WO2011132801A1 - 消光性ならびに蛍光性の核酸塩基類似体とその応用 - Google Patents

消光性ならびに蛍光性の核酸塩基類似体とその応用 Download PDF

Info

Publication number
WO2011132801A1
WO2011132801A1 PCT/JP2011/060343 JP2011060343W WO2011132801A1 WO 2011132801 A1 WO2011132801 A1 WO 2011132801A1 JP 2011060343 W JP2011060343 W JP 2011060343W WO 2011132801 A1 WO2011132801 A1 WO 2011132801A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
group
formula
artificial
fluorescence
Prior art date
Application number
PCT/JP2011/060343
Other languages
English (en)
French (fr)
Inventor
一郎 平尾
路子 平尾
横山 茂之
雅雄 三井
りえ 山重
Original Assignee
独立行政法人理化学研究所
タグシクス・バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所, タグシクス・バイオ株式会社 filed Critical 独立行政法人理化学研究所
Priority to JP2012511735A priority Critical patent/JP5874152B2/ja
Priority to EP11772132.4A priority patent/EP2562255A4/en
Priority to US13/642,111 priority patent/US9285319B2/en
Publication of WO2011132801A1 publication Critical patent/WO2011132801A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/044Pyrrole radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer

Definitions

  • the present invention relates to quenching and fluorescent nucleobase analogs and their applications. Specifically, the present invention relates to the discovery and utilization of 2-nitropyrrole and its modified 1- and 4-positions, and their nucleoside derivatives as quenching molecules or nucleobase analogs. Yes, it can be used for a wide range of detection and diagnosis such as visualization of PCR products.
  • the technology for artificially creating new base pairs and extending DNA genetic information is considered to have two highly versatile applications, and research and development of artificial base pairs has been actively conducted.
  • One application is to create artificial base pairs that function in replication, transcription, and translation to create DNA, RNA, and proteins that incorporate new components.
  • Another application is the formation of double-stranded nucleic acids in which artificial base pairs are incorporated into DNA or RNA, thereby increasing the number of nucleic acid fragment probe sequence species to apply to real-time PCR multiplexes and DNA computers. It can be used as a new codon and anticodon when introducing artificial amino acids into proteins by translation.
  • nucleobase analogues exhibiting fluorescence have been reported, but no substance has been known so far that the nucleobase analogue itself exhibits a strong quenching action.
  • a method of binding a quenching molecule such as a dabsyl group to a nucleobase via a linker is known.
  • the base forming the base pair is not completely in contact with the fluorescent molecule located in the vicinity, so that the quenching action is weakened, and its detection is impossible without relying on an apparatus.
  • a simple and efficient detection method for base pairs utilizing the quenching action of bases has not been found.
  • the present inventors have found a base exhibiting quenching properties, and if a base exhibiting fluorescence and a base exhibiting quenching properties selectively form a base pair, when DNA forms a double strand, a fluorescent artificial base is formed.
  • the present inventors have conceived that the present invention has been conceived because it is possible that a base can be strongly quenched, and that a detection technique that can be visually judged by DNA amplification or molecular beacons in PCR can be created.
  • the 2-nitropyrrole derivative is a base represented by Pn or Px, which is an artificial base pair that the present inventors have developed so far.
  • Pn and Px are used as a third nucleic acid base pair (artificial base pair) as a complementary artificial base (Ds: 7- (2-thienyl) imidazo [4,5-b] pyridin-3-yl group) and a base pair ( Ds-Pn, Ds-Px base pairs), and it is shown that they can be introduced into specific sites in nucleic acids by replication or transcription.
  • 2-nitropyrrole forms a base pair with Dss (7- (2,2′-bithien-5-yl) imidazo [4,5-b] pyridine), which is an improved base of Ds, as a fluorescent artificial base. To do.
  • the inventors of the present invention revealed for the first time that 2-nitropyrrole has a quenching property in the present invention. For example, it was found that when Pn or Px forms a base pair with Dss in double-stranded DNA, the fluorescence of Dss is quenched by the quenching property of 2-nitropyrrole. In addition, although 3-nitropyrrole similar to 2-nitropyrrole is known as a universal base, the quenching action is low unlike 2-nitropyrrole of the present invention.
  • the quenching Pn (or Px) is in contact with the fluorescent Dss as a base pair, so that the fluorescence of Dss is efficiently quenched.
  • the double-stranded structure is denatured into single-stranded DNA, a DNA strand containing Dss emits light.
  • a new molecular beacon detection / diagnosis technique has become possible.
  • the fluorescence of the nucleoside or nucleotide derivative is quenched to some extent by the interaction of 2-nitropyrrole and the dye.
  • the substrate (nucleoside triphosphate) of the derivative of Px can be introduced into DNA by duplication, complementing the artificial base Ds in the template.
  • R 1 and R 2 are ribose, deoxyribose, Hydrogen, hydroxyl group, SH group, halogen, A substituted or unsubstituted alkyl group having 2 to 10 carbon atoms, an alkenyl group or an alkynyl group, One or more 5-membered heterocycles, one or more 6-membered heterocycles, one or more heterocycles, one or more aromatic rings, including nitrogen or sulfur atoms, Sugar, sugar chain, amino acid, peptide, A group independently selected from the group consisting of fluorescent molecules linked via a linker.
  • R 1 is ribose or deoxyribose.
  • a method for detecting the formation of an artificial base pair 1) Formula II
  • R 2 is Hydrogen, hydroxyl group, SH group, halogen, A substituted or unsubstituted alkyl group having 2 to 10 carbon atoms, an alkenyl group or an alkynyl group, One or more 5-membered heterocycles, one or more 6-membered heterocycles, one or more heterocycles, one or more aromatic rings, including nitrogen or sulfur atoms, Sugar, sugar chain, amino acid, peptide, A fluorescent molecule bound via a linker, A group selected from the group consisting of] A nucleoside or nucleotide having a quenching artificial base represented by: 2) Either a natural base modified with self-quenching, an artificial base, or a nucleoside or nucleotide having a base analog that can be a donor such as fluorescence resonance energy transfer (FRET) or static quenching, Alternatively, both methods are used.
  • FRET fluorescence resonance energy transfer
  • R 2 is Hydrogen, hydroxyl group, SH group, halogen, A substituted or unsubstituted alkyl group having 2 to 10 carbon atoms, an alkenyl group or an alkynyl group, One or more 5-membered heterocycles, one or more 6-membered heterocycles, one or more heterocycles, one or more aromatic rings, including nitrogen or sulfur atoms, Sugar, sugar chain, amino acid, peptide, A fluorescent molecule bound via a linker, A group selected from the group consisting of] The method as described above, wherein the formation of an artificial base pair is detected by observing a decrease in fluorescence of the fluorescent artificial base by forming a base pair with the quenching artificial base represented by formula (1).
  • a method for detecting the formation of a base pair of an artificial base by lowering the fluorescence of a fluorescent artificial base comprising: (I) 7- (2,2′-bithien-5-yl) imidazo [4,5-b] pyridin-3-yl group (Dss); (Ii) 7- (2,2 ′, 5 ′, 2 ′′ -tertien-5-yl) imidazo [4,5-b] pyridin-3-yl group (Dsss); (Iii) 2-amino-6- (2,2′-bithien-5-yl) purin-9-yl group (ss); (Iv) 2-amino-6- (2,2 ′, 5 ′, 2 ′′ -tert-en-5-yl) purin-9-yl group (sss); (V) 4- (2,2′-bithien-5-yl) -pyrrolo [2,3-b] pyridin-1-yl group (Dsas
  • R 3 is -H, iodine, -CH 3,
  • R 4 is -CH 3, -CH 2 -NH 2 and,
  • a nucleic acid primer comprising a polynucleotide having 7- (2,2′-bithien-5-yl) imidazo [4,5-b] pyridin-3-yl group (Dss) as a base; and A quenching base of the following formula III or formula IV
  • R 3 is -H, iodine, -CH 3,
  • R 4 is -CH 3, -CH 2 -NH 2 and,
  • R 5 is a fluorescent molecule bound via a linker
  • the method wherein the fluorescence intensity of the fluorescent molecule in the quenching artificial base represented by formula (1) is changed by the formation of the base pair by the artificial base of Formula V, and the formation of the artificial base pair is detected.
  • Fluorescent molecules include indocarbocyanine (Cy3), indodicarbocyanine (Cy5), 5-carboxyfluorescein (5-FAM), 6-carboxyfluorescein (6-FAM), 5-carboxytetramethylrhodamine (5-TAMRA) ), 6-carboxytetramethylrhodamine (6-TAMRA), 5-dimethylaminonaphthalene-1-sulfonic acid (DANSYL), 5-carboxy-2 ′, 4,4 ′, 5 ′, 7,7′-hexachlorofluorescein (5-HEX), 6-carboxy-2 ′, 4,4 ′, 5 ′, 7,7′-hexachlorofluorescein (6-HEX), 5-carboxy-2 ′, 4,7,7′-tetrachloro Fluorescein (5-TET), 6-carboxy-2 ′, 4,7,7′-tetrachloro Fluorescein (6-TET), 6-carboxy-2
  • a nucleic acid primer comprising a polynucleoside having a 7- (2-thienyl) imidazo [4,5-b] pyridin-3-yl group (Ds) as a base; and Base of formula VI:
  • R 6 is a fluorescent molecule bound through or without a linker], and detects the formation of an artificial base base pair by a change in fluorescence intensity. Kit for use in the method.
  • a method for detecting the formation of an artificial base pair Using a nucleic acid containing a polynucleoside having a natural base modifier, an artificial base, or a base analog having a self-quenching property that can serve as a donor such as fluorescence resonance energy transfer (FRET) and static quenching (static quenching), When an artificial base pair is formed between an artificial base (first artificial base) in the nucleic acid and an artificial base having a fluorescent molecule (second artificial base), the modified natural base, artificial base, or base Detects the formation of an artificial base pair by changing the fluorescence spectrum due to fluorescence resonance energy transfer or static quenching from a polynucleoside having an analog to a fluorescent molecule of a second artificial base Said method.
  • FRET fluorescence resonance energy transfer
  • static quenching static
  • R 6 when R 6 is a fluorescent molecule bound through or without a linker, a base pair is formed, Fluorescence resonance energy transfer from at least one 2-amino-6- (2-thienyl) purin-9-yl group (s) to a fluorescent molecule in a base of formula VI by excitation with ultraviolet light at 240-390 nm It is detected that the fluorescence spectrum is changed due to static quenching or the like, and an artificial base pair is formed.
  • at least one polynucleotide having a 2-amino-6- (2-thienyl) purin-9-yl group (s) as a base is present on the same strand as a nucleic acid containing a polynucleoside having Ds as a base.
  • R 6 when R 6 is a fluorescent molecule bound through or without a linker, a base pair is formed, Fluorescence resonance energy transfer from at least one 2-amino-6- (2-thienyl) purin-9-yl group (s) to a fluorescent molecule in a base of formula VI upon excitation with UV light at 350-390 nm The fluorescence spectrum is changed by static quenching or the like, and it is detected that an artificial base pair is formed.
  • a polynucleotide having a base in which (Dss) is bound to a natural base Said method.
  • Fluorescent substances include indocarbocyanine (Cy3), indodicarbocyanine (Cy5), 5-carboxyfluorescein (5-FAM), 6-carboxyfluorescein (6-FAM), 5-carboxytetramethylrhodamine (5-TAMRA) ), 6-carboxytetramethylrhodamine (6-TAMRA), 5-dimethylaminonaphthalene-1-sulfonic acid (DANSYL), 5-carboxy-2 ′, 4,4 ′, 5 ′, 7,7′-hexachlorofluorescein (5-HEX), 6-carboxy-2 ′, 4,4 ′, 5 ′, 7,7′-hexachlorofluorescein (6-HEX), 5-carboxy-2 ′, 4,7,7′-tetrachloro Fluorescein (5-TET), 6-carboxy-2 ′, 4,7,7′-tetrachloro Fluorescein (6-TET), 6-carboxy-2
  • nucleic acid primer selected from the group consisting of i) -iii) below: i) a nucleic acid primer comprising a polynucleotide having 7- (2,2′-bithien-5-yl) imidazo [4,5-b] pyridin-3-yl group (Dss) as a base; ii) a polynucleoside having a 7- (2-thienyl) imidazo [4,5-b] pyridin-3-yl group (Ds) as a base, and at least one 2-amino-6- (2-thienyl)- A nucleic acid primer comprising a polynucleotide having a 9H-purin-9-yl group (s) as a base; iii) a polynucleoside having a 7- (2-thienyl) imidazo [4,5-b] pyridin-3-yl group (Ds) as a base, and at least one
  • R 6 is a fluorescent molecule attached via or without a linker in Formula VI
  • Quencher 1 Quencher Structure
  • the present invention provides a novel quencher.
  • the quencher of the present invention has a 2-nitropyrrole structure represented by Formula I
  • R 1 and R 2 are ribose, deoxyribose, Hydrogen, hydroxyl group, SH group, halogen, A substituted or unsubstituted alkyl group having 2 to 10 carbon atoms, an alkenyl group or an alkynyl group, One or more 5-membered heterocycles, one or more 6-membered heterocycles, one or more heterocycles, one or more aromatic rings, including nitrogen or sulfur atoms, Sugar, sugar chain, amino acid, peptide, It is a group independently selected from the group consisting of fluorescent molecules linked via a linker. It is characterized by that.
  • R 1 and R 2 are not particularly limited, and any group can be selected.
  • R 1 and R 2 are arbitrarily selected independently.
  • Ribose, deoxyribose R 1 and / or R 2 are preferably ribose or deoxyribose.
  • R 1 is ribose or deoxyribose.
  • “Ribose” is one of pentose monosaccharides, and the IUPAC name is “(3R, 4S, 5R) -5- (hydroxymethyl) tetrahydrofuran-2,3,4-triol”.
  • “Deoxyribose” is a kind of pentose monosaccharide containing an aldehyde group, and the IUPAC name is “(2R, 4S, 5R) -5- (hydroxymethyl) tetrahydrofuran-2,4-diol”. .
  • the partner that forms the base pair or a base that exists in the vicinity is a fluorescent base In some cases, it has a quenching effect that extinguishes the fluorescence. Or the fluorescence of the fluorescent substance couple
  • halogen Hydrogen, hydroxyl group, SH group, halogen
  • the type of halogen is not particularly limited. Preferably, it is selected from the group consisting of fluorine, bromine, iodine and the like.
  • alkyl group, alkenyl group or alkynyl group having 2 to 10 carbon atoms may be linear or branched, and in particular It is not limited.
  • a methyl group, an ethyl group, a propynyl group, an ethylene group, an ethynyl group and the like are included. These groups may be substituted.
  • the substituent is not particularly limited, but is preferably selected from the group consisting of amino group, hydroxyl group, SH group, halogen, carboxyl group, nitro group and the like.
  • one or more 5-membered heterocycles 1 or more 6-membered heterocycles, 1 or more heterocycles, 1 or more aromatic rings
  • R 1 and / or R containing nitrogen or sulfur atoms 2 may be one or more heterocycles.
  • the heterocycle is a 5-membered heterocycle selected from a thienyl group, a thiazolyl group, an imidazolyl group, a furanyl group, or a derivative thereof.
  • 6-membered heterocycles include pyranyl group, pyridyl group, pyrimidyl group, and the like.
  • heterocyclic ring examples include purine, 1-deazapurine, quinoline and the like.
  • aromatic ring examples include a phenyl group and a naphthyl group.
  • the number of heterocycles, heterocycles and aromatic rings is not particularly limited, but is preferably 1 to 3. More preferably, it is 1 or 2.
  • v) Sugar, sugar chain, amino acid, peptide Sugar is not particularly limited. For example, glucose, arabinose, furanose and the like are included. Ribose or deoxyribose is also a kind of sugar.
  • the sugar chain is not particularly limited, and examples thereof include sucrose and lactose.
  • Amino acids are not particularly limited. For example, glycine, alanine, phenylalanine and the like are included.
  • the type of peptide is not particularly limited.
  • the polypeptide consists of about 2 to 10 amino acid residues.
  • a preferred peptide is, for example, phenylalanyl-glycine.
  • non-natural peptides such as peptide nucleic acids are also included.
  • linker is not particularly limited, and those skilled in the art can appropriately employ it.
  • the linker is not limited, but preferably the following chemical formulas VII and VIII:
  • n is selected from an integer of 1 to 12] as well as
  • n, m and l are each independently selected from an integer of 1 to 12] Selected from the group consisting of In formulas VII and VIII, n, m and l are each preferably 1-7, more preferably 5.
  • fluorescent molecule is not particularly limited.
  • Substance having fluorescence to be quenched The type of substance having fluorescence that is quenched by the quenching action of the quencher having a 2-nitropyrrole structure represented by Formula I of the present invention is not particularly limited.
  • Examples of the substance having fluorescence include arbitrary substances such as fluorescent molecules such as fluorescent artificial bases and fluorescent dyes.
  • the 2-nitropyrrole structure represented by the formula I preferably forms a pair with the following base (Japanese Patent Application No. 2009-232851).
  • Dss, Dsss, ss, sss, Dsas, Dsav and Dvas are fluorescent bases.
  • the fluorescence intensity decreases or is quenched.
  • the substance having fluorescence that does not directly form a base pair with the quencher of formula I is present near the artificial base that forms a base pair with the quencher of formula I, Can be affected.
  • an artificial base having fluorescence is present on the same single-stranded or double-stranded or triple-stranded nucleic acid as the above-mentioned artificial base (for example, s) (for example, adjacent to each other), or
  • a substance having fluorescence is formed in the vicinity of the quencher of the present invention by forming a base pair of the artificial base that forms a base pair with the quencher of formula I. Can be affected by quenching.
  • the present invention also provides a method for detecting an artificial base pair.
  • the method of the present invention comprises: 1.
  • R 2 is Hydrogen, hydroxyl group, SH group, halogen, A substituted or unsubstituted alkyl group having 2 to 10 carbon atoms, an alkenyl group or an alkynyl group, One or more 5-membered heterocycles, one or more 6-membered heterocycles, one or more heterocycles, one or more aromatic rings, including nitrogen or sulfur atoms, Sugar, sugar chain, amino acid, peptide, A fluorescent molecule bound via a linker, A group selected from the group consisting of] A nucleoside or nucleotide having a quenching artificial base represented by: 2) Either a natural base modified with self-quenching, an artificial base, or a nucleoside or nucleotide having a base analog that can be a donor such as fluorescence resonance energy transfer (FRET) or static quenching, Alternatively, both are used.
  • FRET fluorescence resonance energy transfer
  • the nitrogen atom of the pyrrole ring of the quenching artificial base of formula II of the present invention forms a nucleoside or nucleotide by binding to ribose or deoxyribose.
  • the artificial base of the formula II of the present invention forms an artificial base pair with artificial bases such as Ds, Dss, Dsss, s, ss, sss, dDsa, Dsas, Dsav, dDva, Dvas, and dDia (Japanese Patent Application 2009). -232851).
  • the fluorescence intensity of the fluorescent artificial base forming the base pair, or the fluorescent base or fluorescent molecule present in the vicinity changes, or Extinguish.
  • the method of the present invention uses this change to detect the formation of artificial base pairs.
  • Dss, Dsss, ss, sss, Dsas, Dsav and Dvas are fluorescent bases, and by forming a base pair with the compound of formula II, the fluorescence of the artificial base is reduced or quenched. .
  • the fluorescence intensity of the fluorescent molecule is lowered due to the quenching property of the quenching artificial base of the present invention. This is considered to be because the fluorescent molecule is efficiently quenched by stacking with a quenching artificial base in a solution. Then, when the quenching artificial base to which the fluorescent molecule is bound forms an artificial base pair with the artificial base and is incorporated into the nucleic acid, stacking between the fluorescent molecule and the quenching artificial base occurs. Since it is eliminated, the fluorescence intensity of the fluorescent dye increases. Using this property, it is possible to detect the formation of artificial base pairs.
  • the present invention has a self-quenching property that can be a donor such as fluorescence resonance energy transfer (FRET) or static quenching. It also includes a method for detecting an artificial base pair using a nucleoside or nucleotide having a natural base modification, an artificial base, or a base analog.
  • FRET Fluorescence Resonance Energy Transfer
  • FRET Fluorescence resonance energy transfer
  • the method of the present invention utilizes a self-quenching natural base modification, artificial base, or base analog that can be a donor of fluorescence resonance energy transfer (FRET).
  • the quenching process includes static quenching due to the formation of excimers such as excimers in addition to FRET.
  • these natural base modifiers, artificial bases, or base analogs having self-quenching properties are present in the vicinity of the acceptor due to the formation of an artificial base pair, these donors are excited by giving energy of a specific wavelength. As a result, energy is donated from these donors to the acceptor, and the acceptor emits fluorescence with energy of a wavelength that should not emit fluorescence.
  • artificial base having self-quenching includes one or more adjacent s, for example, two or more adjacent s, ss, Dss, and Dsss on the same nucleic acid.
  • “Natural base modified product having self-quenching property” means, but is not limited to, a natural base (for example, uracil to which s is bound, s to 2) to which at least one artificial base having self-quenching properties (for example, s) is bound. Single-linked cytosine, uracil bonded with Dss), and the like.
  • Examples of the “base analog having self-quenching property” include a size-expanded base analog dimer, a 2-aminopurine dimer, and the like.
  • the artificial base pair detected here is preferably a base pair between the quenching artificial base represented by the above formula II and its complementary artificial base. However, it is not necessarily limited thereto. Any method that uses a natural base modifier, an artificial base, or a nucleoside or nucleotide having a base analog that has a self-quenching property that can serve as a donor for fluorescence resonance energy transfer (FRET) or static quenching (static quenching) Other known artificial base pairs are also included in the scope of the present invention.
  • FRET fluorescence resonance energy transfer
  • static quenching static quenching
  • sy base pair (s: 2-amino-6-thienylpurine, y: pyridin-2-one), vy base pair (v: 2-amino-6-thiazolyl purine), s-Pa base pair (Pa: pyrrole-2-carbaldehyde), Ds-Pa base pair (Ds: 7- (2-thienyl) -imidazo [4,5-b] pyridine), Pa-Q base pair (Q: 9-methylimidazo) Artificial base pairs such as [(4,5) -b] pyridine), isoG-isoC, 5SICS-MMO2, and 5NaM can also be detected by the method using FRET of the present invention.
  • FIG. 1 shows an example of an artificial base pair of a quenching base (Pn, Px) and its complementary base (Ds or Dss). Examples are Pn and a fluorescent artificial base (Dss), and an artificial base pair consisting of Px and Ds.
  • FIG. 2 shows the structure of a quenching artificial base Pn and its 4 ′ derivative used in the examples of the present invention.
  • FIG. 3 shows the structures of the quenching artificial base Px and its derivatives used in Examples of the present invention.
  • FIG. 4 shows the structures of Ds and fluorescent artificial bases Dss, Dsss, and Dsav as examples of artificial bases complementary to Pn or Px used in the method of the present invention.
  • FIG. 6 shows the structure of a natural base amidite reagent bound with a fluorescent artificial base Dss or s.
  • the compounds in FIG. 6 are as follows. Among 100mM NaHCO 3, NH 2 -hx- dPxTP (8.4 ⁇ mol), Na 2 CO 3 buffer (pH8.5) (500 ⁇ l), in DMF (300 ⁇ l), Cy3 (7.63 ⁇ mol ) N- hydroxysuccinimide midges Luster, 12 hours at room temperature [FIG. 6]
  • FIG. 6 shows the structure of a natural base amidite reagent bound with a fluorescent artificial base Dss or s. The compounds in FIG.
  • FIG. 6 shows Dss-hx-dU amidite, s-hx-dU amidite, and s2-hx-dC amidite from the left.
  • FIG. 7 shows quenching of the fluorescent artificial base Dss in the complementary strand by the artificial base Pn.
  • Each DNA solution (5 ⁇ M) in 10 mM sodium phosphate (pH 7.0), 100 mM NaCl, 0.1 mM EDAT was photographed by irradiation at 365 nm.
  • FIG. 7 shows the fluorescence spectrum of each DNA fragment in the experiment of FIG.
  • Double-stranded DNA (5′-GGTAACNATGCG-3 ′) containing single-stranded DNA containing Dss (5′-GGTAACDssATGCG-3 ′), Dss-Pn, Dss-Dss, Dss-Ds, and Dss-T base pairs.
  • FIG. 11 shows the results of examining a primer extension reaction using a template DNA containing Pn and dDssTP by Klenow fragment of DNA polymerase I derived from E. coli. Each concentration of dDssTP was added to 200 nM template DNA, 10 ⁇ M dCTP and dTTP, 0.1 U / ⁇ l Klenow fragment, reacted at 37 ° C.
  • FIG. 11 shows that dDssTP is complementary to Pn in the template and incorporated into the complementary strand DNA.
  • FIG. 12 shows the results of examining PCR amplification of DNA containing Ds using Dss-Px base pairs.
  • Ds-containing DNA 55-mer was subjected to 20 cycles of PCR amplification using dDssTP, NH 2 -hx-dPxTP, and a natural base substrate. After denaturing gel electrophoresis, the product was stained with SYBR Green II. Was analyzed.
  • FIG. 13 shows the results of DNA sequencing after PCR amplification using Dss-Px base pairs.
  • DNA (55-mer) containing Ds was subjected to PCR amplification for 15 cycles using dDssTP, NH 2 -hx-dPxTP, and a natural base substrate, and the amplification product was sequenced by a conventional method. It was found that 99% or more of Dss and NH 2 -hx-Px were retained in the amplified DNA.
  • This sequencing uses the method developed by the inventors of the present application (Anna Unusual hydrophobic base pair system: site-specific incorporation of nucleic acids into RNA. , T. Fujiwara, R. Kawai, A. Sato, Y. Harada, S. Yokoyama, Nature Methods, 3, 729-735 (2006), An Unnatural base pir system.
  • FIG. 14 is a schematic diagram showing the principle of real-time PCR using Dss-Px base pairs.
  • Dss is introduced into a PCR primer and PCR is performed using dPnTP or dPxTP
  • Pn and Px are incorporated into the complementary strand in a complementary manner to Dss, and the fluorescence of Dss is quenched. By detecting this, real-time PCR becomes possible.
  • FIG. 15 shows the results of real-time PCR using Dss-Px base pairs.
  • dPxTP is incorporated into its complementary strand, and the fluorescence of Dss is quenched. This forms a Dss-Px base pair during PCR, quenches the fluorescence of Dss, and enables application to real-time PCR.
  • This Dss-Pn (or Dss-Px) base pair property can be applied to molecular beacons.
  • FIG. 17 shows that molecular beacons containing Dss-Pn base pairs can be visualized.
  • the fluorescence of the hairpin beacon (26-mer) containing Dss-Pn base pairs was observed in the presence or absence of the target single-stranded DNA (71-mer).
  • Each DNA was measured in 1 ⁇ M, 10 mM sodium phosphate buffer (pH 7.0), 100 mM NaCl, 0.1 mM EDTA.
  • FIG. 18 shows the result of detecting a single base mutation by a molecular beacon containing Dss-Pn base pairs. The fluorescence of each of the two types of hairpin type beacons (26-mer) containing Dss-Pn base pairs was observed in addition to the single-stranded DNA (71-mer) of each of the two types of target sequences with one base mutation.
  • FIG. 19 shows the principle of visualization PCR using Cy3-Px / Dss base pair as a substrate in which fluorescent dye Cy3 is bound to Px.
  • FIG. 20 shows an example of visual real-time PCR using Cy3-Px / Dss base pairs based on the principle described in FIG.
  • Reaction mixture (25 ⁇ L scale) 1x Titanium Taq PCR buffer 1 ⁇ M 080731-5 ′ primer 3 (SEQ ID NO: 15) 1 ⁇ M 090914a-Plexor-Dss1 (SEQ ID NO: 16) 2 ⁇ M Cy3-hx-dPxTP 2 mM dNTPs 1 ⁇ Titanium TaqDNA polymerase 2aM (3 copies) -200 fM (3000000 copies) Template DNA application The total volume was adjusted to 25 ⁇ L with sterile water.
  • Cy3 does not emit light at an excitation wavelength near 350 nm, and thus Px substrate bound to Cy3 (Cy3-hx-dPxTP) Does not emit light when irradiated with UV at 350 nm.
  • Cy3-hx-dPxTP is incorporated into the complementary strand of Dss due to base pairing of Dss-Px, fluorescence resonance energy transfer (FRET) from Dss to Cy3 occurs due to UV irradiation at 350 to 390 nm, and light is emitted.
  • FRET fluorescence resonance energy transfer
  • FIG. 21 is a schematic diagram showing the principle of a real-time PCR method using a quenching Px base to which a fluorescent molecule (Cy3) is bound.
  • a fluorescent molecule for example, Cy3
  • Cy3-hx-dPxTP a substrate
  • Cy3-hx-dPx a primer into which a Ds base has been introduced
  • Cy3-hx-dPx is incorporated into DNA, thereby increasing the fluorescence intensity of Cy3.
  • FIG. 22 shows the results of real-time PCR using a quenching Px base to which a fluorescent molecule (Cy3) is bound.
  • Real-time PCR detection using Cy3-hx-dPxTP as a substrate was performed using a real-time PCR apparatus (Stratagene, Mx3005P). PCR reaction was performed with primers: 1 ⁇ M each, natural base substrate dNTP: 0.2 mM each, artificial base substrate Cy3-hx-dPxTP: 2 ⁇ M, and a fluorescence change at 568 nm was detected at an excitation wavelength of 545 nm.
  • FIG. 23 shows the result of gel electrophoresis detecting a real-time PCR product with a quenching Px base bound with a fluorescent molecule (Cy3). Since the PCR product shown in FIG.
  • FIG. 24 shows the results of examining the fluorescence characteristics of DNA containing a fluorescent molecule (Cy3) and a fluorescent artificial base s.
  • FIG. 25 shows the principle of a visualization PCR method in which a quenching Px base to which a fluorescent molecule (Cy3) is bound and a fluorescent artificial base s are combined.
  • a quenching Px base to which a fluorescent molecule (Cy3) is bound and a fluorescent artificial base s are combined.
  • Cy3-hx-dPxTP Cy3-hx-Px is incorporated into its complementary strand.
  • FIG. 26 shows the results of a visualization PCR method in which a quenching Px base combined with a fluorescent molecule (Cy3) and a fluorescent artificial base s are combined.
  • FIG. 26 shows the results of performing PCR, illuminating the PCR tube at 350 nm, and examining the light emission of Cy3 with the naked eye or through an orange filter.
  • FIG. 27a shows the results of a visualization PCR method combining a quenching Px base to which a fluorescent molecule (Cy3) is bound and a fluorescent artificial base s.
  • FIG. 27b shows the result of detecting a visualized PCR in which a quenching Px base bound with a fluorescent molecule (Cy3) and a fluorescent artificial base s are combined using a real-time quantitative PCR apparatus.
  • FIG. 27c shows the result of visualizing the DNA amplification product of each PCR cycle of FIG. 27b.
  • FIG. 27d shows the result of quantifying the fluorescence intensity of each PCR tube in FIG. 27c.
  • FIG. 27d1 is a plot of fluorescence intensity in each PCR cycle when 0, 3 to 30000 copies of DNA were amplified by PCR.
  • FIG. 27d2 is a graph plotting the fluorescence intensity when 3-3,000,000 copies of each DNA were amplified in each PCR cycle.
  • FIG. 28 shows the detection of a product on gel electrophoresis by PCR (55 cycles) using a primer in which a quenching Px base bound to a fluorescent molecule (Cy3) and a fluorescent artificial base s are combined.
  • the PCR product By agarose gel electrophoresis of the visualized PCR product of FIG. 27a by the method of the present invention, the PCR product could be detected by irradiation at 312 nm or 532 nm. In the case of irradiation at 312 nm, FRET from s to Cy3 is detected, and in the case of irradiation at 532 nm, the result of direct excitation of Cy3 incorporated in DNA is shown. Since the PCR product is labeled with Cy3, it was possible to observe the PCR product on a gel by exciting s at 312 nm and FRET, or by directly exciting Cy3 at 532 nm. [FIG. 29a] FIG.
  • FIG. 29a uses a nucleoside derivative (FIG. 6, s-hx-dU, (Us)) in which a fluorescent molecule (s base) is bound to a natural base via a linker and a Ds-Px base pair. It is the schematic diagram which showed the detection method of the PCR product which was found. In the visualized PCR method of FIG. 25, two adjacent fluorescent artificial bases s are used. Instead, this fluorescent s is bound to a natural base via a linker, and this base is added to the PCR primer. A configuration in which two are adjacent to each other is the embodiment of FIG. 29a. [FIG. 29b] FIG. 29b shows the use of a nucleoside derivative (FIG.
  • FIG. 29c shows the results of visualization PCR in which a quenching Px base bound with a fluorescent molecule (Cy3) and a fluorescent artificial base s-hx-dU are combined. Real-time PCR is also possible by increasing the fluorescence intensity of Cy3 of Cy-hx-Px incorporated into DNA.
  • FIG. 29d FIG.
  • FIG. 29d is a visualization of the DNA amplification products of each PCR cycle of FIG. 29c.
  • FIG. 30 is a chemical synthesis of s-hx-dU amidite reagent. Conditions: (a) CBr 4 , PPh 3 , CH 2 Cl 2 ; 1. (B) K 2 CO 3 , DMF; 2. (C) Pac-Cl, HOBT, pyridine, CH 3 CN; 3. (D) DMTr-deoxy-5-iodouridine, Pd (PPh 3 ) 4 , CuI, TEA, DMF; 4). (E) NC (CH 2) 2 O-P (Cl) N (iPr) 2, DIEA, THF FIG. 31 shows a nucleoside derivative (FIG.
  • FIG. 32 shows a nucleotide derivative (FIG. 6, Dss-hx-dU (UDss)) in which a fluorescent molecule (Dss base) is bound to a natural base via a linker and a Ds-Px base pair. It is the schematic diagram which showed the detection method of PCR product.
  • FIG. 33 shows the results of chemical synthesis of Dss-hx-dU amidite reagent.
  • the present invention preferably includes the following aspects.
  • the method of the present invention comprises a fluorescent artificial base and a formula II
  • R 2 is Hydrogen, hydroxyl group, SH group, halogen, A substituted or unsubstituted alkyl group having 2 to 10 carbon atoms, an alkenyl group or an alkynyl group, One or more 5-membered heterocycles, one or more 6-membered heterocycles, one or more heterocycles, one or more aromatic rings, including nitrogen or sulfur atoms, Sugar, sugar chain, amino acid, peptide, A fluorescent molecule bound via a linker, A group selected from the group consisting of] The formation of an artificial base pair is detected by observing a decrease in fluorescence of the fluorescent artificial base by forming a base pair with the quenching artificial base represented by
