WO2011127513A1 - Mehrschichtgleitlager mit einer antifrettingschicht - Google Patents

Mehrschichtgleitlager mit einer antifrettingschicht Download PDF

Info

Publication number
WO2011127513A1
WO2011127513A1 PCT/AT2011/000185 AT2011000185W WO2011127513A1 WO 2011127513 A1 WO2011127513 A1 WO 2011127513A1 AT 2011000185 W AT2011000185 W AT 2011000185W WO 2011127513 A1 WO2011127513 A1 WO 2011127513A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper
plain bearing
proportion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/AT2011/000185
Other languages
German (de)
English (en)
French (fr)
Inventor
Jakob Zidar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miba Gleitlager Austria GmbH
Original Assignee
Miba Gleitlager Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miba Gleitlager Austria GmbH filed Critical Miba Gleitlager Austria GmbH
Priority to KR1020127030000A priority Critical patent/KR101770762B1/ko
Priority to EP11725605.7A priority patent/EP2558617B1/de
Priority to NO11725605A priority patent/NO2558617T3/no
Priority to CN201180026621.1A priority patent/CN102918182B/zh
Priority to US13/640,891 priority patent/US20130216169A1/en
Priority to JP2013504060A priority patent/JP5861184B2/ja
Publication of WO2011127513A1 publication Critical patent/WO2011127513A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/08Alloys based on copper with lead as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/124Details of overlays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent

