용 표본을 수득하고 이를 미세하게 세절하여 교원질 분해 효소(collagenase)로 처리한 다음 조직 배양용 배지에서 배양한다. 조직 배양용 배지에서 3~4일 배양 후에 배양 접시(dish)에 자라는 것을 확인하고, 완전히 다 자라면 일부는 추후 사용을 위하여 동결하여 액체 질소에 보관하며, 나머지는 핵 이식에 이용하기 위하여 계속 배양을 실시한다. 계속 배양하여 핵이식에 사용할 세포는 10번 계대 배양 이하를 전제로 하여 세포가 과도하게 커지는 것을 방지하는 것이 바람직하다. 상기에서 조직 배양용 배지로는 당업계에 공지된 것을 사용할 수 있으며 예를 들면, TCM-199, DMEM(Dulbecco's modified Eagle's medium) 등이 있다.
(4) PEPCK 코딩 핵산으로 형질전환된 공여핵원세포의 제조
앞서 제조한 PEPCK 코딩 핵산을 포함한 재조합 발현 벡터로 상술한 공여핵원세포를 형질전환시킨다.
형질전환은 공지된 방법에 따라 진행할 수 있는데, 예를 들면 칼슘 포스페이트 형질전환 (calcium phosphate transfection), 전기천공(electrophoresis), 형질도입(transduction), DEAE-덱스트란 매개 형질전환(DEAE-dextran mediated transfection), 미세주입(microinjection), 양이온 지질-매개 형질전환(cationic lipid-transfection), 총알식 도입(ballistic introduction) 등을 포함한다.
PEPCK 코딩 핵산을 포함하는 재조합 발현 벡터는 상기 형질전환에 의해 세포내로 유입되고, 이어서 핵 내로 유입된 후 핵분열 시기에 지노믹 DNA(genomic DNA)로 삽입된다. 개과 동물의 체세포주의 지노믹 DNA는 천연적으로 PEPCK 유전자를 보유하고 있으나, 본 발명에 따라 외래 PEPCK 코딩 핵산이 인위적으로 추가로 도입됨에 따라 야생형 개과 동물과 비교하였을 때 PEPCK 유전자를 과발현하게 될 것이다. 특히, 본 발명에 따라, 상기 외래 PEPCK 코딩 핵산이 이의 과발현을 유도할 수 있는 프로모터(예, 전술된 -746 변이체)의 조절하에 위치하는 경우에는 PEPCK 유전자를 보다 더 과발현하게 될 것이다. 본 발명에서 '과발현'이란 야생형 개과 동물에 비해 많은 양이 발현된다는 것을 의미한다.
제2단계: 수핵 난자의 탈핵
개과 동물은 다른 포유동물의 경우와는 달리 배란 후 수 시간 동안 난관에 머물면서 미성숙 난자가 성숙 난자가 된다. 포유동물의 경우 난자는 성숙 난자, 즉 제2차 감수분열 중기(metaphase II)에 배란이 되는데 반해, 개과 동물의 난자는 제1차 감수분별 전기에 배란되어 난관 내에서 48-120시간 동안 머물면서 성숙과정을 거치는 것이 특징이다. 이러한 특징적인 번식 생리와 더불어 많은 연구진들의 연구(Lee et al, Reprod. Domest. Anim., 42(6):561-5, 2007; Lee et al, Zygote, 15(4):347-53, 2007)에도 불구하고 개과 동물에 있어서 난자의 체외성숙 (in vitro maturation) 효율은 여전히 낮은 편이다. 따라서 개과 동물의 생체 내에서 성숙된 난자를 회수하여 체세포 핵이식의 수핵 난자로 사용하는 것이 가장 바람직하다.
성숙난자를 회수하기 위해 개과 동물에 있어서 배란적기를 판단하는 방법은 예를 들면, 이에 한정되지는 않으나 질세포 도말검사를 통해 각화상피세포가 70% 이상임을 확인하였을 때를 최적기로 판단하는 방법과 초음파 영상을 통해 난포의 성장과 발육상태를 실시간으로 확인하는 방법 및 혈장 프로게스테론을 측정하여 적기를 판단하는 방법들이 있다.
본 발명에서는 수핵 난자를 제공하는 공여견의 혈중 프로게스테론의 농도를 측정함으로써 난자 성숙 정도를 판단하는 것이 바람직하다. 바람직하게는 혈장 프로게스테론 농도가 4.0~7.5ng/mL일 때를 배란일로 간주하여 난자를 회수한다. 상기 혈장 프로게스테론의 농도는 지금까지 알려진 일반적인 난자 회수시의 배란일로 판단하는 혈장 프로게스테론의 농도보다 낮은 특성이 있다. 난자의 혈장 프로게스테론이 급하게 상승(≥3.6ng/ml/day) 하는 개체들의 경우 배란일로부터 70-80시간째 회수하는 것이 최적기이고, 천천히 상승 (<3.6ng/ml/day)하는 개체들의 경우 배란일로부터 80-90시간째 회수하는 것이 바람직하다. 이는 개체별로 프로게스테론의 증가 속도에 차이가 있기 때문이다.
생체 내 성숙 난자를 회수하는 방법으로는 대상 동물을 마취한 후 개복시키는 것을 포함하는 외과적 방법을 사용할 수 있다.
보다 구체적으로, 생체 내 성숙 난자의 회수는 당업계에 공지된 방법인 난관 절제법을 사용할 수 있다. 상기 난관 절제법은 난관을 수술적으로 잘라낸 후 배아 수집 배지를 난관 내부에 관류시켜 관류액을 수득하고 상기 관류액으로부터 난자를 회수하는 방법이다.
또한, 생체 내 성숙 난자는 카테터를 난관채에 장착한 후 난관-자궁 접합부위에 주사침을 이용하여 관류액을 주입함으로써 회수할 수 있다. 이 방법은 난관을 손상시키지 않기 때문에 난자를 공여하는 동물을 다음 발정에도 이용할 수 있다는 장점이 있다.
따라서, 바람직하게는 생체 내 성숙 난자의 회수는 난관을 손상시키지 않는 카테터를 이용한 방법을 사용한다.
