WO2011125882A1 - 炭水化物含有原料から乳酸類を製造する方法 - Google Patents

炭水化物含有原料から乳酸類を製造する方法 Download PDF

Info

Publication number
WO2011125882A1
WO2011125882A1 PCT/JP2011/058294 JP2011058294W WO2011125882A1 WO 2011125882 A1 WO2011125882 A1 WO 2011125882A1 JP 2011058294 W JP2011058294 W JP 2011058294W WO 2011125882 A1 WO2011125882 A1 WO 2011125882A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
lactic acid
tin
compounds
mmol
Prior art date
Application number
PCT/JP2011/058294
Other languages
English (en)
French (fr)
Inventor
富永健一
森敦
佐藤一彦
島田茂
常木英昭
平野喜章
Original Assignee
株式会社日本触媒
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010082174A external-priority patent/JP5515114B2/ja
Priority claimed from JP2010244406A external-priority patent/JP5783548B2/ja
Priority claimed from JP2010244486A external-priority patent/JP5783549B2/ja
Priority claimed from JP2010244542A external-priority patent/JP5858514B2/ja
Application filed by 株式会社日本触媒, 独立行政法人産業技術総合研究所 filed Critical 株式会社日本触媒
Priority to SG2012072336A priority Critical patent/SG184340A1/en
Priority to US13/638,014 priority patent/US8987505B2/en
Publication of WO2011125882A1 publication Critical patent/WO2011125882A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/08Lactic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/327Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form

