WO2011130901A1 - 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法 - Google Patents

一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法 Download PDF

Info

Publication number
WO2011130901A1
WO2011130901A1 PCT/CN2010/071883 CN2010071883W WO2011130901A1 WO 2011130901 A1 WO2011130901 A1 WO 2011130901A1 CN 2010071883 W CN2010071883 W CN 2010071883W WO 2011130901 A1 WO2011130901 A1 WO 2011130901A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing reaction
diisocyanate
tubular mixing
reaction
tubular
Prior art date
Application number
PCT/CN2010/071883
Other languages
English (en)
French (fr)
Inventor
华卫琦
薛永和
罗务习
孙中平
于天杰
孙德镇
张颜涛
宋锦宏
Original Assignee
烟台万华聚氨酯股份有限公司
宁波万华聚氨酯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台万华聚氨酯股份有限公司, 宁波万华聚氨酯有限公司 filed Critical 烟台万华聚氨酯股份有限公司
Priority to BR112012025838-9A priority Critical patent/BR112012025838B1/pt
Priority to PCT/CN2010/071883 priority patent/WO2011130901A1/zh
Priority to SA111320382A priority patent/SA111320382B1/ar
Publication of WO2011130901A1 publication Critical patent/WO2011130901A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant

Definitions

  • the present invention relates to a dynamic pore jet reactor, and a process for producing an isocyanate by reacting an aliphatic or aromatic amine-based organic substance with phosgene in a liquid phase.
  • the preparation of isocyanates by liquid phase phosgenation has the characteristics of mild conditions and stable handling. During this process, the aliphatic or aromatic amine organics are first reacted with phosgene in a solvent to form carbamoyl chloride and HC 1, HC 1 will rapidly react with other amine groups to form the amino hydrochloride. Excess phosgene in the system will continue to react with the amino hydrochloride to form carbamoyl chloride and liberate HC1. This is the cold reaction process in the commonly used two-step phosgenation process.
  • Both the carbamoyl chloride and the aminohydrochloride in the course of the reaction are intermediates in the synthesis of isocyanates and are all solid materials.
  • the inevitability of the existence of solid intermediates brings many difficulties to the design of the reactor.
  • the reactor should provide sufficient mixing strength to ensure efficient mixing reaction, on the other hand, it can effectively prevent solid intermediates from hanging or blocking the mixing.
  • the reaction channel and can be easily cleaned when a clogging phenomenon occurs. It has been proven that the mixed reaction part has become one of the main bottlenecks limiting the production capacity and energy consumption of various isocyanate production units. For many years, both academic and business circles have been making unremitting efforts and explorations for this same problem.
  • No. 5,931,579, US 4,915, 509 describes a rotor-stator type mixed reactor.
  • one fluid enters the mixing chamber through a circular hole in the center of the front plate, and the other fluid enters the mixing chamber through a series of holes arranged concentrically on the front plate.
  • a multi-layer sieve plate is arranged in the mixing chamber to be staggered and fixed on the stator and the rotor, and the high-pressure reaction liquid is ground by the rotating stator when passing through the layer, so that a fast mixing and uniform dispersion effect is achieved.
  • the reactor structure is complex Miscellaneous, once blocked, cleaning will become very difficult.
  • U.S. Patent No. 5,017,048 describes a orifice jet type reaction mixer in which a material passes through a plurality of holes in a lumen to enter another material to enhance mixing. Despite this, the mixing effect of the reaction mixer during industrial scale-up is still very limited, and the frequent clogging of the reactor in the manufacture of isocyanate cannot be solved in time.
  • CN200910069917 describes a tubular tube impinging stream reactor for producing toluene diisocyanate, one material is sprayed through a jet orifice jet on the lower tube sheet, and the other fluid is expanded through a vertical tube tube and a tube.
  • the tube nozzle is jetted at a certain angle to the incident stream mixing zone to collide with the first material to achieve mixing.
  • the reactor has a weak mixing intensity, a long reaction residence time, and often a large solid aggregate, which not only easily blocks the reactor, but also blocks or contaminates subsequent reaction equipment.
  • CN200910306519 describes a tubular reactor in which a central injector is arranged, the central injector having a conical baffle and a nozzle, and the tubular reactor wall is provided with a baffle.
  • the mixing effect of the reactor is very limited, and the solid product is easy to hang on the wall, and once the reactor is blocked, it needs to be cleaned up.
  • the object of the present invention is to provide a dynamic pore jet mixing reactor and a method for preparing an isocyanate by reacting an aliphatic or aromatic amine organic substance with phosgene in a liquid phase, thereby overcoming the above existing reactor Defects.
  • the dynamic pore jet mixing reactor provided by the present invention is as follows:
  • the reactor includes internal feed a feeding tube, an outer feeding tube, a tubular mixing reaction head, a gear box, a transmission shaft and a transmission connecting wheel; wherein the transmission shaft, the inner feeding tube and the outer feeding tube are coaxially arranged from the inside to the outside,
  • the outer feeding tube is connected to the gear box and coaxially arranged from top to bottom.
  • the gear box is provided with a gear and a tubular mixing reaction head having a plurality of material inlet passages, and the gear and the tubular mixing reaction nozzle pass
  • the material inlet tunnels are fitted to each other and fit to the inner wall of the gear box, and the gear shaft is also provided with a gear shaft track for limiting;
  • the inner feeding tube is connected with the tubular mixing reaction nozzle and is top-down
  • the shaft mixing reaction nozzle rotates axially under the driving of the transmission shaft and the transmission connecting wheel, thereby driving the rotation of the gear in the gear box; the transmission connecting wheel can reciprocate up and down in the tubular mixing reaction nozzle motion.
  • the reaction channel formed between the transmission shaft and the inner feed tube is referred to as an inner reactant passage, and between the inner feed tube and the outer feed tube.
  • the resulting reaction channel is referred to as the outer reactant channel.
  • the ratio of the cross-sectional area of the outer reactant channel to the inner reactant channel is 0. 5 ⁇ 24: 1, preferably 0. 75 ⁇ 12 : 1, more preferably 1 ⁇ 7 5 : 1.