  • the fluorescent artificial base is known to form base pairs with Formula II: (I) 7- (2,2′-bithien-5-yl) imidazo [4,5-b] pyridin-3-yl group (Dss); (Ii) 7- (2,2 ′, 5 ′, 2 ′′ -tertien-5-yl) imidazo [4,5-b] pyridin-3-yl group (Dsss); (Iii) 2-amino-6- (2,2′-bithien-5-yl) purin-9-yl group (ss); (Iv) 2-amino-6- (2,2 ′, 5 ′, 2 ′′ -tert-en-5-yl) purin-9-yl group (sss); (V) 4- (2,2′-bithien-5-yl) -pyrrolo [2,3-b] pyridin-1-yl group (Dsas); (Vi) 4- [2- (2-thiazolyl) thien-5-
  • the quenching base of the present invention is of formula II1 or formula IV below.
  • R 3 is -H, iodine, -CH 3,
  • R 4 is -CH 3, -CH 2 -NH 2 and,
  • n is an integer from 0 to 12
  • n is preferably 3-7, more preferably 5.
  • the present invention also provides A nucleic acid primer comprising a polynucleotide having 7- (2,2′-bithien-5-yl) imidazo [4,5-b] pyridin-3-yl group (Dss) as a base; and Provided is a kit for use in a method for detecting the formation of a base pair of an artificial base by reducing the fluorescence of the fluorescent artificial base, comprising a polynucleotide having a quenching base of formula III or formula IV as a base.
  • a method that utilizes the fact that the fluorescence intensity of a fluorescent molecule bound to the quenching artificial base of the present invention changes due to the formation of an artificial base pair is a method for detecting the formation of an artificial base pair.
  • R 5 is a fluorescent molecule bound via a linker
  • Complementary base pairs in which the artificial base of Formula V forms a base pair include any of the above-described Ds, Dss, Dsss, s, ss, sss, dDsa, Dsas, Dsav, dDva, Dvas, and dDia. Is possible. Preferred are Ds, s, ss, sss, dDsa, dDva, and dDia, more preferably 7- (2-thienyl) imidazo [4,5-b] pyridin-3-yl group (Ds).
  • the quenching artificial base is preferably a base of the following formula VI:
  • R 6 is a fluorescent molecule attached via or without a linker.
  • Linkers similar to those described above for the quencher of formula I can be used.
  • Fluorescent molecules can be used similar to those described above for the quencher of formula I.
  • the present invention also provides Ds A nucleic acid primer comprising a polynucleoside having a 7- (2-thienyl) imidazo [4,5-b] pyridin-3-yl group (Ds) as a base; and Provided is a kit for use in a method for detecting the formation of an artificial base base pair by a change in fluorescence intensity, comprising a polynucleotide having a base of formula VI.
  • a nucleic acid comprising a natural base modifier having a self-quenching property, an artificial base, or a polynucleoside having a base analog, which can serve as a donor, such as fluorescence resonance energy transfer (FRET) and static quenching (static quenching)
  • FRET fluorescence resonance energy transfer
  • static quenching static quenching
  • a method for detecting the formation of an artificial base pair Utilizing a nucleic acid comprising a natural base modifier having a self-quenching property, an artificial base, or a polynucleoside having a base analog, which can be a donor such as fluorescence resonance energy transfer (FRET) and static quenching,
  • FRET fluorescence resonance energy transfer
  • a nucleic acid comprising a natural base modifier having a self-quenching property, an artificial base, or a polynucleoside having a base analog, which can be a donor such as fluorescence resonance energy transfer (FRET) and static quenching
  • the artificial base pair between an artificial base (first artificial base) in a nucleic acid and an artificial base having a fluorescent molecule (second artificial base) is preferably a quenching artificial base represented by the formula II of the present invention As the second artificial base.
  • a known artificial base pair is a natural base modification having a self-quenching property that can be a donor such as fluorescence resonance energy transfer (FRET) and / or static quenching, It is possible to use a nucleic acid containing a polynucleoside having an artificial base or a base analog.
  • the present invention provides the following aspects as one aspect of the method of C.
  • the method for detecting the formation of a base pair of an artificial base based on the change in the fluorescence spectrum due to the fluorescence resonance energy transfer or static quenching of the present invention is described in 7- (2,2′-biten-5-yl. ) Imidazo [4,5-b] pyridin-3-yl group (Dss) and a base of the following formula VI:
  • FIG. 240-410 nm ultraviolet light is the wavelength at which Dss is excited. It is desirable that the fluorescent molecules in the base of formula VI normally do not fluoresce at this wavelength and that fluorescence is only observed when FRET occurs.
  • an artificial base pair is formed between the 7- (2-thienyl) imidazo [4,5-b] pyridin-3-yl group (Ds) and the base of formula VI. Is detected.
  • the present invention provides the following aspects as one aspect of the method of C.
  • the method of detecting the base pair formation of an artificial base by the change of the fluorescence spectrum by the fluorescence resonance energy transfer and static quenching of the present invention When a base pair is formed between a 7- (2-thienyl) imidazo [4,5-b] pyridin-3-yl group (Ds) and a base of formula VI, Fluorescence resonance energy transfer from at least one 2-amino-6- (2-thienyl) purin-9-yl group (s) to a fluorescent molecule in the base of formula VI by excitation with ultraviolet light at 240-390 nm Static quenching (static quenching) occurs, the fluorescence spectrum is changed, and it is detected that an artificial base pair is formed.
  • At least one polynucleotide having a 2-amino-6- (2-thienyl) purin-9-yl group (s) as a base is present on the same strand as a nucleic acid containing a polynucleoside having Ds as a base. This is the method.
  • the number of s present on the same strand as the nucleic acid containing a polynucleoside having Ds as a base is not limited, but is preferably 1-3, more preferably 1 or 2. Most preferably 2.
  • lane 3 when the number of s is 2, the fluorescence intensity of s is reduced or quenched due to the self-quenching property of s (self-quenching), and the change in the fluorescence spectrum due to FRET is clearer.
  • s When s is 1, the fluorescence of s is observed (FIG. 24, lane 2). Also in this case, the fluorescence of the fluorescent molecule is observed from the fluorescence of s by FRET (FIG. 24, lanes 5 and 6).
  • the present invention provides the following aspects as one aspect of the method of C.
  • the method for detecting the base pair formation of an artificial base by the change of the fluorescence spectrum by the fluorescence resonance energy transfer or static quenching of the present invention When a base pair is formed between Ds and the Formula VI base, Fluorescence resonance energy transfer from at least one 2-amino-6- (2-thienyl) purin-9-yl group (s) to a fluorescent molecule in a base of formula VI upon excitation with UV light at 350-390 nm Static quenching (static quenching) or the like occurs, and the fluorescence spectrum changes, and it is detected that an artificial base pair is formed.
  • At least one 2-amino-6- (2-thienyl) purin-9-yl group (s) is bonded to a natural base on the same strand as a nucleic acid containing a polynucleoside having Ds as a base. Said method wherein there is at least one polynucleotide having one base.
  • FIGS. 29a and 31 A schematic diagram of this embodiment is shown in FIGS. 29a and 31.
  • the type of natural base to which s binds is not limited, and any of A, T, G, C, and U is possible.
  • the adjacent natural bases may be the same or different.
  • two or more of the same are adjacent.
  • the number of natural bases to which s binds is adjacent to the same nucleic acid as well as the C-2 embodiment in which s is present in the nucleic acid, but it is preferably 1-3, more preferably 1 or 2. is there. Most preferably 2.
  • the mode of C-3 includes a mode in which two or more s are bonded to one natural base (FIG. 31).
  • the number of s to be bonded is not particularly limited, but is preferably 2 or 3, more preferably 2.
  • the present invention provides the following aspects as one aspect of the method of C.
  • the method for detecting the base pair formation of an artificial base by the change of the fluorescence spectrum by the fluorescence resonance energy transfer or static quenching of the present invention When a base pair is formed between Ds and the base of formula VI, Fluorescence in the base of formula VI from 7- (2,2′-bithien-5-yl) imidazo [4,5-b] pyridin-3-yl group (Dss) upon excitation with 240-410 nm UV light It is detected that the fluorescence spectrum changes due to fluorescence resonance energy transfer or static quenching to the molecule, and an artificial base pair is formed.
  • a polynucleotide having a base in which (Dss) is bound to a natural base Said method.
  • the fluorescent molecule is not particularly limited.
  • the quencher of formula I More preferred is indocarbocyanine (Cy3).
  • the substituent R 6 in the base of formula VI is preferably:
  • the present invention also provides One nucleic acid primer selected from the group consisting of i) -iii) below: i) a nucleic acid primer comprising a polynucleotide having Dss as a base; ii) a nucleic acid primer comprising a polynucleoside having Ds as a base and a polynucleotide having at least one s as a base; iii) a nucleic acid primer comprising a polynucleoside having Ds as a base, and a polynucleotide having at least one s bonded to a natural base, and iv) a polynucleoside having Ds as a base; and A nucleic acid primer comprising a polynucleotide having a base in which Dss is bound to a natural base; And a method for detecting the formation of a base pair of an artificial base by a change in a fluorescence spectrum by flu
  • Dss-Pn and Dss-Px base pairs function efficiently in PCR.
  • the base pair of the nucleic acid may be formed by any step of transcription, reverse transcription, replication or translation.
  • the change in the detection spectrum can be determined with the naked eye.
  • Prior to the present invention there was no visible and simple method for forming an artificial base pair and detecting a target nucleic acid.
  • Real-time PCR can also be visualized using the detection method of the present invention. Therefore, a complicated and expensive PCR apparatus is no longer necessary.
  • nucleic acid amplification is performed using the method for detecting an artificial base pair of the present invention, the amplified nucleic acid is electrophoresed as it is and is easily detected. It is possible (FIG. 23 etc.). Furthermore, quantification is also possible by the intensity of the electrophoresis band.
  • FIG. 8 shows the fluorescence spectrum of each DNA fragment measured using a JASCO FP-6500 spectrometer equipped with an ETC-273T temperature controller.
  • Example 4 Quenching action of Pn (FIG. 9) A. Changes in fluorescence intensity of deoxyribonucleoside triphosphate (dDssTP, 5 ⁇ M) of fluorescent artificial base Dss depending on concentration of deoxyribonucleoside triphosphate (dPnTP) of Pn JASCO FP-6500 spectrometer equipped with ETC-273T temperature controller 10 mM sodium phosphate (pH 7.0), 100 mM NaCl, 0.1 mM EDTA containing 2 mM, 1 mM, 0.5 mM, 0.2 mM, 0.1 mM, 0.05 mM deoxyribonucleoside triphosphate (dPnTP) 5 ⁇ l of deoxyribonucleoside triphosphate (dDssTP, 105 ⁇ M) was added to the solution (100 ⁇ l), and the emission spectrum of dDssTP by excitation at 370 nm was measured at 20 ° C.
  • dDssTP in order to examine the fluorescence quenching effect of dDssTP in the presence of the natural base deoxyribonucleoside triphosphate, 15 mM, 12 mM, 9 mM, 6 mM, 3 mM, 1 mM deoxyriboadenosine triphosphate (dATP), deoxyriboguanosine triphosphate
  • dATP deoxyriboadenosine triphosphate
  • dATP deoxyriboguanosine triphosphate
  • 10 mM sodium phosphate (pH 7.0) 100 mM NaCl, 0.1 mM EDTA solution (100 ⁇ l) containing (dGTP), deoxyribothymidine triphosphate (dTTP), deoxyribocytidine triphosphate (dCTP), deoxyribonucleoside triphosphate 5 ⁇ l of acid (dDssTP, 105 ⁇ M) was added, and the emission spectrum of dDss
  • a quencher (excited at 370 nm) measured in a 10 mM sodium phosphate buffer (pH 7.0), 100 mM NaCl, 0.1 mM EDTA solution at 20 ° C. (excitation at 370 nm)
  • the Stern-Volmer constant (K SV ) was calculated by substituting the decrease in fluorescence intensity with respect to the concentration of dPnTP, dATP, dGTP, dCTP, dTTP into the following Stern-Volmer equation.
  • FIG. 10 shows the results of measuring fluorescence at a final concentration of 5 ⁇ M dDss in the presence of 5 mM or 5 mM dPn or various derivatives thereof at an excitation wavelength of 385 nm and a measurement temperature of 25 ° C.
  • each nucleoside solution (20 ⁇ M dDss, 20 mM dPn and various derivatives thereof) was prepared by the following procedure.
  • a primer labeled with 6-carboxyfluorescein at the 5 ′ end (20-mer, 5′-ACTCACTATAGGGAGGAAGA-3 ′ (SEQ ID NO: 4) or 5′-ACTCACTATAGGGAGCTTCT-3 ′ (SEQ ID NO: 5))
  • the reaction conditions are summarized as follows. Use 5 ⁇ M primer-template duplex, 5-50 nM enzyme and 0.3-1500 ⁇ M substrate in solution (10 ⁇ l).
  • the solution (10 ⁇ l) contains 50 mM Tris-HCl (pH 7.5), 10 mM MgCl 2 , 1 mM DTT and 0.05 mg / ml BSA.
  • the reaction is 1-35 minutes at 37 ° C.
  • the Run Module is GS Run 36C-2400. The electrophoresis time was about 1 hour, and the peak pattern of the reaction product was analyzed and quantified with an automatic ABI377 DNA sequencer equipped with GeneScan software (version 3.0).
  • Example 7 Primer extension reaction using Pn-containing template DNA and dDssTP using Klenow fragment of DNA polymerase I derived from E. coli (FIG. 11)
  • Primer (23-mer) (SEQ ID NO: 8) labeled with 32 P at the 5 ′ end and template DNA (35-mer) (SEQ ID NO: 9) containing Pn or Pa, containing 14 mM MgCl 2 and 0.2 mM DTT
  • 20 mM Tris-HCl (pH 7.5) buffer the sample was heated at 95 ° C. and then slowly cooled to 4 ° C. to form a template strand and a primer duplex.
  • nucleoside triphosphate solution (40 ⁇ M dCTP, 40 ⁇ M dTTP, 0-40 ⁇ M dDssTP) was added on ice. .
  • the reaction was started by adding an enzyme solution (2.5 ⁇ l, 1 unit) obtained by diluting Klenow fragment having exonuclease activity (KF exo +, TaKaRa) with sterilized water to this solution. After incubating at 37 ° C.
  • reaction was stopped by adding 1 ⁇ TBE solution (stop solution) containing 10 ⁇ l of 10M urea and heating at 75 ° C. for 3 minutes.
  • stop solution 10 ⁇ l of 10M urea
  • the reaction product was electrophoresed on a 15% polyacrylamide-7 M urea gel, and the band pattern was analyzed by autoradiography using a bioimaging analyzer (FLA7000, Fuji Film).
  • Example 8 PCR amplification of DNA containing Ds using Dss-Px base pairs (FIG. 12)
  • NH 2 -hx-dPxTP and dDssTP template DNA containing Ds (S2, 55-mer) or DNA consisting only of natural bases (control, 55-mer) is used.
  • PCR was performed, and the result of analyzing the product by electrophoresis is shown in FIG.
  • DNA S2 55-mer, underlined primer annealing site
  • DNA control 55-mer, underlined primer annealing site
  • SEQ ID NO: 11 5 'primer: 5'-CGTTGTAAAACGACGGGCCAGGATAATACGACTCACTATAG-3 '(SEQ ID NO: 12) 3 'primer: 5′-TTTCACACAGGAAACAGCTATGAC-3 ′
  • PCR reaction scale: 40 ⁇ l
  • the final composition of the reaction solution was 20 mM Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH 4 ) 2 SO 4 , 2 mM MgSO 4 , 0.1% Triton X-100, Deep Vent DNA polymerase (0.02 unit / ⁇ l). , NEB), 1 ⁇ M 5 ′ primer, 1 ⁇ M 3 ′ primer, 0.3 mM each natural base substrate dNTP, 10-25 ⁇ M dDssTP, and 25 ⁇ M NH 2 -hx-dPxTP.
  • the PCR product after 20 cycles was electrophoresed on a 15% polyacrylamide-7M urea gel.
  • the amplified DNA band was detected in SYBR mode of Bioimager LAS4000 (Fuji Film) after the gel was stained with SYBR Green II (Lonza).
  • Example 9 Sequencing of DNA after PCR amplification using Dss-Px base pairs (FIG. 13) PCR is performed using a template DNA (S2, 55-mer) containing Ds in the presence of a predetermined concentration of artificial base substrates, NH 2 -hx-dPxTP and dDssTP, and the artificial base Dss is retained in the product.
  • FIG. 13 shows the result of analysis by DNA sequencing using an artificial base substrate dPa′TP or ddPa′TP.
  • DNA S2 55-mer, underlined primer annealing site
  • 5′- TTTCACACAGGAAAACAGCTATGAC GGCCCDsTTGCC CTATAGTGAGTCGTATTATC- 3 ′ (SEQ ID NO: 10)
  • Primer for PCR 5′-side primer: 5′-CGTTGTTAAAACGACGCCCAGGATAATACGACTCACTATAG-3 ′ (SEQ ID NO: 12)
  • 3'-side primer 5'-TTTCACACAGGAAACAGCCTATGAC-3 '(SEQ ID NO: 13)
  • Sequencing primers 5′-CGTTGTTAAAACGACGCCAG-3 ′ (SEQ ID NO: 14)
  • PCR (reaction scale: 25 ⁇ l) was performed using a DNA fragment with a final concentration of 0.6 nM as a template, and 15 cycles were performed with 94 ° C.
  • the final composition of the reaction solution was 20 mM Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH 4 ) 2 SO 4 , 2 mM MgSO 4 , 0.1% Triton X-100, Deep Vent DNA polymerase (0.02 unit / ⁇ l). NEB), 1 ⁇ M 5 ′ primer, 1 ⁇ M 3 ′ primer, 0.3 mM each natural base substrate dNTP, 2-10 ⁇ M dDssTP, and 2-50 ⁇ M NH 2 -hx-dPxTP.
  • the full length of the PCR product after 15 cycles was purified with a denaturing gel, and then used as a template for a DNA sequence and subjected to sequencing analysis.
  • the DNA sequencing reaction was performed on a commercially available BigDye Terminator v1.1 Cycle Sequencing Kit (Applied BioSystems) with a total volume of 20 ⁇ l, and a PCR amplification fragment (approx. 4 pmol) and about 0.3 pmol of PCR amplified fragment (about 4 pmol). ) And 25 cycles of PCR (96 ° C. for 10 seconds, 50 ° C. for 5 seconds, 60 ° C. for 4 minutes) in the presence of 40 pmol of dPa′TP or 1 nmol of ddPa′TP. Unreacted dye terminator was removed from the reaction solution with a Centri-Sep spin column (Applied BioSystems), and the remaining solution was dried by vacuum suction.
  • the residue was suspended by adding 4 ⁇ l of a formamide solution diluted with Blue-Dextran, and a part thereof was analyzed by an ABI377 DNA sequencer.
  • the gel composition used for the analysis was a 7% polyacrylamide-6M urea gel, and the peak pattern of the sequence was analyzed using Applied BioSystems PRISM sequencing analysis v3.2 software.
  • FIG. 14 shows the principle of real-time PCR when PCR is performed in the presence of a dPxTP substrate using a primer containing the artificial base Dss.
  • FIG. 15 shows the results of real-time PCR using the following DNA fragments. A quantitative amplification plot was obtained, and it was possible to detect even 3 copies of DNA in the reaction solution (25 ⁇ l). all right.
  • Sequence used for experiment (underlined part corresponds to primer annealing site) 5′-primer sequence: 5′- CATGTAGATGCCATCAAAGAAGCTC- 3 ′ (SEQ ID NO: 15) 3′-primer sequence: 5′-AATAATGCDss TCCTCAAAGGGTGGACTTC- 3 ′ (SEQ ID NO: 16) Double-stranded template DNA (98 bp; only one strand is listed): 5′- CATGTAGATGCCCCATCAAAGAAGCTC TGAGCCCTCCTAAAATGACATGCGTGCTCTGGAGAACGAAAAGAAACGAAGACGTA GAAGTCACCACCTTTGAGGA- 3 ′ (SEQ ID NO: 17) Specifically, using a real-time PCR apparatus (Stratagene, Mx3005P), in the presence of each primer 1 ⁇ M, natural base substrate dNTP 0.2 mM, artificial base substrate dPxTP 2 ⁇ M, after 94 ° C.
  • the reaction scale of PCR is 25 ⁇ l, and the composition of the reaction solution is 40 mM Tricine-KOH (pH 8.0), 16 mM KCl, 3.5 mM MgSO 4 , 3.75 ⁇ g / ml BSA, 1 ⁇ Titanium Taq DNA polymerase.
  • the DNA fragment used for the template was diluted to 0, 3, 15, 30, 150, 300, 1500, 3000, 15000, 30000 copies in the reaction solution, and PCR was performed for each concentration. .
  • the filter set used for detection is excitation 350 nm-fluorescence 440 nm (for ALEXA).
  • Plexor registered trademark
  • AnalySiS Software v1.5.4.18, Promega & Eragen BioSciences was used. The results are shown in FIG.
  • Example 11 Fluorescence properties of DNA hairpins containing Dss-Pn base pairs (FIG. 16) 2 types of DNA containing Dss, hairpin ssDNA (34-mer) (SEQ ID NO: 18) and ssDNA (12-mer) (SEQ ID NO: 19) become 1 ⁇ M in 1 ⁇ ExTaq Buffer (TaKaRa, containing 2 mM MgCl 2 )
  • a change in fluorescence intensity due to a change in temperature was detected in a dissociation mode of Mx3005P.
  • FIG. 16 shows a graph when the signal is normalized with the value at 35 ° C. after correction with the signal intensity of ROX.
  • the straight-line ssDNA (12-mer) having no structure was a profile in which fluorescence gradually occurred as in the case of only Buffer without DNA (background), whereas Dss-Pn base pair
  • the hairpin ssDNA (34-mer), which forms the hairpin structure that was included, had a profile in which the fluorescence increased with increasing temperature. This is because Pn having a quenching action forms a base pair with Dss because it has a hairpin structure at low temperature, and the fluorescence intensity of Dss is quenched by Pn and the fluorescence intensity is lowered. In this case, the hairpin structure is broken, the quenching action is lost, and the fluorescence of Dss is detected.
  • Example 12 Visualization of molecular beacons using Dss-Pn base pairs (FIG. 17)
  • Various DNA fragments, molecular beacon (MB-C, 26-mer) (SEQ ID NO: 20) and Target DNA (71G, 71-mer) (SEQ ID NO: 21) were prepared to 2 ⁇ M each, and equal amounts (50 ⁇ l each) ) Mixed.
  • a solution containing no Target DNA was mixed with an MB-C solution.
  • the final solution composition is DNA concentration 1 ⁇ M each, 10 mM sodium phosphate buffer (pH 7.0), 100 mM NaCl, 0.1 mM EDTA. This solution was heated at 90 ° C.
  • the molecular beacon In the absence of the target DNA, the molecular beacon forms a loop-stem structure, and the Dss fluorescence is quenched by Dss-Pn base pairing. However, in the presence of the target DNA, the molecular beacon loop part is hybridized. As a result, a double strand was formed with the target DNA, the stem structure was broken, and the Dss-Pn base pair was not formed, and it was confirmed visually that Dss fluorescence was detected.
  • Example 13 Detection of single nucleotide mutation by molecular beacon using Dss-Pn base pair (FIG. 18)
  • a 50 ⁇ l aliquot of a molecular beacon (26-mer, MB-C (SEQ ID NO: 20) or MB-T (SEQ ID NO: 23)) diluted to 500 nM was dispensed, and the Target DNA fragment (71 A sample mixed with -mer, 71G (SEQ ID NO: 21) or 71A (SEQ ID NO: 22), 12.5 ⁇ l) was kept in an incubator at 45 ° C. for 5 minutes or more to obtain an equilibrium state. Fluorescence measurement was performed using a JASCO FP-6500 spectrometer.
  • the composition in the final solution is molecular beacon 400 nM, Target DNA 0-3200 nM, 10 mM sodium phosphate buffer (pH 7.0), 100 mM NaCl, 0.1 mM EDTA.
  • the graph shown in FIG. 18 is plotted after standardizing the fluorescence intensity at 454 nm with the fluorescence intensity in the absence of the Target DNA fragment. It was found that a single base mutation can be detected by a molecular beacon using a Dss-Pn base pair by utilizing the fact that the fluorescence intensity is significantly lower when there is a single base mismatch than when it is a perfect match.
  • FIG. 19 shows the principle of real-time PCR when PCR is performed in the presence of a substrate of Cy3-hx-dPxTP using a primer containing the artificial base Dss.
  • FRET occurs between Dss and Cy3 by irradiation at around 350 nm, and thus PCR-amplified double-stranded DNA can be specifically illuminated. It was also found that the fluorescence by FRET can be detected visually (FIG. 20).
  • sequence used for experiment is the same as FIG. Sequence used in the experiment (underlined part corresponds to the primer annealing site) 5′-primer sequence: 5′- CATGTAGATGCCCATCAAAGAAGCTC- 3 ′ (SEQ ID NO: 15) 3′-primer sequence: 5′-AATAATGCDss TCCTCAAAGGTGGTACTACT- 3 ′ (SEQ ID NO: 16) Double-stranded template DNA (98 bp; only one strand is listed): 5′- CATGTAGATGCCCCATCAAAGAAGCTC TGAGCCCTCCTAAAATGACATGCGTGCTCTGGAGAACGAAAAGAAACGAAGACGTA GAAGTCACCACCTTTGAGGA- 3 ′ (SEQ ID NO: 17) Specifically, using a real-time PCR apparatus (Stratagene, Mx3005P), 94 ° C.-2 minutes in the presence of each primer 1 ⁇ M, natural base substrate dNTP 0.2 mM, artificial base
  • the reaction scale of PCR is 25 ⁇ l, and the composition of the reaction solution is 40 mM Tricine-KOH (pH 8.0), 16 mM KCl, 3.5 mM MgSO 4 , 3.75 ⁇ g / ml BSA, 1 ⁇ Titanium Taq DNA polymerase.
  • the DNA fragment used for the template was diluted to 0, 3, 30, 300, 3000, 30000, 300000, 3000000 copies in the reaction solution, and PCR was performed for each concentration.
  • the reaction tube was directly irradiated with 365 nm UV, and fluorescence was detected visually through an orange filter.
  • FIG. 21 shows the principle of real-time PCR when PCR is performed in the presence of a substrate of a dPxTP derivative to which a fluorescent molecule (such as Cy3) is bound using a primer containing an artificial base Ds.
  • a fluorescent molecule such as Cy3
  • the fluorescence of the fluorescent molecule is quenched by about 30%.
  • this is used as a substrate (Cy3-hx-dPxTP) and PCR is carried out using a primer into which a Ds base has been introduced, Cy3-hx-Px is incorporated into DNA, thereby increasing the fluorescence intensity of Cy3.
  • FIG. 22 shows the results of real-time PCR using the following DNA fragments. A quantitative amplification plot was obtained, and it was possible to detect even 3 copies of DNA in the reaction solution (25 ⁇ l). all right.
  • Sequence used for experiment (underlined part corresponds to primer annealing site) 5′-primer sequence: 5′- CATGTAGATGCCATCAAAGAAGCTC- 3 ′ (SEQ ID NO: 15) 3′-primer sequence: 5′-AATAATGCDs TCCTCAAAGGTGGTACTACT- 3 ′ (SEQ ID NO: 24) Double-stranded template DNA (98 bp; only one strand is listed): 5′- CATGTAGATGCCCCATCAAAGAAGCTC TGAGCCCTCCTAAAATGACATGCGTGCTCTGGAGAACGAAAAGAAACGAAGACGTA GAAGTCACCACCTTTGAGGA- 3 ′ (SEQ ID NO: 17) Specifically, using a real-time PCR apparatus (Stratagene, Mx3005P), 94 ° C.-2 minutes in the presence of each primer 1 ⁇ M, natural base substrate dNTP 0.2 mM, artificial base substrate Cy3-hx-dPxTP 2 ⁇ M
  • the PCR reaction scale is 25 ⁇ l, and the composition of the reaction solution is 40 mM Tricine-KOH (pH 8.0), 16 mM KCl, 3.5 mM MgSO 4 , 3.75 ⁇ g / ml BSA, 1 ⁇ Titanium Taq DNA polymerase.
  • the DNA fragment used for the template was diluted to 0, 3, 30, 300, 3000, 30000, 300000, 3000000 copies in the reaction solution, and PCR was performed for each concentration.
  • the filter set used for detection is excitation 545 nm-fluorescence 568 nm (for CY3).
  • attached analysis software MxPro version 4.10 was used.
  • Example 16 Detection of real-time PCR product on gel electrophoresis with quenching Px base bound to fluorescent molecule Cy3 (FIG. 23) Since the PCR product shown in FIG. 22 incorporates Cy3, when this product is electrophoresed on an agarose gel, the PCR product can be run on the gel without using a conventional DNA staining dye such as EtBr or SYBR Green. Detection is possible with Cy3 fluorescence. In FIG. 23, 12 ⁇ l of the PCR product shown in FIG.
  • Example 17 Fluorescence characteristics of DNA containing fluorescent molecule Cy3 and fluorescent artificial base S (FIG. 24) DNA fragments purified by HPLC after chemical synthesis were prepared with 10 mM sodium phosphate buffer (pH 7) containing 100 mM NaCl and 0.1 mM EDTA so that the final concentration would be 5 ⁇ M. The results of examining the spectrum are shown in FIG.
  • UV irradiation was performed from below using a UV transilluminator.
  • a DNA fragment containing one fluorescent artificial base s emits light when irradiated at 254 nm, 302 nm, and 365 nm (photo lane 2), and when two s are introduced into the DNA adjacent to each other, the fluorescence is quenched (photo lane). 3).
  • the DNA into which Cy3 was introduced emitted little light when irradiated with 254 nm and 302 nm, but hardly emitted when irradiated with 365 nm (Photo Lane 4).
  • FIG. 25 shows the principle of real-time PCR when PCR is performed in the presence of a Cy3-hx-dPxTP substrate using a primer containing two adjacent artificial bases Ds and fluorescent artificial bases s.
  • Ds is arranged in the vicinity of S and Cy3-hx is complemented and specifically incorporated in the Ds
  • FRET occurs between S and Cy3 by irradiation around 365 nm, and PCR amplified double-stranded DNA Only can be shined specifically.
  • FIG. 26 shows the result of visually confirming the product that was subjected to PCR 25 cycles using the following DNA fragment.
  • each primer 1 ⁇ M, natural base substrate dNTP each 0.2 mM, artificial base substrate Cy3-hx-dPxTP 2 ⁇ M In the presence of the sample, 25 cycles of PCR were performed under the conditions of 2-step PCR, with 94 ° C for 5 minutes and 68 ° C for 40 seconds after 94 ° C for 2 minutes.
  • the reaction scale of PCR is 25 ⁇ l, and the composition of the reaction solution is 40 mM Tricine-KOH (pH 8.0), 16 mM KCl, 3.5 mM MgSO 4 , 3.75 ⁇ g / ml BSA, 1 ⁇ Titanium Taq DNA polymerase.
  • the DNA fragment concentration used for the template is 0.5 nM.
  • SYBR Green I instead of the artificial base substrate Cy3-hx-dPxTP 2 ⁇ M, SYBR Green I (final concentration 1/30000) and ROX (final concentration 1/500) as a reference dye are used. Added.
  • the PCR reaction scale is 25 ⁇ l, and the composition of the reaction solution is 40 mM Tricine-KOH pH 8.0), 16 mM KCl, 3.5 mM MgSO 4 , 3.75 ⁇ g / ml BSA, 1 ⁇ Titanium Taq DNA polymerase.
  • the DNA fragment used for the template was diluted to 0, 3, 30, 300, 3000, 30000, 300000, 3000000 copies in the reaction solution, and PCR was performed for each concentration.
  • FIG. 27a shows the case where the visualized PCR product of FIG. 27a is electrophoresed on an agarose gel, and the product can be detected by FRET from s to Cy3 by 312 nm irradiation, and the fluorescence of Cy3 directly incorporated into DNA by 532 nm irradiation. It was confirmed that product detection was possible.
  • Sequence used for experiment (underlined part corresponds to primer annealing site) 5′-primer sequence: 5′- CATGTAGATGCCCATCAAAGAAGCTC- 3 ′ (SEQ ID NO: 15) 3′-primer sequence: 5′-AATAAssGCDs TCCTCAAAGGTGGTGACTTC- 3 ′ (SEQ ID NO: 26) Double-stranded template DNA (98 bp; only one strand is listed): 5′- CATGTAGATGCCCCATCAAAGAAGCTC TGAGCCCTCCTAAAATGACATGCGTGCTCTGGAGAACGAAAAGAAACGAAGACGTA GAAGTCACCACCTTTGAGGA- 3 ′ (SEQ ID NO: 17) The PCR reaction was carried out using a real-time PCR apparatus (Stratagene, Mx3005P) at 94 ° C.
  • PCR was performed for 30, 35, 40, 45, and 55 cycles under conditions of 2-step PCR with 94 ° C. for 5 seconds and 68 ° C. for 40 seconds as one cycle.
  • the reaction scale of PCR is 25 ⁇ l, and the composition of the reaction solution is 40 mM Tricine-KOH (pH 8.0), 16 mM KCl, 3.5 mM MgSO 4 , 3.75 ⁇ g / ml BSA, 1 ⁇ Titanium Taq DNA polymerase.
  • the DNA fragment used for the template was diluted to 0, 3, 30, 300, 3000, 30000, 300000, 3000000 copies in the reaction solution, and PCR was performed for each concentration.
  • Quantitative analysis by image processing in the tube after completion of the reaction was performed according to the following procedure.
  • the image was taken with a digital camera through a UV cut filter and an orange filter under UV irradiation of 365 nm from below, and the resulting file (JPEG format) was taken from Adobe Photoshop ver.
  • the image mode was converted to a Tiff format file with a gray scale and a resolution of 72 pixels / inch. This file was read with Science Lab 2005 Multi Gauge software for quantitative analysis.
  • Example 20 PCR product detection method using a nucleoside derivative (s-hx-dU) in which a fluorescent molecule (s base) is bound to a natural base via a linker and a Ds-Px base pair (FIGS. 29b to 29d) )
  • This example is a counter example of FIG. 29a.
  • PCR was performed in the presence of a Cy3-hx-dPxTP substrate using a primer containing two adjacent modified bases (s-hx-dU) in which s, which is a fluorescent artificial base, was bound to a natural base U via a linker.
  • s-hx-dU primer containing two adjacent modified bases
  • FIG. 29a The principle of real-time PCR when performing is shown in FIG. 29a. When two s-hx-dUs are introduced adjacently, the fluorescence of s is quenched as in the case where two s are introduced adjacently (FIG. 25).
  • a site for color development containing an artificial base can be introduced into any part of the primer and can be used for PCR methods such as the LAMP method and the SMAP method.
  • this technique can be used in addition to primer regions such as padlock PCR.
  • FIG. 29b shows the DNA sequence used and the PCR conditions.
  • FIG. 29c shows the results of 55 cycles of real-time PCR, and
  • FIG. 29d shows the results of visual confirmation of amplification products after 55 cycles of PCR.
  • PCR amplification was performed between 0 and 3000000 copies of target DNA (target DNA)
  • visual determination was possible with 3 or more copies.
  • the reaction scale of PCR is 25 ⁇ l, and the composition of the reaction solution is 40 mM Tricine-KOH (pH 8.0), 16 mM KCl, 3.5 mM MgSO 4, 3.75 ⁇ g / ml BSA, 1 ⁇ Titanium Taq DNA polymerase.
  • the DNA fragment used for the template was diluted to 0, 3, 30, 300, 3000, 30000, 300000, 3000000 copies in the reaction solution, and PCR was performed for each concentration.
  • the reaction tube was directly irradiated with 365 nm UV, and fluorescence was detected visually through an orange filter.
  • FIG. 30 Synthesis of 8-bromo-1-octyne (step (a) in FIG. 30)
  • Dehydrated dichloromethane (20 ml) and triphenylphosphine (5.91 g, 22.5 mmol) were added to 8-hydroxy-1-octyne (1.95 g, 15 mmol), cooled to 0 ° C., and dissolved in dehydrated dichloromethane (10 ml).
  • Carbon tetrabromide (7.46 g, 22.5 mmol) was added dropwise and stirred at room temperature for 2 hours.
  • 6- (thien-2-yl) -9- (7-octynyl) -2-aminopurine (1.60 g, 4.91 mmol) obtained in 2) was added and stirred at room temperature overnight.
  • dehydrated tetrahydrofuran (4.5 ml), dehydrated diisopropylethylamine (235 ⁇ l, 1.35 mmol) and 2-cyanoethyl N, N′-diisopropylchlorophosphoramidide (241 ⁇ l, 1.08 mmol) were added and stirred at room temperature for 1 hour. did.
  • Example 22 Chemical synthesis of Dss-hx-dU amidite reagent (compound of FIG. 6) (FIG. 33) 1) Synthesis of 7- (2,2′-bithien-5-yl) -3- (7-octynyl) -imidazo [4,5-b] pyridine (step (a) in FIG. 33) A solution of 7- (2,2′-bitien-5-yl) -imidazo [4,5-b] pyridine (850 mg, 3.0 mmol) and potassium carbonate (1.3 g, 9.0 mmol) in DMF (15 ml) was added. Stir at 60 ° C. for 1 hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Saccharide Compounds (AREA)

