WO2011129102A1 - 通信システム、メインユニット、無線アクセスユニット及び通信方法 - Google Patents

通信システム、メインユニット、無線アクセスユニット及び通信方法 Download PDF

Info

Publication number
WO2011129102A1
WO2011129102A1 PCT/JP2011/002169 JP2011002169W WO2011129102A1 WO 2011129102 A1 WO2011129102 A1 WO 2011129102A1 JP 2011002169 W JP2011002169 W JP 2011002169W WO 2011129102 A1 WO2011129102 A1 WO 2011129102A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication system
main unit
downlink
multiplexed
Prior art date
Application number
PCT/JP2011/002169
Other languages
English (en)
French (fr)
Inventor
佐藤崇昭
後藤文利
塩原正史
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to BR112012022510A priority Critical patent/BR112012022510A2/pt
Priority to US13/582,974 priority patent/US20130004176A1/en
Publication of WO2011129102A1 publication Critical patent/WO2011129102A1/ja
Priority to US14/699,080 priority patent/US9485023B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • H04B10/25754Star network topology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to a communication system, a main unit, a radio access unit, and a communication method, and in particular, communication for making a space such as a building or an underground city where a radio signal from a radio base station installed outdoors does not reach a serviceable area.
  • the present invention relates to a system, a main unit, a radio access unit, and a communication method.
  • FIG. 1 is a diagram showing a conventional communication system 1.
  • the communication system 1 in FIG. 1 mainly includes a radio base station apparatus 2, a main unit 3 ⁇ ⁇ ⁇ ⁇ , and a plurality of slave units 4.
  • mobile_unit 4 comprises single cell # 10.
  • the radio base station apparatus 2 transmits a downlink signal to the main unit 3, and the main unit 3 distributes the downlink signal to a plurality of slave units 4.
  • Each slave unit 4 wirelessly transmits the distributed downlink signal to a terminal (not shown) in the single cell # 10.
  • the plurality of slave units 4 receive an uplink signal that is a radio signal transmitted from a terminal (not shown) in the single cell # 10 and transmits the received uplink signal to the main unit 3.
  • the main unit 3 transmits the received uplink signal to the radio base station apparatus 2.
  • the conventional communication system 1 comprises single cell # 10 by the some subunit
  • Patent Literature 1 As a communication system that solves the above problems, it is conceivable to adopt the system configuration shown in Patent Document 1 that uses different communication systems together. According to Patent Literature 1, since users can be segregated by a communication system, the above-described problem can be solved.
  • Patent Document 1 equipment for performing modulation or demodulation of all the different communication systems is mounted on a base unit that is a base unit. Therefore, in Patent Document 1, there is a problem that it is necessary to significantly change the existing system configuration and it is not possible to flexibly cope with a change in the system such as a change in the number of cells after the start of operation.
  • the object of the present invention is that it is not necessary to significantly change the existing system configuration, and it is possible to flexibly respond to the system change, thereby reducing the cost associated with the introduction of the system and ensuring a wide range of coverage. It is possible to provide a communication system, a main unit, a radio access unit, and a communication method that can improve user throughput.
  • the communication system of the present invention is a communication system comprising a radio base station device, a main unit connected to the radio base station device and a network, and a plurality of radio access units connected to the main unit,
  • the radio base station apparatus outputs a downlink signal of the first communication system to the main unit, and the main unit receives the downlink signal of the first communication system input from the radio base station apparatus and the network.
  • the input downlink signal of the second communication system is output to each of the plurality of radio access units, and the plurality of radio access units constitute a single cell of the first communication system, A multi-cell of the second communication system is individually configured in a cell and input from the main unit.
  • the downlink signal of the first communication system is transmitted to a terminal using the first communication system of the single cell, and the downlink signal of the second communication system input from the main unit is subjected to wired protocol signal processing. After that, a configuration is adopted in which radio protocol signal processing is performed and transmitted to each terminal using the second communication system of the multi-cell.
  • the communication system of the present invention is a communication system including a radio base station apparatus, a main unit connected to the radio base station apparatus and a network, and a plurality of radio access units connected to the main unit.
  • the plurality of radio access units constitute a single cell of the first communication system, and each of the plurality of radio access units individually constitutes a multi-cell of the second communication system within the single cell, and the first cell of the single cell
  • An uplink signal of a first communication system received from a terminal using the communication system is output to the main unit, and an uplink signal of the second communication system received from a terminal using the second communication system of the multi-cell
  • the wired protocol signal processing is performed on the main unit.
  • the main unit combines the uplink signals of the first communication system input from the plurality of radio access units and outputs the synthesized signals to the radio base station apparatus, and the input from the plurality of radio access units.
  • the uplink signal of the second communication system is output to the network, and the radio base station apparatus adopts a configuration for acquiring the combined uplink signal of the first communication system from the main unit.
  • the main unit of the present invention includes a distribution unit that distributes an input downlink signal of the first communication system to a plurality of downlink signals of the first communication system, and each of the first communication systems distributed by the distribution unit. And a multiplexing means for generating and outputting a first multiplexed signal by multiplexing each downlink signal of the received downlink signal of the second communication system.
  • the main unit of the present invention acquires a plurality of first multiplexed signals obtained by multiplexing the uplink signal of the first communication system and the uplink signal of the second communication system, and acquires the acquired first multiplexed signal Are separated into the upstream signal of the first communication system and the upstream signal of the second communication system, respectively, and the separated means for outputting the separated upstream signal of the second communication system, and the separation means
  • a combining unit that combines and outputs the uplink signals of the first communication systems.
  • the radio access unit of the present invention includes an acquisition unit that acquires a downlink signal of the first communication system and a downlink signal of the second communication system, and a downlink signal of the second communication system acquired by the acquisition unit, A single cell of the first communication system configured with a protocol processing means for processing a wireless protocol signal after processing a wired protocol signal, and a downlink signal of the first communication system acquired by the acquisition means together with another wireless access unit
  • the second communication in which the downlink signal of the second communication system, which is transmitted to the terminal using the first communication system and processed by the protocol processing means, is configured in the single cell.
  • the radio access unit of the present invention receives an uplink signal of the first communication system from a terminal that uses the first communication system of a single cell of the first communication system configured together with another radio access unit.
  • receiving means for receiving an uplink signal of the second communication system from a terminal using the second communication system of the multi-cell of the second communication system configured in the single cell, and received by the receiving means
  • Protocol processing means for processing a wired protocol signal after processing an upstream signal of the second communication system after wireless protocol signal processing, and the wired signal by the upstream signal of the first communication system received by the receiving means and the protocol processing means.
  • An output unit that outputs the upstream signal of the second communication system that has processed the protocol signal It adopts a configuration comprising the, the.
  • the communication method of the present invention is a communication method in a communication system comprising a radio base station device, a main unit connected to the radio base station device and a network, and a plurality of radio access units connected to the main unit.
  • the radio base station apparatus outputs a downlink signal of the first communication system to the main unit; and the downlink signal of the first communication system input from the radio base station apparatus by the main unit.
  • And outputting a downlink signal of the second communication system input from the network to each of the plurality of radio access units, and the plurality of radio access units constitute a single cell of the first communication system And each of the multi-cells of the second communication system individually in the single cell.
  • the second communication system configured to transmit a downlink signal of the first communication system input from the main unit to a terminal using the first communication system of the single cell and input from the main unit A downlink protocol signal, a wired protocol signal process, a radio protocol signal process, and a transmission to each of the terminals using the second communication system of the multi-cell.
  • the communication method of the present invention is a communication in a communication system comprising a radio base station apparatus, a main unit connected to the radio base station apparatus and a network, and a plurality of radio access units connected to the main unit.
  • the plurality of radio access units constitutes a single cell of a first communication system and each individually constitutes a multi-cell of a second communication system within the single cell, A second communication system that outputs an uplink signal of the first communication system received from a terminal that uses the first communication system to the main unit and that is received from a terminal that uses the second communication system of the multi-cell.
  • the upstream signal is subjected to wireless protocol signal processing and then wired protocol signal processing to A step of outputting to the unit; and the main unit combines the uplink signals of the first communication system input from the plurality of radio access units and outputs to the radio base station apparatus, and the plurality of radio access units Outputting the uplink signal of the second communication system input from the network to the network, and the radio base station apparatus acquiring the synthesized uplink signal of the first communication system from the main unit. It was made to have.
  • the present invention it is not necessary to significantly change the existing system configuration, and it is possible to flexibly respond to the system change, thereby reducing the cost associated with the introduction of the system and ensuring a wide range of coverage.
  • the user throughput can be improved.
  • the figure which shows the structure of the conventional communication system The figure which shows the structure of the communication system which concerns on Embodiment 1 of this invention.
  • FIG. 2 is a diagram showing a configuration of the communication system 100 according to Embodiment 1 of the present invention.
  • the communication system 100 includes a radio base station device 102, a core network (CN) 103, a termination device (OLT) 104, a termination device (ONU) 105, a router 106, a main unit 107, and a plurality of radio access units. 10-1 to 108-n (n is an arbitrary natural number of 2 or more).
  • the radio base station apparatus 102 and the main unit 107 are connected by a single electric signal transmission cable such as a coaxial line.
  • the main unit 107 and each of the wireless access units 108-1 to 108-n are connected in a star shape, and are connected by a single optical signal transmission cable such as an optical fiber.
  • a single optical signal transmission cable such as an optical fiber.
  • the first communication system is WCDMA (Wideband Code Division Multiple Access) and the second communication system is LTE (Long Term Evolution) will be described as an example.
  • WCDMA of the first communication system and LTE of the second communication system transmit and receive data having different contents.
  • signals transmitted from radio base station apparatus 102 and core network 103 to radio access units 108-1 to 108-n are downlink signals, and radio signals are transmitted from radio access units 108-1 to 108-n.
  • a signal transmitted to the base station apparatus 102 and the core network 103 will be described as an uplink signal.
  • the radio base station apparatus 102 is a radio base station for WCDMA, and outputs a WCDMA downlink signal that is an RF signal to the main unit 107. Further, the radio base station apparatus 102 receives a WCDMA uplink signal that is an RF signal from the main unit 107.
  • the core network 103 outputs user data and control signals for the second LTE communication system to the terminal device 104 as LTE IP signals (hereinafter referred to as “IP signals”) generated according to the IP protocol. Further, the core network 103 receives the IP signal from the termination device 104.
  • IP signals LTE IP signals
  • the termination device 104 converts the IP signal input from the core network 103 from an electrical signal to an optical signal and outputs the signal to the termination device 105. In addition, the termination device 104 converts the IP signal input from the termination device 105 from an optical signal to an electrical signal and outputs the electrical signal to the core network 103.
  • the terminating device 105 converts the IP signal input from the terminating device 104 from an optical signal to an electrical signal and outputs it to the router 106.
  • the termination device 105 converts the IP signal input from the router 106 from an electrical signal to an optical signal and outputs the signal to the termination device 104.
  • the router 106 relays transmission of an IP signal from the termination device 105 to the main unit 107 or from the main unit 107 to the termination device 105.
  • the main unit 107 distributes the WCDMA downlink signal input from the radio base station apparatus 102 to a plurality of WCDMA downlink signals, and converts the distributed WCDMA downlink signal from an electrical signal to an optical signal. Further, the main unit 107 wavelength-division-multiplexes (WDM: Wavelength DivisionplexMultiplexing) the WCDMA downlink signal converted into the optical signal and the IP signal input from the router 106, and outputs them to the radio access units 108-1 to 108-n. To do.
  • WDM Wavelength DivisionplexMultiplexing
  • the main unit 107 also separates the wavelength division multiplexed multiplexed signal input from each of the radio access units 108-1 to 108-n into a WCDMA upstream signal and an IP signal, and separates the separated WCDMA upstream signal and the IP signal. Converts optical signals to electrical signals. Further, the main unit 107 combines the WCDMA uplink signals converted into electric signals and outputs the combined signals to the radio base station apparatus 102. Further, the main unit 107 outputs an IP signal converted into an electric signal to the router 106. Details of the configuration of the main unit 107 will be described later.
  • the plurality of radio access units 108-1 to 108-n constitute a single cell # 120.
  • Each of the plurality of radio access units 108-1 to 108-n individually configures multicells # 130-1 to # 130-n in single cell # 120. That is, the plurality of radio access units 108-1 to 108-n constitute the same number of multicells # 130-1 to # 130-n as the radio access units 108-1 to 108-n.
  • the plurality of radio access units 108-1 to 108-n separate the multiplexed signal input from the main unit 107 into a WCDMA downlink signal and an IP signal, and the separated WCDMA downlink signal and the IP signal are converted from an optical signal to an electrical signal.
  • the plurality of radio access units 108-1 to 108-n transmit the WCDMA downlink signal converted into the electric signal to the terminal using the first communication system of the single cell # 120. Further, the plurality of radio access units 108-1 to 108-n transmit IP signals converted into electric signals to terminals using the second communication system of the corresponding multicells # 130-1 to # 130-n. . In addition, the plurality of radio access units 108-1 to 108-n are the WCDMA uplink signals transmitted from the terminals using the first communication system of the single cell # 120 or the first of the multicells # 130-1 to # 130-n. The IP signal transmitted from the terminal using the communication system 2 is received.
  • the plurality of radio access units 108-1 to 108-n convert the received WCDMA uplink signal and IP signal from an electric signal to an optical signal, and wavelength division multiplex the converted WCDMA uplink signal and the IP signal. Thus, a multiplexed signal is generated, and the generated multiplexed signal is output to the main unit 107. Details of the configuration of the radio access units 108-1 to 108-n will be described later.