  • the ratio of the cross-sectional area of the channel in the tubular mixing reaction head to the inner reactant channel is 0.5 to 4:1, preferably 0.75 to 3:1.
  • the number of the gears in the gearbox is generally from 1 to 8, preferably 2, 4, 6 or 8, more preferably 2 or 4. 5 ⁇
  • the diameter of the root diameter of the gear is 0. 25 ⁇ 4 times, preferably 0. 5 ⁇ 2 times.
  • the material inlet passage (or simply the material passage) is disposed on the pipe wall of the tubular reaction head to form a hole in which the material enters the reaction head.
  • the material inlet channels may be arranged or distributed from top to bottom in a range of 1 to 20 ⁇ , preferably 2 to 12 ⁇ , more preferably 3 to 8 ⁇ ; each ⁇ has 8 to 40 40
  • each of the channels has 12 - 24 channels per opening; the opening direction of each of the material inlet channels is perpendicular to the axial direction of the reactor, and is preferably evenly disposed in the radial direction of the tube wall of the tubular reaction head.
  • the cross-sectional shape of the material entering the tunnel is a right angle or a rounded rectangle, a right angle or a rounded square, a triangle, a diamond, a trapezoid, an equilateral or non-equal polygon, a circle or an ellipse, and the like.
  • the adjacent two material inlet channels may have the same or different cross-sectional shape, channel size and alignment. All things
  • the sum of the dimensions of the feed entry channels ie the sum of the cross-sectional areas should ensure that the material pressure in the set outer material passage and the material pressure in the inner material passage are entered from the outer material passage via the gearbox and the bores.
  • the ratio of the flow rate of the reaction mass in the tubular mixing reaction head to the flow rate of the reaction material entering the tubular mixing reaction head from the outlet at the bottom of the inner material passage satisfies the two reactions required for the reaction.
  • the mass ratio or molar ratio of the substance is required. 5 ⁇ 1.
  • the ratio of the ratio of the pure phosgene to the mass of the pure TDA is about 3. 4-4. 2: 1, or about 3. 8: 1.
  • the material pressure in the outer material passage is adjusted according to the conventional process calculation.
  • the material pressure in the inner material passage can also adjust the mass or molar ratio of the two reactants entering the tubular mixing reaction nozzle. This is readily accomplished by those skilled in the art and can be adjusted to the actual needs of the reaction.
  • the tubular mixing reaction head has different wall thicknesses up and down, but preferably the inner diameter is the same as the upper and lower sides; further preferably, the material enters the portion where the tunnel is located
  • the wall thickness is 1 to 5 times, preferably 1. 5 to 3 times, of the wall thickness of the lower end of the tubular mixing reaction head. That is to say, the wall of the tubular reaction head provided with a plurality of materials entering the tunnel is of equal thickness or thicker (compared with other portions of the tubular reaction head such as the wall thickness of the end of the reaction head) ).
  • the transmission connecting wheel can reciprocate up and down in a manual or automatic manner in the tubular mixing reaction head, preferably by mechanical automatic means.
  • the transmission is reciprocated up and down while maintaining rotation, and the reciprocating frequency is 1 time/day to 1 time/minute, preferably 5 to 288 times/day, more preferably 5 to 48 times/ day. Further preferably, the reciprocating frequency of the drive coupling wheel can be adjusted stepwise.
  • the rotation speed of the transmission connecting wheel is l ⁇ 120r / min, preferably 6 ⁇ 60r / min o that is, the rotation speed of the transmission connecting wheel to drive the tubular mixing reaction head is l ⁇ 120r / min, preferably 6 ⁇ 60r/min, here refers to the speed of the two together (ie the same speed).
  • the dynamic pore jet reactor provided by the present invention is generally made of steel, glass, ceramic, Made of alloy, silicon carbide or enamel steel.
  • the method for preparing an aliphatic, alicyclic or aromatic isocyanate represented by the general formula (I) by using a dynamic pore jet mixing reactor provided by the present invention is as follows:
  • an organic solution of one or more amines or amines of the general formula (II) enters the rotating tubular mixing reaction head through the inner reactant passage; or enters the gearbox through the outer reactant passage and then passes through the material
  • the orifice is injected into the rotating tubular mixing reaction head in a flow direction perpendicular to the inner stream; the material enters the tunnel to enter the rotating tubular mixing reaction head perpendicular to the flow direction of the inner stream; or enters through the inner reactant passage Rotating tubular mixing reaction nozzle;
  • R is an aliphatic C2-C50 hydrocarbyl group, an alicyclic C2-C50 hydrocarbyl group or an aromatic C6-C50 hydrocarbyl group, more preferably R is an aliphatic C4-C30 hydrocarbyl group, an alicyclic C4-C30 hydrocarbyl group or an aromatic C6-C30 group.
  • Hydrocarbyl group further preferably R is an aliphatic C5-C18 hydrocarbon group, an alicyclic C5-C18 hydrocarbon group or an aromatic C6-C20 hydrocarbon group.
  • the isocyanate having the formula (I) is generally 2,4-/2,6-toluene diisocyanate having a ratio of isomers of 100/0 to 80/20 or 65/35, Phenylmethane 4,4,-diisocyanate, dicyclohexylmethane 4,4,-diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, 1, 4-cyclohexane diisocyanate, 1, 8 -diisocyanato-4-(isocyanatomethyl)octane, triisocyanate, 1, 4-butane diisocyanate, naphthalene diisocyanate, p-phenylene diisocyanate, benzodiacyl Diisocyanate, cyclohexane dimethylene Isocyanate, trimethyl-1,6-hexamethylene diisocyanate, tetramethylm-xylylene di
  • the amine organic compound having the general formula (II) is generally a mixture of 2, 4-/2, 6-toluenediamine having an isomer ratio of 80/20 or 65/35 or pure.
  • steps (a) and (b) comprise diluting the amine and phosgene with an inert solvent generally selected from the group consisting of: benzene, toluene, chlorobenzene, o-dichlorobenzene, p-dichloro One or more of benzene, monochlorobiphenyl, dialkyl terephthalate or diethyl phthalate.
  • concentration of the polyamine organic solution is generally from 12.5 wt% to 45 wt%, preferably from 15 to 25 wt%. /.
  • said inner axial fluid passage reactant flow line speed is generally 0.8 ⁇ 14.6m / s, preferably 2.0 ⁇ 8.2 m / s; the material of the outer reactant channel through the material into the tunnel vertical injection into the tubular mixing reaction nozzle line speed is 1 ⁇ 9 times the axial flow line velocity of the inner stream, Preferably 1.2 to 5.5 times.