Abstract

 本発明は、消光性ならびに蛍光性の核酸塩基類似体とその応用を提供することを目的とする。本発明の消光剤は、式I[化1][式Iにおいて、R1は及びR2は リボース、デオキシリボース、 水素、水酸基、SH基、ハロゲン、 置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、 窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、 糖、糖鎖、アミノ酸、ペプチド、 リンカーを介して結合した蛍光性分子からなる群から独立に選択される基である]。で示す2-ニトロピロール構造を有することを特徴とする。

Description

消光性ならびに蛍光性の核酸塩基類似体とその応用
 本出願は、2010年4月21日に提出された日本国出願特願2010−098319に基づく優先権を主張し、その全内容は本明細書中に取り込まれる。
 本発明は、消光性ならびに蛍光性の核酸塩基類似体とその応用に関する。
 具体的には、本発明は、2−ニトロピロールとその1位と4位修飾体、ならびにそれらのヌクレオシド誘導体が消光性の分子あるいは核酸塩基類似体として機能することの発見とその利用に関するものであり、PCR産物の可視化などの幅広い検出・診断に用いることができる。
 人工的に新たな塩基対を作り出しDNAの遺伝情報を拡張する技術は、汎用性の高い2つの応用が考えられ、人工塩基対の開発研究が盛んに行われている。応用の1つは、複製・転写・翻訳で機能する人工塩基対を作り出し、新たな構成成分を組み込んだDNA、RNA、タンパク質を作り出すことである。もう1つの応用は、人工塩基対をDNAやRNAに組み込んだ二本鎖核酸を形成させることで、核酸断片のプローブの配列種を増やすことによりリアルタイムPCRによるマルチプレックスやDNAコンピュータへの応用、さらに翻訳でタンパク質中に人工のアミノ酸を導入する際の新たなコドンとアンチコドンに用いることができる。
 蛍光性を示す核酸塩基類似体は数多く報告されているが、核酸塩基の類似体自身が強い消光作用を示す物質はこれまで知られていない。従来、核酸塩基にリンカーを介してダブシル基などの消光性分子を結合させる方法が知られている。しかしながら、この場合には塩基対を形成する塩基が、近傍に位置する蛍光性分子とは完全に接していないので、消光作用が弱くなり、その検出は装置に頼らないと不可能であった。本発明前は、塩基の消光作用を利用した塩基対の簡便かつ効率的な検出方法はみいだされていなかった。
WO2009/123216 特願2009−232776(2009年10月6日出願) 特開2007−061087 特願2009−232851(2009年10月6日出願)
An efficient unnatural base pair for PCR amplification.I.Hirao,T.Mitsui,M.Kimoto,S.Yokoyama,J.Am.Chem.Soc.,129,15549−15555(2007). An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules,M.Kimoto,R.Kawai,T.Mitsui,S.Yokoyama,I.Hirao,Nucleic Acids Res.,37,e14(2009). Characterization of fluorescent,unnatural base pairs.T.Mitsui,M.Kimoto,R.Kawai,S.Yokoyama,I.Hirao,Tetrahedron,63,3528−3537(2007). Fluorescent probing for RNA molecules by an unnatural base−pair system.M.Kimoto,T.Mitsui,Y.Harada,A.Sato,S.Yokoyama,I.Hirao,Nucleic Acids Res.,35,5360−5369(2007). 3−Nitropyrrole and 5−nitroindole as universal bases in primers for DNA sequencing and PCR.D.Loakes,D.W.Brown,S.Linde,and F.Hill,Nucleic Acids Res.,23,2361−2366(1995). An unnatural hydrophobic base pair system:site−specific incorporation of nucleotide analogs into DNA and RNA.I.Hirao,M.Kimoto,T.Mitsui,T.Fujiwara,R.Kawai,Sato,Y.Harada,S.Yokoyama,Nature Methods,3,729−735(2006)
 本発明者らは、消光性を示す塩基を見いだし、そして、蛍光性を示す塩基と消光性を示す塩基とが選択的に塩基対を形成すれば、DNAが二本鎖を形成すると蛍光性人工塩基を強く消光させることができる可能性があり、PCRにおけるDNA増幅やモレキュラービーコンなどで目視判定が可能な検出技術を作り出すことができると考え、本発明に想到した。
 2−ニトロピロール誘導体は、本発明者らがこれまで開発してきた人工塩基対のPnやPxで表される塩基である。PnやPxは、第三の核酸塩基対(人工塩基対)として、その相補人工塩基(Ds:7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基)と塩基対(Ds−Pn、Ds−Px塩基対)を形成し、複製や転写で核酸中の特定部位に導入できることが示されている。また、蛍光性の人工塩基としてDsの改良塩基であるDss(7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン)とも2−ニトロピロールが塩基対を形成する。
 本発明者らは本発明において、2−ニトロピロールに消光性があることを初めて明らかにした。例えば、PnやPxが二本鎖DNA中でDssと塩基対を形成すると2−ニトロピロールの消光性によりDssの蛍光が消光されることを見いだした。なお、2−ニトロピロールに類似の3−ニトロピロールは、ユニバーサル塩基として知られているが、本発明の2−ニトロピロールと異なり消光作用は低い。
 DssとPn(あるいはPx)の塩基対を含む二本鎖核酸は、蛍光性のDssに消光性のPn(あるいはPx)が塩基対として接しているので、Dssの蛍光は効率よく消光される。しかし、二本鎖構造が一本鎖のDNAに変性した場合は、Dssを含むDNA鎖が発光する。このような人工塩基対はこれまでに例が無く、この性質を利用して、新たなモレキュラービーコンなどの検出・診断技術が可能になった。
 2−ニトロピロールの4位にリンカーを介して蛍光色素を結合させると、そのヌクレオシドやヌクレオチド誘導体(Pxの誘導体)は2−ニトロピロールと色素が相互作用することによりその蛍光がある程度消光されることが分かった。しかしこのヌクレオチド誘導体がDNAやRNA中に導入されると、2−ニトロピロールと相互作用していた色素部分がDNAやRNA断片中の外側に飛び出すので、本来の蛍光強度が復活することも見出した。また、このPxの誘導体の基質(ヌクレオシド三リン酸)は、鋳型中の人工塩基Dsに相補して、複製によりDNA中に導入できる。これらのPx誘導体の蛍光変化の特性と複製におけるDNA中への部位特異的な取り込みを利用することにより、リアルタイムPCRなどの検出・診断技術に本技術を利用することができる。
 また、発明者らが別途開発した蛍光性人工塩基(s)と本Ds−Px塩基対を組み合わせることにより、DNAのPCR増幅の可視化法を新たに開発した。この可視化PCRは、DNA増幅を裸眼で識別できるため、従来のリアルタイムPCRでは不可能であった臨床現場での迅速・簡便なPCR診断法として用いることができ、テーラーメイド医療を目指したコンパニオン診断薬としての道を開く。また、本技術による特定のDNA配列の検出は、医療に限らず、ビールなどの発酵食品の品質管理(酵母の遺伝子変異を検出)や輸入食材の流通管理(食品の遺伝子による真贋判定)などにも応用できる。
 以上より、限定されるわけではないが、本発明は以下の態様を含む。
[態様1]
 式Iで示す2−ニトロピロール構造を有する消光剤
Figure JPOXMLDOC01-appb-C000021
 [式Iにおいて、R及びR
 リボース、デオキシリボース、
 水素、水酸基、SH基、ハロゲン、
 置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
 窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
 糖、糖鎖、アミノ酸、ペプチド、
 リンカーを介して結合した蛍光性分子
からなる群から独立に選択される基である]。
[態様2]
 式Iにおいて、Rがリボースまたはデオキシリボースである、態様1に記載の消光剤。
[態様3]
 人工塩基対の形成を検出する方法であって、
1)式II
Figure JPOXMLDOC01-appb-C000022
 [式IIにおいて、Rは、
 水素、水酸基、SH基、ハロゲン、
 置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
 窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
 糖、糖鎖、アミノ酸、ペプチド、
 リンカーを介して結合した蛍光性分子、
からなる群から選択される基である]
で表される消光性人工塩基を有するヌクレオシドまたはヌクレオチド、あるいは、
2)蛍光共鳴エネルギー転移(FRET)や静的消光作用(static quenching)などの供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するヌクレオシドまたはヌクレオチド
のいずれか、あるいは双方を用いることを特徴とする、前記方法。
[態様4]
 人工塩基の塩基対の形成を検出する方法であって、蛍光性人工塩基と式II
Figure JPOXMLDOC01-appb-C000023
 [式IIにおいて、Rは、
 水素、水酸基、SH基、ハロゲン、
 置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
 窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
 糖、糖鎖、アミノ酸、ペプチド、
 リンカーを介して結合した蛍光性分子、
からなる群から選択される基である]
で表される消光性人工塩基との塩基対形成により、蛍光性人工塩基の蛍光の低下を観察することにより、人工塩基対が形成されたことが検出される、前記方法。
[態様5]
 蛍光性人工塩基の蛍光の低下により、人工塩基の塩基対の形成を検出する方法であって、以下の、
 (i)7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss);
 (ii)7−(2,2’,5’,2’’−ターチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dsss);
 (iii)2−アミノ−6−(2,2’−ビチエン−5−イル)プリン−9−イル基(ss);
 (iv)2−アミノ−6−(2,2’,5’,2’’−ターチエン−5−イル)プリン−9−イル基(sss);
 (v)4−(2,2’−ビチエン−5−イル)−ピロロ[2,3−b]ピリジン−1−イル基(Dsas);
 (vi)4−[2−(2−チアゾリル)チエン−5−イル]ピロロ[2,3−b]ピリジン−1−イル基(Dsav);及び
 (vii)4−[5−(2−チエニル)チアゾール−2−イル]ピロロ[2,3−b]ピリジン−1−イル基(Dvas);
からなる群より選択される蛍光性人工塩基と、
 以下の式III,又は式IVの消光性塩基
Figure JPOXMLDOC01-appb-C000024
 [式IIIにおいて、Rは、
 −H、ヨード、−CH
Figure JPOXMLDOC01-appb-C000025
 から選択される]
Figure JPOXMLDOC01-appb-C000026
 [式IVにおいて、Rは、
 −CH、−CH−NH、及び
Figure JPOXMLDOC01-appb-C000027
 (ここにおいて、nは0ないし12のいずれかの整数である)
から選択される]
との間で塩基対が形成されると、蛍光性人工塩基の蛍光が低下し、人工塩基対が形成されたことが検出される、前記方法。
[態様6]
 7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)を塩基として有するポリヌクレオチドを含む、核酸プライマー;並びに、
 以下の式III、又は式IVの消光性塩基
Figure JPOXMLDOC01-appb-C000028
 [式IIIにおいて、Rは、
 −H、ヨード、−CH
Figure JPOXMLDOC01-appb-C000029
から選択される]
Figure JPOXMLDOC01-appb-C000030
 [式IVにおいて、Rは、
 −CH、−CH−NH、及び
Figure JPOXMLDOC01-appb-C000031
 (ここにおいて、nは0ないし12のいずれかの整数である)
から選択される]
を塩基として有するポリヌクレオチド
を含む、蛍光性人工塩基の蛍光の低下により、人工塩基の塩基対の形成を検出する方法に使用するためのキット。
[態様7]
 人工塩基対を検出する方法であって、
 式V
Figure JPOXMLDOC01-appb-C000032
 [式Vにおいて、Rは、リンカーを介して結合した蛍光性分子である]
で表される消光性人工塩基中の蛍光性分子の蛍光強度が、式Vの人工塩基が塩基対を形成することによって変化し、人工塩基対が形成されたことが検出される、前記方法。
[態様8]
 蛍光強度の変化により、人工塩基の塩基対の形成を検出する方法であって、
 7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)と、以下の式VIの塩基:
Figure JPOXMLDOC01-appb-C000033
 [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
 式VIの塩基中の蛍光性分子の蛍光強度が増加し、人工塩基対が形成されたことが検出される、前記方法。
[態様9]
 蛍光性分子が、インドカルボシアニン(Cy3)、インドジカルボシアニン(Cy5)、5−カルボキシフルオレセイン(5−FAM)、6−カルボキシフルオレセイン(6−FAM)、5−カルボキシテトラメチルローダミン(5−TAMRA)、6−カルボキシテトラメチルローダミン(6−TAMRA)、5−ジメチルアミノナフタレン−1−スルホン酸(DANSYL)、5−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(5−HEX)、6−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(6−HEX)、5−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(5−TET)、6−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(6−TET)、5−カルボキシ−X−ローダミン(5−ROX)、及び6−カルボキシ−X−ローダミン(6−ROX)からなる群から選択される、態様7又は8に記載の方法。
[態様10]
 7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)を塩基として有するポリヌクレオシドを含む、核酸プライマー、並びに、
 式VIの塩基:
Figure JPOXMLDOC01-appb-C000034
 [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]を塩基として有するポリヌクレオチド
を含む、蛍光強度の変化により、人工塩基の塩基対の形成を検出する方法に使用するためのキット。
[態様11]
 人工塩基対の形成を検出する方法であって、
 蛍光共鳴エネルギー転移(FRET)や静的消光作用(static quenching)などの供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するポリヌクレオシドを含む核酸を利用し、当該核酸中の人工塩基(第一人工塩基)と蛍光性分子を有する人工塩基(第二人工塩基)との間で人工塩基対が形成されると、前記天然塩基修飾体、人工塩基、或いは塩基類似体を有するポリヌクレオシドから、第二人工塩基の有する蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)により、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、前記方法。
[態様12]
 蛍光共鳴エネルギー転移や静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法であって、
 7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)と、以下の式VIの塩基:
Figure JPOXMLDOC01-appb-C000035
 [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
 240−410nmの紫外線による励起により、Dssから式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などが生じて、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、前記方法。
[態様13]
 蛍光共鳴エネルギー転移や静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法であって、
 7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)と、以下の式VIの塩基:
Figure JPOXMLDOC01-appb-C000036
 [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
 240−390nmの紫外線による励起により、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などにより、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
 ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、2−アミノ−6−(2−チエニル)プリン−9−イル基(s)を塩基として有するポリヌクレオチドが少なくとも1つ存在する、前記方法。
[態様14]
 蛍光共鳴エネルギー転移や静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法であって、
 7−(2−チエニル)イミダゾ[4,5−b]ピリジン−3−イル基(Ds)と、以下の式VIの塩基:
Figure JPOXMLDOC01-appb-C000037
 [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
 350−390nmの紫外線による励起により、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などにより蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
 ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)が天然型塩基に結合した塩基を有するポリヌクレオチドが少なくとも1つ存在する、
前記方法。
[態様15]
 蛍光共鳴エネルギー転移や静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法であって、
 7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)と、以下の式VIの塩基:
Figure JPOXMLDOC01-appb-C000038
 [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
 240−410nmの紫外線による励起により、7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などにより蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
 ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、少なくとも1つの7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)が天然型塩基に結合した塩基を有するポリヌクレオチドが存在する、
前記方法。
[態様16]
 蛍光性物質が、インドカルボシアニン(Cy3)、インドジカルボシアニン(Cy5)、5−カルボキシフルオレセイン(5−FAM)、6−カルボキシフルオレセイン(6−FAM)、5−カルボキシテトラメチルローダミン(5−TAMRA)、6−カルボキシテトラメチルローダミン(6−TAMRA)、5−ジメチルアミノナフタレン−1−スルホン酸(DANSYL)、5−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(5−HEX)、6−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(6−HEX)、5−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(5−TET)、6−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(6−TET)、5−カルボキシ−X−ローダミン(5−ROX)、及び6−カルボキシ−X−ローダミン(6−ROX)からなる群から選択される、態様11ないし15のいずれか1項に記載の方法。
[態様17]
 式VIの塩基中の置換基Rが以下の:
Figure JPOXMLDOC01-appb-C000039
 の構造を有する、態様12−15に記載の方法。
[態様18]
 検出スペクトルの変化が、肉眼で判定できる、態様11ないし17のいずれか1項に記載の方法。
[態様19]
 核酸の塩基対が、転写、逆転写、複製又は翻訳の工程で形成される、態様11ないし18のいずれか1項に記載の方法。
[態様20]
 以下のi)−iii)からなる群から選択される、1つの核酸プライマー;
 i)7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)を塩基として有するポリヌクレオチドを含む、核酸プライマー;
 ii)7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)を塩基として有するポリヌクレオシド、及び、少なくとも1つの、2−アミノ−6−(2−チエニル)−9H−プリン−9−イル基(s)を塩基として有するポリヌクレオチドを含む、核酸プライマー;
 iii)7−(2−チエニル)イミダゾ[4,5−b]ピリジン−3−イル基(Ds)を塩基として有するポリヌクレオシド、及び、少なくとも1つの、2−アミノ−6−(2−チエニル)−9H−プリン−9−イル基(s)が天然型塩基に結合した塩基を有するポリヌクレオチドを含む、核酸プライマー;及び
 iv)7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)を塩基として有するポリヌクレオシド、及び、7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)が天然型塩基に結合した塩基を有するポリヌクレオチドを含む、核酸プライマー、
 並びに、式VIの塩基:
Figure JPOXMLDOC01-appb-C000040
 [式VIにおいてここで、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]
を塩基として有するポリヌクレオチド
を含む、蛍光共鳴エネルギー転移や静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法に使用するためのキット。
 I.消光剤
1. 消光剤の構造
 本発明は、新規な消光剤を提供する。本発明の消光剤は、式Iで示す2−ニトロピロール構造を有する
Figure JPOXMLDOC01-appb-C000041
 [式Iにおいて、R及びR
 リボース、デオキシリボース、
 水素、水酸基、SH基、ハロゲン、
 置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
 窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
 糖、糖鎖、アミノ酸、ペプチド、
 リンカーを介して結合した蛍光性分子
からなる群から独立に選択される基である]
ことを特徴とする。
 本発明は、2−ニトロピロール構造が消光効果を有する、という発見に基づく。よって、R及びRは特に限定されず、任意の基を選択することが可能である。R及びRは任意に独立に選択される。
 i)リボース、デオキシリボース
 R及び/又はRは、好ましくは、リボース、デオキシリボースである。好ましくは、Rはリボース、デオキシリボースである。
 「リボース」とは、五炭糖の単糖の1種で、IUPAC名は「(3R,4S,5R)−5−(ヒドロキシメチル)テトラヒドロフラン−2,3,4−トリオール」である。
 「デオキシリボース」とは、アルデヒド基を含む五炭糖の単糖の1種で、IUPAC名は「(2R,4S,5R)−5−(ヒドロキシメチル)テトラヒドロフラン−2,4−ジオール」である。
 本発明の消光剤は、好ましくは、ポリヌクレオシド又はポリヌクレオチド中の塩基として、人工塩基対を形成した場合に、塩基対を形成する相手方、あるいは、近傍に存在する塩基が蛍光性の塩基である場合に、その蛍光を消す消光効果を奏する。あるいは、塩基対を形成する相補性の人工塩基、あるいは、近傍に存在する塩基に結合した蛍光物質の蛍光を消光する。
 ii)水素、水酸基、SH基、ハロゲン
 ハロゲンの種類は特に限定されない。好ましくは、フッ素、臭素、ヨウ素等からなる群から選択される。
 iii)置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基
 炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基は、直鎖状でも枝分かれしていてもよく、特に限定されない。好ましくは、メチル基、エチル基、プロピニル基、エチレン基、 エチニル基などが含まれる。これらの基は、置換されていてもよい。置換基は、特に限定されないが、好ましくは、アミノ基、水酸基、SH基、ハロゲン、カルボキシル基、ニトロ基等からなる群から選択される。
 iv)窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環
 R及び/又はRは、1又は複数のヘテロ環であってもよい。ヘテロ環は、チエニル基、チアゾリル基、イミダゾリル基、フラニル基、あるいはこれらの誘導体等から選択される、5員のヘテロ環である。好ましくは、2−チエニル基、2−チアゾリル基、2−イミダゾリル基、2,2’−ビチエン−5−イル基、2−(2−チアゾリル)チエン−5−イル基、5−(2−チエニル)チアゾール−2−イル基、及び2,2’,5’,2’’−ターチエン−5−イル基からなる群より選択される基である。
 6員ヘテロ環の例としては、ピラニル基、ピリジル基、ピリミジル基、等が挙げられる。複素環ヘテロ環の例としては、プリン、1−デアザプリン、キノリン等が挙げられる。
 芳香族環の例としては、フェニル基、ナフチル基等が挙げられる。
 ヘテロ環、複素環ヘテロ環や芳香族環の数は、特に限定されないが、好ましくは1ないし3である。より好ましくは1又は2である。
 v)糖、糖鎖、アミノ酸、ペプチド
 糖は、特に限定されない。例えば、グルコース、アラビノース、フラノース等が含まれる。リボースまたはデオキシリボースも糖の一種である。
 糖鎖は、特に限定されない、例えば、スクロース、ラクトース等が含まれる。
 アミノ酸も、特に限定されない。例えば、グリシン、アラニン、フェニルアラニン等が含まれる。
 ペプチドの種類は、特に限定されない。好ましくは、ポリペプチドは、約2ないし10個のアミノ酸残基からなる。好ましいペプチドは例えば、フェニルアラニル−グリシンなどである。また、ペプチド核酸等の非天然型ペプチドも含まれる。
 vi)リンカーを介して結合した蛍光性分子
 リンカーの種類は特に限定されず、当業者は適宜採用可能である。リンカーは限定されるわけではないが、好ましくは、下記の化学式VIIおよびVIII:
Figure JPOXMLDOC01-appb-C000042
 [式VII中、nは1ないし12の整数から選択される]
及び
Figure JPOXMLDOC01-appb-C000043
 [式VIII中、m及びlは、1ないし12の整数から各々独立に選択される]
からなる群より選択される。
 式VII及びVIIIにおいて、n、m、lは各々好ましくは1−7、より好ましくは5である。
 蛍光性分子の種類は特に限定されない。好ましくは、インドカルボシアニン(Cy3)、インドジカルボシアニン(Cy5)、5−カルボキシフルオレセイン(5−FAM)、6−カルボキシフルオレセイン(6−FAM)、5−カルボキシテトラメチルローダミン(5−TAMRA)、6−カルボキシテトラメチルローダミン(6−TAMRA)、5−ジメチルアミノナフタレン−1−スルホン酸(DANSYL)、5−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(5−HEX)、6−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(6−HEX)、5−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(5−TET)、6−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(6−TET)、5−カルボキシ−X−ローダミン(5−ROX)、及び6−カルボキシ−X−ローダミン(6−ROX)からなる群から選択される。より好ましくは、インドカルボシアニン(Cy3)である。
 2.消光される蛍光を有する物質
 本発明の式Iで示す2−ニトロピロール構造を有する消光剤の消光作用によって消光される蛍光を有する物質の種類は特に限定されない。
 蛍光を有する物質は、例えば、蛍光性人工塩基、蛍光色素などの蛍光性分子等任意の物質が含まれる。
 式Iで示す2−ニトロピロール構造は、好ましくは以下の塩基と対合を形成する(特願2009−232851)。
 7−(2−チエニル)イミダゾ[4,5−b]ピリジン−3−イル基(Ds);
 7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss);
 7−(2,2’,5’,2’’−ターチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dsss);
 2−アミノ−6−(2−チエニル)プリン−9−イル基(s);
 2−アミノ−6−(2,2’−ビチエン−5−イル)プリン−9−イル基(ss);
 2−アミノ−6−(2,2’,5’,2’’−ターチエン−5−イル)プリン−9−イル基(sss);
 4−(2−チエニル)−ピロロ[2,3−b]ピリジン−1−イル基(dDsa);
 4−(2,2’−ビチエン−5−イル)−ピロロ[2,3−b]ピリジン−1−イル基(Dsas);
 4−[2−(2−チアゾリル)チエン−5−イル]ピロロ[2,3−b]ピリジン−1−イル基(Dsav);
 4−(2−チアゾリル)−ピロロ[2,3−b]ピリジン−1−イル基(dDva);
 4−[5−(2−チエニル)チアゾール−2−イル]ピロロ[2,3−b]ピリジン−1−イル基(Dvas);及び
 4−(2−イミダゾリル)−ピロロ[2,3−b]ピリジン−1−イル基(dDia)。
 上記のうち、Dss、Dsss、ss、sss、Dsas、Dsav及びDvasは蛍光性塩基である。これらは本発明の式Iの消光剤と塩基対を形成すると、蛍光強度が低下するか、あるいは消光する。
 式Iの消光剤と直接塩基対を形成しない蛍光を有する物質であっても、式Iの消光剤と塩基対を形成する上記人工塩基の近くに存在する場合には、本願発明の消光剤の影響を受けうる。例えば、蛍光を有する人工塩基が上記人工塩基(例えば、s)と同一の一本鎖あるいは二本鎖、あるいは三本鎖核酸上で近接して存在する(例えばとなり同士で隣接する)場合、あるいは、上記人工塩基に結合している蛍光性分子の場合などは、式Iの消光剤と塩基対を形成する上記人工塩基の塩基対の形成により、蛍光を有する物質が本発明の消光剤の近傍に存在することとなり、消光の影響を受けうる。
 上述した式Iと塩基対を形成する人工塩基以外にも、蛍光性の核酸塩基類自体として、2−アミノプリン、エテノアデノシンなどが知られている。
II.人工塩基対の形成を検出する方法
 本発明はまた、人工塩基対を検出する方法を提供する。本発明の方法は、
1.        式II
Figure JPOXMLDOC01-appb-C000044
 [式IIにおいて、Rは、
 水素、水酸基、SH基、ハロゲン、
 置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
 窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
 糖、糖鎖、アミノ酸、ペプチド、
 リンカーを介して結合した蛍光性分子、
からなる群から選択される基である]
で表される消光性人工塩基を有するヌクレオシドまたはヌクレオチド、あるいは、
2)蛍光共鳴エネルギー転移(FRET)や静的消光作用(static quenching)などの供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するヌクレオシドまたはヌクレオチド
のいずれか、あるいは双方を用いることを特徴とする。
 式IIの人工塩基の利用
 本発明の式IIの消光性人工塩基のピロール環の窒素原子は、リボースまたはデオキシリボースに結合して、ヌクレオシドまたはヌクレオチドを構成する。本発明の式IIの人工塩基は、Ds、Dss、Dsss、s、ss、sss、dDsa、Dsas、Dsav、dDva、Dvas、及び、dDia等の人工塩基と人工塩基対を形成する(特願2009−232851)。式IIの消光性人工塩基とこれらの人工塩基との塩基対の形成により、塩基対を形成した蛍光性人工塩基、あるいは、付近に存在する蛍光性塩基若しくは蛍光性分子の蛍光強度が変化、あるいは消光する。本発明の方法はその変化を利用して人工塩基対の形成を検出する。
 特に、上記のうち、Dss、Dsss、ss、sss、Dsas、Dsav及びDvasは蛍光性塩基であり、式IIの化合物と塩基対を形成することにより、人工塩基の蛍光が低下する、あるいは消光する。
 あるいは、本発明の消光性人工塩基に蛍光性分子を結合すると、本発明の消光性人工塩基の消光性により蛍光性分子の蛍光強度が低下する。これは蛍光性分子が消光性人工塩基と溶液中でスタッキングすることにより効率よく消光されるためと考えられる。そして、この蛍光性分子を結合した消光性人工塩基が、上記人工塩基との間で人工塩基対が形成し、核酸中に取り込まれると、蛍光性分子と消光性人工塩基との間のスタッキングが解消されるので、蛍光色素の蛍光強度が増す。この性質を利用して、人工塩基対の形成を検出することが可能である。
 蛍光共鳴エネルギー転移(FRET)や静的消光作用(static quenching)などの利用
 本発明は、蛍光共鳴エネルギー転移(FRET)や静的消光作用(static quenching)などの供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するヌクレオシドまたはヌクレオチドを利用して、人工塩基対を検出する方法も含む。