보다 바람직하게, 카테터를 이용한 난자 회수 방법에 있어서, 본 발명자들이 개발한 니들의 앞부분이 둥글게 처리되어 있어 난관 입구에 장착이 용이한 16 게이지 존대(Sonde)를 이용하여 난자를 회수할 수도 있다. 이 방법은 앞부분이 둥글게 처리된 난자 회수용 니들을 난관 내에 삽입-결찰한 후 난관-자궁 접합부에 난자회수용 배지를 관류시켜 상기 난자 회수용 니들에 관류액이 유입되도록 하고 상기 관류액을 현미경으로 검경하여 성숙한 난자를 수득하는 방법이다.
성숙한 난자를 회수한 다음에는 난자의 반수체 핵을 제거한다. 난자의 탈핵은 당업계에 공지된 방법을 사용하여 수행할 수 있다(미국특허 제4994384호, 미국특허 제5057420호, 미국특허 제5945577호, 유럽특허 공개공보 제0930009A1, 대한민국특허 제342437호, Kanda et al, J. Vet. Med. Sci., 57(4):641-646, 1995; Willadsen, Nature, 320:63-65, 1986, Nagashima et al., Mol. Reprod. Dev. 48:339-343 1997; Nagashima et al., J. Reprod Dev 38:37-78, 1992; Prather et al., Biol. Reprod 41:414-418, 1989, Prather et al., J. Exp. Zool. 255:355-358, 1990; Saito et al., Assis Reprod Tech Andro, 259:257-266, 1992; Terlouw et al., Theriogenology 37:309, 1992).
바람직하게는, 수핵 난자의 탈핵은 크게 두 가지 방법을 사용하여 수행할 수 있다. 한 가지 방법으로는 성숙한 수핵 난자의 난구 세포(cumulus cell)를 제거한 다음, 미세침을 이용하여 수핵 난자의 투명대 일부를 절개하여 절개창을 형성하고 이를 통하여 제1극체, 난자의 핵 및 세포질(가능한 적은 양)을 제거하는 것이다.
다른 방법으로는 수핵 난자의 난구 세포를 제거한 다음 난자를 염색하고 미세 흡입 피펫(aspiration pipet)을 이용하여 제1극체 및 난자의 핵을 제거하는 것이다.
보다 바람직하게는, 난자에 절개창을 형성하여야 하는 쥐어짜기 (Enucleation; Squeezing method)방법으로 탈핵한다. 이는 홀딩 마이크로 피펫으로 수핵 난자를 고정한 후 제1극체와 난자 핵 그리고 일부 세포질을 제거하는 방법으로 수행한다.
보다 구체적인 방법은 이하와 같다. 예를 들어, 절개한 난자를 회전시켜 절개창을 수직으로 위치시킨 후 고정용 피펫을 난자의 밑 부위에 위치시켜 난자가 아래쪽으로 움직이지 못하도록 받친 뒤 절개 피펫을 난자의 위에서 눌러 제 1극체를 포함하여 세포질을 10~30% 탈핵을 실시한다. 또는 난자의 절개창을 3시 방향에서 수직으로 회전시킨 후 고정용 피펫과 절개 피펫을 아래 위에서 눌러서 제 1극체를 포함하여 세포질의 10~30% 탈핵을 실시한다. 탈핵시킨 1군의 난자는 TCM-W로 세정하고 핵이식 전까지 IVM용 TCM 199(B-①)에 정치시킨다. 탈핵 후의 난자는 매우 취약하기 때문에 마우스 피펫은 최소한 내경이 300㎛이상 되는 것을 사용하여 작업 후 난자의 세포질이 절개창을 통해 빠져나오지 않도록 주의한다.
제3단계: 공여핵원세포의 미세주입 및 융합/활성화
탈핵 난자에 공여핵원세포의 미세주입은 이식용 피펫을 사용하여 공여핵원세포를 탈핵 난자의 세포질과 투명대 사이에 주입함으로써 수행할 수 있다.
상기 공여핵원세포의 미세주입이 완료된 탈핵 난자는 세포 조작기를 이용하여 전기적으로 공여핵원세포와 융합시킨다. 전기적 융합에서 전류는 교류 또는 직류일 수 있으며, 전압 1.5~4.0kV/cm 조건으로 수행할 수 있다.
바람직하게는 직류전압 1.9~2.2kv/cm로, 보다 바람직하게는 2.1kv/cm로, 시간은 15~45㎲ 동안, 보다 바람직하게는 30㎲ 동안, 회수는 1~3회, 보다 바람직하게는 2회 수행할 수 있다.
공여 핵 세포와 난자의 전기적 자극에 의한 융합은 융합용 배지 내에서 수행할 수 있다. 상기 융합용 배지로는 만니톨, Mg2SO4, HEPES, BSA가 혼합된 배지를 사용할 수 있다. 바람직하게는 0.2~0.3 M 만니톨 용액, 0.4~0.6 mM HEPES (0.01 내지 0.2mM CaCl2와 0.01 내지 0.2mM MgSO4를 첨가)에 0.05~0.1 % (w/v) BSA가 혼합된 배지에서 수행될 수 있다. 더 바람직하게는, 0.26M 만니톨 용액,0.5mM HEPES (0.1mM CaCl2와 0.1mM MgSO4를 첨가) 에 0.05~0.1 % (w/v) BSA가 혼합된 배지에서 수행될 수 있다.
제4단계: 융합된 핵 이식란의 활성화
융합된 핵 이식란의 활성화는 체외성숙단계에서 제2감수분열 중기에 멈추어있는 세포주기를 재개시키는 과정을 의미한다. 이를 위해서는 세포주기를 정지시키는 물질인 MPF, CSF 등의 높은 활성도는 낮추고, 제2감수분열 중기에서 후기로 전이를 촉진하는 APC의 낮은 활성도는 높여주어야 한다.
일반적으로 핵 이식란을 활성화시키기 위해서는 세포 내 Ca2+ 이온의 농도를 증가시켜 염색체 응축과 배아발달을 유도해야 하며, 이를 위해 물리적인 방법, 화학적인 방법, 또는 전기적인 방법이 사용된다. 물리적인 방법으로는 기계적인 자극, 열, 그리고 직류를 이용하는 방법이 있다. 화학적 방법으로는 에탄올, 이노시톨 트리포스페이트, Ca2+ 또는 Sr2+, 사이토칼라신 B, 칼슘 아이오노포어, 6-디메틸아미노퓨린, 사이클로헥시미드, 그리고 포볼 12-미리스테이트 13-아세테이트와 같은 물질로 처리하는 방법이 있다. 상기 화학적 방법으로, 바람직하게는 DMAP(6-dimethylaminopurine)를 2-4시간 동안 융합된 난자에 처리하는 방법을 사용할 수 있다. 전기적인 활성화 방법으로서, 직류전압 1.5~2.5kV/cm 조건으로 30-60㎲ 동안 1-3회 수행할 수 있다.