  • the material pressure of the inner reactant channel and the outer reactant channel is generally 1-20 bar, preferably 5-15 bar; when the total area of the material entering the channel is larger than the cross-sectional area of the inner reactant channel
  • the pressure of the outer reactants is raised separately, the speed is maintained 1 to 9 times;
  • the outlet pressure of the tubular mixing reaction nozzle is generally 1 to 15 bar, preferably 5 to 10 bar.
  • the first step reaction will inevitably produce an amino group.
  • Formyl chloride and aminohydrochloride the inevitability of the presence of this solid intermediate makes it easy to accumulate solids in the jet reactor.
  • the accumulation of solid intermediates will destroy the mixing reaction and cause more vicious cycles of solid accumulation, thus reducing
  • the traditional practice is to first flush with high-pressure solvent or phosgene, and find that the flushing is invalid and then stop and repair, that is, manually clean the reactor. This practice greatly reduces the efficiency of the device and increases many safety hazards.
  • the reactor provided by the invention is provided with a continuously rotating gear, a tubular mixing reaction nozzle and a transmission connecting wheel which can reciprocate up and down, and the flushing function of the reaction material itself can smoothly push the solid intermediate product into the reaction area, thereby ensuring The smoothness of the tunnel in the reaction zone and the long-term high load and stable operation of the entire device.
  • the reactor provided by the invention has a tubular mixing reaction head having a plurality of material inlet holes, and the adjacent two materials can be differently sized, shaped and aligned, thereby improving the condition.
  • the material mixing efficiency further reduces the ratio of phosgene and solvent to the raw material amine, improves the productivity of the original device, improves the product quality, and reduces the energy consumption.
  • Figure 1 is a schematic view showing the structure of a dynamic pore jet reactor in accordance with a preferred embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the reactor shown in Figure 1 taken along the A - A direction.
  • Figure 3 is a schematic illustration of the construction of a dynamic orifice jet reactor in accordance with another preferred embodiment of the present invention.
  • Figure 4 is a cross-sectional view of the reactor shown in Figure 3 taken along the line A' - A'. detailed description
  • axial and radial refer to the axial and radial directions of the reactor, respectively, unless otherwise specified.
  • reference to “amine” or “polyamine” is referred to in this application.
  • “Amine” or “polyamine” or “amine solution” or “polyamine solution” may be used interchangeably when either “amine (organic) solution” or "(organic) polyamine solution”.
  • the present invention is vertical, lateral, up and down, etc., but the invention does not exclude other possible mounting arrangements, such as a slightly tilted mounting. Therefore, vertical installation should not be construed as limiting the reactor and method of preparation of the present invention.
  • the dynamic pore jet reactor provided by the invention comprises an inner portion having a coaxial sleeve structure
  • the gear case 6 connected to the outer reactant passage 3 is provided with a gear 7 and a tubular mixing reaction head 5 having a plurality of material inlet passages 8.
  • the material inlet tunnel 8 and the inner wall of the gearbox circumference belong to the gear fitting zone 9, and are fitted with the limit of the gear shaft track 10.
  • the motor installed outside the reactor drives the tubular mixing reaction nozzle 5 to rotate axially through the gearbox and the transmission shaft 1 and the transmission connecting wheel 4, and at the same time, the material entering the tunnel 8 and the gear 7 have a matching tooth and slot structure, which can be driven.
  • the gear 7 rotates and revolves within the gearbox 6.
  • the present invention has no particular requirement for the rotational speed of the gear 7 to rotate within the gearbox 6, and there is no particular requirement for the rotational speed of its revolution along the main shaft of the reactor.
  • the speed of the gear depends on the ratio of the diameter of the root circle of the gear to the outer diameter of the mixing reaction head. The speed of the gear does not matter, as long as it is turned.
  • the reactor structure shown in Figures 1 and 2 is one of the preferred embodiments of the present invention.
  • Two gears are arranged in the gear box, and a tubular mixing reaction nozzle is provided with a material entering the tunnel 8, and the material enters the tunnel.
  • the cross-sectional shape is a rectangle. Therefore, the gear that meshes with the material entry tunnel should have a toothed, slotted configuration that conforms to the rectangular bore.
  • the gear is driven by a tubular mixing reaction nozzle with a hole (ie, a material hole or a material entering the tunnel), and the transmission connecting wheel disposed between the transmission shaft and the tubular mixing reaction head can be automatically moved up and down in the tubular mixing reaction nozzle. Reciprocating, thereby achieving automatic online cleaning of the reactor of the present invention.
  • the reactor structure shown in Fig. 3 and Fig. 4 is another preferred embodiment of the present invention.
  • one gear is arranged in the gear box, and the tubular mixing reaction nozzle is provided with 2 ⁇ material entering the tunnel 8, And the cross-sectional shape, size and alignment of the material entering the tunnel The material enters the groove and the matching structure of the hole.
  • the gear is driven by the tubular mixing reaction nozzle with holes, and the transmission connecting wheel disposed between the transmission shaft and the tubular mixing reaction nozzle can automatically reciprocate up and down, thereby realizing automatic online cleaning of the mixing reactor.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • an organic solution of one or more amines or amines of the general formula (II) is passed through the inner reactant channel 1 into the rotating tubular mixing reaction head 5; , the pure phosgene liquid or phosgene solution enters the gear box 6 through the outer reactant channel 3, and then enters the rotating tubular mixing reaction head 5 through the material inlet channel 8 in a direction perpendicular to the inner stream; the amine side and the light