 「蛍光共鳴エネルギー転移(FRET)」は、ある蛍光分子から他の分子へ、共鳴により励起エネルギーが移動する現象を意味する。エネルギーを与える分子はドナー(供与体)、受け取る分子はアクセプター(受容体)と呼ばれる。FRETが生じると、エネルギーを失ったドナーは基底状態に戻り、同時にエネルギーを受け取ったアクセプターは励起状態となる。従って、ドナーの蛍光は弱まり、アクセプターが蛍光分子であればその蛍光が観察される。アクセプターが消光分子であれば、ドナーが単独の場合には観察されていた蛍光がFRETにより観察されなくなる。FRETによるタンパク質の検出、核酸の検出の一般的な方法は公知である。
 FRETが生じるためには、以下の3条件を満たす必要がある。i)ドナーの蛍光スペクトルとアクセプターの吸収スペクトルに重なりがあること。スペクトルの重なり範囲は大きい方が望ましいが、必ずしも完全に重なっている必要はない。ii)ドナーとアクセプターが物理的に近距離に存在すること。FRETが50%の確率で生じる距離は3nmないし6nmと考えられており、FRETの効率はこの距離の変化に対して敏感に変化する。iii)ドナーとアクセプターの相対的な向きが適切であること。
 本発明の方法は、蛍光共鳴エネルギー転移(FRET)の供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を利用するものである。また、消光の過程には、FRET以外にエキシマーなどの励起二量体の形成による静的消光作用(static quenching)も含まれる。人工塩基対の形成により、これらの自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体がアクセプターの近傍に存在した場合、これらの供与体に特有の波長のエネルギーを与えて励起することにより、これらの供与体からアクセプターにエネルギーが供与され、アクセプターが本来は蛍光を発しないはずの波長のエネルギーで蛍光を発する。
 限定するわけではないが、「自己消光性を有する人工塩基」としては、1以上の隣接するs、例えば、同一核酸上で隣接する2以上のs、ss、Dss、Dsssなどが含まれる。
 好ましくは、同一核酸上で隣接する2以上のsである。「自己消光性を有する天然塩基修飾体」とは、非限定的に、上記自己消光性を有する人工塩基(例えばs)を1以上結合した天然塩基(例えば、sを結合したウラシル、sを2個結合したシトシン、Dssを結合したウラシル)、などが含まれる。「自己消光性を有する塩基類似体」とは、例えば、サイズエキスパンデッド塩基類似体(size−expanded base analogs)二量体、2−アミノプリン二量体などが含まれる。
 ここで検出される人工塩基対は、好ましくは上記式IIで表される消光性人工塩基とその相補的な人工塩基との間の塩基対である。しかしながら必ずしもそれに限定されない。蛍光共鳴エネルギー転移(FRET)や静的消光作用(static quenching)の供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するヌクレオシドまたはヌクレオチドを利用する方法であれば、その他の公知の人工塩基対であっても本発明の範囲に含まれる。例えば、s−y塩基対(s:2−アミノ−6−チエニルプリン、y:ピリジン−2−オン)、v−y塩基対(v:2−アミノ−6−チアゾリルプリン)、s−Pa塩基対(Pa:ピロール−2−カルバルデヒド)、Ds−Pa塩基対(Ds:7−(2−チエニル)−イミダゾ[4,5−b]ピリジン)、Pa−Q塩基対(Q:9−メチルイミダゾ[(4,5)−b]ピリジン)、isoG−isoC、5SICS−MMO2、5NaMなどの人工塩基対も、本発明のFRETを利用した方法により検出することが可能である。
[図1]図1は、消光性塩基(Pn、Px)とその相補性塩基(DsやDss)との人工塩基対の例を示す。例は、Pnと蛍光性人工塩基(Dss)、ならびにPxとDsからなる人工塩基対である。
[図2]図2は、本発明の実施例に使用した、消光性人工塩基Pnとその4’誘導体の構造を示す。
[図3]図3は、本発明の実施例に使用した、消光性人工塩基Pxとその誘導体の構造を示す。
[図4]図4は、本発明の方法に使用する、Pn又はPxと相補性を有する人工塩基の例として、Ds、並びに、蛍光性人工塩基Dss、Dsss、Dsavの構造を示す。
[図5]図5は、NH−hx−dPxTPからCy3−hx−dPxTPの合成を示す。反応条件は、以下の通りである。100mM NaHCO中、NH−hx−dPxTP(8.4μmol)、NaCO緩衝液(pH8.5)(500μl)、DMF(300μl)中、Cy3(7.63μmol) N−ヒドロキシスクシニミジルエステル、室温12時間
[図6]図6は、蛍光性人工塩基Dssまたはsを結合した天然型塩基のアミダイト試薬の構造を示す。
 図6中の化合物は、左からDss−hx−dUアミダイト、s−hx−dUアミダイト、そして、s2−hx−dCアミダイトである。
[図7]図7は、人工塩基Pnによる相補鎖中の蛍光性人工塩基Dssの消光を示す。10mM リン酸ナトリウム(pH7.0)、100mM NaCl、0.1mM EDAT中の各DNA溶液(5μM)を365nmの照射により撮影した。蛍光性人工塩基(Dss)を含む一本鎖のオリゴヌクレオチド(12−mer)を消光性人工塩基(Pn)を含む相補鎖のオリゴヌクレオチド(12−mer)と二本鎖を形成させると、Dssの蛍光がPnにより消光される(図7、左から2番目)。天然型塩基(Tなど)や人工塩基(DssやDs)と塩基対を形成してもDssの蛍光は消光されない(図7、左から3番目−5番目)。
[図8]図8は、図7の実験の各DNA断片の蛍光スペクトルを示す。Dssを含む一本鎖DNA(5’−GGTAACDssATGCG−3’)、Dss−Pn,Dss−Dss,Dss−Ds,Dss−T塩基対のそれぞれを含む二本鎖DNA(5’−GGTAACNATGCG−3’(N=Dss)及び5’−CGCATN’GTTACC−3’(N’=Dss,Ds,Pn又はT)の5μM DNA溶液の蛍光スペクトル(励起波長:385nm、25℃)の結果である。図8に示されるようにDssの蛍光はPnにより5分の1程度に消光された。
[図9]図9は、Pnの消光作用を調べた結果を示す。具体的には、蛍光性人工塩基Dssの2’−デオキシリボヌクレオシド 5’‐三リン酸誘導体(dDssTP)の水溶液での消光をdPnTPの濃度依存性として調べた。A: Pnのデオキシリボヌクレオシド三リン酸(dPnTP)の濃度依存による蛍光性人工塩基Dssのデオキシリボヌクレオシド三リン酸(dDssTP,5μM)の蛍光強度の変化。B: dPnTPと天然型塩基の三リン酸とのDssに対する消光性を比較した結果を示す。Pnならびに天然型塩基のデオキシリボヌクレオシド三リン酸による、蛍光性塩基dDssTP(5μM)の消光のSteady−state Stern−Volmer plot。100mM NaCl、10mM リン酸ナトリウム(pH7.0)、0.1mM EDTAの溶液中、20℃で、370nmの励起による蛍光を測定し、以下の式よりStern−Volmer定数(Ksv)を算出した。
 Stern−Volmer equation : F/F=1+KSV[Q]
 [F及びF、: 各々消光剤を伴う(F)又は伴わない(F)場合の蛍光強度 [Q]: 消光剤の濃度]グアニン塩基は消光性を有することが知られているが、Pnはさらに強い消光性を示す(図9B)。
[図10]図10は、Pnとその各種誘導体(図2、図3)、ならびにPxによるDssの蛍光の消光特性を示す。具体的には、エタノール、25℃で、385nmの励起による蛍光を測定し、Pnの各種誘導体とPxのデオキシリボヌクレオシド(A:2.5mM、B:5mM)共存下での、dDss(5μM)の蛍光強度の変化を調べた。いずれの誘導体もPnよりもさらに強い消光特性を示した。
[図11]図11は、大腸菌由来のDNAポリメラーゼIのクレノウ断片による、Pnを含む鋳型DNAとdDssTPを用いたプライマー伸長反応を調べた結果を示す。200nMの鋳型DNA、10μMのdCTPとdTTP、0.1U/μlのクレノウ断片に、各濃度のdDssTPを加えて、37℃、3分反応を行い、変性ゲル電気泳動で解析した。dATPとdGTPを加えていないので、伸長反応が進んだ際の生成物は鋳型のCの手前で止まった33−merになる。図11は、dDssTPが鋳型中のPnに相補して、相補鎖DNAに取り込まれることを示している。既にdDssTPは鋳型中のPaに対しても取り込まれることを明らかにしているが(J.Am.Chem.Soc.,132:4988−4989,2010)、Pnの方がDssの取り込み効率が高くなることが分かった。また、dDssTPの濃度を高くするとPnやPaに対してDssが取り込まれた後の伸長反応が阻害されるが、dDssTPの濃度を下げることにより、プライマー伸長反応が効率よく進行した。
[図12]図12は、Dss−Px塩基対を用いたDsを含むDNAのPCR増幅を調べた結果を示す。Dsを含むDNA(55−mer)をdDssTPとNH−hx−dPxTP、ならびに天然型塩基の基質を用いて20サイクルのPCR増幅を行い、変性ゲル電気泳動後、SYBR Green IIで染色後に生成物を解析した。Dsを含む鋳型DNA(55−mer、S2)を用いて、天然型塩基の基質(dNTPs)にdDssTPとNH−hx−dPxTPを加えて、PCRを行った結果である。天然型塩基のみの鋳型DNAと同様に人工塩基を含む鋳型DNA−S2も増幅されることが分かった。Dss−PnならびにDss−Px塩基対は、PCRにおいても効率よく機能する。
[図13]図13は、Dss−Px塩基対を用いたPCR増幅後のDNAの配列決定を行った結果を示す。Dsを含むDNA(55−mer)をdDssTPとNH−hx−dPxTP、ならびに天然型塩基の基質を用いて15サイクルのPCR増幅を行い、従来法で増幅産物の配列決定を行った。増幅されたDNA中にはDssとNH−hx−Pxが99%以上保持されていることが分かった。本配列決定はこれまでに本願発明者らが開発した方法を用いている(An unnatural hydrophobic base pair system:site−specific incorporation of nucleotide analogs into DNA and RNA.I.Hirao,M.Kimoto,T.Mitsui,T.Fujiwara,R.Kawai,A.Sato,Y.Harada,S.Yokoyama,Nature Methods,3,729−735(2006);An Unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules.M.Kimoto,R.Kawai,T.Mitsui,S.Yokoyama,and I.Hirao,Nucleic Acids Res.,37,e14(2009))
[図14]図14は、Dss−Px塩基対を用いたリアルタイムPCRの原理を示した模式図である。DssをPCRのプライマー中に導入し、dPnTPあるいはdPxTPを用いてPCRを行うと、Dssに相補してPnやPxが相補鎖中に取り込まれ、Dssの蛍光が消光される。これを検出することによりリアルタイムPCRが可能になる。
[図15]図15は、Dss−Px塩基対を用いたリアルタイムPCRを行った結果を示す。図14で示したDssを含むプライマーを用いると、その相補鎖にdPxTPが取り込まれ、Dssの蛍光が消光される。これはPCRの際にDss−Px塩基対が形成されて、Dssの蛍光が消光され、リアルタイムPCRへの応用が可能になる。
 反応混合液(25μLスケール)
 1×Titanium Taq PCR buffer
 1μM 080731−5’プライマー3 (配列番号15)
 1μM 090914a−Plexor−Dss1 (配列番号16)
 2μM dPxTP
 2mM dNTPs
 1×Titanium TaqDNA polymerase
 2aM(3コピー)−2fM(30000コピー) 鋳型DNA適用
 滅菌水で全量25μLとした。
 PCR条件
 94℃、2分→[94℃、5秒−68℃、40秒]×55サイクル
[図16]図16は、Dss−Pn塩基対を含むDNAヘアピンの蛍光特性を調べた結果を示す。Dss−Pn塩基対を含むDNAヘアピン(34−mer)とDssを含む一本鎖DNA(12−mer)のそれぞれのDssの蛍光強度の温度依存性を測定した。それぞれのDNAを1μM、2mM塩化マグネシウムを含む緩衝溶液中で測定した。DssとPnを塩基対としてヘアピン核酸のステム領域に導入することにより、ヘアピン構造を形成しているとDssの蛍光がPnにより消光され、このヘアピンDNAを熱変性させると、その過程でDssの蛍光強度が増加した。このDss−Pn(あるいはDss−Px)塩基対の性質は、モレキュラービーコンに応用することが出来る。
[図17]図17は、Dss−Pn塩基対を含むモレキュラービーコンの可視化が可能になったことを示す。Dss−Pn塩基対を含むヘアピン型ビーコン(26−mer)の蛍光をターゲットの一本鎖DNA(71−mer)の存在下、非存在下で観測した。それぞれのDNAを1μM、10mM リン酸ナトリウム緩衝液(pH7.0)・100mM NaCl ・0.1mM EDTA中で測定した。その結果、Dss−Pn塩基対を含むモレキュラービーコンのループ部分に相補するDNAを認識して二本鎖を形成するとPnによるDssの蛍光消光が解消され、紫外線を照射することにより、Dssの蛍光を裸眼で確認することが出来た。
[図18]図18は、Dss−Pn塩基対を含むモレキュラービーコンによる一塩基変異を検出した結果を示す。Dss−Pn塩基対を含む2種類のヘアピン型ビーコン(26−mer)のそれぞれの蛍光を1塩基変異の2種類の標的配列のそれぞれの一本鎖DNA(71−mer)に加えて観測した。それぞれのDNAを1μM、10mM リン酸ナトリウム緩衝液(pH7.0)・100mM NaCl・0.1mM EDTA中で測定した。2種類の標的配列について各標的DNAに相補する配列をループ部分に有するモレキュラービーコンを作成することにより、1塩基の違いを、ハイブリダイゼーションによりDssの発光強度の違いとして、識別することが出来た。
[図19]図19は、蛍光色素Cy3をPxに結合させた基質として、Cy3−Px/Dss塩基対を用いた可視化PCRの原理を示す。
[図20]図20は、図19に記載の原理に基づき、Cy3−Px/Dss塩基対を用いた可視化リアルタイムPCRを行った例を示す。
 反応混合液(25μLスケール)
 1×Titanium Taq PCR buffer
 1μM 080731−5’プライマー3 (配列番号15)
 1μM 090914a−Plexor−Dss1 (配列番号16)
 2μM Cy3−hx−dPxTP
 2mM dNTPs
 1×Titanium TaqDNA polymerase
 2aM(3コピー)−200fM(3000000コピー) 鋳型DNA適用
 滅菌水で全量25μLとした。
 PCR条件
 94℃、2分→[94℃、5秒−68℃、40秒]×55サイクル
 Cy3は350nm近辺の励起波長では発光しないので、Cy3を結合したPxの基質(Cy3−hx−dPxTP)は350nmのUV照射では発光しない。Dss−Pxの塩基対形成によりCy3−hx−dPxTPがDssの相補鎖に取り込まれると、350−390nmのUV照射によりDssからCy3への蛍光共鳴エネルギー転移(FRET)が生じ発光する。これにより、Cy3の発光をオレンジフィルターを通して観察することにより、PCR増幅されたDNAを裸眼で検出することが出来る。
[図21]図21は、蛍光性分子(Cy3)を結合した消光性Px塩基によるリアルタイムPCR法の原理を示した模式図である。蛍光性分子(例えばCy3など)を消光性のPx塩基に結合させると、蛍光性分子の蛍光が30%程度消光する。これを基質(Cy3−hx−dPxTP)にして、Ds塩基を導入したプライマーを用いてPCRを行うとCy3−hx−dPxがDNA中に取り込まれることで、Cy3の蛍光強度が増大する。この方法はリアルタイムPCRに用いることができる(図22)。
[図22]図22は、蛍光性分子(Cy3)を結合した消光性のPx塩基を用いてリアルタイムPCRを行った結果を示す。リアルタイムPCR装置(ストラタジーン、Mx3005P)を用いて、Cy3−hx−dPxTPを基質として用いたリアルタイムPCR検出を行った。PCR反応は、プライマー:各1μM、天然型塩基基質dNTP:各0.2mM、人工塩基基質Cy3−hx−dPxTP:2μMで実施し、励起波長545nmで568nmの蛍光変化を検出した。545nmの照射で直接、Cy3を励起するため図19と図20の応用例と異なり、この場合には遊離の基質のCy3−hx−dPxTPも発光する。よってこの方法の場合は、図20のように裸眼では識別できない。そこで、DNA中にCy3−hx−dPxTPが取り込まれた際の蛍光強度の増加の測定に、リアルタイムPCR装置を用いた。
[図23]図23は、蛍光性分子(Cy3)を結合した消光性のPx塩基によるリアルタイムPCR産物をゲル電気泳動により検出した結果を示す。図22で示したPCR産物は、Cy3が取り込まれているので、この産物をアガロースゲルで電気泳動すると、従来のEtBrやSYBR GreenなどのDNA染色用の色素を用いることなく、ゲル上でPCR産物をCy3の蛍光で検出することができる。
 検出条件
 FLA7000バイオイメージングアナライザー
 (Cy3 mode)
 532nm レーザー/O580 蛍光フィルター
 PMT: 500V
[図24]図24は、蛍光性分子(Cy3)ならびに蛍光性人工塩基sを含むDNAの蛍光特性を調べた結果である。測定条件:100mM NaCl、0.1mM EDTAを含む10mM リン酸ナトリウム(pH7.0)に、各種DNA断片が5μMとなるように調製し、254−365nmの照射で発光を観察した。 レーン2は蛍光性人工塩基sを1つ含むDNA断の場合であり、sのみをDNA中に導入すると254‐365nmの照射でsの発光が起こる。しかし、sを2つ隣接してDNA中に導入するとその蛍光が消光する(レーン3)。天然型塩基だけからなるDNA断片にCy3を結合させた場合、365nmの照射では発光しない(レーン4)。しかしながら、DNA中のCy3近傍にsを1つあるいは2つを導入すると、sとCy3間でFRETが起こり、Cy3の蛍光が観測されるようになる(レーン5−7)。具体的には、365nmでsを励起するとCy3のオレンジ色の発光が観測される(レーン5,6)。さらに2つのsを隣接してDNA断片中に導入すると、s同士の消光により254‐365nmで励起してもsの発光はほとんど観測されないが(レーン3)、このDNA断片にCy3を結合させるとFRETが起こり、Cy3の発光が観測される(レーン7)。この現象を利用して、複製や転写によるDNAの増幅の検出を裸眼で行うことができる。
[図25]図25は、蛍光性分子(Cy3)を結合した消光性のPx塩基と蛍光性人工塩基sを組み合わせた可視化PCR法の原理を示す。蛍光性人工塩基sを隣接して2つ導入するとsの蛍光は完全に消光し、350nmの照射で発光しない。それに近接するDsも350nmで発光しない。2つの隣接するs及びその近傍にDsを含むプライマーとCy3−hx−dPxTPを用いてPCRを行うと、その相補鎖にCy3−hx−Pxが取り込まれる。2つのsとDsが近い位置にあるため、sの励起波長である365nmの照射でFRETが起こり、近傍のCy3などの蛍光色素が蛍光発光する(図26)。これを用いてPCRで増幅されたDNAを裸眼で検出することができる(図26、27)。
[図26]図26は、蛍光性分子(Cy3)を結合した消光性のPx塩基と蛍光性人工塩基sを組み合わせた可視化PCR法の結果を示す。図26にはPCRを行い、PCRチューブを350nmで照射し、裸眼であるいはオレンジ色のフィルターを通してCy3の発光を調べた結果を示す。従来法では、PCRによるDNA増幅を裸眼で確認することは難しかった。即ち、従来の例えばSYBR Greenを用いる方法は、リアルタイムPCRで最も用いられる検出法であるが、図中右側のように裸眼での検出は難しい。これに対し、本発明の方法は、リアルタイムPCRのみならず裸眼でもPCRの検出が可能であった(図26左側)。
[図27a]図27aは、蛍光性分子(Cy3)を結合した消光性のPx塩基と蛍光性人工塩基sを組み合わせた可視化PCR法を行った結果を示す。標的DNAを3コピーから300万コピー用いて、55サイクルのPCRを行い、PCR産物を電気泳動により解析した結果は図28に示している。本検出系では、電気泳動することなく、365nmのUV励起によるCy3の蛍光の有無を反応チューブレベルで観察するだけで、3コピーのDNAでも55サイクルのPCR後、その増幅産物を裸眼で検出が可能であることを示している。
[図27b]図27bは、蛍光性分子(Cy3)を結合した消光性Px塩基と蛍光性人工塩基sを組み合わせた可視化PCRをリアルタイム定量PCR装置により検出した結果を示す。
 反応混合物(25μスケール)
 1μM 080731 5’primer 3
 1μM Primer 2d−Ds−ss3 3’primer
 2μM Cy3−hx−dPxTP
 200μM dNTPs
 1×Titanium Taq Buffer
 1×Titanium Taq DNAポリメラーゼ
 2aM(3copies)~200fM(3000000copies)98G template
 PCR条件: 94℃−2分 → [94℃−5秒→68℃−40秒]×30−55サイクル
 本法はDNA中に取り込まれたCy3‐hx−PxのCy3の蛍光強度の増加によりリアルタイムPCRも可能である。
[図27c]図27cは、図27bの各PCRサイクルのDNA増幅産物を可視化した結果を示す。
[図27d]図27dは、図27cの各PCRチューブの蛍光強度を定量化した結果を示す。図27d1は、0、3−30000コピーのそれぞれのDNAをPCRで増幅した時の各PCRサイクルにおける蛍光強度をプロットしたものである。図27d2は、3−3000000コピーのそれぞれのDNAを各PCRサイクルで増幅した時の蛍光強度をプロットした図である。
[図28]図28は、蛍光性分子(Cy3)を結合した消光性のPx塩基と蛍光性人工塩基sを組み合わせたプライマーを用いたPCR(55サイクル)による産物のゲル電気泳動上での検出を行った結果を示す。本発明の方法により図27aの可視化PCR産物をアガロースゲル電気泳動することにより、312nmあるいは532nmの照射でPCR産物を検出することができた。312nmの照射の場合にはsからCy3へのFRETを検出しており、532nmの照射の場合には、DNA中に取り込まれたCy3を直接励起した結果を示している。PCR産物はCy3で標識されているため、312nmでsを励起してFRETにより、あるいは、532nmで直接Cy3を励起することにより、PCR産物をゲル上で観察することが出来た。
[図29a]図29aは、蛍光性分子(s塩基)を天然型塩基にリンカーを介して結合したヌクレオシド誘導体(図6、s−hx−dU、(Us))とDs−Px塩基対を用いたPCR産物の検出法を示した模式図である。図25の可視化PCR法では、隣接する2つの蛍光性人工塩基sを用いているが、代わりにこの蛍光性のsを天然型塩基にリンカーを介して結合し、PCR用のプライマー中にこの塩基を2つ隣接させたものが、図29aの態様である。
[図29b]図29bは、蛍光性分子(s塩基)を天然型塩基にリンカーを介して結合したヌクレオシド誘導体(図6、s−hx−dU、(Us))とDs−Px塩基対を用いたPCRについて、使用する各プライマー、鋳型の配列、並びにPCRの条件を示した図である。
[図29c]図29cは、蛍光性分子(Cy3)を結合した消光性のPx塩基と蛍光性人工塩基s−hx−dUを組み合わせた可視化PCRを行った結果を示す。DNA中に取り込まれたCy−hx−PxのCy3の蛍光強度の増加によりリアルタイムPCRも可能となった。
[図29d]図29dは、図29cの各PCRサイクルのDNA増幅産物を可視化したものである。
[図30]図30は、s−hx−dUアミダイト試薬の化学合成である。
 条件:(a)CBr,PPh,CHCl
1.  (b)KCO,DMF;
2.  (c)Pac−Cl,HOBT,ピリジン,CHCN;
3.  (d)DMTr−デオキシ−5−ヨードウリジン,Pd(PPh,CuI,TEA,DMF;
4.  (e)NC(CHO−P(Cl)N(iPr),DIEA,THF
[図31]図31は、2分子の蛍光性塩基(s)を天然型塩基にリンカーを介して結合したヌクレオシド誘導体(図6、s2−hx−dC、(Css))とDs−Px塩基対を用いたPCR産物の検出方法を示した模式図である。
[図32]図32は、蛍光性分子(Dss塩基)を天然型塩基にリンカーを介して結合したヌクレオチド誘導体(図6、Dss−hx−dU(UDss))とDs−Px塩基対を用いたPCR産物の検出方法を示した模式図である。
[図33]図33は、Dss−hx−dUアミダイト試薬の化学合成を示した結果である。
 条件:(a)KCO,DMF;
5.  (b)Pd(PPh,CuI,TEA,DMF;
6.  (c) DMTrCl,ピリジン;
7.  (d)NC(CHO−P(Cl)N(iPr),DIEA,THF
 本発明は、好ましくは以下の態様を含む。
 A.蛍光性人工塩基と本発明の消光性人工性塩基の塩基対形成による蛍光の低下を利用する方法
 本発明の方法は、一態様において、蛍光性人工塩基と式II
Figure JPOXMLDOC01-appb-C000045
 [式IIにおいて、Rは、
 水素、水酸基、SH基、ハロゲン、
 置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
 窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
 糖、糖鎖、アミノ酸、ペプチド、
 リンカーを介して結合した蛍光性分子、
からなる群から選択される基である]
で表される消光性人工塩基との塩基対形成により、蛍光性人工塩基の蛍光の低下を観察することにより、人工塩基対が形成されたことを検出する。
 好ましくは、蛍光性人工塩基は式IIと塩基対を形成することが知られている以下の、
 (i)7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss);
 (ii)7−(2,2’,5’,2’’−ターチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dsss);
 (iii)2−アミノ−6−(2,2’−ビチエン−5−イル)プリン−9−イル基(ss);
 (iv)2−アミノ−6−(2,2’,5’,2’’−ターチエン−5−イル)プリン−9−イル基(sss);
 (v)4−(2,2’−ビチエン−5−イル)−ピロロ[2,3−b]ピリジン−1−イル基(Dsas);
 (vi)4−[2−(2−チアゾリル)チエン−5−イル]ピロロ[2,3−b]ピリジン−1−イル基(Dsav);及び
 (vii)4−[5−(2−チエニル)チアゾール−2−イル]ピロロ[2,3−b]ピリジン−1−イル基(Dvas);
からなる群より選択される。
 その他にも蛍光性人工塩基として、2−アミノプリン、エテノアデノシンなどが利用されうる。
 好ましくは、本発明の消光性塩基は以下の式II1又は式IVである。
Figure JPOXMLDOC01-appb-C000046
 [式IIIにおいて、Rは、
−H、ヨード、−CH
Figure JPOXMLDOC01-appb-C000047
 から選択される]
Figure JPOXMLDOC01-appb-C000048
 [式IVにおいて、Rは、
−CH、−CH−NH、及び
Figure JPOXMLDOC01-appb-C000049
 (ここにおいて、nは0ないし12のいずれかの整数である)
から選択される]
 式IVにおいて、nは好ましくは3−7、より好ましくは5である。
 本発明はまた、
 7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)を塩基として有するポリヌクレオチドを含む、核酸プライマー;並びに、
 式III又は式IVの消光性塩基を塩基として有するポリヌクレオチドを含む、蛍光性人工塩基の蛍光の低下により、人工塩基の塩基対の形成を検出する方法に使用するためのキットを提供する。
 B.本発明の消光性人工性塩基に結合した蛍光性分子の蛍光強度が人工塩基対の形成により変化することを利用する方法
 本発明は、一態様において、人工塩基対の形成を検出する方法であって、
 式V
Figure JPOXMLDOC01-appb-C000050
 [式Vにおいて、Rは、リンカーを介して結合した蛍光性分子である]
で表される消光性人工塩基中の蛍光性分子の蛍光強度が、式Vの人工塩基が塩基対を形成することによって変化し、人工塩基対が形成されたことを検出する、前記方法を提供する。
 式Vの人工塩基が塩基対を形成する相補性の塩基対は、上述したDs、Dss、Dsss、s、ss、sss、dDsa、Dsas、Dsav、dDva、Dvas、及び、dDiaなど任意のものが可能である。好ましくは、Ds、s、ss、sss、dDsa、dDva、及び、dDia、より好ましくは7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)である。
 消光性人工塩基は、好ましくは、以下の式VIの塩基:
Figure JPOXMLDOC01-appb-C000051
 [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]である。
 リンカーは、式Iの消光剤について上述したものと同様のものを使用可能である。
 蛍光性分子は、式Iの消光剤について上述したものと同様のものを使用可能である。
 本発明はまた、Ds
 7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)を塩基とし
て有するポリヌクレオシドを含む、核酸プライマー、並びに、
 式VIの塩基を有するポリヌクレオチド
を含む、蛍光強度の変化により、人工塩基の塩基対の形成を検出する方法に使用するためのキットを提供する。
 C 蛍光共鳴エネルギー転移(FRET)ならびに静的消光作用(static quenching)などの供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するポリヌクレオシドを含む核酸を利用して核酸を検出する方法
 本発明は、一態様において、
 人工塩基対の形成を検出する方法であって、
 蛍光共鳴エネルギー転移(FRET)ならびに静的消光作用(static quenching)などの供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するポリヌクレオシドを含む核酸を利用し、当該核酸中の人工塩基(第一人工塩基)と蛍光性分子を有する人工塩基(第二人工塩基)との間で人工塩基対が形成されると、前記天然塩基修飾体、人工塩基、或いは塩基類似体を有するポリヌクレオシドから、第二人工塩基の有する蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などが生じて、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、前記方法、を提供する。
 核酸中の人工塩基(第一人工塩基)と蛍光性分子を有する人工塩基(第二人工塩基)との間で人工塩基対は、好ましくは、本発明の式IIで表される消光性人工塩基を第二人工塩基として含む。しかしながら、必ずしもこれに限定されず、公知の人工塩基対について、蛍光共鳴エネルギー転移(FRET)及び/又は静的消光作用(static quenching)などの供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するポリヌクレオシドを含む核酸を利用することが可能である。
 C−1
 本発明は、Cの方法の一態様として以下の態様を提供する。
 本発明の蛍光共鳴エネルギー転移や静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法は、7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)と、以下の式VIの塩基:
Figure JPOXMLDOC01-appb-C000052
 [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
 240−410nmの紫外線による励起により、Dssから式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などが生じて、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、前記方法である。
 本態様の模式図を図19に示す。
 240−410nmの紫外線はDssが励起される波長である。式VIの塩基中の蛍光性分子は通常、この波長では蛍光を生じずFRETは生じて始めて蛍光が観察されることが望ましい。
 以下のC−2ないしC−4の態様はいずれも7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)と、式VIの塩基との間で人工塩基対の形成を検出するものである。
 C−2
 本発明は、Cの方法の一態様として以下の態様を提供する。
 本発明の蛍光共鳴エネルギー転移ならびに静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法は、
 7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)と、式VIの塩基との間で塩基対が形成されると、
 240−390nmの紫外線による励起により、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などが生じ、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
 ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、2−アミノ−6−(2−チエニル)プリン−9−イル基(s)を塩基として有するポリヌクレオチドが少なくとも1つ存在する、前記方法である。
 本態様の模式図を図25に示す。
 ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上存在するsの数は限定されないが、好ましくは1−3、より好ましくは1又は2である。最も好ましくは2である。図24、レーン3で示したようにsが2個の場合には、sの自己消光性によりsの蛍光強度が低下あるいは消光されており(自家消光)、FRETによる蛍光スペクトルの変化がよりはっきりと観察される(図24、レーン7)。sが1個の場合はsの蛍光が観察される(図24、レーン2)。この場合も、FRETによりsの蛍光から蛍光性分子の蛍光が観察されるようになる(図24、レーン5、6)。
 sが2つ並んだ場合のように2以上の人工塩基が同一核酸上に2つ以上存在している態様だけでなく、天然塩基に自己消光性塩基が結合している場合、Dssのように1つの人工塩基中に2以上の消光性塩基部分(s)が存在するような場合も本発明のFRET及び又は静的消光作用を利用した方法が適用可能である。
 C−3
 本発明は、Cの方法の一態様として以下の態様を提供する。
 本発明の蛍光共鳴エネルギー転移や静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法は、
 Dsと、式VI塩基との間で塩基対が形成されると、
 350−390nmの紫外線による励起により、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などが生じて蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
 ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)が天然型塩基に結合した少なくとも1の塩基を有するポリヌクレオチドが少なくとも1つ存在する、前記方法である。
 本態様の模式図を図29a及び図31に示す。
 sが結合する天然塩基の種類は限定されず、A、T、G、C、Uのいずれでも可能である。また、sが結合する天然塩基が2以上隣接して存在する場合、隣接天然塩基は同じであっても、異なっていてもよい。好ましくは同じものが2以上隣接する。sが結合する天然塩基が同一核酸中に隣接する数も、sが核酸中に存在するC−2の態様と同様に、特に限定されないが、好ましくは1−3、より好ましくは1又は2である。最も好ましくは2である。
