WO2011128561A1 - Protéine de fusion robo1-fc et son utilisation dans le traitement des tumeurs - Google Patents

Protéine de fusion robo1-fc et son utilisation dans le traitement des tumeurs Download PDF

Info

Publication number
WO2011128561A1
WO2011128561A1 PCT/FR2011/050811 FR2011050811W WO2011128561A1 WO 2011128561 A1 WO2011128561 A1 WO 2011128561A1 FR 2011050811 W FR2011050811 W FR 2011050811W WO 2011128561 A1 WO2011128561 A1 WO 2011128561A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
robo1
slit
seq
robol
Prior art date
Application number
PCT/FR2011/050811
Other languages
English (en)
Inventor
Francis Blanche
Béatrice Cameron
Tarik Dabdoubi
Frédérique DOL-GLEIZES
Pierre Fons
Jean-Pascal Herault
Catherine Prades
Original Assignee
Sanofi-Aventis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42830780&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011128561(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to AU2011239839A priority Critical patent/AU2011239839B2/en
Priority to CN2011800238283A priority patent/CN102884076A/zh
Priority to MA35354A priority patent/MA34221B1/fr
Priority to EA201291044A priority patent/EA201291044A1/ru
Priority to SG2012075107A priority patent/SG184529A1/en
Priority to BR112012026020A priority patent/BR112012026020A2/pt
Priority to US13/641,012 priority patent/US9493529B2/en
Application filed by Sanofi-Aventis filed Critical Sanofi-Aventis
Priority to KR1020127026724A priority patent/KR20130059329A/ko
Priority to JP2013504311A priority patent/JP5858442B2/ja
Priority to EP11719346A priority patent/EP2558489A1/fr
Priority to CA2796303A priority patent/CA2796303A1/fr
Priority to MX2012011822A priority patent/MX338981B/es
Publication of WO2011128561A1 publication Critical patent/WO2011128561A1/fr
Priority to TNP2012000473A priority patent/TN2012000473A1/fr
Priority to IL222382A priority patent/IL222382A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a recombinant Robo1-Fc protein and its use for treating diseases in which a Slit protein is overexpressed, including cancer. It also relates to a composition comprising such a recombinant protein. Another aspect of the invention is the use of a Robo1-Fc molecule as a diagnostic tool for detecting overexpression of a Slit family molecule in a patient.
  • Robol protein has two isoforms a and b.
  • the extracellular domain of the Robol isoform b protein (NP_598334) comprises 5 immunoglobulin domains: Ig1, Ig2, Ig3, Ig4 and Ig5.
  • Robo protein interacts with Slit ligands at the I g 1 and Ig 2 domains.
  • Liu et al. 2004, Mol Cell Neurosci, 26: 232-240
  • the inventors have developed a strategy of soluble chimeric Robol receptors capable of binding Slit ligands and consequently of inhibiting intracellular signaling of the Robo / Slit pathway.
  • the Robol-Fc molecules according to the invention have an anti-angiogenic effect by preventing the formation of mature vessels and not by inhibiting the proliferation of endothelial cells.
  • the subject of the present invention is a recombinant Robo-Fc protein comprising the extracellular domain of the Robol isoform b protein or a part of this domain, a junction region (linker) and an Fc domain of an immunoglobulin.
  • the extracellular domain of the Robol isoform b protein consists of the Ig1 and Ig2 domains. These domains correspond to the peptide of SEQ ID NO.2 encoded by the nucleotide sequence SEQ ID NO.1, or a sequence exhibiting at least 80%, 85%, 90%, 95% or 99% identity with the SEQ ID sequences. NO.2.
  • the fusion protein also comprises a junction region, also called a "linker".
  • the linker makes it possible to bring stability to the recombinant protein, in particular by limiting the cleavage in vivo.
  • Linkers that can be used in a Robol-Fc molecule are, for example, GluArgProSerPheVal and GlyGlyGlyGlySer. The skilled person has sufficient knowledge to choose a linker suitable for this use.
  • the Fc domain of the Robol-Fc recombinant molecules according to the invention corresponds to a crystallizable fragment of an immunoglobulin.
  • This Fc fragment can come from different immunoglobulins IgG1, IgG2, IgG3 or IgG4. It is responsible for the effector function of the immune response (WO2008 / 065543).
  • the Fc domain is derived from an IgG4 immunoglobulin.
  • at least one mutation or point deletion has been introduced into the Fc domain of NgG4 so as to increase the stability of the molecule, in particular by stabilizing the hinge region constituted by the 2 Fc domains (Angla et al., 1993, Mol.Immunol., 30: 105-108), to reduce or eliminate the residual activity of IgG4-Fc, in particular the effector activity (WO 97/09351) and to increase homogeneity during production of the recombinant protein.
  • at least two mutations, preferably three point mutations have been introduced in the Fc domain of NgG4.
  • the preferred mutations are as follows:
  • Robo1-Fc molecules according to the invention comprising the domains I g 1 and Ig 2 of Robol isoform b, a linker and a lgG4 domain mutated as described above are Robol -Fc L1, Robol-Fc L2 and Robol-Fc L3.
  • Robol -Fc L1 corresponds to the protein of sequence SEQ ID NO.4, encoded by the nucleotide sequence SEQ ID NO.3.
  • Robol -Fc L2 corresponds to the protein of sequence SEQ ID NO.6, encoded by the nucleotide sequence SEQ ID NO.5.
  • Robol -Fc L1 and Robol -Fc L2 differ by the nature of the linker.
  • Robol-Fc L3 corresponds to the protein of sequence SEQ ID NO.24, encoded by the nucleotide sequence SEQ ID NO.23.
  • one or more point mutations or deletions have been introduced in order to increase homogeneity during production.
  • an amino acid preferably two amino acids have been truncated in the N-terminal position.
  • Such a Robo-1-Fc molecule according to the invention is the Robo1-Fc L3 molecule, in which the two amino acids (Ser20 and Arg21) have been truncated and in which the amino acid Leu 22 has been fused to the signal peptide of interleukin 2.
  • the homogeneity of the Robo1-Fc molecules according to the invention is also increased by deleting the C-terminal lys as previously described.
  • the subject of the invention is also proteins whose protein sequence corresponds to the sequences SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6 or SEQ ID N0.24 or present at least 80%, 85%, 90 %, 95% or 99% identity with the sequences SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6 or SEQ ID NO.24.
  • These protein variants have the same biological activity as proteins having the sequence SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6 or SEQ ID NO.24, in particular their ability to interact with the proteins of the Slit family.
  • the Robo1-Fc proteins according to the invention may be produced by transfection of the expression plasmids encoding these proteins in any cell type suitable for the expression of eukaryotic recombinant proteins: HEK293, CHO, etc. and then recovered in the supernatant of culture and purified according to conventional methods.
  • a Robo1-Fc protein according to the invention has the capacity to interact with a protein of the Slit family.
  • the Robo1-Fc proteins according to the invention specifically recognize the human Slit1, Slit2 and Slit3 proteins and the murine Slit2 protein, in particular by interaction with their D2 domain. Their affinity is similar vis-à-vis the 3 members of the Slit family.
  • Another object according to the invention corresponds to the nucleic acid molecules encoding the proteins according to the invention.
  • Another object according to the invention is the use of a Robo1-Fc protein according to the invention for treating diseases in which a protein of the Slit family is overexpressed.
  • the proteins of the Slit family that can be targeted by the Robo1-Fc according to the invention are Slit-1, Slit-2 or Slit-3.
  • Robol-Fc proteins are capable of simultaneously inhibiting the signaling pathways mediated by Slit1, Slit2 and Slit3, which makes it possible to widen the therapeutic spectrum in comparison with the antibodies. which are specific only to one of these ways.
  • a Robol-Fc protein is used to treat diseases in which a protein of the Slit family is overexpressed by inhibiting angiogenesis without inhibiting endothelial cell proliferation.
  • This antiangiogenic activity related to a lack of maturation of the vessels is called "non-productive angiogenesis”.
  • Robol-Fc molecules according to the invention are capable of inhibiting the formation of tubules, without inhibiting the proliferation of endothelial cells. They make it possible to very significantly reduce the tumor volume in a mouse model of lung cancer.
  • the Robol-Fc proteins that can be used to treat diseases in which a Slit protein is overexpressed are Robol-Fc L1, Robol-Fc L2 and Robol-Fc L3, as well as the molecules derived therefrom. include mutations or point deletions aimed at increasing the homogeneity during production without significantly altering the biological properties of these molecules.
  • the diseases that can be treated by a Robo1-Fc protein according to the invention are all diseases in which inhibition of the Slit pathway can have a therapeutic effect, in particular diseases in which a protein of the family Slit is overexpressed, especially those in which Slit2 is overexpressed.
  • the Robo1-Fc molecules according to the invention specifically bind the Slit-2 molecule, it is interesting to note that they are capable of simultaneously inhibiting the two pathways in which Slit-2 is involved, namely the Robo1 / Slit pathways. -2 and Robo4 / Slit-2.
  • the Robo1-Fc proteins according to the invention can therefore be used to treat cancer, especially pancreatic cancer, colon cancer, colorectal cancer with or without lymphatic metastasis, breast cancer, lung cancer and metastases.
  • Robo-Fc proteins are used to treat lung cancer and lung metastases.
  • the Robo1-Fc molecules according to the invention can also be used as an anti-cancer drug as an alternative to or in addition to current therapeutics.
  • these molecules can be administered in combination (simultaneous or not) with anti-cancer compounds.
  • Another subject of the invention relates to a composition
  • a composition comprising a Robo1-Fc protein as defined above and one or more pharmaceutically acceptable excipients.
  • the Robo1-Fc proteins according to the invention can be formulated in pharmaceutical compositions for topical, oral, parenteral, intranasal, intravenous, intramuscular, subcutaneous administration, intraocular, etc.
  • the pharmaceutical compositions contain pharmaceutically acceptable vehicles for an injectable formulation. It may be in particular salt solutions (monosodium phosphate, disodium, sodium chloride, potassium, calcium or magnesium, etc., or mixtures of such salts), sterile, isotonic, or dry compositions, in particular freeze-dried, which by the addition of sterilized water or physiological saline as appropriate, allow the constitution of injectable solutions.
  • Another aspect of the invention is the use of a Robo1-Fc molecule as a diagnostic tool for detecting overexpression of a Slit family molecule in a patient. Indeed, it has been shown that the Slit pathway is involved in many cancers. The provision of a test to evaluate a deregulation of the Slit signaling pathway is very useful in order to select patients likely to respond to a treatment based on the administration of a Robo1-Fc molecule.
  • This diagnostic tool may be in the form of a ready-to-use kit, comprising a Robo1-Fc molecule in a form adapted to its contact with a biological sample of a patient (blood, urine, tumor biopsy) susceptible to overexpress a Slit molecule.
  • the Robo-Fc molecule may be labeled beforehand or not, and the Robo-Fc and Slit combination is detected so as to evaluate an increase in the expression of a Slit protein in the biological sample in comparison with a control sample.
  • This kit may for example be in the form of an ELISA kit.
  • FIG. 1 Robo1 -Fc L1, Robo1-Fc L2 and Robo1-Fc L3 protein expression plasmids.
  • Figure 2 Evaluation of the interaction of the Robo1-Fc fusion protein variants with the Slit2 protein by ELISA.
  • Figure 3 Robo1-Fc affinity for HEK293 cells not expressing Slit-2 measured by FACS.
  • Figure 4 Robo1-Fc affinity for HEK293 cells expressing Slit2 measured by FACS.
  • Figure 5 Pharmacokinetic profile of Robo1-Fc proteins after iv injection in mice.
  • FIG. 6 Effect of the Robo1-Fc L1 molecule in a co-culture assay with endothelial cells and mesenchymal cells
  • A Description of the protocol for the preparation of an aortic ring and measurement of the tubules.
  • Example 1 Preparation of Robo1-Fc Proteins a. Constructs allowing the expression of Robol - Fc recombinant proteins used as biotherapeutic agents.
  • the recombinant Robo1-Fc proteins consist of a fusion between the first 2 immunoglobulin domains (Ig1-lg2) of the human Robol protein isoform b (NP_598334) and the Fc domain of human immunoglobulin G4 (hlgG4-Fc, SwissProt IGHG4_HUMAN ).
  • a cDNA fragment (SEQ ID NO.1) corresponding to the immunoglobulin (Ig) Ig1 and Ig2 domains of this protein (SEQ ID NO.2) followed by a GluArgProSerPheVal linker was amplified by PCR from the human fetal heart cDNA library (Ref.HL5042T Clontech). This amplified fragment was then cloned into the eukaryotic expression vector pXL4904 (described in FIG. 1) so that the two Robol Ig domains are expressed in fusion with the human C-terminal FG domain of NgG4.
  • the same cDNA corresponding to the Ig1-Ig2 domains but without the mentioned linker was cloned into the eukaryotic expression vector pXL4909 (described in Figure 1) which allows the expression of these Ig domains. in fusion with the same NgG4 Fc domain containing the 3 point mutations described in the Robo1-Fc L1 construct, but this time introducing a GlyGlyGlyGlySer linker upstream of the Fc domain.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID No. 5.
  • the recombinant protein obtained is named Robol-Fc L2 and corresponds to the protein sequence SEQ ID No. 6.
  • the cDNA cloned previously in the plasmid pXL4904 was modified by PCR to introduce the point mutations allowing the substitutions of the leucine position 38 in glutamine and the phenylalanine in position 89 in tyrosine.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID No. 7.
  • the recombinant protein obtained is named Robo1-Fc Slit-2 minus and corresponds to the protein sequence SEQ ID NO.8.
  • the cDNA cloned into the plasmid pXL4904 was modified by PCR to introduce point mutations allowing substitutions of arginine position 97 to alanine and lysine position 98 to alanine.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID NO.9.
  • the recombinant protein obtained is named Robo1-Fc Heparin-minus and corresponds to the protein sequence SEQ ID NO. 10. vs. Production of different Robo1-Fc proteins
  • the two Robo1-Fc L1 and Robo1-Fc L2 proteins were produced by transient transfection in the HEK293 line (FreeStyle 293-F cells ref 51 -0029 Invitrogen according to the supplier's recommendations) using the plasmids pXL4904 and pXL4909 respectively, and accessory plasmids pXL4544 and pXL4551 allowing the expression of two N-glycans glycosylation enzymes, ie o-2,3-sialyltransferase and ⁇ -1,4-galactosyltransferase as described in the application WO2008 / 065543. These proteins were also produced by transfection into the CHO line (CHO-S cells, ref. 1619-012 Invitrogen according to the supplier's recommendations) using plasmids pXL4904 and pXL4909 respectively.