본 발명에서는 상기 활성화 단계를 생략하는 것이 바람직하다.
이하, 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만, 본 발명의 권리범위는 이들 실시예에만 국한되는 것은 아니다.
실시예 1. PEPCK의 과발현을 유도할 수 있는 프로모터의 제작
실시예 1-1. 세포 배양
미국 ATCC 연구소에서 분양받은 랫 간세포주 (H4IIE)를 10% FBS가 첨가된 DMEM (50 U/ml 페니실린 및 50/ml 스트렙토마이신)에 37℃에서 유지하였다.
실시예 1-2. 프로모터 및 이를 포함하는 재조합 발현 벡터의 제작
PEPCK의 과발현을 유도하기 위해, PEPCK 유전자에 천연적으로 존재하는 전장의 프로모터(from nucleotides -3180 ~ +1 = 전사 시작 부위; 서열번호 1)와 이 전장의 프로모터로부터 -3180부터 -2349 nt까지, -3180부터 -1018 nt까지, -3180부터 -746 nt까지 각각 제거된 프로모터 변이체를 제작하였다. 각각의 프로모터 증폭을 위해,
-3180부터 +1 nt까지의 정방향 프라이머 5'-cccgctagccatggcttcctttccact-3' (서열번호 2)와 역방향 프라이머 5'-cccaagcttgacaccaaggcttcctga-3'(서열번호 3), -2349부터 +1 nt까지의 정방향 프라이머 5'-cccgctagcgacagttgcaaaggaataa-3' (서열번호 4)와 역방향 프라이머 5'-cccaagcttgacaccaaggcttcctga-3' (서열번호 5), -1018부터 +1 nt까지의 정방향 프라이머 5'-cccgctagcaagggcattgagaagtgt-3' (서열번호 6)와 역방향 프라이머 5'-cccaagcttgacaccaaggcttcctga-3' (서열번호 7), -746부터 +1 nt까지의 정방향 프라이머 5'-cccgctagctcctataggccttggctg-3' (서열번호 8) 와 역방향 프라이머 5'-cccaagcttgacaccaaggcttcctga-3' (서열번호 9)와 비글견의 섬유아세포의 지노믹 DNA을 이용하여 제작하였다. PEPCK 프로모터의 여러 부위가, 5' 말단의 NheI과 3' 말단의 NcoI을 포함한, 비글견 섬유아세포의 유전체 DNA를 주형으로 제작되었다. 증폭된 단편을 NheI, NcoI 제한효소로 잘라내었고, 프로모터가 존재하지 않는 pGL3-basic 벡터에 옮겨(Promega Co., Madison, WI, USA) “재조합 pGL3_PEPCK 프로모터 플라스미드”를 제작하였다.
실시예 1-3. 일시적인 트랜스펙션과 reporter 유전자 assay
일시적인 트랜스펙션은 lipofectaminTM 2000을 이용하여 수행하였다. 재조합 pGL3_PEPCK 프로모터 플라스미드(또는 ‘luciferase 제작물’이라고 칭함)들의 트랜스펙션 효율성을 조절하기 위해, H4IIE 세포에 luciferase 제작물과 함께 Rous 육종 바이러스 (RSV) - lacZ 플라스미드를 같이 트랜스펙션하였다. 간단하게 서술하면, 트랜스펙션 전 하루 동안, 3 X 105 개의 세포를 6 well 조직 배양접시에 배양하였고, 0.5 ㎍의 RSV - lacZ 플라스미드와 4 ㎍의 luciferase 제작물을 혈청이 없는 조건에서 세포에 트랜스펙션하였다. 4시간 트랜스펙션 후, 배양액이 처리 배양액 (기존 배양액에 dexamethasone 1 mM을 포함)으로 교체되었고, 추가적으로 48시간 동안 세포들이 배양되었다. 150 ㎕의 reporter 용해 버퍼 (Promega, Co.)를 통해 세포 용해질이 준비되었고, luciferase assay 시스템 (Promega, Co.)을 통해 luciferase 활성이 측정되었다. β-galactosidase 효소 assay 시스템 (Promega, Co.)을 통해 β-galactosidase 활성이 측정되었으며, 프로모터 활성이 β-galactosidase 활성에 대한 상대적인 luciferase 값 (%)을 계산함으로써 측정되었다.
도 1에서 보여지는 것과 같이, PEPCK 유전자에 천연적으로 존재하는 전장의 프로모터에서 -2349 nt, -746 nt 까지 제거된 프로모터 변이체는 luciferase 활성을 각각 110배, 130배 증가시켰다. 그러나 PEPCK 프로모터에서 -3180 nt, -1018 nt까지 제거된 프로모터 변이체는 luciferase 활성에서 유의할 만한 증가를 유도하지 않았다. 결과적으로, 전장의 PEPCK 프로모터로부터 -2349 nt, -746 nt 까지 제거된 프로모터 변이체에서 luciferase 활성이 가장 강했다.
실시예 1-4. 웨스턴 블로팅