 また、C−3の態様には、1つの天然塩基に2以上のsが結合する態様も含む(図31)。結合するsの数は、特に限定されないが好ましくは2又は3,より好ましくは2である。
 C−4
 本発明は、Cの方法の一態様として以下の態様を提供する。
 本発明の蛍光共鳴エネルギー転移や静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法は、
 Dsと、式VIの塩基との間で塩基対が形成されると、
 240−410nmの紫外線による励起により、7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移や静的消光作用(static quenching)などが生じて蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
 ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、少なくとも1つの7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)が天然型塩基に結合した塩基を有するポリヌクレオチドが存在する、
前記方法、である。
 本態様の模式図を図32に示す。
 本発明のC−1ないしC−4を含むCの態様において、蛍光性分子は特に限定されない。好ましくは、式Iの消光剤について上述したのと同様である。より好ましくはインドカルボシアニン(Cy3)である。
 式VIの塩基中の置換基Rは好ましくは以下の:
Figure JPOXMLDOC01-appb-C000053
 の構造を有する。
 本発明はまた、
 以下のi)−iii)からなる群から選択される、1つの核酸プライマー;
 i)Dssを塩基として有するポリヌクレオチドを含む、核酸プライマー;
 ii)Dsを塩基として有するポリヌクレオシド、及び、少なくとも1つのsを塩基として有するポリヌクレオチドを含む、核酸プライマー;
 iii)Dsを塩基として有するポリヌクレオシド、及び、少なくとも1つのsが天然型塩基に結合した少なくとも1の塩基を有するポリヌクレオチドを含む、核酸プライマー;及び
 iv)Dsを塩基として有するポリヌクレオシド、及び、Dssが天然型塩基に結合した塩基を有するポリヌクレオチドを含む、核酸プライマー、
 並びに、式VIの塩基
を塩基として有するポリヌクレオチド
を含む、蛍光共鳴エネルギー転移ならびに静的消光作用(static quenching)などによる蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法に使用するためのキットを提供する。
 Dss−PnならびにDss−Px塩基対は、PCRにおいても効率よく機能する。本発明においては、核酸の塩基対は、転写、逆転写、複製又は翻訳のいずれの工程で形成されるものであってもよい。
 本発明のFRET及び/又は静的消光作用を利用した検出方法において(態様C)、検出スペクトルの変化は、肉眼で判定できる、ことを特徴とする。本発明前は、可視で簡便に人工塩基対の形成、標的核酸の検出を行うことのできる方法は存在しなかった。本発明の検出方法を利用すると、リアルタイムPCRも可視化できる。よって、複雑かつ高価なPCR装置が不要となった
 また、本発明の人工塩基対の検出方法を利用して核酸の増幅を行った場合、増幅された核酸をそのまま電気泳動し、簡便に検出することが可能である(図23等)。さらに、電気泳動のバンドの濃さにより定量化も可能である。
 以下、実施例により本発明をさらに具体的に説明するが、これらは本発明の技術的範囲を限定するためのものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。
 実施例1 Cy3−hx−dPxTPの化学合成(図5)
1)試薬、溶媒等
 試薬及び溶媒は、標準的な供給業者から購入し、さらに精製することなく使用した。H−NMR(300MHz)および31P−NMR(121MHz)スペクトルは、BRUKER AV300核磁気共鳴スペクトロメーター上に記録した。合成したヌクレオシド5’−三リン酸は、Gilson HPLCシステムで最終精製を行った。エレクトロスプレイ−イオン化マススペクトル(ESI−MS) は、Waters 2690 LCシステムを伴ったWaters ZMD 4000マスシステム上に記録した。
 2)1−(2−デオキシ−β−D−リボフラノシル−4−[3−(Cy3−カルボキサミドヘキサナミド)−1−プロピニル]−2−ニトロピロール 5’−三リン酸 (Cy3−hx−dPxTP) の合成
 1−(2−デオキシ−β−D−リボフラノシル)−4−[3−(6−アミノヘキサナミド)−1−プロピニル]−2−ニトロピロール 5’−三リン酸(NH−hx−dPxTP)(8.4μmol)の100mMM NaHCO−NaCOバッファー溶液(pH8.6,500μl)にCy3 N−ヒドロキシスクシンイミジルエステル(Cy3−SE,6.0mg,7.63μmol)のDMF(300μl)溶液を加えて室温で12時間静置した。50mM TEAA(3.0ml)を反応溶液に加えてDEAE Sephadex A−25ならびにHPLCで精製してCy3−hx−dPxTP(2.7μmol,35%)を得た。
 3) Cy3−hx−dPxTPの物性値
 H NMR(300MHz,DO) δ 8.55(t,1H,J=13.6Hz),7.90(t,2H,J=1.7Hz),7.85(dd,2H,J=1.2,8.4Hz),7.78(d,1H,J=2.1Hz),7.39(dd,2H,J=1.9,8.5Hz),7.19(d,1H,J=2.1Hz),6.64(t,1H,J=5.9Hz),6.39(dd,2H,J=2.8,13.5Hz),4.59(m,1H),4.22−4.08(m,9H),3.20(q,32H,J=7.3Hz),3.07(t,2H,J=6.5Hz),2.59(dt,1H,J=6.1,13.3Hz),2.38(dt,1H,J=6.2,13.8Hz),2.27−2.17(m,2H),1.86(m,2H),1.77(s,12H),1.67−1.54(m,4H),1.42−1.25(m,56H).
 31P NMR(121MHz,DO) δ −8.65(bs,1P),−10.72(d,1P,J=19.7Hz),−22.32(t,1P,J=20.4Hz).
 MS(ESI) for C496522 計算値:1247.28(M+H), 実測値:1247.43(M+H), 計算値: 1245.28(M−H), 実測値:1244.91(M−H)
 実施例2 人工塩基Pnによる相補鎖中の蛍光性人工塩基Dssの消光(図7)
 蛍光性人工塩基Dssを含むDNA断片 (12−mer、5’−GGTAACNATGCG−3’、N=Dss)(配列番号1)のみ、もしくは相補鎖のDNA断片(12−mer、5’−CGCATNGTTACC−3’、N=Pn、Dss、Ds、もしくはT)(配列番号2)と二本鎖を形成させた場合の蛍光変化を調べるために、10mM リン酸ナトリウム(pH7.0),100mM NaCl,0.1mM EDTA溶液中で一本鎖DNA(ssDNA)および二本鎖DNA(dsDNA)が5μMとなるように溶液を調製し、アニーリング後、365nmでのUVトランスイルミネーター照射により蛍光を撮影した結果を図7に示した。
 実施例3 各DNA断片の蛍光スペクトル(図8)
 図8に、ETC−273T温度コントローラーを装備したJASCO FP−6500スペクトロメーターを用いて測定した各DNA断片の蛍光スペクトルを示した。Dssを含む一本鎖DNA断片(12−mer、5’−GGTAACNATGCG−3’、N=Dss)(配列番号1)及びその相補鎖(12−mer、5’−CGCATNGTTACC−3’、N=Pn、Dss、Ds、もしくはT)(配列番号2)を含む二本鎖DNAを、10mM リン酸ナトリウム緩衝液(pH7.0)、100mM NaCl、0.1mM EDTA溶液中で5μMとなるように調製し、アニーリング後、385nmでの励起による発光スペクトルを25℃で測定した。
 比較として、Dsを含む一本鎖DNA断片(12−mer、5’−GGTAACNATGCG−3’、N=Ds、5μM)(配列番号3)を用いて、310nmでの励起による発光スペクトルを25℃で測定した。
 実施例4 Pnの消光作用(図9)
 A.Pnのデオキシリボヌクレオシド三リン酸(dPnTP)の濃度依存による蛍光性人工塩基Dssのデオキシリボヌクレオシド三リン酸(dDssTP,5μM)の蛍光強度の変化
 ETC−273T温度コントローラーを装備したJASCO FP−6500スペクトロメーターを用いて、2mM、1mM、0.5mM、0.2mM、0.1mM、0.05mMのデオキシリボヌクレオシド三リン酸(dPnTP)を含む10mM リン酸ナトリウム(pH7.0),100mM NaCl,0.1mM EDTA溶液(100μl)に、デオキシリボヌクレオシド三リン酸(dDssTP、105μM)を5μl加えて、370nmでの励起によるdDssTPの発光スペクトルを20℃で測定した。
 同様に天然型塩基のデオキシリボヌクレオシド三リン酸存在下のdDssTPの蛍光消光効果を調べるために、15mM、12mM、9mM、6mM、3mM、1mMのデオキシリボアデノシン三リン酸(dATP)、デオキシリボグアノシン三リン酸(dGTP)、デオキシリボチミジン三リン酸(dTTP)、デオキシリボシチジン三リン酸(dCTP)を含む10mM リン酸ナトリウム(pH7.0),100mM NaCl,0.1mM EDTA溶液(100μl)に、デオキシリボヌクレオシド三リン酸(dDssTP、105μM)を5μl加えて、370nmでの励起によるdDssTPの発光スペクトルを20℃で測定した。
 B.dPnTPと天然型塩基の三リン酸とのDssに対する消光性の比較
 Pnならびに天然型塩基のデオキシリボヌクレオシド三リン酸による、蛍光性人工塩基のヌクレオシド三リン酸、dDssTP(5μM)の消光性をSteady−state Stern−Volmer plotにより解析した。
 具体的には、10mM リン酸ナトリウム緩衝液(pH7.0),100mM NaCl,0.1mM EDTA溶液中、20℃で測定した発光スペクトル (370nm 励起)を用いて、系中に存在するクエンチャー(dPnTP,dATP,dGTP,dCTP,dTTP)の濃度に対する蛍光強度の減少を以下のStern−Volmer式に代入することにより、Stern−Volmer定数(KSV)を算出した。
 Stern−Volmer式: F/F=1+KSV[Q]
 ここで、Fは、クエンチャーの存在しない場合の蛍光強度、Fはクエンチャーの存在する場合の蛍光強度を示し、[Q]はクエンチャーの濃度である。具体的には、クエンチャーの濃度[Q]を横軸に、そのクエンチャー濃度に対するF/Fを縦軸にプロットし、最小二乗法により得られた直線からKSVを求めた。ここで、KSVの値が大きいほど消光能が強いクエンチャーであることを示す。グアニン塩基は消光性を有することが知られているが、Pnはさらに強い消光性を示すことがわかった。
実施例5 dPnとその各種誘導体によるdDssの蛍光の消光(図10)
 5mMまたは5mM dPnまたはその各種誘導体存在下での終濃度5μM dDssの蛍光を、励起波長385nm、測定温度25℃で測定した結果を図10に示した。具体的には、各ヌクレオシド溶液(20μM dDss、20mM dPnおよびその各種誘導体)を以下の手順で調製した。
 dDss、dPnまたはその各種誘導体をそれぞれ約5mgとり、55−60℃で6時間乾燥後、秤量し、dDssは2mM、dPnまたはその各種誘導体はそれぞれ20mMになるように20% アセトニトリル水溶液を加えた。dDssはさらに希釈し、20μMとした。蛍光スペクトル測定用のサンプルに関しては、dPnまたはその各種誘導体の終濃度2.5mMの場合(図10A)、50μlの20μM dDss溶液、25μlの20mM dPnまたはその各種誘導体溶液、25μlの20%アセトニトリル溶液、100μlのエタノールを混合して、全量を200μlとした。dPnまたはその各種誘導体の終濃度5mMの場合(図10B)には、50μlの20μM dDss溶液、50μlの20mM dPnまたはその各種誘導体溶液、100μlのエタノールを混合して、全量を200μlとした。
 実施例6 クレノウ断片によるDss−Pn塩基対のDNA中への一塩基取り込み実験(表1)
 クレノウ断片による一塩基取り込み実験を、文献に従っておこなった(Kimoto,M.;Yokoyama,S.;Hirao,I.Biotechnol.Lett.2004,26,999−1005、Petruska,J.;Goodman,M.F.;Boosalis,M.S.;Sowers,L.C.;Cheong,C.;Tinoco,I.Proc.Natl.Acad.Sci.USA 1988,85,6252−6256、Goodman,M.F.;Creighton,S.;Bloom,L.B.;Petruska,J.Crit.Rev.Biochem.Mol.Biol.1993,28,83−126、Morales,J.C.;Kool,E.T.Nat.Struct.Biol.1998,5,950−954)。
 具体的には、5’末端が6−カルボキシフルオレセインで標識されたプライマー(20−mer、5’−ACTCACTATAGGGAGGAAGA−3’(配列番号4)または、5’−ACTCACTATAGGGAGCTTCT−3’(配列番号5))と鋳型DNA(35−mer、5’−AGCTCTDssTCTTCCTCCCTATAGTGAGTCGTATTAT−3’(配列番号6))または、5’−TCGAGANAGAAGCTCCCTATAGTGAGTCGTATTAT−3’(N=Pn、A、G、C、T)(配列番号7))を、20mM MgCl、2mM DTT、および100μg/mlウシ血清アルブミン(BSA)を含有する100mM Tris−HCl(pH7.5) 緩衝液中で、95℃で加温した後に、4℃へ緩やかに冷却することによりアニーリングし、鋳型鎖とプライマーの二本鎖を形成させた。
 このプライマー—鋳型二本鎖DNA溶液(10μM)を5μlずつ分注した後,エキソヌクレアーゼ活性を持たないクレノウ断片(KFexo−、Amersham USB)の酵素溶液(2μl)を加えて、37℃で2分間インキュベートし、DNA・酵素複合体を形成させた。その溶液に3μlの各基質、即ちヌクレオシド三リン酸溶液(Dss、PnまたはA、G、C、Tのうち1種、1μM−5mM)を加えて、37℃で酵素反応(1−35分間)を行った。反応の終了は、10μlの20mM EDTAを含む95%ホルムアミド溶液(停止溶液)を加えて75℃で3分加温することで行った。
 反応条件をまとめると以下の通りである。溶液(10μl)中、5μMプライマー−鋳型二本鎖、5−50nM酵素及び0.3−1500μM基質を使用。溶液(10μl)は、50mM Tris−HCl(pH7.5)、10mM MgCl、1mM DTT及び0.05mg/ml BSAを含む。反応は、37℃で1−35分間。
 反応溶液の一部を停止溶液で希釈した後、その希釈反応液0.5μlをローディング溶液(脱イオンホルムアミド:25mM EDTAを含む50mg/mlブルーデキストラン溶液=5:1)3μlと混合し、90℃で2分加熱し、氷上に置いて急冷した。そのうちの約0.5μlを1レーンおきにシークエンスゲルにロードし電気泳動を行った。シークエンスゲル(36cm WTR)の組成は、6M 尿素、10%ポリアクリルアミド(アクリルアミド:ビスアクリルアミド=19:1)、0.5×TBEである。泳動用緩衝液は,0.5×TBEを用いた。Run Moduleは、GS Run 36C−2400である。泳動時間は約1時間とし、反応産物のピークパターンの解析及び定量は、GeneScanソフトウエア (バージョン3.0)装備した自動ABI377DNAシークエンサーで解析した。
 未反応のプライマー断片,および一塩基とりこまれて伸長したDNA断片のピークの面積を用いて、一ヌクレオチド伸長されたプライマーの割合を定量し、Hanes−Woolf plot(Goodman,M.F.;Creighton,S.;Bloom,L.B.;Petruska,J.Crit.Rev.Biochem.Mol.Biol.1993,28,83−126)により酵素学的パラメーターVmax、Kを算出した。なお、Vmaxの値は、使用された種々の酵素および二本鎖濃度に対して酵素濃度20nM、二本鎖濃度5μMに標準化された。
 結果を表1に示す
Figure JPOXMLDOC01-appb-T000054
 実施例7 大腸菌由来のDNAポリメラーゼ I のクレノウ断片を用いたPnを含む鋳型DNAとdDssTPによるプライマー伸長反応(図11)
 5’末端を32Pで標識したプライマー(23−mer)(配列番号8)とPnもしくはPaを含む鋳型DNA(35−mer)(配列番号9)を、14mM MgCl、0.2mM DTTを含有する20mM Tris−HCl(pH7.5)緩衝液中で、95℃で加温後、4℃へ緩やかに冷却することによりアニーリングし、鋳型鎖とプライマーの二本鎖を形成させた。このプライマー—鋳型二本鎖DNA溶液(400nM)を5μlずつ分注した後、2.5μlの各基質、即ちヌクレオシド三リン酸溶液(40μM dCTP、40μM dTTP、0−40μM dDssTP)を氷上で加えた。この溶液に、エキソヌクレアーゼ活性をもつクレノウ断片(KF exo+、TaKaRa)を滅菌水で希釈した酵素溶液(2.5μl、1ユニット)を加えることで反応を開始し、37℃で3分間保温後、10μlの10M尿素を含む1×TBE溶液(停止溶液)を加えて75℃で3分加温することで反応を止めた。反応産物を15%ポリアクリルアミド—7 M 尿素ゲルで電気泳動し、バンドパターンをバイオイメージングアナライザー(FLA7000、富士フィルム)によるオートラジグラフィーにより解析した。
 実施例8 Dss−Px塩基対を用いたDsを含むDNAのPCR増幅(図12)
 所定濃度の人工塩基基質、NH−hx−dPxTPおよびdDssTP、の存在下で、Dsを含む鋳型DNA(S2、55−mer)もしくは天然型塩基だけからなるDNA(対照、55−mer)を用いてPCRを行い、その産物を電気泳動により解析した結果を図12に示した。
 使用した鋳型DNAおよびプライマーの配列は以下のとおりである。
 DNA S2 (55−mer、下線部はプライマーのアニーリング部位)
 5’−TTTCACACAGGAAACAGCTATGACGGCCCDsTTGCCCTATAGTGAGTCGTATTATC−3’(配列番号10)
 DNA 対照 (55−mer、下線部はプライマーのアニーリング部位)
 5’−TTTCACACAGGAAACAGCTATGACGGATCCATTCCCTATAGTGAGTCGTATTATC−3’(配列番号11)
 5’側プライマー:
 5’−CGTTGTAAAACGACGGCCAGGATAATACGACTCACTATAG−3’(配列番号12)
 3’側プライマー:
 5’−TTTCACACAGGAAACAGCTATGAC−3’(配列番号13)
 PCR(反応スケール:40μl)は鋳型として最終濃度0.4nMのDNA断片を用いて実施し、94℃−30秒、45℃−30秒、65℃−4分を1サイクルとして20サイクル行った。反応液の最終組成は20mM Tris−HCl(pH8.8)、10mM KCl、10mM(NHSO、2mM MgSO、0.1% TritonX−100、DeepVent DNAポリメラーゼ(0.02ユニット/μl、NEB)、1μM 5’側プライマー、1μM 3’側プライマー、0.3mM 各天然型塩基基質dNTP、10−25μM dDssTP、および25μM NH−hx−dPxTPである。20サイクル後のPCR産物を15%ポリアクリルアミド—7M 尿素ゲルで電気泳動した。
 増幅されたDNAのバンドは、ゲルをSYBR Green II (Lonza)で染色した後、バイオイメージャーLAS4000(富士フィルム) のSYBRモードで検出した。
 実施例9 Dss−Px塩基対を用いたPCR増幅後のDNAのシーケンシング(図13)
 所定濃度の人工塩基基質、NH−hx−dPxTPおよびdDssTP、の存在下で、Dsを含む鋳型DNA(S2、55−mer)を用いてPCRを行い、その産物中に人工塩基Dssが保持されているかを、人工塩基基質dPa’TPもしくはddPa’TPを利用したDNAシーケンシングにより解析した結果を図13に示した。
 使用した鋳型DNAおよびプライマーの配列は以下のとおりである。
 DNA S2 (55−mer、下線部はプライマーのアニーリング部位)
 5’−TTTCACACAGGAAACAGCTATGACGGCCCDsTTGCCCTATAGTGAGTCGTATTATC−3’(配列番号10)
 PCR用プライマー
 5’側プライマー:5’−CGTTGTAAAACGACGGCCAGGATAATACGACTCACTATAG−3’(配列番号12)
 3’側プライマー:5’−TTTCACACAGGAAACAGCTATGAC−3’(配列番号13)
 シーケンシング用プライマー:
 5’−CGTTGTAAAACGACGGCCAG−3’(配列番号14)
 PCR(反応スケール:25μl)は鋳型として最終濃度0.6nMのDNA断片を用いて実施し、94℃−30秒、45℃−30秒、65℃−4分を1サイクルとして15サイクル行った。反応液の最終組成は20mM Tris−HCl(pH8.8)、10mM KCl、10mM(NHSO、2mM MgSO、0.1% TritonX−100、DeepVent DNAポリメラーゼ(0.02ユニット/μl、NEB)、1μM 5’側プライマー、1μM 3’側プライマー、0.3mM 各天然型塩基基質dNTP、2−10μM dDssTP、および2−50μM NH−hx−dPxTPである。15サイクル後のPCR産物全長を変性ゲルで精製した後、DNAシーケンスの鋳型とし、シーケンシング解析をおこなった。
 DNAのシーケンシング反応は、全量20μlスケールにて、市販のBigDye Terminator v1.1 Cycle Sequencing Kit (Applied BioSystems)のCycle Sequencing Mix 8μlとプライマー(4pmol)とPCR増幅されたDNA断片(およそ0.3pmol程度)を混合し、40pmolのdPa’TPもしくは1nmolのddPa’TPの存在下、25サイクルのPCR(96℃−10秒、50℃−5秒、60℃−4分)を行った。未反応のダイダーミネーターをCentri−Sepスピンカラム(Applied BioSystems)で反応溶液からとり除き、残りの溶液を減圧吸引により乾燥した。残存物にBlue−Dextranを希釈したホルムアミド溶液を4μl加えて懸濁し、その一部をABI377DNAシーケンサーにより解析した。解析に用いたゲル組成は、7%ポリアクリルアミド—6M 尿素ゲルであり、配列のピークパターンは、Applied BioSystems PRISMシークエンシング解析v3.2ソフトウエアを用いて解析した。
 実施例10 Dss−Px塩基対を用いたリアルタイムPCR(図15)
 人工塩基Dssを含むプライマーを用いて、dPxTPの基質存在下でPCRを行った場合のリアルタイムPCRの原理を図14に示した。
 Dssに対してPxが相補鎖に取り込まれると、PxがDssのクエンチャー(消光剤)として作用するため、PCR増幅された二本鎖DNAをDssの蛍光強度の減少から検出することができる。図15は、実際に下記のDNA断片を用いて、リアルタイムPCRを実施した結果であり、定量的な増幅プロットが得られ、反応液中(25μl)に3コピーのDNAでも検出可能であることがわかった。
 実験に使用した配列(下線部はプライマーアニーリング部位に相当)
 5’−プライマー配列:5’−CATGTAGATGCCATCAAAGAAGCTC−3’(配列番号15)
 3’−プライマー配列:5’−AATAATGCDssTCCTCAAAGGTGGTGACTTC−3’(配列番号16)
 二本鎖鋳型DNA(98bp;片方の鎖のみ記載):
 5’−CATGTAGATGCCATCAAAGAAGCTCTGAGCCTCCTAAATGACATGCGTGCTCTGGAGAACGAAAAGAACGAAGACGTAGAAGTCACCACCTTTGAGGA−3’(配列番号17)
 具体的には、リアルタイムPCR装置(ストラタジーン、Mx3005P)を用いて、プライマー各1μM、天然型塩基基質dNTP 各0.2mM、人工塩基基質dPxTP 2μMの存在下、94℃−2分の後に、94℃−5秒、68℃−40秒を1サイクルとする2ステップPCRの条件で55サイクルのPCRを行った。PCRの反応スケールは25μlで、反応液の組成は40mM Tricine−KOH(pH8.0)、16mM KCl、3.5mM MgSO、3.75μg/ml BSA、1×TitaniumTaq DNAポリメラーゼである。鋳型に用いたDNA断片は、反応液中にそれぞれ、0、3、15、30、150、300、1500、3000、15000、30000コピーになるように希釈し、それぞれの濃度につき、PCRを実施した。
 検出に用いたフィルターセットは、励起350nm−蛍光440nm(ALEXA用)である。データ解析には、Plexor(登録商標) AnalySiS Software (v1.5.4.18,Promega & Eragen BioSciences)を用いた。結果を図15に示した。
 実施例11 Dss−Pn塩基対を含むDNAヘアピンの蛍光特性(図16)
 Dssを含む2種類のDNA、hairpin ssDNA(34−mer)(配列番号18)とssDNA(12−mer)(配列番号19)を1×ExTaq Buffer(TaKaRa、2mM MgCl含有)中で1μMとなるように調製し、Reference DyeあるROX(Invitrogen)存在下(最終濃度1000倍希釈)、温度変化による蛍光強度の変化をMx3005Pのdissociationモードで検出した。ROXのシグナル強度で補正したのち、35℃での値を基準として規格化したときのグラフを図16に示した。
 構造をもたない直鎖上のssDNA(12−mer)は、DNAを含まないBufferのみ(バックグラウンド)と同様、少しずつ蛍光が現象するプロファイルであったのに対し、Dss−Pn塩基対を含むヘアピン構造を形成するhairpin ssDNA(34−mer)は、温度上昇とともに蛍光が上昇するプロファイルが得られた。これは、低温状態ではヘアピン構造をとっているために消光作用のあるPnがDssと塩基対を形成し、Dssの蛍光がPnで消光して蛍光強度が低くなっている一方で、温度を上げた場合にはヘアピン構造が壊れて消光作用がなくなり、Dssの蛍光が検出されるようになったため、と考えられる。
 実施例12 Dss−Pn塩基対を用いたモレキュラービーコンの可視化(図17)
 各種DNA断片、モレキュラービーコン(MB−C、26−mer)(配列番号20)とTarget DNA(71G、71−mer)(配列番号21)をそれぞれ2μMとなるように調製し、等量(50μlずつ)混合した。ネガティブコントロールとして、Target DNAを含まない溶液を、MB−C溶液と混合した。最終的な溶液組成はDNA濃度各1μM、10mM リン酸ナトリウム緩衝液(pH7.0)、100mM NaCl、0.1mM EDTAである。この溶液をPCRマシンにて90℃で10秒間加熱後、25℃まで徐冷した。励起波長375nmのUV−LEDランプによる照射下もしくは自然光下にて、デジタルカメラにより撮影した写真を図17の右に示した。
 ターゲットDNA非存在下では、モレキュラービーコンはループ—ステム構造を形成して、Dss−Pn塩基対形成により、Dssの蛍光が消光されるが、ターゲットDNA存在下では、モレキュラービーコンのループ部分がハイブリダイゼーションによりターゲットDNAと二本鎖を形成し、ステム構造が壊れてDss−Pn塩基対が形成なくなり、Dssの蛍光が検出されることが目視にて確認できた。
 実施例13 Dss−Pn塩基対を用いたモレキュラービーコンによる一塩基変異の検出(図18)
 500nMに希釈したモレキュラービーコン(26−mer、MB−C(配列番号20)またはMB−T(配列番号23))の溶液を50μlずつ分注し、最終溶液の5倍濃度のTarget DNA断片(71−mer、71G(配列番号21)または71A(配列番号22)、12.5μl)と混合したサンプルをインキュベーターにて45℃で5分以上保温して平衡状態とした。蛍光測定はJASCO FP−6500 スペクトロメーターを用いて行い、セルに溶液を移したのち装置中(45℃設定)で2分放置後に、自動シャッター制御を使用して390nmで励起し430−470nmの蛍光スペクトルを測定した。最終溶液中の組成は、モレキュラービーコン 400nM、Target DNA 0−3200nM、10mM リン酸ナトリウム緩衝液(pH7.0)、100mM NaCl、0.1mM EDTAである。
 図18に示したグラフは、454nmの蛍光強度について、Target DNA断片非存在下での蛍光強度でそれぞれ規格化してからプロットしたものである。一塩基のミスマッチがある場合には完全にマッチした場合よりも蛍光強度が有意に低くなることを利用して、一塩基変異をDss−Pn塩基対を利用したモレキュラービーコンにより検出できることがわかった。
 実施例14 Cy3−Px/Dss塩基対を用いた可視化PCR(図20)
 人工塩基Dssを含むプライマーを用いて、Cy3−hx−dPxTPの基質存在下でPCRを行った場合のリアルタイムPCRの原理を図19に示した。Dssに対してCy3−hx−dPxが相補鎖に取り込まれると、350nm付近の照射でDssとCy3間にFRETが起こるため、PCR増幅された二本鎖DNAを特異的に光らせることができる。また、このFRETによる蛍光は目視検出が可能なこともわかった(図20)。
 実験に用いた配列は図15と同一である。
 実験に使用した配列 (下線部はプライマーアニーリング部位に相当)
 5’−プライマー配列 :5’−CATGTAGATGCCATCAAAGAAGCTC−3’(配列番号15)
 3’−プライマー配列 :5’−AATAATGCDssTCCTCAAAGGTGGTGACTTC−3’(配列番号16)
 二本鎖鋳型DNA (98 bp;片方の鎖のみ記載):
 5’−CATGTAGATGCCATCAAAGAAGCTCTGAGCCTCCTAAATGACATGCGTGCTCTGGAGAACGAAAAGAACGAAGACGTAGAAGTCACCACCTTTGAGGA−3’(配列番号17)
 具体的には、リアルタイムPCR装置(ストラタジーン、Mx3005P)を用いて、プライマー各1μM、天然型塩基基質dNTP各0.2mM、人工塩基基質Cy3−hx−dPxTP 2μMの存在下、94℃−2分の後、94℃−5秒、68℃−40秒を1サイクルとする2ステップPCRの条件で55サイクルのPCRを行った。PCRの反応スケールは25μlで、反応液の組成は40mM Tricine−KOH(pH8.0)、16mM KCl、3.5mM MgSO、3.75μg/ml BSA、1×TitaniumTaq DNAポリメラーゼである。鋳型に用いたDNA断片は、反応液中にそれぞれ、0、3、30、300、3000、30000、300000、3000000コピーになるように希釈し、それぞれの濃度につき、PCRを実施した。その反応チューブを直接、365nmのUVで照射し、オレンジフィルターを通して目視で蛍光を検出した。
 実施例15 蛍光性分子Cy3を結合した消光性Px塩基によるリアルタイムPCR(図22)
 人工塩基Dsを含むプライマーを用いて、蛍光性分子(Cy3など)を結合したdPxTP誘導体の基質存在下でPCRを行った場合のリアルタイムPCRの原理を図21に示した。蛍光性分子を、消光性のPx塩基に結合させると、蛍光性分子の蛍光が30%程度消光する。これを基質(Cy3−hx−dPxTP) にして、Ds塩基を導入したプライマーを用いたPCRを行うと、Cy3−hx−PxがDNA中に取り込まれることで、Cy3の蛍光強度が増大する。図22は、実際に下記のDNA断片を用いて、リアルタイムPCRを実施した結果であり、定量的な増幅プロットが得られ、反応液中(25μl)に3コピーのDNAでも検出可能であることがわかった。
 実験に使用した配列(下線部はプライマーアニーリング部位に相当)
 5’−プライマー配列:5’−CATGTAGATGCCATCAAAGAAGCTC−3’(配列番号15)
 3’−プライマー配列:5’−AATAATGCDsTCCTCAAAGGTGGTGACTTC−3’(配列番号24)
 二本鎖鋳型DNA(98bp;片方の鎖のみ記載):
 5’−CATGTAGATGCCATCAAAGAAGCTCTGAGCCTCCTAAATGACATGCGTGCTCTGGAGAACGAAAAGAACGAAGACGTAGAAGTCACCACCTTTGAGGA−3’(配列番号17)
 具体的には、リアルタイムPCR装置 (ストラタジーン、Mx3005P)を用いて、プライマー各1μM、天然型塩基基質dNTP各0.2mM、人工塩基基質Cy3−hx−dPxTP 2μMの存在下、94℃−2分の後、94℃−5秒、68℃−40秒を1サイクルとする2ステップPCRの条件で55サイクルのPCRを行った。PCRの反応スケールは25μlで、反応液の組成は40mM Tricine−KOH(pH8.0)、16mM KCl、3.5mM MgSO、3.75μg/ml BSA、1×TitaniumTaqDNAポリメラーゼである。鋳型に用いたDNA断片は、反応液中にそれぞれ、0、3、30、300、3000、30000、300000、3000000コピーになるように希釈し、それぞれの濃度につき、PCRを実施した。検出に用いたフィルターセットは、励起545nm−蛍光568nm(CY3用)である。データ解析には、付属の解析ソフトMxPro version 4.10を用いた。
 実施例16 蛍光性分子Cy3を結合した消光性Px塩基によるリアルタイムPCR産物のゲル電気泳動上での検出(図23)
 図22に示したPCR産物は、Cy3が取り込まれているため、この産物をアガロースゲルで電気泳動した場合、従来のEtBrやSYBR GreenなどのDNA染色色素を用いることなく、ゲル上でPCR産物をCy3の蛍光で検出可能である。図23では、図22に示したPCR産物12μlを、4%アガロースゲルで電気泳動し、バイオイメージングアナライザー、FLA7000(富士フィルム)のCy3検出モード(励起レーザー:532nm、検出フィルター:O580)でバンドパターンを検出した結果を示した。
 実施例17 蛍光性分子 Cy3 ならびに蛍光性人工塩基Sを含むDNAの蛍光特性(図24)
 化学合成後HPLC精製したDNA断片を最終濃度が5μMとなるように、100mM NaCl、0.1mM EDTAを含む10mM リン酸ナトリウム緩衝液(pH7)で調製し、これらの溶液の蛍光特性を目視ならびに蛍光スペクトルで調べた結果を図24に示した。
 UV照射は、UVトランスイルミネーターを用いて、下方より行った。蛍光性人工塩基sを一つ含むDNA断片は、254nm、302nm、365nmの照射で発光し(写真レーン2)、sを2つ隣接してDNA中に導入すると、その蛍光が消光した(写真レーン3)。Cy3を導入したDNAは、254nm、302nmの照射で少し発光するが、365nmの照射ではほとんど発光しなかった(写真レーン4)。これに対し、DNA中のCy3の近傍に、sを1つあるいは2つ導入するとCy3の蛍光が観測され、FRETが起こることが確認できた(写真レーン5−7)。溶液を365nmで励起した場合の蛍光スペクトルをグラフに示した。
 実施例18 蛍光性分子 Cy3を結合した消光性のPx塩基と蛍光性人工塩基Sを組み合わせた可視化PCR法(図26−28)
 人工塩基Dsおよび蛍光性人工塩基sを隣接して2つ含むプライマーを用いて、Cy3−hx−dPxTP基質存在下でPCRを行った場合のリアルタイムPCRの原理を図25に示した。sを隣接して2つ導入するとsの蛍光は完全に消光する。しかし、Sの近傍にDsを配置し、そのDsにCy3−hxが相補して特異的に組み込まれると、365nm付近の照射でSとCy3間にFRETが起こり、PCR増幅された二本鎖DNAのみを特異的に光らせることができる。