  • the Robo1-Fc L1 and Robo1-Fc L2 proteins expressed in the culture supernatant of HEK293 cells were purified by affinity column chromatography protein A (MabSelect Ref 17-5199-02 Amersham Biosciences) and elution in 20 mM buffer NaCl / 100 mM acetic acid then formulated in PBS buffer (ref.11490-094, Invitrogen).
  • the cDNA coding for the human Slit2 protein corresponds to the reference protein NP_004778. Fragments of this cDNA were amplified by PCR from the human brain cDNA library (Ref 639300, Clontech).
  • the cDNA corresponding to the D2 domain was cloned into the eukaryotic expression vector pXL491 1 in order to express this domain containing a Histag in C-terminal position.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID NO.1 1.
  • the recombinant protein obtained is named Slit-2-D2 and corresponds to the protein sequence SEQ ID NO.12.
  • the cDNA corresponding to the D1-D2 domains was cloned into the eukaryotic expression vector pXL4912 in order to express these two domains containing a Histag in the C-terminal position.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID NO.13.
  • the recombinant protein obtained is named Slit-2-D1 D2 and corresponds to the protein sequence SEQ ID NO.14.
  • the cDNA corresponding to the extracellular portion (Nt) of the Slit2 protein was cloned into the eukaryotic expression vector pXL5033 in order to express this protein with a C-terminal Histag.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID NO.15.
  • the recombinant protein obtained is named Slit-2-N and corresponds to the protein sequence SEQ ID NO.16.
  • the protein carries the Thr31 1 Ser, Lys313Arg, Ne329Leu, Ne41 1Val and Pro418Ala mutations allowing it to be identical to the D2 domain of the murine Slit2 protein.
  • This plasmid makes it possible to express the D2 domain of the murine Slit2 protein with a Histag in C-terminal position.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID No. 17.
  • the recombinant protein obtained is named mSlit-2-D2 and corresponds to the protein sequence SEQ ID NO.18.
  • the cDNA coding for the human Slit1 protein corresponds to the reference protein described NP_003052.
  • a fragment of this cDNA was amplified by PCR from the human brain cDNA library (Ref 639300, Clontech).
  • the cDNA corresponding to the D2 domain was cloned into the eukaryotic expression vector pXL5020 in order to express this domain containing a Histag in the C-terminal position.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID NO.19.
  • the recombinant protein obtained is named Slit-1 -D2 and corresponds to the protein sequence SEQ ID NO.20.
  • the cDNA coding for the human Slit3 protein corresponds to the reference protein described NP_003053.
  • a fragment of this cDNA was amplified by PCR from the human brain cDNA library (Ref 639300, Clontech).
  • the cDNA corresponding to the D2 domain was cloned into the eukaryotic expression vector pXL5021 in order to express this domain containing a Histag in the C-terminal position.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID NO.21.
  • the recombinant protein obtained is named Slit-3-D2 and corresponds to the protein sequence SEQ ID No. 22.
  • Slit-2-D2 Slit-2-D1 D2 and Slit-2-N were produced by transient transfection in the line HEK293 (FreeStyle 293-F cells according to the recommendations of the supplier Invitrogen) using the plasmid pXL491 1 (respectively pXL4912 or pXL5033).
  • the Slit-2-D2 and Slit-2-D1 D2 proteins expressed in the culture supernatant of the HEK293 cells were purified by Sepharose Ni-chelating column chromatography (Ref 17-0409-03, Amersham Biosciences) and elution in imidazole buffer and then formulated in PBS buffer (ref.11490-094, Invitrogen) adjusted to 1 M NaCl. Mass spectrometry (LC / MS) analysis demonstrated the identity of these proteins.
  • Example 3 Study of the affinity of recombinant Robo1-Fc proteins for Slit proteins and for heparin using three methods: ELISA, SPR and FACS a. Affinity of Robo1-Fc proteins for heparin
  • Table 2 shows the 448 mM NaCl concentration required to elute the Robo1-Fc L1 protein as described in the literature (Fukuhara, N. et al., 2008 J. Biol Chem 283 p16226-16234).
  • Table 2 Robo1-Fc affinity to heparin
  • the human protein Slit2-D2 was fixed on lmmulon-4 enzyme-linked plates (VWR Scientific Inc. Swedesboro, NJ). A concentration range (from 20 ⁇ g ml to 0.02 ⁇ g ml) of the Robo1-Fc L1 and Robo1-Fc L2 variants was added and then detected using peroxidase-conjugated goat anti-human IgG antibody (Sigma, ref. A0170-1: 50000 dilution). Revelation was performed with the TMB-H 2 0 2 substrate (Interchim ref # UP664780) and measurements with the 450 nm plate reader. The results obtained are reported in FIG. 2.
  • This example describes the interaction of the Robo1-Fc L1 fusion protein with the Slit-1 -D2, Slit-2-D2 and Slit-3-D2 variants by ELISA assay.
  • the D2 domain of human Slit variants were fixed on lmmulon-4 enzyme-linked plates (VWR Scientific Inc. Swedesboro, NJ).
  • a concentration range (from 1 ⁇ g mL to 0.001 g / mL) of the Robo1-Fc L1 fusion protein was added and then detected using peroxidase-conjugated goat anti-human IgG antibody (Sigma, ref A0170). -dilution at 1: 50000).
  • the Robo1-Fc Slit-2-less protein has no affinity to heparin and is therefore a negative heparin mutant. d. Evaluation of the interaction of the Robo1-Fc protein with murine Slit-2 protein
  • This example describes the interaction of the Robo1-Fc L1 fusion protein with the murine mSlit-2-D2 protein by ELISA assay.
  • the murine mSlit-2-D2 protein was fixed on a lmmulon-4 enzyme-linked box (VWR Scientific Inc. Swedesboro, NJ).
  • a concentration range (from 2 ⁇ g mL to 0.002 ⁇ g mL) of the Robo1-Fc L1 fusion protein was added and then detected by the peroxidase-conjugated goat anti-human IgG antibody (Sigma, ref A0170- dilution to 1: 50000).
  • Revelation was performed with the TMB-H 2 0 2 substrate (Interchim ref # UP664780) and measurements with the plate reader at 450 nm. The results obtained are reported in Table 4 below.
  • This example describes the determination of the affinity constant of the Robo1-Fc L1 fusion protein with human Slit-2 protein (in this Slit-2-D2 experiment) by SPR (Surface Plasmon Resonance, BIAcore 2000).
  • SPR Surface Plasmon Resonance, BIAcore 2000.
  • the interaction between the Robo1-Fc protein and the human Slit2 protein was analyzed after attaching the Robo1-Fc fusion protein to a CM5 chip.
  • the kinetic measurements are carried out according to the protocol of Canziani et al., 2004.
  • Table 5 Robo-Fc Ll affinity constant with human Slit2-D2 by SPR (steady-state analysis)
  • This example describes the affinity of the Robo1-Fc protein on mammalian cells HEK293 expressing Slit2.
  • the cells were plated into a 96-well plate 48 hours post-transfection, and the Robo1-Fc protein was added in a range of 0.01 to 3 mg / L for 30 minutes at 4 ° C.
  • the Robo1-Fc protein is either the Robo-Fc L1 bio-therapeutic agent, or the Robo1-Fc Slit-2-less mutant, or the Robo1-Fc Heparin-less mutant.
  • the cells were washed and the Alexa 488-labeled human anti-Fc antibody (ref: A-1 1013, Invitrogen) was incubated for 30 min at 4 ° C. Then the labeled HEK293 cells are quantified by FACS (Geomean).
  • Figure 3 depicts binding of HEK293 cells to Robo1-Fc protein via fluorescence measured in FACS in the absence of Slit-2 expression.
  • the Robo1-Fc protein and the Robo1-Fc Slit-2-minus mutant bind to the HEK293 cells while the Robo1-Fc Heparin-min mutant does not bind.
  • Robo1-Fc therefore binds in part to HEK293 cells via heparin binding at low concentrations of Robo1-Fc of 0.3 to 0.03 mg / L.
  • Figure 4 depicts binding of HEK293 cells to Robo1-Fc protein via fluorescence measured in FACS when Slit-2-N is expressed by transient transfection. Only the Robo1-Fc protein binds to HEK293 cells expressing Slit-2N. The Robo1-Fc Slit-2-minus and Robo1-Fc Heparin-min mutants do not bind (or almost no) in the range of Robo1-Fc 3.0 to 0, 3 mg / L compared to the Robo1-Fc L1 biotherapeutic protein.
  • Table 7 describes the FACS measured affinity constants of the Robo1-Fc protein when the Slit-2-N, Slit-2-D1 D2 or Slit-2-D2 proteins are expressed in the HEK293 line.
  • the Robo1-Fc Slit-2-minus mutant was found to be Slit-2 negative and the Robo1-Fc Heparin-min mutant has a lower affinity for Slit2 than the bio-therapeutic protein.
  • Robo1-Fc binds to Slit-2-N and Slit-2-D1 D2 expressed by HEK293 cells with comparable affinities that are better than that with Slit-2-D2.
  • This example describes the pharmacokinetic profile and plasma concentration of the Robo1-Fc protein injected once in intravenous (iv) mice.
  • the mice were anesthetized, blood was collected and collected in a tube containing 10 ⁇ l of citrate (CPD-A, C). -4431 Sigma) and 2 ⁇ of protease inhibitors (Complete Protease Inhibitor Mix, Roche Molecular Biochemical).
  • the tubes were centrifuged and the plasma samples were collected and frozen at -20 ° C.
  • the Slit2 protein (Slit-2-D2) was coated in the wells of the 96-well dishes, the plasma samples diluted to 1/5000 and 1/20000 were contacted for one hour at 37 ° C.
  • the anti-human Fc antibodies conjugated to peroxidase (ref. 31413, Pierce) was then incubated and revealed with TMB-H 2 0 2 (ref UP664780, Interchim) and the absorbance was read at 450 nm.
  • a standard range was made with each purified Robo1-Fc protein.
  • the plasma concentrations of the Robo1-Fc L1 and Robo1-Fc L2 proteins are shown in FIG. 5.
  • the pharmacokinetic parameters are described in the following table 8 and show that the protein is stable after injection in the mouse.
  • Table 8 Pharmacokinetic Parameters of Robo1-Fc Proteins After IV Injection in Mice
  • Example 5 Description of the Robo1-Fc bio-therapeutic protein improved for its homogeneity in the N-terminal position.
  • This example describes the expression plasmid, the production and physico-chemical characterization of another Robo1-Fc protein named Robo1-Fc L3 which is different from the Robo1-Fc L1 protein by the absence of the first two residues Ser20 and Arg21.
  • the cDNA cloned into the plasmid pXL4904 was modified by PCR to remove the Ser20 and Arg21 codons and fused the next codon (Leu22) to the coding sequence of the peptide signal of nterleukin 2.
  • the expression plasmid pXL5004 was then generated. , see Figure 1.
  • the cDNA sequence used to express this recombinant protein corresponds to the sequence SEQ ID NO.23.
  • the Robo1-Fc L3 protein was produced, purified and characterized as described in Example 1. N-terminal analysis showed that this purified protein was perfectly homogeneous.
  • the recombinant protein obtained is named Robo1-Fc L3 and corresponds to the protein sequence SEQ ID NO.24.
  • Human Slit-2-D2 protein was fixed on lmmulon-4 enzyme-linked plates (VWR Scientific Inc. Swedesboro, NJ). A concentration range (from 1 ⁇ g mL to 0.001 g / mL) of the Robo1-Fc L3 fusion protein was added and then detected using peroxidase-conjugated goat anti-human IgG antibody (Sigma, ref A0170). -dilution at 1: 50000). Revelation was performed with the TMB-H 2 0 2 substrate (Interchim ref # UP664780) and measurements with the plate reader at 450 nm. The results obtained are reported in Table 9 below.
  • the in vitro angiogenesis model corresponds to a rearrangement of human venous endothelial cells on a monolayer of human dermal fibroblasts. Briefly, fibroblasts (Lonza) are seeded in 24-well plates (Becton Dickinson) at 40,000 cells / well in 1 ml of medium. After 3 days of proliferation (J3), human venous endothelial cells (HUVEC-Lonza) are seeded on the 10-fold fibroblast cell monolayer.
  • EGM ® medium Endothelial Basal Medium, Lonza
  • FCS fetal calf serum - Lonza
  • hEGF Human Recombinant Epidermal Growth Factor - Lonza
  • the cells are fixed with ethanol and labeled with an antibody specific for anti-CD31 HUVECs, followed by an anti-alkaline phosphaphatase antibody and then revealed with an alkaline-phosphatase substrate (J 1 1).
  • Quantitation of the tubules labeled with the anti-CD31 antibody is carried out by means of microscope image acquisitions (objective X4) and the analysis of the length of the pseudo-tubules is carried out with the aid of a computer software. image (BIOCOM-Visiolab 2000 software) ( Figure 6).
  • Robo1-Fc L1 500 ⁇ g / ml shows inhibitory activity of the formation of tubules formed by HUVECs.
  • the Robo1-Fc L1 molecule was evaluated in a mouse aortic ring model. Briefly, mouse aorta are removed and cleaned and cut into a 1 mm (J0) section. These rings are included in rat collagen in the presence of VEGF at 10 ng / ml, the Robo1-Fc L1 molecule or a negative control Robo1-Fc Slit-2-less at a concentration of 500 ⁇ g / ml. Tubules will form from the ring thus mimicking in vitro the formation of neovessels. After 6 days, a quantification of the marked tubules is carried out thanks to microscope image acquisitions (objective X3) (FIG. 7A) and the analysis of the length of the pseudo-tubules is carried out using software image (BIOCOM- Visiolab 2000 software) ( Figure 7).
  • Robo1-Fc L1 (500 ⁇ g / ml) shows a strong Inhibitory activity of formation of tubules formed in comparison with the Robo1-Fc Slit-2-less molecule used as a negative control.
  • the Robo1-Fc L1 molecule was evaluated in a model of pulmonary cancer tumor in C57 / BI6 mice. at. Murine model of lung tumor
  • mice Female C57 / BI6 mice aged 8 weeks were anesthetized. The area at the left shoulder blade of the mouse has been shaved and disinfected. A 1 cm incision was made above the scapula.
  • the cells to be injected come from a Lewis lung carcinoma (ATCC, CRL-1642) tumor line.
  • the cells were mixed with Matrigel® in a ratio of 1 vol Matrigel to 4 vol of cells.
  • the cell concentration was 62500 cells / ml.
  • Cells were injected into the lung at a rate of 20 ⁇ per mouse and then the wound was sutured.
  • mice were euthanized.
  • the rib cage was opened, the left lung and the mediastinal chain were removed.
  • the tumor on the left lung was measured using an electronic caliper to determine the tumor volume according to the formula: I2XLX0.52.
  • the mediastinal chain is weighed. The results are expressed as mean value ⁇ standard deviation at the mean. Statistical analysis was done by a Student parametric test. b.
  • mice carrying a pulmonary tumor with the recombinant protein Robo1-Fc The treatment using the Robo1-Fc protein was carried out as follows: A preparation containing the Robo1-Fc protein was injected at the dose of 25 mg / kg / day intraperitoneally at D10, D14, D17, and J21 post injection of tumor cells. The control group was injected with PBS buffer (10 ml / kg). vs. Results
  • the average tumor volume obtained in the group treated with the Robo1-Fc recombinanate protein was 21.45 ⁇ 2.16 mm3; the mean tumor volume obtained in the control group was 39.93 ⁇ 8.41 mm3.
  • the reduction in tumor volume in the animals treated with the Robo1-Fc protein is 46%. This difference is statistically significant (p ⁇ 0.05).
  • the average weight of the mediastinal chain (metastatic lymph nodes) obtained in the group treated with the Robo1-Fc protein is 12.50 ⁇ 1 .26 mg.
  • the average weight of the mediastinal chain obtained in the control group is 30.67 ⁇ 7.69 mg.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Steroid Compounds (AREA)