0.9% NaCl의 차가운 무균 용액을 통해 H4IIE rat 간종양 세포주를 획득하고 세척하였으며, 단백질은 Pro-prep (InTron. Inc., Seoul, Korea)을 통해 분리하였다. 각 레인당 30 ㎍의 세포질 단백질을 10% SDS-poly acrylamide gel electrophoresis (PAGE) 젤에서 전기영동하였으며, TransBlot Cell (TE-22, Hoefer co.)을 통해 polyvinylidene fluoride (PVDF) transfer membrane (Perkin Elmer Co., Wellesley, MA)으로 옮겼다. 옮겨진 blot은 120분 동안 5% 무지방 우유를 포함한 TBS-T에서 블로킹되었고, PEPCK (diluted 1:500, CAYMAN) 또는 GAPDH (diluted 1:2000, Assay Design Inc.) 1차 항체로 반응시켰다. 버퍼를 이용하여 blot membrane을 씻어낸 뒤, 상온에서 1시간 동안 정량의 horseradish peroxidase-conjugated 2차 항체 (diluted 1:2500, Santa Cruz, CA, USA)와 함께 반응시켰다. 다시 blot membrane을 씻어내고, ECL 화학 발광 시약(Amersham Biosciences)에서 반응시킨 후, 1-5분 동안 Biomax™ Light film (Kodak)에 현상하였다.
상기 실시예 1-3에서, 전장의 PEPCK 프로모터로부터 -2349 nt, -746 nt 까지 제거된 프로모터 변이체가 가장 강한 활성을 나타냄을 확인했다. 이에 실시예 1-4에서는, PEPCK 프로모터에 의해 유도된 PEPCK 발현에서 -2349 nt, -746 nt 변이체가 Dex(dexamethasone)가 유도된 PEPCK 발현에 관계하는지 살펴보았다. H4IIE 세포들에 1mM Dex를 24시간 동안 처리했을 때, Dex 부재시 세포와 비교할 때, PEPCK 발현 레벨이 증가하였다. 추가적으로, PEPCK 발현이 트랜스펙션된 세포에서 특이적으로 과발현됨을 확인할 수 있었다. PEPCK 발현에 유의할 만한 증가는 트랜스펙션된 세포에서 Dex 존재시에 관찰되었다. PEPCK 발현 레벨은 Dex 존재시, PEPCK 프로모터에서 -2349 nt 변이체보다 -746 nt 변이체에서 더 높게 나타났다 (도 2). 이 결과는 상기 실시예 1-3에서, -746 nt 변이체가 luciferase 활성이 가장 높았던 것과 일치하는 것이다.
실시예 2. PEPCK 과발현 형질전환 복제견 생산
실시예 2-1. 개 PEPCK 유전자를 포함하는 재조합 발현 벡터의 제조
개 PEPCK 유전자를 췌장 베타세포에서 과발현하기 위해, 실시예 1에서 제작한, 전장의 PEPCK 프로모터에서 -746 nt까지 제거된 프로모터 변이체를 프로모터가 존재하지 않는 pGL3-basic 벡터에 옮겼다. PEPCK 발현 카세트 플라스미드를 몇 가지 단계로 제작하였다. PEPCK cDNA는 비글견의 간세포를 주형으로 제작되었고, 프라이머는 5' 말단은 NcoI, 3' 말단은 XbaI을 포함한 정방향 프라이머 5'-cccccatggcgaggtcatcccaaaacaag-3' (서열번호 10) 와 역방향 프라이머 5'-ccctctagagggtctgatcacatctggct-3' (서열번호 11)을 이용하여 증폭하였다. 증폭된 단편을 NcoI, XbaI 제한효소로 잘라내었으며, 재조합 pGL3_PEPCK 프로모터 플라스미드에 옮겼다. EGFP는 pIRES2_EGFP(BD Biosciences Clontech, USA)를 주형으로 제작되었고, 프라이머는 5' 말단은 EcoRV , 3' 말단은 BamHI을 포함한 정방향 프라이머 5'-gatatccacaaccatggtgagcaagggcga-3' (서열번호 12)와 역방향 프라이머 5'-cggatccttacttgtacagctcgtccatgcc-3' (서열번호 13)를 이용하여 증폭하였다. 증폭된 단편을 EcoRV, BamHI 제한효소로 잘라내었으며, pIRES Neo vector로 옮겼다(BD Biosciences Clontech, USA). 선택 카세트는 재조합 pIRES EGFP Neo 플라스미드를 이용하여 증폭시켰다. 프라이머는 5' 말단은 MulI , 3' 말단은 NheI을 포함한 정방향 프라이머 5'-ggacgcgttgacattgattattgact-3' (서열번호 14) 와 역방향 프라이머 5'-gcgctagctagaggtcgacggtatac-3' (서열번호 15)를 이용하여 증폭하였다. 증폭된 단편을 MulI, NheI 제한효소로 잘라내었고, 재조합 pGL3_PEPCK 프로모터 PEPEK cDNA 플라스미드로 옮겼다. 각 서열 염기들은 뉴클레오티드 염기서열분석 (Genotech Co. Ltd., Daejeon, Korea)에 의해 확인되었다.
실시예 2-2. 개의 공여핵원 섬유아세포 확립
개의 공여핵원세포의 확립은 Hossein et al.(Animal reproduction science, 2009, 114(4), 404-414)이 보고한 바와 같이 확립하였다. 간략하게 기술하면, 태아 섬유아세포는 인공수정과 복제란 이식을 통해 임신한 30일령의 모견에서 제왕절개를 통해 분리한 태아로부터 회수하였고, 성체세포는 성견의 복부 피부조직에서 생검하였다. 재복제된 태아섬유아세포의 확립은 복제란의 이식을 통해 임신시킨 후 30 일령의 모견을 초음파를 통해 임신 여부를 확인한다. 임신이 확인되었을 때, 모견에서 제왕절개를 통해 분리한 태아로부터 섬유아세포를 확립한다. 이렇게 얻어진 세포를 화학적 물리적으로 파세한 뒤, Dulbecco's Modified Eagles' Medium (DMEM)에서 배양접시에 90% 이상 찰 때까지 배양한 뒤 액체질소에 동결하였다.
실시예 2-3. 개 PEPCK 유전자의 공여핵원세포로의 형질전환