  • FIG. 3 is a block diagram showing the configuration of the main unit 107.
  • the main unit 107 includes a distributor 301, E / O converters 302-1 to 302-n, O / E converters 303-1 to 303-n, medium converters 304-1 to 304-n, It is mainly composed of WDM couplers 305-1 to 305-n and a combiner 306.
  • the optical interface units 350-1 to 350-n include E / O converters 302-1 to 302-n, O / E converters 303-1 to 303-n, and medium converters 304-1 to 304. -N and WDM couplers 305-1 to 305-n.
  • the radio base station apparatus 102 and the distributor 301 are connected by a single electric signal transmission cable such as a coaxial line.
  • Radio base station apparatus 102 and combiner 306 are connected by a single electric signal transmission cable such as a coaxial line.
  • the WDM couplers 305-1 to 305-n and the respective wireless access units 108-1 to 108-n are connected in a star shape, and are connected by a single optical signal transmission cable such as an optical fiber.
  • Distributor 301 distributes the WCDMA downlink signal input from radio base station apparatus 102 to n WCDMA downlink signals, and distributes each of the n distributed WCDMA downlink signals to E / O converters 302-1 to 302-n. To each output.
  • the E / O converters 302-1 to 302-n convert the WCDMA downstream signal input from the distributor 301 from an electrical signal to an optical signal having a wavelength ⁇ d_RF , and output the optical signal to the WDM couplers 305-1 to 305-n. .
  • the O / E converters 303-1 to 303-n convert the WCDMA upstream signal input from the WDM couplers 305-1 to 305-n from an optical signal having the wavelength d_RF into an electrical signal and output the resultant signal to the combiner 306.
  • Media converters 304-1 to 304-n convert the IP signal input from router 106 from an electrical signal to an optical signal of wavelength d_IP , and output the optical signal to WDM couplers 305-1 to 305-n. Further, the medium converters 304-1 to 304-n convert the optical signals having wavelengths different from the wavelengths of the optical signals converted by the E / O converters 302-1 to 302-n.
  • WDM couplers 305-1 ⁇ 305-n includes a WCDMA downlink signal wavelength d_RF input from the E / O converter 302-1 ⁇ 302-n, a wavelength d_IP input from media converters 304-1 ⁇ 304-n A multiplexed signal is generated by wavelength division multiplexing the IP signal. Also, the WDM couplers 305-1 to 305-n output the generated multiplexed signal to the radio access units 108-1 to 108-n. Also, WDM couplers 305-1 ⁇ 305-n are multiplexed signal input from radio access units 108-1 ⁇ 108-n, it is separated into the IP signal WCDMA uplink signal wavelength d_RF and wavelength D_IP.
  • the WDM couplers 305-1 to 305-n output the separated WCDMA upstream signal of wavelength d_RF to the O / E converters 303-1 to 303-n, and the separated IP signal of wavelength d_IP to the medium converter Output to 304-1 to 304-n.
  • the combiner 306 combines the WCDMA uplink signals input from the O / E converters 303-1 to 303-n and outputs the combined signals to the radio base station apparatus 102.
  • FIG. 4 is a block diagram showing the configuration of the radio access unit 108-1. Note that the configuration of the radio access units 108-2 to 108-n is the same as that of the radio access unit 108-1 in FIG.
  • the radio access unit 108-1 includes a WDM coupler 401, an O / E converter 402, an E / O converter 403, a medium converter 404, a radio base station function unit 405, an AMP unit 406, and an antenna 407. -1, 407-2.
  • a WDM coupler 401 for converting signals to DC signals
  • O / E converter 402 for converting signals to DC signals
  • E / O converter 403 for converting to DC to base station
  • a radio base station function unit 405 for controlling the radio base station function of the radio base station function unit 406
  • an antenna 407. -1, 407-2 a radio base station function unit
  • a multiplex signal input from the main unit 107 is separated into the IP signal WCDMA downstream signal wavelength d_IP wavelength D_RF.
  • the WDM coupler 401 outputs the separated WCDMA downstream signal having the wavelength d_RF to the O / E converter 402 and outputs the separated IP signal having the wavelength d_IP to the medium converter 404.
  • the WDM coupler 401 wavelength-division-multiplexes the WCDMA upstream signal having the wavelength d_RF input from the E / O converter 403 and the IP signal having the wavelength d_IP input from the medium converter 404 to generate a multiplexed signal. Further, the WDM coupler 401 outputs the generated multiplexed signal to the main unit 107.
  • the O / E converter 402 converts the WCDMA downstream signal having the wavelength d_RF input from the WDM coupler 401 from an optical signal to an electrical signal and outputs the electrical signal to the AMP unit 406.
  • the E / O converter 403 converts the WCDMA upstream signal input from the AMP unit 406 from an electrical signal to an optical signal having a wavelength d_RF and outputs the optical signal to the WDM coupler 401.
  • the medium converter 404 converts the IP signal of the wavelength d_IP input from the WDM coupler 401 from an optical signal to an electric signal and outputs it to the radio base station function unit 405.
  • the medium converter 404 converts the IP signal input from the radio base station function unit 405 from an electric signal to an optical signal having a wavelength d_IP and outputs the optical signal to the WDM coupler 401.
  • the medium converter 404 converts the optical signal having a wavelength different from the wavelength of the optical signal converted by the E / O converter 403.
  • the wireless base station function unit 405 processes the IP signal input from the medium converter 404 after processing the wired protocol signal corresponding to LTE, performs wireless protocol signal processing, and outputs the result to the AMP unit 406 as an LTE RF downlink signal. Also, the radio base station function unit 405 processes the LTE RF uplink signal input from the AMP unit 406, processes the radio protocol signal corresponding to the LTE, performs the wired protocol signal processing, and outputs the LTE protocol IP signal to the medium converter 404. To do. For example, the radio base station function unit 405 outputs an LTE IP signal to the medium converter 404 as an S1 interface signal. Note that the radio base station function unit 405 outputs an Iuh interface signal in the case of a WCDMA uplink signal.
  • the radio base station function unit 405 has the same function as, for example, a femtocell base station.
  • the femtocell is a small base station, and constitutes a call area of a mobile phone having a very small range with a radius of about several tens of meters.
  • the AMP unit 406 amplifies the WCDMA downlink signal input from the O / E converter 402, and wirelessly transmits the signal from the antenna 407-1 to a terminal using the first communication system of the single cell # 120. Also, the AMP unit 406 amplifies the LTE RF downlink signal input from the radio base station function unit 405, and transmits it from the antenna 407-2 to the terminal using the corresponding second communication system of the multicell # 130-1. To do. Also, the AMP unit 406 receives signals from a terminal using the first communication system of the single cell # 120 or a terminal using the second communication system of the multicell # 130-1 via the antennas 407-1 and 407-2. The processed signal is amplified and filtered as necessary.
  • the AMP unit 406 extracts a frequency band signal used for the WCDMA uplink signal or a frequency band signal used for the LTE RF uplink signal. Further, the AMP unit 406 outputs the extracted WCDMA uplink signal to the E / O converter 403. Further, the AMP unit 406 outputs the extracted LTE RF uplink signal to the radio base station function unit 405. Note that the antennas 407-1 and 407-2 may be used separately for WCDMA and LTE, or may be shared by WCDMA and LTE.
  • the radio base station apparatus 102 outputs the WCDMA downlink signal to the main unit 107 as an RF signal.
  • the main unit 107 distributes the WCDMA downlink signal input from the radio base station apparatus 102 to the same number of WCDMA downlink signals as the radio access units 108-1 to 108-n.
  • the main unit 107 converts the distributed WCDMA downlink signal and the IP signal input from the core network 103 via the termination device 104, the termination device 105, and the router 106 from an electrical signal to an optical signal.
  • the main unit 107 generates a multiplexed signal by wavelength division multiplexing the WCDMA downlink signal converted into the optical signal and the IP signal, and outputs the generated multiplexed signal to the radio access units 108-1 to 108-n. .
  • each of the radio access units 108-1 to 108-n separates the multiplexed signal input from the main unit 107 into a WCDMA downlink signal and an IP signal, and the separated WCDMA downlink signal and IP signal are converted from an optical signal to an electrical signal. Convert to
  • each of the wireless access units 108-1 to 108-n performs a wired protocol signal processing and a wireless protocol signal processing corresponding to LTE on the IP signal converted into the electrical signal, and multi-cell # 130- Wirelessly transmit to terminals 1 to # 130-n.
  • each of the wireless access units 108-1 to 108-n wirelessly transmits a WCDMA downlink signal converted into an electric signal to a terminal that uses the first communication system of the single cell # 120.
  • Each of the radio access units 108-1 to 108-n receives a WCDMA uplink signal from a terminal that uses the first communication system of the single cell # 120, and also receives the second signals of the multicells # 130-1 to # 130-n.
  • An LTE RF uplink signal is received from a terminal using the communication system.
  • each of the wireless access units 108-1 to 108-n performs a wireless protocol signal processing and a wired protocol signal processing corresponding to LTE on the received LTE RF uplink signal to generate an LTE IP signal.
  • each of the wireless access units 108-1 to 108-n converts the generated IP signal and the received WCDMA uplink signal from an electric signal to an optical signal.
  • each of the radio access units 108-1 to 108-n generates a multiplexed signal by wavelength division multiplexing the WCDMA upstream signal converted into the optical signal and the IP signal, and outputs the generated multiplexed signal to the main unit 107. To do.
  • the main unit 107 separates the multiplexed signal input from each of the radio access units 108-1 to 108-n into a WCDMA upstream signal and an IP signal.
  • the main unit 107 converts the separated WCDMA upstream signal and IP signal from an optical signal to an electrical signal.
  • the main unit 107 combines the WCDMA uplink signals converted into electric signals and outputs the combined signals to the radio base station apparatus 102.
  • the main unit 107 outputs the IP signal converted into the electric signal to the core network 103 via the router 106, the termination device 105, and the termination device 104.
  • each wireless access unit it is not necessary to significantly change the existing system configuration by providing each wireless access unit with a wireless base station function unit that wirelessly transmits and receives LTE IP signals. It is possible to respond flexibly to changes. As a result, the cost associated with the introduction of the system can be reduced. Moreover, according to this Embodiment, since a single cell is comprised by several radio
  • FIG. 5 is a diagram showing a configuration of a communication system 500 according to Embodiment 2 of the present invention.
  • the communication system 500 shown in FIG. 5 has a radio base station apparatus 501 instead of the radio base station apparatus 102, and a main unit 107 instead of the main unit 107, compared to the communication system 100 according to Embodiment 1 shown in FIG. Unit 502, and wireless access units 503-1 to 503-n instead of the wireless access units 108-1 to 108-n.
  • FIG. 5 parts having the same configuration as in FIG.
  • the communication system 500 includes a core network (CN) 103, a termination device (OLT) 104, a termination device (ONU) 105, a router 106, a radio base station device 501, a main unit 502, and a plurality of radio access units. 503-1 to 503-n.
  • the core network 103 and the radio base station apparatus 501 are connected by a single electric signal transmission cable such as a coaxial line.
  • the radio base station apparatus 501 and the main unit 502 are connected by a single optical signal transmission cable such as an optical fiber, and are connected by a CPRI (Common Public Radio Interface) interface.
  • CPRI Common Public Radio Interface
  • the first communication system and the second communication system are multiplexed using a CPRI format that transmits an IQ signal for two antennas with one carrier frequency.
  • the CPRI signal output between the radio base station apparatus 501 and the main unit 502 does not employ the diversity method in the uplink and downlink. That is, an IQ signal for one antenna is output.
  • the main unit 502 and each of the wireless access units 503-1 to 503-n are connected in a star shape and are connected by a single optical signal transmission cable such as an optical fiber.
  • each configuration will be described in detail.
  • a case where the first communication system is LTE and the second communication system is LTE will be described as an example. Also, the LTE of the first communication system and the LTE of the second communication system transmit / receive data having different contents.
  • a signal transmitted from core network 103 to radio access units 503-1 to 503-n is a downlink signal, and is transmitted from radio access units 503-1 to 503-n to core network 103. The signal will be described as an upstream signal.
  • the core network 103 outputs the LTE IP signal of the first communication system to the radio base station apparatus 501, and outputs the LTE IP signal of the second communication system to the termination apparatus 104. Also, the core network 103 receives the LTE IP signal of the first communication system from the radio base station apparatus 501 and receives the LTE IP signal of the second communication system from the termination apparatus 104.
  • the radio base station apparatus 501 is an LTE radio base station that converts an IP signal input from the core network 103 into a CPRI downlink signal, which is an optical signal, and converts the converted CPRI downlink signal into a CPRI uplink signal and a wavelength. Divide and multiplex and output to the main unit 502. Also, the radio base station apparatus 501 converts the CPRI downlink signal and the wavelength division multiplexed CPRI uplink signal, which are optical signals input from the main unit 502, into an IP signal and outputs the IP signal to the core network 103.
  • the router 106 relays transmission of an IP signal from the termination device 105 to the main unit 502 or from the main unit 502 to the termination device 105.
  • the main unit 502 separates the CPRI downlink signal input from the radio base station apparatus 501 from the CPRI uplink signal. Also, the main unit 502 converts the separated CPRI downlink signal from an optical signal to an electrical signal, and branches the CPRI downlink signal converted into the electrical signal in units of frames. Also, the main unit 502 generates a downlink multiplexed signal by frame multiplexing the branched CPRI downlink signal and the IP signal input from the router 106, and converts the generated downlink multiplexed signal from an electrical signal to an optical signal.
  • the main unit 502 wavelength-division-multiplexes the downlink multiplexed signal converted into the optical signal with the uplink multiplexed signal and outputs it to the radio access units 503-1 to 503-n.
  • the main unit 502 separates the uplink multiplexed signal input from each of the radio access units 503-1 to 503-n from the downlink multiplexed signal, and separates the separated uplink multiplexed signal in units of frames. Further, the main unit 502 adds the uplink multiplexed signals separated in frame units to generate a CPRI uplink signal, and converts the generated CPRI uplink signal from an electrical signal to an optical signal.
  • the main unit 502 wavelength-division-multiplexes the CPRI uplink signal converted into the optical signal with the CPRI downlink signal and outputs the result to the radio base station apparatus 501. Details of the configuration of the main unit 502 will be described later.
  • the plurality of radio access units 503-1 to 503-n constitute a single cell # 520.
  • Each of the plurality of radio access units 503-1 to 503-n individually configures multicells # 530-1 to # 530-n in the single cell # 520. That is, the plurality of radio access units 503-1 to 503-n constitute the same number of multicells # 530-1 to # 530-n as the radio access units 503-1 to 503-n.
  • the plurality of radio access units 503-1 to 503-n separate the downlink multiplexed signal input from the main unit 502 from the uplink multiplexed signal, and convert the separated downlink multiplexed signal from an optical signal to an electrical signal.
  • the plurality of radio access units 503-1 to 503-n separate the downlink multiplexed signal converted into the electric signal in units of frames, and use the separated downlink multiplexed signal in the first communication system of the single cell # 520. Up-conversion is performed so as to obtain an RF signal having a radio frequency that can be received by the terminal. Further, the plurality of radio access units 503-1 to 503-n wirelessly transmit an RF signal to a terminal using the first communication system of the single cell # 520. Further, the plurality of radio access units 503-1 to 503-n convert the separated downlink multiplexed signal into an IP signal, and convert the converted IP signal into the second cells of the corresponding multicells # 530-1 to # 530-n.