Abstract

La présente invention concerne une protéine recombinante Robo1-Fc et son utilisation pour traiter les maladies dans lesquelles une protéine Slit est surexprimée, en particulier le cancer. Elle concerne également une composition comprenant une telle protéine recombinante. Un autre aspect de l'invention consiste en l'utilisation d'une molécule Robo1-Fc en tant qu'outil de diagnostic pour détecter la surexpression d'une molécule de la famille Slit chez un patient.

Description

Protéine de fusion Robo1 -Fc et son utilisation dans
le traitement des tumeurs.
La présente invention concerne une protéine recombinante Robo1 -Fc et son utilisation pour traiter les maladies dans lesquelles une protéine Slit est surexprimée, notamment le cancer. Elle concerne également une composition comprenant une telle protéine recombinante. Un autre aspect de l'invention consiste en l'utilisation d'une molécule Robo1 -Fc en tant qu'outil de diagnostic pour détecter la surexpression d'une molécule de la famille Slit chez un patient.
Les ligands Slits ont tout d'abord été décrits pour leur rôle dans la répulsion de la pousse des axones dans le développement neuronal. Depuis, la voie de régulation Robo/Slit a également été décrite dans l'angiogenèse tumorale. En effet, la voie Robo4/Slit2 a été décrite pour inhiber la réponse des cellules endothéliales au VEGF (Jones C.A. et al. Nat. Med 14, 448-453 (2008). La régulation par la voie Robo/Slit permet de canaliser la prolifération excessive de néo vaisseaux non matures ou bourgeons endothéliaux (angiogenèse non productive) et de maturer ces vaisseaux. L'expression de Slit2 au niveau transcriptionnel a été démontré dans plusieurs lignées cancéreuses humaines notamment HCT1 16 issue de carcinome de colon, Skov-3 issue de carcinome ovarien, HeLa issue de cancer du col de l'utérus, MDA-MB-435 issue de mélanome, Hec-1A issue de cancer de l'utérus et enfin 769-P issue de carcinome rénal (Stella MC et al., Mol Biol Cell. 2009 Vol. 20, Issue 2, 642-657). Une surexpression de la protéine Slit2 a également été démontrée sur des tissus humains issus de carcinomes : carcinome buccal (Wang et al. 2008, Cancer Sci. 2008 Mar;99(3):510-7), carcinome de la prostate (Latil et al. 2003 Int J Cancer. 2003 Jan 20;103(3):306-15), du colon (Wang et al. 2003, Cancer Cell, Volume 4, Issue 1 , July 2003, Pages 19-29), du foie (Avci et al, 2008, BMC cancer, 8:392). Plus récemment, la surexpression de la protéine Slit2 a été montrée sur des échantillons d'endométriose (Shen et al, 2009, A/P 175 (2): 479).
La protéine Robol se présente sous deux isoformes a et b. Le domaine extracellulaire de la protéine Robol isoforme b (NP_598334) comprend 5 domaines immunoglobuline : Ig1 , Ig2, Ig3, Ig4 et Ig5. La protéine Robo interagit avec les ligands Slit au niveau des domaines I g 1 et Ig2. Liu et al. (2004, Mol. Cell Neurosci, 26 :232-240) ont démontré l'importance du domaine Ig2 dans l'interaction avec Slit et dans l'activité de Robo (chémorépulsion).
L'utilisation d'anticorps spécifiques des protéines Robol et Slit2 a été décrite dans la demande WO2003/075860. Ces anticorps permettent d'inhiber l'angiogenèse tumorale. Cependant, il serait intéressant de proposer une approche alternative pour traiter le cancer, notamment une molécule capable d'inhiber la voie de signalisation de Slit-2.
Les inventeurs ont développé une stratégie de récepteurs Robol chimères solubles capables de lier les ligands Slits et par conséquent d'inhiber la signalisation intracellulaire de la voie Robo/Slit. De manière surprenante, les molécules Robol - Fc selon l'invention ont un effet anti-angiogène en empêchant la formation de vaisseaux matures et non en inhibant la prolifération des cellules endothéliales.
DESCRIPTION DETAILLEE DE L'INVENTION
La présente invention a pour objet une protéine recombinante Robo-Fc comprenant le domaine extracellulaire de la protéine Robol isoforme b ou un partie de ce domaine, une région de jonction (linker) et un domaine Fc d'une immunoglobuline.
Dans un mode particulier de réalisation, le domaine extracellulaire de la protéine Robol isoforme b est constitué des domaines Ig1 et Ig2. Ces domaines correspondent au peptide de SEQ ID NO.2 codée par la séquence nucléotidique SEQ ID NO.1 , ou une séquence présentant au moins 80%, 85%, 90%, 95% ou 99% d'identité avec les séquences SEQ ID NO.2.
La protéine de fusion comprend également une région de jonction, aussi appelée « linker ». Dans le cadre de la présente invention, le linker permet d'apporter de la stabilité à la protéine recombinante, notamment en limitant le clivage in vivo. Des linkers pouvant être utilisés dans une molécule Robol -Fc sont par exemple GluArgProSerPheVal et GlyGlyGlyGlySer. L'homme du métier a les connaissances suffisantes pour choisir un linker adapté à cette utilisation.
Le domaine Fc des molécules recombinantes Robol -Fc selon l'invention correspond à un fragment cristallisable d'une immunoglobuline. Ce fragment Fc peut provenir de différentes immunoglobulines lgG1 , lgG2, lgG3 ou lgG4. Il est responsable de la fonction effectrice de la réponse immune (WO2008/065543).
Dans un mode de réalisation selon l'invention, le domaine Fc provient d'une immunoglobuline lgG4, Dans un mode particulier de réalisation au moins une mutation ou délétion ponctuelle a été introduite dans le domaine Fc de NgG4 de sorte à augmenter la stabilité de la molécule, notamment en stabilisant la région charnière constitué par les 2 domaines Fc (Angla et al., 1993, Mol. Immunol., 30: 105-108), à réduire ou éliminer l'activité résiduelle du lgG4-Fc, notamment l'activité effectrice (WO 97/09351 ) et à augmenter l'homogénéité lors de la production de la protéine recombinante. En particulier au moins deux mutations, de préférence trois mutations ponctuelles ont été introduites dans le domaine Fc de NgG4. Dans les molécules Robo1 -Fc L1 , Robo1 -Fc L2 et Robo1 -Fc L3 selon l'invention, les mutations préférées sont les suivantes :
S241 P (numérotation Kabat) afin de stabiliser la liaison par pont disulfure dans la région charnière de Fc ;
L248E (numérotation Kabat) afin d'éliminer l'activité effectrice résiduelle du domaine lgG4-Fc ;
Absence de la lysine C-terminale afin de réduire l'hétérogénéité de la protéine. Des molécules Robo1 -Fc selon l'invention comprenant les domaines I g 1 et Ig2 de Robol isoforme b, un linker et un domaine lgG4 muté comme décrit précédemment sont Robol -Fc L1 , Robol -Fc L2 et Robol -Fc L3.
Robol -Fc L1 correspond à la protéine de séquence SEQ ID NO.4, codée par la séquence nucléotidique SEQ ID NO.3. Robol -Fc L2 correspond à la protéine de séquence SEQ ID NO.6, codée par la séquence nucléotidique SEQ ID NO.5.
Robol -Fc L1 et Robol -Fc L2 diffèrent par la nature du linker.
Robol -Fc L3 correspond à la protéine de séquence SEQ ID N0.24, codée par la séquence nucléotidique SEQ ID NO.23. Dans un mode particulier de l'invention, une ou plusieurs mutations ou délétions ponctuelles ont été introduites afin d'augmenter l'homogénéité lors de la production. En particulier, un acide aminé, de préférence deux acides aminés ont été tronqués en position N-terminale. Une telle molécule Robo-1 -Fc selon l'invention est la molécule Robo1 -Fc L3, dans laquelle les deux acides aminés (Ser20 et Arg21 ) ont été tronqués et dans laquelle l'acide aminé Leu 22 a été fusionné au peptide signal de l'interleukine 2.
L'homogénéité des molécules Robo1 -Fc selon l'invention est également augmentée en délétant la Lys C-terminale comme décrit précédemment. L'invention a également pour objet des protéines dont la séquence protéique correspond aux séquences SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6 ou SEQ ID N0.24 ou présente au moins 80%, 85%, 90%, 95% ou 99% d'identité avec les séquences SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6 ou SEQ ID N0.24. Ces variants protéiques présentent la même activité biologique que les protéines de ayant pour séquence SEQ ID NO.2, SEQ ID NO.4, SEQ ID NO.6 ou SEQ ID NO.24, en particulier leur capacité à interagir avec les protéines de la famille Slit.
Les protéines Robo1 -Fc selon l'invention peuvent être produite par transfection des plasmides d'expression codant pour ces protéines dans tout type cellulaire adapté à l'expression de protéines recombinantes eucaryotes : HEK293, CHO, ... puis récupérées dans le surnageant de culture et purifiées selon les méthodes classiques.
La caractérisation des protéines Robo1 -Fc L1 , Robo1 -Fc L2 et Robo1 -Fc L3 selon l'invention a permis de confirmer qu'elles présentent les qualités requises pour leur administration en tant qu'agent biothérapeutique. Une protéine Robo1 -Fc selon l'invention a la capacité d'interagir avec une protéine de la famille Slit.
Les protéines Robo1 -Fc selon l'invention reconnaissent spécifiquement les protéines Slitl , Slit2 et Slit3 humaines et la protéine Slit2 murine, en particulier par interaction avec leur domaine D2. Leur affinité est similaire vis-à-vis des 3 membres de la famille Slit. Un autre objet selon l'invention correspond aux molécules d'acides nucléiques codant les protéines selon l'invention.
Ainsi les molécules d'acides nucléiques correspondant aux séquences SEQ ID NO.1 , SEQ ID NO.3, SEQ ID NO.5 ou SEQ ID N0.23 ou présentant au moins 80%, 85%, 90%, 95% ou 99% d'identité avec les molécules ayant pour séquence SEQ ID NO.1 , SEQ ID NO.3, SEQ ID NO.5 ou SEQ ID N0.23 font partie de l'invention.
Un autre objet selon l'invention consiste en l'utilisation d'une protéine Robo1 -Fc selon l'invention pour traiter les maladies dans lesquelles une protéine de la famille Slit est surexprimée. Les protéines de la famille Slit qui peuvent être ciblées par les Robo1 -Fc selon l'invention sont Slit-1 , Slit-2 ou Slit-3.
Il a été montré que Robol pouvaient interagir avec les différents membres de la famille Slit. De ce fait, il est avantageux de noter que les protéines Robol -Fc selon l'invention sont capables d'inhiber simultanément les voies de signalisation médiées par Slitl , Slit2 et Slit3, ce qui permet d'élargir le spectre thérapeutique en comparaison aux anticorps qui ne sont spécifiques que d'une de ces voies.
Dans un autre mode de réalisation, une protéine Robol -Fc est utilisée pour traiter les maladies dans lesquelles une protéine de la famille Slit est surexprimée en inhibant l'angiogenèse sans inhiber la prolifération des cellules endothéliales. Cette activité antiangiogénique liée à un défaut de maturation des vaisseaux est appelée « angiogenèse non-productive ».
En effet, les études expérimentales ont montré que les molécules Robol -Fc selon l'invention sont capables d'inhiber la formation de tubules, sans inhiber la prolifération des cellules endothéliales. Elles permettent de réduire de façon très significative le volume tumoral dans un modèle murin de cancer pulmonaire.
