WO2011129044A1 - Apparatus for supplying voltage - Google Patents

Apparatus for supplying voltage Download PDF

Info

Publication number
WO2011129044A1
WO2011129044A1 PCT/JP2011/000778 JP2011000778W WO2011129044A1 WO 2011129044 A1 WO2011129044 A1 WO 2011129044A1 JP 2011000778 W JP2011000778 W JP 2011000778W WO 2011129044 A1 WO2011129044 A1 WO 2011129044A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
test
integrated circuit
circuit device
power supply
Prior art date
Application number
PCT/JP2011/000778
Other languages
French (fr)
Japanese (ja)
Inventor
彰 樋口
章政 譲原
大輔 坂牧
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to KR1020117027384A priority Critical patent/KR101374339B1/en
Publication of WO2011129044A1 publication Critical patent/WO2011129044A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor

Definitions

  • the present invention relates to an apparatus for supplying a voltage.
  • Patent Document 1 There is known a test apparatus that tests a plurality of devices under test (sometimes referred to as DUTs) in parallel (see, for example, Patent Document 1).
  • a test apparatus including a test integrated circuit device in which a function necessary for testing a DUT is mounted on a single chip is also known (see, for example, Non-Patent Document 1).
  • Patent Document 1 International Publication No. 2008/020555 Pamphlet Non-Patent Document 1 "B8501ES Press Release", [online], November 19, 2009, Nippon Engineering Co., Ltd., [April 8, 2010 search], Internet ⁇ URL : http://www.jec.co.jp/news_b8501es.html>
  • test integrated circuit device for example, when the number of test signals to be supplied to the DUT is increased, it is necessary to increase the current supply capability necessary for outputting the test signals.
  • an integrated circuit device having a reference terminal for outputting a reference value serving as a reference of a drive voltage received from the outside, and the drive voltage corresponding to the reference value And a voltage supply unit for supplying the integrated circuit device to the integrated circuit device.
  • the structure of the test apparatus 10 which concerns on embodiment of this invention is shown with several DUT200.
  • 1 shows a configuration of a test board 20 according to an embodiment of the present invention.
  • the structure of the test part 30 which concerns on embodiment of this invention is shown.
  • 2 shows an exemplary configuration of an input / output circuit 50 according to an embodiment of the present invention.
  • the structure of the test board 20 further provided with the power supply part 90 which concerns on embodiment of this invention is shown.
  • FIG. 1 shows the configuration of a test apparatus 10 according to this embodiment together with a plurality of DUTs 200.
  • the test apparatus 10 tests a plurality of DUTs 200 in parallel.
  • the DUT 200 is, for example, a non-volatile memory such as a flash memory.
  • the test apparatus 10 includes a plurality of test boards 20, a control board 22, a device connection unit 24, a test controller 26, and a network unit 28.
  • Each of the plurality of test boards 20 is connected to one or more DUTs 200.
  • Each of the plurality of test boards 20 exchanges signals with one or more connected DUTs 200 to test the one or more DUTs 200.
  • the control board 22 supplies a power supply voltage to each of the plurality of test boards 20.
  • the control board 22 controls each of the plurality of test boards 20.
  • the control board 22 controls a connection state between the plurality of test boards 20 and the corresponding DUT 200.
  • the test apparatus 10 may include a plurality of control boards 22.
  • the plurality of test boards 20 and the control board 22 are accommodated in a test head which is a main body of the test apparatus 10.
  • the device connection unit 24 holds the plurality of DUTs 200 in a state where they can be attached and removed from the outside. In addition, the device connection unit 24 electrically connects each of the plurality of held DUTs 200 to the corresponding test board 20. The device connection unit 24 electrically connects the plurality of DUTs 200 and the control board 22.
  • the test controller 26 exchanges communication packets such as UDP / IP (User Datagram Protocol / Internet Protocol) with the plurality of test boards 20 and the control board 22 to control the plurality of test boards 20 and the control board 22. Further, the test controller 26 inputs information from the user and outputs information to the user.
  • the test controller 26 is, for example, a computer that executes a program. The test controller 26 executes a program in accordance with an instruction from the user and controls the test apparatus 10.
  • the network unit 28 connects the plurality of test boards 20 and the control board 22 to the test controller 26 so that they can communicate with each other.
  • the network unit 28 is a hub that relays a high-speed serial bus such as Ethernet (registered trademark).
  • FIG. 2 shows a configuration of the test board 20 according to the present embodiment.
  • the test board 20 includes a plurality of test units 30, a plurality of sub-controllers 32, a plurality of memories 34, and a board controller 36.
  • a plurality of test units 30, a plurality of sub-controllers 32, a plurality of memories 34, and a board controller 36 constituting the test board 20 are mounted on a single board.
  • the board controller 36, the test unit 30 and the like may be connected to one board by a connector after being mounted on the sub board.
  • Each of the plurality of test units 30 tests a single DUT 200 by executing a test program that represents a sequence for sequentially generating a logic pattern, an expected value pattern, and the like.
  • Each of the plurality of test units 30 tests the corresponding DUT 200 by transmitting and receiving a signal of the logical pattern indicated in the test program to and from the corresponding DUT 200. For example, if the DUT 200 is a non-volatile memory, each of the plurality of test units 30 detects pass / fail of a cell for each address position in the corresponding DUT 200.
  • each of the plurality of test units 30 performs a test independently. For example, even when the plurality of test units 30 start the test at the same timing, signals to be transmitted and received and timings differ according to the state of the corresponding DUT 200.
  • Each of the plurality of sub-controllers 32 is connected to one or a plurality of different test units 30 among the plurality of test units 30.
  • each of the plurality of sub-controllers 32 is connected to two test units 30.
  • Each of the plurality of memories 34 corresponds to each of the plurality of sub-controllers 32 on a one-to-one basis.
  • Each of the plurality of memories 34 is written and read by the corresponding sub-controller 32.
  • Each of the plurality of sub-controllers 32 controls data transfer between the corresponding test unit 30 and the board controller 36.
  • each of the plurality of sub-controllers 32 reads out the test result stored in the internal memory of the test unit 30 and stores it in the memory 34.
  • the DUT 200 is a non-volatile memory
  • fail data indicating the position of the defective address is read from the internal memory of the corresponding test unit 30 and stored in the corresponding memory 34.
  • each of the plurality of sub-controllers 32 reads out the test program stored in the corresponding memory 34 and transfers it to the corresponding test unit 30 in accordance with an instruction from the corresponding test unit 30.
  • the board controller 36 exchanges communication packets with the test controller 26 via the network unit 28. Further, the board controller 36 writes data to the designated test unit 30 among the plurality of test units 30 based on a command included in the communication packet supplied from the test controller 26. Thereby, the board controller 36 can control each of the plurality of test units 30 in accordance with the command supplied from the test controller 26.
  • the board controller 36 reads data from the designated test unit 30 or the memory 34 among the plurality of test units 30 based on the command included in the communication packet. Thereby, the board controller 36 can transfer the test result of the designated test unit 30 to the test controller 26 in accordance with the instruction supplied from the test controller 26.
  • FIG. 3 shows a configuration of the test unit 30 according to the present embodiment.
  • the test unit 30 includes an integrated circuit device 40 and a power supply unit 42.
  • the integrated circuit device 40 is, for example, a device in which one or a plurality of chips are packaged.
  • the power supply unit 42 generates a drive voltage and supplies it to the integrated circuit device 40.
  • the integrated circuit device 40 includes a test circuit 48, a plurality of input / output circuits 50, a plurality of voltage input terminals 54, a voltage setting unit 56, and a reference terminal 58.
  • the test circuit 48 generates a logic pattern representing the logic of the test signal to be supplied to the DUT 200 corresponding to each of the plurality of pins of the DUT 200. Further, the test circuit 48 compares the received value of the response signal output from each of the plurality of pins of the DUT 200 and the expected value of the response signal to determine pass / fail for each address position of the corresponding DUT 200. To do.
  • Each of the plurality of input / output circuits 50 is connected to each of a plurality of pins of the DUT 200.
  • Each of the plurality of input / output circuits 50 receives a corresponding logic pattern from the test circuit 48 and outputs a test signal having a voltage level corresponding to the received logic pattern.
  • each of the plurality of input / output circuits 50 outputs a test signal having an H logic voltage or an L logic voltage according to the received logic pattern.
  • each of the plurality of input / output circuits 50 connects a corresponding pin to a termination voltage via a termination resistor according to the received logic pattern.