Definitions

  • the present invention relates to a method for producing lactic acid from a carbohydrate-containing raw material using at least one compound selected from the group consisting of a tin compound, an indium compound and a rhenium compound as a catalyst.
  • a chemical method in which a carbohydrate is hydrothermally treated in the presence of an alkali is known.
  • saccharides see Non-Patent Documents 1 and 2
  • cellulose see Patent Documents 2 and 3
  • organic waste see Non-Patent Document 4
  • reaction conditions of high temperature and high pressure are performed.
  • Lactic acid is produced by isomerization of some of the carbohydrates decomposed in
  • lactic acid reacts with the alkali added as a catalyst to form a lactate, so that in order to separate lactic acid as an acid, it is necessary to add some inorganic acid to the reaction solution to make it acidic.
  • the alkali and the inorganic acid are consumed stoichiometrically.
  • Patent Literature As a chemical production method of lactic acid without using an alkali, there has been reported a method of converting starch, oligosaccharide or monosaccharide into a lactic acid ester by reacting with alcohol using a metal halide as a catalyst (Patent Literature). 3).
  • Patent Literature a method of converting starch, oligosaccharide or monosaccharide into a lactic acid ester by reacting with alcohol using a metal halide as a catalyst. 3).
  • the cellulose-based raw material could not be decomposed at a temperature lower than 200 ° C., and formation of lactic acid or lactic acid ester was not recognized.
  • JP-A-6-31886 Japanese Patent Laying-Open No. 2005-232116 JP 2004-359660 A JP 2004-323403 A JP 2008-120696 A JP 2009-263242 A JP 2009-263241 A
  • An object of the present invention is to provide an alternative method for efficiently producing lactic acids from a carbohydrate-containing raw material.
  • the present inventors have used at least one compound selected from the group consisting of a tin compound, an indium compound, and a rhenium compound as a catalyst, thereby reducing the amount of catalyst used. It has been found that even in a small amount, lactic acid (lactic acid and / or lactic acid ester) can be efficiently produced from a carbohydrate-containing raw material.
  • the present inventors have made at least one compound selected from the group consisting of a tin compound, an indium compound and a rhenium compound, a first transition series metal compound, a lithium compound, a magnesium compound, an alkali metal salt, an alkaline earth Lactic acid (lactic acid and / or lactic acid ester) from a carbohydrate-containing raw material by using it as a catalyst in combination with at least one compound selected from the group consisting of metal salt, quaternary ammonium salt and quaternary phosphonium salt It was found that it can be produced efficiently. Based on these findings, the present invention has been completed.
  • the present invention includes the following.
  • a method for producing lactic acid and / or lactic acid ester by heat-treating a carbohydrate-containing raw material in a solvent containing a catalyst The catalyst is at least one compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds;
  • the solvent contains water and / or alcohol;
  • a process for producing the above lactic acid / lactic acid ester A method for producing lactic acid and / or lactic acid ester by heat-treating a carbohydrate-containing raw material in a solvent containing a catalyst,
  • the catalyst is at least one compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds;
  • the solvent contains water and / or alcohol;
  • a process for producing the above lactic acid / lactic acid ester A process for producing the above lactic acid / lactic acid ester.
  • the solvent is further at least one selected from the group consisting of a compound of a first transition series metal, a lithium compound, a magnesium compound, an alkali metal salt, an alkaline earth metal salt, a quaternary ammonium salt, and a quaternary phosphonium salt.
  • a process for producing a lactic acid / lactate ester comprising the compound of [1].
  • the present invention includes the following.
  • the solvent containing water and / or alcohol is at least one selected from the group consisting of tin or organotin halides, indium compounds, rhenium compounds, magnesium compounds, and first transition series metal compounds.
  • the method according to (1) further comprising a solvent containing water and / or alcohol.
  • the present invention includes the following.
  • tin-containing compounds selected from the group consisting of tin or organotin halides and tin or organotin perfluoroalkyl sulfonates as catalysts, and lithium halides and magnesium as cocatalysts
  • the carbohydrate-containing raw material is heat-treated in a solvent containing water and / or alcohol containing at least one compound selected from the group consisting of halides of the above, halides of first transition series metals and quaternary ammonium salts
  • a process for producing lactic acid characterized in that
  • ⁇ 2> The method according to ⁇ 1>, wherein the tin or organotin halide used as the catalyst is a chloride.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the halide of lithium, the halide of magnesium, and the halide of the first transition series metal used as a promoter are chlorides.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the quaternary ammonium salt used as a promoter is a halide.
  • ⁇ 6> The method according to any one of ⁇ 1> to ⁇ 5>, wherein the heat treatment is performed by heating at 100 ° C. to 300 ° C.
  • the present invention includes the following.
  • Lactic acid characterized by heat-treating a carbohydrate-containing raw material in a solvent containing water and / or alcohol containing at least one selected from the group consisting of indium alkoxide and indium acetylacetonate, / Or production method of lactate ester.
  • the present invention includes the following.
  • a method for producing lactic acids comprising subjecting a carbohydrate-containing raw material to heat treatment in a solvent containing water and / or alcohol containing at least one or more rhenium compounds.
  • ⁇ 4 ⁇ The method of ⁇ 3 ⁇ , wherein at least one metal compound other than rhenium is selected from the group consisting of a magnesium compound and a first transition series metal compound.
  • ⁇ 6 ⁇ The method of any one of ⁇ 1 ⁇ to ⁇ 5 ⁇ , wherein the heat treatment is performed by heating at 100 ° C. to 300 ° C.
  • the present invention includes the following.
  • ⁇ 1 At least one metal compound selected from the group consisting of an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound, an alkali metal salt, an alkaline earth metal salt, a first transition series metal salt, Characterized in that a carbohydrate-containing raw material is heat-treated in a solvent containing water and / or alcohol using at least one salt selected from the group consisting of a quaternary ammonium salt and a quaternary phosphonium salt as a catalyst.
  • a method for producing lactic acids is produced by the group consisting of an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound, an alkali metal salt, an alkaline earth metal salt, a first transition series metal salt.
  • ⁇ 2 At least one metal compound selected from the group consisting of an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound, an alkali metal salt, an alkaline earth metal salt, a first transition series metal salt, The method for producing lactic acid according to ⁇ 1 >>, wherein an art complex is formed with at least one salt selected from the group consisting of a quaternary ammonium salt and a quaternary phosphonium salt.
  • ⁇ 3 At least one metal compound selected from the group consisting of indium compounds, gallium compounds, aluminum compounds, tin compounds, and rhenium compounds is selected from the group consisting of halide salts and carboxylates, ⁇ 1 >> or ⁇ 2> production method of lactic acid.
  • ⁇ 4 The method for producing lactic acid according to ⁇ 3 >>, wherein at least one metal compound selected from the group consisting of an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound is a chloride salt.
  • ⁇ 5 At least one salt selected from the group consisting of alkali metal salts, alkaline earth metal salts, first transition series metal salts, quaternary ammonium salts, and quaternary phosphonium salts is a halide salt or a carboxylic acid
  • ⁇ 6 The method for producing lactic acid according to any one of ⁇ 1 >> to ⁇ 5 >>, further comprising using at least one of tin or organotin perfluoroalkylsulfonate as a catalyst.
  • ⁇ 7 The method for producing lactic acid according to ⁇ 6 >>, wherein the perfluoroalkylsulfonate is trifluoromethanesulfonate.
  • ⁇ 8 The method for producing lactic acid according to ⁇ 6 >> or ⁇ 7 >>, wherein the carbohydrate-containing raw material contains cellulose.
  • ⁇ 9 The method for producing lactic acid according to any one of ⁇ 1 >> to ⁇ 8 >>, wherein the heat treatment is performed at 100 ° C to 300 ° C.
  • lactic acids can be efficiently produced from a carbohydrate-containing raw material such as cellulose using a small amount of catalyst.
  • FIG. 1 shows ESI / MS measurement results for an art complex formed from rhenium carbonyl and manganese chloride tetrahydrate.
  • FIG. 2 shows ESI / MS measurement results for an art complex formed from indium (III) chloride tetrahydrate and bis (triphenylphosphine) iminium chloride.
  • the present invention heats a carbohydrate-containing raw material in a solvent containing water and / or alcohol, including at least one compound selected from the group consisting of a tin compound, an indium compound, and a rhenium compound that functions as a catalyst.
  • a reaction product containing lactic acid and / or lactic acid ester can be obtained.
  • carbohydrates in a carbohydrate-containing raw material for example, polysaccharides such as cellulose, starch, oligosaccharides and disaccharides, monosaccharides such as glucose and fructose, lactic acid and / Or Lactic acid ester can be manufactured simply and efficiently.
  • the production reaction of lactic acid or lactic acid ester from a carbohydrate-containing raw material proceeds as follows, for example, when cellulose is used as a starting raw material.
  • Cellulose is solvolyzed in alcohol or water under high temperature and high pressure to produce saccharides. Under this reaction condition, the produced saccharide is further decomposed to be converted into a low molecular compound, or conversely polymerized into a carbonaceous polymer compound.
  • the decomposition reaction includes dehydration reaction and retroaldolization. In the dehydration reaction, 5-methoxymethylfurfural is produced, and in the retroaldolization, glycolaldehyde (dicarbon sugar), dihydroxyacetone or glyceraldehyde (tricarbon sugar), and erythritol (tetracarbon sugar) are produced. Among these, tricarbon sugar can be converted into lactic acid by isomerization. Furthermore, lactic acid is converted into a lactic acid ester by a dehydration condensation reaction with alcohol.
  • the carbohydrate-containing raw material that can be used as the raw material in the method of the present invention may be any raw material containing carbohydrate.
  • the carbohydrate-containing raw material can be any carbohydrate, such as a monosaccharide, oligosaccharide (2-9 linked monosaccharides), or polysaccharide (10 or more monosaccharides bonded), or It may be a biological material containing it.
  • the polysaccharide is not limited, but cellulose, starch, oligosaccharide and disaccharide are preferable.
  • the monosaccharide is not limited, but glucose and fructose are preferable.
  • the carbohydrate-containing raw materials include, for example, five carbohydrates such as cellulose, holocellulose, cellobiose, starch (for example, soluble starch), maltose, glucose, mannose, fructose, galactose, growth, etc., hemicellulose, xylose, arabinose, etc. It may be a hemicellulose-based material containing carbon sugar, or at least one of them, for example, a lignocellulosic material. Although a carbohydrate containing raw material is not specifically limited, For example, the biomass material containing the above carbohydrates (for example, cellulose etc.) may be sufficient.
  • carbohydrate-containing raw materials include lignocellulosic biomass materials including agricultural waste such as waste paper, sawn residue, wheat straw, corn stover, corn cob, and corn ears, and food waste containing sugars such as starch and glucose Etc.
  • the carbohydrate-containing raw material used in the method of the present invention preferably contains water in addition to a carbohydrate such as cellulose.
  • the “tin compound” includes perfluoroalkyl sulfonate of tin or organotin and halide of tin or organotin, acetylacetone compound, alkoxide compound, carboxylate compound, phosphate compound, sulfate compound , Nitrate compounds and the like, but are not limited thereto.
  • it is at least one compound selected from the group consisting of tin or organotin perfluoroalkyl sulfonates and tin or organotin halides.
  • organotin refers to tin (Sn) to which one or more organic substituents (hydrocarbon groups) are bonded.
  • the substituent bonded to the tin atom of organotin that can be used in the present invention is not particularly limited, and examples thereof include an n-butyl group, a t-butyl group, an n-hexyl group, and an n-octyl group.
  • the perfluoroalkyl sulfonate of tin or organotin may be a tin (II) salt or a tin (IV) salt.
  • perfluoroalkyl sulfonate is not particularly limited, and examples thereof include trifluoromethane sulfonate, pentafluoromethane sulfonate, heptafluoropropane sulfonate, and nonafluorobutane sulfonate.
  • a more preferred perfluoroalkyl sulfonate is trifluoromethane sulfonate (common name: triflate).
  • tin (II) trifluoromethanesulfonate Sn (OTf) 2
  • Tf represents a trifluoromethylsulfonyl group CF 3 SO 2 —, the same applies hereinafter
  • II trifluoromethanesulfonate
  • organotin for example, dibutyltin (II) trifluoromethanesulfonate can be used particularly preferably.
  • Tin or organotin halides include tin or organotin fluorides, chlorides, bromides, and iodides, and such tin or organotin halides are not limited.
  • tin (II) chloride and di-n-butyltin (II) chloride can be mentioned.
  • indium compounds examples include indium halides (fluorides, chlorides, bromides, and iodides), acetylacetone compounds, alkoxide compounds, carboxylate compounds, phosphate compounds, sulfate compounds, nitrate compounds, and the like.
  • indium bromide InBr 3
  • rhenium compounds include rhenium halides (fluorides, chlorides, bromides, and iodides), acetylacetone compounds, alkoxide compounds, carboxylate compounds, phosphate compounds, sulfate compounds, nitrate compounds, and carbonyl coordination.
  • rhenium compound include, but are not limited to, rhenium carbonyl (Re 2 (CO) 10 ).
  • one type of compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds may be used, or two or more types may be used in combination.
  • the solvent containing water and / or alcohol used in the method of the present invention is a solution containing water or alcohol, or both.
  • This solvent may be water or alcohol alone, a mixed solution of water and alcohol, or a solution in which other components such as other organic solvents are mixed.
  • water distilled water, ion exchange water, industrial water, or the like can be used.
  • alcohol A C1-C8 aliphatic alcohol is preferable.
  • methanol, ethanol, propanol, isopropanol, 1-butanol, 2-butanol, ethylene glycol and the like can be mentioned.
  • Hydrous alcohol can also be suitably used as a solvent in the present invention.
  • One or two or more alcohols may be contained in the solvent.
  • a solvent containing alcohol may be used.
  • the total amount (use amount) of the compound selected from the group consisting of a tin compound, an indium compound and a rhenium compound to be contained in a solvent containing water and / or alcohol is not limited, but in a carbohydrate-containing raw material
  • An amount corresponding to 0.001 to 1.0 mol, preferably 0.005 mol to 0.1 mol, for example, 0.01 to 0.05 mol in terms of mass ratio can be used per 1 mol of glucose residues. If the amount used is too small, the decomposition of polysaccharides such as cellulose is difficult to proceed, and if too large, the yield of lactic acid or lactic acid ester decreases due to side reactions, which is not preferable.
  • At least one compound selected from the group consisting of earth metal salts, quaternary ammonium salts and quaternary phosphonium salts can also be used in combination as a further catalyst.
  • lactic acid and / or a lactic acid ester can be efficiently produced from a polysaccharide and a monosaccharide. it can.
  • the first transition series metal compounds include halides (fluorides, chlorides, bromides, halides of the first transition series metals (ie, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc). And iodide), acetylacetone compounds, alkoxide compounds, carboxylate compounds, phosphate compounds, sulfate compounds, nitrate compounds, boric acid compounds, phenol compounds, and the like.
  • Preferred examples include, but are not limited to, halides (particularly chlorides), carboxylate compounds, boric acid compounds, phenol compounds, and the like, such as manganese chloride tetrahydrate, manganese chloride tetrahydrate. Products, cobalt chloride hexahydrate, cobalt chloride hexahydrate, nickel chloride tetrahydrate, iron (II) chloride hexahydrate, and the like.
  • Lithium compounds include halides (fluorides, chlorides, bromides, and iodides), acetylacetone compounds, alkoxide compounds, carboxylate compounds, phosphate compounds, sulfate compounds, nitrate compounds, boric acid compounds, phenolic compounds. Etc.
  • Preferable examples include, but are not limited to, halides (particularly chlorides), carboxylate compounds, boric acid compounds, phenol compounds, and the like, and examples include lithium chloride.
  • Magnesium compounds include magnesium halides (fluoride, chloride, bromide, and iodide), acetylacetone compounds, alkoxide compounds, carboxylate compounds, phosphate compounds, sulfate compounds, nitrate compounds, boric acid compounds, A phenol compound etc. are mentioned. Preferred examples include, but are not limited to, halides (particularly chlorides), carboxylate compounds, boric acid compounds, phenol compounds, and the like. For example, magnesium chloride tetrahydrate (MgCl 2 ⁇ 4H 2 O), magnesium chloride hexahydrate (MgCl 2 .6H 2 O), and the like.
  • alkali metal salt, alkaline earth metal salt, and quaternary phosphonium salt include, but are not limited to, halide salts, carboxylate salts, borate salts, and phenyl compounds.
  • the quaternary ammonium salt is not particularly limited, and examples thereof include quaternary ammonium salt halides (fluorides, chlorides, bromides, and iodides), carboxylic acid compounds, boric acid compounds, and phenol compounds.
  • quaternary ammonium salt halides fluorides, chlorides, bromides, and iodides
  • carboxylic acid compounds boric acid compounds
  • phenol compounds phenol compounds.
  • bis (triphenylphosphine) iminium chloride, tetrabutylammonium bromide, trioctylmethylammonium chloride and the like can be used particularly preferably.
  • the amount of the first transition series metal compound used corresponds to 0 to 1.0 mol with respect to the amount of 1.0 mol of at least one compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds. Quantity can be used. It is preferable to use an amount equal to or less than at least one compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds, and at least selected from the group consisting of tin compounds, indium compounds and rhenium compounds. More preferably, it is used in the range of 0.01 to 0.9 mol, for example 0.2 to 0.8 mol, with respect to 1.0 mol of one compound.
  • the amount of the lithium compound used is 0.1 to 10.0 mol with respect to the amount of 1.0 mol of at least one compound selected from the group consisting of a tin compound, an indium compound and a rhenium compound, preferably a tin compound , In the range equivalent to or more than the amount of at least one compound selected from the group consisting of indium compounds and rhenium compounds, more preferably in the range of 1.0 mol to 4.0 mol.
  • an amount corresponding to 0 to 1.0 mol can be used with respect to 1.0 mol of at least one compound selected from the group consisting of a tin compound, an indium compound and a rhenium compound. It is preferable to use an amount equal to or less than at least one compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds, and at least selected from the group consisting of tin compounds, indium compounds and rhenium compounds. More preferably, it is used in the range of 0.01 to 0.9 mol, for example 0.2 to 0.8 mol, with respect to 1.0 mol of one compound.
  • the use amount of the alkali metal salt, alkaline earth metal salt, and quaternary phosphonium salt is 0 to 0.1 mol of the use amount of at least one compound selected from the group consisting of a tin compound, an indium compound, and a rhenium compound.
  • An amount corresponding to 100 mol can be used 0.01 to 10.0 mol, for example 0.1 to 0.1 mol with respect to 1.0 mol of at least one compound selected from the group consisting of a tin compound, an indium compound and a rhenium compound. More preferably, it is used in the range of 1.0 mol.
  • the amount of quaternary ammonium salt used is 0.1 to 10.0 mol with respect to 1.0 mol of at least one compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds, preferably It is the range equivalent to or more than the usage-amount of the at least 1 sort (s) of compound selected from the group which consists of a tin compound, an indium compound, and a rhenium compound, More preferably, it is the range of 1.0 mol-4.0 mol.
  • At least one compound selected from the group consisting of a halide of lithium, a halide of magnesium, a halide of a first transition series metal, and a quaternary ammonium salt is particularly referred to as a “promoter”.
  • a “promoter” May be described.
  • the “co-catalyst” means degradation of polysaccharides such as cellulose by acting together with the tin compound, indium compound and / or rhenium compound in the presence of the tin compound, indium compound and / or rhenium compound. It means a compound that promotes and strengthens reactions and sugar decomposition / isomerization reactions.
  • the cocatalyst itself catalyzes the decomposition reaction of cellulose and the decomposition / isomerization reaction of sugar in the absence of tin or organotin perfluoroalkylsulfonate or tin compound, indium compound or rhenium compound. You may or may not.
  • the “promoter” is not limited to lithium halides, magnesium halides, first transition series metal halides and quaternary ammonium salts, but includes various compounds described above. obtain.
  • a salt, a quaternary ammonium salt and a quaternary phosphonium salt bind in the reaction solution to form one or more types of art complexes. May be.
  • the reverse aldol reaction of the sugar can be selectively advanced while suppressing the cyclization of the sugar as follows. Therefore, the isomerization reaction to lactic acid can be promoted more efficiently than the carbohydrate-containing raw material.
  • a phenolic compound in the method of the present invention, at least one compound selected from the group consisting of a tin compound, an indium compound, and a rhenium compound, a compound of a first transition series metal, a lithium compound, a magnesium compound, an alkali metal salt, and an alkaline earth metal salt
  • a phenolic compound can also be added to a solvent for use.
  • the phenolic compound is not particularly limited, and examples thereof include catechol, 3-fluorocatechol, 2,2'-biphenol, 3-quinolinol and the like.
  • the amount of the phenolic compound used can be appropriately adjusted by those skilled in the art, but it is preferably 0.1 to 10.0 mol, preferably 1.0 to 4 mol with respect to 1.0 mol of the above compound. More preferably, it is in the range of 0.0 mol.
  • the first transition series metal compound, lithium in a solvent containing water and / or alcohol containing at least one compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds.
  • a compound, a magnesium compound, an alkali metal salt, an alkaline earth metal salt, a compound consisting of at least one selected from the group consisting of a quaternary ammonium salt and a quaternary phosphonium salt, and a phenolic compound They may be added to a solvent containing water and / or alcohol together with at least one compound selected from the group consisting of tin compounds, indium compounds and rhenium compounds.
  • the conditions for the heat treatment can be appropriately adjusted by those skilled in the art depending on the type of saccharide or alcohol contained in the raw material, but are preferably 100 ° C to 300 ° C, more preferably 100 ° C to 250 ° C, for example, 150 ° C. ⁇ 195 ° C is preferred.
  • tin or organotin perfluoroalkylsulfonate as catalyst
  • at least one perfluoroalkylsulfonate of tin or organotin is decomposed into a carbohydrate-containing raw material. And as a catalyst for sugar decomposition and isomerization reactions.
  • perfluoroalkyl sulfonate of tin or organotin
  • the above-mentioned compounds can be used, and trifluoromethane sulfonate (common name: triflate) is preferable.
  • perfluoroalkyl sulfonate of tin for example, tin (II) trifluoromethanesulfonate (Sn (OTf) 2 ) (Tf represents a trifluoromethylsulfonyl group CF 3 SO 2 —, the same applies hereinafter), among others. It can be preferably used.
  • tin (II) trifluoromethanesulfonate Sn (OTf) 2
  • Tf represents a trifluoromethylsulfonyl group CF 3 SO 2 —, the same applies hereinafter
  • organotin for example, dibutyltin (II) trifluoromethanesulfonate can be used particularly preferably.
  • one type of perfluoroalkyl sulfonate of tin or organotin may be used, or two or more types may be used in combination.
  • the solvent used in the present embodiment and containing water and / or alcohol and the amount of use thereof are as defined above.
  • water is used as a solvent
  • the solvent containing alcohol should just be used.
  • the total amount (usage amount) of tin or organotin perfluoroalkyl sulfonate contained in the solvent containing water and / or alcohol is not limited, but 1 mol of glucose residue in the carbohydrate-containing raw material
  • An amount corresponding to 0.001 to 1.0 mol, preferably 0.005 mol to 0.1 mol, for example, 0.01 to 0.05 mol in terms of mass ratio can be used. If the amount used is too small, the decomposition of polysaccharides such as cellulose is difficult to proceed, and if too large, the yield of lactic acid or lactic acid ester decreases due to side reactions, which is not preferable.
  • At least one compound selected from perfluoroalkyl sulfonates of tin or organotin can be suitably used as a catalyst in the production of lactic acid and / or lactic acid ester from polysaccharides.
  • tin or organotin perfluoroalkylsulfonate is used in combination with at least one compound selected from the group consisting of tin or organotin halides, indium compounds and rhenium compounds as a further catalyst.
  • At least one compound selected from tin or organotin perfluoroalkylsulfonates at least one compound selected from the group consisting of tin or organotin halides, indium compounds and rhenium compounds is further added.
  • tin or organotin halides, indium compounds and rhenium compounds is further added.
  • the above-mentioned compounds can be used, and are not limited, but examples thereof include tin (II) chloride and di-n-butyltin (II) chloride. Can be mentioned.
  • the above-mentioned compounds can be used and are not limited, and examples thereof include indium bromide (InBr 3 ).
  • rhenium compound the above-mentioned compounds can be used and are not limited, and examples thereof include rhenium carbonyl (Re 2 (CO) 10 ).
  • the amount of tin or organotin halide used can be an amount corresponding to 0 to 1000 mol with respect to 1.0 mol of tin or organotin perfluoroalkylsulfonate. It is preferable to use an amount equal to or more than that of the perfluoroalkyl sulfonate, and 1.0 to 50 mol, for example, 2.0 to 5.0 mol with respect to 1.0 mol of the perfluoroalkyl sulfonate. More preferably, it is used within a range.
  • the amount of indium compound used may be an amount corresponding to 0 to 1000 mol with respect to 1.0 mol of tin or organotin perfluoroalkylsulfonate. It is preferable to use the same amount or more than the amount of tin or organotin perfluoroalkyl sulfonate, and 1.0 to 50 mol, for example 2.0, relative to 1.0 mol of perfluoroalkyl sulfonate. More preferably, it is used in the range of ⁇ 5.0 mol.
  • the amount of rhenium compound used may be an amount corresponding to 0 to 100 mol with respect to 1.0 mol of tin or organotin perfluoroalkylsulfonate. More preferably, the perfluoroalkyl sulfonate is used in an amount of 0.01 to 10.0 mol, for example 0.1 to 1.0 mol, relative to 1.0 mol of the perfluoroalkyl sulfonate.
  • At least one compound selected from the group consisting of a tin or organotin halide, an indium compound, and a rhenium compound is combined with a perfluoroalkylsulfonate of tin or organotin as a further catalyst.
  • at least one compound selected from the group consisting of a first transition series metal compound, a lithium compound, a magnesium compound, an alkali metal salt, an alkaline earth metal salt, a quaternary ammonium salt and a quaternary phosphonium salt It can also be used in combination as a further catalyst.
  • At least one compound selected from tin or organotin perfluoroalkylsulfonates at least one compound selected from the group consisting of tin or organotin halides, indium compounds and rhenium compounds is further added.
  • Lactic acid and / or lactic acid esters can be efficiently produced from polysaccharides and monosaccharides by using a compound comprising a seed as a further catalyst in combination.
  • the above-mentioned compounds can be used, and are not limited to, for example, manganese chloride tetrahydrate, manganese chloride tetrahydrate, cobalt chloride hexahydrate. Products, cobalt chloride hexahydrate, nickel chloride tetrahydrate, iron (II) chloride hexahydrate, and the like.
  • lithium compound the above-mentioned compounds can be used, and are not particularly limited, and examples thereof include lithium chloride.
  • magnesium compound the above-mentioned compounds can be used, and are not limited.
  • magnesium chloride tetrahydrate MgCl 2 .4H 2 O
  • magnesium chloride hexahydrate MgCl 2 ⁇ 6H 2 O
  • the above-described compounds can be used, and are not limited to, for example, bis (triphenylphosphine) iminium chloride ([PPN ] Cl), bis (triphenylphosphine) iminium bromide ([PPN] Br), bis (triphenylphosphine) iminium iodide ([PPN] I), bis (triphenylphosphine) iminium carboxylic acid ([PPN] OOCH), tetraethylammonium chloride (Et 4 NCl), triethylamine hydrochloride (Et 3 NHCl), trioctylmethylammonium chloride (Oct 3 NMeCl), triethyl (2-methoxyethoxymethyl) ammonium chloride (MeOCH 2 CH 2 OCH 2 NEt 3 Cl), -Butyl-3-methylimidazol
  • the above-mentioned compounds can be used and are not limited.
  • the amount of the first transition series metal compound used may be an amount corresponding to 0 to 1.0 mol with respect to 1.0 mol of tin or organotin perfluoroalkylsulfonate. It is preferable to use the same amount as or less than that of the perfluoroalkyl sulfonate, and 0.01 to 0.9 mol, for example 0.2 to 0. More preferably, it is used in the range of 8 mol.
  • the amount of the lithium compound used is 0.1 to 10.0 mol with respect to 1.0 mol of the tin or organotin perfluoroalkyl sulfonate, preferably the same as the amount of perfluoroalkyl sulfonate. Or more than that, and more preferably in the range of 1.0 mol to 4.0 mol.
  • an amount corresponding to 0 to 1.0 mol can be used with respect to 1.0 mol of tin or organotin perfluoroalkylsulfonate. It is preferable to use the same amount as or less than that of the perfluoroalkyl sulfonate, and 0.01 to 0.9 mol, for example 0.2 to 0. More preferably, it is used in the range of 8 mol.
  • Alkaline metal salts, alkaline earth metal salts, and quaternary phosphonium salts can be used in amounts corresponding to 0 to 100 mol with respect to 1.0 mol of tin or organotin perfluoroalkylsulfonate. More preferably, the perfluoroalkyl sulfonate is used in an amount of 0.01 to 10.0 mol, for example 0.1 to 1.0 mol, relative to 1.0 mol of the perfluoroalkyl sulfonate.
  • the amount of quaternary ammonium salt used is 0.1 to 10.0 mol with respect to 1.0 mol of tin or organotin perfluoroalkyl sulfonate, preferably the amount of perfluoroalkyl sulfonate used. Is more than or equal to, and more preferably in the range of 1.0 mol to 4.0 mol.
  • At least one compound selected from the group consisting of tin or organotin perfluoroalkylsulfonates, tin or organotin halides, indium compounds and rhenium compounds, and a first transition series metal When these compounds are used in combination with at least one compound selected from the group consisting of compounds, lithium compounds, magnesium compounds, alkali metal salts, alkaline earth metal salts, quaternary ammonium salts and quaternary phosphonium salts. It may combine in the reaction solution to form one or more types of art complexes. As described above, by using the art complex as a catalyst, the reverse aldol reaction of sugar is selectively performed while suppressing sugar cyclization. Isomerization to lactic acids more efficiently than carbohydrate-containing raw materials Door can be.
  • at least one compound selected from the group consisting of transition series metal compounds, lithium compounds, magnesium compounds, alkali metal salts, alkaline earth metal salts, quaternary ammonium salts, and quaternary phosphonium salts further phenolic
  • the compound can also be used by adding it to a solvent.
  • the phenolic compound is not particularly limited, and examples thereof include catechol, 3-fluorocatechol, 2,2'-biphenol, 3-quinolinol and the like.
  • the amount of the phenolic compound used can be appropriately adjusted by those skilled in the art, but it is preferably 0.1 to 10.0 mol, preferably 1.0 to 4 mol with respect to 1.0 mol of the above compound. More preferably, it is in the range of 0.0 mol.
  • the carbohydrate-containing raw material is heat-treated in a solvent containing water and / or alcohol containing at least one tin or organotin perfluoroalkylsulfonate.
  • At least one compound selected from the group consisting of tin or organotin halides, indium compounds and rhenium compounds, first transition series metal compounds, lithium compounds, magnesium compounds, alkali metal salts, alkaline earth metal salts In the case where a compound composed of at least one selected from the group consisting of a quaternary ammonium salt and a quaternary phosphonium salt, and a phenolic compound are used together, they are also used together with perfluoroalkyl sulfonate of tin or organotin.
  • the conditions for the heat treatment can be appropriately adjusted by those skilled in the art depending on the type of saccharide or alcohol contained in the raw material, but are preferably 100 ° C. to 300 ° C., more preferably 100 ° C. to 250 ° C., for example 150 ° C. ⁇ 195 ° C is preferred.
  • the carbohydrate-containing raw material is contained in a solvent containing water and / or alcohol, including at least one tin compound that functions as a catalyst.
  • a solvent containing water and / or alcohol including at least one tin compound that functions as a catalyst.
  • lactic acid and / or lactic acid ester can be obtained as a reaction product.
  • at least one compound selected from the group consisting of a lithium compound, a magnesium compound, a first transition series metal compound, and a quaternary ammonium salt is included.
  • lactic acid and / or lactic acid ester can be obtained from carbohydrates in carbohydrate-containing raw materials, for example, polysaccharides such as cellulose, starch and oligosaccharides, and monosaccharides such as fructose, even at relatively low reaction temperatures. Can be easily and efficiently produced.
  • the carbohydrate-containing raw material that can be used as the raw material in the present embodiment may be any raw material containing saccharides, and is not limited, but the above-defined materials can be used.
  • At least one tin compound is used as a catalyst for polysaccharide decomposition reaction and sugar decomposition / isomerization reaction.
  • the above-mentioned compounds can be used, and are not particularly limited.
  • one type of tin compound may be used, or two or more types may be used in combination.
  • At least one compound selected from the group consisting of a lithium compound, a magnesium compound, a first transition series metal compound, and a quaternary ammonium salt is further converted into a cellulose decomposition reaction and a sugar decomposition / isomerization. Used as a further catalyst for the reaction.
  • lithium, magnesium compound, first transition series metal compound the above-mentioned compounds can be used.
  • lithium, magnesium and the first transition series metal that is, scandium, titanium, vanadium, chromium, Manganese, iron, cobalt, nickel, copper, zinc fluoride, chloride, bromide, and iodide, and chloride is more preferable.
  • lithium chloride, manganese chloride tetrahydrate, cobalt chloride hexahydrate, cobalt chloride hexahydrate, nickel chloride tetrahydrate, iron (II) chloride hexahydrate among others It can be preferably used.
  • the above-mentioned compounds can be used, and are not particularly limited. Examples thereof include halides (fluorides, chlorides, bromides, and iodides) of quaternary ammonium salts.
  • a quaternary ammonium salt halide is not particularly limited, but for example, bis (triphenylphosphine) iminium chloride, tetrabutylammonium bromide, trioctylmethylammonium chloride and the like are particularly preferably used.
  • a quaternary ammonium salt halide is not particularly limited, but for example, bis (triphenylphosphine) iminium chloride, tetrabutylammonium bromide, trioctylmethylammonium chloride and the like are particularly preferably used.
  • Can do are particularly limited, but for example, bis (triphenylphosphine) iminium chloride, tetrabutylammonium bromide, trioctylmethylam
  • an alkali metal salt in addition to or instead of at least one compound selected from the group consisting of a lithium compound, a magnesium compound, a first transition series metal compound, and a quaternary ammonium salt, an alkali metal salt, an alkali Earth metal salts and quaternary phosphonium salts can also be used.
  • the above-described compounds can be used, and are not limited to, for example, bis (triphenylphosphine) iminium chloride ([PPN ] Cl), bis (triphenylphosphine) iminium bromide ([PPN] Br), bis (triphenylphosphine) iminium iodide ([PPN] I), bis (triphenylphosphine) iminium carboxylic acid ([PPN] OOCH), tetraethylammonium chloride (Et 4 NCl), triethylamine hydrochloride (Et 3 NHCl), trioctylmethylammonium chloride (Oct 3 NMeCl), triethyl (2-methoxyethoxymethyl) ammonium chloride (MeOCH 2 CH 2 OCH 2 NEt 3 Cl), -Butyl-3-methylimidazol
  • one type of compound selected from the group consisting of lithium compounds, magnesium compounds, first transition series metal compounds and quaternary ammonium salts, alkali metal salts, alkaline earth metal salts, and quaternary phosphonium salts is used. You may use and may use it in combination of 2 or more types.
  • the solvent containing water and / or alcohol used in the method of the present embodiment and the amount of use thereof are as defined above.
  • the total amount (usage amount) of the tin compound used as a catalyst to be contained in a solvent containing water and / or alcohol is not limited, but per 1 mol of glucose residue or fructose residue in the carbohydrate-containing raw material, An amount corresponding to 0.001 to 1.0 mol, preferably 0.005 mol to 0.1 mol, for example, 0.01 to 0.05 mol in terms of mass ratio can be used. If the amount used is too small, the decomposition reaction of cellulose and the decomposition / isomerization reaction of sugar are difficult to proceed, and if it is too large, the yield of the desired lactic acid is lowered due to side reactions, which is not preferable.
  • tin compound at least selected from the group consisting of lithium compounds, magnesium compounds, first transition series metal compounds, quaternary ammonium salts, alkali metal salts, alkaline earth metal salts, and quaternary phosphonium salts
  • the amount of one compound used can be appropriately adjusted by those skilled in the art, but it is 0.1 to 10.0 mol with respect to 1.0 mol of a tin compound used as a catalyst, preferably a tin compound. Is in the range equal to or greater than the amount used, and more preferably in the range of 1.0 mol to 4.0 mol.
  • a tin compound and a co-catalyst when used in combination, these compounds may be combined in the reaction solution to form one or more art complexes.
  • the art complex is used as a catalyst.
  • the present embodiment includes a tin compound and at least one compound selected from a lithium compound, a magnesium compound, a first transition series metal compound, a quaternary ammonium, an alkali metal salt, an alkaline earth metal salt, and a quaternary phosphonium salt.
  • the carbohydrate-containing raw material is heat-treated in a solvent containing water and / or alcohol.
  • the conditions for the heat treatment can be appropriately adjusted by those skilled in the art depending on the type of saccharide or alcohol contained in the raw material, but are preferably 100 ° C. to 300 ° C., more preferably 100 ° C. to 250 ° C., for example 150 ° C. ⁇ 160 ° C. can be suitably used. In this embodiment, it can be carried out at a relatively low heating temperature.
  • a carbohydrate-containing raw material is heated in a solvent containing water and / or alcohol including rhenium compound, which functions as a catalyst.
  • a solvent containing water and / or alcohol including rhenium compound which functions as a catalyst.
  • lactic acid and / or lactic acid ester can be obtained as a reaction product.
  • lactic acid and / or lactic acid ester can be easily obtained from carbohydrates in a carbohydrate-containing raw material, for example, polysaccharides such as cellulose, monosaccharides such as fructose, and oligosaccharides even at relatively low reaction temperatures.
  • polysaccharides such as cellulose
  • monosaccharides such as fructose
  • oligosaccharides even at relatively low reaction temperatures.
  • it can be manufactured with high efficiency.
  • the carbohydrate-containing raw material that can be used as the raw material in the present embodiment may be any raw material containing carbohydrate, and is not limited, but the above-defined materials can be used.
  • the “rhenium compound” includes, for example, halides (including fluoride, chloride, bromide, and iodide), acetylacetone compounds, alkoxide compounds, carboxylate compounds, carbonyl compounds, phosphate compounds, A sulfate compound, a nitrate compound, etc. are mentioned.
  • halides including fluoride, chloride, bromide, and iodide
  • acetylacetone compounds including fluoride, chloride, bromide, and iodide
  • alkoxide compounds alkoxide compounds
  • carboxylate compounds carbonyl compounds
  • phosphate compounds phosphate compounds
  • a sulfate compound, a nitrate compound, etc. are mentioned.
  • rhenium carbonyl is mentioned.
  • One kind of rhenium compound may be used in one reaction system, or two or more kinds may be used in combination.
  • the solvent used in the present embodiment and containing water and / or alcohol and the amount of use thereof are as defined above.
  • the total amount (use amount) of the rhenium compound to be contained in the solvent containing water and / or alcohol is not limited, but in terms of mass ratio per 1 mol of glucose residue or fructose residue in the carbohydrate-containing raw material.
  • An amount corresponding to 0.001 to 100.0 mol, preferably 0.005 mol to 10.0 mol, for example 0.01 to 0.1 mol can be used. If the amount used is too small, it is not preferable because the decomposition reaction of cellulose and the decomposition / isomerization reaction of sugar do not proceed easily.
  • a rhenium compound may be used in combination with a metal compound other than rhenium.
  • metal compound other than rhenium refers to a halide of magnesium, tin, or a first transition series metal (that is, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc). (Including fluoride, chloride, bromide, and iodide), acetylacetone compound, alkoxide compound, carboxylate compound, carbonyl compound, phosphate compound, sulfate compound, nitrate compound or perfluoroalkylsulfonate It is done.
  • the magnesium halide include magnesium chloride hexahydrate, which can be particularly preferably used.
  • the “magnesium perfluoroalkyl sulfonate” is not particularly limited, and examples thereof include trifluoromethane sulfonate, pentafluoromethane sulfonate, heptafluoropropane sulfonate, and nonafluorobutane sulfonate. Is mentioned.
  • a more preferred perfluoroalkyl sulfonate is trifluoromethane sulfonate (common name: triflate).
  • examples of the magnesium perfluoroalkylsulfonate include magnesium trifluoromethanesulfonate (Mg (OTf) 2 ) (Tf represents a trifluoromethylsulfonyl group CF 3 SO 2 —, the same applies hereinafter). It can be preferably used.
  • tin compound that can be used in the present embodiment, the above-described compounds can be used.
  • tin (II) chloride di -N-butyltin (II) chloride is mentioned and can be used particularly preferably.
  • the above-described compounds can be used, and although not particularly limited, manganese chloride tetrahydrate (MnCl 2 ⁇ 4H 2 O), iron (II) chloride hexahydrate (FeCl 2 ⁇ 6H 2 O), cobalt chloride hexahydrate (CoCl 2 ⁇ 6H 2 O), nickel chloride tetrahydrate ( NiCl 2 ⁇ 4H 2 O) and the like can be used particularly preferably.
  • an alkali metal salt, alkaline earth metal salt, quaternary phosphonium salt, quaternary ammonium salt, or the like is used in addition to or in place of the above compound. be able to.
  • the above-described compounds can be used, and are not limited to, for example, bis (triphenylphosphine) iminium chloride ([PPN ] Cl), bis (triphenylphosphine) iminium bromide ([PPN] Br), bis (triphenylphosphine) iminium iodide ([PPN] I), bis (triphenylphosphine) iminium carboxylic acid ([PPN] OOCH), tetraethylammonium chloride (Et 4 NCl), triethylamine hydrochloride (Et 3 NHCl), trioctylmethylammonium chloride (Oct 3 NMeCl), triethyl (2-methoxyethoxymethyl) ammonium chloride (MeOCH 2 CH 2 OCH 2 NEt 3 Cl), -Butyl-3-methylimidazol
  • a rhenium compound and one or more kinds of metal compounds other than rhenium may be used in combination.
  • a rhenium compound and a metal compound other than rhenium are used in combination, these compounds are combined in the reaction solution to form a metal compound containing two or more kinds of metals including a metal other than rhenium and rhenium. You may do it. Or you may synthesize
  • the produced metal compound functions as a catalyst for the cellulose decomposition reaction and / or the sugar decomposition / isomerization reaction.
  • a rhenium carbonyl complex can be particularly preferably used as such a metal compound containing two or more kinds of metals including rhenium and a metal other than rhenium.
  • a rhenium compound and a metal compound other than rhenium are used in combination, these compounds may be combined in the reaction solution to form one or more types of art complexes.
  • the art complex means a complex type metal acid salt produced by coordination of an anionic species supplied from a metal compound other than rhenium with a rhenium compound having Lewis acidity.
  • the reverse aldol reaction of sugar can be selectively promoted while suppressing the cyclization of sugar, and the isomerization to lactic acid can be carried out more efficiently than the carbohydrate-containing raw material.
  • the chemical reaction can be promoted.
  • the amount used thereof can be appropriately adjusted by those skilled in the art, but is preferably 0.1 to 10.0 mol with respect to 1.0 mol of the rhenium compound, preferably Is in the range equal to or greater than the amount of rhenium compound used, and more preferably in the range of 1.0 mol to 4.0 mol.
  • this embodiment can be implemented in presence of the perfluoroalkyl sulfonate of tin or organotin.
  • the yield of lactic acid is increased compared to the case of using a rhenium compound alone or a combination of a rhenium compound and a metal compound other than rhenium. be able to.
  • the “perfluoroalkyl sulfonate of tin or organotin” may be a tin (II) salt or a tin (IV) salt.
  • a trifluoromethane sulfonate is preferable.
  • tin (II) trifluoromethanesulfonate (Sn (OTf) 2 ) or dibutyltin (II) trifluoromethanesulfonate ( n Bu 2 Sn ( OTf) 2 ) etc. can be used particularly preferably.
  • the amount used can be appropriately adjusted by those skilled in the art, but it should be selected from a range equivalent to or higher than the amount of rhenium compound used.