  • the gas-side materials are collected by the two-way reactant channels in the rotating tubular mixing reaction nozzle 5 under the respective raw material conveying pressures for rapid mixing reaction, and the reaction liquid is pushed by the high-pressure raw material and the gear 7 and the transmission connecting wheel 4 With the cooperation, the tubular mixing reaction nozzle 5 is quickly passed through, and then proceeds into the downstream reaction vessel to continue and finally complete the reaction.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • An organic solution having one or more amines or amines of the general formula (II) is passed through the outer reactant channel 3 into the gearbox 6 and then through the material inlet port 8 using a reactor as shown in Figures 1 and 1.
  • the rotating tubular mixing reaction head 5 is injected perpendicularly to the flow direction of the inner stream; at the same time, the pure phosgene liquid or phosgene solution enters the rotating tubular mixing reaction head 5 through the inner reactant channel 2; the amine side and the phosgene
  • the side materials are collected in the rotating tubular mixing reaction head 5 through the two side reactant channels under the respective raw material conveying pressures for rapid mixing reaction, and the reaction liquid is pushed by the high-pressure raw material and the gear 7 and the transmission connecting wheel 4 Rapidly under the tube
  • the reaction nozzle 5 is mixed so as to proceed into the downstream reactor and continue to complete and finally complete the reaction.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • an organic solution of one or more amines or amines of the general formula (II) is passed through the inner reactant channel 1 into the rotating tubular mixing reaction head 5; , the pure phosgene liquid or phosgene solution enters the gear box 6 through the outer reactant channel 3, and then enters the rotating tubular mixing reaction head 5 through the material inlet channel 8 in a direction perpendicular to the inner stream; the amine side and the light
  • the gas-side materials are collected by the two-way reactant channels in the rotating tubular mixing reaction nozzle 5 under the respective raw material conveying pressures for rapid mixing reaction, and the reaction liquid is pushed by the high-pressure raw material and the gear 7 and the transmission connecting wheel 4 With the cooperation, the tubular mixing reaction nozzle 5 is quickly passed through, and then proceeds into the downstream reaction vessel to continue and finally complete the reaction.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a rectangular rectangular material is placed in the pipe wall of the tubular mixing reaction nozzle into the tunnel, the number of material entering the tunnel is 12, and the material entering the tunnel is perpendicular to the reactor in the tubular mixing reaction nozzle.
  • the axial direction is aligned with each other and equally spaced, and the aspect ratio of the rectangular channel is 2:1; the root diameter of the gear is outside the hole of the tubular mixing reaction head 1.5 times of the diameter, two gears are arranged in the gearbox; the inner diameter of the tubular mixing reaction nozzle is equal to the inner diameter of the inner reactant channel; the tubular mixing reaction nozzle has a rotational speed of 60r/min, and the transmission connecting wheel has a vertical frequency of 1st. /hour.
  • the mass ratio of pure phosgene to pure TDA is 3.8: 1, and the pure TDA feed rate is 5kg/h.
  • the phosgene solution enters the gearbox through the outer reactant channel, and is further injected into the tubular mixing reaction nozzle through the material inlet channel; the TDA solution enters the tubular mixing reaction nozzle through the inner reactant channel; the delivery pressure of both materials is 7.5 bar.
  • the temperature of the phosgene solution is (TC:, the temperature of the TDA solution is 85 ° C.
  • the two materials are rapidly contacted and reacted in the tubular mixing reaction head, and the formed reaction liquid is discharged from the tubular mixing reaction head into the subsequent reactor.
  • the subsequent stirred reaction temperature was about 125 ° C and the residence time in the subsequent reactor was 45 minutes.
  • two rectangular materials are placed in the pipe wall of the tubular mixing reaction nozzle into the tunnel, and the number of each channel is 12, and each of them is aligned with each other and equally spaced, and the aspect ratio of the rectangular channel is as shown in FIG. 2: 1, the upper and lower borings are staggered; the gear diameter of the gear is 1.5 times the outer diameter of the tunnel mixing reaction nozzle, and there are two gears, the inner diameter of the tubular mixing reaction nozzle and the inner diameter of the inner reactant passage. Equivalent; the speed of the tubular mixing reaction nozzle is 60r/min, and the frequency of the upper and lower reciprocating of the transmission splicing wheel is 6 times/hour.
  • TDA Toluene diamine
  • phosgene (C0C1 2 ) 0DCB solution The mass concentration is 75 ° /.
  • the mass ratio of pure phosgene to pure TDA is 4: 1, and the pure TDA feed rate is 5kg/h.
  • the phosgene solution enters the gearbox through the outer reactant channel, and is further injected into the tubular mixing reaction nozzle through the material inlet channel; the TDA solution enters the tubular mixing reaction nozzle through the inner reactant channel; the delivery pressure of both materials is 7.5 bar.
  • the temperature of the phosgene solution is (TC:, the temperature of the TDA solution is 85 °C, The two materials are rapidly contacted and reacted in the tubular mixing reaction nozzle, and the formed reaction liquid is discharged from the tubular mixing reaction nozzle into the subsequent reactor, and the subsequent stirring reaction temperature is about 125 ° C, and the residence time is 45 minutes and 20 seconds. .
  • three rectangular material holes are arranged in the pipe wall of the tubular mixing reaction head, and the number of each hole from the top to the bottom is 24, 18, and 12, respectively. Since the tunnels are aligned and equally spaced on each of the turns, the three tunnels are sequentially increased from top to bottom, and the width of the first tunnel is a, and the widths of the second and third pupils are 4a/3 and 2a. Adjacent two pupils are staggered up and down.
  • the aspect ratio of the rectangular channel is 2:1; the diameter of the root circle of the gear is 1.5 times the outer diameter of the opening of the tubular mixing reaction head.
  • a total of four gears are arranged in the gearbox; the inner diameter of the tubular mixing reaction nozzle is equal to the inner diameter of the inner reactant passage tube; the tubular mixing reaction nozzle has a rotational speed of 60 r/min, and the transmission coupling wheel has an up-and-down reciprocating frequency of 6 times/hour.