  • each of the plurality of input / output circuits 50 inputs a response signal from a corresponding pin of the corresponding DUT 200.
  • Each of the plurality of input / output circuits 50 compares the level of the input response signal with a threshold level and supplies a logic signal representing the value of the response signal to the test circuit 48.
  • each of the plurality of input / output circuits 50 receives the drive voltage supplied from the external power supply unit 42 and operates according to the received drive voltage.
  • each of the plurality of input / output circuits 50 receives an H logic voltage and an L logic voltage as drive voltages. Thereby, each of the plurality of input / output circuits 50 can output a test signal by the power of the external power supply unit 42.
  • Each of the plurality of input / output circuits 50 receives a termination voltage as a drive voltage. Thereby, each of the plurality of input / output circuits 50 can terminate the corresponding pin by the power of the external power supply unit 42.
  • Each of the plurality of voltage input terminals 54 is provided corresponding to each of the plurality of input / output circuits 50, and receives a drive voltage for driving the corresponding input / output circuit 50 from the external power supply unit 42.
  • the integrated circuit device 40 includes a first voltage input terminal 54-1, a second voltage input terminal 54-2, and a third voltage input terminal corresponding to each of the plurality of input / output circuits 50. 54-3.
  • the first voltage input terminal 54-1 receives the H logic voltage from the power supply unit.
  • the second voltage input terminal 54-2 receives the L logic voltage from the power supply unit.
  • the third voltage input terminal 54-3 receives the termination voltage from the power supply unit.
  • the voltage setting unit 56 generates a reference value serving as a reference for a driving voltage received from the outside. More specifically, the voltage setting unit 56 generates a reference voltage equal to the drive voltage to be supplied to the plurality of input / output circuits 50 as a reference value.
  • the voltage setting unit 56 includes a first setting unit 62, a second setting unit 64, and a third setting unit 66.
  • the first setting unit 62 generates a first reference voltage equal to the H logic voltage.
  • the second setting unit 64 generates a second reference voltage equal to the L logic voltage.
  • the third setting unit 66 generates a third reference voltage equal to the termination voltage.
  • the 1st setting part 62, the 2nd setting part 64, and the 2nd setting part 64 are DA converters as an example.
  • the reference terminal 58 outputs the reference value generated by the voltage setting unit 56 to the outside. More specifically, the reference terminal 58 outputs the reference voltage generated by the voltage setting unit 56 to the outside as a reference value.
  • the integrated circuit device 40 includes a first reference terminal 58-1, a second reference terminal 58-2, and a third reference terminal 58-3.
  • the first reference terminal 58-1 outputs the first reference voltage generated by the first setting unit 62 to the outside.
  • the second reference terminal 58-2 outputs the second reference voltage generated by the second setting unit 64 to the outside.
  • the third reference terminal 58-3 outputs the third reference voltage generated by the third setting unit 66 to the outside.
  • the power supply unit 42 generates a drive voltage corresponding to the reference value output from the integrated circuit device 40 and supplies it to the integrated circuit device 40. More specifically, the power supply unit 42 generates a drive voltage obtained by amplifying the reference voltage output from the reference terminal 58 by a current buffer circuit. That is, the power supply unit 42 keeps the driving voltage constant and amplifies the current according to the load.
  • the power supply unit 42 includes a first supply unit 72, a second supply unit 74, and a third supply unit 76.
  • the first supply unit 72 generates an H logic voltage obtained by power amplification of the first reference voltage.
  • the second supply unit 74 generates an L logic voltage obtained by power amplification of the second reference voltage.
  • the third supply unit 76 generates a terminal voltage obtained by power amplification of the third reference voltage.
  • the power supply unit 42 distributes and supplies the generated drive voltage to each of the plurality of voltage input terminals 54 of the integrated circuit device 40.
  • the power supply unit 42 supplies the drive voltage via a plurality of wires that connect the output terminal of the drive voltage and each of the plurality of voltage input terminals 54.
  • test unit 30 having the above-described configuration, even if the number of test signals to be supplied from the integrated circuit device 40 to the DUT 200 is large, the current without increasing the power supply inside the integrated circuit device 40. Supply capacity can be increased.
  • the integrated circuit device 40 may further include a connection line that internally connects the plurality of voltage input terminals 54 when the drive voltages to be supplied to each of the plurality of input / output circuits 50 have the same value. As a result, the integrated circuit device 40 can accurately set the voltages of the test signals output from the plurality of input / output circuits 50 to the same level.
  • FIG. 4 shows a configuration of the input / output circuit 50 according to the present embodiment.
  • the input / output circuit 50 includes an input / output terminal 78, a driver 80, a first comparator 82, a second comparator 84, a termination resistor 86, and a switch 88.
  • the input / output terminal 78 is connected to a corresponding pin in the DUT 200.
  • the driver 80 the logic pattern generated from the test circuit 48 is given to the input terminal, and the output terminal is connected to the input / output terminal 78. Then, the driver 80 outputs the H logic voltage V IH received via the first voltage input terminal 54-1 in response to receiving the logic pattern indicating the H logic. Further, the driver 80 outputs the L logic voltage V IL received via the second voltage input terminal 54-2 in response to receiving the logic pattern indicating the L logic.
  • the first comparator 82 receives the H-side threshold voltage V OH for determining whether or not the response signal is H logic at the minus-side input terminal.
  • the first comparator 82 has a positive input terminal connected to the input / output terminal 78.
  • the first comparator 82 outputs a logic signal indicating whether or not the response signal received via the input / output terminal 78 is equal to or higher than the H-side threshold voltage VOH .
  • the second comparator 84 receives the L-side threshold voltage V OL for determining whether or not the response signal is L logic at the plus-side input terminal.
  • the second comparator 84 has a negative input terminal connected to the input / output terminal 78. Then, the second comparator 84 outputs a logic signal indicating whether or not the response signal received via the input / output terminal 78 is equal to or lower than the L-side threshold voltage VOL .
  • Termination resistor 86 has a resistance value that terminates the pin of DUT 200.
  • the termination resistor 86 has a resistance value of 50 ⁇ or 75 ⁇ .
  • Terminating resistor 86 has one end connected to the output terminal 78 via the switch 88, the terminal voltage V T received via the third voltage input terminal 54-3 is supplied to the other end.
  • the switch 88 connects the input / output terminal 78 and the termination resistor 86 and receives a logic pattern other than termination of the corresponding pin. Accordingly, the input / output terminal 78 and the termination resistor 86 are opened.
  • the input / output circuit 50 configured as described above can output a test signal based on the drive voltage supplied from the external power supply unit 42. Further, such an input / output circuit 50 can connect a corresponding pin of the DUT 200 to a termination voltage supplied by an external power supply unit 42 via a termination resistor.
  • FIG. 5 shows a configuration of the test board 20 further including a plurality of power supply units 90.
  • Each of the plurality of test boards 20 may further include a plurality of power supply units 90.
  • Each of the plurality of power supply units 90 is provided corresponding to each of the plurality of integrated circuit devices 40 on a one-to-one basis.
  • each of the plurality of power supply units 90 is provided in the corresponding test unit 30.
  • Each of the plurality of power supply units 90 generates a power supply voltage in which a voltage supplied from an external power supply is stabilized within a predetermined fluctuation range.
  • each of the plurality of power supply units 90 steps down a voltage supplied from an external power supply, and generates a power supply voltage stabilized within a predetermined fluctuation range (for example, a ⁇ 5% range of 5 volts). To do.
  • Each of the plurality of power supply units 90 supplies the generated power supply voltage to the corresponding integrated circuit device 40.
  • test equipment 10 test equipment, 20 test board, 22 control board, 24 device connection unit, 26 test controller, 28 network unit, 30 test unit, 32 sub-controller, 34 memory, 36 board controller, 40 integrated circuit device, 42 power supply unit, 48 test circuit, 50 input / output circuit, 54 voltage input terminal, 56 voltage setting unit, 58 reference terminal, 62 first setting unit, 64 second setting unit, 66 third setting unit, 72 first supply unit, 74 second Supply unit, 76 third supply unit, 78 input / output terminal, 80 driver, 82 first comparator, 84 second comparator, 86 termination resistor, 88 switch, 90 power supply unit, 200 DUT