 図26は、実際に下記のDNA断片を用いて、PCR25サイクルを行った産物を目視で確認した結果である。図26のss−Cy3を利用した系では、PCR装置 (MJリサーチ、PTC−100)を用いて、プライマー各1μM、天然型塩基基質dNTP各0.2 mM、人工塩基基質Cy3−hx−dPxTP 2μMの存在下、94℃−2分の後、94℃−5秒、68℃−40秒を1サイクルとする2ステップPCRの条件で25サイクルのPCRを行った。PCRの反応スケールは25μlで、反応液の組成は40mM Tricine−KOH (pH 8.0)、16mM KCl、3.5mM MgSO、3.75μg/ml BSA、1×TitaniumTaq DNAポリメラーゼである。鋳型に用いたDNA断片濃度は0.5 nMである。従来法であるSYBR Green I 存在下でのPCRでは、人工塩基基質Cy3−hx−dPxTP 2μMの代わりに、SYBR Green I(最終濃度1/30000)、レファレンス色素としてROX(最終濃度 1/500)を加えている。
 SYBR Green I存在下でのリアルタイムPCR検出は最もよく用いられる方法の一つであるが、図26中、右側2レーンの写真に示したとおり、DNA有無での蛍光変化が大きくないために、目視での検出は難しい。図26の左側2レーンに示した通り、本法ではPCR検出を目視での検出が可能である。
 図27aに示したリアルタイムPCRでは、リアルタイムPCR装置(ストラタジーン、Mx3005P)を用いて、プライマー 各1μM、天然型塩基基質dNTP 各0.2 mM、人工塩基基質Cy3−hx−dPxTP 2μMの存在下、94℃−2分の後、94℃−5秒、68℃−40秒を1サイクルとする2ステップPCRの条件で55サイクルのPCRを行った。PCRの反応スケールは25μlで、反応液の組成は40mM Tricine−KOH pH8.0)、16mM KCl、3.5mM MgSO、3.75μg/ml BSA、1×TitaniumTaq DNAポリメラーゼである。鋳型に用いたDNA断片は、反応液中にそれぞれ、0、3、30、300、3000、30000、300000、3000000コピーになるように希釈し、それぞれの濃度につき、PCRを実施した。
 さらに、図27aに示したように、反応液中(25μl)に3コピーのDNAでも365nm照射により、PCR産物を目視で検出可能であることがわかった。
 また、図28は図27aの可視化PCR産物をアガロースゲルで電気泳動した場合で、312nm照射でsからCy3へのFRETにより産物検出ができること、また532nm照射でDNA中に直接取り込まれたCy3の蛍光により産物検出ができることが確認できた。
 実験に使用した配列(下線部はプライマーアニーリング部位に相当)
 5’−プライマー配列:5’−CATGTAGATGCCATCAAAGAAGCTC−3’(配列番号15)
 3’−プライマー配列:5’−AATAASSGCDsTCCTCAAAGGTGGTGACTTC−3’(配列番号25)
 二本鎖鋳型DNA (98 bp;片方の鎖のみ記載):
 5’−CATGTAGATGCCATCAAAGAAGCTCTGAGCCTCCTAAATGACATGCGTGCTCTGGAGAACGAAAAGAACGAAGAC
 GTAGAAGTCACCACCTTTGAGGA−3’(配列番号17)
 図28では、図27aに示したPCR産物12μlを、4%アガロースゲルで電気泳動し、バイオイメージングアナライザー、LAS4000 (富士フィルム)のEtBr検出モード(励起:312nm透過UV、検出フィルター 605DF40)を用いてsとCy3間のFRETにより産物を検出した結果、およびFLA7000 (富士フィルム)
 のCy3検出モード(励起レーザー:532nm、検出フィルター:O580)でCy3の蛍光から直接産物を検出した結果を示した。
 実施例19 蛍光性分子 Cy3 を結合した消光性のPx塩基と蛍光性人工塩基sを組み合わせた可視化PCR法: 各PCRサイクルの蛍光強度の定量)(図27b−図27d)
 本実施例は、図27aの実験の追実施例である。
 人工塩基Dsおよび蛍光性人工塩基sを隣接して2つ含むプライマーを用いて、Cy3−hx−dPxTP基質存在下でPCRを行った場合、増幅されたDNA中のCy3の蛍光強度の増加を測定することにより、リアルタイムPCR(図27b)にも利用できた。また、異なる初濃度のDNAのPCR増幅を目視での検出(図27c)も可能になった。さらには、PCRサイクル毎で、その増幅の過程をチューブの撮影画像を処理して、DNAの増幅を定量化することもできた(図27d)。
 実験に使用した配列(下線部はプライマーアニーリング部位に相当)
 5’−プライマー配列 :5’−CATGTAGATGCCATCAAAGAAGCTC−3’(配列番号15)
 3’−プライマー配列:5’− AATAAssGCDsTCCTCAAAGGTGGTGACTTC−3’(配列番号26)
 二本鎖鋳型DNA(98bp;片方の鎖のみ記載):
 5’−CATGTAGATGCCATCAAAGAAGCTCTGAGCCTCCTAAATGACATGCGTGCTCTGGAGAACGAAAAGAACGAAGACGTAGAAGTCACCACCTTTGAGGA−3’(配列番号17)
 PCR反応は、リアルタイムPCR装置(ストラタジーン、Mx3005P)を用いて、プライマー 各1μM、天然型塩基基質dNTP 各0.2mM、人工塩基基質Cy3−hx−dPxTP 2μMの存在下、94℃−2分の後、94℃−5秒、68℃−40秒を1サイクルとする2ステップPCRの条件で30、35、40、45、55サイクルのPCRを行った。
 PCRの反応スケールは25μlで、反応液の組成は40mM Tricine−KOH(pH8.0)、16mM KCl、3.5mM MgSO、3.75μg/ml BSA、1×TitaniumTaq DNAポリメラーゼである。鋳型に用いたDNA断片は、反応液中にそれぞれ、0、3、30、300、3000、30000、300000、3000000コピーになるように希釈し、それぞれの濃度につき、PCRを実施した。
 反応終了後のチューブでの画像処理による定量解析は、以下の手順で行った。UVトランスイルミネーターを用いて、下方より365nmのUV照射下で、UVカットフィルターおよびオレンジフィルター越しにデジタルカメラにより撮影し、得られたファイル(JPEG形式)をAdobe Photoshop ver.6.0で、画像モードをグレースケール、解像度を72pixel/inchとしてTiff形式ファイルに変換した。このファイルを、Science Lab 2005 Multi Gaugeソフトウエアで読み込み、定量解析を行った。具体的には、チューブの反応溶液部分[1015(pixel)]のQuantum Level(QL値)から、バックグラウンドの値(チューブ間のエリア、7カ所の平均値)を差し引き、その単位面積あたりの値を、それぞれPCRサイクルに対して、あるいは鋳型に用いたコピー数に対して、プロットした結果をグラフに示した。
 結果を図27b−dに示す。
 実施例20 蛍光性分子(s塩基)を天然型塩基にリンカーを介して結合したヌクレオシド誘導体(s−hx−dU)とDs−Px塩基対を用いたPCR産物の検出法(図29b−図29d)
 本実施例は図29aの対実施例である。
 蛍光性人工塩基であるsをリンカーを介して天然型塩基Uに結合した修飾塩基(s−hx−dU)を隣接して2つ含むプライマーを用いて、Cy3−hx−dPxTP基質存在下でPCRを行った場合のリアルタイムPCRの原理を図29aに示した。s−hx−dUを隣接して2つ導入すると、sを隣接して2つ導入した場合と同様に(図25)、sの蛍光は消光される。しかし、s−hx−dUの近傍にDsを配置し、そのDsにCy3−hx−dPxが相補して特異的に組み込まれると、365nm付近の照射でsとCy3間にFRETが起こり、PCR増幅された二本鎖DNAのみを特異的に光らせることができる。図25の場合にはs塩基がプライマー中に2つ入るので、PCRによる相補鎖合成がこの部分で停止する可能性があるが、本法ではsを天然型塩基にリンカーを介して結合しているので、PCRでの相補鎖合成が進む。これにより、人工塩基を含む発色のための部位をプライマー中のどの部分にも導入できLAMP法やSMAP法などのPCR法に利用できる。またパドロックPCR法などのプライマー領域以外にも本手法を用いることができる。
 図29bは、用いたDNAの配列、ならびにPCRの条件を示した。図29cには55サイクルのリアルタイムPCRの結果を、図29dには55サイクルのPCR後の増幅産物を目視で確認した結果をそれぞれ示す。標的とするDNA(ターゲットDNA)の量を0−3000000コピーの間でPCR増幅を行ったところ、3コピー以上で目視判定ができた。
 実験に使用した配列(下線部はプライマーアニーリング部位に相当;Us=s−hx−dU)
 5’−プライマー配列 :5’−CATGTAGATGCCATCAAAGAAGCTC−3’(配列番号15)
 3’−プライマー配列 :5’− AATAAUsUsGCDsTCCTCAAAGGTGGTGACTTC−3’(配列番号27)
 二本鎖鋳型DNA (98 bp;片方の鎖のみ記載):
 5’−CATGTAGATGCCATCAAAGAAGCTCTGAGCCTCCTAAATGACATGCGTGCTCTGGAGAACGAAAAGAACGAAGACGTAGAAGTCACCACCTTTGAGGA−3’(配列番号17)
 具体的には、リアルタイムPCR装置(ストラタジーン、Mx3005P)を用いて、プライマー各1μM、天然型塩基基質dNTP各0.2mM、人工塩基基質Cy3−hx−dPxTP 2μMの存在下、94℃−2分の後、94℃−5秒、68℃−40秒を1サイクルとする2ステップPCRの条件で55サイクルのPCRを行った。PCRの反応スケールは25μlで、反応液の組成は40mM Tricine−KOH(pH8.0)、16mM KCl、3.5mM MgSO4、3.75μg/ml BSA、1×TitaniumTaq DNAポリメラーゼである。鋳型に用いたDNA断片は、反応液中にそれぞれ、0、3、30、300、3000、30000、300000、3000000コピーになるように希釈し、それぞれの濃度につき、PCRを実施した。その反応チューブを直接、365nmのUVで照射し、オレンジフィルターを通して目視で蛍光を検出した。
 実施例21 s−hx−dUアミダイト試薬(図6の化合物)の化学合成(図30)
 8−ブロモ−1−オクチンの合成(図30の工程(a))
 8−ヒドロキシ−1−オクチン(1.95g,15mmol)に脱水ジクロロメタン(20ml)、トリフェニルホスフィン(5.91g,22.5mmol)を加え、0℃に冷却後、脱水ジクロロメタン(10ml)に溶解させた四臭化炭素(7.46g,22.5mmol)を滴下し、室温で2時間攪拌した。ジクロロメタン(100ml)、5% 炭酸水素ナトリウム(150ml)で分液、有機層を飽和食塩水(150ml)で洗浄し、有機層を硫酸ナトリウムで乾燥後、濃縮した。これをシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=100:0→99:1)で精製し、8−ブロモ−1−オクチン(crude)を得た。
 8−ブロモ−1−オクチンの物性値
 H NMR(300MHz,DMSO−d6) δ 3.51(t,2H,J=6.7Hz),2.71(t,1H,J=2.7Hz),2.12−2.17(m,2H),1.75−1.84(m,2H),1.24−1.54(m,6H).
 2) 6−(チエン−2−イル)−9−(7−オクチニル)−2−アミノプリンの合成(図30の工程(b))
 6−(チエン−2−イル)−2−アミノプリン(1.2g,5.5mmol)と炭酸カリウム(2.3g,16.5mmol)の脱水ジメチルホルムアミド(25ml)溶液に、1)で得られた8−ブロモ−1−オクチン(2.0g,10.6mmol)を加えて、室温で15時間撹拌した。反応溶液を濃縮し、酢酸エチルと水で分液し、有機層を飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し中圧分取カラムクロマトグラムにより精製して6−(チエン−2−イル)−9−(7−オクチニル)−2−アミノプリン(1.6g,4.9mmol,87%)を得た。
 6−(チエン−2−イル)−9−(7−オクチニル)−2−アミノプリンの物性値
 H NMR(300MHz,DMSO−d6) δ 8.53(dd,1H,J=1.2,3.7Hz),8.14(s,1H),7.79(dd,1H,J=1.2,5.0Hz),7.26(dd,1H,J=3.7,5.0Hz),6.48(brs,2H),4.05(t,2H,J=7.2Hz),2.72(t,1H,J=2.6Hz),2.12(m,2H),1.78(m,2H),1.23−1.46(m,6H).
 3) 6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリンの合成(図30の工程(c))
 1−ヒドロキシベンゾトリアゾール(1.19g,8.84mmol)を脱水ピリジンで3回共沸乾燥し、脱水ピリジン(2.5ml)、脱水アセトニトリル(2.5ml)、フェノキシアセチルクロリド(1.08ml,7.85mmol)を加え、室温で5分間攪拌後、0℃に冷却し、これに脱水ピリジン(25mL)に溶解した。2)で得られた6−(チエン−2−イル)−9−(7−オクチニル)−2−アミノプリン(1.60g,4.91mmol)を加え、室温で一晩攪拌した。酢酸エチル(150ml)、飽和食塩水(150ml×2回)で分液し、有機層を硫酸ナトリウムで乾燥後、濃縮した。これをシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=100:0→99:1)で精製し、6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン(1.44g,3.13mmol,64%)を得た。
 6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリンの物性値
 H NMR(300MHz,DMSO−d6) δ 10.71(s,1H),8
.62(d,1H,J=2.6Hz),8.54(s,1H),7.92(dd,1H,J=1.1,5.0Hz),7.31(m,3H),6.92−6.93(m,3H),5.15(brs,2H),4.20(t,2H,J=7.1Hz),2.71(t,1H,J=2.6Hz),2.09−2.13(m,2H),1.82−1.92(m,2H),1.27−1.41(m,6H).
 4) 5−[6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジンの合成(図30の工程(d))
 5’−O−(4,4’−ジメトキシトリチル)−5−ヨード−2’−デオキシウリジン(1.64g,2.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(145mg,0.125mmol)、ヨウ化銅(76mg,0.4mmol)、脱水ジメチルホルムアミド(7.5ml)を加え、アルゴンガスで置換し、脱水トリエチルアミン(523μl,3.75mmol)を加えた後、脱水ジメチルホルムアミド(5ml)、脱水ピリジン(10ml)に溶解した、3)で得られた6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン(1.38g,3.00mmol)を加え、マイクロウェーブ装置(スタンダードモード)で60℃,3時間攪拌した。酢酸エチル(100ml)、水(100ml)で分液、有機層を飽和食塩水(100ml)で洗浄し、有機層を硫酸ナトリウムで乾燥後、濃縮した。これをシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=100:0→97:3)で精製し、5−[6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジン(931mg,0.94mmol,38%)を得た。
 5−[6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジンの物性値
 H NMR(300MHz,DMSO−d6) δ 11.59(brs,1H),
 10.70(brs,1H),8.61(dd,1H,J=0.9,3.8Hz),8.51(s,1H),7.92(dd,1H,J=0.9,5.0Hz),7.87(s,1H),7.17−7.37(m,12H),6.82−6.96(m,7H),6.11(t,1H,J=6.6Hz),5.31(d,1H,J=4.4Hz),5.14(brs,2H),4.02−4.28(m,3H),3.70−3.91(m,1H),3.12−3.16(m,2H),2.04−2.24(m,4H),1.76−1.99(m,2H),1.15−1.20(m,6H).
 5) 5−[6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジン−3’−O−(2−シアノエチル−N,N−ジイソプロピル)ホスホロアミダイトの合成(図30の工程(e))
 4)で得られた5−[6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジン(890mg,0.9mmol)を脱水ピリジンで3回、脱水テトラヒドロフランで3回共沸乾燥した。次いで、脱水テトラヒドロフラン(4.5ml)、脱水ジイソプロピルエチルアミン(235μl,1.35mmol)、2−シアノエチル N,N’−ジイソプロピルクロロホスホルアミジド(241μl,1.08mmol)を加え、室温で1時間攪拌した。脱水メタノール(50μl)を加え、酢酸エチル:トリエチルアミン(20:1,50ml)、5% 炭酸水素ナトリウム(50ml)で分液、有機層を飽和食塩水(100ml)で洗浄し、有機層を硫酸ナトリウムで乾燥後、濃縮した。これをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル:トリエチルアミン=98:0:2→78:20:2)で精製し、5−[6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン]−5’−O−(4,4’−ジメトキシ
トリチル)−2’−デオキシウリジン−3’−O−(2−シアノエチル−N,N−ジイソプロピル)ホスホロアミダイト(867mg,0.73mmol,81%)を得た。
 5−[6−(チエン−2−イル)−9−(7−オクチニル)−2−フェノキシアセタミドプリン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジン−3’−O−(2−シアノエチル−N,N−ジイソプロピル)ホスホロアミダイトの物性値 H NMR(300MHz,DMSO−d6) δ 11.57(brs,1H),10.70(brs,1H),8.60(dd,1H,J=1.1,3.7Hz),8.50(s,1H),7.89−7.92(m,2H),7.14−7.36(m,12H),6.79−6.95(m,7H),6.10(dt,1H,J=6.2,6.3Hz),5.13(brs,2H),4.50−4.60(m,1H),4.16(t,2H,J=6.7Hz),3.99−4.06(m,1H),3.17−3.71(m,12H),2.26−2.76(m,4H),2.05−2.10(m,2H),1.74−1.77(m,2H),0.82−1.39(m,18H).
 31P NMR(121MHz,DMSO−d6) δ 148.67,148.32.
 実施例22 Dss−hx−dUアミダイト試薬(図6の化合物)の化学合成(図33)
1)7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジンの合成(図33の工程(a))
 7−(2,2’−ビチエン−5−イル)−イミダゾ[4,5−b]ピリジン(850mg,3.0mmol)と炭酸カリウム(1.3g,9.0mmol)のDMF(15ml)溶液を60℃で1時間撹拌した。次いで、8−ブロモ−1−オクチン(850mg,4.5mmol)を加えて、60℃で6時間撹拌した。反応溶液を酢酸エチルと水で分液し、有機層を飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し中圧分取カラムクロマトグラムにより精製して7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン(520mg,1.3mmol,44%)を得た。
 7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジンの物性値
 H NMR(300MHz,DMSO−d6) δ 8.56(s,1H),8.34(d,1H,J=5.2Hz),8.21(d,1H,J=3.9Hz),7.63(d,1H,J=5.2Hz),7.58(dd,1H,J=1.1,5.1Hz),7.46(dd,1H,J=1.1,3.6Hz),7.44(d,1H,J=4.0Hz),7.14(dd,1H,J=3.6,5.1Hz),4.29(t,2H,J=7.4Hz),2.72(t,1H,J=2.7Hz),2.12(m,2H),1.87(m,2H),1.43−1.31(m,6H).
 2) 5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−2’−デオキシウリジンの合成(図33の工程(b))
 5−ヨード−2’−デオキシウリジン(294mg,0.83mmol)、7−(2,2’−ビチエニル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン(270mg,0.69mmol)、CuI(25mg)、テトラキストリフェニルホスフィン(48mg)、トリエチルアミン(173μl)のDMF(4.2ml)溶液を室温で17時間撹拌した。反応溶液を酢酸エチルと水で分液し、有機層を飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥しカラムクロマトグラム(3%メタノールの塩化メチレン溶液で溶出)により精製して5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−2’−デオキシウリジン(155mg,0.25mmol,36%)を得た。
 5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−2’−デオキシウリジンの物性値
 H NMR(300MHz,DMSO−d6) δ 11.54(s,1H),8.56(s,1H),8.34(d,1H,J=5.2Hz),8.21(d,1H,J=3.9Hz),8.09(s,1H),7.63(d,1H,J=5.2Hz),7.58(dd,1H,J=1.1,5.1Hz),7.46(dd,1H,J=1.1,3.6Hz),7.44(d,1H,J=4.1Hz),7.14(dd,1H,J=3.6,5.1Hz),6.10(t,1H,J=6.9Hz),5.21(d,1H,J=4.3Hz),5.06(t,1H,J=5.0Hz),4.30(t,2H,J=7.2Hz),4.21(m,1H),3.77(m,1H),3.56(m,2H),2.33(m,2H),2.09(m,2H),1.88(m,2H),1.45(m,4H),1.29(m,2H).
 3) 5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−5’−O−(4,4−ジメトキシトリチル)−2’−デオキシウリジンの合成(図33の工程(c))
 5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−2’−デオキシウリジン(150mg,0.24mmol)、4,4’−ジメトキシトリチルクロリド(91mg,0.27mmol)のピリジン(2.4ml)溶液を室温で1時間撹拌した。反応溶液を酢酸エチルと5%炭酸水素ナトリウム水溶液で分液し、有機層を飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥しカラムクロマトグラム(2%メタノールの塩化メチレン溶液で溶出)により精製して5−[7−(2,2’−ビチエニル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−5’−O−(4,4−ジメトキシトリチル)−2’−デオキシウリジン(183mg,0.2mmol,82%)を得た。
 5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−5’−O−(4,4−ジメトキシトリチル)−2’−デオキシウリジンの物性値
 H NMR(300MHz,DMSO−d6) δ 11.58(s,1H),8.53(s,1H),8.32(d,1H,J=5.2Hz),8.20(d,1H,J=3.9Hz),7.87(s,1H),7.60−7.57(m,2H),7.46−7.43(m,2H),7.35−7.32(m,2H),7.26−7.13(m,8H),6.81(d,4H,J=9.0Hz),6.10(t,1H,J=7.0Hz),5.30(d,1H,J=4.4Hz),4.26(m,3H),3.89(m,1H),3.69(s,6H),3.15(m,2H),2.18(m,2H),2.05(m,2H),1.78(m,2H),1.22−1.13(m,6H).
 4) 5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジン−3’−O−(2−シアノエチル−N,N−ジイソプロピル)ホスホロアミダイトの合成(図33の工程(d))
 5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−5’−O−(4,4−ジメトキシトリチル)−2’−デオキシウリジン (180mg,0.2mmol)をピリジンで3回、THFで3回共沸乾燥した後、THF(1.0ml)とジイソプロピルエチルアミン(52μl)を加えて撹拌した。この溶液に、2−シアノエチル−N,N−ジイソプロピルクロロホスホロアミダイト(54μl,0.24mmol)を加えて室温で1時間撹拌した。反応溶液に脱水メタノール(50μl)を加えた後、酢酸エチル/トリエチルアミン(20:1,v/v)と5%炭酸水素ナトリウム水溶液で分液した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥して濃縮した。残さをシリカゲルカラムクロマトグラム(酢酸エチル:塩化メチレン:トリエチルアミン、45:45:10、v/v/vで溶出)で精製して5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジン−3’−O−(2−シアノエチル−N,N−ジイソプロピル)ホスホロアミダイト(220mg,99%)を得た。
 5−[7−(2,2’−ビチエン−5−イル)−3−(7−オクチニル)−イミダゾ[4,5−b]ピリジン]−5’−O−(4,4’−ジメトキシトリチル)−2’−デオキシウリジン−3’−O−(2−シアノエチル−N,N−ジイソプロピル)ホスホロアミダイトの物性値
 H NMR(300MHz,DMSO−d6) δ 11.59(s,1H),8.53(s,s,1H,1H),8.32(d,1H,J=5.2Hz),8.20(d,1H,J=3.9Hz),7.89(d,1H,J=2.1Hz),7.60−7.57(m,2H),7.46−7.43(m,2H),7.34(m,2H),7.26−7.13(m,8H),6.81(m,4H),6.98(dt,1H,J=6.3,6.5Hz),4.47(m,1H),4.25(t,2H,J=6.9Hz),4.05−3.98(m,1H),3.71(m,1H),3.69(s,6H),3.60−3.42(m,2H),3.20(m,2H),2.73(t,1H,J=5.9Hz),2.61(t,1H,J=5.9Hz),2.44−2.25(m,2H),2.07(m,2H),1.77(m,2H),1.09(m,18H).
 31P NMR(121MHz,DMSO−d6) δ 148.68,148.32.
 実施例23 図2及び図3の化合物の合成
Figure JPOXMLDOC01-appb-C000055
 1) 1−(2−デオキシ−β−D−リボフラノシル)−4−ヨード−2−ニトロピロールの合成
 1−(2−デオキシ−β−D−リボフラノシル)−2−ニトロピロール(456mg,2mmol)のアセトニトリル(8ml)溶液にN−ヨードスクシンイミド(900mg,4mmol)を加えた。室温で一晩反応後、酢酸エチル(200ml)、水(200ml)で分液し、有機層を濃縮した。これをシリカゲルカラムクロマトグラフィーおよびHPLC精製し、1−(2−デオキシ−β−D−リボフラノシル)−4−ヨード−2−ニトロピロール(587mg,1.66mmol,83%)を得た。
 1−(2−デオキシ−β−D−リボフラノシル)−4−ヨード−2−ニトロピロールの物性値
 H NMR(270MHz,DMSO−d6) δ 7.90(d,1H,J=2.0Hz),7.40(d,1H,J=2.0Hz),6.54(t,1H,J=5.6Hz),5.27(d,1H,J=4.3Hz),5.10(t,1H,J=4.9Hz),4.23(m,1H),3.83(m,1H),3.53−3.85(m,2H),2.18−2.45(m,2H).
 2) 1−(2−デオキシ−β−D−リボフラノシル)−4−(チエン−2−イル)−2−ニトロピロールの合成
 1−(2−デオキシ−β−D−リボフラノシル)−4−ヨード−2−ニトロピロール(177mg,0.5mmol)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)(18mg,0.025mmol)のDMF(2.5ml)溶液に2−(トリブチルスタニル)チオフェン(476μl,1.5mmol)を加えた。マイクロウェーブ装置(スタンダードモード)で100℃,30分間反応後、酢酸エチル(50ml)、水(50ml)で分液し、有機層を濃縮した。これをHPLC精製し、1−(2−デオキシ−β−D−リボフラノシル)−4−(チエン−2−イル)−2−ニトロピロール(97mg,0.32mmol,63%)を得た。
 1−(2−デオキシ−β−D−リボフラノシル)−4−(チエン−2−イル)−2−ニトロピロールの物性値
 H NMR(300MHz,DMSO−d6) δ 8.13(d,1H,J=2.3Hz),7.52(d,1H,J=2.3Hz),7.42(dd,1H,J=1.1,5.1Hz),7.33(dd,1H,J=1.1,3.5Hz),7.06(dd,1H,J=3.6,5.1Hz),6.59(t,1H,J=5.7Hz),5.30(d,1H,J=4.6Hz),5.17(t,1H,J=5.1Hz),4.28(m,H),3.86(m,1H),3.70−3.74(m,1H),3.58−3.69(m,1H),2.41−2.45(m,1H),2.25−2.33(m,1H).
 3) 1−(2−デオキシ−β−D−リボフラノシル)−4−(フラン−2−イル)−2−ニトロピロールの合成
 1−(2−デオキシ−β−D−リボフラノシル)−4−ヨード−2−ニトロピロール(177mg,0.5mmol)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)(18mg,0.025mmol)のDMF(2.5ml)溶液に2−(トリブチルスタニル)フラン(472μl,1.5mmol)を加えた。マイクロウェーブ装置(スタンダードモード)で100℃,30分間反応後、酢酸エチル(50ml)、水(50ml)で分液し、有機層を濃縮した。これをHPLC精製し、1−(2−デオキシ−β−D−リボフラノシル)−4−(フラン−2−イル)−2−ニトロピロール(111mg,0.38mmol,76%)を得た。
 1−(2−デオキシ−β−D−リボフラノシル)−4−(フラン−2−イル)−2−ニトロピロールの物性値
 H NMR(300MHz,DMSO−d6) δ 8.08(d,1H,J=2.3Hz),7.63(dd,1H,J=0.7,1.8Hz),7.50(d,1H,J=2.3Hz),6.69(dd,1H,J=0.7,3.3Hz),6.61(t,1H,J=5.7Hz),6.53(dd,1H,J=1.8,3.3Hz),5.29(d,1H,J=4.4Hz),5.12(t,1H,J=5.1Hz),4.27(m,1H),3.87(m,1H),3.65−3.72(m,1H),3.56−3.63(m,1H),2.41−2.46(m,1H),2.23−2.31(m,1H).
 4) 1−(2−デオキシ−β−D−リボフラノシル)−4−(2,2’−ビチエン−5−イル)−2−ニトロピロールの合成
 1−(2−デオキシ−β−D−リボフラノシル)−4−ヨード−2−ニトロピロール(177mg,0.5mmol)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)(18mg,0.025mmol)のDMF(2.5ml)溶液に2−(トリブチルスタニル)ジチオフェン(341mg,0.75mmol)を加えた。マイクロウェーブ装置(スタンダードモード)で100℃,30分間反応後、酢酸エチル(50ml)、水(50ml)で分液し、有機層を濃縮した。これをHPLC精製し、1−(2−デオキシ−β−D−リボフラノシル)−4−(2,2’−ビチエン−5−イル)−2−ニトロピロール(90mg,0.23mmol,46%)を得た。
 1−(2−デオキシ−β−D−リボフラノシル)−4−(2,2’−ビチエン−5−イル)−2−ニトロピロールの物性値
 H NMR(300MHz,DMSO−d6) δ 8.15(d,1H,J=2.3Hz),7.57(d,1H,J=2.3Hz),7.50(dd,1H,J=1.1,5.1Hz),7.24−7.31(m,3H),7.08(dd,1H,J=3.6,5.1Hz),6.60(t,1H,J=5.7Hz),5.28(d,1H,J=3.6Hz),5.17(t,1H,J=5.2Hz),4.29(m,1H),3.87(m,1H),3.68−3.75(m,1H),3.57−3.65(m,1H),2.41−2.46(m,1H),2.26−2.34(m,1H).
 5) 1−(2−デオキシ−β−D−リボフラノシル)−4−メチル−2−ニトロピロールの合成
 1−(2−デオキシ−β−D−リボフラノシル)−4−ヨード−2−ニトロピロール(142mg,0.4mmol)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)(14mg,0.02mmol)、トリフェニルアルシン(12mg,0.04mmol)のDMF(2ml)溶液にテトラメチルスズ(287μl,2mmol)を加えた。60℃,2日間反応後、酢酸エチル(50ml)、水(50ml)で分液し、有機層を濃縮した。これをHPLC精製し、1−(2−デオキシ−β−D−リボフラノシル)−4−メチル−2−ニトロピロール(15mg,0.06mmol,15%)を得た。
 1−(2−デオキシ−β−D−リボフラノシル)−4−メチル−2−ニトロピロールの物性値
 H NMR(300MHz,DMSO−d6) δ 7.55(d,1H,J=2.8Hz),7.09(d,1H,J=2.2Hz),6.55(t,1H,J=5.9Hz),5.27(d,1H,J=4.3Hz),5.00(t,1H,J=5.3Hz),4.22(m,1H),3.82(m,1H),3.52−3.64(m,2H),2.34−2.42(m,1H),2.11−2.19(m,1H),2.02(s,3H).
 6) 1−(2−デオキシ−β−D−リボフラノシル)−4−プロピニル−2−ニトロピロールの合成(図3、R=−CH
 1−(2−デオキシ−β−D−リボフラノシル)−4−ヨード−2−ニトロピロール(180mg,0.5mmol)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)(38mg,0.05mmol)のDMF(5ml)溶液にトリブチル(1−プロピニル)スズ(327μl,1mmol)を加えた。100 ℃, 90分間反応後、濃縮した。これをシリカゲルカラムクロマトグラフィーおよびHPLC精製し、1−(2−デオキシ−β−D−リボフラノシル)−4−プロピニル−2−ニトロピロール(76mg,0.28mmol,57%)を得た。
 1−(2−デオキシ−β−D−リボフラノシル)−4−プロピニル−2−ニトロピロールの物性値
 H NMR(300MHz,DMSO−d6) δ 7.92(d,1H,J=2.2Hz),7.27(d,1H,J=2.2Hz),6.55(t,1H,J=5.7Hz),5.28(d,1H,J=4.5Hz),5.11(t,1H,J=5.2Hz),4.24(m,1H),3.85(m,1H),3.53−3.70(m,2H),2.45(m,1H),2.22(m,1H),1.99(s,3H).

