WO2011125634A1 - ラミネート外装蓄電デバイスおよびその製造方法 - Google Patents

ラミネート外装蓄電デバイスおよびその製造方法 Download PDF

Info

Publication number
WO2011125634A1
WO2011125634A1 PCT/JP2011/057741 JP2011057741W WO2011125634A1 WO 2011125634 A1 WO2011125634 A1 WO 2011125634A1 JP 2011057741 W JP2011057741 W JP 2011057741W WO 2011125634 A1 WO2011125634 A1 WO 2011125634A1
Authority
WO
WIPO (PCT)
Prior art keywords
exterior
storage device
laminated
electricity storage
sandwiching
Prior art date
Application number
PCT/JP2011/057741
Other languages
English (en)
French (fr)
Inventor
宇高 友広
Original Assignee
Jmエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jmエナジー株式会社 filed Critical Jmエナジー株式会社
Priority to JP2012509474A priority Critical patent/JPWO2011125634A1/ja
Publication of WO2011125634A1 publication Critical patent/WO2011125634A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a laminate-cased electricity storage device and a manufacturing method thereof, and more specifically, a laminate-cased electricity storage device in which an electricity storage device element such as a battery or a capacitor (capacitor) is accommodated by an exterior body made of an exterior film.
  • an electricity storage device element such as a battery or a capacitor (capacitor) is accommodated by an exterior body made of an exterior film.
  • an electricity storage device element such as a battery element in which a positive electrode plate and a negative electrode plate are wound or alternately laminated via a separator is accommodated in an outer package made of two outer films together with an electrolytic solution.
  • Laminate exterior power storage devices specifically, for example, batteries and capacitors are used as power sources for portable devices and electric vehicles.
  • Patent Documents 1 to 4 various laminated exterior power storage devices have been proposed (see, for example, Patent Documents 1 to 4). Specifically, for example, in Patent Document 1 and Patent Document 2, a portion having a weak bonding force (hereinafter, also referred to as “weakly bonded portion”) is formed in a portion of the bonded portion of the two exterior films in the exterior body.
  • the thinned part of the safety mechanism that makes this weakly joined part function as a safety valve for degassing and a part of the exterior film constituting the exterior body
  • a laminated external electricity storage device in which a portion (hereinafter also referred to as a “thinned portion”) is formed and provided with a safety mechanism or the like configured to cause the thinned portion to function as a safety valve for degassing.
  • the weakly jointed part and the thinned part that constitute the safety mechanism of the laminated exterior electricity storage device having such a configuration are surely peeled or ruptured when the internal pressure of the exterior body reaches a predetermined value, thereby forming an exhaust port.
  • the strength is required to be surely sealed to ensure sufficient reliability.
  • it is not easy to reliably form the weakly joined portion and the thinned portion having such strength from the viewpoint of manufacturing.
  • the weakly joined portion is gradually peeled off, while the thinned portion is progressively thinned.
  • Patent Document 3 as a safety mechanism of the laminated exterior power storage device, a through hole that communicates the inside and the outside formed in the vicinity of the joint is provided so as to press-contact the hole edge of the through hole.
  • the valve body is sealed by a valve body, and when the gas pressure inside the exterior body rises, the valve body is deformed to be opened, thereby opening the through hole.
  • the valve operating pressure may fluctuate due to a decrease in the pressure contact force of the valve body over time.
  • the temperature of the exterior body rises, there is a possibility that an opening may be formed due to a decrease in the bonding force of the bonding portion and separation.
  • Patent Document 4 as a safety mechanism of a laminated exterior power storage device, at least one of the regions where the joint portion is formed, the non-joined portion is continuous with the housing portion in which the power storage device element is housed, and in the housing portion.
  • a pressure concentration part is formed by being provided in the shape of a creek, and a pressure release part that connects the inside and the outside by peeling of the exterior film is formed in the region where the non-joined part is formed. Proposed.
  • the present invention has been made based on the above circumstances, and the first object thereof is that when gas is generated inside the exterior body (inside the cell), the gas is used regardless of the use environment.
  • An object of the present invention is to provide a laminated exterior electricity storage device that can be reliably discharged from a specific part.
  • the second object of the present invention is that when gas is generated inside the exterior body (inside the cell), the gas can be surely discharged from a specific part regardless of the use environment.
  • An object of the present invention is to provide a laminated exterior power storage device that can be miniaturized.