Abstract

Disclosed is an apparatus for supplying voltages, wherein current supplying performance is improved without increasing the power supply capacity inside of an integrated circuit device. The apparatus is provided with the integrated circuit device, and a voltage supply section, which generates a drive voltage and supplies the drive voltage to the integrated circuit device. The integrated circuit device has: a plurality of circuits; a plurality of voltage input terminals, which receive, from the outside, a drive voltage for driving a corresponding circuit among the circuits; and a reference terminal, which outputs a reference voltage to be the reference of the drive voltage to be received from the outside. The voltage supply section generates the drive voltage, which is obtained by power-amplifying the reference voltage.

Description

電圧を供給する装置Device to supply voltage
 本発明は、電圧を供給する装置に関する。 The present invention relates to an apparatus for supplying a voltage.
 複数の被試験デバイス(DUTと呼ぶ場合もある)を並行して試験する試験装置が知られている(例えば特許文献1参照)。また、DUTを試験するために必要な機能を一枚のチップに実装した試験用の集積回路デバイスを備える試験装置も知られている(例えば非特許文献1参照)。
 特許文献1 国際公開第2008/020555号パンフレット
 非特許文献1 "B8501ESプレスリリース"、[online]、2009年11月19日、日本エンジニアリング株式会社、[2010年4月8日検索]、インターネット〈URL: http://www.jec.co.jp/news_b8501es.html〉
There is known a test apparatus that tests a plurality of devices under test (sometimes referred to as DUTs) in parallel (see, for example, Patent Document 1). In addition, a test apparatus including a test integrated circuit device in which a function necessary for testing a DUT is mounted on a single chip is also known (see, for example, Non-Patent Document 1).
Patent Document 1 International Publication No. 2008/020555 Pamphlet Non-Patent Document 1 "B8501ES Press Release", [online], November 19, 2009, Nippon Engineering Co., Ltd., [April 8, 2010 search], Internet <URL : http://www.jec.co.jp/news_b8501es.html>
 ところで、このような試験用の集積回路デバイスは、例えばDUTに供給すべき試験信号の数が増加した場合、試験信号を出力するために必要とする電流供給能力を大きくしなければならなかった。 By the way, in such a test integrated circuit device, for example, when the number of test signals to be supplied to the DUT is increased, it is necessary to increase the current supply capability necessary for outputting the test signals.
 上記課題を解決するために、本発明の第1の態様においては、外部から受け取る駆動電圧の基準となる基準値を出力する基準端子を有する集積回路デバイスと、前記基準値に応じた前記駆動電圧を発生して前記集積回路デバイスに供給する電圧供給部と、を備える装置を提供する。 In order to solve the above problems, in the first aspect of the present invention, an integrated circuit device having a reference terminal for outputting a reference value serving as a reference of a drive voltage received from the outside, and the drive voltage corresponding to the reference value And a voltage supply unit for supplying the integrated circuit device to the integrated circuit device.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本発明の実施形態に係る試験装置10の構成を複数のDUT200とともに示す。The structure of the test apparatus 10 which concerns on embodiment of this invention is shown with several DUT200. 本発明の実施形態に係る試験ボード20の構成を示す。1 shows a configuration of a test board 20 according to an embodiment of the present invention. 本発明の実施形態に係る試験部30の構成を示す。The structure of the test part 30 which concerns on embodiment of this invention is shown. 本発明の実施形態に係る入出力回路50の構成の一例を示す。2 shows an exemplary configuration of an input / output circuit 50 according to an embodiment of the present invention. 本発明の実施形態に係る電源部90を更に備える試験ボード20の構成を示す。The structure of the test board 20 further provided with the power supply part 90 which concerns on embodiment of this invention is shown.
 以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the (1) aspect of the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the scope of claims, and the features described in the embodiments are as follows. Not all combinations are essential for the solution of the invention.
 図1は、本実施形態に係る試験装置10の構成を複数のDUT200とともに示す。試験装置10は、複数のDUT200を並行して試験する。DUT200は、一例として、フラッシュメモリ等の不揮発性メモリである。 FIG. 1 shows the configuration of a test apparatus 10 according to this embodiment together with a plurality of DUTs 200. The test apparatus 10 tests a plurality of DUTs 200 in parallel. The DUT 200 is, for example, a non-volatile memory such as a flash memory.
 試験装置10は、複数の試験ボード20と、制御ボード22と、デバイス接続部24と、試験コントローラ26と、ネットワーク部28とを備える。複数の試験ボード20のそれぞれは、1または複数のDUT200と接続される。複数の試験ボード20のそれぞれは、接続された1または複数のDUT200との間で信号を授受して、これら1または複数のDUT200を試験する。 The test apparatus 10 includes a plurality of test boards 20, a control board 22, a device connection unit 24, a test controller 26, and a network unit 28. Each of the plurality of test boards 20 is connected to one or more DUTs 200. Each of the plurality of test boards 20 exchanges signals with one or more connected DUTs 200 to test the one or more DUTs 200.
 制御ボード22は、複数の試験ボード20のそれぞれに電源電圧を供給する。また、制御ボード22は、複数の試験ボード20のそれぞれを制御する。制御ボード22は、一例として、複数の試験ボード20と対応するDUT200との間の接続状態を制御する。試験装置10は、複数の制御ボード22を備えてもよい。複数の試験ボード20および制御ボード22は、一例として、当該試験装置10の本体部であるテストヘッドの内部に収納される。 The control board 22 supplies a power supply voltage to each of the plurality of test boards 20. The control board 22 controls each of the plurality of test boards 20. As an example, the control board 22 controls a connection state between the plurality of test boards 20 and the corresponding DUT 200. The test apparatus 10 may include a plurality of control boards 22. As an example, the plurality of test boards 20 and the control board 22 are accommodated in a test head which is a main body of the test apparatus 10.
 デバイス接続部24は、複数のDUT200を外部から取付けおよび取外し可能な状態で保持する。また、デバイス接続部24は、保持している複数のDUT200のそれぞれと対応する試験ボード20との間を電気的に接続する。また、デバイス接続部24は、複数のDUT200と制御ボード22との間を電気的に接続する。 The device connection unit 24 holds the plurality of DUTs 200 in a state where they can be attached and removed from the outside. In addition, the device connection unit 24 electrically connects each of the plurality of held DUTs 200 to the corresponding test board 20. The device connection unit 24 electrically connects the plurality of DUTs 200 and the control board 22.
 試験コントローラ26は、UDP/IP(User Datagram Protocol/Internet Protocol)等の通信パケットを複数の試験ボード20および制御ボード22とやり取りして、複数の試験ボード20および制御ボード22を制御する。また、試験コントローラ26は、ユーザからの情報を入力し、ユーザに情報を出力する。試験コントローラ26は、一例として、プログラムを実行するコンピュータである。試験コントローラ26は、ユーザからの指示に応じてプログラムを実行して、当該試験装置10を制御する。 The test controller 26 exchanges communication packets such as UDP / IP (User Datagram Protocol / Internet Protocol) with the plurality of test boards 20 and the control board 22 to control the plurality of test boards 20 and the control board 22. Further, the test controller 26 inputs information from the user and outputs information to the user. The test controller 26 is, for example, a computer that executes a program. The test controller 26 executes a program in accordance with an instruction from the user and controls the test apparatus 10.
 ネットワーク部28は、複数の試験ボード20および制御ボード22と、試験コントローラ26との間を通信可能に接続する。ネットワーク部28は、Ethernet(登録商標)等の高速シリアルバスを中継するハブである。 The network unit 28 connects the plurality of test boards 20 and the control board 22 to the test controller 26 so that they can communicate with each other. The network unit 28 is a hub that relays a high-speed serial bus such as Ethernet (registered trademark).