Definitions

  • the invention relates to a multi-layer sliding bearing having a front side facing the bearing element and a rear side facing the same, comprising a support layer, a sliding layer arranged on the front side and an antifretting layer arranged on the rear side, wherein the antifretting layer comprises a copper-base alloy with copper mixed crystal grains consists.
  • the back coating of a sliding bearing with an anti-fretting layer is already known from the prior art.
  • This coating is intended to prevent friction welding or fretting corrosion and thus the "seizure" of the sliding bearing in the bearing housing due to unwanted relative movements of the components relative to one another
  • Hard-faced components are more prone to erosion by fretting corrosion than soft materials that tend to seize, in which case the relative movement is prevented, but damage is also possible the technology already very different
  • a corrosion protection layer made of a Sn alloy is known.
  • Ni, Cr or Co alloys for antifretting layers are known from GB 2315301 AI.
  • a tin bronze is used as antifretting layer.
  • a Cu-Sn alloy deposited galvanically on steel as an antifretting layer with a tin content of between 10% and 15% is known from GB 556,248 A and GB 554,355 A, respectively.
  • the object of the invention to provide an improved multi-layer sliding bearing, in particular an improved antifretting layer based on copper.
  • the copper-based alloy of the antifretting layer contains an alloying element from the group consisting of aluminum, zinc, indium, silicon, germanium, antimony or an alloying element from the group consisting of aluminum, zinc , Indium, silicon, germanium, tin, antimony and at least one further element from this group and / or a second group comprising or consisting of nickel, cobalt, iron, manganese, bismuth, lead, silver, phosphorus and unavoidable impurities derived from the preparation contains, wherein the sum of these alloying elements is at least 1 wt .-% and at most 30 wt .-%.
  • the Applicant has examined copper base alloys in addition to the above-mentioned silver alloy layers and surprisingly found that the abovementioned copper-base alloys significantly better wear properties and / or a much higher fatigue strength, but in any case an improved protection against damage Fretting than others, so that the stock so equipped bearings are particularly suitable for highly stressed bearings.
  • the strength of the antifretting layer is improved by silicon.
  • Zinc, nickel and cobalt improve the corrosion resistance of the antifretting layer. Zinc also improves the cold workability of the antifretting layer.
  • a lubricious soft phase may be present in the matrix, in particular by lead, bismuth or at least a solid lubricant such as MoS 2 , graphite, WS 2 etc is formed.
  • Germanium, indium, tin, bismuth, lead and antimony enhance the conformability and / or corrosion resistance of the antifretting layer to the sleeve bearing housing.
  • Coating material and vice versa and thus reduces a material transfer, the corrosion resistance and mechanical resistance to wear and fatigue by forming a substitution mixed crystal improves and that facilitates the formation of thin adherent, the surfaces of mutually separating, oxide layers and / or reaction layers with oil additives by the alloying partners becomes.
  • the properties of the coating can be adjusted specifically or tailored to the particular application. It has been observed that, under some content, the effect is too low, above a certain level, and especially above the sum of 30% by weight, large amounts of hard, brittle intermetallic phases are formed which have an adverse effect on the antifretting layer.
  • a Cu-Sn or Cu-Ge alloy by the addition of 1 wt .-% to 25 wt .-% Zn or 1 wt .-% to 20 wt .-% indium significantly less sensitive to corrosive attack, especially sulfur-containing, oil additives.
  • a Cu-Al alloy is significantly more resistant to wear by the addition of 0.2 wt .-% to 15 wt .-% antimony, since a part of the alloying elements is precipitated as finely dispersed AlSb hard phase.
  • the mechanical strength of the coating and its corrosion resistance can be greatly increased.
  • the deformability is improved by nickel.
  • these elements increase the tendency to weld with the housing material. This effect was observed especially at levels above 5% by weight, in particular above 10% by weight.
  • Me stands for a metal from the above-mentioned group manganese, iron, nickel, cobalt.
  • Me stands for a metal from the above-mentioned group manganese, iron, nickel, cobalt.
  • Lead, bismuth and solid lubricants are particularly soft materials that could potentially weaken the load bearing capacity of the coating, therefore their content must be limited to the top.
  • Silver is heavily attacked by many, especially sulfur-containing oil additives. This undesirable effect is particularly pronounced at levels above 20% by weight.
  • the tin content is between 5% by weight and 25% by weight, preferably between 8% by weight and 19% by weight, in particular between 10% by weight and 16% by weight, is.
  • the proportion of aluminum in the copper-based alloy is between 2 wt .-% and 12 wt .-%, preferably between 4 wt .-% and 8 wt .-%.
  • the proportion of silicon in the copper-based alloy is between 2 wt .-% and 10 wt .-%, preferably between 3 wt .-% and 5 wt .-%.
  • the proportion of germanium in the copper-based alloy is between 3 wt .-% and 15 wt .-%, preferably between 4 wt .-% and 10 wt .-%.
  • the proportion of indium in the copper-base alloy is between 0.2% by weight and 20% by weight, preferably between 1% by weight and 5% by weight, in particular between 2% by weight and 4% by weight ,
  • the proportion of zinc in the copper-base alloy is between 0.5% by weight and 25% by weight, preferably between 1% by weight and 5% by weight. Above 15% by weight, the antifretting layer becomes too "brittle.” Below 0.5% by weight, no substantial improvement in the properties of the copper alloy could be observed.
  • the proportion of manganese in the copper-based alloy is between 0.2 wt .-% and 5 wt .-%, preferably between 0.2 wt .-% and 2 wt .-%, in particular between 0.3 wt .-% and 1% by weight.
  • the proportion of iron in the copper-based alloy is between 0.2 wt .-% and 5% by weight, preferably between 0.2 wt .-% and 2 wt .-%, in particular between 0.3 wt .-% and 1% by weight.
  • the proportion of nickel in the copper-base alloy is between 0.2% by weight and 8% by weight, preferably between 0.5% by weight and 5% by weight, in particular between 1% by weight and 3
  • the proportion of cobalt in the copper-based alloy is between 0.2 wt .-% and 8 wt%, preferably between 0.5 wt .-% and 5 wt .-%, in particular between 1 wt .-% and 3 wt .-%.