  • the amount of rhenium compound is preferably 1.0 mol to 4.0 mol with respect to 1.0 mol of the rhenium compound.
  • the carbohydrate-containing raw material is heat-treated in a solvent containing water and / or alcohol containing a rhenium compound.
  • a metal compound other than rhenium or a perfluoroalkyl sulfonate of tin or organotin is used together, the metal compound other than rhenium or a perfluoroalkyl sulfonate of tin or organotin is also added to the water together with the rhenium compound. And / or in a solvent containing alcohol.
  • a metal compound containing two or more kinds of metals other than rhenium and rhenium is added to water. And / or in a solvent containing alcohol.
  • the conditions for the heat treatment can be appropriately adjusted by those skilled in the art depending on the type of saccharide or alcohol contained in the raw material, but are preferably 100 ° C. to 300 ° C., more preferably 100 ° C. to 250 ° C., for example 150 ° C. Up to 200 ° C. can be suitably used.
  • an alkali metal salt, an alkaline earth metal salt, a first transition series metal salt, a quaternary ammonium salt, and a quaternary phosphonium salt are selected.
  • lactic acid and / or lactic acid ester can be easily converted from carbohydrates in a carbohydrate-containing raw material, for example, polysaccharides such as starch and oligosaccharides, and monosaccharides such as fructose, even at a relatively low reaction temperature.
  • a carbohydrate-containing raw material for example, polysaccharides such as starch and oligosaccharides, and monosaccharides such as fructose, even at a relatively low reaction temperature.
  • it can be manufactured with high efficiency.
  • the carbohydrate-containing raw material that can be used as the raw material in the present embodiment may be any raw material containing carbohydrate, and is not limited, but the above-defined materials can be used.
  • At least one metal compound selected from the group consisting of an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound is used for a polysaccharide decomposition reaction and a sugar decomposition / isomerization reaction. Used as a catalyst.
  • indium compound tin compound
  • rhenium compound those defined above can be used, and halide salts and carboxylates are preferable.
  • metal compounds include, but are not limited to, indium (III) bromide, indium (III) chloride, indium (III) iodide, indium (III) chloride tetrahydrate, indium acetate. (III), acetylacetone indium (III), tin (II) chloride, di-n-butyltin (II) chloride, rhenium carbonyl and the like.
  • halides fluoride, chloride, bromide, and iodide
  • acetylacetone compounds alkoxide compounds
  • carboxylates phosphates
  • sulfates and nitrates examples include, but are not limited to, gallium trichloride (III), aluminum (III) chloride hexahydrate, and the like.
  • At least one compound selected from the group consisting of an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound may be used, or two or more compounds may be used in combination. Also good.
  • At least one compound selected from the group consisting of alkali metal salts, alkaline earth metal salts, first transition series metal salts, quaternary ammonium salts and quaternary phosphonium salts is further decomposed into cellulose. And as a further catalyst for sugar decomposition and isomerization reactions.
  • alkali metal salt alkaline earth metal salt, first transition series metal salt, quaternary ammonium salt and quaternary phosphonium salt
  • alkali metal salt alkaline earth metal salt, first transition series metal salt, quaternary ammonium salt and quaternary phosphonium salt
  • bis (triphenylphosphine) iminium chloride [PPN] Cl), bis (triphenylphosphine) iminium bromide ([PPN] Br) , Bis (triphenylphosphine) iminium iodide ([PPN] I), bis (triphenylphosphine) iminium carboxylic acid ([PPN] OOCH), tetraethylammonium chloride (Et 4 NCl), triethylamine hydrochloride (Et 3 NHCl) , trioctylmethylammonium chloride (Oct 3 NMeC ), Triethyl chloride (2-methoxyethoxymethyl) ammonium (MeOCH 2 CH 2 OCH 2 NEt 3 Cl), 1- butyl-3-methylimidazolium chloride ([bmim] Cl), 1-butyl-3-methylimidazolium Acetate ([bmim] OAc),
  • one compound selected from the group consisting of alkali metal salts, alkaline earth metal salts, first transition series metal salts, quaternary ammonium salts and quaternary phosphonium salts may be used. Two or more types may be used in combination.
  • the solvent used in the present embodiment and containing water and / or alcohol and the amount of use thereof are as defined above.
  • An amount corresponding to ⁇ 0.05 mol can be used.
  • the use amount of at least one compound selected from the group consisting of an alkali metal salt, an alkaline earth metal salt, a first transition series metal salt, a quaternary ammonium salt and a quaternary phosphonium salt, used as a further catalyst A person skilled in the art can adjust appropriately, but it is 0.1 to 10 with respect to 1.0 mol of a compound selected from an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound used as a catalyst. 0.0 mol, preferably in the range equal to or greater than the amount of the compound selected from indium compounds, gallium compounds, aluminum compounds, tin compounds, and rhenium compounds, more preferably from 1.0 mol to 4.0 mol. Range.
  • a compound selected from an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound an alkali metal salt, an alkaline earth metal salt, a first transition series metal salt, a quaternary ammonium salt, and a quaternary salt
  • these compounds may be combined in the reaction solution to form one or more types of art complexes.
  • the art complex is a compound selected from an indium compound having a Lewis acidity, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound, an alkali metal salt, an alkaline earth metal salt, a first transition series metal salt, four It means a complex type metal acid salt formed by coordinating an anionic species supplied from a compound selected from a quaternary ammonium salt and a quaternary phosphonium salt.
  • the reverse aldol reaction of sugar can be selectively promoted while suppressing the cyclization of sugar, and the isomerization to lactic acid can be carried out more efficiently than the carbohydrate-containing raw material.
  • the chemical reaction can be promoted.
  • At least one metal compound selected from the group consisting of an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound, an alkali metal salt, an alkaline earth metal salt, and a first transition series metal salt
  • at least one salt selected from the group consisting of, quaternary ammonium salts, and quaternary phosphonium salts can also be used in combination as further catalysts.
  • Perfluoroalkyl sulfonate of tin or organotin can be used as a catalyst for the decomposition reaction of polysaccharides such as cellulose and the decomposition / isomerization reaction of sugars. It is particularly suitable when it contains.
  • the perfluoroalkyl sulfonate of tin or organotin the above-mentioned compounds can be used, and preferably trifluoromethane sulfonate (common name: triflate), for example, tin trifluoromethane sulfonate ( II), dibutyltin (II) trifluoromethanesulfonate can be used.
  • the amount of tin or organotin perfluoroalkylsulfonate is 0 to 1000 mol with respect to 1.0 mol of the compound selected from indium compounds, gallium compounds, aluminum compounds, tin compounds, and rhenium compounds.
  • a corresponding amount can be used. It is preferable to use an amount equal to or greater than a compound selected from an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound, and from an indium compound, a gallium compound, an aluminum compound, a tin compound, and a rhenium compound. More preferably, it is used in the range of 1.0 to 50 mol, for example, 1.0 to 20 mol, relative to 1.0 mol of the selected compound.
  • the conditions for the heat treatment can be appropriately adjusted by those skilled in the art depending on the type of saccharide or alcohol contained in the raw material, but are preferably 100 ° C. to 300 ° C., more preferably 100 ° C. to 250 ° C., for example 150 ° C. ⁇ 160 ° C. can be suitably used.
  • the method of the present invention can be carried out at a relatively low heating temperature.
  • lactic acid and / or a lactic acid ester can be simply and very efficiently produced from the carbohydrate in the carbohydrate-containing raw material.
  • the carbohydrate-containing raw material that can be used as the raw material in the present embodiment may be any raw material containing carbohydrate, and is not limited, but the above-defined materials can be used.
  • the catalyst for the decomposition reaction and isomerization reaction of indium alkoxide or indium acetylacetonate to the carbohydrate-containing raw material, and further the isomerization reaction of the tricarbon sugar produced as an intermediate to lactic acid and / or lactic acid ester Used as In a preferred embodiment of the present embodiment, it is preferable to use indium alkoxide. In another embodiment of this embodiment, it is preferable to use indium acetylacetonate. In yet another embodiment of this embodiment, both indium acetylacetonate and indium alkoxide may be used.
  • Examples of the indium alkoxide that can be used in the present embodiment include indium methoxide, indium ethoxide, indium isopropoxide, indium-n-butoxide, and indium-t-butoxide.
  • Examples of indium acetylacetonate that can be used in the present embodiment include indium acetylacetone, tris (2,2,6,6-tetramethyl-3,5-heptanedionato) indium, indium trifluoroacetylacetonate, and the like. It is done.
  • One type of indium alkoxide and indium acetylacetonate may be used in one reaction system, or two or more types may be used.
  • the solvent used in the present embodiment and containing water and / or alcohol and the amount of use thereof are as defined above.
  • the total amount (use amount) of indium alkoxide and / or indium acetylacetonate to be contained in a solvent containing water and / or alcohol is not limited, but relative to 1 mmol of glucose residue in the carbohydrate-containing raw material.
  • an amount corresponding to 0.00001 to 1.0 mol, preferably 0.005 mol to 0.1 mol, for example, 0.01 to 0.05 mol in terms of mass ratio can be used.
  • the method for producing lactic acids using indium alkoxide and / or indium acetylacetonate is particularly suitable for the production of lactic acids from monosaccharides, and is therefore particularly suitable when the carbohydrate-containing raw material contains monosaccharides.
  • a phenolic compound added to a solvent examples include, but are not limited to, phenol, cresol, alkylphenol, catechol, pyrogallol, alkoxyphenol, salicylic acid, salicylic acid ester, 2,2'-biphenol, quinolinol, and the like.
  • the amount of the phenolic compound used can be appropriately adjusted by those skilled in the art, but it is 0.1 to 10.0 mol with respect to 1.0 mol of the total amount (use amount) of indium alkoxide and / or indium acetylacetonate. It is preferable that it is in the range of 1.0 mol to 4.0 mol.
  • the carbohydrate-containing raw material is heated in a solvent containing water and / or alcohol containing indium alkoxide and / or indium acetylacetonate.
  • a phenolic compound may be added to a solvent containing water and / or alcohol together with indium alkoxide and / or indium acetylacetonate.
  • the conditions for the heat treatment can be appropriately adjusted by those skilled in the art depending on the type of saccharide or alcohol contained in the raw material, but are preferably 100 ° C to 300 ° C, more preferably 100 ° C to 250 ° C, for example, 140 ° C. ⁇ 195 ° C. can be preferably used.
  • any of the above embodiments (1) to (5) can be carried out at a relatively low heating temperature.
  • the heat treatment is also preferably performed in the absence of oxygen. In order to make the oxygen non-existing condition, it is preferable to fill the reaction vessel with an inert gas before the heat treatment and purge (exclude) the air.
  • inert gas is not specifically limited, For example, nitrogen gas, argon gas, carbon dioxide gas etc. are mentioned as an example.
  • the heat treatment is also preferably performed under pressure.
  • the reaction pressure is preferably atmospheric pressure or higher, preferably 0.3 MPa to 20 MPa, and more preferably 0.4 MPa to 10 MPa.
  • the reaction in a solvent containing water and / or alcohol is not limited, but it is preferably carried out in an autoclave, for example.
  • Another preferred reaction form is a continuous flow reaction method (continuous method).
  • the reaction liquid in which the raw material / solvent / catalyst is mixed can be continuously supplied to a reactor controlled at a predetermined temperature and pressure, and allowed to stay in the reactor for a predetermined time for reaction.
  • At least one compound selected from the group consisting of a tin compound, a rhenium compound, and an indium compound, and, if necessary, other Compound (magnesium compound, first transition series metal compound, lithium compound, alkali metal salt, alkaline earth metal salt, first transition series metal salt, quaternary ammonium salt, quaternary phosphonium salt, and phenolic compound At least one compound selected from the group consisting of a carbohydrate-containing raw material and a solvent containing water and / or alcohol, purged with air with an inert gas, heated to the above heating temperature, and allowed to react for a predetermined time. That's fine.
  • the heating time can be appropriately adjusted by those skilled in the art and is not particularly limited, but may be 3 to 24 hours after reaching the heating temperature, and preferably 5 to 12 hours. After a predetermined heating time has elapsed, heating may be stopped and allowed to cool to room temperature. After cooling to room temperature, the reaction product is removed from the autoclave.
  • At least one compound selected from the group consisting of metal compounds, lithium compounds and alkali metal salts, alkaline earth metal salts, first transition series metal salts, quaternary ammonium salts, quaternary phosphonium salts, and phenolic compounds ) are continuously supplied to a reactor controlled at a predetermined heating temperature and pressure, and the reaction liquid is kept in the reactor for a predetermined heating time. The reaction may be carried out by staying in the solution. After the heating time has elapsed, heating may be stopped and allowed to cool to room temperature. After cooling to room temperature, the reaction product is removed from the reactor.
  • lactic acid and / or lactic acid ester can be produced in high yield.
  • the carbohydrate-containing raw material contains cellulose
  • a large amount of lactic acid is produced from the saccharide efficiently solvolyzed from cellulose.
  • lactic acid and / or lactic acid ester is obtained in a yield of 9% to 50%, based on the number of moles produced per glucose residue or fructose residue in the carbohydrate-containing feedstock.
  • tin compounds other than perfluoroalkyl sulfonates can be used to increase the yield of lactic acid and / or lactic acid ester, for example by 1 to 10%, as compared to tin or organotin perfluoroalkylsulfonate alone.
  • tin compounds other than perfluoroalkyl sulfonate may be increased by, for example, about 1 to 20% compared to the case of using a tin or organotin halide such as tin chloride or di-n-butyltin chloride).
  • tin organotin perfluoroalkyl sulfonate alone or in addition to tin or organotin perfluoroalkyl sulfonate
  • tin compounds other than perfluoroalkyl sulfonate especially tin chloride or di- n-butyltin chloride or other tin halide or organotin halide
  • an indium compound especially indium halide
  • rhenium compound, magnesium compound, first transition series metal compound When one or more selected compounds are used, when a phenolic compound is further added, the yield of lactic acid and / or lactic acid ester is, for example, 1 to 20 compared with the case where no phenol compound is added. % Can be increased.
  • the lactic acid is converted into 45 units on the basis of one glucose residue or one fructose residue in a carbohydrate-containing raw material containing cellulose, monosaccharide and the like. % To 60% yield.
  • lactic acid for example, lactic acid ester
  • carbohydrate-containing raw material containing cellulose, monosaccharide and the like lactic acid
  • the yield of lactic acid is, for example, 5 to 50 compared to the case of the rhenium compound alone. % Can also be increased.
  • lactic acid and / or lactic acid ester is determined on the basis of the number of moles produced per glucose residue in the carbohydrate-containing raw material. % To 60%, such as 30 to 50% yield.
  • indium alkoxide and / or indium acetylacetonate when a phenolic compound is used in combination, lactic acid and / or lactate ester is used compared to when indium alkoxide and / or indium acetylacetonate is used alone. The yield of can be increased, for example, by 5 to 15%.
  • indium alkoxide and / or indium acetylacetonate when a phenolic compound is used in combination, lactic acid and / or lactate ester is used compared to when indium alkoxide and / or indium acetylacetonate is used alone.
  • the yield of can be increased, for example, by 5 to 15%.
  • lactic acid or lactic acid ester from the reaction solution obtained as described above.
  • This separation can be performed by an organic acid separation method known to those skilled in the art, such as liquid chromatography.
  • the method of the present invention is useful because it can improve the yield of lactic acid ester while keeping the amount of acid used as a catalyst small.
  • Example 2 Except using in place of the tin trifluoromethane sulfonic acid (II) trifluoromethanesulfonate di -n- butyltin (II) ((n Bu) 2 Sn (OTf) 2) is the same reaction as Example 1
  • the various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 1 below.
  • Example 3 The reaction was performed in the same manner as in Example 2 except that pure water was used instead of methanol, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 1 below.
  • Example 4 In a 50 mL stainless steel autoclave, 0.405 g of cellulose (corresponding to 2.5 mmol of glucose residue), 8 mg (0.02 mmol) of tin (II) trifluoromethanesulfonate, trifluoro L-methanesulfonic acid di-n-butyltin (II) 11 mg (0.02 mmol) and methanol 20 mL and a stir bar were added, and the lid was closed. The air in the autoclave was purged with nitrogen gas, pressurized to 0.5 MPa, and then heated with a mantle heater until the inside of the autoclave reached 190 ° C. while stirring the mixture with a magnetic stirrer.
  • tin (II) trifluoromethanesulfonate 8 mg (0.02 mmol) of tin (II) trifluoromethanesulfonate, trifluoro L-methanesulfonic acid di-n-butyltin
  • Example 5 In a 50 mL stainless steel autoclave (manufactured by Nitto Koatsu), 0.405 g of cellulose (equivalent to 2.5 mmol of glucose residue) dried in air at 120 ° C. for 2 hours or more, tin (II) trifluoromethanesulfonate (catalyst A ) 8 mg (0.02 mmol), tin (II) chloride (SnCl 2 ) (catalyst B) 15 mg (0.08 mmol), 20 mL of methanol and a stir bar were added, and the lid was closed.
  • tin (II) trifluoromethanesulfonate catalyst A
  • tin (II) chloride (SnCl 2 ) catalogalyst B) 15 mg (0.08 mmol
  • 20 mL of methanol and a stir bar were added, and the lid was closed.
  • the air in the autoclave was purged with nitrogen gas, pressurized to 0.5 MPa, and then heated with a mantle heater until the inside of the autoclave reached 190 ° C. while stirring the mixture with a magnetic stirrer. Thereafter, stirring was continued for 10 hours while maintaining at 190 ° C., and then heating was stopped and the mixture was allowed to cool at room temperature. After cooling to room temperature, the reaction solution was taken out from the autoclave, and various products in the solution were quantitatively analyzed by liquid chromatography in the same manner as in Example 1. The yield of lactic acids in the analysis results is shown in Table 2 below. “Trace” in Table 2 indicates less than 0.05%.
  • Example 6 Except that is used instead di -n- butyltin chloride of tin chloride (II) ((n Bu) 2 SnCl 2) 24mg (0.08mmol), the reaction was carried out in the same manner as in Example 5. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 2 below.
  • Example 7 In a 50 mL stainless steel autoclave, 0.405 g of cellulose (corresponding to 2.5 mmol of glucose residue) dried in air at 120 ° C. for 2 hours or more, di-n-butyltin (II) trifluoromethanesulfonate (( n Bu ) 2 Sn (OTf) 2 ) 11 mg (0.02 mmol) (catalyst A), tin (II) chloride (SnCl 2 ) (catalyst B) 15 mg (0.08 mmol) and 20 mL of methanol, a stir bar, and a lid Closed.
  • di-n-butyltin (II) trifluoromethanesulfonate (( n Bu ) 2 Sn (OTf) 2 ) 11 mg (0.02 mmol) (catalyst A)
  • tin (II) chloride (SnCl 2 ) catalogalyst B) 15 mg (0.08
  • the air in the autoclave was purged with nitrogen gas, pressurized to 0.5 MPa, and then heated with a mantle heater until the inside of the autoclave reached 190 ° C. while stirring the mixture with a magnetic stirrer. Thereafter, stirring was continued for 10 hours while maintaining at 190 ° C., and then heating was stopped and the mixture was allowed to cool at room temperature. After cooling to room temperature, the reaction solution was taken out from the autoclave, and various products in the solution were quantitatively analyzed by liquid chromatography in the same manner as in Example 1. The yield of lactic acids in the analysis results is shown in Table 2 below.
  • Example 8 The amount of di-n-butyltin (II) trifluoromethanesulfonate (catalyst A) used was 43 mg (0.08 mmol) (catalyst A), and the amount of tin (II) chloride (catalyst B) used was 4 mg (0.02 mmol).
  • the reaction was performed in the same manner as in Example 7 except for the point.
  • Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 2 below.
  • Example 9 Except that 18 mg (0.16 mmol) of catechol was further added to cellulose, di-n-butyltin (II) trifluoromethanesulfonate, tin (II) chloride, and methanol, the reaction was performed as in Example 7. Reaction was performed. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 2 below.
  • Example 10 Except for using the place of di -n- butyltin chloride of tin chloride (II) ((n Bu) 2 SnCl 2) 24mg (0.08mmol), the reaction was carried out in the same manner as in Example 7. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 2 below.
  • Example 9 catechol, which is a phenolic compound, was further added and reacted. As a result, lactic acids were obtained in a higher yield than when catechol was not added (Example 7).
  • II di-n-butyltin trifluoromethanesulfonate
  • the air in the autoclave was purged with nitrogen gas, pressurized to 0.5 MPa, and then heated with a mantle heater until the inside of the autoclave reached 190 ° C. while stirring the mixture with a magnetic stirrer. Thereafter, stirring was continued while maintaining at 190 ° C. for 10 hours, and then heating was stopped and the mixture was allowed to cool at room temperature.
  • the reaction solution was taken out from the autoclave cooled to room temperature, and various products in the solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 3 below. “-” In Table 3 indicates that it is below the detection limit.
  • Example 12 The reaction was conducted in the same manner as in Example 11 except that 11 mg (0.1 mmol) of catechol was further added to cellulose, di-n-butyltin (II) trifluoromethanesulfonate, indium bromide, and methanol. went. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 3 below.
  • Example 10 The reaction was carried out in the same manner as in Example 11 except that di-n-butyltin (II) trifluoromethanesulfonate was not used as a catalyst, and only 18 mg (0.05 mmol) of indium bromide (InBr 3 ) was used. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 3 below.
  • Example 13 In a 50 mL stainless steel autoclave, 0.405 g of cellulose (corresponding to 2.5 mmol of glucose residue) dried in air at 120 ° C. for 2 hours or more, di-n-butyltin (II) trifluoromethanesulfonate (( n Bu ) 2 Sn (OTf) 2 ) 53 mg (0.1 mmol) and rhenium carbonyl (Re 2 (CO) 10 ) 33 mg (0.05 mmol), 20 mL of methanol and a stir bar were added, and the lid was closed.
  • II di-n-butyltin trifluoromethanesulfonate
  • the air in the autoclave was purged with nitrogen gas, pressurized to 0.5 MPa, and then heated with an electric furnace until the inside of the autoclave reached 190 ° C. while stirring the mixture with a magnetic stirrer. Thereafter, stirring was continued while maintaining at 190 ° C. for 10 hours, and then heating was stopped and the mixture was allowed to cool at room temperature.
  • the reaction solution was taken out from the autoclave cooled to room temperature, and various products in the solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 4 below. “-” In Table 4 indicates that it is below the detection limit.
  • Example 15 Trifluoromethanesulfonic di -n- butyltin as catalyst (II) ((n Bu) 2 Sn (OTf) 2) 64mg (0.12mmol) and manganese chloride tetrahydrate (MnCl 2 ⁇ 4H 2 O) 20mg (0 .1 mmol), and a heat treatment was performed at 200 ° C. for a reaction time of 24 hours. Otherwise, the reaction was performed in the same manner as in Example 13. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 4 below.
  • Example 16 Trifluoromethanesulfonic di -n- butyltin as catalyst (II) ((n Bu) 2 Sn (OTf) 2) 32mg (0.06mmol), manganese chloride tetrahydrate (MnCl 2 ⁇ 4H 2 O) 10mg (0 .05 mmol) and 16 mg (0.025 mmol) of rhenium carbonyl (Re 2 (CO) 10 ) were used, and a heat treatment was performed at 200 ° C. for a reaction time of 24 hours. Otherwise, the reaction was performed in the same manner as in Example 13. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 4 below.
  • Example 17 Trifluoromethanesulfonic di -n- butyltin as catalyst (II) ((n Bu) 2 Sn (OTf) 2) 64mg (0.12mmol), manganese chloride tetrahydrate (MnCl 2 ⁇ 4H 2 O) 20mg (0 .1 mmol) and rhenium carbonyl (Re 2 (CO) 10 ) 33 mg (0.05 mmol) were used, and a heat treatment at 200 ° C. was performed for a reaction time of 24 hours. Otherwise, the reaction was performed in the same manner as in Example 13. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 4 below.
  • Example 18 The catalyst as trifluoromethanesulfonic di -n- butyltin (II) ((n Bu) 2 Sn (OTf) 2) 32mg (0.06mmol), magnesium chloride hexahydrate (MgCl 2 ⁇ 6H 2 O) 10mg (0 .05 mmol) and rhenium carbonyl (Re 2 (CO) 10 ) 16 mg (0.025 mmol) were used, and a heat treatment was performed at 200 ° C. for a reaction time of 62 hours. Otherwise, the reaction was performed in the same manner as in Example 13. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 4 below.
  • Sn (OTf) 2 which is a trifluoromethanesulfonate salt of tin, or ( n Bu) 2 Sn (OTf) 2 , which is a trifluoromethanesulfonate salt of di-n-butyltin, is converted into rhenium carbonyl ( As a result of using it as a catalyst in combination with Re 2 (CO) 10 ) and / or manganese chloride tetrahydrate (MnCl 2 .4H 2 O) or magnesium chloride hexahydrate (MgCl 2 .6H 2 O), Sn ( OTf) as compared to 2 or (n Bu) when using a 2 Sn (OTf) 2 alone (examples 1 and 2 (Table 1)), lactic acids, in particular obtained lactic acid esters in high yield However, unlike Examples 1 and 2, lactic acid was not produced.
  • a Sn (OTf) 2 or di -n- trifluoromethanesulfonate butyltin (n Bu) 2 Sn (OTf ) 2, rhenium carbonyl (Re 2 (CO) 10) and manganese chloride tetrahydrate When used as a catalyst in combination with MnCl 2 .4H 2 O) or magnesium chloride hexahydrate (MgCl 2 .6H 2 O) (Examples 16-19), Sn (OTf) 2 or di-n-butyltin trifluoromethanesulfonic acid salt (n Bu) 2 Sn (OTf ) 2 and rhenium carbonyl (Re 2 (CO) 10) or manganese chloride tetrahydrate (MnCl 2 ⁇ 4H 2 O) or magnesium chloride hexahydrate Compared with the case of using two types of catalysts (MgCl 2 ⁇ 6H 2 O) (Examples 13-15), lactic acids, particularly lactic acids,
  • Example 20 In a 50 mL stainless steel autoclave (made by pressure-resistant glass industry), D-fructose 0.45 g (2.5 mmol) as a raw material, tin (II) chloride 5 mg (0.025 mmol) as a catalyst, manganese chloride tetrahydrate as a promoter 20 mg (0.1 mmol) of the product, 10 mL of methanol as a solvent, and a stirring bar were added, and the lid was closed. After the air in the autoclave was purged with nitrogen gas and pressurized to 0.5 MPa, the autoclave was heated to 150 ° C. using an electric furnace while stirring the mixture with a magnetic stirrer.
  • Example 21 The reaction was performed in the same manner as in Example 20 except that 7 mg (0.025 mmol) of tin (II) bromide was used instead of tin (II) chloride, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 22 The reaction was performed in the same manner as in Example 20 except that 28 mg (0.1 mmol) of n-butyltin trichloride was used instead of tin (II) chloride, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 23 In place of tin (II) chloride, 30 mg (0.1 mmol) of phenyltin trichloride was used and heat treatment was performed for a reaction time of 10 hours. Other conditions were the same as in Example 20, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 24 In place of tin (II) chloride, 42 mg (0.1 mmol) of tin trifluoromethanesulfonate was used, and in place of manganese chloride tetrahydrate, 20 mg (0.1 mmol) of magnesium chloride hexahydrate was used. Other conditions were the same as in Example 20, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 25 The reaction was conducted in the same manner as in Example 20 except that 8 mg (0.02 mmol) of tin trifluoromethanesulfonate and 23 mg (0.08 mmol) of n-butyltin trichloride were used instead of tin (II) chloride.
  • Various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 26 Instead of manganese chloride tetrahydrate, 6 mg (0.025 mmol) of cobalt chloride hexahydrate was used, and heat treatment was performed at 160 ° C. Other conditions were the same as in Example 20, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 27 Heat treatment was performed at 160 ° C. using 9 mg (0.05 mmol) of tin (II) chloride as a catalyst and 12 mg (0.05 mmol) of cobalt chloride hexahydrate as a cocatalyst. Other conditions were the same as in Example 20, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 28 Instead of manganese chloride tetrahydrate, 6 mg (0.025 mmol) of nickel chloride hexahydrate was used, and heat treatment was performed at 160 ° C. Other conditions were the same as in Example 20, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 29 Heat treatment was performed at 160 ° C. using 9 mg (0.05 mmol) of tin (II) chloride as a catalyst and 12 mg (0.05 mmol) of nickel chloride hexahydrate as a co-catalyst. Other conditions were the same as in Example 20, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 30 The reaction was performed in the same manner as in Example 20 except that 4 mg (0.1 mmol) of lithium chloride was used instead of manganese chloride tetrahydrate, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Example 31 The reaction was conducted in the same manner as in Example 20 except that 20 mg (0.1 mmol) of iron (II) chloride tetrahydrate was used instead of manganese chloride tetrahydrate, and various products were quantitatively analyzed by liquid chromatography. did. The yield of lactic acids in the analysis results is shown in Table 5 below.
  • Examples 27 and 29 in which the usage ratio of the two types of catalysts was changed, the one where the total usage amount of the tin-containing compound and the co-catalyst was larger (Examples 27 and 29)
  • the yield of lactic acid ester was higher than when the amount used was smaller (Examples 26 and 28). Therefore, it was shown that a relatively high total amount of the tin-containing compound and the cocatalyst is useful for obtaining a lactic acid ester in a high yield.
  • Example 32 In a 50 mL stainless steel autoclave (made by pressure-resistant glass industry), D-fructose 0.45 g (2.5 mmol) as a raw material, tin (IV) chloride pentahydrate 35 mg (0.1 mmol) as a catalyst, bistri as a promoter 57 mg (0.1 mmol) of phenylphosphine iminium chloride, 20 mL of methanol as a solvent, and a stir bar were added, and the lid was closed. After the air in the autoclave was purged with nitrogen gas and pressurized to 0.5 MPa, the autoclave was heated to 150 ° C. using an electric furnace while stirring the mixture with a magnetic stirrer.
  • Example 33 The reaction was conducted in the same manner as in Example 32 except that 115 mg (0.2 mmol) of bistriphenylphosphine iminium chloride was used as a co-catalyst, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 6 below.
  • Example 34 The reaction was carried out in the same manner as in Example 32 except that 30 mg (0.1 mmol) of phenyltin trichloride was used instead of tin (IV) chloride pentahydrate, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 6 below.
  • Example 35 The reaction was performed in the same manner as in Example 32 except that 40 mg (0.1 mmol) of trioctylmethylammonium chloride was used as a cocatalyst, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 6 below.
  • Example 36 The reaction was performed in the same manner as in Example 32 except that 28 mg (0.1 mmol) of tetrabutylammonium bromide was used as a cocatalyst, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 6 below.
  • Example 38 The reaction was performed in the same manner as in Example 37, except that 65.3 mg (0.1 mmol) of rhenium carbonyl and 20.3 mg (0.1 mmol) of magnesium chloride hexahydrate were added as the catalyst. .
  • Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 39 The reaction was carried out in the same manner as in Example 37 except that 65.3 mg (0.1 mmol) of rhenium carbonyl and 19.8 mg (0.1 mmol) of manganese chloride tetrahydrate were used as the catalyst. Quantitative analysis was performed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 40 The reaction was carried out in the same manner as in Example 37 except that 65.3 mg (0.1 mmol) of rhenium carbonyl and 19.9 mg (0.1 mmol) of iron chloride hexahydrate were used as the catalyst. Quantitative analysis was performed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 41 The reaction was carried out in the same manner as in Example 37 except that 65.3 mg (0.1 mmol) of rhenium carbonyl and 23.8 mg (0.1 mmol) of cobalt chloride hexahydrate were used as the catalyst. Quantitative analysis was performed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 42 The reaction was carried out in the same manner as in Example 37 except that 65.3 mg (0.1 mmol) of rhenium carbonyl and 23.8 mg (0.1 mmol) of nickel chloride tetrahydrate were used as the catalyst. Quantitative analysis was performed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 43 The reaction was carried out in the same manner as in Example 37 except that 65.3 mg (0.1 mmol) of rhenium carbonyl and 19 mg (0.1 mmol) of tin (II) chloride were used as the catalyst, and various products were subjected to liquid chromatography. Was quantitatively analyzed. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 44 The reaction was carried out in the same manner as in Example 37 except that 16.3 mg (0.025 mmol) of rhenium carbonyl and 19.8 mg (0.1 mmol) of manganese chloride tetrahydrate were used as the catalyst. Quantitative analysis was performed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 45 The reaction was conducted in the same manner as in Example 37 except that 32.7 mg (0.05 mmol) of rhenium carbonyl and 19.8 mg (0.1 mmol) of manganese chloride tetrahydrate were used as the catalyst, and various products were obtained. Quantitative analysis was performed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 46 Instead of 0.45 g (2.5 mmol) of raw material D-fructose, 0.45 g (2.5 mmol) of glucose was used. As a catalyst, 32.7 mg (0.05 mmol) of rhenium carbonyl and manganese chloride tetrahydrate were used. The reaction was conducted in the same manner as in Example 37 except that 19.8 mg (0.1 mmol) was used and the heat treatment was performed at 160 ° C. for 24 hours, and various products were subjected to liquid chromatography. Was quantitatively analyzed. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 47 The point that 0.428 g (1.25 mmol) of sucrose was used instead of 0.45 g (2.5 mmol) of D-fructose as a raw material, 65.3 mg (0.1 mmol) of rhenium carbonyl and manganese chloride tetrahydrate as a catalyst The reaction was performed in the same manner as in Example 37 except that 19.8 mg (0.1 mmol) was used and heat treatment was performed at 180 ° C., and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 48 The reaction was performed in the same manner as in Example 37 except that 16.3 mg (0.025 mmol) of rhenium carbonyl and 16.1 mg (0.05 mmol) of magnesium trifluoromethanesulfonate were used as the catalyst, and various products were liquidated. Quantitative analysis was performed by chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • Example 49 Except for using a combination of 19.8 mg (0.1 mmol) of manganese chloride tetrahydrate, 32.7 mg (0.05 mmol) of rhenium carbonyl and 9.5 mg (0.05 mmol) of tin (II) chloride as the catalyst.
  • the reaction was carried out in the same manner as in Example 37, and various products were quantitatively analyzed by liquid chromatography. The yield of lactic acids in the analysis results is shown in Table 7 below.
  • a lactic acid ester could be obtained in a high yield (Examples 38-43, 48, 49). In particular, higher yields were obtained when used in combination with magnesium chloride hexahydrate or manganese chloride tetrahydrate (Examples 38 and 39). Moreover, when rhenium carbonyl was used with two types of metal compounds other than rhenium (Example 49), a particularly high yield was obtained. On the other hand, when a metal compound other than rhenium was used alone as a catalyst (Comparative Example 24), the amount of lactic acid ester produced was low.
  • Example 50 In a 50 mL stainless steel autoclave, 0.405 g of cellulose (corresponding to 2.5 mmol of glucose residue) dried in air at 120 ° C. for 2 hours or more, 31.9 mg of di-n-butyltin (II) trifluoromethanesulfonate ( 0.06 mmol), 9.9 mg (0.05 mmol) of manganese chloride tetrahydrate, 16.3 mg (0.025 mmol) of rhenium carbonyl, 20 mL of methanol, and a stir bar were added, and the lid was closed.
  • II di-n-butyltin trifluoromethanesulfonate
  • the air in the autoclave was purged with nitrogen gas, pressurized to 0.5 MPa, and then heated with a mantle heater until the inside of the autoclave reached 200 ° C. while stirring the mixture. Thereafter, stirring was continued while maintaining at 200 ° C. for 24 hours, and then heating was stopped and the mixture was allowed to cool at room temperature.
  • the reaction solution was taken out from the autoclave cooled to room temperature, and various products in the solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 8 below. “-” In Table 8 indicates that it is below the detection limit.
  • Example 51 As a catalyst, 63.7 mg (0.12 mmol) of di-n-butyltin (II) trifluoromethanesulfonate, 19.8 mg (0.1 mmol) of manganese chloride tetrahydrate and 32.6 mg (0.05 mmol) of rhenium carbonyl were used. It was. Otherwise, the reaction was performed in the same manner as in Example 50. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 8 below.
  • Example 52 Using 31.9 mg (0.06 mmol) of di-n-butyltin (II) trifluoromethanesulfonate, 10.2 mg (0.05 mmol) of magnesium chloride hexahydrate and 16.3 mg (0.025 mmol) of rhenium carbonyl as the catalyst Then, heat treatment was performed for a reaction time of 62 hours. Otherwise, the reaction was performed in the same manner as in Example 50. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 8 below.
  • Example 53 As a catalyst, tin (II) trifluoromethanesulfonate 50.0 mg (0.12 mmol), manganese chloride tetrahydrate 19.8 mg (0.1 mmol) and rhenium carbonyl (Re 2 (CO) 10 ) 32.6 mg (0. 05 mmol), and heat treatment was performed for a reaction time of 10 hours. Otherwise, the reaction was performed in the same manner as in Example 50. Various products in the obtained reaction solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 8 below.
  • rhenium carbonyl forms an art complex with a metal compound other than rhenium, and the complex acts as a catalyst for cellulose decomposition reaction and sugar decomposition / isomerization reaction.
  • Example 56 Synthesis of lactic acid from fructose using indium compound
  • a stainless steel pressure reactor made by Nitto Koatsu
  • 10 mL of pure water as a solvent at room temperature
  • 0.5 MPa of nitrogen gas was injected into the reactor of the apparatus, and the inside of the reactor was heated to 160 ° C. using a mantle heater. . After holding at 160 ° C. for 5 hours, heating was stopped and the mixture was allowed to cool.
  • Example 57 Synthesis of lactic acid ester from glucose using indium compound The reaction was conducted under the same conditions as in Example 55 except that 0.450 g (2.5 mmol) of glucose was used instead of fructose as a raw material carbohydrate and the reaction temperature was 180 ° C. It was. As a result, 2.0 mmol (40% yield based on glucose) of methyl lactate was produced, and 0.08 mmol of methyl levulinate (3% yield based on glucose) was produced as a by-product.
  • the glucose standard is the percentage (%) of the number of moles produced per mole of glucose of the raw material.
  • Example 58 Lactate ester synthesis from glucose using indium acetylacetonate The reaction was carried out under the same conditions as in Example 55 except that 20.8 mg (0.05 mmol) of acetylacetone indium (In (acac) 3 ) was used as the indium compound. . As a result, 1.55 mmol of methyl lactate (yield 31% based on fructose) was produced, and no methyl levulinate was produced.
  • Example 59 Effect of addition of phenolic compound
  • the reaction was carried out under the same conditions as in Example 55, except that 0.1 mmol of catechol as a phenolic compound was added to the reactor in addition to indium isopropoxide, fructose and methanol.
  • 0.1 mmol of catechol as a phenolic compound was added to the reactor in addition to indium isopropoxide, fructose and methanol.
  • methyl lactate 52% yield based on fructose
  • 0.15 mmol of methyl levulinate 6% yield based on glucose
  • Example 60 Effect of addition of phenolic compound
  • indium isopropoxide, fructose and methanol the reaction was carried out under the same conditions as in Example 55, except that 0.1 mmol of 2,2-biphenol was added to the reactor as a phenolic compound. .
  • 0.1 mmol of 2,2-biphenol was added to the reactor as a phenolic compound.
  • 2.5 mmol of methyl lactate yield 50% based on fructose
  • Example 61 Method using indium compound or the like as catalyst (Example 61)
  • a stainless steel pressure reactor made by Nitto Koatsu) with an internal volume of 50 ml was charged with 14.9 mg (0.05 mmol) of indium (III) chloride tetrahydrate as a metal compound and bis (triphenylphosphine) iminium chloride 28 as a salt.
  • 0.7 mg (0.05 mmol), fructose 0.45 g (2.5 mmol) as a raw material carbohydrate, methanol 20 mL as a solvent, and a stir bar were added, and the lid was closed.
  • the air in the autoclave was purged with nitrogen gas and pressurized to 0.5 MPa, the autoclave was heated to 150 ° C.
  • Example 62 The reaction was carried out in the same manner as in Example 61 except that the heating temperature was 180 ° C., and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 63 The reaction was conducted in the same manner as in Example 62 except that 17.7 mg (0.05 mmol) of indium (III) bromide was used as the metal compound, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 64 The reaction was carried out in the same manner as in Example 62 except that 14.6 mg (0.05 mmol) of indium (III) acetate was used as the metal compound, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 65 The reaction was carried out in the same manner as in Example 62 except that 20.6 mg (0.05 mmol) of acetylacetone indium (III) was used as the metal compound, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 66 The reaction was conducted in the same manner as in Example 62 except that 30.9 mg (0.05 mmol) of bis (triphenylphosphine) iminium bromide was used as a salt, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 67 The reaction was carried out in the same manner as in Example 62 except that 33.3 mg (0.05 mmol) of bis (triphenylphosphine) iminium iodide was used as a salt, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 68 The reaction was conducted in the same manner as in Example 62 except that 2.1 mg (0.05 mmol) of lithium chloride was used as a salt, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 69 The reaction was conducted in the same manner as in Example 62 except that 9.9 mg (0.05 mmol) of 1-butyl-3-methylimidazolium acetate was used as a salt, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 70 The reaction was conducted in the same manner as in Example 62 except that 1-butyl-3-methylimidazolium tetrafluoroborate 11.3 mg (0.05 mmol) was used as a salt, and the product in the solution was quantified by liquid chromatography. analyzed. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 71 The reaction was carried out in the same manner as in Example 62 except that 7.3 mg (0.05 mmol) of sodium picolinate was used as a salt, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 72 The reaction was conducted in the same manner as in Example 62 except that 8.1 mg (0.05 mmol) of sodium (trihydroxy) phenylborate was used as a salt, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 73 Using 8.8 mg (0.05 mmol) of gallium (III) chloride as the metal compound, heating was performed at 190 ° C., and the reaction was performed in the same manner as in Example 61, except that the product in the solution. was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 74 The reaction was conducted in the same manner as in Example 61 except that 12.1 mg (0.05 mmol) of aluminum (III) chloride hexahydrate was used as the metal compound, the heating temperature was 190 ° C., and the mixture was stirred for 2 hours. The product was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis results is shown in Table 9 below.
  • Example 75 Formation of art complex Indium (III) chloride tetrahydrate (0.05 mmol) as a metal compound and bis (triphenylphosphine) iminium chloride (0.05 mmol) as a salt are dissolved in methanol (20 mL) and nitrogen is added in an autoclave. The mixture was heated at 190 ° C. for 2 hours under gas (0.5 MPa) (the sugar of the raw material carbohydrate was not added, but the same conditions as in Example 61). Thereafter, the autoclave was allowed to cool at room temperature. After cooling, the reaction solution was taken out from the autoclave, and the product in the solution was measured by ESI-MS.
  • indium (III) chloride tetrahydrate and bis (triphenylphosphine) iminium chloride form an art complex, suggesting that the complex acts as a catalyst for the decomposition and isomerization of sugars. Is done.
  • Example 76 Into a stainless steel pressure reactor (produced by Tokyo Rika Co., Ltd.) having an internal volume of 190 ml, 14.9 mg (0.05 mmol) of indium (III) chloride tetrahydrate, 31.9 mg (0.06 mmol) of dibutyltin triflate and salts as metal compounds Add 28.7 mg (0.05 mmol) of bis (triphenylphosphine) iminium chloride, 0.405 g of cellulose as a raw material carbohydrate (equivalent to 2.5 mmol as a glucose unit), 20 mL of methanol as a solvent, a stir bar, and close the lid It was.
  • a stainless steel pressure reactor produced by Tokyo Rika Co., Ltd.
  • the autoclave was heated to 190 ° C. using an electric furnace while stirring the mixture with a magnetic stirrer. Thereafter, stirring was continued for 10 hours while maintaining at 190 ° C., and then the autoclave was allowed to cool at room temperature. After cooling, the reaction solution was taken out from the autoclave, and the products in the solution were quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis result is shown in Table 10 below.
  • Example 77 The reaction was conducted in the same manner as in Example 76 except that 14.9 mg (0.05 mmol) of indium (III) chloride tetrahydrate and 25.0 mg (0.06 mmol) of tin triflate were used as the metal compound.
  • the product was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis result is shown in Table 10 below.
  • Comparative Example 32 Comparative Example 30 except that 14.9 mg (0.05 mmol) of indium (III) chloride tetrahydrate as the metal compound and 28.7 mg (0.05 mmol) of bis (triphenylphosphine) iminium chloride as the salt were used. The reaction was conducted in the same manner, and the product in the solution was quantitatively analyzed by liquid chromatography. The yield of lactic acid in the analysis result is shown in Table 11 below.
  • the method of the present invention provides a novel catalytic reaction system that efficiently converts biomass containing polysaccharides and monosaccharides typified by cellulose into lactic acid and lactic acid esters.
  • a carbohydrate-containing raw material for example, biomass containing cellulose resources.
  • lactic acid and / or a lactic acid ester, particularly a lactic acid ester can be produced in a high yield while suppressing the production of a by-product without using a large amount of strong acid.