상기 실시예 2-1에서 제작한 PEPCK 유전자의 과발현 제작물을 MulI 제한효소 처리로 선형화시켰다. 선형화된 fragment를 분류하여, 실시예 2-1에서 확립된 공여핵원세포에 트랜스펙션시켰다. 트랜스펙션 하루 전에 공여핵원세포를 배양 접시에 배양하여 그 성장률이 배양 접시의 70-80%의 표면적을 덮을 정도로 배양시켰다. 이 세포 배양액에 PEPCK 유전자의 과발현 제작물 및 Lipofactamine 2000을 1㎍:5㎕의 비율로 섞어준 후 20분간 상온에서 정치한 다음 분주하였다. 트랜스펙션 후, 배양액을 350㎍/ml의 G-418이 첨가된 DMEM으로 대체하였고, 이러한 세포들 중 neomysin 내성 세포들을 분류하기 위해 4주 동안 배양하였다. 살아남은 세포 군체들 중, 형광 현미경을 통해 EGFP 형광을 가진 세포들만이 분류하였다. 세포들을 몇 번 계대 배양한 후, EGFP 형광을 지속적으로 발현하는 세포주들을 선택하였고, 이러한 세포주들의 스크린은 PCR을 통해 수행되었다.
실시예 2-4. 실험동물의 관리
성숙난자를 제공할 공여견과 복제란을 이식할 수란견으로는 1-7연령, 몸무게 20-25kg인 암캐 잡종견을 사용하였고, 사용된 실험견은 실내견사에서 한 마리씩 일반 사육용 사료를 자유 급이하며 사육 관리되었다. 이 모든 실험견의 관리는 수암생명공학연구원의 실험동물 윤리규정에 의거하여 수행되었다.
실시예 2-5. 개과의 복제
본 실시예는 본 발명의 출원인에 의해 출원된 대한민국특허출원 10-2009-0038315에 개시된 절차에 따라 수행되었다.
암캐의 발정주기를 매주 확인한 뒤, 배란 시기가 다가오면 매일 2ml의 혈액을 뽑아서 혈청을 분리하였다. 분리된 혈청을 Cobas E411 (Roche Diagnostics,)의 ECLIEA를 이용하여 혈중 프로게스테론의 농도를 확인하였다. 혈중 프로게스테론의 농도가 4.5ng/ml에 이르렀을 때 외과적인 방법을 통해 성숙난자를 TCM199 배지로 회수하였다. Hossein et al.(Animal reproduction science, 2009, 114(4), 404-414)에서 기술한대로, 회수된 개의 체외 성숙난자의 난구세포를 체세포 핵이식에 적합하게 분리하였다. 난자를 5㎍/ml bisbenzimide를 처리하여 난자의 핵을 염색한 후 체세포 핵이식을 수행하였다. 난구세포가 제거된 성숙난자에 미세조작을 통해 공여핵원을 탈핵된 난자에 요란강에 주입한 뒤 0.26M 만니톨 용액 0.5mM HEPES, 0.1mM CaCl2와 0.1mM MgSO4를 첨가)에서 전기자극을 통해 전기적 활성 및 융합을 수행하였다. 전기 융합은 BTX Electro-Cell Manipulator 2001을 사용하여 2회의 직류 전압 1.9, 2.0, 2.1 또는 2.2kV/cm로 30㎲에 전기자극을 주었다.
이러한 과정으로 수득한 핵이식란은 특허 절차상 미생물 기탁의 국제적 승인에 관한 부다페스트 조약의 규정에 따라, 2008년 7월 6일자로 KCTC (Korean Collection for Type Cultures, 한국생명공학연구원)에 수탁번호 제 KCTC11360BP 로 기탁하였다.
실시예 2-6. 대리모에 복제란을 외과적으로 이식
대리모를 외과적인 방법으로 개복을 한 뒤, 양쪽 난소에 황체가 많은 쪽을 확인하였다. 확인된 난소의 나팔관을 미세한 겸자를 이용하여 노출시킨 뒤, Tomcat 카테터 (Severeign, Sherwood, USA)에 로딩된 복제란을 난관 원위단에 이식하였다. 이렇게 이식된 대리모는 30 일령에 초음파로 확인하였다.
실시예 2-7. Microsatellite 분석
태어난 산자의 세포를 대리모 세포, 공여핵원세포와 난자 공여견의 세포와 비교하였다. 각각의 샘플로부터 gDNA 추출하고, 10개의 표지인자를 통해 (PEZ1, PEZ 3, PEZ 5, PEZ 6, PEZ 8, PEZ 12, PEZ 20, FHC 2010, FHC 2054, and FHC 2079) 친자 감별을 수행하였다.
실시예 2-8. 유전체 DNA 추출과 polymerase chain reaction (PCR)
세포들과 유전자 이식 강아지 탯줄의 유전체 DNA가 G-DEX™ IIc 유전체 DNA 추출키트 (Intron Biotechnology, Suwon, Korea)를 통해 분리되었다. 1 ㎍의 유전체 DNA가 1 유닛의 Ex-Taq polymerase (TaKaRa, Japan.), 2 mM dNTP, 10 pmol의 특정 프라이머를 포함한 20 ㎕ PCR 반응을 통해 증폭되었다. PCR 반응은 95℃에서 30초 동안 이중가닥을 분리, 62℃에서 30초 동안 프라이머를 단일 가닥에 결합, 72℃에서 1 또는 3분 동안 염기를 이어나가는 과정으로 진행하였다. 선택 카세트에 대한 프라이머는 정방향 프라이머 5'- catgaagcagcacgacttct -3' (a 프라이머, 서열번호: 16 )와 역방향 프라이머 5'- cctaggaatgctcgtcaaga-3' (b 프라이머, 서열번호: 17)이고, PEPCK 발현 카세트에 대한 프라이머는 정방향 프라이머 5'- tcctataggccttggctg-3' (c 프라이머, 서열번호: 18)와 역방향 프라이머 5'- gggtctgatcacatctggct-3' (d 프라이머, 서열번호: 19)이다. PCR 결과물 (8 ㎕)은 0.7% 아가로스 겔에서 전기영동하였고, ethidium bromide와 함께 염색되었으며, UV-illumination 아래에 사진 관찰되었다. 사진은 Gel Doc EQ (Bio-rad Laboratories, Inc.)를 통해 스캔되었다.