  • a third object of the present invention is to provide a method for manufacturing a laminated exterior power storage device that can easily manufacture the above laminated exterior electrical storage device.
  • the laminated exterior electricity storage device of the present invention includes an exterior body in which exterior films stacked on each other are hermetically bonded to each other at a joint portion formed on each outer peripheral edge portion, and an inside of a housing portion formed on the exterior body.
  • a laminated exterior electricity storage device comprising an electricity storage device element and an electrolyte contained in A pinching mechanism is provided that includes a pinching member that is mounted so as to sandwich the joint portion of the exterior body and extends along the outer peripheral edge, and an unpinched portion is formed on at least a part of the pinching member. A portion is formed.
  • the unclamped part forming part of the clamping member is a notch or an opening.
  • the sandwiching member has an annular structure extending along the outer peripheral edge of the exterior film.
  • a safety valve is provided in an unclamped part formed in a region where the unclamped part forming part is located in the exterior body.
  • a method for producing a laminate-cased electricity storage device of the present invention is a method for producing a laminate-cased electricity storage device for producing the laminate-cased electricity storage device,
  • the sandwiching mechanism including the sandwiching member is disposed along the circumferential direction of the outer peripheral edge of the exterior film. Is preferred.
  • the unclamped portion forming portion of the clamping member constituting the clamping mechanism is a notch or an opening.
  • a sandwiching mechanism in which an un sandwiched portion forming portion is formed so as to sandwich a joint portion in the exterior body. Therefore, in the region where the pinching member is provided, the joint portion is pinched and pressed by the pinching member except for the unpinched portion where the unpinched portion forming portion is located.
  • the exterior body expands due to an increase in the internal pressure of the exterior body, and stress is applied to the joint portion over the entire inner circumference.
  • the unclamped portion of the joint is selectively peeled off to form an opening, and the gas in the exterior body is discharged to the outside from this opening.
  • the joint strength is reduced in the joint under the usage environment where the temperature of the exterior body rises or the internal pressure gradually rises, In a region other than the unpinched portion where the pinched portion forming portion is located, an opening is prevented from being formed by the pressing action of the pinching member. Therefore, according to the laminated exterior electricity storage device of the present invention, when gas is generated inside the exterior body (inside the cell), the gas can be surely discharged from a specific part regardless of the use environment. it can.
  • the laminated exterior power storage device of the present invention since a special structure different from other regions is not required at the joint portion of the exterior body relating to a specific part for exhausting gas, miniaturization is achieved. Can do.
  • a safety valve is provided in a region where an unclamped part is formed in a region where an unclamped part forming part is located in the exterior body, so that the safety valve is a clamping member. Therefore, an opening for discharging gas more reliably is formed because it is difficult to form an opening due to separation of the joint in a region other than the region where the safety valve is formed. Position can be limited.
  • the method for manufacturing a laminated exterior power storage device of the present invention it is possible to easily obtain the above laminated exterior electrical storage device by providing a sandwiching mechanism including a sandwiching member at a joint portion of the exterior body in the device body. it can.
  • FIG. 1 It is an explanatory top view which shows an example of a structure of the lamination exterior
  • FIG. 3 is a plan view for explaining the structure of a laminate-coated lithium ion capacitor main body for pressure test used in Examples 1 to 9 and Comparative Examples 1 to 3.
  • FIG. 6 is an explanatory plan view showing a configuration of a laminate-sheathed lithium ion capacitor main body for pressure test used in Examples 10 to 18 and Comparative Example 4.
  • FIG. 1 is a plan view for explaining an example of the configuration of a laminate-cased electricity storage device of the present invention
  • FIG. 2 is a side view for explaining the laminate-cased electricity storage device of FIG. 1
  • FIG. It is sectional drawing for description which shows the structure inside the device main body which comprises a laminate exterior electrical storage device.
  • the exterior body 20 has a rectangular upper exterior film 21 ⁇ / b> A and a lower exterior film 21 ⁇ / b> B each having heat fusion properties, and the entire circumference of each outer peripheral edge portion in a state where they are overlapped with each other.
  • the joint portion 22 is formed so as to be airtightly joined to each other.
  • a housing part 23 for housing the electricity storage device element 11 is formed in the exterior body 20, and the electricity storage device element 11 is accommodated together with the organic electrolyte in the accommodation part 23.