  • the plurality of radio access units 503-1 to 503-n are RF signals transmitted from terminals using the first communication system of the single cell # 520 or the second signals of the multicells # 530-1 to # 530-n. An RF signal transmitted from a terminal using the communication system is received.
  • the plurality of radio access units 503-1 to 503-n down-convert RF signals received from terminals using the first communication system of the single cell # 520.
  • the plurality of wireless access units 503-1 to 503-n are wired after the RF signals received from the terminals using the second communication system of the multicells # 530-1 to # 530-n are processed by the wireless protocol signal. Protocol signal processing is performed to generate an IP signal.
  • the plurality of radio access units 503-1 to 503-n frame-multiplexes the generated IP signal and the signal received from the terminal using the first communication system of the down-converted single cell # 520, and performs uplink multiplexing.
  • a signal is generated, and the generated uplink multiplexed signal is converted from an electric signal to an optical signal.
  • the plurality of radio access units 503-1 to 503-n convert the uplink multiplexed signal converted into the optical signal from the electric signal into the optical signal, and the uplink multiplexed signal converted into the optical signal is converted into the downlink multiplexed signal and the wavelength division multiplexing.
  • To the main unit 502. Details of the configuration of the radio access units 503-1 to 503-n will be described later.
  • FIG. 6 is a block diagram showing the configuration of the main unit 502.
  • the main unit 502 includes a WDM coupler 601, an O / E converter 602, an E / O converter 603, a signal branching unit 604, signal converting units 605-1 to 605-n, and a frame multiplexing unit 606-1.
  • 606-n, frame separation units 607-1 to 607-n, E / O converters 608-1 to 608-n, WDM couplers 609-1 to 609-n, and O / E converter 610- 1 to 610-n and a signal adder 611 are mainly configured.
  • the REC interface unit 650 includes a WDM coupler 601, an O / E converter 602, and an E / O converter 603.
  • the demultiplexing units 660-1 to 660-n include signal conversion units 605-1 to 605-n, frame multiplexing units 606-1 to 606-n, and frame demultiplexing units 607-1 to 607-n.
  • the radio access unit interface units 670-1 to 670-n include E / O converters 608-1 to 608-n, WDM couplers 609-1 to 609-n, and O / E converters 610-1 to 610-n.
  • REC means a device having a function of performing modulation and demodulation of a radio base station device defined by the CPRI specification.
  • each configuration will be described in detail.
  • the WDM coupler 601 separates the CPRI downlink signal from the multiplexed signal in which the CPRI downlink signal and the CPRI uplink signal input from the radio base station apparatus 501 are wavelength division multiplexed. Also, the WDM coupler 601 outputs the separated CPRI downlink signal to the O / E converter 602. Also, the WDM coupler 601 wavelength-division-multiplexes the CPRI uplink signal input from the E / O converter 603 with the CPRI downlink signal to generate a multiplexed signal, and outputs the generated multiplexed signal to the radio base station apparatus 501. .
  • the O / E converter 602 converts the CPRI downlink signal input from the WDM coupler 601 from an optical signal to an electrical signal and outputs the signal to the signal branching unit 604.
  • the E / O converter 603 converts the CPRI uplink signal input from the signal adder 611 from an electrical signal to an optical signal and outputs the converted signal to the WDM coupler 601.
  • the signal branching unit 604 branches the CPRI downlink signal input from the O / E converter 602 into n CPRI downlink signals, and the branched CPRI downlink signals are frame multiplexing units 606-1 to 606-n. Output to.
  • the signal converters 605-1 to 605-n convert the IP signal input from the router 106 into a pseudo IQ signal and output the pseudo IQ signal to the frame multiplexers 606-1 to 606-n.
  • the pseudo IQ signal is continuous by inserting dummy bits so that the signal speed is equivalent to the IQ signal transmitted and received between the CPRI interfaces between the radio base station apparatus 501 and the REC interface unit 650. It is a signal that can be handled as a signal.
  • the signal conversion units 605-1 to 605-n remove dummy bits from the pseudo IQ signals input from the frame separation units 607-1 to 607-n, convert them into IP signals, and output the IP signals to the router 106. To do.
  • Frame multiplexing units 606-1 to 606-n are CPRI frame downlink signals obtained by frame multiplexing the CPRI downlink signal input from signal branching unit 604 and the pseudo IQ signal input from signal conversion units 605-1 to 605-n. Is generated.
  • the CPRI frame downstream signal is a signal multiplexed on the CPRI format.
  • the frame multiplexing units 606-1 to 606-n output the generated CPRI frame downlink signals to the E / O converters 608-1 to 608-n.
  • the frame multiplexing units 606-1 to 606-n handle the input CPRI downlink signal and pseudo IQ signal as different antenna signals on the CPRI interface. The processing in the signal conversion units 605-1 to 605-n will be described later.
  • Frame demultiplexing units 607-1 to 607-n receive IQ signals and pseudo IQ signals that handle CPRI frame uplink signals input from O / E converters 610-1 to 610-n as signals of different antennas on the CPRI interface. To separate. Also, the frame separation units 607-1 to 607-n output the separated IQ signal to the signal addition unit 611, and output the separated pseudo IQ signal to the signal conversion units 605-1 to 605-n.
  • the E / O converters 608-1 to 608-n convert the CPRI frame downstream signal input from the frame multiplexing units 606-1 to 606-n from an electric signal to an optical signal and convert them to WDM couplers 609-1 to 609-n. Output to.
  • the WDM couplers 609-1 to 609-n wavelength-division-multiplex the CPRI frame downstream signal input from the E / O converters 608-1 to 608-n with the CPRI frame upstream signal, and perform wireless access units 503-1 to Output to 503-n. Also, the WDM couplers 609-1 to 609-n separate the CPRI frame uplink signal from the multiplexed signal obtained by wavelength division multiplexing the CPRI frame downlink signal and the CPRI frame uplink signal, and the separated CPRI frame uplink signal is converted into the O / E. Output to converters 610-1 to 610-n.
  • the O / E converters 610-1 to 610-n convert the CPRI frame uplink signal input from the WDM couplers 609-1 to 609-n from an optical signal to an electrical signal and convert the frame separation units 607-1 to 607-n. Output to.
  • the signal adder 611 adds the n IQ signals input from the frame separators 607-1 to 607-n to generate a CPRI uplink signal.
  • the signal adding unit 611 outputs the generated CPRI uplink signal to the E / O converter 603.
  • FIG. 7 is a block diagram showing a configuration of the wireless access unit 503-1. Note that the configuration of the wireless access units 503-2 to 503-n is the same as that of the wireless access unit 503-1 in FIG.
  • the radio access unit 503-1 includes a WDM coupler 701, an O / E converter 702, a frame separation unit 703, a TRX unit 704, a signal conversion unit 705, a radio base station function unit 706, and an AMP unit 707.
  • the frame multiplex unit 708, the E / O converter 709, and antennas 710-1 and 710-2 are mainly configured. Hereinafter, each configuration will be described in detail.
  • the WDM coupler 701 separates the CPRI frame downlink signal from the multiplexed signal in which the CPRI frame downlink signal and the CPRI frame uplink signal input from the main unit 502 are wavelength division multiplexed. Also, the WDM coupler 701 outputs the separated CPRI frame downlink signal to the O / E converter 702. Also, the WDM coupler 701 wavelength-division-multiplexes the CPRI frame uplink signal input from the E / O converter 709 with the CPRI frame downlink signal and outputs the result to the main unit 502.
  • the O / E converter 702 converts the CPRI frame downstream signal input from the WDM coupler 701 from an optical signal to an electrical signal and outputs the converted signal to the frame separation unit 703.
  • the frame separation unit 703 separates the CPRI frame downlink signal input from the O / E converter 702 into an IQ signal and a pseudo IQ signal that are handled as different antenna signals on the CPRI interface. Also, the frame separation unit 703 outputs the separated IQ signal to the TRX unit 704, and outputs the separated pseudo IQ signal to the signal conversion unit 705.
  • the TRX unit 704 up-converts the IQ signal input from the frame separation unit 703 so as to become an RF signal of a predetermined radio frequency, and outputs it to the AMP unit 707.
  • TRX section 704 generates an IQ signal by down-converting the RF signal input from AMP section 707, and outputs the generated IQ signal to frame multiplexing section 708.
  • the signal conversion unit 705 removes dummy bits from the pseudo IQ signal input from the frame separation unit 703, converts the pseudo bit into an IP signal, and outputs the converted IP signal to the radio base station function unit 706. Further, the signal conversion unit 705 generates a pseudo IQ signal by inserting dummy bits into the IP signal input from the radio base station function unit 706, and outputs the generated pseudo IQ signal to the frame multiplexing unit 708.
  • the radio base station function unit 706 performs a radio protocol signal process on the IP signal input from the signal conversion unit 705, and then outputs the signal to the AMP unit 707 as an LTE RF downlink signal. Also, the radio base station function unit 706 performs an LTE RF uplink signal input from the AMP unit 707, processes a radio protocol signal corresponding to LTE, performs a wired protocol signal process, and outputs the signal to the signal conversion unit 705 as an LTE IP signal. To do. For example, the radio base station function unit 706 outputs an LTE IP signal to the signal conversion unit 705 as an S1 interface signal. The radio base station function unit 706 outputs an Iuh interface signal in the case of a WCDMA uplink signal. The radio base station function unit 706 has the same function as a femtocell base station, for example.
  • the AMP unit 707 amplifies the RF signal input from the TRX unit 704 and wirelessly transmits the signal from the antenna 710-1 to a terminal using the first communication system of the single cell # 520. Also, the AMP unit 707 amplifies the RF signal input from the radio base station function unit 706, and transmits the amplified RF signal from the antenna 710-2 to the terminal using the second communication system of the corresponding multicell # 530-1. Also, the AMP unit 707 receives from the terminal using the first communication system of the single cell # 520 or the terminal using the second communication system of the multicell # 530-1 via the antennas 710-1 and 710-2. The processed signal is amplified and filtered as necessary.
  • the AMP unit 707 extracts a signal in a frequency band used in LTE of the single cell # 520 or a signal in a frequency band used in LTE of the multicell # 530-1. Also, the AMP unit 707 outputs the extracted LTE RF signal of the single cell # 520 to the TRX unit 704. Also, the AMP unit 707 outputs the extracted LTE RF signal of the multi-cell # 530-1 to the radio base station function unit 706.
  • the antennas 710-1 and 710-2 may be used properly for each LTE, or may be shared by each LTE.
  • the frame multiplexing unit 708 generates a CPRI frame uplink signal obtained by frame multiplexing the IQ signal input from the TRX unit 704 and the pseudo IQ signal input from the signal conversion unit 705.
  • the CPRI frame uplink signal is a signal multiplexed on the CPRI format.
  • the frame multiplexing unit 708 outputs the generated CPRI frame uplink signal to the E / O converter 709.
  • the E / O converter 709 converts the CPRI frame uplink signal input from the frame multiplexing unit 708 from an electric signal to an optical signal and outputs the converted signal to the WDM coupler 701.
  • the radio base station apparatus 501 converts the CPRI downlink signal acquired from the core network 103 from an electrical signal to an optical signal, and generates a multiplexed signal by wavelength division multiplexing the CPRI downlink signal and the CPRI uplink signal converted into the optical signal. .
  • the radio base station apparatus 501 outputs the generated multiplexed signal to the main unit 502.
  • the main unit 502 separates the CPRI downlink signal from the multiplexed signal input from the radio base station apparatus 501 and converts the separated CPRI downlink signal from an optical signal to an electrical signal.
  • the main unit 502 branches the CPRI downlink signal converted into the electric signal into n CPRI downlink signals.
  • the main unit 502 converts the IP signal input from the router 106 into a pseudo IQ signal.
  • the main unit 502 frame-multiplexes n CPRI downlink signals and pseudo IQ signals to generate n CPRI frame downlink signals, and converts the generated CPRI frame downlink signals from electrical signals to optical signals. .
  • the main unit 502 wavelength-division-multiplexes the CPRI downlink signal and the CPRI uplink signal converted into an optical signal to generate n multiplexed signals, and the generated n multiplexed signals are transmitted to each radio access unit 503- Output to 1 to 503-n.
  • the radio access units 503-1 to 503-n separate the CPRI downlink signal from the multiplexed signal input from the main unit 502.
  • the radio access units 503-1 to 503-n convert the separated CPRI downlink signal from an optical signal to an electric signal, and separate the converted CPRI downlink signal into an IQ signal and a pseudo IQ signal.
  • radio access units 503-1 to 503-n upconvert IQ signals to generate RF signals, and wirelessly transmit the generated RF signals to terminals using the first communication system of single cell # 520. To do.
  • the radio access units 503-1 to 503-n convert the pseudo IQ signal into an IP signal, and also convert the IP signal into an RF signal, so that the second multi-cell # 530-1 to # 530-n Wirelessly transmitted to a terminal using the communication system.
  • Radio access units 503-1 to 503-n receive RF signals from terminals using the first communication system of single cell # 520, and the second communication system of multicells # 530-1 to # 530-n An RF signal is received from a terminal that uses.
  • the radio access units 503-1 to 503-n downconvert the RF signal received from the terminal using the first communication system of the single cell # 520 to generate an IQ signal.
  • the radio access units 503-1 to 503-n convert RF signals received from terminals using the second communication system of the multicells # 530-1 to # 530-n into IP signals and convert the IP signals. Convert to pseudo IQ signal.
  • the radio access units 503-1 to 503-n generate a CPRI frame uplink signal obtained by frame multiplexing the IQ signal and the pseudo IQ signal, and convert the generated CPRI frame uplink signal from an electric signal to an optical signal.
  • the CPRI frame upstream signal and the CPRI frame downstream signal converted into the optical signal are wavelength division multiplexed to generate a multiplexed signal, and the generated multiplexed signal is output to the main unit 502.
  • the main unit 502 separates the CPRI frame uplink signal from the multiplexed signal input from each of the radio access units 503-1 to 503-n, and converts the separated CPRI frame uplink signal from an optical signal to an electrical signal.
  • the main unit 502 separates the CPRI frame upstream signal converted into the electrical signal into an IQ signal and a pseudo IQ signal.
  • the main unit 502 converts the separated pseudo IQ signal into an IP signal and outputs it to the router 106.
  • the main unit 502 adds n separated IQ signals to generate an upstream CPRI signal, and converts the generated upstream CPRI signal from an electrical signal to an optical signal.
  • the uplink CPRI signal converted into the optical signal and the downlink CPRI signal are wavelength division multiplexed to generate a multiplexed signal, and the generated multiplexed signal is output to the radio base station apparatus 501.
  • FIG. 8 is a diagram illustrating a method for multiplexing CPRI frames.
  • the frame multiplexing units 606-1 to 606-n and the frame multiplexing unit 708 handle the IQ signal as a signal of antenna # 0 (AC0) and the pseudo IQ signal as a signal of antenna # 1 (AC1). . Also, the frame multiplexing units 606-1 to 606-n and the frame multiplexing unit 708 generate the CPRI frame downlink signal and the CPRI frame uplink signal with AxC Containers # 0 to # 7 as one group.
  • a CPRI format that transmits IQ signals for two antennas with one carrier frequency is used.
  • a signal assigned to one of the two antennas is used for a radio signal transmitted to a terminal using the single-cell first communication system.
  • a signal assigned to one of the two antennas is used for an IP signal transmitted to a terminal using the second multi-cell communication system.
  • each wireless access unit it is not necessary to significantly change the existing system configuration by providing each wireless access unit with a wireless base station function unit that wirelessly transmits and receives LTE IP signals. It is possible to respond flexibly to changes. As a result, the cost associated with the introduction of the system can be reduced. Moreover, according to this Embodiment, since a single cell is comprised by several radio
  • the communication system, main unit, radio access unit, and communication method according to the present invention are particularly suitable for making a space in a building or an underground shopping mall where a radio signal from a radio base station installed outdoors does not reach a serviceable area. It is.