  • the solution mass concentration was 75 ° /.
  • the ratio of pure phosgene to pure TDA is 3. 5: 1
  • pure TDA feed rate is 5kg / h.
  • the singularity of the material is 7. 5bar. .
  • the temperature of the phosgene solution is (TC:, the temperature of the TDA solution is 85 °C, the two materials are rapidly contacted and reacted in the tubular mixing reaction head, and the formed reaction liquid is discharged from the tubular mixing reaction head into the subsequent reactor.
  • the subsequent stirring reaction temperature is about 125 ° C, and the residence time is 40 minutes and 20 seconds.
  • three round circular material channels are arranged in the pipe wall of the tubular mixing reaction head, and the number of each hole from the top to the bottom is 24, 18, and 12, and the rectangular holes are sequentially arranged.
  • the aspect ratio is 2:1. Since the material entering the tunnel is aligned and equally spaced on each of the rafts, the three boring tunnels are sequentially increased from top to bottom.
  • the width of the first boring tunnel is a, and the widths of the second and third boring tunnels are 4a/ 3 and 2 a. Adjacent two pupils are staggered up and down.
  • the tooth root circle diameter of the gear is 1.5 times of the outer diameter of the opening portion of the tubular mixing reaction nozzle, and two gears are arranged in the gear box; the inner diameter of the tubular mixing reaction nozzle is equal to the inner diameter of the inner reactant passage tube; The reaction nozzle speed is 90r/min, and the transmission connecting wheel has a frequency of up to and down of 12 times/hour.
  • the 0DCB solution has a mass concentration of 75°/.
  • the mass ratio of pure phosgene to pure TDA is 3.5: 1
  • pure TDA feed rate is 5kg / h.
  • the singularity of the material is 7. 5bar. .
  • the temperature of the phosgene solution is (TC:, the temperature of the TDA solution is 85 °C, the two materials are rapidly contacted and reacted in the tubular mixing reaction head, and the formed reaction liquid is discharged from the tubular mixing reaction head into the subsequent reactor.
  • the subsequent stirring reaction temperature is about 125 ° C, and the residence time is 43 minutes and 40 seconds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法 技术领域
本发明涉及一种动态孔射流式反应器, 以及采用该反应器使脂肪族 或芳香族胺类有机物与光气在液相中进行反应制备异氰酸酯的方法。 背景技术
自 1849年 Wur tz首次制备出烷基异氰酸酯以来, 人类就一直在探索 着各种制备异氰酸酯的方法和制备各种具有特殊结构和性能的异氰酸酯 产品。 实践证明, 迄今为止光气化法仍然是最具有工业化价值的合成路 线, 其中尤以液相光气化法为主流工艺。
液相光气化法制备异氰酸酯具有条件温和, 操控稳定的特点。 在该 工艺过程中, 脂肪族或芳香族胺类有机物首先和光气在溶剂中反应生成 氨基甲酰氯和 HC 1, HC 1会迅速和其他胺基反应生成氨基盐酸盐。 系统中 过量的光气会继续和氨基盐酸盐反应生成氨基甲酰氯并放出 HC 1。这便是 普遍采用的冷热两步光气化工艺中的冷反应过程。
该反应过程中的氨基甲酰氯和氨基盐酸盐都是合成异氰酸酯的中间 产物, 并且都是固体物质。 固体中间产物存在的必然性给反应器的设计 带来了重重困难, 反应器一方面要提供足够的混合强度, 保证高效的混 合反应, 另一方面要能有效的防止固体中间产物挂壁或堵塞混合反应通 道, 并且在堵塞现象发生时能够便于清理。 事实证明, 混合反应部分已 成为限制各类异氰酸酯生产装置产能和能耗指标的主要瓶颈之一。 多年 来, 学术界与企业界都在为这一同样的问题作着不懈的努力和探索。
US5931579 , US4915509描述了一种转子-定子型混合反应器。 该混合 器中, 一股流体通过前板中心的圆孔进入混合腔, 另一股流体通过前板 上呈同心圆状排列的一系列孔洞进入混合腔。 混合腔内设有多层筛板分 别交错固定在定子和转子上, 高压反应液通过层层 ί帛板时会被旋转的定 子研磨, 从而达到很好的快速混合和均匀分散效果。 但该反应器结构复 杂, 一旦堵塞, 清理将变得十分困难。
US5117048描述了一种孔射流式的反应混合器,一股物料通过管腔的 多个孔洞中进入另一股物料中, 起到强化混合的效果。 尽管如此, 在工 业放大过程中该反应混合器的混合效果仍十分有限, 在异氰酸酯的制造 中反应器的频繁堵塞问题不能得到及时地解决。
CN200910069917描述了一种生产甲苯二异氰酸酯的列管式撞击流反 应器, 一股物料通过下管板上的射流口射流喷入, 另一路流体则通过垂 直下管板的列管和列管扩大段的列管射流口以一定角度射流喷入射流混 合区, 与第一股物料进行撞击而实现混合。 该反应器的混合强度较弱, 反应停留时间较长, 并且常有大块固体聚集, 不但容易堵塞该反应器, 甚至会堵塞或污染后续反应设备。
CN200910306519描述了一种中间设置有中心喷射器的管式反应器, 其中心喷射器上有锥形折流挡板和喷嘴, 管式反应器管壁上设置有折流 挡板。 该反应器的混合效果十分有限, 且固体产物很容易挂壁, 一旦堵 塞反应器就需要停车清理。
通过以上的比较可以看出, 液相光气化法制备异氰酸酯的过程是一 个气液固三相反应过程, 混合不当即造成固体中间产物大量堆积。 固体 中间产物的累积一方面会破坏混合反应效果, 造成更多固体累积的恶性 循环, 从而降低装置负荷或者影响产品质量; 另一方面更有可能因为完 全堵塞进料通道而迫使装置停止运转。 因而要求混合反应器具备极快的 混合速率和良好的防堵塞能力。 因此, 需要研发具有更高混合效率且便 于人工在线清理或可自动清理的反应器, 以降低装置临停检修的频率, 提高运转效率。 发明内容
本发明的目的在于提供一种动态孔射流式混合反应器以及采用该反 应器使脂肪族或芳香族胺类有机物与光气在液相中进行反应制备异氰酸 酯的方法, 以克服上述现有反应器的缺陷。
本发明所提供的动态孔射流式混合反应器如下: 该反应器包括内进 料管、 外进料管、 管式混合反应喷头、 齿轮箱、 传动轴以及传动衔接轮; 其中, 所述传动轴、 内进料管和外进料管自内而外同轴设置, 所述外进 料管与齿轮箱连通且自上而下同轴设置, 所述齿轮箱内设有齿轮和一个 具有多个物料进入孔道的管式混合反应喷头, 所述齿轮与管式混合反应 喷头通过物料进入孔道相互拟合, 且与齿轮箱圆周内壁拟合, 齿轮箱内 还设有用于限位的齿轮轴心轨道; 所述内进料管与管式混合反应喷头连 通且自上而下同轴设置; 所述管式混合反应喷头在传动轴和传动衔接轮 的驱动下轴向转动, 进而带动齿轮箱内齿轮的转动; 所述传动衔接轮可 在所述管式混合反应喷头内上下往复运动。
在本发明所提供的动态孔射流式反应器中, 所述传动轴与内进料管 之间所形成的反应通道称为内侧反应物通道, 而内进料管与外进料管之 间所形成的反应通道称为外侧反应物通道。 所述外侧反应物通道与内侧 反应物通道的横截面积(垂直于该反应器的轴向)之比为 0. 5 ~ 24: 1, 优 选 0. 75 ~ 12 : 1, 更优选 1 ~ 7. 5 : 1。 管式混合反应喷头内的通道与内 侧反应物通道的截面积之比为 0. 5 ~ 4 : 1, 优选 0. 75 ~ 3 : 1。
在本发明所提供的动态孔射流式反应器中, 齿轮箱内所述齿轮的数 量一般为 1 ~ 8个, 优选 2、 4、 6或 8个, 更优选 2个或 4个。 齿轮的齿 根圆直径 (齿轮的内径)是管式混合反应喷头物料进入孔道部位外径的 0. 25 ~ 4倍, 优选 0. 5 ~ 2倍。
在本发明所提供的动态孔射流式反应器中, 所述物料进入孔道 (或简 称物料孔道)设置在管式反应喷头的管壁上, 以形成物料进入反应喷头内 的孔道。 在管式混合反应喷头的管壁上, 所述物料进入孔道可自上而下 排列成或分布有 1 ~ 20圏, 优选 2 ~ 12圏, 更优选 3 ~ 8圏; 每圏有 8 ~ 40个孔道,优选每圏有 12 - 24个孔道; 每圏物料进入孔道的开孔方向均 垂直于该反应器的轴向, 且最好在管式反应喷头管壁的径向方向上均匀 设置。 所述物料进入孔道的横截面形状为直角或圆角长方形、 直角或圆 角正方形、 三角形、 菱形、 梯形、 等边或非等边多边形、 圆形或椭圆形 等。 当设置两圏或两圏以上的物料进入孔道时, 相邻两圏的物料进入孔 道可采用相同或不同的孔道横截面形状、 孔道大小和对齐方式。 全部物 料进入孔道的尺寸之和(即横截面积之和)应该确保在所设定的外侧物料 通道内的物料压力和内侧物料通道内的物料压力下, 从外侧物料通道经 由齿轮箱和这些孔道进入管式混合反应喷头内的反应物料的流速与从内 侧物料通道底部的出口(具有一定的横截面积)进入管式混合反应喷头内 的反应物料的流速的比率满足该反应所需要的两种反应物的质量比或摩 尔比率要求。 例如, 当光气与 TDA反应时, 纯光气与纯 TDA的质量之比 为大约 3. 4-4. 2 : 1, 或大约 3. 8: 1。 当然, 在获知所设计的全部物料孔 道的尺寸之和(即横截面积之和)和内侧物料通道底部的出口的横截面积 之后, 根据常规工艺计算, 通过调节外侧物料通道内的物料压力和内侧 物料通道内的物料压力也可以调节进入管式混合反应喷头内的两种反应 物的质量或摩尔比率。 这是本领域中技术人员容易实现的, 可根据反应 的实际需要来调节。
在本发明所提供的动态孔射流式反应器中, 优选地, 所述管式混合 反应喷头具有上下不同的壁厚, 但优选其内径是上下相同的; 进一步优 选地, 物料进入孔道所处部位的壁厚是管式混合反应喷头下部出口端管 壁厚的 1 ~ 5倍, 优选 1. 5 ~ 3倍。 也就是说, 在管式反应喷头上设置多 个物料进入孔道的部位的管壁是等厚度的或更厚的 (与管式反应喷头的 其它部位例如反应喷头端部的管壁厚相比而言)。
在本发明所提供的动态孔射流式反应器中, 在所述管式混合反应喷 头的内壁上设有至少 1条与管式混合反应喷头等长的滑道,优选设有 1 - 3条与管式混合反应喷头等长的滑道,以便使所述传动衔接轮在管式混合 反应喷头内通过手动或自动方式实现上下往复运动, 优选地, 通过机械 自动方式实现上下往复运动。 在本发明中, 所述传动 于接轮是在保持转 动的同时进行上下往复运动, 往复频率为 1次 /天 ~ 1次 /分钟, 优选 5 - 288次 /天, 更优选 5 ~ 48次 /天。 进一步优选地, 传动衔接轮的往复频率 可逐级调节。 一般情况下, 传动衔接轮的转动速度为 l ~ 120r/min, 优选 6 ~ 60r/mino 也就是说, 传动衔接轮带动管式混合反应喷头的转动速度 为 l ~ 120r/min, 优选 6 ~ 60r/min, 这里指两者一起的转速(即同速)。
在本发明所提供的动态孔射流式反应器一般由钢材、 玻璃、 陶瓷、 合金、 碳化硅或者搪瓷钢材制成。 本发明所提供的采用动态孔射流式混合反应器制备如通式( I )所示 的脂肪族、 脂环族或芳香族异氰酸酯的方法如下:
R (NCO) n ( I )
R (皿 2) n ( I I )
其中 R 为脂肪族或芳香族烃基, 并且至少有两个碳原子排列在通式 ( I )的任意两个相邻的(NC0 )之间, 以及 n > 2, 优选 n=2- 4, 更优选 2 或 3, 所述方法包括以下步骤:
(a) .具有通式( I I )的一种或多种胺或胺的有机溶液通过内侧反应物 通道进入旋转的管式混合反应喷头; 或者通过外侧反应物通道进入齿轮 箱, 然后经过物料进入孔道以垂直于内侧流股的流动方向射入旋转的管 式混合反应喷头; 经过物料进入孔道以垂直于内侧流股的流动方向射入旋转的管式混合反 应喷头; 或者通过内侧反应物通道进入旋转的管式混合反应喷头;
(c) .胺侧和光气侧物料在各自的原料输送压力作用下分别经两侧反 应物通道汇集在旋转的管式混合反应喷头内进行快速的混合、 反应, 反 在本发明所述方法中, 优选 R是脂肪族 C2-C50烃基、 脂环族 C2-C50 烃基或芳香族 C6-C50 烃基, 更优选 R是脂肪族 C4-C30 烃基、 脂环族 C4-C30烃基或芳香族 C6- C30烃基,进一步优选 R是脂肪族 C5- C18烃基、 脂环族 C5-C18烃基或芳香族 C6-C20烃基。
在本发明所述方法中, 所述具有通式(I ) 的异氰酸酯一般为异构体 比例为 100/0- 80/20或 65/35的 2, 4-/2, 6甲苯二异氰酸酯、 二苯基甲烷 4, 4, -二异氰酸酯、 二环己基甲烷 4, 4, -二异氰酸酯、 异佛尔酮二异氰 酸酯、 1, 6-己二异氰酸酯、 1, 4-环己二异氰酸酯、 1, 8-二异氰酸根合 -4- (异氰酸甲酯基)辛烷、 三异氰酸^壬烷、 1, 4-丁二异氰酸酯、 萘二异 氰酸酯、 对苯二异氰酸酯、 苯二亚甲基二异氰酸酯、 环己烷二亚甲基二 异氰酸酯、 三甲基 -1, 6-六亚甲基二异氰酸酯、 四甲基间苯二亚甲基二异 氰酸酯、 二甲基联苯二异氰酸酯、 甲基环己基二异氰酸酯等。 其中优选 苯二亚甲基二异氰酸酯、 二苯基甲烷 4, 4, -二异氰酸酯、 甲苯二异氰酸 酯, 更优选甲苯二异氰酸酯。