  • the sum of manganese, iron, nickel and cobalt is not more than 10 wt .-%, preferably at most 6 wt .-%.
  • the proportion of bismuth in the copper-base alloy is between 1% by weight and 25% by weight, preferably between 2% by weight and 15% by weight, in particular between 5% by weight and 10% by weight.
  • the proportion of lead in the copper-based alloy is between 1 wt .-% and 25 wt .-%, preferably between 2 wt .-% and 15 wt .-%, in particular between 5 wt .-% and 10
  • the proportion of silver in the copper-based alloy is between 1 wt .-% and 20 wt%, preferably between 2 wt .-% and 10 wt .-%.
  • the proportion of antimony in the copper-based alloy is between 0.2 wt .-% and 15 wt .-%, preferably between 0.2 wt .-% and 10 wt .-%, in particular between 1 wt .-% and 5 wt .-%.
  • the proportion of phosphorus is between 0.01 wt .-% and 3 wt .-, preferably between 0.05 wt .-% and 0.3 wt .-% or at a sum alloying content of Mn, Fe, Ni and Co of more than 0.6% by weight, preferably between 2% and 50%, more preferably between 10% and 30%, this value of 0.05% by weight and 0.3% by weight.
  • the proportion of rare earths, chromium, zirconium, titanium and beryllium is in total between 0.001 wt .-% and 0.5 wt .-%, preferably between 0.01 wt .-% and 0.2 wt .-%.
  • These elements may be alloyed with at least two main alloying elements for grain refining or hardening.
  • the proportion of selenium is at most 0.1 wt .-%, preferably between 0.0001 wt .-% and 0.01 wt .-%.
  • Selenium acts as a brightener in cyanide copper electrolytes, and micro-scattering and micro-leveling can be improved. Higher selenium content, however, embrittle the layer.
  • Sulfur or tellurium can be used instead of selenium.
  • the Antifretting Mrs contains a content of one or more of the elements silicon, germanium, indium, zinc, nickel, cobalt, bismuth, lead and antimony, wherein the sum of between 0.2 wt .-% and 20 wt. - is. It is thus possible to further adapt the antifretting layer to highly stressed bearings.
  • the antifretting layer has a layer thickness between 2 ⁇ and 100 ⁇ , preferably between 3 ⁇ and 30 ⁇ , in particular between see 4 ⁇ and 15 ⁇ .
  • a layer thickness between 2 ⁇ and 100 ⁇ , preferably between 3 ⁇ and 30 ⁇ , in particular between see 4 ⁇ and 15 ⁇ .
  • the antifretting layer preferably has a Vickers microhardness at a test load of 3 Pond between HV 200 and HV 500, preferably between HV 230 and HV 400, in particular between HV 250 and HV 350, as a result of which the abrasion due to micro movements of the Slide bearing can be reduced in the housing and thus the fretting corrosion of Antifretting Mrs can be further reduced.
  • plastic deformability is usually so low that forces acting locally lead to crack formation and breaks in the layer. Under 200 HV, the wear resistance is not achieved to the desired extent.
  • the copper mixed crystal grains in the antifretting layer preferably have a particle size of greater than 5 nm, preferably greater than 10 nm, in particular greater than 50 nm.
  • the crystalline character of the copper-base alloy is more pronounced, as a result of which the properties dependent on the above-described orientation are also more strongly expressed.
  • the antifretting layer is preferably essentially free of intermetallic phases and appears in the XRD measurement as a mixed crystal with copper crystal lattice, according to a preferred embodiment variant of copper mixed crystals with a lattice constant between 0.3630 nm and 0.3750 nm consists.
  • the formation of the preferred alignment of the copper mixed crystal grains in the layer of the copper-base alloy is supported or at least not impeded, so that the antifretting layer has a more homogeneous property profile.
  • the antifretting layer has a layer thickness of at least 50%, in particular at least 150%, and at most 1000%, preferably at most 300%, of the roughness Rz of the support layer or of an interlayer optionally arranged between the support layer and the antifretting layer having. It is thus achieved a "leveling effect" of lying under the antifretting layer, at the same time by the existing roughness better adhesion between this
  • the antifretting layer has a coating that is softer than the antifretting layer.
  • this consists Coating consists of a material which is selected from a group comprising tin, lead, bismuth, polymer-based low-friction coatings.
  • Fig. 1 is a multi-layer plain bearing in the form of a plain bearing half shell in
  • Fig. 1 shows a multi-layer sliding bearing 1 in the form of a plain bearing half shell. Shown is a three-layer variant of the multi-layer plain bearing 1, consisting of a support layer 2, a sliding layer 3, on a front side 4 of the multi-layer sliding bearing 2, which is zuwendbar a component to be supported, and an Antifretting für 5, on a back 6 of the multi-layer plain bearing 1 and is arranged on the support layer 2.
  • a bearing metal layer 7 between the sliding layer 4 and the support layer 2 may be arranged, as indicated by dashed lines in Fig. 1.
  • multilayer plain bearings 1 As used for example in internal combustion engines, is known from the prior art, so that further explanations are unnecessary. It should, however, be mentioned that further layers can be arranged, that is, for example, between the sliding layer 4 and the bearing metal layer 3 and / or between antifretting layer 5 and the supporting layer 2, an adhesion promoter layer and / or a diffusion barrier layer, likewise between the bearing metal layer 3 and the support layer 2, an adhesive layer can be arranged.
  • the multi-layer sliding bearing 1 can also be designed differently, for example as a bearing bush, as indicated by dashed lines in Fig. 1. Likewise, embodiments such as thrust rings, axially running sliding shoes, or the like are possible.
  • the bearing metal layer 3 be dispensed with so that the sliding layer 4 can be applied to the support layer 2 either directly or with the interposition of an adhesion promoter and / or a diffusion barrier layer.
  • the support metal layer 2 is preferably made of steel, but may also consist of a material that gives the multi-layer sliding bearing 1 the required structural strength. Such materials are known from the prior art.
  • the bearing metal layer 3 or the sliding layer 3 and the intermediate layers the alloys or materials known from the relevant prior art can be used, and reference is made in this regard.
  • the antifretting layer 5 consists of a copper-based alloy which contains, in addition to Cu, an alloying element from the group consisting of aluminum, zinc, indium, silicon, germanium, antimony or an alloying element from the group comprising or consisting of aluminum, zinc, indium, silicon , Germanium, tin, antimony and at least one further element from this group and / or a second group comprising or consisting of nickel, cobalt, iron, manganese, bismuth, lead, silver, phosphorus and unavoidable impurities derived from the manufacture, wherein the Sum proportions of these alloying elements at least 1 wt .-% and at most 30 wt .-% is, and wherein in the copper alloy of copper and the elements formed copper solid solution grains are present.