Abstract

 既存のシステム構成を大幅に変更する必要がなく、システムの導入に伴うコストを低減することができ、広範囲なカバレッジを確保することができるとともに、ユーザスループットを向上させることができる通信システム。このシステムでは、複数の無線アクセスユニット(108-1)~(108-n)は、第1の通信システムのシングルセル(#120)を構成するとともに、各々がシングルセル(#120)内に個別に第2の通信システムのマルチセル(#130-1)~(#130-n)を構成し、メインユニット(107)から入力した第1の通信システムの下り信号をシングルセル(#120)の第1の通信システムを利用する端末に送信するとともに、メインユニット(107)から入力した第2の通信システムの下り信号を、対応するマルチセル(#130-1)~(#130-n)の第2の通信システムを利用する端末に各々送信する

Description

通信システム、メインユニット、無線アクセスユニット及び通信方法
 本発明は、通信システム、メインユニット、無線アクセスユニット及び通信方法に関し、特に屋外に設置された無線基地局からの電波信号が届かないビル内または地下街等の空間をサービス可能エリアにするための通信システム、メインユニット、無線アクセスユニット及び通信方法に関する。
 従来、図1に示す通信システムが知られている。図1は、従来の通信システム1を示す図である。図1の通信システム1は、無線基地局装置2と、メインユニット3 と、複数の子機4とから主に構成される。また、複数の子機4は、シングルセル#10を構成する。
 図1の通信システム1では、無線基地局装置2は、下り信号をメインユニット3に送信し、メインユニット3は、複数の子機4へ下り信号を分配する。そして、各子機4は、分配された下り信号をシングルセル#10内の図示しない端末に対して無線送信する。また、複数の子機4は、シングルセル#10内の図示しない端末から送信された無線信号である上り信号を受信し、受信した上り信号をメインユニット3に送信する。そして、メインユニット3は、受信した上り信号を無線基地局装置2へ送信する。このように、従来の通信システム1は、複数の子機4によりシングルセル#10を構成するので、子機の数に比例して広範囲なカバレッジを確保することができる。
 また、近年、広範囲なカバレッジの確保の要求に加えて、パケットデータ通信におけるユーザスループットの向上の要求が高まっている。このような要求に対しては、図1に示すようなシングルセルのみを構成する通信システムにより対応することは困難である。例えば、複数ユーザで共有する無線帯域の占有率が高い通信を行っているユーザがシングルセル内に存在する場合には、そのユーザが存在するシングルセルと同一のシングルセル内で通信を行う他のユーザのユーザスループットが低下するという課題がある。
 上記の課題を解決する通信システムとしては、異なる通信システムを併用する特許文献1に示すシステム構成を採用することが考えられる。特許文献1によれば、通信システムによりユーザを棲み分けすることができるので、上記の課題を解決することができる。
特開2002-252867号公報
 しかしながら、特許文献1においては、全ての異なる通信システムの変調または復調を行う設備を親機であるベースユニットに搭載する。従って、特許文献1においては、既存のシステム構成を大幅に変更する必要が生じるとともに、運用開始後のセル数の変更等のシステムの変更に柔軟に対応することができないという問題がある。
 本発明の目的は、既存のシステム構成を大幅に変更する必要がなく、システムの変更に柔軟に対応することができることより、システムの導入に伴うコストを低減することができ、広範囲なカバレッジを確保することができるとともに、ユーザスループットを向上させることができる通信システム、メインユニット、無線アクセスユニット及び通信方法を提供することである。
 本発明の通信システムは、無線基地局装置と、前記無線基地局装置及びネットワークに接続されるメインユニットと、前記メインユニットに接続される複数の無線アクセスユニットとを具備する通信システムであって、前記無線基地局装置は、第1の通信システムの下り信号を前記メインユニットに出力し、前記メインユニットは、前記無線基地局装置から入力した前記第1の通信システムの下り信号と、前記ネットワークから入力した第2の通信システムの下り信号とを前記複数の無線アクセスユニットの各々に出力し、前記複数の無線アクセスユニットは、前記第1の通信システムのシングルセルを構成するとともに、各々が前記シングルセル内に個別に前記第2の通信システムのマルチセルを構成し、前記メインユニットから入力した前記第1の通信システムの下り信号を前記シングルセルの前記第1の通信システムを利用する端末に送信するとともに、前記メインユニットから入力した前記第2の通信システムの下り信号を、有線プロトコル信号処理した後に無線プロトコル信号処理して前記マルチセルの前記第2の通信システムを利用する端末に各々送信する構成を採る。
 また、本発明の通信システムは、無線基地局装置と、前記無線基地局装置及びネットワークに接続されるメインユニットと、前記メインユニットに接続される複数の無線アクセスユニットとを具備する通信システムであって、前記複数の無線アクセスユニットは、第1の通信システムのシングルセルを構成するとともに各々が前記シングルセル内に個別に第2の通信システムのマルチセルを構成し、前記シングルセルの前記第1の通信システムを利用する端末から受信した第1の通信システムの上り信号を前記メインユニットに出力するとともに、前記マルチセルの前記第2の通信システムを利用する端末から受信した第2の通信システムの上り信号を、無線プロトコル信号処理した後に有線プロトコル信号処理して前記メインユニットに出力し、前記メインユニットは、前記複数の無線アクセスユニットから入力した前記第1の通信システムの上り信号を合成して前記無線基地局装置に出力するとともに、前記複数の無線アクセスユニットから入力した前記第2の通信システムの上り信号を前記ネットワークに出力し、前記無線基地局装置は、合成した前記第1の通信システムの上り信号を前記メインユニットから取得する構成を採る。
 本発明のメインユニットは、入力した第1の通信システムの下り信号を複数の前記第1の通信システムの下り信号に分配する分配手段と、前記分配手段により分配した各々の前記第1の通信システムの下り信号と、入力した第2の通信システムの下り信号とを各々多重して第1の多重信号を生成して出力する多重手段と、を具備する構成を採る。
 また、本発明のメインユニットは、第1の通信システムの上り信号と第2の通信システムの上り信号とが多重された複数の第1の多重信号を取得し、取得した前記第1の多重信号を前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とに各々分離するとともに、分離した前記第2の通信システムの上り信号を出力する分離手段と、前記分離手段により分離した各々の前記第1の通信システムの上り信号を合成して出力する合成手段と、を具備する構成を採る。
 本発明の無線アクセスユニットは、第1の通信システムの下り信号と第2の通信システムの下り信号とを取得する取得手段と、前記取得手段により取得した前記第2の通信システムの下り信号を、有線プロトコル信号処理した後に無線プロトコル信号処理するプロトコル処理手段と、前記取得手段により取得した前記第1の通信システムの下り信号を、他の無線アクセスユニットと共に構成した前記第1の通信システムのシングルセルの前記第1の通信システムを利用する端末に送信するとともに、前記プロトコル処理手段により前記無線プロトコル信号処理した前記第2の通信システムの下り信号を、前記シングルセル内に構成した前記第2の通信システムのマルチセルの前記第2の通信システムを利用する端末に送信する送信手段と、を具備する構成を採る。
 また、本発明の無線アクセスユニットは、他の無線アクセスユニットと共に構成した第1の通信システムのシングルセルの前記第1の通信システムを利用する端末から前記第1の通信システムの上り信号を受信するとともに、前記シングルセル内に構成した第2の通信システムのマルチセルの前記第2の通信システムを利用する端末から前記第2の通信システムの上り信号を受信する受信手段と、前記受信手段により受信した前記第2の通信システムの上り信号を、無線プロトコル信号処理した後に有線プロトコル信号処理するプロトコル処理手段と、前記受信手段により受信した前記第1の通信システムの上り信号と前記プロトコル処理手段により前記有線プロトコル信号処理した前記第2の通信システムの上り信号とを出力する出力手段と、を具備する構成を採る。
 本発明の通信方法は、無線基地局装置と、前記無線基地局装置及びネットワークに接続されるメインユニットと、前記メインユニットに接続される複数の無線アクセスユニットとを具備する通信システムにおける通信方法であって、前記無線基地局装置が、第1の通信システムの下り信号を前記メインユニットに出力するステップと、前記メインユニットが、前記無線基地局装置から入力した前記第1の通信システムの下り信号と、前記ネットワークから入力した第2の通信システムの下り信号とを前記複数の無線アクセスユニットの各々に出力するステップと、前記複数の無線アクセスユニットが、前記第1の通信システムのシングルセルを構成するとともに、各々が前記シングルセル内に個別に前記第2の通信システムのマルチセルを構成し、前記メインユニットから入力した前記第1の通信システムの下り信号を前記シングルセルの前記第1の通信システムを利用する端末に送信するとともに、前記メインユニットから入力した前記第2の通信システムの下り信号を、有線プロトコル信号処理した後に無線プロトコル信号処理して前記マルチセルの前記第2の通信システムを利用する端末に各々送信するステップと、を具備するようにした。
 また、本発明の通信方法は、無線基地局装置と、前記無線基地局装置及びネットワークに接続されるメインユニットと、前記メインユニットに接続される複数の無線アクセスユニットとを具備する通信システムにおける通信方法であって、前記複数の無線アクセスユニットが、第1の通信システムのシングルセルを構成するとともに各々が前記シングルセル内に個別に第2の通信システムのマルチセルを構成し、前記シングルセルの前記第1の通信システムを利用する端末から受信した第1の通信システムの上り信号を前記メインユニットに出力するとともに、前記マルチセルの前記第2の通信システムを利用する端末から受信した第2の通信システムの上り信号を、無線プロトコル信号処理した後に有線プロトコル信号処理して前記メインユニットに出力するステップと、前記メインユニットが、前記複数の無線アクセスユニットから入力した前記第1の通信システムの上り信号を合成して前記無線基地局装置に出力するとともに、前記複数の無線アクセスユニットから入力した前記第2の通信システムの上り信号を前記ネットワークに出力するステップと、前記無線基地局装置が、合成した前記第1の通信システムの上り信号を前記メインユニットから取得するステップと、を具備するようにした。
 本発明によれば、既存のシステム構成を大幅に変更する必要がなく、システムの変更に柔軟に対応することができることより、システムの導入に伴うコストを低減することができ、広範囲なカバレッジを確保することができるとともに、ユーザスループットを向上させることができる。
従来の通信システムの構成を示す図 本発明の実施の形態1に係る通信システムの構成を示す図 本発明の実施の形態1に係るメインユニットの構成を示すブロック図 本発明の実施の形態1に係る無線アクセスユニットの構成を示すブロック図 本発明の実施の形態2に係る通信システムの構成を示す図 本発明の実施の形態2に係るメインユニットの構成を示すブロック図 本発明の実施の形態2に係る無線アクセスユニットの構成を示すブロック図 本発明の実施の形態2におけるCPRIフレームの多重処理の方法を示す図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態1)
 図2は、本発明の実施の形態1に係る通信システム100の構成を示す図である。
 通信システム100は、無線基地局装置102と、コアネットワーク(CN)103と、終端装置(OLT)104と、終端装置(ONU)105と、ルータ106と、メインユニット107と、複数の無線アクセスユニット108-1~108-n(nは2以上の任意の自然数)とから主に構成される。
 無線基地局装置102とメインユニット107とは、同軸線等の1本の電気信号伝送用のケーブルにより接続される。また、メインユニット107と各無線アクセスユニット108-1~108-nとは、スター型で接続されるとともに、光ファイバー等の1本の光信号伝送用のケーブルにより各々接続される。以下に、各構成について詳細に説明する。
 本実施の形態においては、第1の通信システムをWCDMA(Wideband Code Division Multiple Access)とし、第2の通信システムをLTE(Long Term Evolution)とした場合を一例として説明する。また、第1の通信システムのWCDMAと第2の通信システムのLTEとは、異なる内容のデータを送受信する。また、本実施の形態において、無線基地局装置102及びコアネットワーク103から無線アクセスユニット108-1~108-nへ送出される信号を下り信号とし、無線アクセスユニット108-1~108-nから無線基地局装置102及びコアネットワーク103へ送出される信号を上り信号として説明する。
 無線基地局装置102は、WCDMA用の無線基地局であり、RF信号であるWCDMA下り信号をメインユニット107へ出力する。また、無線基地局装置102は、メインユニット107からのRF信号であるWCDMA上り信号を受信する。
 コアネットワーク103は、LTE方式の第2の通信システムに対するユーザーデータ及び制御信号をIPプロトコルに従って生成したLTEのIP信号(以下、「IP信号」と記載する)として終端装置104へ出力する。また、コアネットワーク103は、終端装置104からのIP信号を受信する。
 終端装置104は、コアネットワーク103から入力したIP信号を電気信号から光信号に変換して終端装置105へ出力する。また、終端装置104は、終端装置105から入力したIP信号を光信号から電気信号に変換してコアネットワーク103へ出力する。
 終端装置105は、終端装置104から入力したIP信号を光信号から電気信号に変換してルータ106へ出力する。また、終端装置105は、ルータ106から入力したIP信号を電気信号から光信号に変換して終端装置104へ出力する。
 ルータ106は、終端装置105からメインユニット107またはメインユニット107から終端装置105へのIP信号の伝送を中継する。
 メインユニット107は、無線基地局装置102から入力したWCDMA下り信号を複数のWCDMA下り信号に分配するとともに、分配したWCDMA下り信号を電気信号から光信号に変換する。また、メインユニット107は、光信号に変換したWCDMA下り信号とルータ106から入力したIP信号とを波長分割多重(WDM:Wavelength Division Multiplexing)して各無線アクセスユニット108-1~108-nへ出力する。また、メインユニット107は、各無線アクセスユニット108-1~108-nから入力した波長分割多重した多重信号を、WCDMA上り信号とIP信号とに分離し、分離したWCDMA上り信号とIP信号とを光信号から電気信号に変換する。また、メインユニット107は、電気信号に変換した各WCDMA上り信号を合成して無線基地局装置102へ出力する。また、メインユニット107は、電気信号に変換したIP信号をルータ106へ出力する。なお、メインユニット107の構成の詳細については後述する。
 複数の無線アクセスユニット108-1~108-nは、シングルセル#120を構成する。また、複数の無線アクセスユニット108-1~108-nの各々は、シングルセル#120内に個別にマルチセル#130-1~#130-nを構成する。即ち、複数の無線アクセスユニット108-1~108-nは、無線アクセスユニット108-1~108-nと同じ数のマルチセル#130-1~#130-nを構成する。また、複数の無線アクセスユニット108-1~108-nは、メインユニット107から入力した多重信号をWCDMA下り信号とIP信号に分離し、分離したWCDMA下り信号とIP信号とを光信号から電気信号に変換する。また、複数の無線アクセスユニット108-1~108-nは、電気信号に変換したWCDMA下り信号を、シングルセル#120の第1の通信システムを利用する端末に送信する。また、複数の無線アクセスユニット108-1~108-nは、電気信号に変換したIP信号を、対応するマルチセル#130-1~#130-nの第2の通信システムを利用する端末に送信する。また、複数の無線アクセスユニット108-1~108-nは、シングルセル#120の第1の通信システムを利用する端末から送信されたWCDMA上り信号またはマルチセル#130-1~#130-nの第2の通信システムを利用する端末から送信されたIP信号を受信する。また、複数の無線アクセスユニット108-1~108-nは、受信したWCDMA上り信号及びIP信号を電気信号から光信号に変換し、光信号に変換したWCDMA上り信号とIP信号とを波長分割多重して多重信号を生成し、生成した多重信号をメインユニット107へ出力する。なお、無線アクセスユニット108-1~108-nの構成の詳細については後述する。
 次に、メインユニット107の構成について、図3を用いて説明する。図3は、メインユニット107の構成を示すブロック図である。