  • a device body 10a is constituted by the device element 11 and the organic electrolyte. In the example shown in the drawing, a drawing process is applied to a portion of the upper exterior film 21 ⁇ / b> A that forms the accommodating portion 23.
  • One end (left side in FIG. 1) 22a of the joint portion 22 of the outer package 20 is electrically connected to the positive electrode current collector 12a of the electricity storage device element 11 inside the outer package 20, and the other end is a joint portion.
  • a positive electrode terminal member 14 protruding outward from one side 22a of 22 is provided.
  • one end of the other side (right side in FIG. 1) 22 b opposite to one side in the joint portion 22 of the outer package 20 is electrically connected to the negative electrode current collector 13 a of the electricity storage device element 11 inside the outer package 20.
  • the negative electrode terminal member 15 whose other end protrudes outside from the other side 22b of the joint portion 22 is provided.
  • the pinching member 30 which extends over at least 3 sides along the outer peripheral edge part in the exterior body 20 on the device main body 10a is formed in the outer peripheral edge part.
  • the pinching member 30 constitutes a pinching mechanism.
  • the pinching member 30 is configured to extend over the entire circumference of the outer peripheral edge portion of the exterior body 20.
  • the pinching member 30 has an annular structure extending along the circumferential direction of the joint portion 22 formed at the outer peripheral edge portion of the exterior body 20 constituting the device main body 10a, and a part of the pinching member 30 is formed of a notch portion 30a. A sandwiching portion forming portion is formed, and the joint portion 22 of the exterior body 20 is mounted so as to be sandwiched from the upper exterior film 21A side and the lower exterior film 21B side. By attaching the pinching member 30, the pinching member 30 is formed in a part in the circumferential direction, specifically, in a region where the notch 30a of the pinching member 30 is located at the joint portion 22 of the exterior body 20.
  • An unclamped portion that is not sandwiched by the nip is formed, and in a region where a portion other than the notch portion 30a of the nip member 30 is located, a nip portion where the sandwiching member 30 is sandwiched is located. Is formed.
  • the pinching member 30 has an annular structure and is formed with a notch 30a, so that the pinching member 30 is a pinching portion other than a portion that is not an unpinching portion in the joint portion 22 of the exterior body 20. Can be sandwiched so as to go around the part.
  • the sandwiching member 30 is formed on the joint portion 22 of the exterior body 20, that is, on the surface of the outer peripheral edge of each of the upper exterior film 21 ⁇ / b> A and the lower exterior film 21 ⁇ / b> B constituting the joint portion 22.
  • the sandwiching members 31, 31 are arranged so as to sandwich the annular sandwiching members 31, 31 having notches and the sandwiching members 31, 31 facing each other through the joint portion 22.
  • a holding material (not shown) for applying pressure in the direction in which they approach each other (vertical direction in FIG. 2) and thereby fastening the opposing sandwiching materials 31 and 31 through the joint 22 to be fixed.
  • the sandwich materials 31 and 31 disposed on the outer peripheral edge surfaces of the upper exterior film 21A and the lower exterior film 21B have the same shape, and the respective notches are It is positioned to overlap.
  • the sandwiching material 31 constituting the sandwiching member 30 has a configuration in which the external shape is an annular shape having a notch and extends along the circumferential direction of the joint portion 22 of the exterior body 20 constituting the device body 10a. is there.
  • the width (the dimension in the direction orthogonal to the direction in which the sandwiching member 30 extends along the circumferential direction of the exterior body 20) is the width of the outer peripheral edge of the exterior body 20 as shown in the example of the figure. It may be smaller than (joining width of the joining portion 22), may be equal to the width of the outer peripheral edge portion of the exterior body 20 (joining width of the joining portion 22), and will be described later with reference to FIG. As shown in FIG.
  • the sandwiching material 31 may be an integral member formed of one constituent material, or may be formed of a plurality of constituent materials.
  • the sandwich material 31 is not particularly limited as long as the sandwich material 31 has a strength that is not broken even in a state where pressure is applied by the holding material.
  • a material made of a material having a high rate (hereinafter also referred to as “high thermal conductivity material”) is preferably used.
  • high thermal conductivity material since it is necessary to be in the state clamp
  • those made of a material resistant to deformation such as rubber materials are preferably used.
  • the high thermal conductivity material constituting the sandwich material 31 examples include metal materials such as aluminum, iron, gold, silver, copper, and stainless steel. Of these, aluminum is particularly preferred because it is lightweight and has a suitable thermal conductivity.