Abstract

 セルロース等の炭水化物含有原料から乳酸類を効率的に製造するための代替法の提供。 炭水化物含有原料を、触媒を含有する溶媒中で加熱処理して乳酸及び/又は乳酸エステルを製造する方法であって、該触媒がスズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物であり、該溶媒が水及び/又はアルコールを含有する、ことを特徴とする、上記乳酸/乳酸エステルの製造法。

Description

炭水化物含有原料から乳酸類を製造する方法
 本発明は、炭水化物含有原料からスズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物を触媒として用いて乳酸類を製造する方法に関する。
 現在、工業的に実施されている乳酸の製造法は糖類の乳酸発酵によるものである(特許文献1参照)。しかしながらこの方法でセルロースを乳酸発酵の原料とするには、酸又は酵素などを用いた糖化工程を経る必要がある。また一般に発酵による乳酸製造法は反応速度が遅く、巨大な発酵槽が必要となり、生成する乳酸の濃度が低いため、精製のためのエネルギー消費量が大きくなる問題がある。加えて、乳酸発酵は発酵の進行とともに溶液のpHが低下することにより、乳酸菌の発酵効率が低下してしまうため、塩基で中和させながら発酵が行われる。従って、この乳酸発酵法により生成するのは乳酸塩であり、乳酸塩より乳酸を遊離させるために酸で処理することが行われ、そこから生じる中和塩の処理もプロセス上大きな問題となっている。
 生物学的な方法によらない乳酸の製造法としては、炭水化物をアルカリ存在下で水熱処理する化学的な方法が知られている。例えば糖類(非特許文献1、2参照)、セルロース(特許文献2、非特許文献3参照)、又は有機性廃棄物(非特許文献4参照)をこの方法で処理すると、高温高圧の反応条件下で分解した炭水化物の一部が異性化して乳酸が生成する。しかし、この方法では乳酸は触媒として加えられたアルカリと反応し、乳酸塩となっているため、乳酸を酸として分離するためには反応液になんらかの無機酸を添加して酸性にしなければならず、アルカリと無機酸が量論的に消費されるという問題がある。
 アルカリを使わない乳酸の化学的製造法としては、金属ハロゲン化物を触媒として、デンプン、オリゴ糖又は単糖を、アルコールと反応させることにより、乳酸エステルに変換する方法が報告されている(特許文献3参照)。しかし、本発明者らが検討したところ、この方法は200℃未満ではセルロース系の原料を分解できず、乳酸や乳酸エステルの生成が認められなかった。
 またアルカリを使用せず、セルロース系の原料を化学的な反応により直接、乳酸へ変換した例も報告されているが、これは非常に高温高圧(温度350℃以上400℃未満、圧力20MPa以上35MPa)の反応条件を必要としておりエネルギー消費量が大きい上、乳酸の収率も不十分である(特許文献4参照)。
 またセルロース系の原料より一段階で乳酸を製造した報告として、第3族金属塩を触媒として用いた例(特許文献5、6参照)および希土類金属酸化物を触媒として用いた例(特許文献7参照)が報告されている。これらの方法では比較的、原料濃度の低い条件でのみ乳酸収率が高く、実用上より高い原料濃度で乳酸収率の良好な製造法が求められている。
特開平6-311886号公報 特開2005-232116号公報 特開2004-359660号公報 特開2004-323403号公報 特開2008-120796号公報 特開2009-263242号公報 特開2009-263241号公報
Byung Y.Y. and Montgomery R., Carbohydrate Research, Vol.280 (1996) p.27-45 Byung Y.Y. and Montgomery R., Carbohydrate Research, Vol.280 (1996) p.47-57 Niemelae K. and Sjoestroem E., Biomass, 11 (1986) p.215-221 Armando T.Q. et al., Journal of Hazardous Materials, B93 (2002)
 本発明は、炭水化物含有原料から乳酸類を効率的に製造するための代替法を提供することを課題とする。
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物を触媒として用いることにより、触媒使用量が少量でも、炭水化物含有原料から乳酸類(乳酸及び/又は乳酸エステル)を効率的に製造できることを見出した。また、本発明者らは、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物を、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物と組み合わせて、触媒として用いることにより、炭水化物含有原料から乳酸類(乳酸及び/又は乳酸エステル)を効率的に製造できることを見出した。これらの知見に基づいて、本発明を完成するに至った。
 すなわち、本発明は以下を包含する。
[1] 炭水化物含有原料を、触媒を含有する溶媒中で加熱処理して乳酸及び/又は乳酸エステルを製造する方法であって、
 該触媒がスズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物であり、
 該溶媒が水及び/又はアルコールを含有する、
ことを特徴とする、上記乳酸/乳酸エステルの製造法。
[2] 溶媒がさらに、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物を含む、[1]の乳酸/乳酸エステルの製造法。
[3] スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物と、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物とがアート錯体を形成していることを特徴とする、[1]又は[2]の乳酸/乳酸エステルの製造法。
[4] スズ化合物が、スズ又は有機スズのパーフルオロアルキルスルホン酸塩、及びスズ又は有機スズのハロゲン化物からなる群から選択される、[1]~[3]のいずれかの乳酸/乳酸エステルの製造法。
[5] インジウム化合物がハロゲン化物塩、カルボン酸塩、インジウムアルコキシド及びインジウムアセチルアセテートからなる群から選択される[1]~[4]のいずれかの乳酸/乳酸エステルの製造法。
[6] レニウム化合物が、ハロゲン化物又はカルボニル配位子を含む化合物である[1]~[5]のいずれかの乳酸/乳酸エステルの製造法。
[7] 溶媒がフェノール性化合物をさらに含む、[1]~[6]のいずれかの乳酸/乳酸エステルの製造法。
[8] 加熱処理を、100℃~300℃にて行う、[1]~[7]のいずれかの乳酸/乳酸エステルの製造法。
[9] 炭水化物含有原料が、セルロース、可溶性多糖類、単糖類の群から選択される少なくとも1種である、[1]~[8]のいずれかの乳酸/乳酸エステルの製造法。
 また、本発明は以下を包含する。
(1) スズ又は有機スズのパーフルオロアルキルスルホン酸塩の少なくとも1種を含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することを特徴とする、乳酸及び/又は乳酸エステルの製造方法。
(2) 水及び/又はアルコールを含有する溶媒が、スズもしくは有機スズのハロゲン化物、インジウム化合物、レニウム化合物、マグネシウム化合物、及び第一遷移系列金属の化合物からなる群より選択される少なくとも1種を、水及び/又はアルコールを含有する溶媒中にさらに含む、(1)の方法。
(3) パーフルオロアルキルスルホン酸塩が、トリフルオロメタンスルホン酸塩である、(1)又は(2)の方法。
(4) 炭水化物含有原料がセルロースを含む、(1)~(3)のいずれかの方法。
(5) 水及び/又はアルコールを含有する溶媒がフェノール性化合物をさらに含む、(1)~(4)のいずれかの方法。
 さらに、本発明は以下を包含する。
〈1〉 触媒としてスズ又は有機スズのハロゲン化物及びスズ又は有機スズのパーフルオロアルキルスルホン酸塩からなる群より選択される一種以上のスズ含有化合物を含み、かつ助触媒としてリチウムのハロゲン化物、マグネシウムのハロゲン化物、第一遷移系列金属のハロゲン化物及び四級アンモニウム塩からなる群より選択される少なくとも1種の化合物を含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することを特徴とする、乳酸類の製造方法。
〈2〉 触媒として用いるスズ又は有機スズのハロゲン化物が塩化物である、〈1〉の方法。
〈3〉 触媒として用いるパーフルオロアルキルスルホン酸塩が、トリフルオロメタンスルホン酸塩である、〈1〉又は〈2〉の方法。
〈4〉 助触媒として用いるリチウムのハロゲン化物、マグネシウムのハロゲン化物及び第一遷移系列金属のハロゲン化物が塩化物である、〈1〉~〈3〉のいずれかの方法。
〈5〉 助触媒として用いる四級アンモニウム塩がハロゲン化物である、〈1〉~〈3〉のいずれかの方法。
〈6〉 加熱処理が、100℃~300℃で加熱することによるものである、〈1〉~〈5〉のいずれかの方法。
 さらにまた、本発明は以下を包含する。
〔1〕 インジウムアルコキシド及びインジウムアセチルアセトナートからなる群より選択される少なくとも1種を含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することを特徴とする、乳酸及び/又は乳酸エステルの製造方法。
〔2〕 水及び/又はアルコールを含有する溶媒がフェノール性化合物をさらに含む、〔1〕の方法。
〔3〕 加熱処理が、100℃~300℃で加熱することによるものである、〔1〕又は〔2〕の方法。
 またさらに、本発明は以下を包含する。
{1} 1種以上のレニウム化合物を少なくとも含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することを特徴とする、乳酸類の製造方法。
{2} 1種以上のレニウム化合物がカルボニル配位子を含む、{1}の方法。
{3} 1種以上のレニウム以外の金属化合物を、水及び/又はアルコールを含有する溶媒中にさらに含む、{1}又は{2}の方法。
{4} レニウム以外の金属化合物が、マグネシウム化合物及び第一遷移系列金属化合物からなる群から1種以上選択される、{3}の方法。
{5} レニウム化合物とレニウム以外の金属化合物が、レニウムとレニウム以外の金属を含む2種類以上の金属を含む金属化合物を生成する、{3}又は{4}の方法。
{6} 加熱処理を、100℃~300℃で加熱することにより行う、{1}~{5}のいずれかの方法。
 そしてさらに、本発明は以下を包含する。
《1》 インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の金属化合物と、アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩、及び四級ホスホニウム塩からなる群より選択される少なくとも1種の塩とを触媒とし、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することを特徴とする、乳酸類の製造方法。
《2》 インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の金属化合物と、アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩、及び四級ホスホニウム塩からなる群より選択される少なくとも1種の塩とがアート錯体を形成していることを特徴とする、《1》の乳酸類の製造方法。
《3》 インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の金属化合物が、ハロゲン化物塩及びカルボン酸塩からなる群から選択される、《1》または《2》の乳酸類の製造方法。
《4》 インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の金属化合物が塩化物塩である、《3》の乳酸類の製造方法。
《5》 アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩、及び四級ホスホニウム塩からなる群より選択される少なくとも1種の塩が、ハロゲン化物塩、カルボン酸塩及びホウ酸塩からなる群から選択される、《1》~《4》のいずれかの乳酸類の製造方法。
《6》 さらに、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の少なくとも1種を触媒として利用することを含む、《1》~《5》のいずれかの乳酸類の製造方法。
《7》 パーフルオロアルキルスルホン酸塩が、トリフルオロメタンスルホン酸塩である、《6》の乳酸類の製造方法。
《8》 炭水化物含有原料がセルロースを含む、《6》または《7》の乳酸類の製造方法。
《9》 加熱処理を、100℃~300℃にて行う、《1》~《8》のいずれかの乳酸類の製造方法。
 本明細書は本願の優先権の基礎である日本国特許出願2010-082834号、2010-244542号、2010-082174号、2010-244406号、2010-244486号の明細書および/または図面に記載される内容を包含する。
 本発明の方法では、セルロース等の炭水化物含有原料から、少量の触媒を用いて、乳酸類を効率的に製造することができる。
図1は、レニウムカルボニル及び塩化マンガン四水和物より生成されるアート錯体についての、ESI/MS測定結果を示す。 図2は、塩化インジウム(III)四水和物及びビス(トリフェニルホスフィン)イミニウムクロライドより生成されるアート錯体についての、ESI/MS測定結果を示す。
 本発明は、触媒として機能する、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物を含めた、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することにより、乳酸及び/又は乳酸エステルを含む反応生成物を取得することができる。
 本発明の方法を用いれば、炭水化物含有原料中の炭水化物、例えば、セルロース、でんぷん、オリゴ糖、二糖類などの多糖、グルコース、フルクトースなどの単糖を、少量の触媒を使用しても、乳酸及び/又は乳酸エステルを簡便かつ高効率に製造することができる。
 炭水化物含有原料からの乳酸又は乳酸エステルの生成反応は、セルロースを出発原料とする場合には、例えば、以下のように進行する。
Figure JPOXMLDOC01-appb-C000001
 セルロースはアルコール中又は水中、高温高圧下で加溶媒分解されて糖類を生成する。この反応条件下では、生成された糖類はさらに分解して低分子化合物に変化するか、逆に重合して炭素質の高分子化合物となる。その分解反応としては、脱水反応とレトロアルドリゼーションがある。脱水反応では5-メトキシメチルフルフラール、レトロアルドリゼーションでは、グリコールアルデヒド(二炭糖)、ジヒドロキシアセトン又はグリセルアルデヒド(三炭糖)、エリスリトール(四炭糖)が生成する。このうち三炭糖は、異性化により、乳酸に変換することができる。さらに乳酸は、アルコールとの脱水縮合反応により乳酸エステルへと変換される。
 本発明の方法において原料として使用できる炭水化物含有原料は、炭水化物を含有する任意の原料であってよい。限定するものではないが、炭水化物含有原料は、単糖、オリゴ糖(単糖が2~9個結合したもの)、若しくは多糖(単糖が10個以上結合したもの)などの任意の炭水化物、又はそれを含む生物由来材料であってよい。多糖としては、限定するものではないが、セルロースやでんぷん、オリゴ糖、二糖類が好ましい。単糖としては、限定するものではないが、グルコース、フルクトースが好ましい。炭水化物含有原料は、例えば、セルロース、ホロセルロース、セロビオース、デンプン(例えば、可溶性デンプン)、マルトース、グルコース、マンノース、フルクトース、ガラクトース、グロース等の六炭糖を含む炭水化物、ヘミセルロース、キシロース、アラビノース等の五炭糖を含むヘミセルロース系物質、又はそれらの少なくとも1つを含有する、例えばリグノセルロース系の原料であってもよい。炭水化物含有原料は、特に限定されないが、例えば、上記のような炭水化物(例えば、セルロース等)を含むバイオマス材料であってもよい。炭水化物含有原料の例としては、古紙、製材残材、麦藁、コーンストーバー、コーンコブ、トウモロコシの穂などの農産廃棄物をはじめとするリグノセルロース系バイオマス材料、デンプンやグルコース等の糖類を含む食品廃棄物等が挙げられる。本発明の方法において使用する炭水化物含有原料はセルロース等の炭水化物に加えて水を含んでいることも好ましい。
 本発明において、「スズ化合物」としては、スズ又は有機スズのパーフルオロアルキルスルホン酸塩ならびにスズ又は有機スズのハロゲン化物、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩化合物、リン酸塩化合物、硫酸塩化合物、硝酸塩化合物などが挙げられるが、これらに限定されない。好ましくは、スズ又は有機スズのパーフルオロアルキルスルホン酸塩ならびにスズ又は有機スズのハロゲン化物からなる群より選択される少なくとも1種の化合物である。本発明において「有機スズ」とは、1つ以上の有機置換基(炭化水素基)が結合したスズ(Sn)をいう。本発明で使用され得る有機スズのスズ原子上に結合する置換基としては、特に限定されないが例えば、n-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基などが挙げられる。スズ又は有機スズのパーフルオロアルキルスルホン酸塩は、スズ(II)塩であってもスズ(IV)塩であってもよい。「パーフルオロアルキルスルホン酸塩」としては、特に限定されないが、例えばトリフルオロメタンスルホン酸塩、ペンタフルオロメタンスルホン酸塩、ヘプタフルオロプロパンスルホン酸塩、ノナフルオロブタンスルホン酸塩等が挙げられる。本発明において、より好ましいパーフルオロアルキルスルホン酸塩は、トリフルオロメタンスルホン酸塩(慣用名:トリフラート)である。スズのパーフルオロアルキルスルホン酸塩としては、例えば、トリフルオロメタンスルホン酸スズ(II)(Sn(OTf))(Tfはトリフルオロメチルスルホニル基CFSO-を表す。以後同様。)をとりわけ好適に使用することができる。有機スズのパーフルオロアルキルスルホン酸塩としては、例えば、トリフルオロメタンスルホン酸ジブチルスズ(II)をとりわけ好適に使用することができる。「スズ又は有機スズのハロゲン化物」としては、スズ又は有機スズのフッ化物、塩化物、臭化物、及びヨウ化物が挙げられ、そのようなスズ又は有機スズのハロゲン化物としては、限定されるものではないが、例えば、塩化スズ(II)、ジ-n-ブチルスズ(II)塩化物が挙げられる。
 インジウム化合物としては、例えばインジウムのハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物)、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩化合物、リン酸塩化合物、硫酸塩化合物、硝酸塩化合物などが挙げられ、限定されるものではないが、例えば、臭化インジウム(InBr)が挙げられる。
 レニウム化合物としては、例えばレニウムのハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物)、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩化合物、リン酸塩化合物、硫酸塩化合物、硝酸塩化合物、カルボニル配位子を含むものなどが挙げられ、そのようなレニウム化合物としては、限定されるものではないが、例えば、レニウムカルボニル(Re(CO)10)が挙げられる。
 一つの反応系において、スズ化合物、インジウム化合物およびレニウム化合物からなる群より選択される化合物の1種類を使用してもよいし、2種類以上を組み合わせて使用してもよい。
 本発明の方法に用いる、水及び/又はアルコールを含有する溶媒は、水若しくはアルコール、又はその両方を含む溶液である。この溶媒は、水又はアルコール単独であってもよいし、水とアルコールの混合液であってもよいし、それらに他の成分、例えば他の有機溶媒が混合された溶液であってもよい。水としては、蒸留水、イオン交換水、工業用水等を使用することができる。アルコールとしては、特に限定されないが、炭素数1から8までの脂肪族アルコールが好ましい。例えばメタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、エチレングリコールなどを挙げることができる。含水アルコールも本発明において溶媒として好適に使用できる。1種又は2種以上のアルコールが溶媒に含まれていてもよい。また本発明の方法において、乳酸を製造する場合は水を溶媒として使用し、乳酸エステルを製造する場合は、アルコールを含有する溶媒を使用すればよい。
 炭水化物含有原料に対する、水及び/又はアルコールを含有する溶媒の使用量は、当業者が適宜選択することができ、特に限定されるものではないが、通常、重量比で原料:溶媒=1:1~1:1000であり、好ましくは1:5~1:100である。
 水及び/又はアルコールを含有する溶媒に含有させる、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される化合物の合計量(使用量)としては、限定するものではないが、炭水化物含有原料中のグルコース残基1mol当たり、質量比で0.001~1.0mol、好ましくは0.005mol~0.1mol、例えば0.01~0.05molに相当する量を使用できる。使用量が少な過ぎるとセルロースなど多糖類の分解が進行しにくく、多過ぎると副反応のため乳酸または乳酸エステルの収率が低下するため好ましくない。
 また本発明の方法では、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物に加えて、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物をさらなる触媒として組み合わせて使用することもできる。
 スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物に加えて、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物をさらなる触媒として組み合わせて使用することによって、多糖類および単糖類から乳酸及び/又は乳酸エステルを効率的に製造することができる。
 第一遷移系列金属の化合物としては、第一遷移系列金属(すなわち、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛)のハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物)、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩化合物、リン酸塩化合物、硫酸塩化合物、硝酸塩化合物、ホウ酸化合物、フェノール化合物などが挙げられる。好ましくは、限定されるものではないが、ハロゲン化物(特に、塩化物)、カルボン酸塩化合物、ホウ酸化合物、フェノール化合物などが挙げられ、例えば、塩化マンガン四水和物、塩化マンガン四水和物、塩化コバルト六水和物、塩化コバルト六水和物、塩化ニッケル四水和物、塩化鉄(II)六水和物などが挙げられる。
 リチウム化合物としては、ハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物)、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩化合物、リン酸塩化合物、硫酸塩化合物、硝酸塩化合物、ホウ酸化合物、フェノール化合物などが挙げられる。好ましくは、限定されるものではないが、ハロゲン化物(特に、塩化物)、カルボン酸塩化合物、ホウ酸化合物、フェノール化合物などが挙げられ、例えば、塩化リチウムが挙げられる。
 マグネシウム化合物としては、マグネシウムのハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物)、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩化合物、リン酸塩化合物、硫酸塩化合物、硝酸塩化合物、ホウ酸化合物、フェノール化合物などが挙げられる。好ましくは、限定されるものではないが、ハロゲン化物(特に、塩化物)、カルボン酸塩化合物、ホウ酸化合物、フェノール化合物などが挙げられ、例えば、塩化マグネシウム四水和物(MgCl・4HO)、塩化マグネシウム六水和物(MgCl・6HO)などが挙げられる。
 アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩としては、ハロゲン化物塩、カルボン酸塩、ホウ酸化塩、フェニル化合物などが挙げられ、限定されるものではないが、例えば、ビス(トリフェニルホスフィン)イミニウムクロライド([PPN]Cl)、ビス(トリフェニルホスフィン)イミニウムブロミド([PPN]Br)、ビス(トリフェニルホスフィン)イミニウムヨード([PPN]I)、ビス(トリフェニルホスフィン)イミニウムカルボン酸([PPN]OOCH)、塩化テトラエチルアンモニウム(EtNCl)、塩酸トリエチルアミン(EtNHCl)、塩化トリオクチルメチルアンモニウム(OctNMeCl)、塩化トリエチル(2-メトキシエトキシメチル)アンモニウム(MeOCHCHOCHNEtCl)、1-ブチル-3-メチルイミダゾリウムクロリド([bmim]Cl)、1-ブチル-3-メチルイミダゾリウムアセテート([bmim]OAc)、1-ブチル-2,3-ジメチルイミダゾリウムクロリド([bdmim]Cl)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート([bmim]BF)、テトラフェニルホスホニウムクロライド(PhPCl)、塩化リチウム、ピコリン酸ナトリウム、ナトリウム(トリヒドロキシ)フェニルボラートなどが挙げられる。
 四級アンモニウム塩としては、特に限定されないが、例えば四級アンモニウム塩のハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物)、カルボン酸化合物、ホウ酸化合物、フェノール化合物が挙げられ、限定されるものではないが、例えば、ビス(トリフェニルホスフィン)イミニウムクロライド、テトラブチルアンモニウムブロミド、トリオクチルメチルアンモニウムクロリドなどをとりわけ好適に使用することができる。
 第一遷移系列金属の化合物の使用量としては、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量1.0molに対して0~1.0molに相当する量を使用できる。スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物と同量又はそれより少ない量を用いることが好ましく、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量1.0molに対して0.01~0.9mol、例えば0.2~0.8molの範囲で使用することがさらに好ましい。
 リチウム化合物の使用量は、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量1.0molに対して0.1~10.0molであり、好ましくはスズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量と同等又はそれ以上の範囲であり、さらに好ましくは1.0molから4.0molの範囲である。
 マグネシウム化合物の使用量としては、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量1.0molに対して0~1.0molに相当する量を使用できる。スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物と同量又はそれより少ない量を用いることが好ましく、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量1.0molに対して0.01~0.9mol、例えば0.2~0.8molの範囲で使用することがさらに好ましい。
 アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩の使用量は、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量1.0molに対して0~100molに相当する量を使用できるスズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量1.0molに対して0.01~10.0mol、例えば0.1~1.0molの範囲で使用することがさらに好ましい。
 四級アンモニウム塩の使用量は、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量1.0molに対して0.1~10.0molであり、好ましくはスズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物の使用量と同等又はそれ以上の範囲であり、さらに好ましくは1.0molから4.0molの範囲である。
 なお、本明細書において、リチウムのハロゲン化物、マグネシウムのハロゲン化物、第一遷移系列金属のハロゲン化物及び四級アンモニウム塩からなる群から選択される少なくとも1種の化合物を、特に「助触媒」と記載する場合がある。ここで「助触媒」とは、スズ化合物、インジウム化合物及び/又はレニウム化合物の存在下において、当該スズ化合物、インジウム化合物及び/又はレニウム化合物と共同して作用することによりセルロースなどの多糖類の分解反応、及び糖の分解・異性化反応を促進・強化する化合物を意味する。助触媒自体は単独で、すなわち、スズ又は有機スズのパーフルオロアルキルスルホン酸塩またはスズ化合物、インジウム化合物もしくはレニウム化合物の非存在下において、セルロースの分解反応、及び糖の分解・異性化反応を触媒しても良いし、しなくても良い。したがって、「助触媒」には、リチウムのハロゲン化物、マグネシウムのハロゲン化物、第一遷移系列金属のハロゲン化物及び四級アンモニウム塩に限定されることなく、上記される化合物の様々なものが含まれ得る。
 本発明の方法において、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物と、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物を組み合わせて使用した場合、これらの化合物が反応溶液中で結合し、1種類以上のアート錯体を形成しても良い。アート錯体とは、ルイス酸性を有する、スズ化合物、インジウム化合物及びレニウム化合物などの化合物に、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩などの化合物より供給されるアニオン種を配位させることにより生成する錯体型金属酸塩を意味する。
 アート錯体を、触媒として用いることによって、以下のように、糖の環化を抑制しつつ、選択的に糖の逆アルドール反応を進行させることができる。したがって、炭水化物含有原料より効率的に乳酸類への異性化反応をすすめることができる。
Figure JPOXMLDOC01-appb-C000002
 本発明の方法では、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物ならびに第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物に加えて、さらにフェノール性化合物を溶媒に添加して使用することもできる。フェノール性化合物としては、特に限定するものではないが、例としてカテコール、3-フルオロカテコール、2,2’-ビフェノール、3-キノリノールなどが挙げられる。フェノール性化合物の使用量は、当業者であれば適宜調節することができるが、上記化合物の使用量1.0molに対して0.1~10.0molであることが好ましく、1.0molから4.0molの範囲であることがさらに好ましい。
 本発明の方法では、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物を含む、水及び/又はアルコールを含有する溶媒中で、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種からなる化合物ならびにフェノール性化合物などを共に使用する場合には、それらも、スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物と共に、水及び/又はアルコールを含有する溶媒中に加えればよい。加熱処理の条件は、原料に含まれる糖類やアルコールの種類などによって当業者であれば適宜調節することができるが、100℃~300℃が好ましく、100℃~250℃がより好ましく、例えば150℃~195℃が好ましい。
 以下、本発明を具体的な実施形態を挙げて詳細に説明する。但し、本発明の技術的範囲はこれら実施形態に限定されるものではない。
(1)スズ又は有機スズのパーフルオロアルキルスルホン酸塩を触媒とする方法
 本発明の一実施形態において、少なくとも一種の、スズ又は有機スズのパーフルオロアルキルスルホン酸塩を、炭水化物含有原料の分解反応、及び糖の分解・異性化反応のための触媒として使用する。スズ又は有機スズの「パーフルオロアルキルスルホン酸塩」としては、上記される化合物を使用することができ、好ましくは、トリフルオロメタンスルホン酸塩(慣用名:トリフラート)である。スズのパーフルオロアルキルスルホン酸塩としては、例えば、トリフルオロメタンスルホン酸スズ(II)(Sn(OTf))(Tfはトリフルオロメチルスルホニル基CFSO-を表す。以後同様。)をとりわけ好適に使用することができる。有機スズのパーフルオロアルキルスルホン酸塩としては、例えば、トリフルオロメタンスルホン酸ジブチルスズ(II)をとりわけ好適に使用することができる。1つの反応系で、スズ又は有機スズのパーフルオロアルキルスルホン酸塩を1種類使用してもよいし、2種類以上を組み合わせて使用してもよい。
 本実施形態に用いる、水及び/又はアルコールを含有する溶媒およびその使用量は、上に定義するとおりである。本実施形態において、乳酸を製造する場合は水を溶媒として使用し、乳酸エステルを製造する場合は、アルコールを含有する溶媒を使用すればよい。
 水及び/又はアルコールを含有する溶媒に含有させる、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の合計量(使用量)としては、限定するものではないが、炭水化物含有原料中のグルコース残基1mol当たり、質量比で0.001~1.0mol、好ましくは0.005mol~0.1mol、例えば0.01~0.05molに相当する量を使用できる。使用量が少な過ぎるとセルロースなど多糖類の分解が進行しにくく、多過ぎると副反応のため乳酸または乳酸エステルの収率が低下するため好ましくない。
 スズ又は有機スズのパーフルオロアルキルスルホン酸塩から選択される少なくとも一種の化合物は、多糖類からの乳酸及び/又は乳酸エステルの製造において触媒として好適に使用することができる。
 本実施形態では、スズ又は有機スズのパーフルオロアルキルスルホン酸塩に、スズ又は有機スズのハロゲン化物、インジウム化合物およびレニウム化合物からなる群から選択される少なくとも1種の化合物をさらなる触媒として組み合わせて使用することもできる。
 スズ又は有機スズのパーフルオロアルキルスルホン酸塩から選択される少なくとも一種の化合物に加えて、スズ又は有機スズのハロゲン化物、インジウム化合物およびレニウム化合物からなる群から選択される少なくとも1種の化合物をさらなる触媒として組み合わせて使用することによって、多糖類および単糖類から乳酸及び/又は乳酸エステルを効率的に製造することができる。
 「スズ又は有機スズのハロゲン化物」としては、上記される化合物を使用することができ、限定されるものではないが、例えば、塩化スズ(II)、ジ-n-ブチルスズ(II)塩化物が挙げられる。
 インジウム化合物としては、上記される化合物を使用することができ、限定されるものではないが、例えば、臭化インジウム(InBr)が挙げられる。
 レニウム化合物としては、上記される化合物を使用することができ、限定されるものではないが、例えば、レニウムカルボニル(Re(CO)10)が挙げられる。
 スズ又は有機スズのハロゲン化物の使用量としては、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量1.0molに対して0~1000molに相当する量を使用できる。パーフルオロアルキルスルホン酸塩と同量又はそれより多い量を用いることが好ましく、パーフルオロアルキルスルホン酸塩の使用量1.0molに対して1.0~50mol、例えば2.0~5.0molの範囲で使用することがさらに好ましい。
 インジウム化合物の使用量としては、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量1.0molに対して0~1000molに相当する量を使用できる。スズ又は有機スズのパーフルオロアルキルスルホン酸塩と同量又はそれより多い量を用いることが好ましく、パーフルオロアルキルスルホン酸塩の使用量1.0molに対して1.0~50mol、例えば2.0~5.0molの範囲で使用することがさらに好ましい。
 レニウム化合物の使用量としては、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量1.0molに対して0~100molに相当する量を使用できる。パーフルオロアルキルスルホン酸塩の使用量1.0molに対して0.01~10.0mol、例えば0.1~1.0molの範囲で使用することがさらに好ましい。
 また本発明の方法では、スズ又は有機スズのパーフルオロアルキルスルホン酸塩に、スズ又は有機スズのハロゲン化物、インジウム化合物およびレニウム化合物からなる群から選択される少なくとも1種の化合物をさらなる触媒として組み合わせ、さらに、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物をまたさらなる触媒として組み合わせて使用することもできる。
 スズ又は有機スズのパーフルオロアルキルスルホン酸塩から選択される少なくとも一種の化合物に加えて、スズ又は有機スズのハロゲン化物、インジウム化合物およびレニウム化合物からなる群から選択される少なくとも1種の化合物をさらなる触媒として組み合わせて使用し、さらに第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種からなる化合物をまたさらなる触媒として組み合わせて使用することによって、多糖類および単糖類から乳酸及び/又は乳酸エステルを効率的に製造することができる。
 第一遷移系列金属の化合物としては、上記される化合物を使用することができ、限定されるものではないが、例えば、塩化マンガン四水和物、塩化マンガン四水和物、塩化コバルト六水和物、塩化コバルト六水和物、塩化ニッケル四水和物、塩化鉄(II)六水和物などが挙げられる。
 リチウム化合物としては、上記される化合物を使用することができ、特に限定されないが、例えば、塩化リチウムが挙げられる。
 マグネシウム化合物としては、上記される化合物を使用することができ、限定されるものではないが、例えば、塩化マグネシウム四水和物(MgCl・4HO)、塩化マグネシウム六水和物(MgCl・6HO)などが挙げられる。
 アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩としては、上記される化合物を使用することができ、限定されるものではないが、例えば、ビス(トリフェニルホスフィン)イミニウムクロライド([PPN]Cl)、ビス(トリフェニルホスフィン)イミニウムブロミド([PPN]Br)、ビス(トリフェニルホスフィン)イミニウムヨード([PPN]I)、ビス(トリフェニルホスフィン)イミニウムカルボン酸([PPN]OOCH)、塩化テトラエチルアンモニウム(EtNCl)、塩酸トリエチルアミン(EtNHCl)、塩化トリオクチルメチルアンモニウム(OctNMeCl)、塩化トリエチル(2-メトキシエトキシメチル)アンモニウム(MeOCHCHOCHNEtCl)、1-ブチル-3-メチルイミダゾリウムクロリド([bmim]Cl)、1-ブチル-3-メチルイミダゾリウムアセテート([bmim]OAc)、1-ブチル-2,3-ジメチルイミダゾリウムクロリド([bdmim]Cl)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート([bmim]BF)、テトラフェニルホスホニウムクロライド(PhPCl)、塩化リチウム、ピコリン酸ナトリウム、ナトリウム(トリヒドロキシ)フェニルボラートなどが挙げられる。
 四級アンモニウム塩としては、上記される化合物を使用することができ、限定されるものではないが、例えば、ビス(トリフェニルホスフィン)イミニウムクロライド、テトラブチルアンモニウムブロミド、トリオクチルメチルアンモニウムクロリドなどをとりわけ好適に使用することができる。
 第一遷移系列金属の化合物の使用量としては、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量1.0molに対して0~1.0molに相当する量を使用できる。パーフルオロアルキルスルホン酸塩と同量又はそれより少ない量を用いることが好ましく、パーフルオロアルキルスルホン酸塩の使用量1.0molに対して0.01~0.9mol、例えば0.2~0.8molの範囲で使用することがさらに好ましい。
 リチウム化合物の使用量は、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量1.0molに対して0.1~10.0molであり、好ましくはパーフルオロアルキルスルホン酸塩の使用量と同等又はそれ以上の範囲であり、さらに好ましくは1.0molから4.0molの範囲である。
 マグネシウム化合物の使用量としては、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量1.0molに対して0~1.0molに相当する量を使用できる。パーフルオロアルキルスルホン酸塩と同量又はそれより少ない量を用いることが好ましく、パーフルオロアルキルスルホン酸塩の使用量1.0molに対して0.01~0.9mol、例えば0.2~0.8molの範囲で使用することがさらに好ましい。
 アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩の使用量は、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量1.0molに対して0~100molに相当する量を使用できる。パーフルオロアルキルスルホン酸塩の使用量1.0molに対して0.01~10.0mol、例えば0.1~1.0molの範囲で使用することがさらに好ましい。
 四級アンモニウム塩の使用量は、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量1.0molに対して0.1~10.0molであり、好ましくはパーフルオロアルキルスルホン酸塩の使用量と同等又はそれ以上の範囲であり、さらに好ましくは1.0molから4.0molの範囲である。
 本実施形態において、スズ又は有機スズのパーフルオロアルキルスルホン酸塩、スズ又は有機スズのハロゲン化物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物と、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物を組み合わせて使用した場合、これらの化合物が反応溶液中で結合し、1種類以上のアート錯体を形成しても良く、上記のとおりアート錯体を、触媒として用いることによって、糖の環化を抑制しつつ、選択的に糖の逆アルドール反応を進行させることができ、炭水化物含有原料より効率的に乳酸類への異性化反応をすすめることができる。
 本実施形態では、少なくとも1種のスズ又は有機スズのパーフルオロアルキルスルホン酸塩と、スズ又は有機スズのハロゲン化物、インジウム化合物及びレニウム化合物からなる群から選択される少なくとも1種の化合物並びに第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物に加えて、さらにフェノール性化合物を溶媒に添加して使用することもできる。フェノール性化合物としては、特に限定するものではないが、例としてカテコール、3-フルオロカテコール、2,2’-ビフェノール、3-キノリノールなどが挙げられる。フェノール性化合物の使用量は、当業者であれば適宜調節することができるが、上記化合物の使用量1.0molに対して0.1~10.0molであることが好ましく、1.0molから4.0molの範囲であることがさらに好ましい。
 本実施形態では、少なくとも1種のスズ又は有機スズのパーフルオロアルキルスルホン酸塩を含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理する。スズ又は有機スズのハロゲン化物、インジウム化合物およびレニウム化合物からなる群から選択される少なくとも1種の化合物や第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種からなる化合物ならびにフェノール性化合物などを共に使用する場合には、それらも、スズ又は有機スズのパーフルオロアルキルスルホン酸塩と共に、水及び/又はアルコールを含有する溶媒中に加えればよい。加熱処理の条件は、原料に含まれる糖類やアルコールの種類などによって当業者であれば適宜調節することができるが、100℃~300℃が好ましく、100℃~250℃がより好ましく、例えば150℃~195℃が好ましい。
(2)スズ化合物を触媒とする方法
 本発明のまた別の実施形態において、触媒として機能する少なくとも1種のスズ化合物を含めた、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することにより、乳酸及び/又は乳酸エステルを反応生成物として取得することができる。さらに、本実施形態では、少なくとも1種のスズ化合物に加えて、リチウム化合物、マグネシウム化合物、第一遷移系列金属化合物及び四級アンモニウム塩からなる群より選択される少なくとも1種の化合物を含めた、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することにより、乳酸及び/又は乳酸エステルを反応生成物として取得することができる。
 本実施形態を用いれば、炭水化物含有原料中の炭水化物、例えば、セルロース、でんぷんやオリゴ糖などの多糖、フルクトースなどの単糖から、比較的低温の反応温度を用いても、乳酸及び/又は乳酸エステルを簡便かつ高効率に製造することができる。
 本実施形態において原料として使用できる炭水化物含有原料は、糖類を含有する任意の原料であってよく、限定するものではないが、上に定義するものを利用できる。
 本発明の方法では、少なくとも1種のスズ化合物を、多糖の分解反応、及び糖の分解・異性化反応のための触媒として使用する。
 本発明の方法において「スズ化合物」とは、上記される化合物を使用することができ、特に限定されないが、例えば塩化スズ(II)、塩化スズ(IV)五水和物、臭化スズ(II)、n-ブチルスズ(II)塩化物、三塩化フェニルスズ、トリフルオロメタンスルホン酸スズ(II)(Sn(OTf))、トリフルオロメタンスルホン酸ジブチルスズ(II)(BuSn(OTf))をとりわけ好適に使用することができる。