 メインユニット107は、分配器301と、E/O変換器302-1~302-nと、O/E変換器303-1~303-nと、媒体変換器304-1~304-nと、WDMカプラ305-1~305-nと、合成器306とから主に構成される。また、光インタフェース部350-1~350-nは、E/O変換器302-1~302-nと、O/E変換器303-1~303-nと、媒体変換器304-1~304-nと、WDMカプラ305-1~305-nとを含む。
 無線基地局装置102と分配器301とは、同軸線等の1本の電気信号伝送用のケーブルにより接続される。また、無線基地局装置102と合成器306とは、同軸線等の1本の電気信号伝送用のケーブルにより接続される。また、WDMカプラ305-1~305-nと各無線アクセスユニット108-1~108-nとは、スター型で接続されるとともに、光ファイバー等の1本の光信号伝送用のケーブルにより各々接続される。以下に、各構成について詳細に説明する。
 分配器301は、無線基地局装置102から入力したWCDMA下り信号を、n本のWCDMA下り信号に分配し、分配したn本の各WCDMA下り信号をE/O変換器302-1~302-nへ各々出力する。
 E/O変換器302-1~302-nは、分配器301から入力したWCDMA下り信号を、電気信号から波長λd_RFの光信号に変換してWDMカプラ305-1~305-nへ出力する。
 O/E変換器303-1~303-nは、WDMカプラ305-1~305-nから入力したWCDMA上り信号を、波長d_RFの光信号から電気信号に変換して合成器306へ出力する。
 媒体変換器304-1~304-nは、ルータ106から入力したIP信号を、電気信号から波長d_IPの光信号に変換してWDMカプラ305-1~305-nへ出力する。また、媒体変換器304-1~304-nは、E/O変換器302-1~302-nにおいて変換された光信号の波長とは異なる波長の光信号に変換する。
 WDMカプラ305-1~305-nは、E/O変換器302-1~302-nから入力した波長d_RFのWCDMA下り信号と、媒体変換器304-1~304-nから入力した波長d_IPのIP信号とを波長分割多重して多重信号を生成する。また、WDMカプラ305-1~305-nは、生成した多重信号を無線アクセスユニット108-1~108-nへ出力する。また、WDMカプラ305-1~305-nは、無線アクセスユニット108-1~108-nから入力した多重信号を、波長d_RFのWCDMA上り信号と波長d_IPのIP信号とに分離する。また、WDMカプラ305-1~305-nは、分離した波長d_RFのWCDMA上り信号をO/E変換器303-1~303-nへ出力するとともに、分離した波長d_IPのIP信号を媒体変換器304-1~304-nへ出力する。
 合成器306は、O/E変換器303-1~303-nから入力したWCDMA上り信号を合成して無線基地局装置102へ出力する。
 以上で、メインユニット107の構成の説明を終える。
 次に、無線アクセスユニット108-1~108-nの構成について、図4を用いて説明する。図4は、無線アクセスユニット108-1の構成を示すブロック図である。なお、無線アクセスユニット108-2~108-nの構成は、図4の無線アクセスユニット108-1の構成と同一であるので、その説明を省略する。
 無線アクセスユニット108-1は、WDMカプラ401と、O/E変換器402と、E/O変換器403と、媒体変換器404と、無線基地局機能部405と、AMP部406と、アンテナ407-1、407-2とから主に構成される。以下に、各構成について詳細に説明する。
 WDMカプラ401は、メインユニット107から入力した多重信号を、波長d_RFのWCDMA下り信号と波長d_IPのIP信号とに分離する。また、WDMカプラ401は、分離した波長d_RFのWCDMA下り信号をO/E変換器402へ出力するとともに、分離した波長d_IPのIP信号を媒体変換器404へ出力する。また、WDMカプラ401は、E/O変換器403から入力した波長d_RFのWCDMA上り信号と媒体変換器404から入力した波長d_IPのIP信号とを波長分割多重して多重信号を生成する。また、WDMカプラ401は、生成した多重信号をメインユニット107へ出力する。
 O/E変換器402は、WDMカプラ401から入力した波長d_RFのWCDMA下り信号を光信号から電気信号に変換してAMP部406に出力する。
 E/O変換器403は、AMP部406から入力したWCDMA上り信号を、電気信号から波長d_RFの光信号に変換してWDMカプラ401へ出力する。
 媒体変換器404は、WDMカプラ401から入力した波長d_IPのIP信号を、光信号から電気信号に変換して無線基地局機能部405へ出力する。また、媒体変換器404は、無線基地局機能部405から入力したIP信号を電気信号から波長d_IPの光信号に変換してWDMカプラ401へ出力する。また、媒体変換器404は、E/O変換器403において変換された光信号の波長とは異なる波長の光信号に変換する。
 無線基地局機能部405は、媒体変換器404から入力したIP信号を、LTEに対応する有線プロトコル信号処理した後に無線プロトコル信号処理し、LTEのRF下り信号としてAMP部406へ出力する。また、無線基地局機能部405は、AMP部406から入力したLTEのRF上り信号を、LTEに対応する無線プロトコル信号処理した後に有線プロトコル信号処理し、LTEのIP信号として媒体変換器404へ出力する。例えば、無線基地局機能部405は、LTEのIP信号をS1インタフェース信号として媒体変換器404へ出力する。なお、無線基地局機能部405は、WCDMA上り信号の場合には、Iuhインタフェース信号として出力する。また、無線基地局機能部405は、例えばフェムトセルの基地局と同様の機能を有する。ここで、フェムトセルとは、小型基地局であり、半径数十m程度のきわめて小さな範囲の携帯電話の通話エリアを構成する。
 AMP部406は、O/E変換器402から入力したWCDMA下り信号を増幅して、アンテナ407-1からシングルセル#120の第1の通信システムを利用する端末に無線送信する。また、AMP部406は、無線基地局機能部405から入力したLTEのRF下り信号を増幅して、アンテナ407-2から対応するマルチセル#130-1の第2の通信システムを利用する端末に送信する。また、AMP部406は、シングルセル#120の第1の通信システムを利用する端末またはマルチセル#130-1の第2の通信システムを利用する端末からアンテナ407-1、407-2を介して受信した信号を必要に応じて増幅するとともにフィルタ処理する。即ち、AMP部406は、WCDMA上り信号で使用する周波数帯域の信号またはLTEのRF上り信号で使用する周波数帯域の信号を抽出する。また、AMP部406は、抽出したWCDMA上り信号をE/O変換器403へ出力する。また、AMP部406は、抽出したLTEのRF上り信号を無線基地局機能部405へ出力する。なお、アンテナ407-1、407-2は、WCDMAとLTEとで使い分けてもよいし、WCDMAとLTEとで共用してもよい。
 以上で、無線アクセスユニット108-1の構成の説明を終えるとともに、通信システム100の構成の説明を終える。
 次に、通信システム100における通信方法について説明する。最初に、下り信号の通信方法について説明する。
 無線基地局装置102は、WCDMA下り信号をRF信号としてメインユニット107へ出力する。
 次に、メインユニット107は、無線基地局装置102から入力したWCDMA下り信号を無線アクセスユニット108-1~108-nと同じ数のWCDMA下り信号に分配する。
 次に、メインユニット107は、分配したWCDMA下り信号と、コアネットワーク103から終端装置104、終端装置105及びルータ106を介して入力したIP信号とを、電気信号から光信号に変換する。
 次に、メインユニット107は、光信号に変換したWCDMA下り信号とIP信号とを波長分割多重して多重信号を生成し、生成した多重信号を無線アクセスユニット108-1~108-nへ出力する。
 次に、各無線アクセスユニット108-1~108-nは、メインユニット107から入力した多重信号をWCDMA下り信号とIP信号とに分離し、分離したWCDMA下り信号及びIP信号を光信号から電気信号に変換する。
 次に、各無線アクセスユニット108-1~108-nは、電気信号に変換したIP信号を、LTEに対応する有線プロトコル信号処理及び無線プロトコル信号処理し、LTEのRF下り信号としてマルチセル#130-1~#130-nの端末に無線送信する。
 また、各無線アクセスユニット108-1~108-nは、電気信号に変換したWCDMA下り信号をシングルセル#120の第1の通信システムを利用する端末に無線送信する。
 以上で、下り信号の通信方法の説明を終える。
 次に、上り信号の通信方法について説明する。
 各無線アクセスユニット108-1~108-nは、シングルセル#120の第1の通信システムを利用する端末からWCDMA上り信号を受信するとともに、マルチセル#130-1~#130-nの第2の通信システムを利用する端末からLTEのRF上り信号を受信する。
 次に、各無線アクセスユニット108-1~108-nは、受信したLTEのRF上り信号を、LTEに対応する無線プロトコル信号処理及び有線プロトコル信号処理し、LTEのIP信号を生成する。
 次に、各無線アクセスユニット108-1~108-nは、生成したIP信号と受信したWCDMA上り信号とを電気信号から光信号に変換する。
 次に、各無線アクセスユニット108-1~108-nは、光信号に変換したWCDMA上り信号とIP信号とを波長分割多重して多重信号を生成し、生成した多重信号をメインユニット107へ出力する。
 次に、メインユニット107は、各無線アクセスユニット108-1~108-nから入力した多重信号をWCDMA上り信号とIP信号とに分離する。
 次に、メインユニット107は、分離したWCDMA上り信号とIP信号とを光信号から電気信号に変換する。
 次に、メインユニット107は、電気信号に変換した各WCDMA上り信号を合成して無線基地局装置102へ出力する。
 また、メインユニット107は、電気信号に変換したIP信号を、ルータ106、終端装置105及び終端装置104を介してコアネットワーク103へ出力する。
 このように、本実施の形態によれば、LTEのIP信号を無線により送受信する無線基地局機能部を各無線アクセスユニットに設けることにより、既存のシステム構成を大幅に変更する必要がなく、システムの変更に柔軟に対応することができる。この結果、システムの導入に伴うコストを低減することができる。また、本実施の形態によれば、複数の無線アクセスユニットによりシングルセルを構成するので、広範囲なカバレッジを確保することができる。また、本実施の形態によれば、複数の無線アクセスユニットの各々によりマルチセルを構成するので、ユーザスループットを向上させることができる。また、本実施の形態によれば、メインユニットと無線アクセスユニットとの間において、WCDMAの信号とLTEの信号とを波長分割多重して伝送するので、WCDMAの信号とLTEの信号とを効率よく伝送することができる。
 (実施の形態2)
 図5は、本発明の実施の形態2に係る通信システム500の構成を示す図である。
 図5に示す通信システム500は、図2に示す実施の形態1に係る通信システム100に対して、無線基地局装置102の代わりに無線基地局装置501を有し、メインユニット107の代わりにメインユニット502を有し、無線アクセスユニット108-1~108-nの代わりに無線アクセスユニット503-1~503-nを有する。なお、図5において、図2と同一構成である部分には同一の符号を付してその説明を省略する。
 通信システム500は、コアネットワーク(CN)103と、終端装置(OLT)104と、終端装置(ONU)105と、ルータ106と、無線基地局装置501と、メインユニット502と、複数の無線アクセスユニット503-1~503-nとから主に構成される。
 コアネットワーク103と無線基地局装置501とは、同軸線等の1本の電気信号伝送用のケーブルにより接続される。また、無線基地局装置501とメインユニット502とは、光ファイバー等の1本の光信号伝送用のケーブルにより接続されるとともに、CPRI(Common Public Radio Interface)インタフェースにより接続される。本実施の形態においては、一例として、キャリア周波数が1つで2アンテナ分のIQ信号を伝送するCPRIフォーマットを利用して、第1の通信システムと第2の通信システムを多重する場合について説明する。この場合には、無線基地局装置501とメインユニット502との間で出力されるCPRIの信号は、アップリンク及びダウンリンクにおいてダイバーシチ方式を採用しない。即ち、アンテナ1本分のIQ信号を出力する。また、メインユニット502と各無線アクセスユニット503-1~503-nとは、スター型で接続されるとともに、光ファイバー等の1本の光信号伝送用のケーブルにより各々接続される。以下に、各構成について詳細に説明する。
 本実施の形態においては、第1の通信システムをLTEとし、第2の通信システムをLTEとした場合を一例として説明する。また、第1の通信システムのLTEと第2の通信システムのLTEとは、異なる内容のデータを送受信する。また、本実施の形態において、コアネットワーク103から無線アクセスユニット503-1~503-nへ送出される信号を下り信号とし、無線アクセスユニット503-1~503-nからコアネットワーク103へ送出される信号を上り信号として説明する。
 コアネットワーク103は、第1の通信システムのLTEのIP信号を無線基地局装置501へ出力し、第2の通信システムのLTEのIP信号を終端装置104へ出力する。また、コアネットワーク103は、第1の通信システムのLTEのIP信号を無線基地局装置501から受信し、第2の通信システムのLTEのIP信号を終端装置104から受信する。
 無線基地局装置501は、LTE用の無線基地局であり、コアネットワーク103から入力したIP信号を光信号であるCPRIの下り信号に変換し、変換したCPRIの下り信号をCPRIの上り信号と波長分割多重してメインユニット502へ出力する。また、無線基地局装置501は、メインユニット502から入力した、光信号であるとともにCPRIの下り信号と波長分割多重されたCPRIの上り信号を、IP信号に変換してコアネットワーク103へ出力する。
 ルータ106は、終端装置105からメインユニット502またはメインユニット502から終端装置105へのIP信号の伝送を中継する。
 メインユニット502は、無線基地局装置501から入力したCPRIの下り信号を、CPRIの上り信号から分離する。また、メインユニット502は、分離したCPRIの下り信号を光信号から電気信号に変換し、電気信号に変換したCPRIの下り信号をフレーム単位で分岐する。また、メインユニット502は、分岐したCPRIの下り信号とルータ106から入力したIP信号とをフレーム多重して下り多重信号を生成し、生成した下り多重信号を電気信号から光信号に変換する。また、メインユニット502は、光信号に変換した下り多重信号を、上り多重信号と波長分割多重して各無線アクセスユニット503-1~503-nへ出力する。また、メインユニット502は、各無線アクセスユニット503-1~503-nから入力した、上り多重信号を下り多重信号から分離するとともに、分離した上り多重信号をフレーム単位で分離する。また、メインユニット502は、フレーム単位で分離した各上り多重信号を加算してCPRIの上り信号を生成し、生成したCPRIの上り信号を電気信号から光信号に変換する。また、メインユニット502は、光信号に変換したCPRIの上り信号をCPRIの下り信号と波長分割多重して無線基地局装置501へ出力する。なお、メインユニット502の構成の詳細については後述する。
 複数の無線アクセスユニット503-1~503-nは、シングルセル#520を構成する。また、複数の無線アクセスユニット503-1~503-nの各々は、シングルセル#520内に個別にマルチセル#530-1~#530-nを構成する。即ち、複数の無線アクセスユニット503-1~503-nは、無線アクセスユニット503-1~503-nと同じ数のマルチセル#530-1~#530-nを構成する。また、複数の無線アクセスユニット503-1~503-nは、メインユニット502から入力した下り多重信号を上り多重信号から分離し、分離した下り多重信号を光信号から電気信号に変換する。また、複数の無線アクセスユニット503-1~503-nは、電気信号に変換した下り多重信号をフレーム単位で分離し、分離した下り多重信号を、シングルセル#520の第1の通信システムを利用する端末において受信可能な無線周波数のRF信号になるようにアップコンバートする。また、複数の無線アクセスユニット503-1~503-nは、RF信号をシングルセル#520の第1の通信システムを利用する端末に無線送信する。また、複数の無線アクセスユニット503-1~503-nは、分離した下り多重信号をIP信号に変換し、変換したIP信号を、対応するマルチセル#530-1~#530-nの第2の通信システムを利用する端末に送信する。また、複数の無線アクセスユニット503-1~503-nは、シングルセル#520の第1の通信システムを利用する端末から送信されたRF信号またはマルチセル#530-1~#530-nの第2の通信システムを利用する端末から送信されたRF信号を受信する。また、複数の無線アクセスユニット503-1~503-nは、シングルセル#520の第1の通信システムを利用する端末から受信したRF信号をダウンコンバートする。また、複数の無線アクセスユニット503-1~503-nは、マルチセル#530-1~#530-nの第2の通信システムを利用する端末から受信したRF信号を、無線プロトコル信号処理した後に有線プロトコル信号処理してIP信号を生成する。また、複数の無線アクセスユニット503-1~503-nは、生成したIP信号とダウンコンバートしたシングルセル#520の第1の通信システムを利用する端末から受信した信号とをフレーム多重して上り多重信号を生成し、生成した上り多重信号を電気信号から光信号に変換する。また、複数の無線アクセスユニット503-1~503-nは、光信号に変換した上り多重信号を電気信号から光信号に変換し、光信号に変換した上り多重信号を下り多重信号と波長分割多重してメインユニット502へ出力する。なお、無線アクセスユニット503-1~503-nの構成の詳細については後述する。