Dans un mode préféré de réalisation, les protéines Robol -Fc pouvant être utilisées pour traiter les maladies dans lesquelles une protéine Slit est surexprimée sont Robol -Fc L1 , Robol -Fc L2 et Robol -Fc L3, de même que les molécules qui en dérivent en incluent notamment des mutations ou délétions ponctuelles visant à augmenter l'homogénéité pendant la production sans altérer significativement les propriétés biologiques de ces molécules.
De manière générale, les maladies susceptibles d'être traitées par une protéine Robo1 -Fc selon l'invention sont toutes les maladies dans lesquelles une inhibition de la voie Slit peut avoir un effet thérapeutique, en particulier les maladies dans lesquelles une protéine de la famille Slit est surexprimée, et notamment celles dans lesquelles Slit2 est surexprimée.
Les molécules Robo1 -Fc selon l'invention liant spécifiquement la molécule Slit-2, il est intéressant de noter que celles-ci sont capables d'inhiber simultanément les deux voies dans lesquelles Slit-2 est impliquée, à savoir les voies Robo1/Slit-2 et Robo4/Slit-2.
Les protéines Robo1 -Fc selon l'invention peuvent donc être utilisées pour traiter le cancer, notamment le cancer du pancréas, le cancer du colon, le cancer colorectal avec ou sans métastase lymphatique, le cancer du sein, le cancer du poumon et les métastases pulmonaires, le cancer ovarien, le cancer du col de l'utérus, les mélanomes, le cancer rénal, le cancer buccal, le cancer de la prostate, le cancer du foie...
Dans un mode de réalisation particulier, les protéines Robo-Fc sont utilisées pour traiter le cancer du poumon et les métastases pulmonaires.
Les molécules Robo1 -Fc selon l'invention peuvent également utilisées en tant que médicament anticancéreux en alternative ou en complément aux thérapeutiques actuelles.
En particulier, ces molécules peuvent être administrées en association (simultanée ou non) avec des composés anti-cancéreux.
Un autre objet de l'invention concerne une composition comprenant une protéine Robo1 -Fc telle que définie précédemment et un ou plusieurs excipients pharmaceutiquement acceptable.
Les protéines Robo1 -Fc selon l'invention peuvent être formulées dans des compositions pharmaceutiques en vue d'une administration par voie topique, orale, parentérale, intranasale, intraveineuse, intramusculaire, sous-cutanée, intraoculaire, etc. Préférentiellement, les compositions pharmaceutiques contiennent des véhicules pharmaceutiquement acceptables pour une formulation injectable. Il peut s'agir en particulier de solutions salines (phosphate monosodique, disodique, chlorure de sodium, potassium, calcium ou magnésium, etc., ou des mélanges de tels sels), stériles, isotoniques, ou de compositions sèches, notamment lyophilisées, qui, par addition selon le cas d'eau stérilisée ou de sérum physiologique, permettent la constitution de solutés injectables.
Un autre aspect de l'invention consiste en l'utilisation d'une molécule Robo1 -Fc en tant qu'outil de diagnostic pour détecter la surexpression d'une molécule de la famille Slit chez un patient. En effet, il a été montré que la voie Slit est impliquée dans de nombreux cancers. La mise à disposition d'un test pour évaluer une dérégulation de la voie de signalisation des Slit est très utile dans le but de sélectionner les patients susceptibles de répondre à un traitement reposant sur l'administration d'une molécule Robo1 -Fc. Cet outil de diagnostic peut se présenter sous forme d'un kit prêt à l'emploi, comprenant une molécule Robo1 -Fc sous une forme adaptée à sa mise en contact avec un échantillon biologique de patient (sang, urine, biopsie de tumeurs) susceptible de présenter une surexpression d'une molécule Slit. La molécule Robo- Fc peut être préalablement marquée ou non, et l'association Robo-Fc et Slit est détecter de sorte à évaluer une augmentation de l'expression d'une protéine Slit dans l'échantillon biologique en comparaison avec un échantillon témoin. Ce kit peut par exemple se présenter sous forme d'un kit ELISA.
DESCRIPTION DES FIGURES Figure 1 : Plasmides d'expression des protéines Robo1 -Fc L1 , Robo1 -Fc L2 et Robo1 -Fc L3.
Figure 2 : Evaluation de l'interaction des variants de protéine de fusion Robo1 -Fc avec la protéine Slit2 par ELISA.
Figure 3 : Affinité de Robo1 -Fc pour les cellules HEK293 n'exprimant pas Slit-2 mesurée par FACS. Figure 4 : Affinité de Robo1 -Fc pour les cellules HEK293 exprimant Slit2 mesurée par FACS.
Figure 5 : Profil pharmacocinétique des protéines Robo1 -Fc après une injection iv chez la souris. A. Administration de Robo1 -Fc L1 B. Administration de Robo1 -Fc L2.
Figure 6 : Effet de la molécule Robo1 -Fc L1 dans un test co-culture avec des cellules endothéliales et des cellules mesenchymateuses A. Robo1 -Fc L1 inhibe la formation de tubule en culture. B. Robo1 -Fc L1 inhibe significativement la formation de pseudo-tubule induite par le VEGF. Figure 7 : Evaluation de l'effet de la molécule Robo1 -Fc L1 sur un modèle ex vivo d'anneau aortique chez la souris. A : Description du protocole de préparation d'un anneau aortique et de la mesure des tubules. B : a. Contrôle ; b. Robo1 -Fc Slit-2- moins 500 g/mL + VEGF 10 ng/mL ; c. Robo1 -Fc L1 500 g/mL + VEGF 10 ng/mL. EXEMPLES
Exemple 1 : Préparation des protéines Robo1 -Fc a. Constructions permettant l'expression des protéines recombinantes Robol - Fc utilisées comme agents biothérapeutiques.
Les protéines recombinantes Robo1 -Fc sont constituées d'une fusion entre les 2 premiers domaines immunoglobuline (Ig1 -lg2) de la protéine Robol humaine isoforme b (NP_598334) et le domaine Fc de l'immunoglobuline G4 humaine (hlgG4-Fc, SwissProt IGHG4_HUMAN).
Pour obtenir la construction Robol -Fc L1 , un fragment du cDNA (SEQ ID NO.1 ) correspondant aux domaines immunoglobuline (Ig) Ig1 et Ig2 de cette protéine (SEQ ID NO.2) suivi d'un linker GluArgProSerPheVal a été amplifié par PCR à partir de la banque de cDNA de cœur fœtal humain (réf. HL5042T Clontech). Ce fragment amplifié a ensuite été cloné dans le vecteur d'expression eucaryote pXL4904 (décrit à la Figure 1 ) afin que les deux domaines Ig de Robol soient exprimés en fusion avec le domaine Fc de NgG4 humaine en position C-terminale. Trois mutations ponctuelles ont été introduites dans le domaine lgG4-Fc pour obtenir les caractéristiques suivantes : S241 P (numérotation Kabat) afin de stabiliser la liaison par pont disulfure dans la région charnière de Fc ; L248E afin d'éliminer l'activité effectrice résiduelle du domaine lgG4-Fc ; Absence de la lysine C-terminale afin de réduire l'hétérogénéité de la protéine. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.3. La protéine recombinante obtenue est nommée Robo1 -Fc L1 et correspond à la séquence protéique SEQ ID NO.4.
Pour obtenir la construction Robo1 -Fc L2, le même cDNA correspondant aux domaines Ig1 -lg2 mais sans le linker mentionné a été cloné dans le vecteur d'expression eucaryote pXL4909 (décrit à la Figure 1 ) qui permet l'expression de ces domaines Ig en fusion avec le même domaine Fc de NgG4 contenant les 3 mutations ponctuelles décrites dans la construction de Robo1 -Fc L1 , mais en introduisant cette fois un linker GlyGlyGlyGlySer en amont du domaine Fc . La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.5 La protéine recombinante obtenue est nommée Robol - Fc L2 et correspond à la séquence protéique SEQ ID NO.6. b. Construction des protéines Robo1 -Fc utilisées comme contrôles
Pour obtenir la construction Robo1 -Fc Slit-2-moins, le cDNA cloné précédemment dans le plasmide pXL4904 a été modifié par PCR pour introduire les mutations ponctuelles permettant les substitutions de la leucine position 38 en glutamine et la phénylalanine en position 89 en tyrosine. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.7. La protéine recombinante obtenue est nommée Robo1 -Fc Slit-2 moins et correspond à la séquence protéique SEQ ID NO.8.
Pour obtenir la construction Robo1 -Fc Héparine-moins, le cDNA cloné dans le plasmide pXL4904 a été modifié par PCR pour introduire les mutations ponctuelles permettant les substitutions de l'arginine position 97 en alanine et la lysine position 98 en alanine. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.9. La protéine recombinante obtenue est nommée Robo1 -Fc Héparine-moins et correspond à la séquence protéique SEQ ID NO. 10. c. Production des différentes protéines Robo1 -Fc
Les deux protéines Robo1 -Fc L1 et Robo1 -Fc L2 ont été produites par transfection transitoire dans la lignée HEK293 (cellules FreeStyle 293-F réf 51 -0029 Invitrogen selon les recommandations du fournisseur) à l'aide des plasmides pXL4904 et pXL4909 respectivement, et des plasmides accessoires pXL4544 et pXL4551 permettant l'expression de deux enzymes de glycosylation des N-glycans, i.e. la o 2,3-sialyltransférase et la β-1 ,4-galactosyltransférase comme cela a été décrit dans la demande WO2008/065543. Ces protéines ont aussi été produites par transfection dans la lignée CHO (cellules CHO-S, réf 1 1619-012 Invitrogen selon les recommandations du fournisseur) à l'aide des plasmides pXL4904 et pXL4909 respectivement.
Les protéines Robo1 -Fc L1 et Robo1 -Fc L2 exprimées dans le surnageant de culture des cellules HEK293 ont été purifiées par chromatographie sur colonne d'affinité protéine A (MabSelect réf. 17-5199-02 Amersham Biosciences) et élution en tampon 20 mM NaCI / 100 mM acide acétique puis formulée en tampon PBS (réf. 14190-094, Invitrogen).
Les protéines recombinantes Robo1 -Fc Slit-2-moins et Robo1 -Fc Héparine-moins ont été produites et purifiées de la même manière. d. Caractérisation physico-chimique des protéines recombinantes Robo1 -Fc L'analyse en SDS-PAGE et en gel perméation ont permis de montrer que les protéines étaient dimériques et pures à plus de 96%. L'analyse par masse spectrométrie a permis de démontrer l'identité de ces protéines, la masse mesurée de la protéine déglycosylée étant en parfait accord avec la masse calculée in silico. L'analyse de la composition en monosaccharides et la quantification des acides sialiques des N-glycans comme décrit par Saddic et al. 2002. (Methods Mol. Biol. 194:23-36 and Anumula et a/.1998. Glycobiology 8:685-694) ont permis de démontrer que les protéines étaient très largement sialylées. Les résultats sont présentés dans le tableau 1. On notera que l'analyse N-terminale des molécules Robo1 -Fc L1 et Robo1 -Fc L2 ont montré que ces protéines purifiées contenaient une proportion variable (0 à 40%) d'une forme tronquée des 2 premiers résidus (Ser20 et Arg21 ). Tableau 1 : Identité des protéines Robo1 -Fc
Figure imgf000012_0001
Exemple 2 : Préparation des protéines Slit utilisées comme ligand.
Le cDNA codant pour la protéine Slit2 humaine, correspond à la protéine de référence NP_004778. Des fragments de ce cDNA ont été amplifiés par PCR à partir de la banque de cDNA de cerveau humain (réf. 639300, Clontech).