 1つの反応系において、スズ化合物の1種類を使用してもよいし、2種類以上を組み合わせて使用してもよい。
 本発明の方法ではさらに、リチウム化合物、マグネシウム化合物、第一遷移系列金属化合物及び四級アンモニウム塩からなる群から選択される少なくとも1種の化合物を、セルロースの分解反応、及び糖の分解・異性化反応のためのさらなる触媒として使用する。
 「リチウム化合物、マグネシウム化合物、第一遷移系列金属化合物」としては、上記の化合物を使用することができ、好ましくは、リチウム、マグネシウム及び第一遷移系列金属(すなわち、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛)のフッ化物、塩化物、臭化物、及びヨウ化物が挙げられ、さらに好ましくは塩化物である。特に限定されないが、例えば、塩化リチウム、塩化マンガン四水和物、塩化コバルト六水和物、塩化コバルト六水和物、塩化ニッケル四水和物、塩化鉄(II)六水和物などをとりわけ好適に使用することができる。
 「四級アンモニウム塩」としては、上記の化合物を使用することができ、特に限定されないが、例えば四級アンモニウム塩のハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物)が挙げられ、そのような四級アンモニウム塩のハロゲン化物としては、限定されるものではないが、例えば、ビス(トリフェニルホスフィン)イミニウムクロライド、テトラブチルアンモニウムブロミド、トリオクチルメチルアンモニウムクロリドなどをとりわけ好適に使用することができる。
 また、本実施形態においては、リチウム化合物、マグネシウム化合物、第一遷移系列金属化合物及び四級アンモニウム塩からなる群から選択される少なくとも1種の化合物に加えて、または代えて、アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩なども利用することができる。アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩としては、上記される化合物を使用することができ、限定されるものではないが、例えば、ビス(トリフェニルホスフィン)イミニウムクロライド([PPN]Cl)、ビス(トリフェニルホスフィン)イミニウムブロミド([PPN]Br)、ビス(トリフェニルホスフィン)イミニウムヨード([PPN]I)、ビス(トリフェニルホスフィン)イミニウムカルボン酸([PPN]OOCH)、塩化テトラエチルアンモニウム(EtNCl)、塩酸トリエチルアミン(EtNHCl)、塩化トリオクチルメチルアンモニウム(OctNMeCl)、塩化トリエチル(2-メトキシエトキシメチル)アンモニウム(MeOCHCHOCHNEtCl)、1-ブチル-3-メチルイミダゾリウムクロリド([bmim]Cl)、1-ブチル-3-メチルイミダゾリウムアセテート([bmim]OAc)、1-ブチル-2,3-ジメチルイミダゾリウムクロリド([bdmim]Cl)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート([bmim]BF)、テトラフェニルホスホニウムクロライド(PhPCl)、塩化リチウム、ピコリン酸ナトリウム、ナトリウム(トリヒドロキシ)フェニルボラートなどが挙げられる。
 1つの反応系において、リチウム化合物、マグネシウム化合物、第一遷移系列金属化合物及び四級アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩からなる群から選択される化合物の1種類を使用してもよいし、2種類以上を組み合わせて使用してもよい。
 本実施形態の方法に用いる、水及び/又はアルコールを含有する溶媒およびその使用量は、上に定義するとおりである。
 水及び/又はアルコールを含有する溶媒に含有させる、触媒として用いるスズ化合物の合計量(使用量)としては、限定するものではないが、炭水化物含有原料中のグルコース残基又はフルクトース残基1mol当たり、質量比で0.001~1.0mol、好ましくは0.005mol~0.1mol、例えば0.01~0.05molに相当する量を使用できる。使用量が少な過ぎるとセルロースの分解反応、及び糖の分解・異性化反応が進行しにくく、多過ぎると副反応のため目的とする乳酸類の収率が低下するため好ましくない。
 また、スズ化合物に加えて用いられる、リチウム化合物、マグネシウム化合物、第一遷移系列金属化合物、四級アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩および四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物の使用量は、当業者であれば適宜調節することができるが、触媒として用いるスズ化合物の使用量1.0molに対して0.1~10.0molであり、好ましくはスズ化合物の使用量と同等又はそれ以上の範囲であり、さらに好ましくは1.0molから4.0molの範囲である。
 本実施形態において、スズ化合物と助触媒を組み合わせて使用した場合、これらの化合物が反応溶液中で結合し、1種類以上のアート錯体を形成しても良く、上記のとおりアート錯体を、触媒として用いることによって、糖の環化を抑制しつつ、選択的に糖の逆アルドール反応を進行させることができ、炭水化物含有原料より効率的に乳酸類への異性化反応をすすめることができる。
 本実施形態では、スズ化合物並びにリチウム化合物、マグネシウム化合物、第一遷移系列金属化合物、四級アンモニウム、アルカリ金属塩、アルカリ土類金属塩および四級ホスホニウム塩より選択される少なくとも1種の化合物を含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理する。加熱処理の条件は、原料に含まれる糖類やアルコールの種類などによって当業者であれば適宜調節することができるが、100℃~300℃が好ましく、100℃~250℃がより好ましく、例えば150℃~160℃を好適に使用できる。本実施形態ではこのように比較的低めの加熱温度で実施できる。
(3)レニウム化合物を触媒とする方法
 本発明のまた別の実施形態において、触媒として機能する、レニウム化合物を含めた、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することにより、乳酸及び/又は乳酸エステルを反応生成物として取得することができる。
 本実施形態を用いれば、炭水化物含有原料中の炭水化物、例えば、セルロースなどの多糖、フルクトースなどの単糖、オリゴ糖から、比較的低温の反応温度を用いても、乳酸及び/又は乳酸エステルを簡便かつ高効率に製造することができる。
 本実施形態において原料として使用できる炭水化物含有原料は、炭水化物を含有する任意の原料であってよく、限定するものではないが、上に定義するものを利用できる。
 本実施形態では、少なくとも1種のレニウム化合物を、セルロースの分解反応、及び/又は糖の分解・異性化反応のための触媒として使用する。本実施形態において「レニウム化合物」とは、例えば、ハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物を含む)、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩化合物、カルボニル化合物、リン酸塩化合物、硫酸塩化合物、硝酸塩化合物などが挙げられる。特に限定されるものではないが、レニウム化合物はカルボニル配位子を含むものが好ましく、例えば、レニウムカルボニルが挙げられる。1つの反応系で、1種類のレニウム化合物を使用してもよいし、2種類以上を組み合わせて使用してもよい。
 本実施形態に用いる、水及び/又はアルコールを含有する溶媒およびその使用量は、上に定義するとおりである。
 水及び/又はアルコールを含有する溶媒に含有させる、レニウム化合物の合計量(使用量)としては、限定するものではないが、炭水化物含有原料中のグルコース残基またはフルクトース残基1mol当たり、質量比で0.001~100.0mol、好ましくは0.005mol~10.0mol、例えば0.01~0.1molに相当する量を使用できる。使用量が少な過ぎるとセルロースの分解反応、及び糖の分解・異性化反応が進行しにくいため好ましくない。
 本実施形態では、レニウム化合物に、レニウム以外の金属化合物を組み合わせて使用することもできる。本発明の方法において「レニウム以外の金属化合物」とは、マグネシウム、スズ又は第一遷移系列金属(すなわち、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛)のハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物を含む)、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩化合物、カルボニル化合物、リン酸塩化合物、硫酸塩化合物、硝酸塩化合物又はパーフルオロアルキルスルホン酸塩が挙げられる。
 特に限定されるものではないが、本実施形態で使用され得るマグネシウム化合物としては、例えば、マグネシウムのハロゲン化物(水和物を含む)や、マグネシウムのパーフルオロアルキルスルホン酸塩が挙げられる。マグネシウムのハロゲン化物としては、例えば、塩化マグネシウム六水和物が挙げられ、とりわけ好適に使用することができる。本明細書において「マグネシウムのパーフルオロアルキルスルホン酸塩」とは、特に限定されないが、例えばトリフルオロメタンスルホン酸塩、ペンタフルオロメタンスルホン酸塩、ヘプタフルオロプロパンスルホン酸塩、ノナフルオロブタンスルホン酸塩等が挙げられる。本実施形態において、より好ましいパーフルオロアルキルスルホン酸塩は、トリフルオロメタンスルホン酸塩(慣用名:トリフラート)である。マグネシウムのパーフルオロアルキルスルホン酸塩としては、例えば、トリフルオロメタンスルホン酸マグネシウム(Mg(OTf))(Tfはトリフルオロメチルスルホニル基CFSO-を表す。以後同様。)が挙げられ、とりわけ好適に使用することができる。
 特に限定されるものではないが、本実施形態で使用され得るスズ化合物としては、上記される化合物を使用することができ、特に限定されるものではないが、例えば、塩化スズ(II)、ジ-n-ブチルスズ(II)塩化物が挙げられ、とりわけ好適に使用することができる。
 特に限定されるものではないが、本実施形態で使用され得る第一遷移系列金属化合物としては、上記される化合物を使用することができ、特に限定されるものではないが、塩化マンガン四水和物(MnCl2・4H2O)、塩化鉄(II)六水和物(FeCl2・6H2O)、塩化コバルト六水和物(CoCl2・6H2O)、塩化ニッケル四水和物(NiCl2・4H2O)などをとりわけ好適に使用することができる。
 また、本実施形態においては、「レニウム以外の金属化合物」として、上記化合物に加えて、または代えて、アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩、四級アンモニウム塩なども利用することができる。アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩としては、上記される化合物を使用することができ、限定されるものではないが、例えば、ビス(トリフェニルホスフィン)イミニウムクロライド([PPN]Cl)、ビス(トリフェニルホスフィン)イミニウムブロミド([PPN]Br)、ビス(トリフェニルホスフィン)イミニウムヨード([PPN]I)、ビス(トリフェニルホスフィン)イミニウムカルボン酸([PPN]OOCH)、塩化テトラエチルアンモニウム(EtNCl)、塩酸トリエチルアミン(EtNHCl)、塩化トリオクチルメチルアンモニウム(OctNMeCl)、塩化トリエチル(2-メトキシエトキシメチル)アンモニウム(MeOCHCHOCHNEtCl)、1-ブチル-3-メチルイミダゾリウムクロリド([bmim]Cl)、1-ブチル-3-メチルイミダゾリウムアセテート([bmim]OAc)、1-ブチル-2,3-ジメチルイミダゾリウムクロリド([bdmim]Cl)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート([bmim]BF)、テトラフェニルホスホニウムクロライド(PhPCl)、塩化リチウム、ピコリン酸ナトリウム、ナトリウム(トリヒドロキシ)フェニルボラート、ビス(トリフェニルホスフィン)イミニウムクロライド、テトラブチルアンモニウムブロミド、トリオクチルメチルアンモニウムクロリドなどが挙げられる。
 1つの反応系において、レニウム化合物と、1又は複数種のレニウム以外の金属化合物を組み合わせて使用してもよい。
 本実施形態において、レニウム化合物とレニウム以外の金属化合物を組み合わせて使用した場合、これらの化合物が反応溶液中で結合し、レニウムとレニウム以外の金属を含む2種類以上の金属を含む金属化合物を形成しても良い。あるいは、レニウムとレニウム以外の金属を含む2種類以上の金属を含む金属化合物をあらかじめ合成して反応溶液に加えても良い。生成された金属化合物は、上記セルロースの分解反応、及び/又は糖の分解・異性化反応のための触媒として機能する。特に限定されるものではないが、このようなレニウムとレニウム以外の金属を含む2種類以上の金属を含む金属化合物としては、レニウムカルボニル錯体をとりわけ好適に使用することができる。また、本実施形態において、レニウム化合物とレニウム以外の金属化合物を組み合わせて使用した場合、これらの化合物が反応溶液中で結合し、1種類以上のアート錯体を形成しても良い。ここでアート錯体は、ルイス酸性を有するレニウム化合物に、レニウム以外の金属化合物より供給されるアニオン種を配位させることにより生成する錯体型金属酸塩を意味する。
 アート錯体を、触媒として用いることによって、上記のとおり、糖の環化を抑制しつつ、選択的に糖の逆アルドール反応を進行させることができ、炭水化物含有原料より効率的に乳酸類への異性化反応をすすめることができる。
 レニウム以外の金属化合物を使用する場合、その使用量は、当業者であれば適宜調節することができるが、レニウム化合物の使用量1.0molに対して0.1~10.0molであり、好ましくはレニウム化合物の使用量と同等又はそれ以上の範囲であり、さらに好ましくは1.0molから4.0molの範囲である。
 また本実施形態は、スズ又は有機スズのパーフルオロアルキルスルホン酸塩の存在下にて実施することができる。スズ又は有機スズのパーフルオロアルキルスルホン酸塩の存在下にて実施することによって、レニウム化合物単独又はレニウム化合物及びレニウム以外の金属化合物の組み合わせを使用した場合と比べて、乳酸類の収率を高めることができる。「スズ又は有機スズのパーフルオロアルキルスルホン酸塩」は、スズ(II)塩であってもスズ(IV)塩であってもよい。パーフルオロアルキルスルホン酸塩としては、トリフルオロメタンスルホン酸塩が好ましく、例えば、トリフルオロメタンスルホン酸スズ(II)(Sn(OTf))や、トリフルオロメタンスルホン酸ジブチルスズ(II)(nBu2Sn(OTf)2)などをとりわけ好適に使用することができる。
 スズ又は有機スズのパーフルオロアルキルスルホン酸塩を使用する場合、その使用量は、当業者であれば適宜調節することができるが、レニウム化合物の使用量と同等又はそれ以上の範囲より選択することができ、レニウム化合物の使用量1.0molに対して、好ましくは1.0molから4.0molの範囲である。
 本実施形態では、レニウム化合物を含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理する。レニウム以外の金属化合物やスズ又は有機スズのパーフルオロアルキルスルホン酸塩を共に使用する場合には、そのレニウム以外の金属化合物やスズ又は有機スズのパーフルオロアルキルスルホン酸塩も、レニウム化合物と共に、水及び/又はアルコールを含有する溶媒中に加えればよい。あるいは、レニウム化合物とレニウム以外の金属化合物より、上記レニウムとレニウム以外の2種類以上の金属を含む金属化合物を生成した後、当該レニウムとレニウム以外の2種類以上の金属を含む金属化合物を、水及び/又はアルコールを含有する溶媒中に加えても良い。加熱処理の条件は、原料に含まれる糖類やアルコールの種類などによって当業者であれば適宜調節することができるが、100℃~300℃が好ましく、100℃~250℃がより好ましく、例えば150℃~200℃を好適に使用できる。
(4)インジウム化合物等を触媒とする方法
 本発明のまた別の実施形態において、触媒として機能する、インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の金属化合物を含めた、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することにより、乳酸及び/又は乳酸エステルを反応生成物として取得することができる。さらに、本実施形態では、少なくとも1種の上記化合物に加えて、アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩、及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物を含めた、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することにより、乳酸及び/又は乳酸エステルを反応生成物として取得することができる。
 本実施形態を用いれば、炭水化物含有原料中の炭水化物、例えば、でんぷんやオリゴ糖などの多糖、フルクトースなどの単糖から、比較的低温の反応温度を用いても、乳酸及び/又は乳酸エステルを簡便かつ高効率に製造することができる。
 本実施形態において原料として使用できる炭水化物含有原料は、炭水化物を含有する任意の原料であってよく、限定するものではないが、上に定義するものを利用できる。
 本実施形態では、インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の金属化合物を、多糖の分解反応、及び糖の分解・異性化反応のための触媒として使用する。
 本実施形態において「インジウム化合物」、「スズ化合物」、及び「レニウム化合物」としては、上に定義されるものを使用することができ、好ましくはハロゲン化物塩及びカルボン酸塩である。このような金属化合物としては、限定されるものではないが、例えば、臭化インジウム(III)、塩化インジウム(III)、ヨウ化インジウム(III)、塩化インジウム(III)四水和物、酢酸インジウム(III)、アセチルアセトンインジウム(III)、塩化スズ(II)、ジ-n-ブチルスズ(II)塩化物、レニウムカルボニルなどが挙げられる。
 本実施形態において「ガリウム化合物」および「アルミニウム化合物」としては、これら金属のハロゲン化物(フッ化物、塩化物、臭化物、及びヨウ化物)塩、アセチルアセトン化合物、アルコキシド化合物、カルボン酸塩、リン酸塩、硫酸塩、硝酸塩などが挙げられ、好ましくはハロゲン化物塩及びカルボン酸塩が挙げられる。例えば、限定されるものではないが、三塩化ガリウム(III)、塩化アルミニウム(III)六水和物などが挙げられる。
 1つの反応系において、インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の化合物を使用してもよいし、2種類以上を組み合わせて使用してもよい。
 本実施形態ではさらに、アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩および四級ホスホニウム塩からなる群から選択される少なくとも1種の化合物を、セルロースの分解反応、及び糖の分解・異性化反応のための、さらなる触媒として使用する。
 「アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩および四級ホスホニウム塩」としては、アルカリ金属塩、アルカリ土類金属塩、四級ホスホニウム塩としては、上記される化合物を使用することができ、限定されるものではないが、例えば、ビス(トリフェニルホスフィン)イミニウムクロライド([PPN]Cl)、ビス(トリフェニルホスフィン)イミニウムブロミド([PPN]Br)、ビス(トリフェニルホスフィン)イミニウムヨード([PPN]I)、ビス(トリフェニルホスフィン)イミニウムカルボン酸([PPN]OOCH)、塩化テトラエチルアンモニウム(EtNCl)、塩酸トリエチルアミン(EtNHCl)、塩化トリオクチルメチルアンモニウム(OctNMeCl)、塩化トリエチル(2-メトキシエトキシメチル)アンモニウム(MeOCHCHOCHNEtCl)、1-ブチル-3-メチルイミダゾリウムクロリド([bmim]Cl)、1-ブチル-3-メチルイミダゾリウムアセテート([bmim]OAc)、1-ブチル-2,3-ジメチルイミダゾリウムクロリド([bdmim]Cl)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート([bmim]BF)、テトラフェニルホスホニウムクロライド(PhPCl)、塩化リチウム、ピコリン酸ナトリウム、ナトリウム(トリヒドロキシ)フェニルボラート、ビス(トリフェニルホスフィン)イミニウムクロライド、テトラブチルアンモニウムブロミド、トリオクチルメチルアンモニウムクロリドなどが挙げられる。
 1つの反応系において、アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩および四級ホスホニウム塩からなる群から選択される1種類の化合物を使用してもよいし、2種類以上を組み合わせて使用してもよい。
 本実施形態に用いる、水及び/又はアルコールを含有する溶媒およびその使用量は、上に定義するとおりである。
 水及び/又はアルコールを含有する溶媒に含有させる、触媒として用いるインジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の化合物の合計量(使用量)としては、限定するものではないが、炭水化物含有原料中のグルコース残基又はフルクトース残基1mol当たり、質量比で0.001~1.0mol、好ましくは0.005mol~0.1mol、例えば0.01~0.05molに相当する量を使用できる。
 また、さらなる触媒として用いる、アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩および四級ホスホニウム塩からなる群から選択される少なくとも1種の化合物の使用量は、当業者であれば適宜調節することができるが、触媒として用いるインジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物から選択される化合物の使用量1.0molに対して0.1~10.0molであり、好ましくはインジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物から選択される化合物の使用量と同等又はそれ以上の範囲であり、さらに好ましくは1.0molから4.0molの範囲である。
 本実施形態において、インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物から選択される化合物とアルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩および四級ホスホニウム塩から選択される化合物を組み合わせて使用した場合、これらの化合物が反応溶液中で結合し、1種類以上のアート錯体を形成しても良い。ここでアート錯体は、ルイス酸性を有するインジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物から選択される化合物に、アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩および四級ホスホニウム塩から選択される化合物より供給されるアニオン種を配位させることにより生成する錯体型金属酸塩を意味する。
 アート錯体を、触媒として用いることによって、上記のとおり、糖の環化を抑制しつつ、選択的に糖の逆アルドール反応を進行させることができ、炭水化物含有原料より効率的に乳酸類への異性化反応をすすめることができる。
 本実施形態では、インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物からなる群から選択される少なくとも1種の金属化合物並びにアルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩、及び四級ホスホニウム塩からなる群より選択される少なくとも1種の塩に加えて、スズ又は有機スズのパーフルオロアルキルスルホン酸塩をさらなる触媒として組み合わせて使用することもできる。スズ又は有機スズのパーフルオロアルキルスルホン酸塩は、セルロースなどの多糖類の分解反応及び糖の分解・異性化反応のための触媒として使用することができ、従って炭水化物含有原料がセルロースなどの多糖類を含む場合に特に好適である。
スズ又は有機スズのパーフルオロアルキルスルホン酸塩としては、上記される化合物を使用することができ、好ましくは、トリフルオロメタンスルホン酸塩(慣用名:トリフラート)であり、例えば、トリフルオロメタンスルホン酸スズ(II)、トリフルオロメタンスルホン酸ジブチルスズ(II)を使用することができる。
 スズ又は有機スズのパーフルオロアルキルスルホン酸塩の使用量としては、インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物から選択される化合物の使用量1.0molに対して0~1000molに相当する量を使用できる。インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物から選択される化合物と同量又はそれより多い量を用いることが好ましく、インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物から選択される化合物の使用量1.0molに対して1.0~50mol、例えば1.0~20molの範囲で使用することがさらに好ましい。
 本実施形態では、インジウム化合物、ガリウム化合物、アルミニウム化合物、スズ化合物、及びレニウム化合物より選択される少なくとも1種の化合物並びにアルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩および四級ホスホニウム塩より選択される少なくとも1種の化合物、さらに必要に応じてスズ又は有機スズのパーフルオロアルキルスルホン酸塩を含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理する。加熱処理の条件は、原料に含まれる糖類やアルコールの種類などによって当業者であれば適宜調節することができるが、100℃~300℃が好ましく、100℃~250℃がより好ましく、例えば150℃~160℃を好適に使用できる。本発明の方法ではこのように比較的低めの加熱温度で実施できる。
(5)インジウムアルコキシド等を触媒とする方法
 本発明のさらに別の実施形態において、触媒として機能する、インジウムアルコキシド及びインジウムアセチルアセトナートからなる群より選択される少なくとも1種を含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理することにより、乳酸及び/又は乳酸エステルを含む反応生成物を取得することができる。
 本実施形態を用いれば、炭水化物含有原料中の炭水化物から、乳酸及び/又は乳酸エステルを簡便かつ非常に高効率に製造することができる。
 本実施形態において原料として使用できる炭水化物含有原料は、炭水化物を含有する任意の原料であってよく、限定するものではないが、上に定義するものを利用できる。
 本実施形態では、インジウムアルコキシド又はインジウムアセチルアセトナートを、炭水化物含有原料に対する分解反応及び異性化反応、さらに中間体として生成する三炭糖の乳酸及び/又は乳酸エステルへの異性化反応のための触媒として用いる。本実施形態の好適な一実施形態では、インジウムアルコキシドを用いることが好ましい。本実施形態の別の実施形態では、インジウムアセチルアセトナートを用いることが好ましい。本実施形態のさらに別の実施形態では、インジウムアセチルアセトナートとインジウムアルコキシドの両方を用いてもよい。本実施形態で使用され得るインジウムアルコキシドとしては、例えば、インジウムメトキシド、インジウムエトキシド、インジウムイソプロポキシド、インジウム-n-ブトキシド、及びインジウム-t-ブトキシドなどが挙げられる。本実施形態で使用され得るインジウムアセチルアセトナートとしては、例えば、アセチルアセトンインジウム、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)インジウム、及びインジウムトリフルオロアセチルアセトナートなどが挙げられる。1つの反応系で、インジウムアルコキシド及びインジウムアセチルアセトナートのうち1種類を使用してもよいし、2種類以上を使用してもよい。
 本実施形態に用いる、水及び/又はアルコールを含有する溶媒およびその使用量は、上に定義するとおりである。
 水及び/又はアルコールを含有する溶媒に含有させる、インジウムアルコキシド及び/又はインジウムアセチルアセトナートの合計量(使用量)としては、限定するものではないが、炭水化物含有原料中のグルコース残基1mmolに対して、質量比で0.00001~1.0mol、好ましくは0.005mol~0.1mol、例えば0.01~0.05molに相当する量を使用できる。
 インジウムアルコキシド及び/又はインジウムアセチルアセトナートを用いた乳酸類の製造方法は単糖からの乳酸類の生成に特に適しており、従って炭水化物含有原料が単糖を含む場合に特に好適である。
 本実施形態では、インジウムアルコキシド及び/又はインジウムアセチルアセトナートに加えて、さらにフェノール性化合物を溶媒に添加して使用することも好ましい。フェノール性化合物としては、特に限定するものではないが、例としてフェノール、クレゾール、アルキルフェノール、カテコール、ピロガロール、アルコキシフェノール、サリチル酸、サリチル酸エステル、2,2’-ビフェノール、及びキノリノールなどが挙げられる。フェノール性化合物の使用量は、当業者であれば適宜調節することができるが、インジウムアルコキシド及び/又はインジウムアセチルアセトナートの合計量(使用量)1.0molに対して0.1~10.0molであることが好ましく、1.0molから4.0molの範囲であることがさらに好ましい。フェノール性化合物の添加により、乳酸類の収率を大幅に向上させることができる。
 本実施形態では、インジウムアルコキシド及び/又はインジウムアセチルアセトナートを含む、水及び/又はアルコールを含有する溶媒中で、炭水化物含有原料を加熱処理する。本実施形態では、加熱処理前に、水及び/又はアルコールを含有する溶媒中に、インジウムアルコキシド及び/又はインジウムアセチルアセトナート、及び炭水化物含有原料を添加することが好ましい。フェノール性化合物も、インジウムアルコキシド及び/又はインジウムアセチルアセトナートと共に、水及び/又はアルコールを含有する溶媒中に加えればよい。加熱処理の条件は、原料に含まれる糖類やアルコールの種類などによって当業者であれば適宜調節することができるが、100℃~300℃が好ましく、100℃~250℃がより好ましく、例えば140℃~195℃を好適に使用できる。
 上記(1)~(5)の実施形態はいずれも、比較的低めの加熱温度で実施することができる。当該加熱処理は、酸素の非存在下で行うことも好ましい。酸素の非存在条件にするためには、加熱処理前に不活性ガスを反応容器に充填して、空気をパージ(排除)することが好適である。不活性ガスの種類は特に限定されるものではないが、例えば、窒素ガス、アルゴンガス、炭酸ガスなどが例として挙げられる。また、加熱処理は、加圧下で行うことも好ましい。反応圧力は大気圧以上であることが好ましく、0.3MPa~20MPaが好ましく、0.4MPa~10MPaがさらに好ましい。
 上記(1)~(5)の実施形態において、水及び/又はアルコールを含有する溶媒中での反応は、限定するものではないが、例えばオートクレーブ中で行うことが好ましい。また他の好ましい反応形態として、連続流通系反応方法(連続法)が挙げられる。原料・溶媒・触媒を混合した反応液を、所定温度、圧力に制御された反応器に連続的に供給して、所定時間反応器内に滞留させて反応させることができる。
 上記(1)~(5)の実施形態では、例えば、電磁撹拌式オートクレーブに、スズ化合物、レニウム化合物、およびインジウム化合物からなる群から選択される少なくとも1種の化合物と、必要に応じてその他の化合物(マグネシウム化合物、第一遷移系列金属の化合物、リチウム化合物、アルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩、四級ホスホニウム塩、及びフェノール性化合物からなる群より選択される少なくとも1種の化合物)、炭水化物含有原料、並びに水及び/又はアルコールを含有する溶媒を仕込み、不活性ガスで空気をパージした後、上記加熱温度まで加熱して所定時間反応させればよい。加熱時間は、当業者であれば適宜調節でき、特に限定するものではないが、加熱温度に達してから3時間~24時間とすればよく、5時間~12時間が好ましい。所定の加熱時間経過後は、加熱を停止し、室温まで放冷させればよい。室温まで冷却した後、オートクレーブから反応生成物を取り出す。
 また連続流通系反応方法を用いる場合においては、スズ化合物、レニウム化合物、およびインジウム化合物からなる群から選択される少なくとも1種の化合物と、必要に応じてその他の化合物(マグネシウム化合物、第一遷移系列金属の化合物、リチウム化合物及びアルカリ金属塩、アルカリ土類金属塩、第一遷移系列金属塩、四級アンモニウム塩、四級ホスホニウム塩、及びフェノール性化合物からなる群より選択される少なくとも1種の化合物)、炭水化物含有原料、並びに水及び/又はアルコールを含有する溶媒を混合した反応液を、所定の加熱温度及び圧力に制御された反応器に連続的に供給し、所定の加熱時間にわたり反応器内に滞留させて反応させればよい。加熱時間経過後は、加熱を停止し、室温まで放冷させればよい。室温まで冷却した後、反応器から反応生成物を取り出す。
 以上のような方法により、乳酸及び/又は乳酸エステルを高収率で生成させることができる。炭水化物含有原料がセルロースを含む場合、セルロースから効率よく加溶媒分解された糖類から乳酸類が多量に生成されることになる。本発明の方法によれば、乳酸及び/又は乳酸エステルを、炭水化物含有原料中の1グルコース残基又は1フルクトース残基当たりに生成されたモル数の基準で、9%~50%の収率で得ることができる。尚、収率は、原料のセルロースより理論上生成される、1グルコース残基当たりの乳酸類のモル数(乳酸類/グルコース残基=2mol/1mol)又は1フルクトース残基当たりの乳酸類のモル数(乳酸類/フルクトース残基=5mol/2.5molに対する、乳酸及び/又は乳酸エステルのモル数(mol)の百分率(%)で表される。
 特に、上記「(1)スズ又は有機スズのパーフルオロアルキルスルホン酸塩を触媒とする方法」において、使用した溶媒がアルコールを含有する場合には、炭水化物含有原料中の1グルコース残基又は1フルクトース残基当たりの基準で、例えば20%~40%程度の収率で得ることができる。また、スズ又は有機スズのパーフルオロアルキルスルホン酸塩に加えて、パーフルオロアルキルスルホン酸塩以外のスズ化合物(とりわけ、塩化スズ又はジ-n-ブチルスズ塩化物等のスズ又は有機スズのハロゲン化物)を使用する場合、スズ又は有機スズのパーフルオロアルキルスルホン酸塩単独の場合と比較して、乳酸及び/又は乳酸エステルの収率を例えば1~10%増加させることもできる。さらに、スズ又は有機スズのパーフルオロアルキルスルホン酸塩に加えて、インジウム化合物(とりわけ、インジウムハロゲン化物)、レニウム化合物、マグネシウム化合物、第一遷移系列金属の化合物からなる群より選択される1種類以上の化合物を使用する場合は、スズ又は有機スズのパーフルオロアルキルスルホン酸塩単独の場合あるいはスズ又は有機スズのパーフルオロアルキルスルホン酸塩に加えて、パーフルオロアルキルスルホン酸塩以外のスズ化合物(とりわけ、塩化スズ又はジ-n-ブチルスズ塩化物等のスズ又は有機スズのハロゲン化物)を使用する場合と比較して、乳酸及び/又は乳酸エステルの収率を例えば1~20%程度増加させることもできる。さらに、スズ有機スズのパーフルオロアルキルスルホン酸塩単独の場合、又はスズ若しくは有機スズのパーフルオロアルキルスルホン酸塩に加えて、パーフルオロアルキルスルホン酸塩以外のスズ化合物(とりわけ、塩化スズ又はジ-n-ブチルスズ塩化物等のスズ又は有機スズのハロゲン化物)を使用する場合、あるいはそれらにインジウム化合物(とりわけ、インジウムハロゲン化物)、レニウム化合物、マグネシウム化合物、第一遷移系列金属の化合物からなる群より選択される1種類以上の化合物を使用する場合に、さらにフェノール性化合物を加えて使用する場合、フェノール化合物を加えない場合と比較して、乳酸及び/又は乳酸エステルの収率を例えば1~20%程度増加させることができる。
 また、上記「(2)スズ化合物を触媒とする方法」によれば、乳酸類を、セルロースや単糖等を含む炭水化物含有原料中の1グルコース残基又は1フルクトース残基当たりの基準で、45%~60%程度の収率で得ることができる。
 さらに、上記「(3)レニウム化合物を触媒とする方法」によれば、レニウム化合物を単独で使用した場合、乳酸類(例えば、乳酸エステル)を、セルロースや単糖等を含む炭水化物含有原料中の1グルコース残基または1フルクトース残基当たりに生成されたモル数の基準で、15%~30%の収率で得ることができる。また、レニウム化合物に加えて、レニウム以外の金属化合物やスズ又は有機スズのパーフルオロアルキルスルホン酸塩を使用する場合、レニウム化合物単独の場合と比較して、乳酸類の収率を例えば5~50%増加させることもできる。
 そして、上記「(4)インジウム化合物等を触媒とする方法」によれば、インジウム化合物等に加えて、アルカリ金属塩等を使用する場合、乳酸類を、炭水化物含有原料中の1グルコース残基当たりに生成されたモル数の基準で、15%~75%、例えば50~70%の収率で得ることができる。
 またさらに、上記「(5)インジウムアルコキシド等を触媒とする方法」によれば、乳酸及び/又は乳酸エステルを、炭水化物含有原料中の1グルコース残基当たりに生成されたモル数の基準で、5%~60%、例えば30~50%の収率で得ることができる。インジウムアルコキシド及び/又はインジウムアセチルアセトナートに加えて、フェノール性化合物を組み合わせて使用した場合には、インジウムアルコキシド及び/又はインジウムアセチルアセトナート単独で使用した場合と比較して、乳酸及び/又は乳酸エステルの収率を例えば5~15%増加させることもできる。インジウムアルコキシド及び/又はインジウムアセチルアセトナートに加えて、フェノール性化合物を組み合わせて使用した場合には、インジウムアルコキシド及び/又はインジウムアセチルアセトナート単独で使用した場合と比較して、乳酸及び/又は乳酸エステルの収率を例えば5~15%増加させることもできる。
 上記のようにして得られる反応液から、乳酸又は乳酸エステルを分離することも好ましい。この分離は、例えば液体クロマトグラフィー等の当業者に公知の有機酸分離方法によって行うことができる。
 本発明の方法では、触媒として使用する酸の使用量を少量に抑えながらも乳酸エステルの収率を向上させることができて有用である。
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
(1)スズ化合物を触媒とする方法
(実施例1)
 50mL容のステンレス製オートクレーブに、120℃の空気中で2時間以上乾燥させたセルロース0.405g(グルコース残基2.5mmol相当)、トリフルオロメタンスルホン酸スズ(II)(Sn(OTf);Tf=CFSO)8mg(0.02mmol)及びメタノール20mLと、撹拌子とを加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、マントルヒーターを用いてオートクレーブ内部が190℃になるまで加熱した。その後10時間、190℃に保持しながら撹拌を続けた後、加熱を停止し室温中で放冷した。室温まで冷却したオートクレーブ中から反応溶液を取り出し、溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。なお各収率は、原料のセルロースより理論上生成される、1グルコース残基当たりの乳酸類のモル数(乳酸類/グルコース残基=5 mmol/2.5 mmol)に対する、各生成物のモル数(mol)の百分率(%)で表した。表1中の「-」は検出限界以下であることを示し、「trace」は0.05%未満であることを示す。
(実施例2)
 トリフルオロメタンスルホン酸スズ(II)に代えてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)((Bu)Sn(OTf))を用いた点以外は、実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(実施例3)
 メタノールに代えて純水を用いた点以外は、実施例2と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(比較例1)
 トリフルオロメタンスルホン酸スズ(II)に代えてトリフルオロメタンスルホン酸アルミニウム(Al(OTf))(0.1mmol)を使用し、5時間の反応時間で加熱処理を行った。その他の条件は実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(比較例2)
 トリフルオロメタンスルホン酸スズ(II)に代えてトリフルオロメタンスルホン酸鉄(Fe(OTf))(0.1mmol)を使用し、5時間の反応時間で加熱処理を行った。その他の条件は実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(比較例3)
 トリフルオロメタンスルホン酸スズ(II)に代えてトリフルオロメタンスルホン酸亜鉛(Zn(OTf))(0.1mmol)を使用し、5時間の反応時間で加熱処理を行った。その他の条件は実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(比較例4)
 トリフルオロメタンスルホン酸スズ(II)(0.02mmol)に代えてp-トルエンスルホン酸一水和物(PTSA・HO)19mg(0.1mmol)を使用し、5時間の反応時間で加熱処理を行った。その他の条件は実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(比較例5)
 トリフルオロメタンスルホン酸スズ(II)に代えて塩化スズ(II)(SnCl)を使用した点以外は、実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(比較例6)
 トリフルオロメタンスルホン酸スズ(II)に代えてジ-n-ブチルスズ(II)塩化物((Bu)SnCl)を使用した点以外は、実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(比較例7)
 トリフルオロメタンスルホン酸スズ(II)に代えてジ-n-ブチルスズ(II)オキシド((Bu)SnO)を使用した点以外は、実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表1に示す。
(比較例8)
 トリフルオロメタンスルホン酸スズ(II)に代えてジ-n-ブチルスズ(II)酢酸塩((Bu)Sn(OAc))を使用した点以外は、実施例1と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を表1に示す。
(結果)
 表1に示すように、スズのトリフルオロメタンスルホン酸塩であるSn(OTf)、ジ-n-ブチルスズのトリフルオロメタンスルホン酸塩である(Bu)Sn(OTf)を触媒として用いた結果、乳酸及び乳酸エステル(乳酸類)を高い収率で得ることができた。また、水中での反応では、乳酸を高い収率で得ることができた(実施例3)。
 一方、スズ又は有機スズ以外の金属のトリフルオロメタンスルホン酸塩を用いた場合は、乳酸類が生成しても非常に少量であった(比較例1~3)。
 またp-トルエンスルホン酸一水和物(PTSA・HO)を酸触媒として用いた場合(比較例4)には、実施例1~3と比べて5倍量の触媒を使用したにもかかわらず、乳酸類の収率は0.8%に過ぎず、これは例えば実施例1で得られた収率の32分の1以下であった。
 さらに、トリフルオロメタンスルホン酸塩ではなく塩化物である塩化スズ(II)、ジ-n-ブチルスズ(II)塩化物を使用した場合には、乳酸類は生成しなかった。同様にジ-n-ブチルスズ(II)オキシド又はジ-n-ブチルスズ(II)酢酸塩を使用した場合にも、乳酸類は非常に少量しか生成しなかった(比較例5~8)。
Figure JPOXMLDOC01-appb-T000003
(実施例4)
 50mL容のステンレス製オートクレーブに、120℃の空気中で2時間以上乾燥させたセルロース0.405g(グルコース残基2.5mmol相当)、トリフルオロメタンスルホン酸スズ(II)8mg(0.02mmol)、トリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)11mg(0.02mmol)及びメタノール20mLと、撹拌子とを加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、マントルヒーターを用いてオートクレーブ内部が190℃になるまで加熱した。その後10時間、190℃に保持しながら撹拌を続けた後、加熱を停止して室温中で放冷した。室温まで冷却させた後、オートクレーブから反応溶液を取り出し、実施例1と同様に溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。
 その結果、乳酸メチルが19.0%、乳酸が2.3%の収率(合計収率21.3%)で得られた。このように本方法では、2種類のスズ/有機スズのトリフルオロメタンスルホン酸塩を触媒として用いた場合にも、乳酸及び乳酸エステルを高い収率で得ることができることが示された。
(実施例5)
 50mL容のステンレス製オートクレーブ(日東高圧製)に、120℃の空気中で2時間以上乾燥させたセルロース0.405g(グルコース残基2.5mmol相当)、トリフルオロメタンスルホン酸スズ(II)(触媒A)8mg(0.02mmol)、塩化スズ(II)(SnCl)(触媒B)15mg(0.08mmol)及びメタノール20mLと、撹拌子とを加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、マントルヒーターを用いてオートクレーブ内部が190℃になるまで加熱した。その後10時間、190℃に保持しながら撹拌を続けた後、加熱を停止して室温中で放冷した。室温まで冷却させた後、オートクレーブから反応溶液を取り出し、実施例1と同様に溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表2に示す。表2中の「trace」は0.05%未満であることを示す。
(実施例6)
 塩化スズ(II)の代わりにジ-n-ブチルスズ塩化物((Bu)SnCl)24mg(0.08mmol)を使用した点以外は、実施例5と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表2に示す。
(実施例7)