 次に、メインユニット502の構成について、図6を用いて説明する。図6は、メインユニット502の構成を示すブロック図である。
 メインユニット502は、WDMカプラ601と、O/E変換器602と、E/O変換器603と、信号分岐部604と、信号変換部605-1~605-nと、フレーム多重部606-1~606-nと、フレーム分離部607-1~607-nと、E/O変換器608-1~608-nと、WDMカプラ609-1~609-nと、O/E変換器610-1~610-nと、信号加算部611とから主に構成される。また、RECインタフェース部650は、WDMカプラ601と、O/E変換器602と、E/O変換器603とを含む。また、多重分離部660-1~660-nは、信号変換部605-1~605-nと、フレーム多重部606-1~606-nと、フレーム分離部607-1~607-nとを含む。また、無線アクセスユニットインタフェース部670-1~670-nは、E/O変換器608-1~608-nと、WDMカプラ609-1~609-nと、O/E変換器610-1~610-nとを含む。なお、RECとは、CPRIの仕様で規定されている無線基地局装置の変調及び復調を行う機能を有する装置であることを意味する。以下に、各構成について詳細に説明する。
 WDMカプラ601は、無線基地局装置501から入力したCPRIの下り信号とCPRIの上り信号とが波長分割多重された多重信号から、CPRIの下り信号を分離する。また、WDMカプラ601は、分離したCPRI下り信号をO/E変換器602へ出力する。また、WDMカプラ601は、E/O変換器603から入力したCPRIの上り信号をCPRIの下り信号と波長分割多重して多重信号を生成し、生成した多重信号を無線基地局装置501へ出力する。
 O/E変換器602は、WDMカプラ601から入力したCPRIの下り信号を光信号から電気信号に変換して信号分岐部604へ出力する。
 E/O変換器603は、信号加算部611から入力したCPRIの上り信号を電気信号から光信号に変換してWDMカプラ601へ出力する。
 信号分岐部604は、O/E変換器602から入力したCPRIの下り信号をn本のCPRIの下り信号に分岐し、分岐した各々のCPRIの下り信号をフレーム多重部606-1~606-nへ出力する。
 信号変換部605-1~605-nは、ルータ106から入力したIP信号を疑似IQ信号に変換してフレーム多重部606-1~606-nへ出力する。ここで、疑似IQ信号とは、無線基地局装置501とRECインタフェース部650との間のCPRIインタフェース間で送受信されるIQ信号と同等な信号速度になるように、ダミービットを挿入することにより連続信号として扱うことができる信号である。また、信号変換部605-1~605-nは、フレーム分離部607-1~607-nから入力した疑似IQ信号からダミービットを除去してIP信号に変換し、IP信号をルータ106へ出力する。
 フレーム多重部606-1~606-nは、信号分岐部604から入力したCPRIの下り信号と、信号変換部605-1~605-nから入力した疑似IQ信号とをフレーム多重したCPRIフレーム下り信号を生成する。CPRIフレーム下り信号は、CPRIフォーマット上で多重される信号である。また、フレーム多重部606-1~606-nは、生成したCPRIフレーム下り信号をE/O変換器608-1~608-nへ出力する。フレーム多重部606-1~606-nは、入力したCPRIの下り信号と疑似IQ信号とを、CPRIインタフェース上において異なるアンテナの信号として扱う。なお、信号変換部605-1~605-nにおける処理については後述する。
 フレーム分離部607-1~607-nは、O/E変換器610-1~610-nから入力したCPRIフレーム上り信号を、CPRIインタフェース上において異なるアンテナの信号として扱うIQ信号と疑似IQ信号とに分離する。また、フレーム分離部607-1~607-nは、分離したIQ信号を信号加算部611へ出力し、分離した疑似IQ信号を信号変換部605-1~605-nへ出力する。
 E/O変換器608-1~608-nは、フレーム多重部606-1~606-nから入力したCPRIフレーム下り信号を電気信号から光信号に変換してWDMカプラ609-1~609-nへ出力する。
 WDMカプラ609-1~609-nは、E/O変換器608-1~608-nから入力したCPRIフレーム下り信号を、CPRIフレーム上り信号と波長分割多重して各無線アクセスユニット503-1~503-nへ出力する。また、WDMカプラ609-1~609-nは、CPRIフレーム下り信号とCPRIフレーム上り信号とを波長分割多重した多重信号から、CPRIフレーム上り信号を分離し、分離したCPRIフレーム上り信号をO/E変換器610-1~610-nへ出力する。
 O/E変換器610-1~610-nは、WDMカプラ609-1~609-nから入力したCPRIフレーム上り信号を光信号から電気信号に変換してフレーム分離部607-1~607-nへ出力する。
 信号加算部611は、フレーム分離部607-1~607-nから入力したn本のIQ信号を加算してCPRIの上り信号を生成する。また、信号加算部611は、生成したCPRIの上り信号をE/O変換器603へ出力する。
 以上で、メインユニット502の構成の説明を終える。
 次に、無線アクセスユニット503-1~503-nの構成について、図7を用いて説明する。図7は、無線アクセスユニット503-1の構成を示すブロック図である。なお、無線アクセスユニット503-2~503-nの構成は、図7の無線アクセスユニット503-1の構成と同一であるので、その説明を省略する。
 無線アクセスユニット503-1は、WDMカプラ701と、O/E変換器702と、フレーム分離部703と、TRX部704と、信号変換部705と、無線基地局機能部706と、AMP部707と、フレーム多重部708と、E/O変換器709と、アンテナ710-1、710-2とから主に構成される。以下に、各構成について詳細に説明する。
 WDMカプラ701は、メインユニット502から入力したCPRIフレーム下り信号とCPRIフレーム上り信号とが波長分割多重された多重信号から、CPRIフレーム下り信号を分離する。また、WDMカプラ701は、分離したCPRIフレーム下り信号をO/E変換器702へ出力する。また、WDMカプラ701は、E/O変換器709から入力したCPRIフレーム上り信号を、CPRIフレーム下り信号と波長分割多重してメインユニット502へ出力する。
 O/E変換器702は、WDMカプラ701から入力したCPRIフレーム下り信号を光信号から電気信号に変換してフレーム分離部703へ出力する。
 フレーム分離部703は、O/E変換器702から入力したCPRIフレーム下り信号を、CPRIインタフェース上において異なるアンテナの信号として扱うIQ信号と疑似IQ信号とに分離する。また、フレーム分離部703は、分離したIQ信号をTRX部704へ出力し、分離した疑似IQ信号を信号変換部705へ出力する。
 TRX部704は、フレーム分離部703から入力したIQ信号を所定の無線周波数のRF信号になるようにアップコンバートしてAMP部707へ出力する。また、TRX部704は、AMP部707から入力したRF信号をダウンコンバートしてIQ信号を生成し、生成したIQ信号をフレーム多重部708へ出力する。
 信号変換部705は、フレーム分離部703から入力した疑似IQ信号からダミービットを除去してIP信号に変換し、変換したIP信号を無線基地局機能部706へ出力する。また、信号変換部705は、無線基地局機能部706から入力したIP信号にダミービットを挿入して疑似IQ信号を生成し、生成した疑似IQ信号をフレーム多重部708へ出力する。
 無線基地局機能部706は、信号変換部705から入力したIP信号を、LTEに対応する有線プロトコル信号処理した後に無線プロトコル信号処理し、LTEのRF下り信号としてAMP部707へ出力する。また、無線基地局機能部706は、AMP部707から入力したLTEのRF上り信号を、LTEに対応する無線プロトコル信号処理した後に有線プロトコル信号処理し、LTEのIP信号として信号変換部705へ出力する。例えば、無線基地局機能部706は、LTEのIP信号をS1インタフェース信号として信号変換部705へ出力する。なお、無線基地局機能部706は、WCDMA上り信号の場合には、Iuhインタフェース信号として出力する。無線基地局機能部706は、例えばフェムトセルの基地局と同様の機能を有する。
 AMP部707は、TRX部704から入力したRF信号を増幅して、アンテナ710-1からシングルセル#520の第1の通信システムを利用する端末に無線送信する。また、AMP部707は、無線基地局機能部706から入力したRF信号を増幅して、アンテナ710-2から対応するマルチセル#530-1の第2の通信システムを利用する端末に送信する。また、AMP部707は、シングルセル#520の第1の通信システムを利用する端末またはマルチセル#530-1の第2の通信システムを利用する端末からアンテナ710-1、710-2を介して受信した信号を必要に応じて増幅するとともにフィルタ処理する。即ち、AMP部707は、シングルセル#520のLTEで使用する周波数帯域の信号またはマルチセル#530-1のLTEで使用する周波数帯域の信号を抽出する。また、AMP部707は、抽出したシングルセル#520のLTEのRF信号をTRX部704へ出力する。また、AMP部707は、抽出したマルチセル#530-1のLTEのRF信号を無線基地局機能部706へ出力する。なお、アンテナ710-1、710-2は、各LTEで使い分けてもよいし、各LTEで共用してもよい。
 フレーム多重部708は、TRX部704から入力したIQ信号と信号変換部705から入力した疑似IQ信号とをフレーム多重したCPRIフレーム上り信号を生成する。CPRIフレーム上り信号は、CPRIフォーマット上で多重される信号である。また、フレーム多重部708は、生成したCPRIフレーム上り信号をE/O変換器709へ出力する。
 E/O変換器709は、フレーム多重部708から入力したCPRIフレーム上り信号を電気信号から光信号に変換してWDMカプラ701へ出力する。
 以上で、無線アクセスユニット503-1の構成の説明を終えるとともに、通信システム100の構成の説明を終える。
 次に、通信システム500における通信方法について説明する。最初に、下り信号の通信方法について説明する。
 無線基地局装置501は、コアネットワーク103より取得したCPRI下り信号を電気信号から光信号に変換し、光信号に変換したCPRI下り信号とCPRI上り信号とを波長分割多重して多重信号を生成する。
 次に、無線基地局装置501は、生成した多重信号をメインユニット502へ出力する。
 次に、メインユニット502は、無線基地局装置501から入力した多重信号から、CPRI下り信号を分離し、分離したCPRI下り信号を光信号から電気信号に変換する。
 次に、メインユニット502は、電気信号に変換したCPRI下り信号をn本のCPRI下り信号に分岐する。
 また、メインユニット502は、ルータ106から入力したIP信号を疑似IQ信号に変換する。
 次に、メインユニット502は、n本のCPRI下り信号と疑似IQ信号とをフレーム多重してn本のCPRIフレーム下り信号を生成し、生成したCPRIフレーム下り信号を電気信号から光信号に変換する。
 次に、メインユニット502は、光信号に変換したCPRI下り信号とCPRI上り信号とを波長分割多重してn本の多重信号を生成し、生成したn本の多重信号を各無線アクセスユニット503-1~503-nへ出力する。
 次に、無線アクセスユニット503-1~503-nは、メインユニット502から入力した多重信号から、CPRI下り信号を分離する。
 次に、無線アクセスユニット503-1~503-nは、分離したCPRI下り信号を光信号から電気信号に変換し、電気信号に変換したCPRI下り信号をIQ信号と疑似IQ信号とに分離する。
 次に、無線アクセスユニット503-1~503-nは、IQ信号をアップコンバートしてRF信号を生成し、生成したRF信号をシングルセル#520の第1の通信システムを利用する端末に無線送信する。
 また、無線アクセスユニット503-1~503-nは、疑似IQ信号をIP信号に変換するとともに、IP信号をRF信号に変換して、対応するマルチセル#530-1~#530-nの第2の通信システムを利用する端末へ無線送信する。
 以上で、下り信号の通信方法の説明を終える。
 次に、上り信号の通信方法について説明する。
 無線アクセスユニット503-1~503-nは、シングルセル#520の第1の通信システムを利用する端末からRF信号を受信するとともに、マルチセル#530-1~#530-nの第2の通信システムを利用する端末からRF信号を受信する。
 次に、無線アクセスユニット503-1~503-nは、シングルセル#520の第1の通信システムを利用する端末から受信したRF信号をダウンコンバートしてIQ信号を生成する。
 また、無線アクセスユニット503-1~503-nは、マルチセル#530-1~#530-nの第2の通信システムを利用する端末から受信したRF信号をIP信号に変換するとともに、IP信号を疑似IQ信号に変換する。
 次に、無線アクセスユニット503-1~503-nは、IQ信号と疑似IQ信号とをフレーム多重したCPRIフレーム上り信号を生成し、生成したCPRIフレーム上り信号を電気信号から光信号に変換する。
 次に、光信号に変換したCPRIフレーム上り信号とCPRIフレーム下り信号とを波長分割多重して多重信号を生成し、生成した多重信号をメインユニット502へ出力する。
 次に、メインユニット502は、各無線アクセスユニット503-1~503-nから入力した多重信号から、CPRIフレーム上り信号を分離し、分離したCPRIフレーム上り信号を光信号から電気信号に変換する。
 次に、メインユニット502は、電気信号に変換したCPRIフレーム上り信号を、IQ信号と疑似IQ信号とに分離する。
 次に、メインユニット502は、分離した疑似IQ信号をIP信号に変換してルータ106へ出力する。
 また、メインユニット502は、分離したn本のIQ信号を加算して上りCPRI信号を生成し、生成した上りCPRI信号を電気信号から光信号に変換する。
 次に、光信号に変換した上りCPRI信号と下りCPRI信号とを波長分割多重して多重信号を生成し、生成した多重信号を無線基地局装置501へ出力する。
 以上で、通信システム500における通信方法の説明を終える。
 次に、フレーム多重部606-1~606-n及びフレーム多重部708における処理について、図8を用いて説明する。図8は、CPRIフレームの多重処理の方法を示す図である。
 図8より、フレーム多重部606-1~606-n及びフレーム多重部708は、IQ信号をアンテナ#0の信号として扱うとともに(AC0)、疑似IQ信号をアンテナ#1の信号として扱う(AC1)。また、フレーム多重部606-1~606-n及びフレーム多重部708は、AxC Container#0~#7を一つのグループとしてCPRIフレーム下り信号及びCPRIフレーム上り信号を生成する。本実施の形態では、一例として、キャリア周波数が1つで2本のアンテナ分のIQ信号を伝送するCPRIフォーマットを使用する。これより、本実施の形態では、2本のアンテナのうちの何れか一方に割り当てる信号を、シングルセルの第1の通信システムを利用する端末に送信する無線信号用に使用する。また、2本のアンテナのうちの何れか他方に割り当てる信号を、マルチセルの第2の通信システムを利用する端末に送信するIP信号用に使用する。
 このように、本実施の形態によれば、LTEのIP信号を無線により送受信する無線基地局機能部を各無線アクセスユニットに設けることにより、既存のシステム構成を大幅に変更する必要がなく、システムの変更に柔軟に対応することができる。この結果、システムの導入に伴うコストを低減することができる。また、本実施の形態によれば、複数の無線アクセスユニットによりシングルセルを構成するので、広範囲なカバレッジを確保することができる。また、本実施の形態によれば、複数の無線アクセスユニットの各々によりマルチセルを構成するので、ユーザスループットを向上させることができる。また、本実施の形態によれば、メインユニットと無線アクセスユニットとの間において、各通信システムのLTEの信号を波長分割多重して伝送するので、各通信システムのLTEの信号を効率よく伝送することができる。
 2010年4月16日出願の特願2010-95184の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明に係る通信システム、メインユニット、無線アクセスユニット及び通信方法は、特に屋外に設置された無線基地局からの電波信号が届かないビル内または地下街等の空間をサービス可能エリアにするのに好適である。
 100 通信システム
 102 無線基地局装置
 103 コアネットワーク
 104、105 終端装置
 106  ルータ
 107  メインユニット
 108-1~108-n 無線アクセスユニット
 #120 シングルセル
 #130-1~#130-n マルチセル