Claims (20)

  1.  式Iで示す2−ニトロピロール構造を有する消光剤
    Figure JPOXMLDOC01-appb-C000001
    [式Iにおいて、R及びR
     リボース、デオキシリボース、
     水素、水酸基、SH基、ハロゲン、
     置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
     窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
     糖、糖鎖、アミノ酸、ペプチド、
     リンカーを介して結合した蛍光性分子
    からなる群から独立に選択される基である]。
  2.  式Iにおいて、Rがリボースまたはデオキシリボースである、請求項1に記載の消光剤。
  3.  人工塩基対の形成を検出する方法であって、
     1)式II
    Figure JPOXMLDOC01-appb-C000002
    [式IIにおいて、Rは、
     水素、水酸基、SH基、ハロゲン、
     置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
     窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
     糖、糖鎖、アミノ酸、ペプチド、
     リンカーを介して結合した蛍光性分子、
    からなる群から選択される基である]
    で表される消光性人工塩基を有するヌクレオシドまたはヌクレオチド、あるいは、
     2)蛍光共鳴エネルギー転移(FRET)又は静的消光作用の供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するヌクレオシドまたはヌクレオチド
    のいずれか、あるいは双方を用いることを特徴とする、前記方法。
  4.  人工塩基の塩基対の形成を検出する方法であって、蛍光性人工塩基と式II
    Figure JPOXMLDOC01-appb-C000003
    [式IIにおいて、Rは、
     水素、水酸基、SH基、ハロゲン、
     置換又は未置換の、炭素数2ないし10のアルキル基、アルケニル基又はアルキニル基、
     窒素原子または硫黄原子を含む、1又は複数の5員ヘテロ環、1又は複数の6員ヘテロ環、1又は複数の複素環ヘテロ環、1又は複数の芳香族環、
     糖、糖鎖、アミノ酸、ペプチド、
     リンカーを介して結合した蛍光性分子、
    からなる群から選択される基である]
    で表される消光性人工塩基との塩基対形成により、蛍光性人工塩基の蛍光の低下を観察することにより、人工塩基対が形成されたことが検出される、前記方法。
  5.  蛍光性人工塩基の蛍光の低下により、人工塩基の塩基対の形成を検出する方法であって、以下の
     (i)7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss);
     (ii)7−(2,2’,5’,2’’−ターチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dsss);
     (iii)2−アミノ−6−(2,2’−ビチエン−5−イル)プリン−9−イル基(ss);
     (iv)2−アミノ−6−(2,2’,5’,2’’−ターチエン−5−イル)プリン−9−イル基(sss);
     (v)4−(2,2’−ビチエン−5−イル)−ピロロ[2,3−b]ピリジン−1−イル基(Dsas);
     (vi)4−[2−(2−チアゾリル)チエン−5−イル]ピロロ[2,3−b]ピリジン−1−イル基(Dsav);及び
     (vii)4−[5−(2−チエニル)チアゾール−2−イル]ピロロ[2,3−b]ピリジン−1−イル基(Dvas);
    からなる群より選択される蛍光性人工塩基と、
     以下の式III,又は式IVの消光性塩基
    Figure JPOXMLDOC01-appb-C000004
    [式IIIにおいて、Rは、
     −H、ヨード、−CH
    Figure JPOXMLDOC01-appb-C000005
    から選択される]
    Figure JPOXMLDOC01-appb-C000006
    [式IVにおいて、Rは、
     −CH、−CH−NH、及び
    Figure JPOXMLDOC01-appb-C000007
    (ここにおいて、nは0ないし12のいずれかの整数である)
    から選択される]
    との間で塩基対が形成されると、蛍光性人工塩基の蛍光が低下し、人工塩基対が形成されたことが検出される、前記方法。
  6.  7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)を塩基として有するポリヌクレオチドを含む、核酸プライマー;並びに、
     以下の式III,又は式IVの消光性塩基
    Figure JPOXMLDOC01-appb-C000008
    [式IIIにおいて、Rは、
     −H、ヨード、−CH
    Figure JPOXMLDOC01-appb-C000009
    から選択される]
    Figure JPOXMLDOC01-appb-C000010
    [式IVにおいて、Rは、
     −CH、−CH−NH、及び
    Figure JPOXMLDOC01-appb-C000011
    (ここにおいて、nは0ないし12のいずれかの整数である)
    から選択される]
    を塩基として有するポリヌクレオチド
    を含む、蛍光性人工塩基の蛍光の低下により、人工塩基の塩基対の形成を検出する方法に使用するためのキット。
  7.  人工塩基対を検出する方法であって、
     式V
    Figure JPOXMLDOC01-appb-C000012
    [式Vにおいて、Rは、リンカーを介して結合した蛍光性分子である]
    で表される消光性人工塩基中の蛍光性分子の蛍光強度が、式Vの人工塩基が塩基対を形成することによって変化し、人工塩基対が形成されたことが検出される、前記方法。
  8.  蛍光強度の変化により、人工塩基の塩基対の形成を検出する方法であって、
     7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)と、以下の式VIの塩基:
    Figure JPOXMLDOC01-appb-C000013
    [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
     式VIの塩基中の蛍光性分子の蛍光強度が増加し、人工塩基対が形成されたことが検出される、前記方法。
  9.  蛍光性分子が、インドカルボシアニン(Cy3)、インドジカルボシアニン(Cy5)、5−カルボキシフルオレセイン(5−FAM)、6−カルボキシフルオレセイン(6−FAM)、5−カルボキシテトラメチルローダミン(5−TAMRA)、6−カルボキシテトラメチルローダミン(6−TAMRA)、5−ジメチルアミノナフタレン−1−スルホン酸(DANSYL)、5−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(5−HEX)、6−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(6−HEX)、5−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(5−TET)、6−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(6−TET)、5−カルボキシ−X−ローダミン(5−ROX)、及び6−カルボキシ−X−ローダミン(6−ROX)からなる群から選択される、請求項7又は8に記載の方法。
  10.  7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)を塩基として有するポリヌクレオシドを含む、核酸プライマー、並びに、
     式VIの塩基:
    Figure JPOXMLDOC01-appb-C000014
    [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]を塩基として有するポリヌクレオチド
    を含む、蛍光強度の変化により、人工塩基の塩基対の形成を検出する方法に使用するためのキット。
  11.  人工塩基対の形成を検出する方法であって、
     蛍光共鳴エネルギー転移(FRET)又は静的消光作用の供与体となりうる自己消光性を有する天然塩基修飾体、人工塩基、或いは塩基類似体を有するポリヌクレオシドを含む核酸を利用し、当該核酸中の人工塩基(第一人工塩基)と蛍光性分子を有する人工塩基(第二人工塩基)との間で人工塩基対が形成されると、前記天然塩基修飾体、人工塩基、或いは塩基類似体を有するポリヌクレオシドから、第二人工塩基の有する蛍光性分子への蛍光共鳴エネルギー転移又は静的消光作用が生じて、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、前記方法。
  12.  蛍光共鳴エネルギー転移又は静的消光作用による蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法であって、
     7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)と、以下の式VIの塩基:
    Figure JPOXMLDOC01-appb-C000015
    [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
     240−410nmの紫外線による励起により、Dssから式VIの塩基中の蛍光性分子
    への蛍光共鳴エネルギー転移又は静的消光作用が生じて、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、前記方法。
  13.  蛍光共鳴エネルギー転移又は静的消光作用による蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法であって、
     7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)と、以下の式VIの塩基:
    Figure JPOXMLDOC01-appb-C000016
    [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
     240−390nmの紫外線による励起により、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移又は静的消光作用が生じ、蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
     ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、2−アミノ−6−(2−チエニル)プリン−9−イル基(s)を塩基として有するポリヌクレオチドが少なくとも1つ存在する、前記方法。
  14.  蛍光共鳴エネルギー転移又は静的消光作用による蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法であって、
     7−(2−チエニル)イミダゾ[4,5−b]ピリジン−3−イル基(Ds)と、以下の式VIの塩基:
    Figure JPOXMLDOC01-appb-C000017
    [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
     350−390nmの紫外線による励起により、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移又は静的消光作用が生じて蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
     ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、少なくとも1つの2−アミノ−6−(2−チエニル)プリン−9−イル基(s)が天然型塩基に結合した塩基を有するポリヌクレオチドが少なくとも1つ存在する、
    前記方法
  15.  蛍光共鳴エネルギー転移又は静的消光作用による蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法であって、
     7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)と、以下の式VIの塩基:
    Figure JPOXMLDOC01-appb-C000018
    [式VIにおいて、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]との間で塩基対が形成されると、
     240−410nmの紫外線による励起により、7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)から、式VIの塩基中の蛍光性分子への蛍光共鳴エネルギー転移又は静的消光作用が生じて蛍光スペクトルが変化し、人工塩基対が形成されたことが検出される、
     ここにおいて、Dsを塩基として有するポリヌクレオシドを含む核酸と同一鎖上に、少
    なくとも1つの7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)が天然型塩基に結合した塩基を有するポリヌクレオチドが存在する、
    前記方法。
  16.  蛍光性物質が、インドカルボシアニン(Cy3)、インドジカルボシアニン(Cy5)、5−カルボキシフルオレセイン(5−FAM)、6−カルボキシフルオレセイン(6−FAM)、5−カルボキシテトラメチルローダミン(5−TAMRA)、6−カルボキシテトラメチルローダミン(6−TAMRA)、5−ジメチルアミノナフタレン−1−スルホン酸(DANSYL)、5−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(5−HEX)、6−カルボキシ−2’,4,4’,5’,7,7’−ヘキサクロロフルオレセイン(6−HEX)、5−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(5−TET)、6−カルボキシ−2’,4,7,7’−テトラクロロフルオレセイン(6−TET)、5−カルボキシ−X−ローダミン(5−ROX)、及び6−カルボキシ−X−ローダミン(6−ROX)からなる群から選択される、請求項11ないし15のいずれか1項に記載の方法。
  17.  式VIの塩基中の置換基Rが以下の:
    Figure JPOXMLDOC01-appb-C000019
    の構造を有する、請求項12−15に記載の方法。
  18.  検出スペクトルの変化が、肉眼で判定できる、請求項11ないし17のいずれか1項に記載の方法。
  19.  核酸の塩基対が、転写、逆転写、複製又は翻訳の工程で形成される、請求項11ないし18のいずれか1項に記載の方法。
  20.  以下のi)−iii)からなる群から選択される、1つの核酸プライマー;
     i)7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)を塩基として有するポリヌクレオチドを含む、核酸プライマー;
     ii)7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)を塩基として有するポリヌクレオシド、及び、少なくとも1つの、2−アミノ−6−(2−チエニル)−9H−プリン−9−イル基(s)を塩基として有するポリヌクレオチドを含む、核酸プライマー;
     iii)7−(2−チエニル)イミダゾ[4,5−b]ピリジン−3−イル基(Ds)を塩基として有するポリヌクレオシド、及び、少なくとも1つの、2−アミノ−6−(2−チエニル)−9H−プリン−9−イル基(s)が天然型塩基に結合した塩基を有するポリヌクレオチドを含む、核酸プライマー;及び
     iv)7−(2−チエニル)イミダゾ[4,5−b]ピリジン3−イル基(Ds)を塩基として有するポリヌクレオシド、及び、7−(2,2’−ビチエン−5−イル)イミダゾ[4,5−b]ピリジン−3−イル基(Dss)が天然型塩基に結合した塩基を有するポリヌクレオチドを含む、核酸プライマー、
     並びに、式VIの塩基:
    Figure JPOXMLDOC01-appb-C000020
    [式VIにおいてここで、Rは、リンカーを介して又は介さずに結合した蛍光性分子である]
    を塩基として有するポリヌクレオチド
    を含む、蛍光共鳴エネルギー転移又は静的消光作用による蛍光スペクトルの変化により、人工塩基の塩基対の形成を検出する方法に使用するためのキット。
PCT/JP2011/060343 2010-04-21 2011-04-21 消光性ならびに蛍光性の核酸塩基類似体とその応用 WO2011132801A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012511735A JP5874152B2 (ja) 2010-04-21 2011-04-21 消光性ならびに蛍光性の核酸塩基類似体とその応用
EP11772132.4A EP2562255A4 (en) 2010-04-21 2011-04-21 NUCLEIC ACID BASIC ANALOG WITH EXTINGUISHING PROPERTIES AND FLUORESCENCE AND APPLICATION THEREOF
US13/642,111 US9285319B2 (en) 2010-04-21 2011-04-21 Nucleic acid base analogs with quenching and fluorescent activities and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010098319 2010-04-21
JP2010-098319 2010-04-21