Le cDNA correspondant au domaine D2 a été cloné dans le vecteur d'expression eucaryote pXL491 1 afin d'exprimer ce domaine contenant un Histag en position C- terminale. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.1 1. La protéine recombinante obtenue est nommée Slit-2-D2 et correspond à la séquence protéique SEQ ID NO.12.
Le cDNA correspondant aux domaines D1 -D2 a été cloné dans le vecteur d'expression eucaryote pXL4912 afin d'exprimer ces deux domaines contenant un Histag en position C-terminale. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.13. La protéine recombinante obtenue est nommée Slit-2-D1 D2 et correspond à la séquence protéique SEQ ID NO.14.
Le cDNA correspondant à la partie extracellulaire (Nt) de la protéine Slit2 a été cloné dans le vecteur d'expression eucaryote pXL5033 afin d'exprimer cette protéine avec un Histag en position C-terminale. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.15. La protéine recombinante obtenue est nommée Slit-2-N et correspond à la séquence protéique SEQ ID NO.16. Le cDNA codant pour le domaine D2 de la protéine Slit2 murine, et correspondant au domaine D2 de la protéine de référence décrite NP_848919 a été obtenu à partir du cDNA cloné dans le plasmide pXL491 1. Quatre fragments permettant de générer les cinq mutations ponctuelles ont été générés par PCR avec le pXL491 1 comme matrice puis ces fragments ont été utilisés comme matrice pour amplifier le cDNA codant pour le domaine D2 total par PCR séquentielle. La protéine porte les mutations Thr31 1 Ser, Lys313Arg, Ne329Leu, Ne41 1Val et Pro418Ala lui permettant d'être identique au domaine D2 de la protéine Slit2 murine. Ce plasmide permet d'exprimer le domaine D2 de la protéine Slit2 murine avec un Histag en position C- terminale. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.17. La protéine recombinante obtenue est nommée mSlit-2-D2 et correspond à la séquence protéique SEQ ID NO.18.
Le cDNA codant pour la protéine Slitl humaine, correspond à la protéine de référence décrite NP_003052. Un fragment de ce cDNA a été amplifié par PCR à partir de la banque de cDNA de cerveau humain (réf. 639300, Clontech). Le cDNA correspondant au domaine D2 a été cloné dans le vecteur d'expression eucaryote pXL5020 afin d'exprimer ce domaine contenant un Histag en position C-terminale. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.19. La protéine recombinante obtenue est nommée Slit-1 -D2 et correspond à la séquence protéique SEQ ID NO.20. Le cDNA codant pour la protéine Slit3 humaine, correspond à la protéine de référence décrite NP_003053. Un fragment de ce cDNA a été amplifié par PCR à partir de la banque de cDNA de cerveau humain (réf. 639300, Clontech). Le cDNA correspondant au domaine D2 a été cloné dans le vecteur d'expression eucaryote pXL5021 afin d'exprimer ce domaine contenant un Histag en position C-terminale. La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.21. La protéine recombinante obtenue est nommée Slit-3-D2 et correspond à la séquence protéique SEQ ID N0.22.
Les trois protéines nommées Slit-2-D2 Slit-2-D1 D2 et Slit-2-N ont été produites par transfection transitoire dans la lignée HEK293 (cellules FreeStyle 293-F selon les recommandations du fournisseur Invitrogen) à l'aide du plasmide pXL491 1 (respectivement pXL4912 ou pXL5033). Les protéines Slit-2-D2 et Slit-2-D1 D2 exprimées dans le surnageant de culture des cellules HEK293 ont été purifiées par chromatographie sur colonne de Sépharose Ni-chelating (réf. 17-0409-03, Amersham Biosciences) et élution en tampon imidazole puis formulée en tampon PBS (réf. 14190-094, Invitrogen) ajusté à 1 M NaCI. L'analyse par masse spectrométrie (LC/MS) a permis de démontrer l'identité de ces protéines.
De façon comparable, les trois protéines nommées mSlit2-D2, Slit1 -D2 et Slit3-D2 ont été produites purifiées et caractérisées.
Exemple 3 : Etude de l'affinité des protéines recombinantes Robo1 -Fc pour les protéines Slit et pour l'héparine à l'aide de trois méthodes : ELISA, SPR et FACS a. Affinité des protéines Robo1 -Fc pour l'héparine
Pour déterminer l'affinité des constructions Robo1 -Fc à l'héparine, 2 mg de protéine Robo1 -Fc, purifié et formulée dans 10 mM phosphate pH 7.0 a été chromatographié sur une colonne héparine (1 mL HiTrap Heparin-Sepharose HP, GE Heathcare) par élution avec un gradient linéaire de NaCI de 0 à 1 ,5 M.
Sur le tableau 2 est indiquée la concentration en NaCI de 448 mM nécessaire pour éluer la protéine Robo1 -Fc L1 comme décrit dans la littérature (Fukuhara, N. et al. 2008 J. Biol. Chem. 283 p16226-16234). Tableau 2 : Affinité de Robo1 -Fc à l'héparine
Figure imgf000015_0001
Ces résultats montrent que la protéine Robo1 -Fc Héparine-moins qui n'est pas retenue sur cette colonne donc qu'elle n'a plus d'affinité à l'héparine. Cette protéine est donc un mutant héparine négatif. b. Evaluation de l'interaction des variants de protéine Robo1 -Fc avec le domaine D2 de la protéine Slit2 humaine
Cet exemple décrit l'interaction des 2 variants nommés Robo1 -Fc L1 et Robo1 -Fc L2 avec leur ligand naturel (dans ces expériences le domaine D2 de Slit2 humain) par dosage ELISA.
La protéine humaine Slit2-D2 a été fixé sur des boîtes lmmulon-4 enzyme-linked (VWR Scientific Inc. Swedesboro, NJ). Une gamme de concentration (de 20 μg mL à 0.02 μg mL) des variants Robo1 -Fc L1 et Robo1 -Fc L2 ont été ajoutés puis détectés grâce à l'anticorps de chèvre anti-humain IgG conjugué à la péroxidase (Sigma ; réf. A0170-dilution au 1 :50000). La révélation a été réalisée avec le substrat TMB- H202 (Interchim ; réf UP664780) et les mesures avec le lecteur de plaques à 450 nm. Les résultats obtenus sont reportés dans la figure 2. Ils montrent que Les deux variants Robo1 -Fc L1 et L2 interagissent spécifiquement avec la protéine Slit-2 humaine (en particulier avec le domaine D2). c. Evaluation de l'interaction de la protéine Robo1 -Fc avec les variants humains de la famille Slit, à savoir Slit-1 et Slit-3
Cet exemple décrit l'interaction de la protéine de fusion Robo1 -Fc L1 avec les variants Slit-1 -D2, Slit-2-D2 et Slit-3-D2 par dosage ELISA. Le domaine D2 des variants Slit humains ont été fixé sur des boîtes lmmulon-4 enzyme-linked (VWR Scientific Inc. Swedesboro, NJ). Une gamme de concentration (de 1 μg mL à 0.001 g/mL) de la protéine de fusion Robo1 -Fc L1 a été ajouté puis détecté grâce à l'anticorps de chèvre anti-humain IgG conjugué à la péroxidase (Sigma ; réf. A0170-dilution au 1 :50000). La révélation a été réalisée avec le substrat TMB-H202 (Interchim ; réf UP664780) et les mesures avec le lecteur de plaques à 450 nm. De même le variant Robo1 -Fc Slit-2-moins qui est muté au niveau du site de liaison à Slit2, a été évalué suivant une gamme de concentration (de 20 μg mL à 0.02 μg mL) par dosage ELISA dans les mêmes conditions décrites ci-dessus. Les résultats obtenus sont reportés dans le tableau 3 ci-dessous.
Tableau 3 : Affinité de Robo1 -Fc pour les variants humains de la protéine Slit
Figure imgf000016_0001
Ces résultats montrent que la protéine Robo1 -Fc interagit spécifiquement avec les trois protéines de la famille, Slit-1 , Slit-2 et Slit-3 (en particulier avec leur domaine D2).
De plus, la protéine Robo1 -Fc Slit-2-moins n'a plus d'affinité à l'héparine et elle est donc un mutant héparine négatif. d. Evaluation de l'interaction de la protéine Robo1 -Fc avec la protéine Slit- 2 murine
Cet exemple décrit l'interaction de la protéine de fusion Robo1 -Fc L1 avec la protéine murine mSlit-2-D2 par dosage ELISA. La protéine murine mSlit-2-D2 a été fixée sur une boîte lmmulon-4 enzyme-linked (VWR Scientific Inc. Swedesboro, NJ). Une gamme de concentration (de 2 μg mL à 0.002 μg mL) de la protéine de fusion Robo1 -Fc L1 a été ajouté puis détecté grâce à l'anticorps de chèvre anti-humain IgG conjugué à la péroxidase (Sigma ; réf. A0170- dilution au 1 :50000). La révélation a été réalisée avec le substrat TMB-H202 (Interchim ; réf UP664780) et les mesures avec le lecteur de plaques à 450 nm. Les résultats obtenus sont reportés dans le tableau 4 ci-dessous.
Tableau 4 : Affinité de Robo1 -Fc L1 à la protéine Slit-2 murine
Figure imgf000017_0001
Ces résultats montent que la protéine Robo1 -Fc interagit spécifiquement avec la protéine Slit-2 murine e. Affinité de Robo1 -Fc à la protéine Slit mesurée par SPR
Cet exemple décrit la détermination de la constante d'affinité de la protéine de fusion Robo1 -Fc L1 avec la protéine Slit-2 humaine (dans cette expérience Slit-2-D2) par SPR (Surface Plasmon Résonance ; BIAcore 2000). L'interaction entre la protéine Robo1 -Fc et la protéine Slit2 humaine a été analysée après avoir fixé la protéine de fusion Robo1 -Fc sur une chips CM5. Les mesures de cinétiques sont réalisées selon le protocole de Canziani ei a/ (2004. Anal. Biochem. 325 :301 -307). Tableau 5 : Constante d'affinité de Robo-Fc Ll avec Slit2-D2 humain par SPR (analyse de type steady-state)
Protéine KD (nM)
Robo1 -Fc L1 32 Une seconde méthode qui consiste à déterminer la constante d'affinité entre la protéine de fusion Robo1 -Fc L1 et la protéine Slit2 humaine a été analysée après avoir fixé la protéine Slit-2-D2 sur la chips CM5. Les mesures de cinétiques sont réalisées selon le protocole de Canziani et al (2004. Anal. Biochem. 325 :301 -307) par la méthode de Sctachard suivant un modèle avec deux sites de liaison non équivalents.
Tableau 6 : Constante d'affinité de Robo1 -Fc avec Slit2-D2 humain par SPR selon le modèle bi-phasique de Scatchard
Figure imgf000018_0001
f. Affinité de Robo1 -Fc à Slit mesurée par FACS
Cet exemple décrit l'affinité de la protéine Robo1 -Fc sur cellules mammifères HEK293 exprimant Slit2.
Les cellules HEK293 décrites et utilisées comme dans l'exemple 1 , ont été transfectées soit avec un plasmide ballast, n'ayant pas de cDNA codant dans la cellule mammifère, soit le plasmide pXL491 1 codant pour la protéine Slit-2-D2; soit le plasmide pXL4912 codant pour la protéine Slit-2-D1 D2 ; ou soit pXL5033 codant pour la protéine Slit-2-N décrit dans l'exemple 2. Les cellules ont été réparties en plaque 96-puits 48 heures post-transfection, et la protéine Robo1 -Fc a été ajoutée dans une gamme de concentrations de 0,01 à 3mg/L pendant 30 min à 4°C. La protéine Robo1 -Fc est soit l'agent bio-thérapeutique Robo-Fc L1 , soit le mutant Robo1 -Fc Slit-2-moins, soit le mutant Robo1 -Fc Héparine-moins. Les cellules ont été lavées et l'anticorps anti-Fc humain marqué à l'Alexa 488 (réf : A-1 1013, Invitrogen) a été incubé pendant 30 min à 4°C. Puis les cellules HEK293 marquées sont quantifiées par FACS (Geomean). La figure 3 décrit la fixation des cellules HEK293 à la protéine Robo1 -Fc via la fluorescence mesurée en FACS en absence d'expression de Slit-2. La protéine Robo1 -Fc ainsi que le mutant Robo1 -Fc Slit-2-moins se fixent aux cellules HEK293 alors que le mutant Robo1 -Fc Héparine-moins ne se fixe pas. Robo1 -Fc se fixe donc en partie aux cellules HEK293 via le binding à l'héparine aux faibles concentrations en Robo1 -Fc de 0,3 à 0,03 mg/L.