 50mL容のステンレス製オートクレーブに、120℃の空気中で2時間以上乾燥させたセルロース0.405g(グルコース残基2.5mmol相当)、トリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)((Bu)Sn(OTf))11mg(0.02mmol)(触媒A)、塩化スズ(II)(SnCl)(触媒B)15mg(0.08mmol)及びメタノール20mLと、撹拌子とを加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、マントルヒーターを用いてオートクレーブ内部が190℃になるまで加熱した。その後10時間、190℃に保持しながら撹拌を続けた後、加熱を停止して室温中で放冷した。室温まで冷却させた後、オートクレーブから反応溶液を取り出し、実施例1と同様に溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表2に示す。
(実施例8)
 トリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)(触媒A)の使用量を43mg(0.08mmol)(触媒A)とし、塩化スズ(II)(触媒B)の使用量を4mg(0.02mmol)とした点以外は、実施例7と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表2に示す。
(実施例9)
 セルロース、トリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)、塩化スズ(II)、及びメタノールに、さらにカテコール18mg(0.16mmol)を加えて反応を行った点以外は、実施例7と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表2に示す。
(実施例10)
 塩化スズ(II)の代わりにジ-n-ブチルスズ塩化物((Bu)SnCl)24mg(0.08mmol)を用いた点以外は、実施例7と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表2に示す。
(比較例9)
 トリフルオロメタンスルホン酸スズ(II)の代わりにp-トルエンスルホン酸一水和物(PTSA・HO)4mg(0.02mmol)を用いた点以外は、実施例6と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表2に示す。
(結果)
 表2に示されるように、スズ/有機スズのトリフルオロメタンスルホン酸塩を、トリフルオロメタンスルホン酸塩以外のスズ化合物と共に使用しても、乳酸類を高い収率で得ることができた。特にスズ/有機スズの塩化物との併用では、より高い収率が得られる傾向が強かった。一方、トリフルオロメタンスルホン酸塩以外のスズ化合物を触媒として使用した場合(比較例9)には、乳酸類はほとんど生成しなかった。
 また、二種類の触媒の使用量比率を変えた実施例7及び8では、
触媒の合計使用量(触媒A+B)に対するトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)(触媒A)の割合がより低い(20%;実施例7)方が、その割合がより高い(80%;実施例8)場合よりも乳酸類の収率は高かった。従って、スズ/有機スズのトリフルオロメタンスルホン酸塩に他のスズ化合物を加える場合、触媒の合計使用量に対するスズのトリフルオロメタンスルホン酸塩の割合を比較的低くすることが、乳酸類を高い収率で得る上で有用であることが示された。
 なお、実施例9においてフェノール性化合物であるカテコールをさらに加えて反応させた結果、カテコール不添加(実施例7)よりも高い収率で乳酸類が得られた。
Figure JPOXMLDOC01-appb-T000004
(実施例11)
 50mL容のステンレス製オートクレーブに、120℃の空気中で2時間以上乾燥させたセルロース0.405g(グルコース残基2.5mmol相当)、触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)(BuSn(OTf);Tf=CFSO)11mg(0.02mmol)および臭化インジウム(InBr)28mg(0.08mmol)ならびにメタノール20mLと、撹拌子とを加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、マントルヒーターを用いてオートクレーブ内部が190℃になるまで加熱した。その後10時間、190℃に保持しながら撹拌を続けた後、加熱を停止し室温中で放冷した。室温まで冷却したオートクレーブ中から反応溶液を取り出し、溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表3に示す。表3中の「-」は検出限界以下であることを示す。
(実施例12)
 セルロース、トリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)、臭化インジウム、及びメタノールに、さらにカテコール11mg(0.1mmol)を加えて反応を行った点以外は、実施例11と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表3に示す。
(比較例10)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)を用いず、臭化インジウム(InBr)18mg(0.05mmol)のみを用いた点以外は、実施例11と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表3に示す。
(結果)
 表3に示されるように、有機スズのトリフルオロメタンスルホン酸塩を、臭化インジウムと共に使用することによって、有機スズのトリフルオロメタンスルホン酸塩を単独で用いる場合(上記実施例2(表1))よりも、乳酸類を高い収率で得ることができた。従って、スズ/有機スズのトリフルオロメタンスルホン酸塩とインジウム化合物を併用することによって、乳酸類を高い収率で得る上で有用であることが示された。
 なお、実施例12においてフェノール性化合物であるカテコールをさらに加えて反応させた結果、カテコール不添加(実施例11)よりも高い収率で乳酸類が得られた。
Figure JPOXMLDOC01-appb-T000005
(実施例13)
 50mL容のステンレス製オートクレーブに、120℃の空気中で2時間以上乾燥させたセルロース0.405g(グルコース残基 2.5mmol相当)、トリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)((Bu)Sn(OTf))53mg(0.1mmol)及びレニウムカルボニル(Re(CO)10)33mg(0.05mmol)ならびにメタノール20mLと、撹拌子とを加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、電気炉を用いてオートクレーブ内部が190℃になるまで加熱した。その後10時間、190℃に保持しながら撹拌を続けた後、加熱を停止し室温中で放冷した。室温まで冷却したオートクレーブ中から反応溶液を取り出し、溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表4に示す。表4中の「-」は検出限界以下であることを示す。
(実施例14)
 触媒としてトリフルオロメタンスルホン酸スズ(II)(Sn(OTf);Tf=CFSO)42mg(0.1mmol)及びレニウムカルボニル(Re(CO)10)33mg(0.05mmol)を使用した。それ以外は、実施例13と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表4に示す。
(実施例15)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)((Bu)Sn(OTf))64mg(0.12mmol)及び塩化マンガン四水和物(MnCl・4HO)20mg(0.1mmol)を使用し、24時間の反応時間で200℃の加熱処理を行なった。それ以外は、実施例13と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表4に示す。
(実施例16)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)((Bu)Sn(OTf))32mg(0.06mmol)、塩化マンガン四水和物(MnCl・4HO)10mg(0.05mmol)及びレニウムカルボニル(Re(CO)10)16mg(0.025mmol)を使用し、24時間の反応時間で200℃の加熱処理を行なった。それ以外は、実施例13と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表4に示す。
(実施例17)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)((Bu)Sn(OTf))64mg(0.12mmol)、塩化マンガン四水和物(MnCl・4HO)20mg(0.1mmol)及びレニウムカルボニル(Re(CO)10)33mg(0.05mmol)を使用し、24時間の反応時間で200℃の加熱処理を行なった。それ以外は、実施例13と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表4に示す。
(実施例18)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)((Bu)Sn(OTf))32mg(0.06mmol)、塩化マグネシウム六水和物(MgCl・6HO)10mg(0.05mmol)及びレニウムカルボニル(Re(CO)10)16mg(0.025mmol)を使用し、62時間の反応時間で200℃の加熱処理を行った。それ以外は、実施例13と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表4に示す。
(実施例19)
 触媒としてトリフルオロメタンスルホン酸スズ(II)(Sn(OTf);Tf=CFSO)50mg(0.12mmol)、塩化マグネシウム六水和物(MgCl・6HO)20mg(0.1mmol)及びレニウムカルボニル(Re(CO)10)33mg(0.05mmol)を使用し、10時間の反応時間で200℃の加熱処理を行った。それ以外は、実施例13と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表4に示す。
(結果)
 表4に示すように、スズのトリフルオロメタンスルホン酸塩であるSn(OTf)もしくはジ-n-ブチルスズのトリフルオロメタンスルホン酸塩である(Bu)Sn(OTf)を、レニウムカルボニル(Re(CO)10)及び/又は塩化マンガン四水和物(MnCl・4HO)もしくは塩化マグネシウム六水和物(MgCl・6HO)と組み合わせて触媒として用いた結果、Sn(OTf)または(Bu)Sn(OTf)を単独で用いた場合(上記実施例1および2(表1))と比べて、乳酸類、特に乳酸エステルを高い収率で得られたが、実施例1および2と異なり乳酸は生成しなかった。
 また、Sn(OTf)もしくはジ-n-ブチルスズのトリフルオロメタンスルホン酸塩である(Bu)Sn(OTf)、レニウムカルボニル(Re(CO)10)および塩化マンガン四水和物(MnCl・4HO)もしくは塩化マグネシウム六水和物(MgCl・6HO)と組み合わせて触媒として用いた場合(実施例16-19)、Sn(OTf)もしくはジ-n-ブチルスズのトリフルオロメタンスルホン酸塩である(Bu)Sn(OTf)とレニウムカルボニル(Re(CO)10)または塩化マンガン四水和物(MnCl・4HO)もしくは塩化マグネシウム六水和物(MgCl・6HO)の2種の触媒を用いた場合(実施例13-15)と比べて、乳酸類、特に乳酸エステルを高い収率で得ることができた。従って、スズ/有機スズのトリフルオロメタンスルホン酸塩とレニウム化合物およびマンガン化合物もしくはマグネシウム化合物と併用することによって、乳酸類を高い収率で得る上で有用であることが示された。
Figure JPOXMLDOC01-appb-T000006
(実施例20)
 50mL容のステンレス製オートクレーブ(耐圧硝子工業製)に、原料としてD-フルクトース0.45g(2.5mmol)、触媒として塩化スズ(II)5mg(0.025mmol)、助触媒として塩化マンガン四水和物20mg(0.1mmol)、溶媒としてメタノール10mLと、撹拌子を加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、電気炉を用いてオートクレーブを150℃になるまで加熱した。その後、150℃に保持しながら5時間撹拌を続けた後、オートクレーブを室温中で放冷した。冷却後、オートクレーブ中から反応溶液を取り出し、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。なお各収率は、原料のD-フルクトースより理論上生成される、乳酸類のモル数(乳酸類/フルクトース=5 mmol/2.5 mmol)に対する、生成物のモル数(mol)の百分率(%)で表した。表中の「trace」は0.5%未満であることを示す。
(実施例21)
 塩化スズ(II)に代えて臭化スズ(II)7mg(0.025mmol)を用いた点以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例22)
 塩化スズ(II)に代えてn-ブチルスズ三塩化物28mg(0.1mmol)を用いた点以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例23)
 塩化スズ(II)に代えて三塩化フェニルスズ30mg(0.1mmol)を使用し、10時間の反応時間で加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例24)
 塩化スズ(II)に代えてトリフルオロメタンスルホン酸スズ42mg(0.1mmol)を使用し、塩化マンガン四水和物に代えて塩化マグネシウム六水和物20mg(0.1mmol)を使用した。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例25)
 塩化スズ(II)に代えて、トリフルオロメタンスルホン酸スズ8mg(0.02mmol)及びn-ブチルスズ三塩化物23mg(0.08mmol)を用いた点以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例11)
 触媒として塩化スズ(II)24mg(0.125mmol)を使用し、助触媒を用いなかった点以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例12)
 触媒として臭化スズ(II)35mg(0.125mmol)を使用し、助触媒を用いなかった点以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例13)
 触媒として塩化スズ(IV)五水和物35mg(0.1mmol)を使用し、助触媒を用いず、10時間の反応時間で加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例14)
 触媒としてトリフルオロメタンスルホン酸スズ21mg(0.05mmol)を使用し、助触媒を用いず、160℃にて加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例15)
 助触媒として塩化マンガン四水和物20mg(0.1mmol)を使用し、触媒を用いなかった点以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例16)
 助触媒として塩化マグネシウム六水和物20mg(0.1mmol)を使用し、触媒を用いなかった点以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例26)
 塩化マンガン四水和物に代えて塩化コバルト六水和物6mg(0.025mmol)を使用し、160℃にて加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例27)
 触媒として塩化スズ(II)9mg(0.05mmol)を使用し、助触媒として塩化コバルト六水和物12mg(0.05mmol)を使用し、160℃にて加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例28)
 塩化マンガン四水和物に代えて塩化ニッケル六水和物6mg(0.025mmol)を使用し、160℃にて加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例29)
 触媒として塩化スズ(II)9mg(0.05mmol)を使用し、助触媒として塩化ニッケル六水和物12mg(0.05mmol)を使用し、160℃にて加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例17)
 触媒として塩化スズ(II)5mg(0.025mmol)を使用し、助触媒を用いず、160℃にて加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例18)
 触媒として塩化スズ(II)9mg(0.05mmol)を使用し、助触媒を用いず、160℃にて加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例19)
 助触媒として塩化コバルト六水和物24mg(0.1mmol)を使用し、触媒を用いず、160℃にて加熱処理を行った。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例20)
 助触媒として塩化ニッケル六水和物24mg(0.1mmol)を使用し、触媒を用いなかった点以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例30)
 塩化マンガン四水和物に代えて塩化リチウム4mg(0.1mmol)を使用した以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(実施例31)
 塩化マンガン四水和物に代えて塩化鉄(II)四水和物20mg(0.1mmol)を使用した以外は、実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例21)
 助触媒として塩化リチウム4mg(0.1mmol)を使用し、触媒を用いなかった。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(比較例22)
 助触媒として塩化鉄(II)四水和物20mg(0.1mmol)を使用し、触媒を用いなかった。その他の条件は実施例20と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表5に示す。
(結果)
 表5に示すように、スズ含有化合物と助触媒を組み合わせて用いた場合(実施例20-31)、スズ含有化合物又は助触媒のいずれかを用いなかった場合(比較例11-22)と比べて、乳酸エステルを高い収率で得ることができた。助触媒として、塩化マンガン四水和物又は塩化マグネシウム六水和物を用いた場合(実施例20-25)に、乳酸エステルを高い収率で得られる傾向がみられた。また、2種のスズ含有化合物を助触媒と組み合わせて用いた場合(実施例25)、特に高い収率が得られた。さらに、二種類の触媒の使用量比率を変えた実施例26及び27並びに実施例28及び29では、スズ含有化合物と助触媒の合計使用量がより多い方(実施例27及び29)が、その使用量がより少ない場合(実施例26及び28)よりも乳酸エステルの収率は高かった。従って、スズ含有化合物と助触媒の合計使用量を比較的高くすることが、乳酸エステルを高い収率で得る上で有用であることが示された。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-I000008
(実施例32)
 50mL容のステンレス製オートクレーブ(耐圧硝子工業製)に、原料としてD-フルクトース0.45g(2.5mmol)、触媒として塩化スズ(IV)五水和物35mg(0.1mmol)、助触媒としてビストリフェニルホスフィンイミニウムクロリド57mg(0.1mmol)、溶媒としてメタノール20mLと、撹拌子を加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、電気炉を用いてオートクレーブを150℃になるまで加熱した。その後、150℃に保持しながら10時間撹拌を続けた後、オートクレーブを室温中で放冷した。冷却後、オートクレーブ中から反応溶液を取り出し、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表6に示す。なお各収率は、実施例20と同様に、原料のD-フルクトースより理論上生成される、乳酸類のモル数(乳酸類/フルクトース=5 mmol/2.5 mmol)に対する、生成物のモル数(mol)の百分率(%)で表した。
(実施例33)
 助触媒としてビストリフェニルホスフィンイミニウムクロリド115mg(0.2mmol)を使用した以外は、実施例32と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表6に示す。
(実施例34)
 塩化スズ(IV)五水和物に代えて、三塩化フェニルスズ30mg(0.1mmol)を使用した以外は、実施例32と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表6に示す。
(実施例35)
 助触媒としてトリオクチルメチルアンモニウムクロリド40mg(0.1mmol)を使用した以外は、実施例32と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表6に示す。
(実施例36)
 助触媒としてテトラブチルアンモニウムブロミド28mg(0.1mmol)を使用した以外は、実施例32と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表6に示す。
(比較例23)
 触媒として塩化スズ(IV)五水和物35mg(0.1mmol)を使用し、助触媒を用いなかった点以外は、実施例32と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表6に示す。
(結果)
 表6に示されるように、スズ/有機スズの塩化物を四級アンモニウム塩と共に使用した場合(実施例32-36)、四級アンモニウム塩を使用しなかった場合(比較例13)と比べて、乳酸類を高い収率で得ることができた。また、有機スズの塩化物を用いた場合(実施例34)、スズの塩化物を用いた場合と比べて(実施例32)、より高い収率が得られた。
Figure JPOXMLDOC01-appb-T000009
(2)レニウム化合物を触媒とする方法
(実施例37)
 50mL容のステンレス製オートクレーブ(耐圧硝子工業製)に、原料としてD-フルクトース0.45g(2.5mmol)、触媒としてレニウムカルボニル130.6mg(0.2mmol)、溶媒としてメタノール20mLと、撹拌子を加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、電気炉を用いてオートクレーブを150℃になるまで加熱した。その後、150℃に保持しながら10時間撹拌を続けた後、オートクレーブを室温中で放冷した。冷却後、オートクレーブ中から反応溶液を取り出し、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。なお各収率は、原料のD-フルクトースより理論上生成される、乳酸類のモル数(乳酸類/フルクトース=5 mmol/2.5 mmol)に対する、生成物のモル数(mol)の百分率(%)で表した。表7中の「trace」は0.5%未満であることを示す。
(実施例38)
 触媒として、レニウムカルボニル65.3mg(0.1mmol)及びさらに塩化マグネシウム六水和物20.3mg(0.1mmol)を加えて反応を行った点以外は、実施例37と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例39)
 触媒として、レニウムカルボニル65.3mg(0.1mmol)及びさらに塩化マンガン四水和物19.8mg(0.1mmol)を用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例40)
 触媒として、レニウムカルボニル65.3mg(0.1mmol)及びさらに塩化鉄六水和物19.9mg(0.1mmol)を用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例41)
 触媒として、レニウムカルボニル65.3mg(0.1mmol)及びさらに塩化コバルト六水和物23.8mg(0.1mmol)を用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例42)
 触媒として、レニウムカルボニル65.3mg(0.1mmol)及びさらに塩化ニッケル四水和物23.8mg(0.1mmol)を用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例43)
 触媒として、レニウムカルボニル65.3mg(0.1mmol)及びさらに塩化スズ(II)19mg(0.1mmol)を用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(比較例24)
 触媒として塩化マンガン四水和物39.6mg(0.2mmol)を単独で用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例44)
 触媒として、レニウムカルボニル16.3mg(0.025mmol)及びさらに塩化マンガン四水和物19.8mg(0.1mmol)を用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例45)
 触媒として、レニウムカルボニル32.7mg(0.05mmol)及びさらに塩化マンガン四水和物19.8mg(0.1mmol)を用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例46)
 原料のD-フルクトース0.45g(2.5mmol)に代えてグルコース0.45g(2.5mmol)を用いた点、触媒として、レニウムカルボニル32.7mg(0.05mmol)及び塩化マンガン四水和物19.8mg(0.1mmol)を用いた点、ならびに160℃にて24時間の反応時間で加熱処理を行った点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例47)
 原料のD-フルクトース0.45g(2.5mmol)に代えてスクロース0.428g(1.25mmol)を用いた点、触媒として、レニウムカルボニル65.3mg(0.1mmol)及び塩化マンガン四水和物19.8mg(0.1mmol)を用いた点、180℃で加熱処理を行った点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例48)
 触媒として、レニウムカルボニル16.3mg(0.025mmol)及びさらにトリフルオロメタンスルホン酸マグネシウム16.1mg(0.05mmol)を用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(実施例49)
 触媒として、塩化マンガン四水和物19.8mg(0.1mmol)、レニウムカルボニル32.7mg(0.05mmol)及び塩化スズ(II)9.5mg(0.05mmol)の組み合わせを用いた点以外は、実施例37と同様に反応を行い、各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表7に示す。
(結果)
 表7に示すように、触媒として、レニウムカルボニルを単独で使用した場合(実施例37)、乳酸エステルを高い収率で得ることができた。
 また、レニウムカルボニルをレニウム以外の金属化合物と共に使用しても、乳酸エステルを高い収率で得ることができた(実施例38-43,48,49)。特に、塩化マグネシウム六水和物又は塩化マンガン四水和物との併用では、より高い収率が得られた(実施例38,39)。また、レニウムカルボニルを2種のレニウム以外の金属化合物と共に使用した場合(実施例49)、特に高い収率が得られた。一方、レニウム以外の金属化合物を触媒として単独で使用した場合(比較例24)には、乳酸エステルの生成量は低かった。
 さらに、二種類の触媒の使用量比率を変えた実施例43及び45では、触媒の合計使用量に対するレニウムカルボニルの割合がより高い(約33%;実施例43)方が、その割合がより低い(20%;実施例45)場合よりも乳酸エステルの収率は高かった。従って、レニウムカルボニルに他のレニウム以外の金属化合物を加える場合、触媒の合計使用量に対するレニウムカルボニルの割合を比較的高くすることが、乳酸エステルを高い収率で得る上で有用であることが示された。
 またさらに、レニウムカルボニルとレニウム以外の金属化合物との併用によって、フルクトース以外の糖を原料として、乳酸エステルを高い収率で得ることができた(実施例46,47)。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-I000011
(実施例50)
 50mL容のステンレス製オートクレーブに、120℃の空気中で2時間以上乾燥させたセルロース0.405g(グルコース残基 2.5mmol相当)、トリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)31.9mg(0.06mmol)、塩化マンガン四水和物9.9mg(0.05mmol)及びレニウムカルボニル16.3mg(0.025mmol)ならびにメタノール20mLと、撹拌子とを加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、マントルヒーターを用いてオートクレーブ内部が200℃になるまで加熱した。その後24時間、200℃に保持しながら撹拌を続けた後、加熱を停止し室温中で放冷した。室温まで冷却したオートクレーブ中から反応溶液を取り出し、溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。表8中の「-」は検出限界以下であることを示す。
(実施例51)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)63.7mg(0.12mmol)、塩化マンガン四水和物19.8mg(0.1mmol)及びレニウムカルボニル32.6mg(0.05mmol)を用いた。それ以外は、実施例50と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。
(実施例52)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)31.9mg(0.06mmol)、塩化マグネシウム六水和物10.2mg(0.05mmol)及びレニウムカルボニル16.3mg(0.025mmol)を使用し、62時間の反応時間で加熱処理を行った。それ以外は、実施例50と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。
(実施例53)
 触媒としてトリフルオロメタンスルホン酸スズ(II)50.0mg(0.12mmol)、塩化マンガン四水和物19.8mg(0.1mmol)及びレニウムカルボニル(Re(CO)10)32.6mg(0.05mmol)を使用し、10時間の反応時間で加熱処理を行った。それ以外は、実施例50と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。
(比較例25)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)63.7mg(0.12mmol)及び塩化マンガン四水和物19.8mg(0.1mmol)を使用した。それ以外は、実施例50と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。
(比較例26)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)10.6mg(0.02mmol)のみを使用し、10時間の反応時間で190℃の加熱処理を行った。それ以外は、実施例50と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。
(比較例27)
 触媒としてトリフルオロメタンスルホン酸スズ(II)8.3mg(0.02mmol)のみを使用し、10時間の反応時間で190℃の加熱処理を行った。それ以外は、実施例50と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。
(比較例28)
 触媒としてトリフルオロメタンスルホン酸ジ-n-ブチルスズ(II)53.1mg(0.1mmol)のみを使用し、10時間の反応時間で190℃の加熱処理を行った。それ以外は、実施例50と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。
(比較例29)
 触媒としてトリフルオロメタンスルホン酸スズ(II)41.6mg(0.1mmol)のみを使用し、10時間の反応時間で190℃の加熱処理を行った。それ以外は、実施例50と同様に反応を行った。得られた反応溶液中の各種生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表8に示す。
(結果)
 表8に示すように、スズ又は有機スズのトリフルオロメタンスルホン酸塩の存在下にて、レニウムカルボニルをマグネシウム化合物又はマンガン化合物と組み合わせて触媒として用いた場合(実施例50-53)、当該3種の触媒の組み合わせを用いない場合(比較例25-29)と比べて、セルロースを原料として、乳酸エステルを高い収率で得られた。また、三種類の触媒の使用量比率を変えた実施例50及び51では、触媒の合計使用量がより低い方が、その割合がより高い場合よりも乳酸エステルの収率は高かった。従って、三種類の触媒を加える場合、触媒の合計使用量を比較的低くすることが、乳酸エステルを高い収率で得る上で有用であることが示された。なお、レニウムカルボニル又はマンガン化合物を用いた場合、乳酸エステルは生成されるが、乳酸は生成しなかった。
Figure JPOXMLDOC01-appb-T000012
(実施例54)
レニウムのアート錯体の生成
 高圧反応容器に塩化マンガン四水和物9.9mg(0.05mmol)及びレニウムカルボニル16.3mg(0.025mmol)、メタノール10mLを加え、密封し窒素で0.5MPaまで加圧した。その後、電気炉で45分かけて室温から150℃まで昇温し、直ちに反応容器を冷却し内容物についてESI/MS測定を行った。
 測定結果よりレニウムのアート錯体の生成が観察された(図1)。
 したがって、レニウムカルボニルは、レニウム以外の金属化合物とアート錯体を形成し、当該錯体がセルロースの分解反応、及び糖の分解・異性化反応のための触媒として作用することが示唆される。
(3)インジウムアルコキシド等を触媒とする方法
(実施例55)
インジウム化合物を用いたフルクトースからの乳酸エステル合成
 内容積50mlのステンレス製加圧反応装置(日東高圧製)に、インジウム化合物としてインジウムイソプロポキシド15mg(0.05mmol)、原料炭水化物としてフルクトース 0.450g(2.5mmol)、溶媒としてメタノール10mLを室温で加えた後、該装置の反応器中に窒素ガス0.5MPaを圧入し、マントルヒーターを用いて反応器内部が150℃になるまで加熱した。150℃で10時間保持した後、加熱を停止して放冷した。反応装置を室温まで冷却した後、放圧して残存有機相を抜き取り、得られた溶液を液体クロマトグラフィーにて定量分析した。その結果、乳酸メチルが2.4mmol生成していた。この乳酸メチルの収率は、フルクトース基準、すなわち原料のフルクトース1モル当たりの生成モル数の百分率(%)で表すと、収率48%であった。
(実施例56)
インジウム化合物を用いたフルクトースからの乳酸合成
 内容積50mlのステンレス製加圧反応装置(日東高圧製)に、インジウム化合物としてインジウムイソプロポキシドを15mg(0.05mmol)、原料炭水化物としてフルクトースを0.450g(2.5mmol)、溶媒として純水10mLを室温で加えた後、該装置の反応器中に窒素ガス0.5MPaを圧入し、マントルヒーターを用いて反応器内部が160℃になるまで加熱した。160℃で5時間保持した後、加熱を停止して放冷した。反応装置を室温まで冷却した後、放圧して残存有機相を抜き取り、得られた溶液を液体クロマトグラフィーにて定量分析した。その結果、乳酸が0.24mmol生成していた。この乳酸の収率は、フルクトース基準、すなわち原料のフルクトース1モル当たりの生成モル数の百分率(%)で表すと、収率5%であった。
(実施例57)
インジウム化合物を用いたグルコースからの乳酸エステル合成
 原料炭水化物としてフルクトースの代わりにグルコース0.450g(2.5mmol)を用い、反応温度を180℃にした他は、実施例55と同じ条件で反応を行った。その結果、乳酸メチルが2.0mmol(グルコース基準で収率40%)生成し、副生成物としてレブリン酸メチルが0.08mmol(グルコース基準で収率3%)生成した。グルコース基準とは、すなわち原料のグルコース1モル当たりの生成モル数の百分率(%)である。
(実施例58)
インジウムアセチルアセトナートを用いたグルコースからの乳酸エステル合成
 インジウム化合物としてアセチルアセトンインジウム(In(acac))20.8mg(0.05mmol)を用いた他は、実施例55と同じ条件で反応を行った。その結果、乳酸メチルが1.55mmol(フルクトース基準で収率31%)生成し、レブリン酸メチルは全く生成しなかった。
(実施例59)
フェノール性化合物の添加効果
 インジウムイソプロポキシド、フルクトース及びメタノールに加えて、反応器にフェノール性化合物としてカテコールを0.1mmol加えた他は、実施例55と同じ条件で反応を行った。その結果、乳酸メチルが2.6mmol(フルクトース基準で収率52%)生成し、副生成物としてレブリン酸メチルが0.15mmol(グルコース基準で収率6%)生成した。
(実施例60)
フェノール性化合物の添加効果
 インジウムイソプロポキシド、フルクトース及びメタノールに加えて、反応器にフェノール性化合物として2,2-ビフェノールを0.1mmol加えた他は、実施例55と同じ条件で反応を行った。その結果、乳酸メチルが2.5mmol(フルクトース基準で収率50%)生成した。
(4)インジウム化合物等を触媒とする方法
(実施例61)
 内容積50mlのステンレス製加圧反応装置(日東高圧製)に、金属化合物として塩化インジウム(III)四水和物14.9mg(0.05mmol)および塩としてビス(トリフェニルホスフィン)イミニウムクロライド28.7mg(0.05mmol)、原料炭水化物としてフルクトース0.45g(2.5mmol)、溶媒としてメタノール20mLと、撹拌子を加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、電気炉を用いてオートクレーブを150℃になるまで加熱した。その後、150℃に保持しながら5時間撹拌を続けた後、オートクレーブを室温中で放冷した。冷却後、オートクレーブ中から反応溶液を取り出し、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。なお各収率は、原料のD-フルクトースより理論上生成される、乳酸類のモル数(乳酸類/フルクトース=5mmol/2.5mmol)に対する、生成物のモル数(mol)の百分率(%)で表した。
(実施例62)
 加熱温度を180℃とした以外は、実施例61と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例63)
 金属化合物として臭化インジウム(III)17.7mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例64)
 金属化合物として酢酸インジウム(III)14.6mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例65)
 金属化合物としてアセチルアセトンインジウム(III)20.6mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例66)
 塩としてビス(トリフェニルホスフィン)イミニウムブロミド30.9mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例67)
 塩としてビス(トリフェニルホスフィン)イミニウムヨード33.3mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例68)
 塩として塩化リチウム2.1mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例69)
 塩として1-ブチル-3-メチルイミダゾリウムアセテート9.9mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例70)
 塩として1-ブチル-3-メチルイミダゾリウムテトラフルオロボラート11.3mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例71)
 塩としてピコリン酸ナトリウム7.3mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例72)
 塩としてナトリウム(トリヒドロキシ)フェニルボラート8.1mg(0.05mmol)を用いた以外は、実施例62と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例73)
 金属化合物として三塩化ガリウム(III)8.8mg(0.05mmol)を用いて、加熱温度を190℃とし、2時間攪拌した以外は、実施例61と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(実施例74)
 金属化合物として塩化アルミニウム(III)六水和物12.1mg(0.05mmol)を用いて、加熱温度を190℃とし、2時間攪拌した以外は、実施例61と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表9に示す。
(結果)
 表9に示すように、金属化合物と塩との反応により生成したアート錯体を触媒として用いた結果、乳酸類を高い収率で得ることができた。特に、金属化合物として塩化インジウム(III)四水和物を用いて、塩としてビス(トリフェニルホスフィン)イミニウム塩、塩化リチウム、1-ブチル-3-メチルイミダゾリウムアセテート、ピコリン酸ナトリウムまたはナトリウム(トリヒドロキシ)フェニルボラートを用いて、かつ加熱温度を180℃とした場合(実施例62,63,66,67,68,69,71および72)、60%を超える高い収率で乳酸類が得られた。
Figure JPOXMLDOC01-appb-T000013
(実施例75)
アート錯体の生成
金属化合物として塩化インジウム(III)四水和物(0.05mmol)と塩としてビス(トリフェニルホスフィン)イミニウムクロライド (0.05mmol)を、メタノール(20mL)に溶解させ、オートクレーブ中で窒素ガス(0.5MPa)下190℃にて2時間加熱した(原料炭水化物の糖は加えていないが、実施例61の反応条件と同条件)。その後、オートクレーブを室温中で放冷した。冷却後、オートクレーブ中から反応溶液を取り出し、溶液中の生成物をESI-MSにて測定した。
 測定結果より、InCl4 -のアート錯体の生成が観察された(図2)。
 したがって、塩化インジウム(III)四水和物と、ビス(トリフェニルホスフィン)イミニウムクロライドは、アート錯体を形成し、当該錯体が糖の分解・異性化反応のための触媒として作用することが示唆される。
(実施例76)
 内容積190mlのステンレス製加圧反応装置(東京理化製)に、金属化合物として塩化インジウム(III)四水和物14.9mg(0.05mmol)とジブチルスズトリフラート31.9mg(0.06mmol)および塩としてビス(トリフェニルホスフィン)イミニウムクロライド28.7mg(0.05mmol)、原料炭水化物としてセルロース0.405g(グルコース単位として2.5mmol相当)、溶媒としてメタノール20mLと、撹拌子を加え、蓋を閉めた。このオートクレーブ中の空気を窒素ガスでパージし、0.5MPaまで加圧した後、マグネティックスターラーで混合物を撹拌しながら、電気炉を用いてオートクレーブを190℃になるまで加熱した。その後、190℃に保持しながら10時間撹拌を続けた後、オートクレーブを室温中で放冷した。冷却後、オートクレーブ中から反応溶液を取り出し、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表10に示す。なお各収率は、原料のセルロースより理論上生成される、乳酸類のモル数(乳酸類/セルロース中のグルコース単位=5mmol/2.5mmol)に対する、生成物のモル数(mol)の百分率(%)で表した。
(実施例77)
 金属化合物として塩化インジウム(III)四水和物14.9mg(0.05mmol)とスズトリフラート25.0mg(0.06mmol)を用いた以外は、実施例76と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表10に示す。
Figure JPOXMLDOC01-appb-T000014
(比較例30)
 金属化合物としてジブチルスズトリフラート31.9mg(0.06mmol)のみを用い、塩を添加しなかったこと以外は、実施例76と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表11に示す。
(比較例31)
 金属化合物としてスズトリフラート25.0mg(0.06mmol)を用いた以外は、比較例30と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表11に示す。
(比較例32)
 金属化合物として塩化インジウム(III)四水和物14.9mg(0.05mmol)および塩としてビス(トリフェニルホスフィン)イミニウムクロライド28.7mg(0.05mmol)を用いた以外は、比較例30と同様に反応を行い、溶液中の生成物を液体クロマトグラフィーにより定量分析した。その分析結果における乳酸類の収率を後掲の表11に示す。
Figure JPOXMLDOC01-appb-T000015
 実施例76,77および比較例30~32の結果より、インジウム化合物と塩の組み合わせにさらにスズ化合物を併用することで、セルロースからの乳酸収率が向上することが明らかとなった。
 本発明の方法は、セルロースに代表される多糖類および単糖を含むバイオマスを乳酸や乳酸エステルへ効率的に変換する新規な触媒反応系を提供する。本発明の方法を用いれば、炭水化物含有原料、例えばセルロース資源を含むバイオマスを利用した、乳酸及び/又は乳酸エステルの効率的な製造が可能となる。この方法によれば大量の強酸を用いることなく、副生成物の生成を抑制しつつ、乳酸及び/又は乳酸エステル、とりわけ乳酸エステルを高収率で製造することができる。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (9)