  • metal materials such as aluminum, iron, gold, silver, copper, and stainless steel.
  • aluminum is particularly preferred because it is lightweight and has a suitable thermal conductivity.
  • the width of the sandwich material 31 is made smaller than the width of the outer peripheral edge of the exterior body 20, or between the positive electrode terminal member 14 and the negative electrode terminal member 15 and the sandwich material 31, for example, It is necessary to insert an insulator made of polyethylene, polypropylene, polyamide, aramid or the like.
  • Rubber materials constituting the sandwich material 31 include natural rubber, synthetic rubber, silicone rubber, and the like.
  • a material resistant to deformation that can be used as the sandwich material 31, in addition to rubber materials, for example, general-purpose resins such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, polycarbonate, polyethylene terephthalate, ABS resin, polyamide, Examples include engineering plastics such as polyimide, polyacetal, polysulfone, polyether ether ketone, and fluororesin.
  • general-purpose resins such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, polycarbonate, polyethylene terephthalate, ABS resin, polyamide
  • engineering plastics such as polyimide, polyacetal, polysulfone, polyether ether ketone, and fluororesin.
  • the sandwiching material 31 can be optimized by design change as appropriate, but the upper exterior film in the direction perpendicular to the thickness of the device main body 10a, that is, the direction in which the joining portion 22 extends (up and down direction in FIG. 2). It is preferable that the protrusion height from the surface of the joint portion 22 in each of 21A and the lower exterior film 21B is equal to or greater than or equal to.
  • the sandwiching material 31 has a thickness equal to or greater than or equal to the thickness of the device body 10a, the entire device body 10a in which the sandwiching material 31 is disposed on the joint portion 22 is sandwiched by the holding material, thereby forming a sandwiching structure. Therefore, the sandwich structure can be easily formed.
  • the sandwiching material 31 has a thickness equivalent to the height of the housing portion 23 in the device body 10a, that is, the protruding height h of the housing portion 23 from the joint portion 22 in the upper exterior film 21A. Yes.
  • Examples of the holding material constituting the pinching member 30 include a square jig.
  • a square jig As a suitable specific example of the holding material, one provided with a thin plate having dimensions larger than the vertical and horizontal dimensions of the surface of the device main body 10a can be cited.
  • the square jig constituting the holding member is a square jig provided with two metal or resin thin plates such as iron, stainless steel, and aluminum, and a screw for screwing these two thin plates together.
  • the device body 10a which is made of a tool and has the sandwiching material 31 disposed on the joining portion 22, is sandwiched from the surface side of each of the upper exterior film 21A and the lower exterior film 21B so that the surface is covered with two thin plates.
  • the two thin plates are screwed from the outside at the outer peripheral edge portion (the portion protruding outward of the device body 10a where the sandwiching material 31 is disposed on the joint portion 22), and thereby sandwiched.
  • the material 31 is fastened and fixed to the device body 10a.
  • the pinching member 30 since the pinching material 31 has an annular shape having a notch portion, the pinching member 30 has an annular structure having an unpinched portion forming portion made of the notch portion 30a. Therefore, the holding material may have any configuration.
  • the pressure applied by the clamping member 30 to the clamping portion in the joint portion 22 is preferably 0.1 to 100 MPa, and more preferably 1 to 3 MPa.
  • the upper exterior film 21A and the lower exterior film 21B constituting the exterior body 20 for example, a film in which a polypropylene (hereinafter referred to as “PP”) layer, an aluminum layer, a nylon layer, and the like are laminated in this order from the inside is suitable. Can be used.
  • PP polypropylene
  • the upper exterior film 21A and the lower exterior film 21B are made of, for example, a PP layer, an aluminum layer, and a nylon layer, the thickness is usually 50 to 300 ⁇ m.
  • the vertical and horizontal dimensions of the upper exterior film 21A and the lower exterior film 21B are appropriately selected according to the dimensions of the power storage device element 11 accommodated in the accommodating portion 23.
  • the longitudinal dimension is 40 to 200 mm
  • the lateral dimension is The dimension is 60 to 300 mm.
  • the bonding width of the bonding portion 22 in the device main body 10a is equal to the bonding width of the bonding portion 22 formed in the unpinched portion and the bonding width of the bonding portion 22 formed in the pinched portion.