La figure 4 décrit le binding des cellules HEK293 à la protéine Robo1 -Fc via la fluorescence mesurée en FACS quand Slit-2-N est exprimée par transfection transitoire. Seule la protéine Robo1 -Fc se fixe aux cellules HEK293 exprimant Slit-2- N. Les mutants Robo1 -Fc Slit-2-moins et Robo1 -Fc Héparine-moins ne se fixent pas (ou quasiment pas) dans la gamme de concentrations de Robo1 -Fc de 3.0 à 0, 3 mg/L par rapport à la protéine Robo1 -Fc L1 biothérapeutique.
Le tableau 7 décrit les constantes d'affinité mesurées par FACS de la protéine Robo1 -Fc lorsque les protéines Slit-2-N, Slit-2-D1 D2 ou Slit-2-D2 sont exprimées dans la lignée HEK293.
Tableau 7 : Affinité de Robo1 -Fc à la protéine Slit-2 sur cellule par FACS
Protéine exprimée
Robo1 -Fc ligand transitoirement dans KD (nM)
HEK293
Slit-2-N 1 ,2
Robo1 -Fc L1 Slit-2-D1 D2 0,98
Slit-2-D2 Fixation très faible
Slit-2-N 43
Robo1 -Fc Héparine-moins
Slit-2-D1 D2 41
Robo1 -Fc Slit-2-moins Slit-2-N Pas de fixation Comme dans les exemples précédents, le mutant Robo1 -Fc Slit-2-moins s'est avéré Slit-2 négatif et le mutant Robo1 -Fc Héparine-moins présente une affinité plus faible à Slit2 que la protéine bio-thérapeutique.
Robo1 -Fc se fixe sur Slit-2-N et Slit-2-D1 D2 exprimées par les cellules HEK293 avec des affinités comparables qui sont meilleures que celle avec Slit-2-D2.
Exemple 4 : Propriétés pharmacocinétiques des protéines Robo1 -Fc L1 et Robo1 -Fc L2
Cet exemple décrit le profil pharmacocinétique et la concentration plasmatique de la protéine Robo1 -Fc injectée une fois chez la souris en intraveineuse (iv). Trois souris Balb/C (pour chaque temps) ont été injectées via la veine caudale avec chacune des protéines Robo1 -Fc à 2.5 mg/mL à raison de 100 μΙ_/10 g (= 25 mg/kg). Aux temps prédéterminés (0,5 ; 1 ; 6 ; 24 ; 48 ; et 72 h après administration), les souris ont été anesthésiées, le sang a été prélevé et collecté dans un tube contenant 10 μΙ_ de citrate (CPD-A, C-4431 Sigma) et 2 μΙ_ d'inhibiteurs de protéase (Complète Protease Inhibitor Mix, Roche Molecular Biochemical). Les tubes ont été centrifugés et les échantillons de plasma ont été collectés et congelés à -20°C.
La protéine Slit2 (Slit-2-D2) a été coatée dans les puits des boites de 96-puits, les échantillons de plasma dilués au 1/5000 et 1/20000 ont été mis en contact pendant une heure à 37°C. L'anticorps anti-Fc humain conjugué à la péroxidase (réf. 31413, Pierce) a été ensuite incubé puis révélé avec le TMB-H202 (ref UP664780, Interchim) et l'absorbance a été lue à 450 nm. Une gamme étalon a été réalisée avec chaque protéine Robo1 -Fc purifiée.
Les concentrations plasmatiques des protéines Robo1 -Fc L1 et Robo1 -Fc L2 sont représentées sur la figure 5. Les paramètres pharmacocinétiques sont décrits dans le tableau 8 suivant et montrent que la protéine est stable après injection chez la souris. Tableau 8 : Paramètres pharmacocinétiques des protéines Robo1 -Fc après injection iv chez la souris
Figure imgf000021_0001
Exemple 5 : Description de la protéine bio-thérapeutique Robo1 -Fc améliorée pour son homogénéité en position N-terminale.
Cet exemple décrit le plasmide d'expression, la production et la caractérisation physico-chimique d'une autre protéine Robo1 -Fc nommée Robo1 -Fc L3 qui est différente de la protéine Robo1 -Fc L1 par l'absence des deux premiers résidus Ser20 et Arg21 .
Le cDNA cloné dans le plasmide pXL4904 a été modifié par PCR pour éliminer les codons Ser20 et Arg21 et fusionné le codon suivant (Leu22) à la séquence codante du signal peptide de l'nterleukine 2. Le plasmide d'expression pXL5004 a alors été généré, voir figure 1 . La séquence du cDNA utilisée pour exprimer cette protéine recombinante correspond à la séquence SEQ ID NO.23.
La protéine Robo1 -Fc L3 a été produite, purifiée et caractérisée comme décrit dans l'exemple 1 . L'analyse N-terminale a montré que cette protéine purifiée était parfaitement homogène. La protéine recombinante obtenue est nommée Robo1 -Fc L3 et correspond à la séquence protéique SEQ ID NO.24. Exemple 6 : Evaluation de l'interaction de la protéine Robo1 -Fc L3 avec la protéine Slit2 humaine. Cet exemple décrit l'interaction de la protéine de fusion Robo1 -Fc L3 avec la protéine Slit2 humaine (Slit-2-D2) par dosage ELISA.
La protéine Slit-2-D2 humaine a été fixée sur des boîtes lmmulon-4 enzyme-linked (VWR Scientific Inc. Swedesboro, NJ). Une gamme de concentration (de 1 μg mL à 0.001 g/mL) de la protéine de fusion Robo1 -Fc L3 a été ajouté puis détecté grâce à l'anticorps de chèvre anti-humain IgG conjugué à la péroxidase (Sigma ; réf. A0170-dilution au 1 :50000). La révélation a été réalisée avec le substrat TMB-H202 (Interchim ; réf UP664780) et les mesures avec le lecteur de plaques à 450 nm. Les résultats obtenus sont reportés dans le tableau 9 ci-dessous.
Tableau 9 : Affinité de la protéine Robo1 -Fc L3 pour la protéine Slit2 Comparaison avec la protéine Robo1 -Fc L1
Figure imgf000022_0001
Ces résultats montrent que les affinités des deux variants Robo1 -Fc L1 et Robol - Fc L3 pour la protéine Slit2-D2 sont comparables. Exemple 7 : Evaluation de l'activité de la protéine Robo-Fc sur la neovascularisation a. Modèle in vitro de co-culture de cellules endothéliales et de fibroblastes : activité spécifique de la molécule Robo1 -Fc L1
Le modèle d'angiogenèse in vitro correspond à un réarrangement de cellules endothéliales veineuses humaines sur une monocouche de fibroblastes de derme humain. Brièvement, les fibroblastes (Lonza) sont ensemencés dans des plaques de 24 puits (Becton Dickinson) à 40 000 cellules/puits dans 1 ml de milieu. Après 3 jours de prolifération (J3), des cellules endothéliales veineuses humaines (HUVEC- Lonza) sont ensemencées sur la monocouche de cellules fibroblastiques à 10 000 cellules/puits dans 500 μΙ de milieu EGM® (Endothelial Basai Médium, Lonza) + 2% SVF (sérum de veau fœtal - Lonza) + hEGF (Epidermal Growth Factor Humaine Recombinante - Lonza) 10 g/ml. Les cellules sont stimulées avec le VEGF (R&D Systems) 30 ng/ml, avec la molécule Robo1 -Fc L1 ou un contrôle négatif Robo1 -Fc Slit-2-moins à la concentration de 500μg/ml (J3 à J9). Après 3 jours, le milieu est remplacé et les puits sont stimulés en fonction des conditions de l'expérimentation.
Après 2 jours, les cellules sont fixées par de l'éthanol et marquées avec un anticorps spécifique des HUVECs anti-CD31 , suivi d'un anticorps anti-alkaline phosphaphatase puis révélés avec un substrat alkaline-phosphatase (J 1 1 ). Une quantification des tubules marqués avec l'anticorps anti-CD31 est réalisée grâce à des acquisitions d'image faite au microscope (objectif X4) et l'analyse de la longueur des pseudo-tubules est effectuée à l'aide d'un logiciel d'image (BIOCOM- logiciel Visiolab 2000) (Figure 6). Dans ce test d'angiogenèse in vitro, Robo1 -Fc L1 (500μg/ml) montre une activité inhibitrice de la formation des tubules formés par les HUVECs. Cette inhibition s'élève à 82% et elle est statistiquement significative par rapport à l'effet obtenu avec la molécule Robo1 -Fc Slit-2-moins (contrôle négatif). b. Modèle ex vivo d'anneau aortique de souris: activité spécifique de la molécule Robo1 -Fc L1
La molécule Robo1 -Fc L1 a été évaluée dans un modèle d'anneau aortique de souris. Brièvement, des aortes de souris sont prélevées et nettoyées et découpées en tronçon de 1 mm (J0). Ces anneaux sont inclus dans du collagène de rat en présence de VEGF à 10 ng/ml, de la molécule Robo1 -Fc L1 ou d'un contrôle négatif Robo1 -Fc Slit-2-moins à la concentration de 500μg/ml. Des tubules vont se former à partir de l'anneau mimant ainsi in vitro la formation de néovaisseaux. Après 6 jours, une quantification des tubules marqués est réalisée grâce à des acquisitions d'image faite au microscope (objectif X3) (Figure 7A) et l'analyse de la longueur des pseudo-tubules est effectuée à l'aide d'un logiciel d'image (BIOCOM- logiciel Visiolab 2000) (Figure 7).
Dans ces conditions expérimentales, Robo1 -Fc L1 (500μg/ml) montre une forte activité inhibitrice de la formation des tubules formés en comparaison avec la molécule Robo1 -Fc Slit-2-moins utilisée comme contrôle négatif.
Ces résultats suggèrent que Robo1 -Fc L1 est capable d'inhiber la formation de néovaisseaux sans inhiber la prolifération des cellules endothéliales. Cette activité antiangiogénique liée à un défaut de maturation des vaisseaux est appelée « angiogenèse non-productive ».
Exemple 8 : Evaluation de la protéine Robo1 -Fc L1 dans un modèle de tumeur pulmonaire chez la souris.
La molécule Robo1 -Fc L1 a été évaluée dans un modèle de tumeur cancéreuse pulmonaire chez la souris C57/BI6. a. Modèle murin de tumeur pulmonaire
Pour établir le modèle murin de tumeur pulmonaire, des souris C57/BI6 femelles âgées de 8 sem ont été anesthésiées. La zone au niveau de l'omoplate gauche de la souris a été rasée et désinfectée. Une incision de 1 cm a été pratiquée au dessus de l'omoplate.
Les cellules à injecter sont issues d'une lignée tumorale Lewis lung carcinoma (ATCC, CRL-1642). Les cellules ont été mélangées à du Matrigel® dans un rapport de 1 vol de Matrigel pour 4 vol de cellules .La concentration cellulaire était de 62500 cellules/ml. Les cellules ont été injectées dans le poumon à raison de 20μΙ par souris puis la plaie a été suturée.
Au bout de 23 jours, les souris ont été euthanasiées. La cage thoracique a été ouverte, le poumon gauche et la chaîne médiastinale ont été prélevés. La tumeur présente sur le poumon gauche a été mesurée à l'aide d'un pied à coulisse électronique pour déterminer le volume tumoral selon la formule : I2XLX0.52. La chaîne médiastinale est pesée. Les résultats sont exprimés en valeur moyenne ± ecart-type à la moyenne. L'analyse statistique a été faite par un test paramétrique de Student. b. Traitement des souris porteuses d'une tumeur pulmonaire avec la protéine recombinante Robo1 -Fc Le traitement à l'aide de la protéine Robo1 -Fc a été réalisé comme suit : Une préparation contenant la protéine Robo1 -Fc a été injectée à la dose de 25 mg/kg/jour par voie intrapéritonéale à J10, J14, J17, et J21 post injection des cellules tumorales. Le groupe contrôle a été injecté avec du tampon PBS (10ml/kg). c. Résultats
A J23, le volume moyen des tumeurs obtenues dans le groupe traité avec la protéine recombinanate Robo1 -Fc était de 21 ,45± 2,16 mm3 ; le volume moyen des tumeurs obtenues dans le groupe contrôle était de 39,93±8,41 mm3. La réduction du volume tumoral chez les animaux traités avec la protéine Robo1 -Fc est de 46%. Cette différence est statistiquement significative (p<0.05). Le poids moyen de la chaîne médiastinale (ganglions métastatiques) obtenue dans le groupe traité avec la protéine Robo1 -Fc est de 12.50± 1 .26 mg. Le poids moyen de la chaîne médiastinale obtenue dans le groupe contrôle est de 30.67± 7.69 mg. La réduction du poids de la chaîne médiastinale pour le groupe traité avec la protéine Robo1 -Fc est de 59% à la limite de la significativité (p=0.07).