Publications (1)

Publication Number Publication Date
WO2011132801A1 true WO2011132801A1 (ja) 2011-10-27

Family

ID=44834315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060343 WO2011132801A1 (ja) 2010-04-21 2011-04-21 消光性ならびに蛍光性の核酸塩基類似体とその応用

Country Status (4)

Country Link
US (1) US9285319B2 (ja)
EP (1) EP2562255A4 (ja)
JP (1) JP5874152B2 (ja)
WO (1) WO2011132801A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038561A1 (ja) * 2012-09-04 2014-03-13 株式会社ダナフォーム 化合物、核酸、標識物質および検出方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534101A (ja) 2018-08-09 2021-12-09 ヴェルソー セラピューティクス, インコーポレイテッド Ccr2及びcsf1rを標的とするためのオリゴヌクレオチド組成物ならびにその使用
CN114736213B (zh) * 2022-04-01 2024-02-02 合肥华纳生物医药科技有限公司 一种羧基-四氯-荧光素的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506431A (ja) * 2000-08-11 2004-03-04 ユニバーシティ オブ ユタ リサーチ ファウンデーション 単一ラベルオリゴヌクレオチド・プローブ
JP2007061087A (ja) 2005-08-04 2007-03-15 Univ Of Tokyo 新規人工塩基対及びその利用
WO2009123216A1 (ja) 2008-03-31 2009-10-08 独立行政法人理化学研究所 高選択・高効率でpcr増幅が可能な新規dna
JP2009232776A (ja) 2008-03-27 2009-10-15 Yanmar Co Ltd コンバイン
JP2009232851A (ja) 1998-05-27 2009-10-15 Lycored Natural Products Industries Ltd 味感向上剤としての透明トマト濃縮物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487181A4 (en) 2009-10-06 2013-08-28 Riken ARTIFICIAL BASIC COUPLE FOR THE FORMATION OF SPECIFIC BASIC COUPLES
JP5756995B2 (ja) * 2009-10-06 2015-07-29 国立研究開発法人理化学研究所 新規蛍光性人工塩基

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232851A (ja) 1998-05-27 2009-10-15 Lycored Natural Products Industries Ltd 味感向上剤としての透明トマト濃縮物
JP2004506431A (ja) * 2000-08-11 2004-03-04 ユニバーシティ オブ ユタ リサーチ ファウンデーション 単一ラベルオリゴヌクレオチド・プローブ
JP2007061087A (ja) 2005-08-04 2007-03-15 Univ Of Tokyo 新規人工塩基対及びその利用
JP2009232776A (ja) 2008-03-27 2009-10-15 Yanmar Co Ltd コンバイン
WO2009123216A1 (ja) 2008-03-31 2009-10-08 独立行政法人理化学研究所 高選択・高効率でpcr増幅が可能な新規dna

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
CHANG ZHAO ET AL.: "Synthesis of HIV-1 T-site RNA sequences with site specific incorporation of the fluorescent base analog 2-aminopurine", TETRAHEDRON, vol. 63, 2007, pages 3575 - 3584, XP005929589 *
D. LOAKES; D. W. BROWN; S. LINDE; F. HILL: "3-Nitropyrrole and 5-nitroindole as universal bases in primers for DNA sequencing and PCR", NUCLEIC ACIDS RES., vol. 23, 1995, pages 2361 - 2366, XP002109690
GOODMAN, M. F.; CREIGHTON, S.; BLOOM, L. B.; PETRUSKA, J., CRIT. REV. BIOCHEM. MOL. BIOL., vol. 28, 1993, pages 83 - 126
HAIBO LIU ET AL.: "Size-Expanded Analogues of dG and dC:Synthesis and Pairing Properties in DNA", J. ORG.CHEM., vol. 70, 2005, pages 639 - 647, XP008143019 *
I. HIRAO; M. KIMOTO; T. MITSUI; T. FUJIWARA; R. KAWAI; A. SATO; Y. HARADA; S. YOKOYAMA: "An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA.", NATURE METHODS, vol. 3, 2006, pages 729 - 735
I. HIRAO; M. KIMOTO; T. MITSUI; T. FUJIWARA; R. KAWAI; SATO, Y. HARADA; S. YOKOYAMA: "An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA", NATURE METHODS, vol. 3, 2006, pages 729 - 735
I. HIRAO; T. MITSUI; M. KIMOTO; S. YOKOYAMA, J. AM. CHEM. SOC., vol. 129, 2007, pages 15549 - 15555
ICHIRO HIRAO ET AL.: "An Efficient Unnatural Base Pair for PCR Amplification", JACS, vol. 129, 2007, pages 15549 - 15555, XP008145067 *
J. AM. CHEM. SOC., vol. 132, 2010, pages 4988 - 4989
KIMOTO, M.; YOKOYAMA, S.; HIRAO, I., BIOTECHNOL. LETT., vol. 26, 2004, pages 999 - 1005
LAIBIN ZHANG ET AL.: "Absorption and Fluorescence Emission Spectroscopic Characters of Size-Expanded yDNA Bases and Effect of Deoxyribose and Base Pairing", J.PYS.CHEM.B, vol. 113, 2009, pages 1173 - 1181, XP008161980 *
M. KIMOTO; R. KAWAI; T. MITSUI; S. YOKOYAMA; I. HIRAO: "An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules", NUCLEIC ACIDS RES., vol. 37, 2009, pages EL4
M. KIMOTO; R. KAWAI; T. MITSUI; S. YOKOYAMA; I. HIRAO: "An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. M", NUCLEIC ACIDS RES., vol. 37, 2009, pages E14
M. KIMOTO; T. MITSUI; Y. HARADA; A. SATO; S. YOKOYAMA; I. HIRAO: "Fluorescent probing for RNA molecules by an unnatural base-pair system,", NUCLEIC ACIDS RES., vol. 35, 2007, pages 5360 - 5369, XP008159271, DOI: doi:10.1093/nar/gkm508
MICHIKO KIMOTO ET AL.: "A New Unnatural Base Pair System between Fluorophore and Quencher Base Analogues for Nucleic Acid-Based Imaging Technology", JACS, vol. 132, 12 October 2010 (2010-10-12), pages 15418 - 15426, XP055052833 *
MICHIKO KIMOTO ET AL.: "A Unique Fluorescent Base Analogue for the Expansion of the Genetic Alphabet", JACS, vol. 132, 24 March 2010 (2010-03-24), pages 4988 - 4989, XP008159272 *
MICHIKO KIMOTO ET AL.: "Site-specific incorporation of functional components into RNA by transcription using unnatural base pair systems", NUCLEIC ACIDS SYMPOSIUM SERIES, no. 53, 2009, pages 73 - 74, XP008161979 *
MORALES, J. C.; KOOL, E. T., NAT. STRUCT. BIOL., vol. 5, 1998, pages 950 - 954
PETRUSKA, J.; GOODMAN, M. F.; BOOSALIS, M. S.; SOWERS, L. C.; CHEONG, C.; TINOCO, I., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 6252 - 6256
See also references of EP2562255A4
T. MITSUI; M. KIMOTO; R. KAWAI; S. YOKOYAMA; I. HIRAO: "Characterization of fluorescent, unnatural base pairs", TETRAHEDRON, vol. 63, 2007, pages 3528 - 3537, XP005929584, DOI: doi:10.1016/j.tet.2006.11.096

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038561A1 (ja) * 2012-09-04 2014-03-13 株式会社ダナフォーム 化合物、核酸、標識物質および検出方法
JPWO2014038561A1 (ja) * 2012-09-04 2016-08-12 株式会社ダナフォーム 化合物、核酸、標識物質および検出方法
US10294261B2 (en) 2012-09-04 2019-05-21 Kabushiki Kaisha Dnaform Compound, nucleic acid, labeling substance, and detection method
EA034342B1 (ru) * 2012-09-04 2020-01-29 КАБУСИКИ КАЙСЯ ДиЭнЭйФОРМ Соединение, нуклеиновая кислота, вещество, несущее метку, и способ обнаружения

Also Published As

Publication number Publication date
US20130122506A1 (en) 2013-05-16
US9285319B2 (en) 2016-03-15
JP5874152B2 (ja) 2016-03-02
EP2562255A1 (en) 2013-02-27
EP2562255A4 (en) 2013-10-30
JPWO2011132801A1 (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
US8383792B2 (en) Compound having structure derived from mononucleoside or mononucleotide, nucleic acid, labeling substance, and method and kit for detection of nucleic acid
CA2848049C (en) 5-methoxy, 3'-oh unblocked, fast photocleavable terminating nucleotides and methods for nucleic acid sequencing
US7081336B2 (en) Dual resonance energy transfer nucleic acid probes
JP7307686B2 (ja) 第二級アミン置換クマリン化合物、および蛍光標識としてのそれらの使用
EP1970453B1 (en) Primer, primer set, and nucleic acid amplification method and mutation detection method using the same
JP5649018B2 (ja) 新規人工塩基対及びその利用
US8198029B2 (en) 3'-OH unblocked nucleotides and nucleosides base modified with non-cleavable, terminating groups and methods for their use in DNA sequencing
US7960543B2 (en) Nucleoside or nucleotide derivative and use thereof
NO174369B (no) Fremgangsmaater for sekvensanalyse av DNA, fremgangsmaate og system for paavisning av straalingsenergi fra molekylarter, samt fluorescensmerkede kjedeterminatorer
US20120231462A1 (en) Artificial base pair capable of forming specific base pair
CN102443030A (zh) 光可断裂的标记核苷酸和核苷与标记的核苷酸和核苷以及其在dna测序中的使用方法
JP5618436B2 (ja) 核酸プローブ、核酸プローブの設計方法、およびターゲット配列の検出方法
US20220195517A1 (en) Long stokes shift chromenoquinoline dyes and uses in sequencing applications
US20220380389A1 (en) Fluorescent dyes containing bis-boron fused heterocycles and uses in sequencing
EA032482B1 (ru) Способ анализа нуклеиновой кислоты-мишени
JP2009171935A (ja) プライマー、プライマーセット、それを用いた核酸増幅方法および変異検出方法
JP2020527131A (ja) シーケンスアプリケーションにおけるヌクレオチドのためのショートペンダントアームリンカー
JP5874152B2 (ja) 消光性ならびに蛍光性の核酸塩基類似体とその応用
Cekan et al. Single base interrogation by a fluorescent nucleotide: each of the four DNA bases identified by fluorescence spectroscopy
CN101631796B (zh) 具有由单核苷或单核苷酸衍生的结构的化合物、核酸、标记物以及核酸检测方法和试剂盒
Szeltner et al. Probing telomeric-like G4 structures with full or partial 2′-deoxy-5-hydroxyuridine substitutions
RU2818762C2 (ru) Нуклеозиды и нуклеотиды с 3’-гидрокси блокирующими группами и их применение в способах секвенирования полинуклеотидов
US20230383342A1 (en) Compositions and methods for nucleic acid sequencing
JP2008173015A (ja) 二本鎖dnaの電荷移動を利用したdna一分子蛍光測定による一塩基多型の検出法
JP2007031388A (ja) ヌクレオチド誘導体及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511735

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011772132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13642111

Country of ref document: US