在本发明所述方法中, 所述具有通式( II )的胺类有机物一般是异构 体比例为 80/20或 65/35的 2, 4-/2, 6甲苯二胺混合物或纯的 2, 4-甲苯二 胺、 二苯基甲烷 4, 4, -二胺、 二环己基甲烷 4, 4, -二胺、 异佛尔酮二胺、 1, 6-己二胺、 1, 4-环己二胺、 1, 8-二氨基 -4- (氨甲基)辛烷、三氨基壬烷、 1, 4-丁二胺、 萘二胺、 对苯二胺、 苯二亚甲基二胺、 环己烷二亚甲基二 胺、 三甲基 -1, 6-六亚甲基二胺、 四甲基间苯二亚甲基二胺、 二甲基联苯 二胺或甲基环己基二胺等; 优选苯二亚甲基二胺、 二苯基甲烷 4, 4, -二 胺或甲苯二胺; 更优选甲苯二胺。
在本发明所述方法中, 步骤(a)和(b)包括利用惰性溶剂对胺和光气 进行稀释, 所述惰性溶剂一般选自: 苯、 甲苯、 氯苯、 邻二氯苯、 对二 氯苯、 一氯联苯、 对苯二甲酸二烷基酯或邻苯二甲酸二乙酯中的一种或 多种。 多胺有机溶液的浓度一般为 12.5wt%~45wt%, 优选 15 ~25wt。/。; 光气有机溶液浓度一般不低于 60wt%,优选 60- 90wt%,更优选 75 - 85wt%0 在本发明所述方法中,所述内侧反应物通道内流体轴向流动线速度一 般为 0.8 ~ 14.6m/s, 优选 2.0 ~ 8.2 m/s; 外侧反应物通道的物料通过物 料进入孔道垂直射入管式混合反应喷头的线速度是内侧流股轴向流动线 速度的 1 ~ 9倍, 优选 1.2 ~ 5.5倍。
在本发明所述方法中, 所述内侧反应物通道和外侧反应物通道的物 料压力一般均为 l ~20bar,优选 5 ~ 15bar; 当物料进入孔道的总面积大 于内侧反应物通道的横截面积时, 需单独提升外侧反应物压力, 从而保 速度的 1 ~9倍; 管式混合反应喷头出口压力一般为 l ~ 15bar, 优选 5 ~ 10bar。 对于冷热两步法液相光气化反应而言, 第一步反应必然会产生氨基 甲酰氯和氨基盐酸盐, 此固体中间产物存在的必然性使得喷射反应混合 器内极易累积固体, 固体中间产物的累积一方面会破坏混合反应效果, 造成更多固体累积的恶性循环, 从而降低装置负荷或者影响产品质量; 另一方面更有可能因为完全堵塞进料通道而使得装置不得不停止运转。 传统做法是先用高压溶剂或光气冲洗, 发现冲洗无效后临停检修, 即手 动清理反应器。 这种做法大大降低了装置的运转效率, 并增加了诸多安 全隐患。
本发明所提供的反应器设置了连续转动的齿轮、 管式混合反应喷头 和可以上下往复运动的传动衔接轮, 配以反应物料本身的冲洗功能可以 顺利地将固体中间产物推出反应区域, 从而保证了反应区域孔道的通畅 和整个装置的长期高负荷稳定运转。 另外, 本发明所提供的反应器带有 一个具有多个物料进入孔的管式混合反应喷头, 相邻两圏的物料进入孔 道可以采用不同的大小、 形状和对齐方式, 从而更好的改善了物料混合 效率, 使光气和溶剂相对于原料胺的配比进一步降低, 提高了原装置的 产能, 改善了产品质量, 同时也降低了能耗。 附图说明
图 1是根据本发明的一种优选实施方式的动态孔射流式反应器的结 构示意图。
图 2是图 1所示的反应器沿 A - A方向的剖面图。
图 3是根据本发明的另一种优选实施方式的动态孔射流式反应器的 结构示意图。
图 4是图 3所示的反应器沿 A' - A'方向的剖面图。 具体实施方式
以下结合附图进一步说明本发明所提供的动态孔射流式反应器及采 用该反应器制备异氰酸酯的方法, 但本发明并不因此而受到任何限制。
在本申请中, 一般情况下, "轴向" 和 "径向" 分别指反应器的轴向 和径向, 除非另外特意指明。 此外, 在本申请中提及 "胺" 或 "多胺" 或 "胺(有机)溶液"或 "(有机)多胺溶液" 时, "胺"或 "多胺"或 "胺 溶液" 或 "多胺溶液" 可以互换使用。 为了便于说明和理解, 本发明以 垂直、 横向、 上下等, 但本发明并不排除其它可能的安装方式, 例如稍 微倾斜安装的方式。 因此, 不应将垂直安装理解为对本发明所述反应器 和制备方法的限制。
本发明所提供的动态孔射流式反应器包括具有同轴套管式结构的内
1。 与外侧反应物通道 3相连的齿轮箱 6内装有齿轮 7和带有多个物料进 入孔道 8的管式混合反应喷头 5。物料进入孔道 8和齿轮箱圆周内壁都属 于齿轮拟合区 9, 并配以齿轮轴心轨道 10的限位。 安装在反应器外部的 电动机通过变速箱和传动轴 1以及传动衔接轮 4带动管式混合反应喷头 5 轴向转动, 同时由于物料进入孔道 8与齿轮 7具有相互配合的齿、 缝结 构, 可以带动齿轮 7在齿轮箱 6内自转并公转。
一般情况下, 本发明对于齿轮 7在齿轮箱 6 内自转的转速没有特别 要求, 并且对于其沿着反应器主轴公转的转速也没有特别要求。 齿轮的 转速取决于齿轮的齿根圆直径与混合反应喷头外径的比值, 其转速无关 紧要, 只要转就行。
图 1和图 2所示的反应器结构是本发明优选的实施方式之一, 其齿 轮箱内设置 2个齿轮, 管式混合反应喷头上设有 1圏物料进入孔道 8, 且 物料进入孔道的横截面形状为长方形。 因此, 与所述物料进入孔道相啮 合的齿轮应具有与长方形的孔道相适配的齿、 缝结构。 齿轮由带孔(即物 料孔道或物料进入孔道)的管式混合反应喷头带动旋转, 同时设置于传动 轴和管式混合反应喷头之间的传动衔接轮可以在管式混合反应喷头内自 动地上下往复, 从而实现了本发明所述反应器的自动在线清理。
图 3和图 4所示的反应器结构是本发明另一种优选的实施方式, 如 图所示, 齿轮箱内设置 1个齿轮, 管式混合反应喷头上设有 2 圏物料进 入孔道 8, 且上下 2圏物料进入孔道的横截面形状、 大小及其对齐方式均 物料进入孔道相适配的齿、 缝结构。 齿轮由带孔的管式混合反应喷头带 动旋转, 同时设置于传动轴和管式混合反应喷头之间的传动衔接轮可以 自动上下往复, 从而实现了混合反应器的自动在线清理。
虽然本申请未提供齿轮箱内设置有两个以上的齿轮的反应器结构示 意图, 也未提供管式混合反应喷头上设置两圏以上的物料进入孔道以及 物料进入孔道为三角形、 菱形、 梯形等其它形状的反应器结构示意图, 但本领域技术人员应该能够理解, 具有上述结构特点的反应器及其结合 公知常识所作出的结构上的调整和改变均能够实现本发明。 下面结合附图列举几种本发明所提供的异氰酸酯制备方法的实施方 式, 但本发明并不因此而受到任何限制。
实施方式一:
采用如图 1和图 1所示的反应器, 使具有通式( I I )的一种或多种胺 或胺的有机溶液通过内侧反应物通道 1 进入旋转的管式混合反应喷头 5 中; 同时, 纯光气液体或光气溶液通过外侧反应物通道 3 进入齿轮箱 6 内, 然后经过物料进入孔道 8 以垂直于内侧流股的流动方向射入旋转的 管式混合反应喷头 5 ;胺侧和光气侧物料在各自的原料输送压力作用下分 别经两侧反应物通道汇集在旋转的管式混合反应喷头 5 内进行快速的混 合反应, 反应液在原料高压推动和齿轮 7 以及传动衔接轮 4的配合下迅 速通过管式混合反应喷头 5,从而进入下游的反应釜内继续进行并最终完 成反应。
实施方式二:
采用如图 1和图 1所示的反应器, 使具有通式( I I )的一种或多种胺 或胺的有机溶液通过外侧反应物通道 3进入齿轮箱 6,然后再经过物料进 入孔道 8以垂直于内侧流股的流动方向射入旋转的管式混合反应喷头 5 ; 同时, 纯光气液体或光气溶液通过内侧反应物通道 2 进入旋转的管式混 合反应喷头 5 ;胺侧和光气侧物料在各自的原料输送压力作用下分别经两 侧反应物通道汇集在旋转的管式混合反应喷头 5内进行快速的混合反应, 反应液在原料高压推动和齿轮 7以及传动衔接轮 4的配合下迅速通过管 式混合反应喷头 5, 从而进入下游的反应釜内继续进行并最终完成反应。
实施方式三:
采用如图 3和图 4所示的反应器, 使具有通式( I I )的一种或多种胺 或胺的有机溶液通过内侧反应物通道 1 进入旋转的管式混合反应喷头 5 中; 同时, 纯光气液体或光气溶液通过外侧反应物通道 3 进入齿轮箱 6 内, 然后经过物料进入孔道 8 以垂直于内侧流股的流动方向射入旋转的 管式混合反应喷头 5 ;胺侧和光气侧物料在各自的原料输送压力作用下分 别经两侧反应物通道汇集在旋转的管式混合反应喷头 5 内进行快速的混 合反应, 反应液在原料高压推动和齿轮 7 以及传动衔接轮 4的配合下迅 速通过管式混合反应喷头 5,从而进入下游的反应釜内继续进行并最终完 成反应。
实施方式四:
采用如图 3和图 4所示的反应器, 使具有通式( I I )的一种或多种胺 或胺的有机溶液通过外侧反应物通道 3进入齿轮箱 6,然后再经过物料进 入孔道 8以垂直于内侧流股的流动方向射入旋转的管式混合反应喷头 5 ; 同时, 纯光气液体或光气溶液通过内侧反应物通道 2 进入旋转的管式混 合反应喷头 5 ;胺侧和光气侧物料在各自的原料输送压力作用下分别经两 侧反应物通道汇集在旋转的管式混合反应喷头 5内进行快速的混合反应, 反应液在原料高压推动和齿轮 7 以及传动衔接轮 4的配合下迅速通过管 式混合反应喷头 5, 从而进入下游的反应釜内继续进行并最终完成反应。 以下将通过实施例对本发明进行更为详细的阐述, 但是下述实施例 不应理解为对本发明内容的限制。 实施例 1
如图 1 所示, 管式混合反应喷头的管壁中设置一圏矩形的物料进入 孔道, 其物料进入孔道的数量为 12个且所述物料进入孔道在管式混合反 应喷头的垂直于反应器轴向方向的截面上彼此对齐、 等间距排列, 矩形 孔道的长宽比为 2: 1 ;齿轮的齿根圆直径是管式混合反应喷头孔道部位外 径的 1.5倍, 齿轮箱内共设置两个齿轮; 管式混合反应喷头的内径与内 侧反应物通道的内径相等; 管式混合反应喷头转速为 60r/min,传动衔接 轮上下往复频率为 1次 /小时。
甲苯二胺(TDA) ( 2, 4-2, 6异构体比例为 80/20, 下同) 的邻二氯苯 (0DCB)溶液质量浓度为 37%,光气(C0C12)的 0DCB溶液质量浓度为 75°/。, 纯光气与纯 TDA的质量之比为 3.8: 1, 纯 TDA进料速率为 5kg/h。 光气溶 液经外侧反应物通道进入齿轮箱, 并进一步经由物料进入孔道注入管式 混合反应喷头; TDA溶液经内侧反应物通道进入管式混合反应喷头; 两股 物料的输送压力均为 7.5bar。 光气溶液温度为 (TC:, TDA溶液温度为 85 °C。 两股物料在管式混合反应喷头中快速接触并反应, 所形成的反应液 从管式混合反应喷头出来进入后续反应器中, 后续搅拌反应温度约 125 °C, 在后续反应器中的停留时间 45分钟。
试 证明: 该装置稳定运转 1000小时没有发生反应器污染或堵塞现 象。 反应液取样观察为酒红色且澄清透明, 略有少量悬浮物, 液相色谱 分析结果显示其 TDI选择性为 97. n。 实施例 2
如图 3 所述, 管式混合反应喷头的管壁中设置两圏矩形物料进入孔 道, 每圏孔道数量均为 12个且在每一圏上彼此对齐、 等间距排列, 矩形 孔道的长宽比为 2: 1, 上下两圏孔道交错排列; 齿轮的齿才 圆直径是管式 混合反应喷头孔道部位外径的 1.5倍, 共有两个齿轮, 管式混合反应喷 头内径与内侧反应物通道的内径相等; 管式混合反应喷头转速为 60r/min, 传动 †接轮上下往复频率为 6次 /小时。
甲苯二胺(TDA) ( 2, 4-2, 6异构体比例为 80/20, 下同) 的邻二氯苯 (0DCB)溶液质量浓度为 42%、光气(C0C12)的 0DCB溶液质量浓度为 75°/。, 纯光气与纯 TDA的质量之比为 4: 1, 纯 TDA进料速率为 5kg/h。 光气溶液 经外侧反应物通道进入齿轮箱, 并进一步经由物料进入孔道注入管式混 合反应喷头; TDA溶液经内侧反应物通道进入管式混合反应喷头; 两股物 料的输送压力均为 7.5bar。 光气溶液温度为(TC:, TDA溶液温度为 85 °C, 两股物料在管式混合反应喷头中快速接触并反应, 所形成的反应液从管 式混合反应喷头出来进入到后续反应器中, 后续搅拌反应温度约 125 °C, 停留时间为 45分 20秒。
试 证明: 该装置稳定运转 1000小时没有发生反应器污染或堵塞现 象。 反应液取样观察为酒红色且透明, 明显存在有悬浮物, 液相色谱分 析结果显示其 TDI选择性为 96. Ί 。 实施例 3
在该实施例所采用的反应器中, 管式混合反应喷头的管壁中设置三 圏矩形物料孔道, 从上向下每圏孔道数量依次为 24个、 18个、 12个。 由于孔道在每一圏上对齐、 等间距排列, 所以三圏孔道自上而下依次增 大, 以上层第一圏孔道宽度为 a, 则第二、 第三圏孔道宽度依次为 4a/ 3 和 2a。 相邻两圏孔道上下交错排列。 矩形孔道的长宽比为 2: 1 ; 齿轮的 齿根圆直径是管式混合反应喷头开孔部位外径的 1. 5倍。 齿轮箱中共设 置有四个齿轮; 管式混合反应喷头的内径与内侧反应物通道管内径相等; 管式混合反应喷头转速为 60r/min, 传动衔接轮上下往复频率为 6次 /小 时。
甲苯二胺(TDA ) ( 2, 4-2, 6异构体比例为 80/20, 下同) 的邻二氯苯 ( 0DCB )溶液质量浓度为 25%、光气(C0C 12 )的 0DCB溶液质量浓度为 75°/。, 纯光气与纯 TDA的质量之比为 3. 5: 1, 纯 TDA进料速率为 5kg/h。 光气溶 液经外侧反应物通道进入齿轮箱, 并进一步经由物料进入孔道注入管式 混合反应喷头; TDA溶液经内侧反应物通道进入管式混合反应喷头; 两股 物料的输送压力均为 7. 5bar。 光气溶液温度为 (TC:, TDA溶液温度为 85 °C, 两股物料在管式混合反应喷头中快速接触并反应, 所形成的反应液 从管式混合反应喷头出来进入到后续反应器中,后续搅拌反应温度约 125 °C , 停留时间为 40分 20秒。
试 证明: 该装置稳定运转 1000小时没有发生反应器污染或堵塞现 象。 反应液取样观察为酒红色且澄清透明, 没有悬浮物, 液相色谱分析 结果显示其 TDI选择性为 98. 1%。 实施例 4
在该实施例所采用的反应器中, 管式混合反应喷头的管壁中设置三 圏圆形物料孔道, 从上向下每圏孔道的数量依次为 24个、 18个、 12个, 矩形孔道的长宽比为 2: 1。 由于物料进入孔道在每一圏上对齐、等间距排 列, 所以三圏孔道自上而下依次增大, 以上层第一圏孔道宽度为 a, 则第 二、 第三圏孔道宽度依次为 4a/ 3和 2 a。 相邻两圏孔道上下交错排列。 齿 轮的齿根圆直径是管式混合反应喷头开孔部位外径的 1. 5倍, 齿轮箱内 共设置两个齿轮; 管式混合反应喷头内径与内侧反应物通道管内径相等; 管式混合反应喷头转速为 90r/mi n, 传动衔接轮上下往复频率为 12 次 / 小时。
甲苯二胺(TDA ) ( 2, 4-2, 6异构体比例为 80/2 0, 下同) 的邻二氯苯 ( 0DCB )溶液质量浓度为 30%、光气( C0C 12 )的 0DCB溶液质量浓度为 75°/。, 纯光气与纯 TDA的质量之比为 3. 5 : 1, 纯 TDA进料速率为 5kg/h。 光气溶 液经外侧反应物通道进入齿轮箱, 并进一步经由物料进入孔道注入管式 混合反应喷头; TDA溶液经内侧反应物通道进入管式混合反应喷头; 两股 物料的输送压力均为 7. 5bar。 光气溶液温度为 (TC:, TDA溶液温度为 85 °C, 两股物料在管式混合反应喷头中快速接触并反应, 所形成的反应液 从管式混合反应喷头出来进入到后续反应器中,后续搅拌反应温度约 125 °C , 停留时间为 43分 40秒。
试 证明: 该装置稳定运转 1 000小时没有发生反应器污染或堵塞现 象。 反应液取样观察为酒红色且澄清透明, 没有悬浮物, 液相色谱分析 结果显示其 TDI选择性为 97. n。