Claims

Revendications
1. Protéine recombinante Robo-Fc comprenant le domaine extracellulaire de la protéine Robol ou une partie de ce domaine, un linker et un domaine Fc d'une immunoglobuline, dans laquelle ledit domaine extracellulaire provient de l'isorforme b de la protéine Robol .
2. Protéine selon la revendication 1 , dans laquelle le domaine extracellulaire de Robol comprend les domaines immunoglobuline I g 1 et Ig2.
3. Protéine selon la revendication 2, dans laquelle le domaine extracellulaire de Robol présente au moins 80 % d'identité avec la séquence SEQ ID
NO.2.
4. Protéine selon l'une des revendications précédentes dans laquelle le domaine Fc provient de l'immunoglobuline G4 humaine.
5. Protéine selon la revendication 4, dans laquelle le domaine Fc contient au moins une mutation ponctuelle visant augmenter la stabilité de la protéine et/ou à éliminer l'activité effectrice résiduelle du domaine Fc et/ou à augmenter l'homogénéité lors de sa production.
6. Protéine selon la revendication 5 dans laquelle le domaine Fc comporte les mutations S241 P et L248E et dans lequel de la lysine située en position C-terminale est absente.
7. Protéine selon l'une des revendications 2 à 4 dans laquelle les acides aminés Ser20 et Arg21 ont été délétés de sorte à augmenter
l'homogénéité lors de sa production
8. Protéine selon l'une des revendications 1 à 4 dont la séquence présente au moins 80% d'identité avec la séquence SEQ ID NO. 4, SEQ ID NO.6 ou SEQ ID NO. 24.
9. Molécule d'acides nucléiques codant pour l'une des protéines telles que définies aux revendications 1 à 8.
10. Molécule d'acides nucléiques correspondant à la séquence SEQ ID N0.1 , SEQ ID NO.3, SEQ ID NO.5 ou SEQ ID N0.23 ou présentant au moins 80% d'identité avec les molécules ayant pour séquence SEQ ID NO.1 , SEQ ID NO.3, SEQ ID NO.5 ou SEQ ID N0.23.
11. Protéine recombinante Robo1 -Fc selon l'une des revendications 1 à 8 pour usage comme médicament.
12. Protéine pour usage selon la revendication 1 1 dans le traitement des maladies dans lesquelles une protéine de la famille Slit est surexprimée.
13. Protéine pour usage selon la revendication 1 1 pour traiter un cancer.
14. Protéine pour usage selon l'une des revendications 12 ou 13 qui n'inhibe pas la prolifération des cellules endothéliales.
15. Protéine pour usage selon la revendication 13 pour traiter le cancer du poumon ou les métastases pulmonaires.
16. Protéine pour usage selon l'une des revendications 1 1 à 15, cette protéine dérivant de l'isoforme b de la protéine Robol .
17. Protéine pour usage selon la revendication 16, cette protéine étant telle que définie aux revendications 2 à 8.
18. Composition pharmaceutique comprenant une protéine recombinante Robol -Fc telle que définie aux revendications 1 à 8 et au moins un excipient.
19. Utilisation d'une molécule Robol -Fc selon l'invention en tant qu'outil de diagnostic pour détecter la surexpression d'une molécule de la famille Slit chez un patient.
PCT/FR2011/050811 2010-04-14 2011-04-08 Protéine de fusion robo1-fc et son utilisation dans le traitement des tumeurs WO2011128561A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MX2012011822A MX338981B (es) 2010-04-14 2011-04-08 Proteina de fusion robo1-fc y sus uso en el tratamiento de tumores.
US13/641,012 US9493529B2 (en) 2010-04-14 2011-04-08 Robo1-Fc fusion protein and use thereof for treating tumours
MA35354A MA34221B1 (fr) 2010-04-14 2011-04-08 Protéine de fusion robo1-fc et son utilisation dans le traitement des tumeurs
EA201291044A EA201291044A1 (ru) 2010-04-14 2011-04-08 Слитый белок robo1-fc и его применение в лечении опухолей
KR1020127026724A KR20130059329A (ko) 2010-04-14 2011-04-08 Robo1―fc 융합 단백질 및 종양 치료를 위한 그의 용도
BR112012026020A BR112012026020A2 (pt) 2010-04-14 2011-04-08 proteína de fusão robo1-fc e uso da mesma para tratar tumores
CN2011800238283A CN102884076A (zh) 2010-04-14 2011-04-08 Robo 1-Fc融合蛋白及其用于治疗肿瘤的用途
AU2011239839A AU2011239839B2 (en) 2010-04-14 2011-04-08 Robo1-Fc fusion protein and use thereof for treating tumours
SG2012075107A SG184529A1 (en) 2010-04-14 2011-04-08 Robo1-fc fusion protein and use thereof for treating tumours
JP2013504311A JP5858442B2 (ja) 2010-04-14 2011-04-08 Robo1−Fc融合タンパク質および腫瘍を治療するためのこの使用
EP11719346A EP2558489A1 (fr) 2010-04-14 2011-04-08 Protéine de fusion robo1-fc et son utilisation dans le traitement des tumeurs
CA2796303A CA2796303A1 (fr) 2010-04-14 2011-04-08 Proteine de fusion robo1-fc et son utilisation dans le traitement des tumeurs
TNP2012000473A TN2012000473A1 (fr) 2010-04-14 2012-09-28 Proteine de fusion robo1-fc et son utilisation dans le traitement des tumeurs
IL222382A IL222382A (en) 2010-04-14 2012-10-11 United protein fc – 1robo and its use in the treatment of tumors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052829 2010-04-14
FR1052829A FR2958936A1 (fr) 2010-04-14 2010-04-14 Proteine de fusion robo1-fc et son utilisation dans le traitement des tumeurs

Publications (1)

Publication Number Publication Date
WO2011128561A1 true WO2011128561A1 (fr) 2011-10-20

Family

ID=42830780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050811 WO2011128561A1 (fr) 2010-04-14 2011-04-08 Protéine de fusion robo1-fc et son utilisation dans le traitement des tumeurs

Country Status (26)

Country Link
US (1) US9493529B2 (fr)
EP (1) EP2558489A1 (fr)
JP (1) JP5858442B2 (fr)
KR (1) KR20130059329A (fr)
CN (1) CN102884076A (fr)
AR (1) AR080891A1 (fr)
AU (1) AU2011239839B2 (fr)
BR (1) BR112012026020A2 (fr)
CA (1) CA2796303A1 (fr)
CL (1) CL2012002879A1 (fr)
CR (1) CR20120508A (fr)
DO (1) DOP2012000265A (fr)
EA (1) EA201291044A1 (fr)
EC (1) ECSP12012230A (fr)
FR (1) FR2958936A1 (fr)
GT (1) GT201200275A (fr)
IL (1) IL222382A (fr)
MA (1) MA34221B1 (fr)
MX (1) MX338981B (fr)
NI (1) NI201200155A (fr)
PE (1) PE20130199A1 (fr)
SG (1) SG184529A1 (fr)
TN (1) TN2012000473A1 (fr)
TW (1) TW201142024A (fr)
UY (1) UY33334A (fr)
WO (1) WO2011128561A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273049A1 (en) * 2010-12-23 2013-10-17 Sanofi Robo1-fc fusion protein for use in the treatment of hepatocarcinoma
US9572879B2 (en) 2012-01-05 2017-02-21 Boston Medical Center Corporation ROBO2 inhibitory compositions comprising SLIT2-binding extracellular domain of ROBO2
US10906955B2 (en) 2017-06-02 2021-02-02 Pfizer Inc. Recombinant ROBO2 proteins, compositions, methods and uses thereof
US11406682B2 (en) 2017-08-24 2022-08-09 Bar-Ilan University Roundabout (Robo) receptor inhibitors and uses thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566082B2 (en) 2014-11-17 2023-01-31 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
CN107298715B (zh) * 2016-04-15 2021-05-04 阿思科力(苏州)生物科技有限公司 Slit2D2-嵌合抗原受体及其应用
US10730908B2 (en) 2016-05-11 2020-08-04 Ge Healthcare Bioprocess R&D Ab Separation method
CN109311948B (zh) 2016-05-11 2022-09-16 思拓凡生物工艺研发有限公司 清洁和/或消毒分离基质的方法
US10654887B2 (en) 2016-05-11 2020-05-19 Ge Healthcare Bio-Process R&D Ab Separation matrix
EP3455243B1 (fr) 2016-05-11 2021-03-24 Cytiva BioProcess R&D AB Matrice de séparation
JP7106187B2 (ja) 2016-05-11 2022-07-26 サイティバ・バイオプロセス・アールアンドディ・アクチボラグ 分離マトリックスを保存する方法
US10703774B2 (en) 2016-09-30 2020-07-07 Ge Healthcare Bioprocess R&D Ab Separation method
US10889615B2 (en) 2016-05-11 2021-01-12 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
EP3932430A4 (fr) * 2019-02-27 2023-02-01 Daewoong Pharmaceutical Co., Ltd. Composition liée à l'albumine comprenant le lrrd2 de la protéine slit3 pour la prévention ou le traitement de maladies osseuses
CA3136663A1 (fr) * 2019-04-23 2020-10-29 The Regents Of The University Of California Compositions et methodes utiles pour favoriser la production de lait