실시예 3. 실시예 2에 대한 결과
3-1. PCR 스크린 결과
상기 실시예 2-1에서 제작한 PEPCK 유전자의 과발현 제작물에서 PEPCK 발현 카세트 제작물과 선택 카세트 제작물의 구조는 도 3(A)에서 볼 수 있다. 선택 카세트 제작물은 CMV, EGFP, Neo를 포함한다. 그리고 PEPCK 발현 카세트 제작물은 PEPCK 프로모터의 -749 nt, PEPCK cDNA 유전자, SV40 poly A 신호를 포함한다. 트랜스펙션된 세포주들의 스크린은 PCR을 통해 수행되었다. a 프라이머와 b 프라이머를 이용해 Neo 부위와 EGFP를 포함하는 ~1kb 단편을 증폭시켰다(도 3(B)). c 프라이머와 d 프라이머를 이용하여, ~2.7kb와 5.2kb 단편을 증폭시켰다(도 3(C)). 5.2kb 단편은 내인성의 PEPCK 부위를 포함하고, 2.7kb 단편은 PEPCK 발현 카세트 부위를 포함한다. 이렇게 확인된 세포 군체들을 확장하고, 이차적인 확인 및 정량적 확인을 통해 0.6 x 106 개의 세포 농도로 동결하였으며, 핵 치환에 이용하였다. 후보군 유전체 DNA는 후보군 유전자 이식 강아지들의 탯줄로부터 분리되었다. 그 결과 세 마리 동물 중, 두 마리의 양성적인 동물들(1번, 3번)을 확인하였다(도 3).
3-2. 적용된 전압에 따른 개의 복제란의 체내 발육율
표 1 적용된 전압에 따른 개의 복제란의 체내 발육율 비교
S-D-Ta No. of oocytes transferred No. of recipients No. of pregnancy (%) No. of puppies born (%)
1.9-30-2 66 6 1 (16.7) 1 (1.5)
2.0-30-2 94 9 3 (33.3) 3 (3.2)
2.1-30-2 51 5 3 (60.0) 3 (5.9)
2.2-30-2 32 2 1 (50.0) 1 (3.2)
aS-D-T=S; 전압(kV), D; 통전 시간 (usec), T; 통전 횟수
bCumulative from 3 independent trials that yielded similar findings
상기 결과는 22마리의 대리모에 복제란을 이식하여 얻은 결과다. 2.1kV/cm 전압에 핵융합 및 난자 활성시 유의적으로 높은 산자율을 보였다.
3-3. 공여핵원별 임신의 양태
표 2 공여핵원별 임신의 양태
세포의 종류 No. and (%) of oocytes No. of recipients Pregnancy status (%) of recipients No. of puppies born
Used for NT Successfully fused Day 30 pregnancy Full term
성체 섬유아세포 152 147 (96.7) 9 1 (11.1) 1 (11.1) 1
재복제된 태아 섬유아세포 118 115 (97.5) 10 3 (30.0) 2 (20.0) 2
일반 태아 섬유 아세포 66 51 (77.3) 4 2(50.0) 2 (50.0) 2
336개의 개 복제란을 제작하여 23마리의 대리모에 이식하였다. 성체 섬유아세포, 재복제된 태아 섬유아세포와 일반 태아 섬유아세포를 각각 공여핵원으로 사용하였고, 그 핵 융합율은 96.7%, 97.5%와 77.3%였다. 각 세포 유래의 산자율은 11.1%, 30%와 50%로 일반 태아 섬유아세포를 사용하였을 때 그 산자 복제 효율이 유의적으로 높았다. 일반 태아 섬유아세포를 공여핵원으로 사용하였을 때, 각 출생시 체중 380g과 360g의 건강한 복제 비글견을 생산하였고, 친자 감별을 통해 공여핵원과 일치하는 복제견임을 확인하였다.
실시예 3-4. 생산된 복제 자견의 양상
표 3 생산된 복제 자견의 양상
Offspring identification Karyoplast passage no. Gestation length Birth weight (g) Delivery method GFP expressionc
DFN59 5 44 N/Aa Natural -
DFN60 5 65 380b Cesarean section -
DFN64 5 63 340 Cesarean section -
DMP108 6 62 380 Cesarean section +
DMP110 6 63 360 Cesarean section +
N/A, not applied
a 임신 44일령에 유산
b분만후 1일령에 폐사
cB-filter에서 형광발현 유무
실시예 4. 외래 유전자인 PEPCK 유전자의 후대 유전 확인
당뇨질환 모델인 PEPCK 과발현 형질전환 복제 수캐 (DMP110)와 일반 암캐를 자연교배하여 태어난 7마리의 산자에서 외래유전자인 PEPCK가 존재하는지 실시예 2-8 및 실시예 3-1과 동일한 방법으로 PCR을 통해 확인하였다.
도 7a 및 7b에서 나타낸 바와 같이 복제견 DMP110의 혈액과 정액 샘플에서 PEPCK가 존재함을 확인하였고, 이의 자손인 2번, 3번, 7번 산자에서 외래유전자인 PEPCK가 존재함을 확인하였으며, 이를 통해 외래유전자인 PEPCK가 정상적으로 유전됨을 확인할 수 있었다.
본 발명에 따라 수득 가능한 PEPCK를 과 발현하는 복제 개과 동물은 새로운 당뇨병 치료제의 임상 시험에 당뇨병 동물 모델로서 이용할 수 있다. 따라서 당뇨 치료 효과뿐만 아니라 부작용이 없는 당뇨병 치료제를 개발하는데 기여할 것이다.
Figure PCTKR2011002944-appb-I000001
Figure PCTKR2011002944-appb-I000002