  • an alloying element from the group consisting of aluminum, zinc, indium, silicon, germanium, antimony or an alloying element from the group comprising or consisting of aluminum, zinc, indium, silicon , Germanium, tin, antimony
  • the proportion of aluminum in the copper-base alloy may be between 2% by weight and 12% by weight, preferably between 4% by weight and 8% by weight.
  • the tin content may be between 5 wt% and 25 wt%, preferably between 8 wt% and 19 wt%, in particular between 10 wt% and 16 wt%.
  • the zinc content may be between 0.5% by weight and 25% by weight, preferably between 1% by weight and 5% by weight.
  • the proportion of manganese can be between 0.2% and 5% by weight, preferably between 0.2% by weight and 2% by weight, in particular between 0.3 and 1% by weight.
  • the proportion of iron can be between 0.2% by weight and 5% by weight, preferably between 0.2% by weight and 2% by weight, in particular between 0.3% by weight and 1% by weight. %.
  • the content of silicon may be between 2% by weight and 10% by weight, preferably between 3% by weight and 5% by weight.
  • the content of germanium may be between 3% by weight and 15% by weight, preferably between 4% by weight and 10% by weight.
  • the content of indium may be between 0.2 wt .-% and 20 wt .-%, preferably between 1 wt .-% and 5 wt .-%, in particular between 2 wt .-% and 4 wt .-%, amount.
  • the content of nickel may be between 0.2% and 8% by weight, preferably between 0.5% by weight and 5% by weight, in particular between 1% by weight and 3% by weight ,
  • the content of cobalt may be between 0.2% by weight and 8% by weight, preferably between 0.5% by weight and 5% by weight, in particular between 1% by weight and 3% by weight, be.
  • the content of bismuth can be between 1% by weight and 25% by weight, preferably between 2% by weight and 15% by weight, in particular between 5% by weight and 10% by weight.
  • the content of lead may be between 1 wt .-% and 25 wt .-%, preferably between 2 wt .-% and 15 wt .-%, in particular between 5 wt .-% and 10 wt .-%, amount.
  • the proportion of silver can be between 1% by weight and 20% by weight, preferably between 2% by weight and 10% by weight.
  • the content of antimony may be between 0.2% by weight and 15% by weight, preferably between 0.2% by weight and 10% by weight, in particular between 1% by weight and 5% by weight, be.
  • the proportion of phosphorus may be between 0.01% by weight and 3% by weight, preferably between 0.05% by weight and 0.3% by weight or with a sum alloying content of Fe, Ni and Co of above 0.2% by weight, preferably between 10% and 200%, more preferably between 50% and 150%, this value.
  • the proportion of rare earths, chromium, zirconium, titanium and beryllium can see in total between 0.001% by weight and 0.5% by weight, preferably between 0.01% by weight and 0.2% by weight, be.
  • the proportion of selenium may be at most 0.1% by weight, in particular between 0.0001% by weight and 0.01% by weight.
  • Sulfur or tellurium can be used instead of selenium.
  • the content of one or more of the elements silicon, germanium, indium, zinc, nickel, cobalt, bismuth, lead and antimony in total between 0.2 wt .-% and 20 wt .-%.
  • copper-base alloys are preferably deposited galvanically on the rear side 6 on the respective substrate, that is to say, for example, the support layer 2.
  • the electrolyte for this purpose can be eyanid-containing or preferably eyelid-free.
  • Preferred deposition parameters as well as preferred bathing compositions are given in the following examples.
  • Example 1 Eyanid-containing electrolyte for depositing a Cu-Sn-Zn alloy
  • Example 2 Cyanide-containing electrolyte for depositing a Cu-Ge-Zn alloy copper (I) 0.25 mol / 1 - 0.35 mol / 1
  • Example 4 tetrafluoroboric acid-based cyanide-free electrolyte for depositing a Cu-Sn-Sb-Pb alloy
  • Example 5 Cyanide-free pyrophosphate or phosphonate-based electrolyte for depositing a Cu-Sn-In alloy
  • this contains in addition to the salts for the metals to be deposited and organic compounds.
  • these are in particular polycarboxylic acid salts such as citrate or tartrate, in the case of the non-cyanide acidic electrolytes naphthol or naphthol derivatives or thio compounds. It is thereby achieved that the alignment according to the invention is obtained over a wider range of bath parameters.
  • the following salts can be used for the deposition of the metals:
  • Copper can be prepared as copper (H) tetrafluoroborate, copper (II) methanesulfonate, copper (II) sulfate, copper (II) pyrophosphate, copper (I) cyanide, copper salts of hydroxy and / or aminophosphonate. acids are used.
  • concentration of copper in the electrolyte can be between 0.05 mol / l and 1 mol / l.
  • Tin can be used as tin (H) tetrafluoroborate, tin (II) methanesulfonate, tin (II) sulfate,
  • Tin (II) pyrophosphate, sodium stannate, potassium stannate, tin (II) salts of hydroxy and / or aminophosphonic acids are used.
  • concentration of tin in the electrolyte can be up to 0.5 mol / 1.
  • Zinc can be used as zinc (II) tetrafluoroborate, zinc (n) methanesulfonate, zinc (II) sulfate,
  • Zinc (n) pyrophosphate, zinc oxide, zinc cyanide, zinc (II) salts of hydroxy and / or aminophosphonic acids are used.
  • concentration of zinc in the electrolyte can be up to 0.5 mol / l.
  • Silicon can be added to the electrolyte as a powder or, for example, in the form of silicon carbide in order to form dispersion layers therewith.
  • Germanium can be used as germanium dioxide or sodium or potassium germanate. In general, the concentration of germanium in the electrolyte can be up to 0.5 mol / l. Indium can be used as indium oxide, indium cyanide, indium sulfate, indium fluoroborate, indium methane sulfonate. In general, the concentration of indium in the electrolyte can be up to 0.5 mol / l.
  • Nickel can be used as nickel (II) tetrafluoroborate, nickel (II) methanesulfonate, nickel (II) sulfate, ammonium-nickel sulfate, nickel (H) chloride, nickel (II) pyrophosphate, nickel (II) oxide.
  • concentration of nickel in the electrolyte can be up to 1 mol / 1.
  • Manganese, cobalt and iron can be used in the same form and concentration as nickel.
  • Bismuth can be used as bismuth trifluoride, bismuth (IH) methanesulfonate, bismuth (III) sulfate, bismuth (in) pyrophosphate, bismuth oxide, sodium or potassium bismuthate.
  • concentration of bismuth in the electrolyte can be up to 0.5 mol / 1.
  • Lead can be used as lead (II) tetrafluoroborate, lead (II) methanesulfonate, lead (II) pyrophosphate, lead acetate, lead (II) oxide, sodium or potassium plumbate.