Claims

1、 一种动态孔射流式反应器, 包括内进料管、 外进料管、 管式混合 反应喷头、 齿轮箱、 传动轴以及传动衔接轮; 其中, 所述传动轴、 内进 料管和外进料管自内而外同轴设置, 所述外进料管与齿轮箱连通且自上 而下同轴设置, 所述齿轮箱内设有齿轮和一个设有多个物料进入孔道的 管式混合反应喷头, 所述齿轮与管式混合反应喷头通过物料进入孔道相 互拟合, 且与齿轮箱圆周内壁拟合, 齿轮箱内还设有用于限位的齿轮轴 心轨道; 所述内进料管与管式混合反应喷头连通且自上而下同轴设置; 所述管式混合反应喷头在传动轴和传动衔接轮的驱动下轴向转动, 进而 带动齿轮箱内齿轮的转动; 所述传动衔接轮可在所述管式混合反应喷头 内上下往复运动。
2、 按照权利要求 1所述的动态孔射流式反应器, 其特征在于: 所述 物料进入孔道的横截面形状选自: 直角或圆角的长方形、 直角或圆角的 正方形、 三角形、 菱形、 梯形、 等边多边形、 非等边多边形、 圆形或椭 圆形中的任一种; 优选地, 所述物料进入孔道的横截面形状为直角或圆 角的长方形, 或者是直角或圆角的正方形。
3、 按照权利要求 2所述的动态孔射流式反应器, 其特征在于: 在管 式混合反应喷头上所述多个物料进入孔道设置为 1 ~ 20 圏, 优选 2 ~ 12 圏, 更优选 3 ~ 8圏。
4、 按照权利要求 3所述的反应器, 其特征在于: 当所述管式混合反 应喷头上设置有两圏或两圏以上的物料进入孔道时, 相邻两圏的物料进 入孔道对齐排列或相互交错排列; 优选相互交错排列; 所述相邻两圏的 物料进入孔道的数量、 形状和大小相同或不同; 每圏所包括的物料进入 孔道的数量为 8 ~ 40个, 优选 12 - 24个。
5、 按照权利要求 1 - 4 中任意一项所述的动态孔射流式反应器, 其 特征在于: 所述管式混合反应喷头在沿其轴向方向上具有不同的壁厚但 具有相同的内径; 优选地, 所述物料进入孔道所处部位的壁厚是管式混 合反应喷头下部出口端壁厚的 1 ~ 5倍; 优选 1. 5 ~ 3倍。
6、 按照权利要求 5所述的动态孔射流式反应器, 其特征在于: 所述 齿轮的内径是管式混合反应喷头物料进入孔道部位外径的 0. 25 ~ 4倍, 优选 0. 5 ~ 2倍。
7、 按照权利要求 6所述的动态孔射流式反应器, 其特征在于: 所述 齿轮的数量为 1 ~ 8个; 优选 2个、 4个、 6个或 8个。
8、 按照权利要求 1 - 4、 6和 7中任意一项所述的动态孔射流式反应 器, 其特征在于: 所述管式混合反应喷头的内壁上设有至少 1 条与管式 混合反应喷头等长的滑道, 以使得所述传动衔接轮在保持轴向转动的同 时可在所述管式混合反应喷头内上下往复运动; 优选所述管式混合反应 喷头的内壁上设有 2 ~ 3条滑道。
9、 按照权利要求 8所述的动态孔射流式反应器, 其特征在于: 所述 传动 ί接轮可通过手动或自动的方式实现上下往复运动; 优选以自动的 方式实现上下往复运动; 所述传动衔接轮往复运动的频率为 1 次 /天~ 1 次 /分钟; 优选 5 ~ 288次 /天; 更优选 5 ~ 48次 /天; 优选地, 所述传动 衔接轮往复运动的频率可通过变速箱逐级调节。
10、 按照权利要求 9 所述的动态孔射流式反应器, 其特征在于: 所 述管式混合反应喷头轴向转动的速度为 1 ~ 120r/min; 优选 6 - 60r/mino
11、按照权利要求 1或 10所述的动态孔射流式反应器,其特征在于: 所述传动轴与内进料管之间所形成的反应通道为内侧反应物通道, 所述 内进料管与外进料管之间所形成的反应通道为外侧反应物通道; 外侧反 应物通道与内侧反应物通道的横截面积之比为 0. 5 ~ 24: 1 ; 优选 0. 75 ~ 12 : 1 ; 更优选 1 ~ 7. 5 : 1。
12、 按照权利要求 11所述的动态孔射流式反应器, 其特征在于: 所
0. 5 ~ 4 : 1 ; 优选 0. 75 ~ 3 : 1。
13、 一种采用权利要求 1-12中任一项所述的孔射流式反应器制备如 通式(I )所示的脂肪族、 脂环族或芳香族异氰酸酯的方法,
R (NCO) n ( I )
R (皿 2) n ( I I ) 其中 R为脂肪族、脂环族或芳香族烃基, 并且至少有两个碳原子排列 在通式(I ) 的任意两个相邻的 (NC0 )之间, 以及 n > 2, 所述方法包括 以下步骤:
(a) .具有通式( I I )的一种或多种胺或胺的有机溶液通过内侧反应物 通道进入旋转的管式混合反应喷头; 或者通过外侧反应物通道进入齿轮 箱, 然后经过物料进入孔道以垂直于内侧流股的流动方向射入旋转的管 式混合反应喷头; 经过物料进入孔道以垂直于内侧流股的流动方向射入旋转的管式混合反 应喷头; 或者通过内侧反应物通道进入旋转的管式混合反应喷头;
(c) .胺侧和光气侧物料在各自的原料输送压力作用下分别经两侧反 应物通道汇集在旋转的管式混合反应喷头内进行快速的混合、 反应, 反 应液迅速通过管式混合反应喷头, 进入后续反应釜内继续进行并完成反 应。
14、 按照权利要求 13所述的方法, 其特征在于: 具有通式( I )的异 氰酸酯选自: 异构体比例为 100/ 0- 80/20或 65/ 35的 2, 4-/2, 6甲苯二异 氰酸酯、 二苯基甲烷 4, 4, -二异氰酸酯、 二环己基甲烷 4, 4, -二异氰酸 酯、 异佛尔酮二异氰酸酯、 1, 6-己二异氰酸酯、 1, 4-环己二异氰酸酯、 1, 8-二异氰酸根合 -4- (异氰酸甲酯基)辛烷、 三异氰酸根壬烷、 1, 4-丁二 异氰酸酯、 萘二异氰酸酯、 对苯二异氰酸酯、 苯二亚甲基二异氰酸酯、 环己烷二亚甲基二异氰酸酯、 三甲基 -1, 6-六亚甲基二异氰酸酯、 四甲基 间苯二亚甲基二异氰酸酯、 二甲基联苯二异氰酸酯或甲基环己基二异氰 酸酯; 优选苯二亚甲基二异氰酸酯、 二苯基甲烷 4, 4, -二异氰酸酯或甲 苯二异氰酸酯; 更优选甲苯二异氰酸酯。
15、 按照权利要求 13所述的方法, 其特征在于: 具有通式(I I ) 的 胺类有机物选自: 异构体比例为 80/20或 65/35的 2, 4-/2, 6甲苯二胺混 合物或纯的 2, 4-甲苯二胺、 二苯基甲烷 4, 4, -二胺、 二环己基甲烷 4, 4, -二胺、 异佛尔酮二胺、 1, 6-己二胺、 1, 4-环己二胺、 1, 8-二氨基 -4- (氨 甲基)辛烷、 三氨基壬烷、 1, 4-丁二胺、 萘二胺、 对苯二胺、 苯二亚甲基 二胺、 环己烷二亚甲基二胺、 三甲基 -1, 6-六亚甲基二胺、 四甲基间苯二 亚甲基二胺、 二甲基联苯二胺或甲基环己基二胺; 优选苯二亚甲基二胺、 二苯基甲烷 4, 4, -二胺或甲苯二胺; 更优选甲苯二胺。
16、 按照权利要求 13所述的方法, 其特征在于: 步骤(a)和(b)中所 述的多胺有机溶液和光气溶液是利用惰性溶剂对胺和光气进行稀释; 所 述惰性溶剂选自: 苯、 甲苯、 氯苯、 邻二氯苯、 对二氯苯、 一氯联苯、 对苯二甲酸二烷基酯或邻苯二甲酸二乙酯中的一种或多种; 所述多胺有 机溶液的浓度为 12.5%~45wt%, 优选 15 ~25wt。/。; 光气有机溶液浓度不 低于 60wt%。
17、 按照权利要求 13- 16中任意一项所述的方法, 其特征在于: 内 侧反应物通道内流体轴向流动的线速度为 0.8~ 14.6m/s, 优选 2.0 ~ 8.2 m/s; 外侧反应物通道内的物料通过物料进入孔道垂直射入管式混合反应 喷头的线速度是内侧流股轴向流动线速度的 1 ~ 9倍, 优选 1.2 ~ 5.5倍。
18、 按照权利要求 17所述的方法, 其特征在于: 内侧反应物通道和 外侧反应物通道内的物料压力均为 l ~20bar,优选 5 ~ 15bar; 当物料进 入孔道的总截面面积大于内侧反应物通道的横截面积时, 通过单独提升 物通道内反应物流动线速度的 1 ~ 9倍。
19、 按照权利要求 18所述的方法, 其特征在于: 所述管式混合反应 喷头的出口压力为 1 ~ 15bar, 优选 5 ~10bar。
PCT/CN2010/071883 2010-04-19 2010-04-19 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法 WO2011130901A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112012025838-9A BR112012025838B1 (pt) 2010-04-19 2010-04-19 reator de jato com orifício dinâmico e processo para a preparção de isocianatos usando o referido reator.
PCT/CN2010/071883 WO2011130901A1 (zh) 2010-04-19 2010-04-19 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法
SA111320382A SA111320382B1 (ar) 2010-04-19 2011-04-18 مفاعل ثقب ديناميكي نفاث وطريقة لتحضير مركبات أيزوسيانات باستخدام المفاعل المذكور