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997009351A1 (fr) 1995-09-06 1997-03-13 Idec Pharmaceuticals Corporation Anticorps anti-cd4 recombinants pour therapie humaine
WO1999020764A1 (fr) * 1997-10-20 1999-04-29 The Regents Of The University Of California Robo : une famille de polypeptides et d'acides nucleiques impliques dans le guidage des nerfs
WO1999051625A2 (fr) * 1998-04-02 1999-10-14 Rigel Pharmaceuticals, Inc. Peptides provoquant la formation de structures compactes
WO2003075860A2 (fr) 2002-03-08 2003-09-18 Abgent, Inc. Detection et modulation de l'angiogenese provoquee par une mediation des slit et des robo, et utilisations correspondantes
WO2008065543A2 (fr) 2006-11-28 2008-06-05 Centelion Fusions de fc récepteur de fgf soluble modifié, ayant une activité biologique améliorée
WO2008134046A1 (fr) * 2007-04-27 2008-11-06 Genentech, Inc. Anticorps anti-cd4 puissants, stables et non immunosuppresseurs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060122373A1 (en) 1997-04-04 2006-06-08 Millennium Pharmaceuticals, Inc. Delta3, FTHMA-070, Tango85, Tango77, SPOIL,NEOKINE, Tango129 and integrin alpha subunit protein and nucleic acid molecules and uses thereof
AU2001283062A1 (en) * 2000-08-02 2002-02-13 The Johns Hopkins University Endothelial cell expression patterns
JP4643450B2 (ja) * 2003-08-08 2011-03-02 株式会社ペルセウスプロテオミクス 癌高発現遺伝子
BRPI0507174A (pt) * 2004-01-28 2008-04-01 Syntonix Pharmaceuticals Inc proteìnas de fusão hormÈnio-fc (fsh-fc) heterodiméricas estimuladoras de folìculo para o tratamento da infertilidade
KR20150006085A (ko) * 2006-04-05 2015-01-15 애브비 바이오테크놀로지 리미티드 항체 정제
MX346172B (es) 2007-08-29 2017-03-10 Sanofi - Aventis Anticuerpos anti - cxcr5 humanizados, derivados de los mismos y su uso.
EP2050764A1 (fr) 2007-10-15 2009-04-22 sanofi-aventis Nouveau format d'anticorps bispécifique polyvalent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997009351A1 (fr) 1995-09-06 1997-03-13 Idec Pharmaceuticals Corporation Anticorps anti-cd4 recombinants pour therapie humaine
WO1999020764A1 (fr) * 1997-10-20 1999-04-29 The Regents Of The University Of California Robo : une famille de polypeptides et d'acides nucleiques impliques dans le guidage des nerfs
WO1999051625A2 (fr) * 1998-04-02 1999-10-14 Rigel Pharmaceuticals, Inc. Peptides provoquant la formation de structures compactes
WO2003075860A2 (fr) 2002-03-08 2003-09-18 Abgent, Inc. Detection et modulation de l'angiogenese provoquee par une mediation des slit et des robo, et utilisations correspondantes
WO2008065543A2 (fr) 2006-11-28 2008-06-05 Centelion Fusions de fc récepteur de fgf soluble modifié, ayant une activité biologique améliorée
WO2008134046A1 (fr) * 2007-04-27 2008-11-06 Genentech, Inc. Anticorps anti-cd4 puissants, stables et non immunosuppresseurs

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
ANGLA ET AL., MOL. IMMUNOL., vol. 30, 1993, pages 105 - 108
ANUMULA ET AL., GLYCOBIOLOGY, vol. 8, 1998, pages 685 - 694
AVCI ET AL., BMC CANCER, vol. 8, 2008, pages 392
CANZIANI ET AL., ANAL. BIOCHEM., vol. 325, 2004, pages 301 - 307
CLARK K ET AL: "Temporal and spatial expression of two isoforms of the Dutt1/Robo1 gene in mouse development", FEBS LETTERS, ELSEVIER, AMSTERDAM, NL LNKD- DOI:10.1016/S0014-5793(02)02904-6, vol. 523, no. 1-3, 17 July 2002 (2002-07-17), pages 12 - 16, XP004371138, ISSN: 0014-5793 *
DATABASE UniProt [online] 23 March 2010 (2010-03-23), "RecName: Full=Roundabout homolog 1; AltName: Full=Deleted in U twenty twenty; AltName: Full=H-Robo-1; Flags: Precursor;", XP002605469, retrieved from EBI accession no. UNIPROT:Q9Y6N7 Database accession no. Q9Y6N7 *
FUKUHARA, N. ET AL., J. BIOL. CHEM., vol. 283, 2008, pages 16226 - 16234
HIVERT BRUNO ET AL: "Robo1 and Robo2 are homophilic binding molecules that promote axonal growth.", MOLECULAR AND CELLULAR NEUROSCIENCES DEC 2002 LNKD- PUBMED:12504588, vol. 21, no. 4, December 2002 (2002-12-01), pages 534 - 545, XP002605467, ISSN: 1044-7431 *
JONES C.A. ET AL., NAT. MED, vol. 14, 2008, pages 448 - 453
LATIL ET AL., INT J CANCER., vol. 103, no. 3, 20 January 2003 (2003-01-20), pages 306 - 15
LIU ET AL., MOL. CELL NEUROSCI, vol. 26, 2004, pages 232 - 240
LIU ZHE ET AL: "Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding.", MOLECULAR AND CELLULAR NEUROSCIENCES JUN 2004 LNKD- PUBMED:15207848, vol. 26, no. 2, June 2004 (2004-06-01), pages 232 - 240, XP002605466, ISSN: 1044-7431 *
MORLOT CECILE ET AL: "Structural insights into the Slit-Robo complex.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 18 SEP 2007 LNKD- PUBMED:17848514, vol. 104, no. 38, 18 September 2007 (2007-09-18), pages 14923 - 14928, XP002605470, ISSN: 0027-8424 *
NURAL HIKMET FEYZA ET AL: "The Slit receptor Robo1 is predominantly expressed via the Dutt1 alternative promoter in pioneer neurons in the embryonic mouse brain and spinal cord.", GENE EXPRESSION PATTERNS : GEP OCT 2007 LNKD- PUBMED:17826360, vol. 7, no. 8, October 2007 (2007-10-01), pages 837 - 845, XP002605468, ISSN: 1567-133X *
SADDIC ET AL., METHODS MOL. BIOL., vol. 194, 2002, pages 23 - 36
SHEN ET AL., AJP, vol. 175, no. 2, 2009, pages 479
STELLA MC ET AL., MOL BIOL CELL, vol. 20, no. 2, 2009, pages 642 - 657
WANG B ET AL: "Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity", CANCER CELL, CELL PRESS, US LNKD- DOI:10.1016/S1535-6108(03)00164-8, vol. 4, no. 1, 1 July 2003 (2003-07-01), pages 19 - 29, XP002996193, ISSN: 1535-6108 *
WANG ET AL., CANCER CELL, vol. 4, no. 1, July 2003 (2003-07-01), pages 19 - 29
WANG ET AL., CANCER SCI., vol. 99, no. 3, March 2008 (2008-03-01), pages 510 - 7
XIAN JIAN ET AL: "Targeted disruption of the 3p12 gene, Dutt1/Robo1, predisposes mice to lung adenocarcinomas and lymphomas with methylation of the gene promoter.", CANCER RESEARCH 15 SEP 2004 LNKD- PUBMED:15374951, vol. 64, no. 18, 15 September 2004 (2004-09-15), pages 6432 - 6437, XP002605471, ISSN: 0008-5472 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273049A1 (en) * 2010-12-23 2013-10-17 Sanofi Robo1-fc fusion protein for use in the treatment of hepatocarcinoma
AU2011347250B2 (en) * 2010-12-23 2015-06-04 Sanofi Robo1-Fc fusion protein for use in the treatment of hepatocarcinoma
US9572879B2 (en) 2012-01-05 2017-02-21 Boston Medical Center Corporation ROBO2 inhibitory compositions comprising SLIT2-binding extracellular domain of ROBO2
US10358677B2 (en) 2012-01-05 2019-07-23 Boston Medical Center Corporation Method for treating kidney disease with a SLIT2-binding extracellular domain of ROBO2
US10906955B2 (en) 2017-06-02 2021-02-02 Pfizer Inc. Recombinant ROBO2 proteins, compositions, methods and uses thereof
US11970524B2 (en) 2017-06-02 2024-04-30 Pfizer Inc. Recombinant ROBO2 proteins, compositions, methods and uses thereof
US11406682B2 (en) 2017-08-24 2022-08-09 Bar-Ilan University Roundabout (Robo) receptor inhibitors and uses thereof

Also Published As

Publication number Publication date
GT201200275A (es) 2014-01-24
TW201142024A (en) 2011-12-01
MX2012011822A (es) 2012-11-12
CN102884076A (zh) 2013-01-16
NI201200155A (es) 2013-02-05
US9493529B2 (en) 2016-11-15
UY33334A (es) 2011-12-01
TN2012000473A1 (fr) 2014-01-30
CR20120508A (es) 2012-11-01
SG184529A1 (en) 2012-11-29
DOP2012000265A (es) 2013-02-28
CL2012002879A1 (es) 2013-03-22
MA34221B1 (fr) 2013-05-02
BR112012026020A2 (pt) 2016-06-28
CA2796303A1 (fr) 2011-10-20
IL222382A (en) 2016-06-30
IL222382A0 (en) 2012-12-31
AU2011239839A1 (en) 2012-11-08
AU2011239839B2 (en) 2015-08-20
MX338981B (es) 2016-05-06
EP2558489A1 (fr) 2013-02-20
US20130039912A1 (en) 2013-02-14
JP2013523172A (ja) 2013-06-17
AR080891A1 (es) 2012-05-16
JP5858442B2 (ja) 2016-02-10
PE20130199A1 (es) 2013-03-09
EA201291044A1 (ru) 2013-04-30
KR20130059329A (ko) 2013-06-05
ECSP12012230A (es) 2012-11-30
FR2958936A1 (fr) 2011-10-21

Similar Documents

Publication Publication Date Title
WO2011128561A1 (fr) Protéine de fusion robo1-fc et son utilisation dans le traitement des tumeurs
EP2318529B1 (fr) Mutéines de la région acide du domaine extracellulaire de FGFR.
EP2315781B1 (fr) Antagonistes specifiques du recepteur fgf-r4
JPWO2018079702A1 (ja) ラクトフェリン/アルブミン融合タンパク質及びその製造方法
JP2010529859A (ja) TGF−βII型受容体の2つのTGF−β結合ドメインを含有する融合タンパク質
US20170137503A1 (en) Antagonists of bmp9, bmp10, alk1 and other alk1 ligands, and uses thereof
JP7005019B2 (ja) 組織修復のための二重特異性治療用タンパク質
TW201107471A (en) Polypeptides selective for αvβ3 integrin conjugated with a variant of human serum albumin (HSA) and pharmaceutical uses thereof
EP2655408B1 (fr) Protéine hybrides robo1-fc à utiliser dans traitement d&#39; hépatocarcinomes
KR20170126504A (ko) 아밀린 유사체
WO2010126169A1 (fr) Composition pharmaceutique utilisée en prévention des maladies vasculaires et comprenant un inhibiteur d&#39;alk1 comme principe actif
KR20240074000A (ko) 항 her3 항체-약물 콘주게이트 투여에 의한 egfr-tki 저항성의 비소세포 폐암의 치료 방법
EP2013232B1 (fr) Utilisation de ligands synthetiques multivalents de la nucleoline de surface pour le traitement du cancer ou de l&#39;inflammation
CN110092837B (zh) Uti融合蛋白
WO2012122941A1 (fr) Médicament contre la protéine x du virus de l&#39;hépatite b utlisant un polypeptide
FR2969617A1 (fr) Proteine de fusion robo1-fc et son utilisation dans le traitement des tumeurs.
JP2021529763A (ja) Fgf−21製剤
CN116134138A (zh) 靶向细胞内诱瘤蛋白的抗体、或其单链可变片段与癌细胞穿透肽的融合蛋白、及其用途
RU2825102C2 (ru) Рекомбинантные белки с доменами ccn и слитые белки
CN110709415A (zh) 重组robo2蛋白、组合物、方法及其用途
TW201307393A (zh) 用於治療肝癌之Robo1-Fc融合蛋白

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023828.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11719346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2937/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: CR2012-000508

Country of ref document: CR

ENP Entry into the national phase

Ref document number: 0168312

Country of ref document: KE

WWE Wipo information: entry into national phase

Ref document number: 12179905

Country of ref document: CO

Ref document number: 12012502044

Country of ref document: PH

Ref document number: MX/A/2012/011822

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2796303

Country of ref document: CA

Ref document number: 20127026724

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012002879

Country of ref document: CL

Ref document number: 13641012

Country of ref document: US

Ref document number: 2013504311

Country of ref document: JP

Ref document number: 002019-2012

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 1201005406

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011719346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011719346

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011239839

Country of ref document: AU

Date of ref document: 20110408

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201212933

Country of ref document: UA

Ref document number: 201291044

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012026020

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012026020

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121010