Claims (20)

  1.  無線基地局装置と、前記無線基地局装置及びネットワークに接続されるメインユニットと、前記メインユニットに接続される複数の無線アクセスユニットとを具備する通信システムであって、
     前記無線基地局装置は、第1の通信システムの下り信号を前記メインユニットに出力し、
     前記メインユニットは、前記無線基地局装置から入力した前記第1の通信システムの下り信号と、前記ネットワークから入力した第2の通信システムの下り信号とを前記複数の無線アクセスユニットの各々に出力し、
     前記複数の無線アクセスユニットは、前記第1の通信システムのシングルセルを構成するとともに、各々が前記シングルセル内に個別に前記第2の通信システムのマルチセルを構成し、前記メインユニットから入力した前記第1の通信システムの下り信号を前記シングルセルの前記第1の通信システムを利用する端末に送信するとともに、前記メインユニットから入力した前記第2の通信システムの下り信号を、有線プロトコル信号処理した後に無線プロトコル信号処理して前記マルチセルの前記第2の通信システムを利用する端末に各々送信する通信システム。
  2.  前記メインユニットは、光伝送路を介して前記複数の無線アクセスユニットに接続し、前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とを波長分割多重した多重信号を前記光伝送路により前記複数の無線アクセスユニットの各々に出力し、
     前記複数の無線アクセスユニットは、前記メインユニットから前記光伝送路を介して入力した前記多重信号から前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とを分離し、分離した前記第1の通信システムの下り信号を前記シングルセルの前記第1の通信システムを利用する端末に送信するとともに、分離した前記第2の通信システムの下り信号を、前記有線プロトコル信号処理した後に前記無線プロトコル信号処理する請求項1記載の通信システム。
  3.  前記無線基地局装置は、第1の光伝送路を介して前記メインユニットに接続し、前記第1の通信システムの下り信号を、前記第1の通信システムの上り信号と波長分割多重して、前記第1の光伝送路を介して前記メインユニットに出力し、
     前記メインユニットは、第2の光伝送路を介して前記複数の無線アクセスユニットと接続し、前記第1の光伝送路を介して入力した前記第1の通信システムの下り信号と、前記第2の通信システムの下り信号とをフレーム多重した第1の多重信号を、前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とをフレーム多重した第2の多重信号と波長分割多重して、前記第2の光伝送路を介して前記複数の無線アクセスユニットの各々に出力し、
     前記複数の無線アクセスユニットは、前記第2の光伝送路を介して入力した前記第1の多重信号から、前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とをフレーム単位で分離するとともに、分離した前記第1の通信システムの下り信号を前記シングルセルの前記第1の通信システムを利用する端末に送信し、分離した前記第2の通信システムの下り信号を、前記有線プロトコル信号処理した後に前記無線プロトコル信号処理する請求項1記載の通信システム。
  4.  無線基地局装置と、前記無線基地局装置及びネットワークに接続されるメインユニットと、前記メインユニットに接続される複数の無線アクセスユニットとを具備する通信システムであって、
     前記複数の無線アクセスユニットは、第1の通信システムのシングルセルを構成するとともに各々が前記シングルセル内に個別に第2の通信システムのマルチセルを構成し、前記シングルセルの前記第1の通信システムを利用する端末から受信した第1の通信システムの上り信号を前記メインユニットに出力するとともに、前記マルチセルの前記第2の通信システムを利用する端末から受信した第2の通信システムの上り信号を、無線プロトコル信号処理した後に有線プロトコル信号処理して前記メインユニットに出力し、
     前記メインユニットは、前記複数の無線アクセスユニットから入力した前記第1の通信システムの上り信号を合成して前記無線基地局装置に出力するとともに、前記複数の無線アクセスユニットから入力した前記第2の通信システムの上り信号を前記ネットワークに出力し、
     前記無線基地局装置は、合成した前記第1の通信システムの上り信号を前記メインユニットから取得する通信システム。
  5.  前記複数の無線アクセスユニットは、光伝送路を介して前記メインユニットに接続し、前記第1の通信システムを利用する端末から受信した前記第1の通信システムの上り信号と、前記有線プロトコル信号処理した前記第2の通信システムの上り信号とを波長分割多重した多重信号を、前記光伝送路を介して前記メインユニットに出力し、
     前記メインユニットは、前記光伝送路を介して入力した前記多重信号から前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とを分離し、分離した前記第1の通信システムの上り信号を合成して前記無線基地局装置に出力するとともに、分離した前記第2の通信システムの上り信号を前記ネットワークに出力する請求項4記載の通信システム。
  6.  前記複数の無線アクセスユニットは、第1の光伝送路を介して前記メインユニットと接続し、前記第1の通信システムを利用する端末から受信した前記第1の通信システムの上り信号と、前記有線プロトコル信号処理した前記第2の通信システムの上り信号とをフレーム多重した第1の多重信号を、前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とをフレーム多重した第2の多重信号と波長分割多重して前記メインユニットに出力し、
     前記メインユニットは、第2の光伝送路を介して前記無線基地局装置に接続し、前記第1の光伝送路を介して前記複数の無線アクセスユニットから入力した前記第1の多重信号を、前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とにフレーム単位で各々分離し、分離した各々の前記第1の通信システムの上り信号を加算するとともに、加算した前記第1の通信システムの上り信号を、前記第1の通信システムの下り信号と波長分割多重して、前記第2の光伝送路を介して前記無線基地局装置に出力し、
     前記無線基地局装置は、前記第2の光伝送路を介して前記第1の通信システムの上り信号を前記メインユニットから取得する請求項4記載の通信システム。
  7.  入力した第1の通信システムの下り信号を複数の前記第1の通信システムの下り信号に分配する分配手段と、
     前記分配手段により分配した各々の前記第1の通信システムの下り信号と、入力した第2の通信システムの下り信号とを各々多重して第1の多重信号を生成して出力する多重手段と、
     を具備するメインユニット。
  8.  前記分配手段により分配した各々の前記第1の通信システムの下り信号と、入力した前記第2の通信システムの下り信号とを電気信号から光信号に変換する変換手段をさらに具備し、
     前記多重手段は、前記変換手段により光信号に変換した前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とを各々波長分割多重して前記第1の多重信号を生成する請求項7記載のメインユニット。
  9.  前記第1の通信システムの下り信号と前記第1の通信システムの上り信号とが波長分割多重された第2の多重信号から、前記第1の通信システムの下り信号を分離する分離手段と、
     前記分離手段により分離した前記第1の通信システムの下り信号を光信号から電気信号に変換する変換手段と、
     入力した前記第2の通信システムの下り信号にダミービットを挿入する信号変換手段とをさらに具備し、
     前記分配手段は、前記変換手段により電気信号に変換した前記第1の通信システムの下り信号を複数の前記第1の通信システムの下り信号に分配し、
     前記多重手段は、分配した前記第1の通信システムの下り信号と、前記ダミービットを挿入した前記第2の通信システムの下り信号とを各々フレーム多重した前記第1の多重信号を、前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とを多重した第3の多重信号と波長分割多重して出力する請求項7記載のメインユニット。
  10.  第1の通信システムの上り信号と第2の通信システムの上り信号とが多重された複数の第1の多重信号を取得し、取得した前記第1の多重信号を前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とに各々分離するとともに、分離した前記第2の通信システムの上り信号を出力する分離手段と、
     前記分離手段により分離した各々の前記第1の通信システムの上り信号を合成して出力する合成手段と、
     を具備するメインユニット。
  11.  前記分離手段により分離した前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とを光信号から電気信号に変換する変換手段をさらに具備し、
     前記分離手段は、波長分割多重された複数の前記第1の多重信号を取得し、
     前記合成手段は、前記変換手段により電気信号に変換した各々の前記第1の通信システムの上り信号を合成する請求項10記載のメインユニット。
  12.  前記分離手段により分離した前記第2の通信システムの上り信号からダミービットを除去して前記第2の通信システムの上り信号を出力する信号変換手段と、
     前記合成手段により合成した前記第1の通信システムの上り信号を電気信号から光信号に変換する変換手段と、
     前記変換手段により光信号に変換した前記第1の通信システムの上り信号を、前記第1の通信システムの下り信号と波長分割多重して出力する多重手段とをさらに具備し、
     前記分離手段は、前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とをフレーム多重した第2の多重信号と波長分割多重した前記第1の多重信号を取得し、取得した前記第1の多重信号を前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とにフレーム単位で分離する請求項10記載のメインユニット。
  13.  第1の通信システムの下り信号と第2の通信システムの下り信号とを取得する取得手段と、
     前記取得手段により取得した前記第2の通信システムの下り信号を、有線プロトコル信号処理した後に無線プロトコル信号処理するプロトコル処理手段と、
     前記取得手段により取得した前記第1の通信システムの下り信号を、他の無線アクセスユニットと共に構成した前記第1の通信システムのシングルセルの前記第1の通信システムを利用する端末に送信するとともに、前記プロトコル処理手段により前記無線プロトコル信号処理した前記第2の通信システムの下り信号を、前記シングルセル内に構成した前記第2の通信システムのマルチセルの前記第2の通信システムを利用する端末に送信する送信手段と、
     を具備する無線アクセスユニット。
  14.  前記取得手段により取得した前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とを光信号から電気信号に変換する変換手段をさらに具備し、
     前記取得手段は、前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とが波長分割多重された多重信号から、前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とを分離し、
     前記プロトコル処理手段は、前記変換手段により電気信号に変換した前記第2の通信システムの下り信号を、前記有線プロトコル信号処理した後に前記無線プロトコル信号処理し、
     前記送信手段は、前記変換手段により電気信号に変換した前記第1の通信システムの下り信号を前記シングルセルの前記第1の通信システムを利用する端末に送信するとともに、前記プロトコル処理手段により前記無線プロトコル信号処理した前記第2の通信システムの下り信号を前記マルチセルの前記第2の通信システムを利用する端末に送信する請求項13記載の無線アクセスユニット。
  15.  前記取得手段により取得した、前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とをフレーム多重した第1の多重信号を光信号から電気信号に変換する変換手段と、
     前記変換手段により電気信号に変換した前記第1の多重信号を前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とにフレーム単位で分離する分離手段と、
     前記分離手段により分離した前記第2の通信システムの下り信号からダミービットを除去する信号変換手段とをさらに具備し、
     前記取得手段は、前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とをフレーム多重した第2の多重信号と波長分割多重された前記第1の多重信号を取得し、
     前記プロトコル処理手段は、前記信号変換手段により前記ダミービットを除去した前記第2の通信システムの下り信号を、前記有線プロトコル信号処理した後に前記無線プロトコル信号処理する請求項13記載の無線アクセスユニット。
  16.  他の無線アクセスユニットと共に構成した第1の通信システムのシングルセルの前記第1の通信システムを利用する端末から前記第1の通信システムの上り信号を受信するとともに、前記シングルセル内に構成した第2の通信システムのマルチセルの前記第2の通信システムを利用する端末から前記第2の通信システムの上り信号を受信する受信手段と、
     前記受信手段により受信した前記第2の通信システムの上り信号を、無線プロトコル信号処理した後に有線プロトコル信号処理するプロトコル処理手段と、
     前記受信手段により受信した前記第1の通信システムの上り信号と前記プロトコル処理手段により前記有線プロトコル信号処理した前記第2の通信システムの上り信号とを出力する出力手段と、
     を具備する無線アクセスユニット。
  17.  前記受信手段により受信した前記第1の通信システムの上り信号と、前記プロトコル処理手段により前記有線プロトコル信号処理した前記第2の通信システムの上り信号とを電気信号から光信号に変換する変換手段をさらに具備し、
     前記出力手段は、前記変換手段により光信号に変換した前記第1の通信システムの上り信号と前記第2の通信システムの上り信号とを波長分割多重して出力する請求項16記載の無線アクセスユニット。
  18.  前記プロトコル処理手段により前記有線プロトコル信号処理した前記第2の通信システムの上り信号にダミービットを挿入する信号変換手段と、
     前記受信手段により受信した前記第1の通信システムの上り信号と、前記ダミービットを挿入した前記第2の通信システムの上り信号とをフレーム多重した第1の多重信号を生成する多重手段と、
     前記第1の多重信号を電気信号から光信号に変換する変換手段とをさらに具備し、
     前記出力手段は、前記変換手段により光信号に変換した前記第1の多重信号を、前記第1の通信システムの下り信号と前記第2の通信システムの下り信号とをフレーム多重した第2の多重信号と波長分割多重して出力する請求項16記載の無線アクセスユニット。
  19.  無線基地局装置と、前記無線基地局装置及びネットワークに接続されるメインユニットと、前記メインユニットに接続される複数の無線アクセスユニットとを具備する通信システムにおける通信方法であって、
     前記無線基地局装置が、第1の通信システムの下り信号を前記メインユニットに出力するステップと、
     前記メインユニットが、前記無線基地局装置から入力した前記第1の通信システムの下り信号と、前記ネットワークから入力した第2の通信システムの下り信号とを前記複数の無線アクセスユニットの各々に出力するステップと、
     前記複数の無線アクセスユニットが、前記第1の通信システムのシングルセルを構成するとともに、各々が前記シングルセル内に個別に前記第2の通信システムのマルチセルを構成し、前記メインユニットから入力した前記第1の通信システムの下り信号を前記シングルセルの前記第1の通信システムを利用する端末に送信するとともに、前記メインユニットから入力した前記第2の通信システムの下り信号を、有線プロトコル信号処理した後に無線プロトコル信号処理して前記マルチセルの前記第2の通信システムを利用する端末に各々送信するステップと、
     を具備する通信方法。
  20.  無線基地局装置と、前記無線基地局装置及びネットワークに接続されるメインユニットと、前記メインユニットに接続される複数の無線アクセスユニットとを具備する通信システムにおける通信方法であって、
     前記複数の無線アクセスユニットが、第1の通信システムのシングルセルを構成するとともに各々が前記シングルセル内に個別に第2の通信システムのマルチセルを構成し、前記シングルセルの前記第1の通信システムを利用する端末から受信した第1の通信システムの上り信号を前記メインユニットに出力するとともに、前記マルチセルの前記第2の通信システムを利用する端末から受信した第2の通信システムの上り信号を、無線プロトコル信号処理した後に有線プロトコル信号処理して前記メインユニットに出力するステップと、
     前記メインユニットが、前記複数の無線アクセスユニットから入力した前記第1の通信システムの上り信号を合成して前記無線基地局装置に出力するとともに、前記複数の無線アクセスユニットから入力した前記第2の通信システムの上り信号を前記ネットワークに出力するステップと、
     前記無線基地局装置が、合成した前記第1の通信システムの上り信号を前記メインユニットから取得するステップと、
     を具備する通信方法。
     