 図2は、本実施形態に係る試験ボード20の構成を示す。試験ボード20は、複数の試験部30と、複数のサブコントローラ32と、複数のメモリ34と、ボードコントローラ36とを有する。例えば、試験ボード20を構成する、複数の試験部30、複数のサブコントローラ32、複数のメモリ34およびボードコントローラ36は一枚の基板に実装される。この場合において、ボードコントローラ36および試験部30等は、サブ基板に実装されてからコネクタにより一枚の基板に接続されてもよい。 FIG. 2 shows a configuration of the test board 20 according to the present embodiment. The test board 20 includes a plurality of test units 30, a plurality of sub-controllers 32, a plurality of memories 34, and a board controller 36. For example, a plurality of test units 30, a plurality of sub-controllers 32, a plurality of memories 34, and a board controller 36 constituting the test board 20 are mounted on a single board. In this case, the board controller 36, the test unit 30 and the like may be connected to one board by a connector after being mounted on the sub board.
 複数の試験部30のそれぞれは、論理パターンおよび期待値パターン等を順次に発生するためのシーケンスを表す試験プログラムを実行して、一つのDUT200を試験する。複数の試験部30のそれぞれは、対応する一つのDUT200との間で試験プログラムに示された論理パターンの信号を送受信することにより、対応する一つのDUT200を試験する。例えばDUT200が不揮発性メモリであれば、複数の試験部30のそれぞれは、対応するDUT200内のアドレス位置毎のセルの良否を検出する。 Each of the plurality of test units 30 tests a single DUT 200 by executing a test program that represents a sequence for sequentially generating a logic pattern, an expected value pattern, and the like. Each of the plurality of test units 30 tests the corresponding DUT 200 by transmitting and receiving a signal of the logical pattern indicated in the test program to and from the corresponding DUT 200. For example, if the DUT 200 is a non-volatile memory, each of the plurality of test units 30 detects pass / fail of a cell for each address position in the corresponding DUT 200.
 また、複数の試験部30は、それぞれが独立に試験を実行する。例えば、複数の試験部30は、同一のタイミングに試験を開始した場合であっても、対応するDUT200の状態に応じて送受信する信号およびタイミングが異なる。 In addition, each of the plurality of test units 30 performs a test independently. For example, even when the plurality of test units 30 start the test at the same timing, signals to be transmitted and received and timings differ according to the state of the corresponding DUT 200.
 複数のサブコントローラ32のそれぞれは、複数の試験部30のうち互いに異なる1または複数の試験部30に接続される。本例においては、複数のサブコントローラ32のそれぞれは、2つの試験部30に接続される。複数のメモリ34のそれぞれは、複数のサブコントローラ32のそれぞれに一対一で対応する。複数のメモリ34のそれぞれは、対応するサブコントローラ32によりデータの書込みおよび読出しがされる。 Each of the plurality of sub-controllers 32 is connected to one or a plurality of different test units 30 among the plurality of test units 30. In this example, each of the plurality of sub-controllers 32 is connected to two test units 30. Each of the plurality of memories 34 corresponds to each of the plurality of sub-controllers 32 on a one-to-one basis. Each of the plurality of memories 34 is written and read by the corresponding sub-controller 32.
 複数のサブコントローラ32のそれぞれは、対応する試験部30とボードコントローラ36との間のデータの転送を制御する。また、複数のサブコントローラ32のそれぞれは、試験部30の内部メモリに記憶された試験結果を読み出して、メモリ34に記憶させる。例えばDUT200が不揮発性メモリであれば、不良アドレスの位置を示すフェイルデータを対応する試験部30の内部メモリから読み出して、対応するメモリ34に記憶させる。また、複数のサブコントローラ32のそれぞれは、対応する試験部30からの指示に応じて、対応するメモリ34に記憶された試験プログラムを読み出して対応する試験部30に転送する。 Each of the plurality of sub-controllers 32 controls data transfer between the corresponding test unit 30 and the board controller 36. In addition, each of the plurality of sub-controllers 32 reads out the test result stored in the internal memory of the test unit 30 and stores it in the memory 34. For example, if the DUT 200 is a non-volatile memory, fail data indicating the position of the defective address is read from the internal memory of the corresponding test unit 30 and stored in the corresponding memory 34. Further, each of the plurality of sub-controllers 32 reads out the test program stored in the corresponding memory 34 and transfers it to the corresponding test unit 30 in accordance with an instruction from the corresponding test unit 30.
 ボードコントローラ36は、ネットワーク部28を介して試験コントローラ26と通信パケットのやり取りをする。また、ボードコントローラ36は、試験コントローラ26から供給された通信パケットに含まれる命令に基づき、複数の試験部30のうちの指定された試験部30に対してデータを書き込む。これにより、ボードコントローラ36は、試験コントローラ26から供給された命令に応じて、複数の試験部30のそれぞれを制御することができる。 The board controller 36 exchanges communication packets with the test controller 26 via the network unit 28. Further, the board controller 36 writes data to the designated test unit 30 among the plurality of test units 30 based on a command included in the communication packet supplied from the test controller 26. Thereby, the board controller 36 can control each of the plurality of test units 30 in accordance with the command supplied from the test controller 26.
 また、ボードコントローラ36は、通信パケットに含まれる命令に基づき、複数の試験部30のうちの指定された試験部30またはメモリ34からデータを読み出す。これにより、ボードコントローラ36は、試験コントローラ26から供給された命令に応じて、指定された試験部30の試験結果等を試験コントローラ26に転送することができる。 Further, the board controller 36 reads data from the designated test unit 30 or the memory 34 among the plurality of test units 30 based on the command included in the communication packet. Thereby, the board controller 36 can transfer the test result of the designated test unit 30 to the test controller 26 in accordance with the instruction supplied from the test controller 26.
 図3は、本実施形態に係る試験部30の構成を示す。試験部30は、集積回路デバイス40と、電源供給部42とを備える。集積回路デバイス40は、一例として、1または複数のチップをパッケージ化したデバイスである。電源供給部42は、駆動電圧を発生して集積回路デバイス40に供給する。 FIG. 3 shows a configuration of the test unit 30 according to the present embodiment. The test unit 30 includes an integrated circuit device 40 and a power supply unit 42. The integrated circuit device 40 is, for example, a device in which one or a plurality of chips are packaged. The power supply unit 42 generates a drive voltage and supplies it to the integrated circuit device 40.
 集積回路デバイス40は、試験回路48と、複数の入出力回路50と、複数の電圧入力端子54と、電圧設定部56と、基準端子58とを有する。 The integrated circuit device 40 includes a test circuit 48, a plurality of input / output circuits 50, a plurality of voltage input terminals 54, a voltage setting unit 56, and a reference terminal 58.
 試験回路48は、DUT200に供給するべき試験信号の論理を表す論理パターンを、DUT200の複数のピンのそれぞれに対応して発生する。さらに、試験回路48は、DUT200の複数のピンのそれぞれから出力された応答信号の受信値と、当該応答信号の期待値とを比較して、対応するDUT200のそれぞれのアドレス位置毎の良否を判定する。 The test circuit 48 generates a logic pattern representing the logic of the test signal to be supplied to the DUT 200 corresponding to each of the plurality of pins of the DUT 200. Further, the test circuit 48 compares the received value of the response signal output from each of the plurality of pins of the DUT 200 and the expected value of the response signal to determine pass / fail for each address position of the corresponding DUT 200. To do.
 複数の入出力回路50のそれぞれは、DUT200の複数のピンのそれぞれに接続される。複数の入出力回路50のそれぞれは、試験回路48から対応する論理パターンを受け取り、受け取った論理パターンに応じた電圧レベルの試験信号を出力する。複数の入出力回路50のそれぞれは、一例として、受け取った論理パターンに応じてH論理電圧またはL論理電圧の試験信号を出力する。また、複数の入出力回路50のそれぞれは、一例として、受け取った論理パターンに応じて、対応するピンを終端抵抗を介して終端電圧に接続する。 Each of the plurality of input / output circuits 50 is connected to each of a plurality of pins of the DUT 200. Each of the plurality of input / output circuits 50 receives a corresponding logic pattern from the test circuit 48 and outputs a test signal having a voltage level corresponding to the received logic pattern. For example, each of the plurality of input / output circuits 50 outputs a test signal having an H logic voltage or an L logic voltage according to the received logic pattern. Further, as an example, each of the plurality of input / output circuits 50 connects a corresponding pin to a termination voltage via a termination resistor according to the received logic pattern.