  1.  炭水化物含有原料を、触媒を含有する溶媒中で加熱処理して乳酸及び/又は乳酸エステルを製造する方法であって、
     該触媒がスズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物であり、
     該溶媒が水及び/又はアルコールを含有する、
    ことを特徴とする、上記乳酸/乳酸エステルの製造法。
  2.  溶媒がさらに、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物を含む、請求項1に記載の乳酸/乳酸エステルの製造法。
  3.  スズ化合物、インジウム化合物及びレニウム化合物からなる群より選択される少なくとも1種の化合物と、第一遷移系列金属の化合物、リチウム化合物、マグネシウム化合物、アルカリ金属塩、アルカリ土類金属塩、四級アンモニウム塩及び四級ホスホニウム塩からなる群より選択される少なくとも1種の化合物とがアート錯体を形成していることを特徴とする、請求項1又は2に記載の乳酸/乳酸エステルの製造法。
  4.  スズ化合物が、スズ又は有機スズのパーフルオロアルキルスルホン酸塩、及びスズ又は有機スズのハロゲン化物からなる群から選択される、請求項1~3のいずれか1項に記載の乳酸/乳酸エステルの製造法。
  5.  インジウム化合物がハロゲン化物塩、カルボン酸塩、インジウムアルコキシド及びインジウムアセチルアセテートからなる群から選択される請求項1~4のいずれか1項に記載の乳酸/乳酸エステルの製造法。
  6.  レニウム化合物が、ハロゲン化物又はカルボニル配位子を含む化合物である請求項1~5のいずれか1項に記載の乳酸/乳酸エステルの製造法。
  7.  溶媒がフェノール性化合物をさらに含む、請求項1~6のいずれか1項に記載の乳酸/乳酸エステルの製造法。
  8.  加熱処理を、100℃~300℃にて行う、請求項1~7のいずれか1項に記載の乳酸/乳酸エステルの製造法。
  9.  炭水化物含有原料が、セルロース、可溶性多糖類、単糖類の群から選択される少なくとも1種である、請求項1~8のいずれか1項に記載の乳酸/乳酸エステルの製造法。
PCT/JP2011/058294 2010-03-31 2011-03-31 炭水化物含有原料から乳酸類を製造する方法 WO2011125882A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG2012072336A SG184340A1 (en) 2010-03-31 2011-03-31 Method for producing lactic acids from carbohydrate-containing raw material
US13/638,014 US8987505B2 (en) 2010-03-31 2011-03-31 Method for producing lactic acids from carbohydrate-containing raw material