  • the concentration of lead in the electrolyte can be up to 0.3 mol / 1.
  • Antimony can be used as antimony (UI) tetrafluoroborate, antimony trifluoride, antimony (III) oxide, potassium antimony tartrate.
  • concentration of antimony in the electrolyte can be up to 0.2 mol / 1.
  • Silver can be used as cyanide, alkali metal cyanide, silver methanesulfonate, silver nitrate.
  • concentration of antimony in the electrolyte can be up to 0.5 mol / 1.
  • Phosphorus can be used as phosphorous acid, alkali phosphite, alkali hypophosphite. Generally, the concentration can be up to 2 mol / L.
  • Selenium can be used as selenium dioxide, alkali metal selenate or Alkaliselenit. In general, the concentration of selenium in the electrolyte can be between 0.05 mmol / l and 5 mmol / l.
  • Possible stabilizers or base electrolytes, conducting salts or complexing agents are: alkali metal cyanides, alkali metal hydroxides, tetrafluoroboric acid, hydrofluoric acid, methanesulfonic acid, tartaric acid and their alkali metal salts and ammonium salts, citric acid and its alkali metal and ammonium salts, ammonium and alkali metal pyrophosphates, phosphonic acid and their alkali metals and ammonium salts Ammonium salts, 2,2-Ethylendithiodiethanol, hydantione and its derivatives, succinimide and its derivatives, phenolic and cresolsulfonic acids, in a total concentration between 0.1 mol / 1 and 2 mol 1.
  • Possible oxidation inhibitors in cyanide-free electrolytes are: resorcinol, hydroquinone, catechol, pyrogallol, formaldehyde, methanol, in a total concentration of between 0.03 mol / l and 0.3 mol / l.
  • Possible additives are: phenolphthalein, thio compounds and their derivatives, thiourea and its derivatives, alpha- or beta-naphthol and their ethoxylates, alpha- and beta- naphtholsulphonic acid and their ethoxylates, o-toluidine, hydroxyquinoline, ligninsulfonate, butynediol, all in one Total concentration between 0.0005 mol / 1 and 0.05 mol / 1, preferred 0.002 mol / l and 0.02 mol / l and gelatin, glue, nonionic and cationic surfactants, amino compounds, for example C8-C20-amidopropylamines and their derivatives, polyethyleneglycol and its functionalized derivatives, peptone, glycine, in a total concentration between 0 g / 1 - 50 g / 1.
  • mixtures of the abovementioned constituents of the electrolytes that is to say e.g. at least two salts of one or the respective metal and / or at least two stabilizers and / or at least two oxidation inhibitors and / or at least two additives.
  • cyanide-containing electrolytes may only be prepared from alkaline salts or premixes.
  • the alloying elements can be added in the form of the abovementioned, soluble compounds or complexes to a corresponding electrolyte and be deposited therefrom. Likewise, alloy formation by diffusion of the elements into the layer or co-deposition of particles suspended in the electrolyte is possible.
  • the copper-based alloy can be cast and a strip of it rolled onto the substrate. But it is also a direct casting on the substrate possible, whereby the additional manufacturing step of banding can be omitted. These methods are known in principle from the prior art, so reference should be made in this context.
  • PVD methods such as sputtering, vapor deposition, CVD method, ion implantation method, flame and plasma spraying method, casting method, sintering method or plating method for producing the Antifretting Mrs 5 or for their modification, e.g. by ion implantation method, etc. possible.
  • the deposition of the respective antifretting layer 5 can take place on an already preformed multilayer sliding bearing 1, that is, for example, on a plain bearing half shell.
  • the antifretting layer 5 it is possible within the scope of the invention for the antifretting layer 5 to be coated on a flat substrate stripe. fen, for example, a steel strip is deposited, and the mechanical deformation of the finished multi-layer plain bearing 1, for example by pressing, etc., is carried out only in a subsequent manufacturing step.
  • Antifretting layers 5 of the following compositions in Table 1 were prepared in this way.
  • the information on the composition refers to wt .-%.
  • the remainder to 100 wt .-% each forms copper.
  • the tests were carried out with different stamping materials (eg steel cast iron, aluminum, titanium) and surface conditions (ground, shot-peened, ets.) And also with plates without coating and with different surface states. the results shown above were confirmed.
  • the experimental parameters such as pressure, amplitude, temperature, lubricating oil were also varied. The results were correlated with results from engine tests and test results on parts of the field.
  • this has a layer thickness between 2 ⁇ and 100 ⁇ , preferably between 3 ⁇ and 30 ⁇ , in particular between 4 ⁇ and 15 ⁇ , as has already been stated above.
  • the anti-fretting layer 5 has a layer thickness of at least 50%, in particular at least 150%, and at most 1000%, preferably at most 300%, of the roughness Rz of the support layer or of an interlayer optionally arranged between the support layer and the antifretting layer on.
  • the antifretting layer 5 preferably has a Vickers microhardness at a test load of 3 pounds between HV 200 and HV 500, preferably between HV 230 and HV 400, in particular between HV 250 and HV 350, for reasons mentioned above.
  • the antifretting layer 5 may also, for the foregoing reasons, have a coating which is softer than the antifretting layer 5, the coating preferably consisting of a material selected from a group comprising tin, lead, bismuth, polymer-based antifriction coatings. In principle, all bonded coatings are usable, which are known in the field of plain bearings.
  • an antifriction lacquer which, in a dry state, comprises 40% by weight to 45% by weight of MoS 2, 20% by weight to 25% by weight of graphite and 30% by weight to 40% by weight.
  • % Polyamideimide, optionally with hard particles, such as oxides, nitrides or carbides, in the bonded coating in a proportion of not more than 20 wt .-% may be included, which replace a proportion of solid lubricants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
PCT/AT2011/000185 2010-04-15 2011-04-14 Mehrschichtgleitlager mit einer antifrettingschicht Ceased WO2011127513A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127030000A KR101770762B1 (ko) 2010-04-15 2011-04-14 안티프레팅층을 갖는 다층 평베어링
EP11725605.7A EP2558617B1 (de) 2010-04-15 2011-04-14 Mehrschichtgleitlager mit einer antifrettingschicht
NO11725605A NO2558617T3 (enExample) 2010-04-15 2011-04-14
CN201180026621.1A CN102918182B (zh) 2010-04-15 2011-04-14 具有抗微动磨损层的多层滑动轴承
US13/640,891 US20130216169A1 (en) 2010-04-15 2011-04-14 Multi-layer plain bearing having an anti-fretting layer
JP2013504060A JP5861184B2 (ja) 2010-04-15 2011-04-14 アンチフレッチング層を有する多層ラジアル軸受