 また、複数の入出力回路50のそれぞれは、対応するDUT200の対応するピンから応答信号を入力する。複数の入出力回路50のそれぞれは、入力した応答信号のレベルを閾値レベルと比較して、応答信号の値を表す論理信号を試験回路48に供給する。 Also, each of the plurality of input / output circuits 50 inputs a response signal from a corresponding pin of the corresponding DUT 200. Each of the plurality of input / output circuits 50 compares the level of the input response signal with a threshold level and supplies a logic signal representing the value of the response signal to the test circuit 48.
 ここで、複数の入出力回路50のそれぞれは、外部の電源供給部42から供給された駆動電圧を受けて、受け取った駆動電圧により動作する。複数の入出力回路50のそれぞれは、一例として、駆動電圧としてH論理電圧およびL論理電圧を受け取る。これにより、複数の入出力回路50のそれぞれは、外部の電源供給部42の電力により試験信号を出力することができる。また、複数の入出力回路50のそれぞれは、駆動電圧として終端電圧を受け取る。これにより、複数の入出力回路50のそれぞれは、外部の電源供給部42の電力により対応するピンを終端させることができる。 Here, each of the plurality of input / output circuits 50 receives the drive voltage supplied from the external power supply unit 42 and operates according to the received drive voltage. As an example, each of the plurality of input / output circuits 50 receives an H logic voltage and an L logic voltage as drive voltages. Thereby, each of the plurality of input / output circuits 50 can output a test signal by the power of the external power supply unit 42. Each of the plurality of input / output circuits 50 receives a termination voltage as a drive voltage. Thereby, each of the plurality of input / output circuits 50 can terminate the corresponding pin by the power of the external power supply unit 42.
 複数の電圧入力端子54のそれぞれは、複数の入出力回路50のそれぞれに対応して設けられ、対応する入出力回路50を駆動するための駆動電圧を外部の電源供給部42から受け取る。本例においては、集積回路デバイス40は、複数の入出力回路50のそれぞれに対応して、第1の電圧入力端子54-1、第2の電圧入力端子54-2および第3の電圧入力端子54-3を有する。 Each of the plurality of voltage input terminals 54 is provided corresponding to each of the plurality of input / output circuits 50, and receives a drive voltage for driving the corresponding input / output circuit 50 from the external power supply unit 42. In this example, the integrated circuit device 40 includes a first voltage input terminal 54-1, a second voltage input terminal 54-2, and a third voltage input terminal corresponding to each of the plurality of input / output circuits 50. 54-3.
 第1の電圧入力端子54-1は、H論理電圧を電源供給部42から受け取る。第2の電圧入力端子54-2は、L論理電圧を電源供給部42から受け取る。第3の電圧入力端子54-3は、終端電圧を電源供給部42から受け取る。これにより、複数の入出力回路50のそれぞれは、外部の電源供給部42から駆動電圧を受け取ることができる。 The first voltage input terminal 54-1 receives the H logic voltage from the power supply unit. The second voltage input terminal 54-2 receives the L logic voltage from the power supply unit. The third voltage input terminal 54-3 receives the termination voltage from the power supply unit. Thereby, each of the plurality of input / output circuits 50 can receive a drive voltage from the external power supply unit 42.
 電圧設定部56は、外部から受け取る駆動電圧の基準となる基準値を発生する。より具体的には、電圧設定部56は、複数の入出力回路50に供給するべき駆動電圧と等しい基準電圧を基準値として発生する。 The voltage setting unit 56 generates a reference value serving as a reference for a driving voltage received from the outside. More specifically, the voltage setting unit 56 generates a reference voltage equal to the drive voltage to be supplied to the plurality of input / output circuits 50 as a reference value.
 本例においては、電圧設定部56は、第1設定部62と、第2設定部64と、第3設定部66とを有する。第1設定部62は、H論理電圧と等しい第1基準電圧を発生する。第2設定部64は、L論理電圧と等しい第2基準電圧を発生する。第3設定部66は、終端電圧と等しい第3基準電圧を発生する。第1設定部62、第2設定部64および第2設定部64は、一例として、DAコンバータである。 In this example, the voltage setting unit 56 includes a first setting unit 62, a second setting unit 64, and a third setting unit 66. The first setting unit 62 generates a first reference voltage equal to the H logic voltage. The second setting unit 64 generates a second reference voltage equal to the L logic voltage. The third setting unit 66 generates a third reference voltage equal to the termination voltage. The 1st setting part 62, the 2nd setting part 64, and the 2nd setting part 64 are DA converters as an example.
 基準端子58は、電圧設定部56により発生された基準値を外部に出力する。より具体的には、基準端子58は、電圧設定部56により発生された基準電圧を基準値として外部に出力する。本例においては、集積回路デバイス40は、第1の基準端子58-1と、第2の基準端子58-2と、第3の基準端子58-3とを有する。第1の基準端子58-1は、第1設定部62により発生された第1基準電圧を外部に出力する。第2の基準端子58-2は、第2設定部64により発生された第2基準電圧を外部に出力する。第3の基準端子58-3は、第3設定部66により発生された第3基準電圧を外部に出力する。 The reference terminal 58 outputs the reference value generated by the voltage setting unit 56 to the outside. More specifically, the reference terminal 58 outputs the reference voltage generated by the voltage setting unit 56 to the outside as a reference value. In this example, the integrated circuit device 40 includes a first reference terminal 58-1, a second reference terminal 58-2, and a third reference terminal 58-3. The first reference terminal 58-1 outputs the first reference voltage generated by the first setting unit 62 to the outside. The second reference terminal 58-2 outputs the second reference voltage generated by the second setting unit 64 to the outside. The third reference terminal 58-3 outputs the third reference voltage generated by the third setting unit 66 to the outside.
 電源供給部42は、集積回路デバイス40から出力された基準値に応じた駆動電圧を発生して集積回路デバイス40に供給する。より具体的には、電源供給部42は、基準端子58から出力された基準電圧を、電流バッファ回路により電力増幅した駆動電圧を発生する。即ち、電源供給部42は、駆動電圧を一定とし、電流を負荷に応じて増幅する。 The power supply unit 42 generates a drive voltage corresponding to the reference value output from the integrated circuit device 40 and supplies it to the integrated circuit device 40. More specifically, the power supply unit 42 generates a drive voltage obtained by amplifying the reference voltage output from the reference terminal 58 by a current buffer circuit. That is, the power supply unit 42 keeps the driving voltage constant and amplifies the current according to the load.
 本例において、電源供給部42は、第1供給部72と、第2供給部74と、第3供給部76とを有する。第1供給部72は、第1基準電圧を電力増幅したH論理電圧を発生する。第2供給部74は、第2基準電圧を電力増幅したL論理電圧を発生する。第3供給部76は、第3基準電圧を電力増幅した終端電圧を発生する。 In this example, the power supply unit 42 includes a first supply unit 72, a second supply unit 74, and a third supply unit 76. The first supply unit 72 generates an H logic voltage obtained by power amplification of the first reference voltage. The second supply unit 74 generates an L logic voltage obtained by power amplification of the second reference voltage. The third supply unit 76 generates a terminal voltage obtained by power amplification of the third reference voltage.
 また、電源供給部42は、発生した駆動電圧を、集積回路デバイス40の複数の電圧入力端子54のそれぞれに分配して供給する。電源供給部42は、一例として、駆動電圧の出力端と複数の電圧入力端子54のそれぞれとを接続する複数の配線を介して、駆動電圧を供給する。 Further, the power supply unit 42 distributes and supplies the generated drive voltage to each of the plurality of voltage input terminals 54 of the integrated circuit device 40. As an example, the power supply unit 42 supplies the drive voltage via a plurality of wires that connect the output terminal of the drive voltage and each of the plurality of voltage input terminals 54.
 以上のような構成の試験部30によれば、集積回路デバイス40からDUT200に供給するべき試験信号の数が多い場合であっても、集積回路デバイス40の内部の電源を大きくすることなく、電流供給能力を高くすることができる。 According to the test unit 30 having the above-described configuration, even if the number of test signals to be supplied from the integrated circuit device 40 to the DUT 200 is large, the current without increasing the power supply inside the integrated circuit device 40. Supply capacity can be increased.