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2010082834 2010-03-31
JP2010082174A JP5515114B2 (ja) 2010-03-31 2010-03-31 インジウム化合物を用いた乳酸類の製造方法
JP2010-082174 2010-03-31
JP2010-082834 2010-03-31
JP2010-244486 2010-10-29
JP2010244406A JP5783548B2 (ja) 2010-10-29 2010-10-29 スズ含有化合物を用いた乳酸類の製造方法
JP2010244486A JP5783549B2 (ja) 2010-10-29 2010-10-29 レニウム化合物を用いた乳酸類の製造方法
JP2010-244542 2010-10-29
JP2010244542A JP5858514B2 (ja) 2010-03-31 2010-10-29 スズ含有化合物を用いた乳酸類の製造方法
JP2010-244406 2010-10-29

Publications (1)

Publication Number Publication Date
WO2011125882A1 true WO2011125882A1 (ja) 2011-10-13

Family

ID=44762820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058294 WO2011125882A1 (ja) 2010-03-31 2011-03-31 炭水化物含有原料から乳酸類を製造する方法

Country Status (1)

Country Link
WO (1) WO2011125882A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214396A (ja) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd 乳酸類の製造方法
US20130338397A1 (en) * 2012-06-18 2013-12-19 Microvast New Materials (Huzhou) Co., LTD. Catalyst and method for synthesis of lactic acid and its derivatives
WO2014033734A2 (en) * 2012-07-19 2014-03-06 Praj Industries Limited Process and system for the preparation of esters of levulinic acid
WO2014032479A1 (zh) * 2012-08-27 2014-03-06 微宏动力系统(湖州)有限公司 乳酸及其衍生物的合成方法、催化剂
KR20160045675A (ko) * 2013-08-20 2016-04-27 할도르 토프쉐 에이/에스 메탈로-실리케이트 물질 및 금속 이온을 포함하는, 락트산 및 2-하이드록시-3-부텐산 또는 그것의 에스테르로의 당의 전환 방법
JP2017521365A (ja) * 2014-05-19 2017-08-03 アイオワ・コーン・プロモーション・ボード 炭水化物からエチレングリコールを連続的に製造するための方法
CN111116344A (zh) * 2019-12-22 2020-05-08 上海交通大学 一种光催化转化单糖生物质制备乳酸的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630943A (en) * 1979-08-24 1981-03-28 Musashino Kagaku Kenkyusho:Kk Preparation of lactic acid and/or its ester
JPH04356436A (ja) * 1990-12-05 1992-12-10 Kao Corp カルボニル化合物の製造方法
JP2004359660A (ja) * 2003-02-24 2004-12-24 National Institute Of Advanced Industrial & Technology α−ヒドロキシカルボン酸エステルの製造方法
JP2008120796A (ja) * 2006-10-20 2008-05-29 National Institute Of Advanced Industrial & Technology 乳酸の製造方法
WO2008109877A1 (en) * 2007-03-08 2008-09-12 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630943A (en) * 1979-08-24 1981-03-28 Musashino Kagaku Kenkyusho:Kk Preparation of lactic acid and/or its ester
JPH04356436A (ja) * 1990-12-05 1992-12-10 Kao Corp カルボニル化合物の製造方法
JP2004359660A (ja) * 2003-02-24 2004-12-24 National Institute Of Advanced Industrial & Technology α−ヒドロキシカルボン酸エステルの製造方法
JP2008120796A (ja) * 2006-10-20 2008-05-29 National Institute Of Advanced Industrial & Technology 乳酸の製造方法
WO2008109877A1 (en) * 2007-03-08 2008-09-12 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHI MORI ET AL.: "Suzu Shokubai o Mochiita Torui kara no Shokubaiteki Nyusan Gosei", SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 106, 15 September 2010 (2010-09-15), pages 160 *
HOLM, MARTIN SPANGSBERG ET AL.: "Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts", SCIENCE, vol. 328, 30 April 2010 (2010-04-30), pages 602 - 605 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214396A (ja) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd 乳酸類の製造方法
US20130338397A1 (en) * 2012-06-18 2013-12-19 Microvast New Materials (Huzhou) Co., LTD. Catalyst and method for synthesis of lactic acid and its derivatives
CN103506140A (zh) * 2012-06-18 2014-01-15 微宏动力系统(湖州)有限公司 乳酸及其衍生物合成用催化剂及合成方法
US9040739B2 (en) * 2012-06-18 2015-05-26 Microvast Power Systems Co., Ltd. Catalyst and method for synthesis of lactic acid and its derivatives
WO2014033734A2 (en) * 2012-07-19 2014-03-06 Praj Industries Limited Process and system for the preparation of esters of levulinic acid
WO2014033734A3 (en) * 2012-07-19 2014-10-02 Praj Industries Limited Process and system for preparation of esters of levulinic acid
US8835670B2 (en) * 2012-08-27 2014-09-16 Microvast Power Systems Co., Ltd. Method for synthesis of lactic acid and its derivatives
CN103626650A (zh) * 2012-08-27 2014-03-12 微宏动力系统(湖州)有限公司 乳酸及其衍生物的制备方法
WO2014032479A1 (zh) * 2012-08-27 2014-03-06 微宏动力系统(湖州)有限公司 乳酸及其衍生物的合成方法、催化剂
KR20160045675A (ko) * 2013-08-20 2016-04-27 할도르 토프쉐 에이/에스 메탈로-실리케이트 물질 및 금속 이온을 포함하는, 락트산 및 2-하이드록시-3-부텐산 또는 그것의 에스테르로의 당의 전환 방법
JP2016536324A (ja) * 2013-08-20 2016-11-24 ハルドール・トプサー・アクチエゼルスカベット メタロシリケート材料及び金属イオンを含む乳酸及び2−ヒドロキシ−3−ブテン酸又はそれらのエステルの糖への転化方法
US9975113B2 (en) 2013-08-20 2018-05-22 Haldor Topsoe A/S Process for the conversion of sugars to lactic acid and 2-hydroxy-3-butenoic acid or esters thereof comprising a metallo-silicate material and a metal ion
KR101919030B1 (ko) * 2013-08-20 2018-11-15 할도르 토프쉐 에이/에스 메탈로-실리케이트 물질 및 금속 이온을 포함하는, 락트산 및 2-하이드록시-3-부텐산 또는 그것의 에스테르로의 당의 전환 방법
JP2017521365A (ja) * 2014-05-19 2017-08-03 アイオワ・コーン・プロモーション・ボード 炭水化物からエチレングリコールを連続的に製造するための方法
CN111116344A (zh) * 2019-12-22 2020-05-08 上海交通大学 一种光催化转化单糖生物质制备乳酸的方法

Similar Documents

Publication Publication Date Title
WO2011125882A1 (ja) 炭水化物含有原料から乳酸類を製造する方法
JP5344666B2 (ja) 乳酸の製造方法
Kizlink et al. Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn (IV) and Ti (IV) alkoxides and metal acetates
US8987505B2 (en) Method for producing lactic acids from carbohydrate-containing raw material
Légaré et al. Lewis base activation of borane–dimethylsulfide into strongly reducing ion pairs for the transformation of carbon dioxide to methoxyboranes
Grala et al. Chemoselective alcoholysis of lactide mediated by a magnesium catalyst: an efficient route to alkyl lactyllactate
CN104736237A (zh) 乳酸及其衍生物的合成方法及制备用的催化剂
AU2011317371A1 (en) Process for producing a lactic acid-amine complex
JP5858514B2 (ja) スズ含有化合物を用いた乳酸類の製造方法
CN112279825A (zh) 一种5-卤代甲基糠醛的制备方法
JP5697090B2 (ja) 乳酸類の製造方法
JP4355805B2 (ja) α−ヒドロキシカルボン酸エステルの製造方法
Kong et al. Conversion of sucrose into lactic acid over functionalized sn-beta zeolite catalyst by 3-Aminopropyltrimethoxysilane
Zhang et al. Effect of crystal structure of copper species on the rate and selectivity in oxidative carbonylation of ethanol for diethyl carbonate synthesis
Chen et al. The transesterification of dimethyl carbonate and phenol catalyzed by 12-molybdophosphoric salts
CN114011459A (zh) 一种钛系双酸型离子液体催化剂及制备方法与应用
JP5783548B2 (ja) スズ含有化合物を用いた乳酸類の製造方法
JP5783549B2 (ja) レニウム化合物を用いた乳酸類の製造方法
CN104084236A (zh) 一种用于氧化羰基化合成烷基碳酸酯的复合催化剂
CN114989015B (zh) 一种无机盐催化酯交换反应制备碳酸二甲酯的方法
JP5515114B2 (ja) インジウム化合物を用いた乳酸類の製造方法
Zhang et al. Experimental and kinetic studies on a homogeneous system for diethyl carbonate synthesis by transesterification
CN102059147B (zh) 一种催化氧化羰化合成碳酸二乙酯的制备方法
JP2014043443A (ja) インジウム化合物及びスズ化合物、並びにフッ素を含有する塩を利用する乳酸類の製造方法
CN110156741A (zh) 碳酸丁烯酯的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765782

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13638014

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11765782

Country of ref document: EP

Kind code of ref document: A1