Claims (13)

  1. PEPCK (Phosphoenol Pyruvate Carboxykinase)를 코딩하는 핵산으로 형질전환된 개과 동물 유래 체세포 핵을 탈핵된 난자에 이식하여 형성된 개과 동물의 핵 이식란.
  2. 제 1항에 있어서, 상기 핵 이식란은 수탁번호 제 KCTC11360BP 호로 기탁된 것을 특징으로 하는 핵 이식란
  3. 제 1항에 있어서, 상기 PEPCK 코딩 핵산은 (1) 개의 PEPCK 유전자에 천연적으로 존재하는 전장의 프로모터, (2) 상기 전장의 프로모터로부터 -2349 염기까지 제거된 프로모터, (3) 상기 전장의 프로모터로부터 -1018 염기까지 제거된 프로모터, (4) 상기 전장의 프로모터로부터 -746 염기까지 제거된 프로모터로 이루어진 그룹으로부터 선택된 프로모터의 조절하에 위치하는 것을 특징으로 하는 핵 이식란.
  4. 제 1항에 있어서, 상기 PEPCK 코딩 핵산은 개과 동물로부터 유래된 것을 특징으로 하는 핵 이식란.
  5. 제 1항에 있어서, 상기 개과 동물의 체세포는 태아의 섬유아세포인 것을 특징으로 하는 핵 이식란.
  6. 제 1항에 있어서, 상기 개과 동물은 개임을 특징으로 하는 핵 이식란.
  7. (a) 개과 동물에서 유래한 체세포주를 PEPCK 코딩 핵산으로 형질전환시키는 단계를 포함하여 공여핵원세포를 준비하는 단계; (b) 개과 동물의 성숙난자로부터 핵을 제거하는 단계; (c) 상기 (b) 단계의 탈핵 난자에 (a) 단계의 공여핵원세포를 미세주입하고 전기 융합시키는 단계를 포함하는 PEPCK 유전자로 형질전환된 개과 동물의 핵 이식란의 생산방법.
  8. 제 7항에 있어서, 상기 핵 이식란은 수탁번호 제 KCTC11360BP 호로 기탁된 것을 특징으로 하는 생산방법.
  9. 제 7항에 있어서, 상기 (b) 단계의 개과 동물의 성숙난자는 개과 동물의 배란일로부터 70 ~ 90 시간에 회수된 것임을 특징으로 하는 생산방법.
  10. 제 7항에 있어서, 상기 (c) 단계에서 전기융합은 직류 전압 1.9~2.2kV/cm로, 시간은 15~45㎲동안, 회수는 1~3회 수행하는 것을 특징으로 하는 생산방법.
  11. 제 1항에 따른 핵 이식란을 대리모의 난관에 이식하여 산자를 출생하는 단계를 포함하는 PEPCK를 과발현하는 형질전환 복제 개과 동물의 생산방법.
  12. 제 11항에 있어서, 상기 핵 이식란은 수탁번호 제 KCTC11360BP 호로 기탁된 것을 특징으로 하는 생산방법.
  13. 제 11항에 따른 방법에 의하여 생산된 PEPCK를 과발현하는 형질전환 복제 개과 동물.
PCT/KR2011/002944 2010-04-22 2011-04-22 Pepck 과발현 형질전환 복제 개과 동물 및 이의 생산방법 WO2011132990A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0037299 2010-04-22
KR1020100037299A KR20110117841A (ko) 2010-04-22 2010-04-22 Pepck 과발현 형질전환 복제 개과 동물 및 이의 생산방법