 なお、集積回路デバイス40は、複数の入出力回路50のそれぞれに供給するべき駆動電圧が同一値の場合、複数の電圧入力端子54を内部において接続する接続線を更に有してもよい。これにより、集積回路デバイス40は、複数の入出力回路50から出力される試験信号の電圧を正確に同一レベルにすることができる。 Note that the integrated circuit device 40 may further include a connection line that internally connects the plurality of voltage input terminals 54 when the drive voltages to be supplied to each of the plurality of input / output circuits 50 have the same value. As a result, the integrated circuit device 40 can accurately set the voltages of the test signals output from the plurality of input / output circuits 50 to the same level.
 図4は、本実施形態に係る入出力回路50の構成を示す。入出力回路50は、一例として、入出力端子78と、ドライバ80と、第1コンパレータ82と、第2コンパレータ84と、終端抵抗86と、スイッチ88とを含む。入出力端子78は、DUT200における対応するピンに接続される。 FIG. 4 shows a configuration of the input / output circuit 50 according to the present embodiment. As an example, the input / output circuit 50 includes an input / output terminal 78, a driver 80, a first comparator 82, a second comparator 84, a termination resistor 86, and a switch 88. The input / output terminal 78 is connected to a corresponding pin in the DUT 200.
 ドライバ80は、試験回路48から発生された論理パターンが入力端に与えられ、出力端が入出力端子78に接続される。そして、ドライバ80は、H論理を示す論理パターンを受けたことに応じて、第1の電圧入力端子54-1を介して受け取ったH論理電圧VIHを出力する。また、ドライバ80は、L論理を示す論理パターンを受けたことに応じて、第2の電圧入力端子54-2を介して受け取ったL論理電圧VILを出力する。 In the driver 80, the logic pattern generated from the test circuit 48 is given to the input terminal, and the output terminal is connected to the input / output terminal 78. Then, the driver 80 outputs the H logic voltage V IH received via the first voltage input terminal 54-1 in response to receiving the logic pattern indicating the H logic. Further, the driver 80 outputs the L logic voltage V IL received via the second voltage input terminal 54-2 in response to receiving the logic pattern indicating the L logic.
 第1コンパレータ82は、マイナス側入力端に、応答信号がH論理か否かを判定するためのH側閾値電圧VOHを受け取る。また、第1コンパレータ82は、プラス側入力端が入出力端子78に接続される。そして、第1コンパレータ82は、入出力端子78を介して受け取った応答信号がH側閾値電圧VOH以上であるか否かを示す論理信号を出力する。 The first comparator 82 receives the H-side threshold voltage V OH for determining whether or not the response signal is H logic at the minus-side input terminal. The first comparator 82 has a positive input terminal connected to the input / output terminal 78. The first comparator 82 outputs a logic signal indicating whether or not the response signal received via the input / output terminal 78 is equal to or higher than the H-side threshold voltage VOH .
 第2コンパレータ84は、プラス側入力端に、応答信号がL論理か否かを判定するためのL側閾値電圧VOLを受け取る。また、第2コンパレータ84は、マイナス側入力端が入出力端子78に接続される。そして、第2コンパレータ84は、入出力端子78を介して受け取った応答信号がL側閾値電圧VOL以下であるか否かを示す論理信号を出力する。 The second comparator 84 receives the L-side threshold voltage V OL for determining whether or not the response signal is L logic at the plus-side input terminal. The second comparator 84 has a negative input terminal connected to the input / output terminal 78. Then, the second comparator 84 outputs a logic signal indicating whether or not the response signal received via the input / output terminal 78 is equal to or lower than the L-side threshold voltage VOL .
 終端抵抗86は、DUT200のピンを終端する抵抗値を有する。終端抵抗86は、一例として、50Ωまたは75Ωの抵抗値を有する。終端抵抗86は、一端がスイッチ88を介して入出力端子78に接続され、他端に第3の電圧入力端子54-3を介して受け取った終端電圧Vが供給される。スイッチ88は、対応するピンを終端することを示す論理パターンを受けたことに応じて入出力端子78と終端抵抗86とを接続し、対応するピンを終端すること以外の論理パターンを受けたことに応じて入出力端子78と終端抵抗86とを開放する。 Termination resistor 86 has a resistance value that terminates the pin of DUT 200. For example, the termination resistor 86 has a resistance value of 50Ω or 75Ω. Terminating resistor 86 has one end connected to the output terminal 78 via the switch 88, the terminal voltage V T received via the third voltage input terminal 54-3 is supplied to the other end. In response to receiving a logic pattern indicating termination of the corresponding pin, the switch 88 connects the input / output terminal 78 and the termination resistor 86 and receives a logic pattern other than termination of the corresponding pin. Accordingly, the input / output terminal 78 and the termination resistor 86 are opened.
 このような構成の入出力回路50は、外部の電源供給部42により供給された駆動電圧に基づき試験信号を出力することができる。また、このような入出力回路50は、DUT200の対応するピンを、終端抵抗を介して外部の電源供給部42により供給された終端電圧に接続することができる。 The input / output circuit 50 configured as described above can output a test signal based on the drive voltage supplied from the external power supply unit 42. Further, such an input / output circuit 50 can connect a corresponding pin of the DUT 200 to a termination voltage supplied by an external power supply unit 42 via a termination resistor.
 図5は、複数の電源部90を更に備える試験ボード20の構成を示す。複数の試験ボード20のそれぞれは、複数の電源部90を更に備える構成であってもよい。 FIG. 5 shows a configuration of the test board 20 further including a plurality of power supply units 90. Each of the plurality of test boards 20 may further include a plurality of power supply units 90.
 複数の電源部90のそれぞれは、複数の集積回路デバイス40のそれぞれに一対一に対応して設けられる。本例においては、複数の電源部90のそれぞれは、対応する試験部30内に設けられる。 Each of the plurality of power supply units 90 is provided corresponding to each of the plurality of integrated circuit devices 40 on a one-to-one basis. In this example, each of the plurality of power supply units 90 is provided in the corresponding test unit 30.
 複数の電源部90のそれぞれは、外部電源から供給された電圧を予め定められた変動範囲に安定化した電源電圧を生成する。複数の電源部90のそれぞれは、一例として、外部電源から供給された電圧を降圧して、予め定められた変動範囲(例えば、5ボルトの±5%の範囲)に安定化した電源電圧を生成する。そして、複数の電源部90のそれぞれは、対応する集積回路デバイス40に、生成した電源電圧を供給する。 Each of the plurality of power supply units 90 generates a power supply voltage in which a voltage supplied from an external power supply is stabilized within a predetermined fluctuation range. As an example, each of the plurality of power supply units 90 steps down a voltage supplied from an external power supply, and generates a power supply voltage stabilized within a predetermined fluctuation range (for example, a ± 5% range of 5 volts). To do. Each of the plurality of power supply units 90 supplies the generated power supply voltage to the corresponding integrated circuit device 40.
 このような試験ボード20によれば、集積回路デバイス40が許容する電源電圧の変動範囲が、外部電源から出力される電圧の変化量よりも狭い場合であっても、集積回路デバイス40を安定して動作させることができる。 According to such a test board 20, even if the fluctuation range of the power supply voltage allowed by the integrated circuit device 40 is narrower than the amount of change in the voltage output from the external power supply, the integrated circuit device 40 is stabilized. Can be operated.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 試験装置、20 試験ボード、22 制御ボード、24 デバイス接続部、26 試験コントローラ、28 ネットワーク部、30 試験部、32 サブコントローラ、34 メモリ、36 ボードコントローラ、40 集積回路デバイス、42 電源供給部、48 試験回路、50 入出力回路、54 電圧入力端子、56 電圧設定部、58 基準端子、62 第1設定部、64 第2設定部、66 第3設定部、72 第1供給部、74 第2供給部、76 第3供給部、78 入出力端子、80 ドライバ、82 第1コンパレータ、84 第2コンパレータ、86 終端抵抗、88 スイッチ、90 電源部、200 DUT 10 test equipment, 20 test board, 22 control board, 24 device connection unit, 26 test controller, 28 network unit, 30 test unit, 32 sub-controller, 34 memory, 36 board controller, 40 integrated circuit device, 42 power supply unit, 48 test circuit, 50 input / output circuit, 54 voltage input terminal, 56 voltage setting unit, 58 reference terminal, 62 first setting unit, 64 second setting unit, 66 third setting unit, 72 first supply unit, 74 second Supply unit, 76 third supply unit, 78 input / output terminal, 80 driver, 82 first comparator, 84 second comparator, 86 termination resistor, 88 switch, 90 power supply unit, 200 DUT