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA602/2010 2010-04-15
AT0060210A AT509867B1 (de) 2010-04-15 2010-04-15 Mehrschichtgleitlager mit einer antifrettingschicht

Publications (1)

Publication Number Publication Date
WO2011127513A1 true WO2011127513A1 (de) 2011-10-20

Family

ID=44260783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2011/000185 Ceased WO2011127513A1 (de) 2010-04-15 2011-04-14 Mehrschichtgleitlager mit einer antifrettingschicht

Country Status (8)

Country Link
US (1) US20130216169A1 (enExample)
EP (1) EP2558617B1 (enExample)
JP (1) JP5861184B2 (enExample)
KR (1) KR101770762B1 (enExample)
CN (1) CN102918182B (enExample)
AT (1) AT509867B1 (enExample)
NO (1) NO2558617T3 (enExample)
WO (1) WO2011127513A1 (enExample)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628123A (zh) * 2012-04-25 2012-08-08 苏州天兼金属新材料有限公司 一种风电装备用高传导高弹性合金棒及其制备方法
CN103276238A (zh) * 2013-07-01 2013-09-04 张康 一种铜基合金滑动轴承的制备方法
CN103290255A (zh) * 2013-07-01 2013-09-11 张康 一种铜基合金滑动轴承
EP2669400A1 (de) * 2012-06-01 2013-12-04 Sulzer Metco AG Zinkfreies Spritzpulver, kupferhaltige thermische Spritzschicht, sowie Verfahren zur Erzeugung einer kupferartigen thermischen Spritzschicht
CN104169599A (zh) * 2012-03-27 2014-11-26 千住金属工业株式会社 滑动构件
WO2015000010A1 (de) * 2013-07-05 2015-01-08 Ing. W. Garhöfer Gesellschaft M.B.H. Elektrolytbad sowie objekte bzw. artikel, die mithilfe des bades beschichtet werden
US20150273584A1 (en) * 2012-10-25 2015-10-01 Senju Metal Industry Co., Ltd. Sliding member and production method for same
EP3736350A1 (de) * 2019-05-07 2020-11-11 Miba Gleitlager Austria GmbH Mehrschichtgleitlagerelement

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT509459B1 (de) * 2010-04-15 2011-09-15 Miba Gleitlager Gmbh Antifrettingschicht
AT511432B1 (de) * 2012-01-20 2012-12-15 Miba Gleitlager Gmbh Verfahren zur herstellung eines gleitlagerelementes
WO2014125621A1 (ja) 2013-02-15 2014-08-21 千住金属工業株式会社 摺動部材及び摺動部材の製造方法
DE102013207782A1 (de) * 2013-04-29 2014-11-13 Schaeffler Technologies Gmbh & Co. Kg Hydrostatische Profilschienenführung
JP5713073B2 (ja) * 2013-09-27 2015-05-07 千住金属工業株式会社 摺動部材及び摺動部材の製造方法
JP5713074B2 (ja) * 2013-09-27 2015-05-07 千住金属工業株式会社 摺動部材
US9586381B1 (en) * 2013-10-25 2017-03-07 Steriplate, LLC Metal plated object with biocidal properties
AT514941B1 (de) * 2013-12-23 2015-05-15 Miba Gleitlager Gmbh Mehrschichtgleitlager
DE102014207331B4 (de) * 2014-04-16 2017-01-26 Federal-Mogul Wiesbaden Gmbh Bleifreier CuNi2Si-Gleitlagerwerkstoff unter Zugabe eines spanbrechend wirkenden Metalls
AR100422A1 (es) * 2014-05-15 2016-10-05 Nippon Steel & Sumitomo Metal Corp Solución para deposición para conexión roscada para un caño o tubo y método de producción de la conexión roscada para un caño o tubo
JP6488385B2 (ja) * 2014-09-02 2019-03-20 サン−ゴバン パフォーマンス プラスチックス パンプス ゲゼルシャフト ミット ベシュレンクテル ハフツング 耐食性ブッシング
DE102014217570A1 (de) * 2014-09-03 2016-03-03 Federal-Mogul Wiesbaden Gmbh Gleitlager oder Teil davon, Verfahren zur Herstellung desselben und Verwendung einer CuCrZr-Legierung als Gleitlagerwerkstoff
CN104228192B (zh) * 2014-09-20 2016-04-13 福建船政交通职业学院 铟铝复合球微晶复合层表面织构
CN104228190B (zh) * 2014-09-20 2016-04-13 福建船政交通职业学院 铟铁复合球微晶复合层表面织构
CN104228206B (zh) * 2014-09-20 2016-04-13 福建船政交通职业学院 铟铁网状球复合微晶复合层
CN104228191B (zh) * 2014-09-20 2016-04-13 福建船政交通职业学院 铟铝复合球微晶复合层
CN104228188B (zh) * 2014-09-20 2016-04-13 福建船政交通职业学院 铟铁网状球复合微晶复合层表面织构
CN104290396B (zh) * 2014-09-20 2016-09-07 福建船政交通职业学院 铟镁内凹微晶复合层
CN104228189B (zh) * 2014-09-20 2016-04-13 福建船政交通职业学院 铟铁复合球微晶复合层
AT516877B1 (de) 2015-02-19 2016-12-15 Miba Gleitlager Austria Gmbh Gleitlagerelement
WO2017090161A1 (ja) * 2015-11-26 2017-06-01 近藤 和夫 酸性銅めっき液、酸性銅めっき物および半導体デバイスの製造方法
CA3097950C (en) * 2015-12-31 2024-11-05 Saint Gobain Performance Plastics Pampus Gmbh Corrosion resistant bushing including metal mesh
EP3192737B1 (en) * 2016-01-14 2020-12-02 Safran Landing Systems UK Limited Shock strut
WO2017156721A1 (zh) * 2016-03-16 2017-09-21 湖南特力新材料有限公司 一种超高强自润滑铜合金及其制备方法
CN105695793A (zh) * 2016-04-20 2016-06-22 苏州市相城区明达复合材料厂 一种铸造加工用高性能青铜合金
CN106282655A (zh) * 2016-08-09 2017-01-04 苏州金仓合金新材料有限公司 一种用于高速铁路装备的锑锡锌青铜合金棒及其制备方法
DE102017105602B3 (de) * 2017-03-16 2018-05-17 Ks Gleitlager Gmbh Gleitlagerverbundwerkstoff mit einer metallischen Stützschicht und einer metallischen Lagermetallschicht
CN110446795B (zh) 2017-03-24 2021-06-04 株式会社Ihi 耐磨耗性铜锌合金以及使用其的机械装置
CN112879436B (zh) * 2017-07-21 2023-04-25 大丰工业株式会社 滑动构件以及滑动轴承
ES2812210T3 (es) * 2017-09-20 2021-03-16 Siemens Gamesa Renewable Energy As Cojinete de película de fluido para una turbina eólica
CN112840052A (zh) * 2018-03-27 2021-05-25 万腾荣公司 具有增强的导热性和耐磨性的铜合金组合物
CN108715948A (zh) * 2018-06-22 2018-10-30 新乡市海山机械有限公司 一种铅青铜衬套及其制备方法
US20200032409A1 (en) * 2018-07-25 2020-01-30 The Boeing Company Compositions and Methods for Electrodepositing Tin-Bismuth Alloys on Metallic Substrates
CN109266898B (zh) * 2018-11-21 2020-10-27 中航力源液压股份有限公司 一种航空液压泵摩擦副用铸造锡青铜及其熔炼方法
WO2020136772A1 (ja) * 2018-12-26 2020-07-02 株式会社明石合銅 鋳造用青銅合金及びその青銅合金を用いた摺動部材
CN110055439A (zh) * 2019-06-06 2019-07-26 扬州好管家科技信息咨询有限公司 电子原器件制造用高塑性抗热裂黄铜合金及其制备工艺
CN110454535A (zh) * 2019-08-08 2019-11-15 扬州福克斯减震器有限公司 限流式阻尼力值可调减震器
CN110592407A (zh) * 2019-10-22 2019-12-20 江西省科学院应用物理研究所 一种Cu-Al-Sb导电合金的制备方法
DE102021110301A1 (de) * 2021-04-22 2022-10-27 Ks Gleitlager Gmbh Kupfer-Zinn-Stranggusslegierung
CN113506666A (zh) * 2021-06-28 2021-10-15 福建船政交通职业学院 铟铁复合凸点微晶磁轭
JP7436071B1 (ja) 2022-11-25 2024-02-21 株式会社シミズ 非シアン真鍮めっき浴およびめっき方法
CN117488134A (zh) * 2023-11-08 2024-02-02 合肥工业大学 一种锑青铜-钢双金属复合材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB554355A (en) 1942-03-24 1943-06-30 Vandervell Products Ltd An improved means for preventing or obviating the effect of "fretting" between adjoining metal surfaces
GB556248A (en) 1942-03-24 1943-09-27 Vandervell Products Ltd Improvements in multi-ply bearings
AT399544B (de) 1993-12-21 1995-05-26 Miba Gleitlager Ag Verfahren zum herstellen eines gleitlagers
GB2315301A (en) 1996-07-15 1998-01-28 Daido Metal Co Sliding bearing resistant to fretting
WO2002048563A1 (de) 2000-12-16 2002-06-20 Ks Gleitlager Gmbh Pleuellagerschale
DE102004038191A1 (de) * 2004-08-06 2006-03-16 Ks Gleitlager Gmbh Gleitlagerverbundwerkstoff
JP2006153193A (ja) * 2004-11-30 2006-06-15 Taiho Kogyo Co Ltd 摺動材料とその製造方法
DE102005015467A1 (de) * 2005-04-04 2006-10-05 Diehl Metall Stiftung & Co.Kg Verwendung einer Kupfer-Zink-Legierung
DE102006019826B3 (de) * 2006-04-28 2007-08-09 Wieland-Werke Ag Bandförmiger Werkstoffverbund und dessen Verwendung, Verbundgleitelement
DE102007013707A1 (de) * 2006-03-30 2007-10-11 Miba Gleitlager Gmbh Lagerelement
DE102006060021A1 (de) * 2006-12-19 2008-06-26 Ecka Granulate Gmbh & Co. Kg Verfahren zur Herstellung einer hochbelastbaren Beschichtung und deren Verwendung
AT506641B1 (de) 2008-04-07 2011-01-15 Miba Gleitlager Gmbh Gleitlager