  • the difference is preferably within 0.1 to 3 mm. That is, it is preferable that the width of the joint portion 22 is the same over the entire circumference of the outer peripheral edge portion of the exterior body 20.
  • the joining width of the joining part 22 is, for example, 2 to 15 mm.
  • a power storage device element 11 constituting the laminate-clad power storage device 10 includes a plurality of positive electrode plates in which a positive electrode layer 12 is formed on a positive electrode current collector 12a via a separator S and a conductive layer as necessary.
  • a plurality of negative electrode plates each having a negative electrode layer 13 formed on a negative electrode current collector 13a with a conductive layer interposed between the negative electrode current collector 13a and the negative electrode current collector 13a, respectively.
  • a lithium metal (lithium electrode layer) 18 that is a lithium ion supply source is disposed on the upper surface of the electrode stack, and a lithium electrode current collector 18 a is stacked on the lithium metal 18.
  • the positive electrode current collector 12 a in each of the plurality of positive electrode plates is formed with an extraction portion 16, and these extraction portions 16 are welded to each other and electrically connected to the positive electrode terminal member 14.
  • the negative electrode current collector 13a in each of the plurality of negative electrode plates is formed with an extraction portion 17, and is welded to each other and electrically connected to the negative electrode terminal member 15.
  • 19 is a lithium electrode extraction member.
  • the positive electrode layer 12 constituting the electricity storage device element 11 an electrode material formed by adding a conductive material (for example, activated carbon, carbon black, etc.) and a binder as necessary is used.
  • a conductive material for example, activated carbon, carbon black, etc.
  • a binder for example, a binder as necessary.
  • an electrode material constituting the positive electrode layer 12 lithium reversibly carrying possible, but are not limited to, for example, LiCoO 2, LiNiO 2, LiFeO 2 or the like of the general formula: Li x M y O z (where , M represents a metal atom, and x, y, and z are each an integer.) And a positive electrode active material such as a metal oxide, activated carbon, and the like.
  • the negative electrode layer 13 which comprises the electrical storage device element 11 what shape
  • the electrode material constituting the negative electrode layer 13 is not particularly limited as long as it can reversibly carry lithium.
  • powders such as graphite, various carbon materials, polyacene-based substances, tin oxide, and silicon acid compounds are used. And a granular negative electrode active material.
  • an electrolyte in which an electrolyte is dissolved in an appropriate organic solvent.
  • organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, acetonitrile, and dimethoxyethane. These may be used alone or in combination of two or more. it can.
  • the electrolyte which can produce lithium ion is used, and specific examples thereof, LiI, LiCIO 4, LiAsF 4 , LiBF 4, etc. LiPF 6 and the like.
  • Such a laminated exterior electricity storage device 10 is sandwiched between the device main body 10a and the joining portion 22 of the exterior body 20 constituting the device body 10a along the circumferential direction of the outer peripheral edge of the exterior body 20.
  • 30 can be manufactured through a pinching mechanism forming step that is provided so as to be sandwiched from the surface side of each of the superposed upper exterior film 21A and lower exterior film 21B. Specifically, for example, it can be produced as follows.
  • the electricity storage device element 11 to which the positive electrode terminal member 14 and the negative electrode terminal member 15 are connected is disposed at a position to be the accommodating portion 23 on the lower exterior film 21B, and then the upper exterior is placed on the electricity storage device element 11.
  • the films 21A are overlapped, and the three sides of the outer periphery of the upper exterior film 21A and the lower exterior film 21B are heat-sealed.
  • an exterior body is carried out by heat-seal
  • the sandwiching material 31, respectively 31 is arranged so that each notch overlaps at a position where the notch portion becomes an unclamped portion, and the sandwiching materials 31 and 31 are fixed by a retaining material, thereby comprising the sandwiching materials 31 and 31 and the retaining material.
  • the laminated exterior electricity storage device 10 having an sandwich structure in which an unpinched portion is formed on a part of the joint portion 22 in the exterior body 20 by the sandwiching member 30 having the configuration is obtained.
  • the sandwiching member 30 is provided so as to sandwich the joint portion 22 in the exterior body 20, and an unpinched portion where the notch portion 30 a of the sandwiching member 30 is located is formed.