Publications (2)

Publication Number Publication Date
WO2011132990A2 true WO2011132990A2 (ko) 2011-10-27
WO2011132990A3 WO2011132990A3 (ko) 2012-03-08

Family

ID=44834689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002944 WO2011132990A2 (ko) 2010-04-22 2011-04-22 Pepck 과발현 형질전환 복제 개과 동물 및 이의 생산방법

Country Status (2)

Country Link
KR (1) KR20110117841A (ko)
WO (1) WO2011132990A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022245171A1 (ko) * 2021-05-21 2022-11-24 주식회사 대웅제약 이나보글리플로진을 포함하는 개과 동물의 당뇨병 예방 또는 치료용 약학 조성물
RU2828593C2 (ru) * 2021-05-21 2024-10-14 Тэвун Фармасьютикал Ко., Лтд. Фармацевтическая композиция для профилактики или лечения сахарного диабета у животного семейства псовые, содержащая энавоглифлозин

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733012B1 (ko) * 2005-07-26 2007-06-28 재단법인서울대학교산학협력재단 복제된 개과 동물 및 이의 생산 방법
KR20090115081A (ko) * 2008-04-30 2009-11-04 황우석 개과 동물의 복제 생산 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733012B1 (ko) * 2005-07-26 2007-06-28 재단법인서울대학교산학협력재단 복제된 개과 동물 및 이의 생산 방법
KR20090115081A (ko) * 2008-04-30 2009-11-04 황우석 개과 동물의 복제 생산 방법
KR20090115025A (ko) * 2008-04-30 2009-11-04 황우석 개과 동물의 복제 생산 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG, S.G. ET AL.: 'Generation of red fluorescent protein transgenic dogs' GENESIS vol. 47, 08 April 2009, pages 314 - 322 *
VALERA, A. ET AL.: 'Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus' PROC. NATL. ACAD.SCI. USA vol. 91, September 1994, pages 9151 - 9154 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022245171A1 (ko) * 2021-05-21 2022-11-24 주식회사 대웅제약 이나보글리플로진을 포함하는 개과 동물의 당뇨병 예방 또는 치료용 약학 조성물
RU2828593C2 (ru) * 2021-05-21 2024-10-14 Тэвун Фармасьютикал Ко., Лтд. Фармацевтическая композиция для профилактики или лечения сахарного диабета у животного семейства псовые, содержащая энавоглифлозин

Also Published As

Publication number Publication date
WO2011132990A3 (ko) 2012-03-08
KR20110117841A (ko) 2011-10-28

Similar Documents

Publication Publication Date Title
WO2018110805A1 (ko) Ins 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법
US20110072526A1 (en) Process for producing exogenous protein in the milk of transgenic mammals and a process for purifying proteins therefrom
WO2020085788A1 (ko) Igf-1 유전자 돌연변이 왜소증 동물모델 및 그 제조방법
Feng et al. Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer
CA2114112A1 (en) Transgenic protein production
WO2010002160A2 (ko) 돼지의 알파에스 1 카제인 유전자, 그 프로모터 및 그의 용도
JP2001513336A (ja) トランスジェニック動物の生産における「マリーナ」トランスポザンの使用
WO2011081343A2 (ko) HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하는 형질전환 돼지 및 그의 제조 방법
KR101890978B1 (ko) 알츠하이머 질환 모델용 형질전환 돼지 및 이의 용도
WO2011132990A2 (ko) Pepck 과발현 형질전환 복제 개과 동물 및 이의 생산방법
WO2017033625A1 (ja) 鳥類、鳥類の作出方法および鳥類の卵
WO2009088189A2 (ko) 형질전환된 복제개의 생산방법
DK2844064T3 (en) TRANSGENE ANIMAL MODEL OF AMYOTROPHIC LATERAL SCLEROSIS
US10717991B2 (en) Transgenic pig which simultaneously expresses HO-1 gene and TNFR1-Fc gene, and comprises knocked-out GGTA1 gene, and use thereof
WO2023282552A1 (ko) Human mutant presenilin-1 발현 인지장애 모델 개의 생산
KR20120092534A (ko) Pepck 과발현 형질전환 복제 개과 동물 및 이의 생산방법
KR101832485B1 (ko) 목적유전자를 조건적으로 발현하는 복제된 개과동물의 생산방법
CN115322993B (zh) 一种用于猪基因组定点整合外源基因的安全位点及用其构建猪育种群方法
US20050229266A1 (en) Method for producing non-human mammal RNAi phenotype using papilloma virus vector
WO2021015571A1 (ko) 돼지 내인성 레트로바이러스 ENVELOPE C 음성, GGTA1, CMAH, IGB3S 및 β4GALNT2 유전자가 넉아웃되고, 인간 CD46 및 TBM 유전자를 발현하는 이종장기이식을 위한 형질전환 복제돼지 및 이의 제조방법
WO2012099447A2 (ko) sTNFR1-Fc 유전자를 발현하는 형질전환 돼지 및 이의 용도
WO2020091472A1 (ko) 근육 특이적 퍼옥시좀 증식체 활성화 수용체 델타(PPARδ) 과발현 형질전환 개 생산
RU2390562C2 (ru) Способ получения трансгенных млекопитающих, которые продуцируют экзогенные белки в молоке, и трансгенные млекопитающие, полученные таким способом
Qian Smooth muscle gamma-actin expression in smooth muscle development and differentiation
Michalska Production and characterization of transgenic mice and pigs carrying the porcine growth hormone gene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772278

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772278

Country of ref document: EP

Kind code of ref document: A2