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644105A (en) * 1970-03-03 1972-02-22 Clevite Corp Multilayer bearing
JP2595386B2 (ja) * 1991-02-20 1997-04-02 大同メタル工業 株式会社 高速用多層摺動材料及びその製造方法
DE4121994C2 (de) * 1991-07-03 1995-06-08 Wieland Werke Ag Verfahren zur Herstellung einer Kupfer-Nickel-Zinn-Legierung sowie ihre Verwendung
US5312696A (en) * 1991-09-16 1994-05-17 United Technologies Corporation Method for reducing fretting wear between contacting surfaces
US5803614A (en) * 1996-07-15 1998-09-08 Daido Metal Company, Ltd. Bearing structure of sliding bearing
WO1999043963A1 (en) * 1998-02-24 1999-09-02 Taiho Kogyo Co., Ltd. Sliding bearing for internal combustion engine
JP2001132754A (ja) * 1999-11-04 2001-05-18 Daido Metal Co Ltd 多層すべり軸受
EP1637754A1 (de) * 2004-09-17 2006-03-22 ThyssenKrupp Automotive AG Lagervorrichtung
JP4195455B2 (ja) * 2005-03-25 2008-12-10 大同メタル工業株式会社 摺動部材
CN101688268B (zh) * 2007-05-15 2012-07-11 大丰工业株式会社 不含Pb的铜合金滑动材料和滑动轴承