  • the joint portion 22 is sandwiched and pressed by the sandwiching member 30. Therefore, when gas is generated in the housing portion 23 in which the power storage device element 11 is housed in the exterior body 20, the exterior body 20 expands due to an increase in the internal pressure of the exterior body 20, thereby causing the joint portion 22 to Stress acts on the entire inner circumference, but due to the stress, only the unclamped portion of the joint portion 22 is selectively peeled to form an opening, and the exterior body 20 is formed from the opening.
  • the gas inside is discharged to the outside. Further, even when the bonding strength is reduced in the bonding portion 22 under the usage environment in which the temperature of the exterior body 20 rises or the internal pressure gradually rises, In the region, the opening is prevented from being formed by the pressing action of the pinching member 30. Therefore, according to the laminate-cased electricity storage device 10, when a gas is generated inside the exterior body 20 (inside the cell), the gas is not limited to the use environment, and a specific portion in which an unclamped portion is formed is formed. It can be reliably discharged from the site.
  • the joint portion 22 located in the unpinched portion has a joint width substantially equal to the joint width of the joint portion 22 located in the sandwiched portion. That is, by setting all the joint portions 22 in the exterior body 20 to the same joint width, it is not necessary to provide a special region having a joint width different from other regions in the joint portion 22 of the exterior body 20. The manufacturing is facilitated, the working efficiency is improved, and the size can be reduced. In addition, since it is not necessary to form an opening for exhausting gas in advance in the exterior body 20, sufficient airtightness can be obtained in a normal use state, so that occurrence of liquid leakage or the like is suppressed and high. It will be reliable.
  • this laminated exterior electrical storage device 10 can be easily obtained by sandwiching the sandwiching member 30 at the joint portion 22 of the exterior body 20 in the device body 10a.
  • the laminated exterior electricity storage device 10 of the present invention having such a configuration can be applied to an organic electrolyte battery in addition to an organic electrolyte capacitor such as a lithium ion capacitor.
  • an organic electrolyte capacitor can be charged and discharged instantly for a smaller charge capacity than an organic electrolyte battery, and the gas pressure change (change in internal pressure of the exterior body) may increase accordingly. Therefore, it is effective to apply the laminate-cased electricity storage device of the present invention to an organic electrolyte capacitor.
  • the sandwiching member 35 may have a U-shaped cross section as the sandwiching member 35.
  • the sandwiching member 30 having the sandwiching material 35 having such a configuration includes an upper side sandwiching portion 35a disposed on the surface of the upper exterior film 21A and a lower side sandwiching disposed on the surface of the lower exterior film 21B.
  • the upper-side sandwiching portion 35a and the lower-side sandwiching portion 35b are held by a holding material (not shown).
  • a pressure is applied and fixed to each of these in a direction toward the outer peripheral edge of the exterior body 20 (up and down direction in FIG. 5).
  • a through hole that matches the terminal member is formed at a position corresponding to the positive electrode terminal member 14 and the negative electrode terminal member 15 of the sandwich material 35, and the terminal member is formed in the through hole. Has been inserted.
  • the pinching member has an unpinched portion forming portion formed in a region located in the unpinched portion of the exterior portion 20, and the unpinched portion forming portion is shown in FIGS. In addition to the notch as shown in FIG. 6, it may be an opening. Further, the unclamped portion forming portion may be configured by a region where no clamping force (pressing force) is applied.
  • the clamping portion member is formed in the exterior body. It is composed of an annular sandwich material arranged so as to cover the entire circumference of the outer peripheral edge portion, and a holding material for pressing and fixing the sandwich material. There is a configuration in which a part of the region is not pressed, and the unclamped portion forming part is formed by the region that is not pressed.
  • the opening part which comprises an unclamped part formation part in a clamping member is formed of the through-hole extended in the width direction (joining part width direction) of the outer periphery part of an exterior body.
  • the shape of the through hole constituting the opening is not particularly limited, and may be, for example, a circular shape, an elliptical shape, a polygonal shape, or the like.
  • size of an opening part should just be a magnitude
  • the pinching member only needs to have an unpinched portion forming portion formed at least in part, and may have a plurality of unpinched portion forming portions.
  • the pinching member extends along the outer peripheral edge of the exterior body of the device body, it is formed over the entire circumference of the outer peripheral edge of the exterior body as shown in FIGS. 1, 4, and 6.
  • a part of the outer peripheral edge for example, extends in a U shape along the outer peripheral edge of the three sides of the exterior body having four sides as shown in FIGS. It may be configured such that an unpinched portion forming portion is formed in a region corresponding to an outer peripheral edge portion related to one side other than the three sides.