Claims (9)

  1.  外部から受け取る駆動電圧の基準となる基準値を出力する基準端子を有する集積回路デバイスと、
     前記基準値に応じた前記駆動電圧を発生して前記集積回路デバイスに供給する電圧供給部と、
     を備える装置。
    An integrated circuit device having a reference terminal for outputting a reference value serving as a reference of a driving voltage received from the outside;
    A voltage supply unit that generates the drive voltage according to the reference value and supplies the drive voltage to the integrated circuit device;
    A device comprising:
  2.  前記集積回路デバイスは、前記駆動電圧と等しい基準電圧を前記基準値として出力し、
     前記電圧供給部は、前記基準電圧を電力増幅した前記駆動電圧を発生する
     請求項1に記載の装置。
    The integrated circuit device outputs a reference voltage equal to the drive voltage as the reference value;
    The apparatus according to claim 1, wherein the voltage supply unit generates the drive voltage obtained by power amplification of the reference voltage.
  3.  前記集積回路デバイスは、複数の回路と、前記複数の回路のうちの対応する回路を駆動するための前記駆動電圧を外部から受け取る複数の電圧入力端子とを有し、
     前記電圧供給部は、前記駆動電圧を前記複数の電圧入力端子のそれぞれに分配して供給する
     請求項1または2に記載の装置。
    The integrated circuit device includes a plurality of circuits and a plurality of voltage input terminals that receive the driving voltage for driving the corresponding circuit among the plurality of circuits from the outside.
    The apparatus according to claim 1, wherein the voltage supply unit distributes and supplies the drive voltage to each of the plurality of voltage input terminals.
  4.  前記集積回路デバイスは、前記複数の電圧入力端子を内部において接続する接続線を有する
     請求項3に記載の装置。
    The apparatus according to claim 3, wherein the integrated circuit device has a connection line that connects the plurality of voltage input terminals internally.
  5.  前記集積回路デバイスは、被試験デバイスを試験する
     請求項1から4の何れか1項に記載の装置。
    The apparatus according to claim 1, wherein the integrated circuit device tests a device under test.
  6.  前記集積回路デバイスは、前記被試験デバイスに対して信号を供給する複数のドライバを有し、
     前記電圧供給部は、前記複数のドライバが出力する試験信号のH論理電圧およびL論理電圧を前記駆動電圧として発生する
     請求項5に記載の装置。
    The integrated circuit device has a plurality of drivers for supplying signals to the device under test;
    The apparatus according to claim 5, wherein the voltage supply unit generates an H logic voltage and an L logic voltage of a test signal output from the plurality of drivers as the drive voltage.
  7.  前記集積回路デバイスは、前記被試験デバイスのピンを終端させる終端抵抗を有し、
     前記電圧供給部は、前記終端抵抗を介して前記ピンに接続する終端電圧を前記駆動電圧として発生する
     請求項5または6に記載の装置。
    The integrated circuit device has a termination resistor that terminates a pin of the device under test.
    The apparatus according to claim 5, wherein the voltage supply unit generates a termination voltage connected to the pin via the termination resistor as the drive voltage.
  8.  当該装置は、被試験デバイスを試験する複数の試験ボードを備える試験装置であって、
     前記複数の試験ボードのそれぞれは、
     それぞれが被試験デバイスを試験する複数の前記集積回路デバイスと、
     複数の前記電圧供給部と、
     前記複数の集積回路デバイスのそれぞれに対応して設けられ、外部電源から供給された電圧を予め定められた変動範囲に安定化した電源電圧を生成して対応する集積回路デバイスに供給する複数の電源部と、
     を備える請求項1から7の何れか1項に記載の装置。
    The apparatus is a test apparatus including a plurality of test boards for testing a device under test,
    Each of the plurality of test boards is
    A plurality of said integrated circuit devices each testing a device under test;
    A plurality of the voltage supply units;
    A plurality of power supplies provided corresponding to each of the plurality of integrated circuit devices, generating a power supply voltage in which a voltage supplied from an external power supply is stabilized within a predetermined fluctuation range, and supplying the power supply voltage to the corresponding integrated circuit device And
    The apparatus according to claim 1, comprising:
  9.  前記複数の電源部は、前記外部電源から供給された電圧を降圧して前記電源電圧を生成する
     請求項8に記載の装置。
    The apparatus according to claim 8, wherein the plurality of power supply units generate the power supply voltage by stepping down a voltage supplied from the external power supply.
PCT/JP2011/000778 2010-04-16 2011-02-10 Apparatus for supplying voltage WO2011129044A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020117027384A KR101374339B1 (en) 2010-04-16 2011-02-10 Apparatus for supplying voltage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010095141A JP2011226854A (en) 2010-04-16 2010-04-16 Voltage supply apparatus
JP2010-095141 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129044A1 true WO2011129044A1 (en) 2011-10-20