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB554355A (en) 1942-03-24 1943-06-30 Vandervell Products Ltd An improved means for preventing or obviating the effect of "fretting" between adjoining metal surfaces
GB556248A (en) 1942-03-24 1943-09-27 Vandervell Products Ltd Improvements in multi-ply bearings
AT399544B (de) 1993-12-21 1995-05-26 Miba Gleitlager Ag Verfahren zum herstellen eines gleitlagers
GB2315301A (en) 1996-07-15 1998-01-28 Daido Metal Co Sliding bearing resistant to fretting
WO2002048563A1 (de) 2000-12-16 2002-06-20 Ks Gleitlager Gmbh Pleuellagerschale
DE102004038191A1 (de) * 2004-08-06 2006-03-16 Ks Gleitlager Gmbh Gleitlagerverbundwerkstoff
JP2006153193A (ja) * 2004-11-30 2006-06-15 Taiho Kogyo Co Ltd 摺動材料とその製造方法
DE102005015467A1 (de) * 2005-04-04 2006-10-05 Diehl Metall Stiftung & Co.Kg Verwendung einer Kupfer-Zink-Legierung
DE102007013707A1 (de) * 2006-03-30 2007-10-11 Miba Gleitlager Gmbh Lagerelement
DE102006019826B3 (de) * 2006-04-28 2007-08-09 Wieland-Werke Ag Bandförmiger Werkstoffverbund und dessen Verwendung, Verbundgleitelement
DE102006060021A1 (de) * 2006-12-19 2008-06-26 Ecka Granulate Gmbh & Co. Kg Verfahren zur Herstellung einer hochbelastbaren Beschichtung und deren Verwendung
AT506641B1 (de) 2008-04-07 2011-01-15 Miba Gleitlager Gmbh Gleitlager

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169599B (zh) * 2012-03-27 2015-08-26 千住金属工业株式会社 滑动构件
US10309457B2 (en) 2012-03-27 2019-06-04 Senju Metal Industry Co., Ltd. Sliding member
CN104169599A (zh) * 2012-03-27 2014-11-26 千住金属工业株式会社 滑动构件
CN102628123A (zh) * 2012-04-25 2012-08-08 苏州天兼金属新材料有限公司 一种风电装备用高传导高弹性合金棒及其制备方法
EP2669400A1 (de) * 2012-06-01 2013-12-04 Sulzer Metco AG Zinkfreies Spritzpulver, kupferhaltige thermische Spritzschicht, sowie Verfahren zur Erzeugung einer kupferartigen thermischen Spritzschicht
US9885382B2 (en) 2012-06-01 2018-02-06 Oerlikon Metco Ag, Wohlen Zinc-free spray powder, copper-containing thermal spray layer, as well as method of manufacturing a copper-containing thermal spray layer
US9097276B2 (en) 2012-06-01 2015-08-04 Oerlikon Metco Ag Bearing part and thermal spray method
US20150273584A1 (en) * 2012-10-25 2015-10-01 Senju Metal Industry Co., Ltd. Sliding member and production method for same
US9956613B2 (en) * 2012-10-25 2018-05-01 Senju Metal Industry Co., Ltd. Sliding member and production method for same
CN103276238B (zh) * 2013-07-01 2015-09-02 襄阳展升科技有限公司 一种铜基合金滑动轴承的制备方法
CN103290255B (zh) * 2013-07-01 2015-08-05 义乌市满旺机械设备有限公司 一种铜基合金滑动轴承
CN103276238A (zh) * 2013-07-01 2013-09-04 张康 一种铜基合金滑动轴承的制备方法
CN103290255A (zh) * 2013-07-01 2013-09-11 张康 一种铜基合金滑动轴承
WO2015000010A1 (de) * 2013-07-05 2015-01-08 Ing. W. Garhöfer Gesellschaft M.B.H. Elektrolytbad sowie objekte bzw. artikel, die mithilfe des bades beschichtet werden
EP3736350A1 (de) * 2019-05-07 2020-11-11 Miba Gleitlager Austria GmbH Mehrschichtgleitlagerelement
EP4234964A3 (de) * 2019-05-07 2023-10-04 Miba Gleitlager Austria GmbH Mehrschichtgleitlagerelement

Also Published As

Publication number Publication date
AT509867A4 (de) 2011-12-15
CN102918182B (zh) 2015-01-21
AT509867B1 (de) 2011-12-15
EP2558617B1 (de) 2017-10-18
KR20130092982A (ko) 2013-08-21
NO2558617T3 (enExample) 2018-03-17
CN102918182A (zh) 2013-02-06
JP2013534963A (ja) 2013-09-09
JP5861184B2 (ja) 2016-02-16
EP2558617A1 (de) 2013-02-20
US20130216169A1 (en) 2013-08-22
KR101770762B1 (ko) 2017-08-23

Similar Documents

Publication Publication Date Title
AT509867B1 (de) Mehrschichtgleitlager mit einer antifrettingschicht
EP2558620B1 (de) Antifrettingschicht
AT509111B1 (de) Gleitschicht
AT509112B1 (de) Gleitschicht
EP2619348B1 (de) Schichtverbundwerkstoff für gleitelemente, verfahren zu dessen herstellung und verwendung
JP2013534963A5 (enExample)
DE112009000730B4 (de) Gleitlager
AT511196A4 (de) Mehrschichtlagerschale
WO2016023790A2 (de) Gleitlagerverbundwerkstoff
DE102007013707B4 (de) Lagerelement
AT514941B1 (de) Mehrschichtgleitlager
DE102007028211A1 (de) Verfahren zur Herstellung eines mit Silber strukturiert beschichteten Gleitelements und danach erhältliches Gleitelement
AT513255B1 (de) Mehrschichtgleitlager

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026621.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11725605

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013504060

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13640891

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011725605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011725605

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127030000

Country of ref document: KR

Kind code of ref document: A