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071883 WO2011130901A1 (zh) 2010-04-19 2010-04-19 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法

Publications (1)

Publication Number Publication Date
WO2011130901A1 true WO2011130901A1 (zh) 2011-10-27

Family

ID=44833628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071883 WO2011130901A1 (zh) 2010-04-19 2010-04-19 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法

Country Status (3)

Country Link
BR (1) BR112012025838B1 (zh)
SA (1) SA111320382B1 (zh)
WO (1) WO2011130901A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058190A1 (en) * 2017-09-19 2019-03-28 Free Wheeler Ltd. MIXING MACHINE AND ASSOCIATED METHODS
CN112476931A (zh) * 2020-10-30 2021-03-12 王蕊 一种改性聚氨酯材料的制备工艺
CN114749116A (zh) * 2021-01-11 2022-07-15 万华化学集团股份有限公司 一种制备多异氰酸酯的方法及反应装置
CN116351361A (zh) * 2023-03-07 2023-06-30 宜兴市阳洋塑料助剂有限公司 一种apd管道反应方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117048A (en) * 1987-12-24 1992-05-26 Bayer Aktiengesellschaft Process for the continuous preparation of monoisocyanates or polyisocyanates
CN101153015A (zh) * 2006-09-28 2008-04-02 宁波万华聚氨酯有限公司 一种孔射流式反应器及利用该反应器制备异氰酸酯的方法
US20080310253A1 (en) * 2007-06-18 2008-12-18 Asahi Sunac Corporation Multi-component mixing apparatus
CN101372463A (zh) * 2007-08-21 2009-02-25 宁波万华聚氨酯有限公司 导流管型射流反应器及利用该反应器制备异氰酸酯的方法
CN101811019A (zh) * 2010-04-19 2010-08-25 烟台万华聚氨酯股份有限公司 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117048A (en) * 1987-12-24 1992-05-26 Bayer Aktiengesellschaft Process for the continuous preparation of monoisocyanates or polyisocyanates
CN101153015A (zh) * 2006-09-28 2008-04-02 宁波万华聚氨酯有限公司 一种孔射流式反应器及利用该反应器制备异氰酸酯的方法
US20080310253A1 (en) * 2007-06-18 2008-12-18 Asahi Sunac Corporation Multi-component mixing apparatus
CN101372463A (zh) * 2007-08-21 2009-02-25 宁波万华聚氨酯有限公司 导流管型射流反应器及利用该反应器制备异氰酸酯的方法
CN101811019A (zh) * 2010-04-19 2010-08-25 烟台万华聚氨酯股份有限公司 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058190A1 (en) * 2017-09-19 2019-03-28 Free Wheeler Ltd. MIXING MACHINE AND ASSOCIATED METHODS
US11420168B2 (en) 2017-09-19 2022-08-23 Industrial Machineries Ltd. Mixing machine and related methods
CN112476931A (zh) * 2020-10-30 2021-03-12 王蕊 一种改性聚氨酯材料的制备工艺
CN114749116A (zh) * 2021-01-11 2022-07-15 万华化学集团股份有限公司 一种制备多异氰酸酯的方法及反应装置
CN114749116B (zh) * 2021-01-11 2024-04-09 万华化学集团股份有限公司 一种制备多异氰酸酯的方法及反应装置
CN116351361A (zh) * 2023-03-07 2023-06-30 宜兴市阳洋塑料助剂有限公司 一种apd管道反应方法

Also Published As

Publication number Publication date
SA111320382B1 (ar) 2014-09-15
BR112012025838B1 (pt) 2019-01-29
BR112012025838A2 (pt) 2017-03-28

Similar Documents

Publication Publication Date Title
JP5850345B2 (ja) 高速混合反応器およびその使用
EP2179985B1 (en) Jet reactor with flow ducts and process for preparing isocyanates using it
CN101796022B (zh) 制备异氰酸酯的方法
JP5254234B2 (ja) 穴噴射型リアクターおよびこれを用いたイソシアナートの製造方法
DE3717057C2 (zh)
WO2011130901A1 (zh) 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法
CN1266123C (zh) 在气相中制备异氰酸酯的方法
CN101583594A (zh) 生产异氰酸酯的方法
CN102317254A (zh) 制备异氰酸酯的方法
CN101811017A (zh) 一种搅拌研磨反应器及利用该反应器制备异氰酸酯的方法
JP2010143899A (ja) 気相中でのイソシアネートの製造方法
CN101108812B (zh) 异氰酸酯的制备方法
EP2585203A1 (en) Static reactive jet mixer, and methods of mixing during an amine - phosgene mixing process
CN101879425A (zh) 一种制备异氰酸酯的反应器及方法
CN101811019B (zh) 一种动态孔射流式反应器及采用该反应器制备异氰酸酯的方法
JP2003535064A (ja) 有機モノイソシアネートまたはポリイソシアネートの連続製造法およびそのための装置
CN1758956A (zh) 制备多异氰酸酯的方法
CN101811018B (zh) 搅拌桨斜置式反应器、采用该反应器的系统及其方法
CN103084134A (zh) 一种动态孔射流式混合反应器及使用其生产二苯基甲烷系列二胺和多胺的方法
CN117101588B (zh) 用于生产异氰酸酯的反应器及应用其生产异氰酸酯的方法
CN211586574U (zh) 薄膜高效反应器
CN114749116B (zh) 一种制备多异氰酸酯的方法及反应装置
CN110382100B (zh) 制备异氰酸酯的方法
CN107597028A (zh) 一种制备异氰酸酯的反应器及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012025838

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10850035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012025838

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121009