Family

ID=44798434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000778 WO2011129044A1 (en) 2010-04-16 2011-02-10 Apparatus for supplying voltage

Country Status (4)

Country Link
JP (1) JP2011226854A (en)
KR (1) KR101374339B1 (en)
TW (1) TW201205101A (en)
WO (1) WO2011129044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405441A (en) * 2016-11-13 2017-02-15 深圳市迅特通信技术有限公司 Aging testing device for optical module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131777A (en) * 1990-09-25 1992-05-06 Ando Electric Co Ltd Three-value output circuit of ic tester
WO2004088339A1 (en) * 2003-03-31 2004-10-14 Advantest Corporation Test device and test method
JP2008512682A (en) * 2004-09-09 2008-04-24 フォームファクター, インコーポレイテッド Method and apparatus for remotely buffering test channels
WO2009125491A1 (en) * 2008-04-11 2009-10-15 株式会社アドバンテスト Driver circuit and testing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196756B2 (en) 1999-02-24 2001-08-06 日本電気株式会社 Semiconductor integrated circuit measuring device
JP2003215165A (en) 2002-01-22 2003-07-30 Shibasoku:Kk Power source circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131777A (en) * 1990-09-25 1992-05-06 Ando Electric Co Ltd Three-value output circuit of ic tester
WO2004088339A1 (en) * 2003-03-31 2004-10-14 Advantest Corporation Test device and test method
JP2008512682A (en) * 2004-09-09 2008-04-24 フォームファクター, インコーポレイテッド Method and apparatus for remotely buffering test channels
WO2009125491A1 (en) * 2008-04-11 2009-10-15 株式会社アドバンテスト Driver circuit and testing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405441A (en) * 2016-11-13 2017-02-15 深圳市迅特通信技术有限公司 Aging testing device for optical module
CN106405441B (en) * 2016-11-13 2023-08-04 深圳市迅特通信技术股份有限公司 Aging test device of optical module

Also Published As

Publication number Publication date
TW201205101A (en) 2012-02-01
KR20120034618A (en) 2012-04-12
JP2011226854A (en) 2011-11-10
KR101374339B1 (en) 2014-03-17

Similar Documents

Publication Publication Date Title
US8149901B2 (en) Channel switching circuit
US20140253099A1 (en) Semiconductor device on device interface board and test system using the same
CN104965168A (en) FPGA configuration system and method for testing of integrated circuit
US8509057B2 (en) Communication system, test apparatus, communication apparatus, communication method and test method
KR20120120946A (en) Method and apparatus for testing a device-under-test
KR100736676B1 (en) Tester for testing semiconductor device
WO2011001462A1 (en) Test apparatus
US7679372B2 (en) Test apparatus
CN204789920U (en) A FPGA disposes system for integrated circuit test
CN110855515A (en) Vehicle-mounted CAN network test auxiliary device
CN211062033U (en) Test adapter and test equipment
JP2008145266A (en) Device tester
WO2011129044A1 (en) Apparatus for supplying voltage
JP2011247589A (en) Testing device, control board, and method for configuring testing device
US20040133834A1 (en) Lsi inspection method and apparatus, and ls1 tester
US20080235548A1 (en) Test apparatus, and electronic device
US7111216B2 (en) Scan controller and integrated circuit including such a controller
US6842031B2 (en) Method of electrically testing semiconductor devices
CN106776101B (en) Watchdog circuit and signal processing circuit
CN113035267B (en) Semiconductor testing device, data processing method, equipment and storage medium
CN214799506U (en) Bus board level protocol test circuit
US6297757B1 (en) Method and circuit for testing an analog-to-digital converter module on a data processing system having an intermodule bus
KR101249013B1 (en) Multi-input and output voltage level conversion burn-in tester and method using fpga
CN201163296Y (en) Multipath arbitrarily expanded electronic calibration member
CN216117913U (en) Wire harness test switching system based on analog switch

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20117027384

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768571

Country of ref document: EP

Kind code of ref document: A1