PCT/JP2011/002169 2010-04-16 2011-04-12 通信システム、メインユニット、無線アクセスユニット及び通信方法 WO2011129102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112012022510A BR112012022510A2 (pt) 2010-04-16 2011-04-12 sistema de comunicação, unidade principal, unidade de acesso de rádio e método de comunicação.
US13/582,974 US20130004176A1 (en) 2010-04-16 2011-04-12 Communication system, main unit, radio access unit and communication method
US14/699,080 US9485023B2 (en) 2010-04-16 2015-04-29 Communication system, main unit, radio access unit and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010095184A JP5373690B2 (ja) 2010-04-16 2010-04-16 通信システム、メインユニット、無線アクセスユニット及び通信方法
JP2010-095184 2010-04-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/582,974 A-371-Of-International US20130004176A1 (en) 2010-04-16 2011-04-12 Communication system, main unit, radio access unit and communication method
US14/699,080 Continuation US9485023B2 (en) 2010-04-16 2015-04-29 Communication system, main unit, radio access unit and communication method

Publications (1)

Publication Number Publication Date
WO2011129102A1 true WO2011129102A1 (ja) 2011-10-20

Family

ID=44798485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002169 WO2011129102A1 (ja) 2010-04-16 2011-04-12 通信システム、メインユニット、無線アクセスユニット及び通信方法

Country Status (4)

Country Link
US (2) US20130004176A1 (ja)
JP (1) JP5373690B2 (ja)
BR (1) BR112012022510A2 (ja)
WO (1) WO2011129102A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192295A1 (ja) * 2013-05-28 2014-12-04 京セラ株式会社 通信装置、通信システム及び通信制御方法
EP2863557A4 (en) * 2012-06-15 2015-11-04 Huawei Tech Co Ltd DATA TRANSMISSION PROCESS, DEVICE AND SYSTEM

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373690B2 (ja) * 2010-04-16 2013-12-18 パナソニック株式会社 通信システム、メインユニット、無線アクセスユニット及び通信方法
US10075779B2 (en) * 2012-04-20 2018-09-11 Commscope Technologies Llc Wireless drop in a fiber-to-the-home network
EP2770655A1 (en) * 2013-02-22 2014-08-27 Alcatel Lucent Method to transmit a signal in a mobile network
US10383172B2 (en) * 2014-09-30 2019-08-13 Nokia Of America Corporation Method and apparatus for a single unit small, low-power base station supporting both metro cell outdoor (MCO) and metro radio outdoor (MRO) operations
JP6771139B2 (ja) * 2015-01-13 2020-10-21 パナソニックIpマネジメント株式会社 通信システム及び信号合成方法
US10333599B2 (en) * 2016-09-13 2019-06-25 Corning Optical Communications LLC Antenna array beamforming in a remote unit(s) in a wireless distribution system (WDS)
US11381278B1 (en) * 2019-12-11 2022-07-05 Cable Television Laboratories, ino. Systems and methods for extending wireline communication networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510878A (ja) * 1993-05-28 1996-11-12 エーディーシー テレコミュニケーションズ,インコーポレイティド 集中配置基地局と分散アンテナユニットを有するセルラ無線システム
JP2007531423A (ja) * 2004-03-29 2007-11-01 ユーティーシダカントンシュンユーシァンゴンシ マルチモード無線ネットワークにおけるリソース管理方法およびトラフィック誘導方法
WO2009057782A1 (ja) * 2007-11-02 2009-05-07 Ntt Docomo, Inc. 移動通信システム、制御装置及び方法

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183054A (en) * 1977-09-30 1980-01-08 Harris Corporation Digital, frequency-translated, plural-channel, vestigial sideband television communication system
US5067173A (en) * 1990-12-20 1991-11-19 At&T Bell Laboratories Microcellular communications system using space diversity reception
CA2105710A1 (en) * 1992-11-12 1994-05-13 Raymond Joseph Leopold Network of hierarchical communication systems and method therefor
JPH0746248A (ja) * 1993-07-30 1995-02-14 Toshiba Corp 無線通信システム
US5787344A (en) * 1994-06-28 1998-07-28 Scheinert; Stefan Arrangements of base transceiver stations of an area-covering network
US5613209A (en) * 1994-09-02 1997-03-18 Motorola, Inc. Method and apparatus for automatically selecting a radio talkgroup
US6236365B1 (en) * 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US6049593A (en) * 1997-01-17 2000-04-11 Acampora; Anthony Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
DE69831240T2 (de) * 1998-10-15 2006-06-01 Lucent Technologies Inc. Rekonfigurierbares faseroptisches Netzwerk für Drahtlose Übertragung
JP3594862B2 (ja) * 1999-12-28 2004-12-02 株式会社エヌ・ティ・ティ・ドコモ 無線基地局システム、統括局及び該統括局における信号処理方法
WO2001074100A1 (en) * 2000-03-27 2001-10-04 Transcept Opencell, Inc. Multi-protocol distributed wireless system architecture
US6950678B1 (en) * 2000-05-24 2005-09-27 Lucent Technologies Inc. Control technique for a communication system
DE60127791T2 (de) * 2000-10-25 2007-12-27 Ntt Docomo Inc. Übertragungssystem mit an optischen Fasern gekoppelten Funkeinheiten
US20020167954A1 (en) * 2001-05-11 2002-11-14 P-Com, Inc. Point-to-multipoint access network integrated with a backbone network
US20020171897A1 (en) * 2001-05-15 2002-11-21 Kyuman Cho System and method for a high-speed, customizible subscriber network using optical wireless links
US20020191565A1 (en) * 2001-06-08 2002-12-19 Sanjay Mani Methods and systems employing receive diversity in distributed cellular antenna applications
US7043270B2 (en) * 2001-08-13 2006-05-09 Andrew Corporation Shared tower system for accomodating multiple service providers
JP2003147862A (ja) 2001-11-13 2003-05-21 Ube House Kk プレキャスト鉄筋コンクリート壁材及び壁構築構造
SE523400C2 (sv) * 2001-11-30 2004-04-13 Ericsson Telefon Ab L M Cellulärt radiokommunikationssystem som utnyttjar trådlösa optiska länkar samt förfarande för drift av systemet
EP1576779B1 (en) * 2002-12-24 2015-12-09 Telecom Italia S.p.A. Radio base station receiver having digital filtering and reduced sampling frequency
US20040242240A1 (en) * 2003-05-27 2004-12-02 Motorola, Inc. Location assisted communications mode switching
JP4318520B2 (ja) * 2003-09-26 2009-08-26 富士通株式会社 端末の状態制御システム
US20050157675A1 (en) * 2004-01-16 2005-07-21 Feder Peretz M. Method and apparatus for cellular communication over data networks
US8270987B2 (en) * 2005-03-31 2012-09-18 Telecom Italia S.P.A. Radio-access method, related radio base station, mobile-radio network and computer-program product using an assignment scheme for antennas' sectors
US20070292136A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US7844273B2 (en) * 2006-07-14 2010-11-30 Lgc Wireless, Inc. System for and method of for providing dedicated capacity in a cellular network
US8548419B1 (en) * 2006-09-15 2013-10-01 At&T Mobility Ii Llc Utilization of SMS and/or cellular broadcast to receive multimedia alerts
US8351982B2 (en) * 2007-05-23 2013-01-08 Broadcom Corporation Fully integrated RF transceiver integrated circuit
US20100054746A1 (en) * 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US7937068B2 (en) * 2007-08-23 2011-05-03 Motorola Solutions, Inc. Emergency dispatch management and prioritization of communication resources
US8055300B2 (en) * 2007-08-29 2011-11-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for indoor coverage of user equipment terminals
US8175459B2 (en) * 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
ATE518318T1 (de) * 2007-11-19 2011-08-15 Alcatel Lucent Verfahren zur rückgewinnung eines bitstroms aus einem funksignal
ATE473565T1 (de) * 2007-12-28 2010-07-15 Alcatel Lucent Virtuelle mimo-system vorrichtung und basisstation
WO2009100396A1 (en) * 2008-02-08 2009-08-13 Adc Telecommunications, Inc. An enterprise mobile network for providing cellular wireless service using licensed radio frequency spectrum and internet protocol backhaul
US8259825B2 (en) * 2008-08-08 2012-09-04 Motorola Mobility, Inc. Mapping and signaling of common reference symbols for multiple antennas
US8274937B2 (en) * 2008-08-26 2012-09-25 Samsung Electronics Co., Ltd. Method and apparatus for beamforming in OFDM wireless system
CN102396171B (zh) * 2009-02-03 2015-09-30 康宁光缆系统有限责任公司 基于光纤的分布式天线系统、组件和用于监视和配置基于光纤的分布式天线系统、组件的相关方法
WO2010091004A1 (en) * 2009-02-03 2010-08-12 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
WO2010102201A2 (en) * 2009-03-05 2010-09-10 Adc Telecommunications, Inc. Methods, systems and devices for integrating wireless technology into a fiber optic network
US9084261B2 (en) * 2009-03-16 2015-07-14 Qualcomm Incorporated Discontinuous uplink transmission operation and interference avoidance for a multi-carrier system
US8422885B2 (en) * 2009-04-16 2013-04-16 Trex Enterprises Corp Bandwidth allocation and management system for cellular networks
KR101579464B1 (ko) * 2009-04-16 2016-01-04 엘지전자 주식회사 중간 접속점에서의 미사용 대역을 이용한 트래픽 처리 방법
US8346091B2 (en) * 2009-04-29 2013-01-01 Andrew Llc Distributed antenna system for wireless network systems
US8155525B2 (en) * 2009-05-15 2012-04-10 Corning Cable Systems Llc Power distribution devices, systems, and methods for radio-over-fiber (RoF) distributed communication
US8588614B2 (en) * 2009-05-22 2013-11-19 Extenet Systems, Inc. Flexible distributed antenna system
US8280259B2 (en) * 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) * 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8792933B2 (en) * 2010-03-10 2014-07-29 Fujitsu Limited Method and apparatus for deploying a wireless network
AU2011232897B2 (en) * 2010-03-31 2015-11-05 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
JP5373690B2 (ja) * 2010-04-16 2013-12-18 パナソニック株式会社 通信システム、メインユニット、無線アクセスユニット及び通信方法
US8472579B2 (en) * 2010-07-28 2013-06-25 Adc Telecommunications, Inc. Distributed digital reference clock
US8909239B2 (en) * 2011-08-30 2014-12-09 Qualcomm Incorporated Scheduling generic broadcast of location assistance data
US8634799B1 (en) * 2012-08-29 2014-01-21 Motorola Solutions, Inc. Dynamically re-configured incident scene communication based on incident scene factors
US20150349892A1 (en) * 2014-05-30 2015-12-03 Adc Telecommunications, Inc. Integrated analog and digital distributed antenna system (das) utilizing an all fiber optic network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510878A (ja) * 1993-05-28 1996-11-12 エーディーシー テレコミュニケーションズ,インコーポレイティド 集中配置基地局と分散アンテナユニットを有するセルラ無線システム
JP2007531423A (ja) * 2004-03-29 2007-11-01 ユーティーシダカントンシュンユーシァンゴンシ マルチモード無線ネットワークにおけるリソース管理方法およびトラフィック誘導方法
WO2009057782A1 (ja) * 2007-11-02 2009-05-07 Ntt Docomo, Inc. 移動通信システム、制御装置及び方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863557A4 (en) * 2012-06-15 2015-11-04 Huawei Tech Co Ltd DATA TRANSMISSION PROCESS, DEVICE AND SYSTEM
US9871592B2 (en) 2012-06-15 2018-01-16 Huawei Technologies Co., Ltd Data transmission method, apparatus, and system
WO2014192295A1 (ja) * 2013-05-28 2014-12-04 京セラ株式会社 通信装置、通信システム及び通信制御方法

Also Published As

Publication number Publication date
US9485023B2 (en) 2016-11-01
JP2011228853A (ja) 2011-11-10
US20150236786A1 (en) 2015-08-20
BR112012022510A2 (pt) 2019-09-24
US20130004176A1 (en) 2013-01-03
JP5373690B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5373690B2 (ja) 通信システム、メインユニット、無線アクセスユニット及び通信方法
EP1813042B8 (en) Communications method, particularly for a mobile radio network
EP3360390B1 (en) Wireless access system
US9554284B2 (en) Wireless over PON
EP2753141B1 (en) Data interaction system and method thereof
US20140255034A1 (en) Method and system for wireless transmission of of analog signals between antenna and baseband processor
EP2863557B1 (en) Data transmitting method, device, and system
Kuwano et al. Operator perspective on next-generation optical access for future radio access
Kani et al. Options for future mobile backhaul and fronthaul
KR20100005141A (ko) 무선 통신 장치, 무선 통신 시스템 및 무선 통신 방법
JP2014110574A (ja) 光無線アクセスシステム
US20170126297A1 (en) Wavefront Multiplexing in Passive Optical Network with Remote Digital Beam Forming
EP2533438B1 (en) Data transmission method, device and system
JP2016208354A (ja) 光通信システム、及び、光通信方法
JP6381384B2 (ja) Ponシステム、onu、oltおよび伝送方法
KR100970671B1 (ko) 이동 통신 및 유무선 인터넷 통합 중계 장치
KR20180083454A (ko) 5g 이동통신시스템에서의 서비스 신호 및 관리 제어 신호의 전송을 위한 분산 안테나 시스템 및 그의 리모트 유닛 장치
JP5665130B2 (ja) 情報送受信装置および情報受信装置
US9608847B2 (en) Analog distributed antenna system for processing ethernet signal
Monteiro et al. Hybrid fibre infrastructures for cloud radio access networks
Cheng et al. Real-time dual-band wireless videos in millimeter-wave radio-over-fiber system
KR102025199B1 (ko) RoF 광전송 시스템
KR102466636B1 (ko) 분산형 안테나 시스템
JP2010213223A (ja) 無線通信システムおよび無線通信方法
JP2004350221A (ja) 光伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13582974

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768625

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022510

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022510

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120906