  • an unclamped portion is formed on the outer peripheral edge portion on one side where the unclamped portion forming portion of the clamping member is located.
  • the device body may have a configuration in which a safety valve is provided in an unclamped part formed in a region where the unclamped part forming part of the exterior body is located.
  • FIG. 6 is an explanatory plan view showing still another example of the configuration of the laminate-cased electricity storage device of the present invention
  • FIG. 7 shows a safety valve provided in the device body constituting the laminate-cased electricity storage device of FIG.
  • FIG. 8 is a partially enlarged view for explaining the structure
  • FIG. 8 is a sectional view for explaining the safety valve of FIG.
  • a safety valve 25 is formed in the device body 40a, and the safety valve 25 is provided in an unclamped portion of the exterior body 20, that is, a region where the notch portion 30a of the clamping member 30 is located. Except for this, it has the same configuration as the laminated exterior power storage device 10 according to FIG.
  • the device body 40a has a planar rectangular shape in which the outer peripheral edge portions of the upper outer film 21A and the lower outer film 21B in the outer body 20 are connected to the housing portion 23 on one side and the other side is surrounded by the joint portion 22.
  • a non-bonded portion 24 is formed, and an annular seal portion 26 formed by bonding a part of the upper exterior film 21A and the lower exterior film 21B to each other is formed at the central position of the non-bonded portion 24.
  • a hole portion 27 that penetrates the upper exterior film 21 ⁇ / b> A is formed at the center position of the seal portion 26, and thereby the safety valve 25 is configured.
  • a through hole 43 having a diameter equivalent to the outer diameter of the seal portion 26 is formed between the upper exterior film 21A and the lower exterior film 21B in the non-bonded portion 24, for example, polyimide, polyphenylene sulfide.
  • a non-heat-bondable sheet 42 made of cellulose is interposed, and this non-heat-bondable sheet 42 is fixed to, for example, the upper exterior film 21A by an adhesive layer 44.
  • the safety valve 25 is formed by forming the safety valve 25 at a position surrounded by the pinching member 30. Since the joint portion 22 does not peel off and an opening is not formed in a region other than the region, the position where the opening for discharging the gas can be formed more reliably can be limited.
  • Example 1 Production of positive electrode plate: By forming a plurality of circular through holes having an opening area of 0.79 mm 2 in a zigzag pattern on a band-shaped aluminum foil having a width of 200 mm and a thickness of 15 ⁇ m by a punching method, a current collector having an aperture ratio of 42% is formed. Produced. A conductive paint containing graphite as a conductive material is partially bonded to a part of the current collector using a vertical die type double-side coating machine under a coating width of 130 mm and a coating speed of 8 m / min.
  • the conductive layer was formed on the front and back surfaces of the current collector by drying under reduced pressure at 200 ° C. for 24 hours.
  • a positive electrode paint containing activated carbon as an electrode material is applied using a vertical die type double-side coating machine, and the coating condition is 8 m / min.
  • the positive electrode layer was formed on the conductive layer by drying under reduced pressure at 200 ° C. for 24 hours.
  • the material obtained by laminating the conductive layer and the positive electrode layer on a part of the current collector thus obtained is referred to as a portion where the conductive layer and the positive electrode layer are laminated (hereinafter referred to as “coating part” for the positive electrode plate).
  • coating part Is 98 mm ⁇ 128 mm, and is cut into a size of 98 mm ⁇ 143 mm so that a portion where no layer is formed (hereinafter also referred to as “uncoated portion” for the positive electrode plate) is 98 mm ⁇ 15 mm.
  • uncoated portion for the positive electrode plate
  • the material in which the negative electrode layer is formed on a part of the current collector obtained in this way has a portion where the negative electrode layer is formed (hereinafter referred to as “coating part” for the negative electrode plate) of 100 mm ⁇ 128 mm.
  • the negative electrode plate was prepared by cutting into a size of 100 mm ⁇ 143 mm so that a portion where the negative electrode layer was not formed (hereinafter referred to as “uncoated part” for the negative electrode plate) was 100 mm ⁇ 15 mm. .
  • a 260 ⁇ m-thick lithium foil was prepared, the lithium foil was cut at 550 mAh / g per 1 g of each negative electrode active material constituting the electrode laminate, and this cut lithium foil was cut into a 40 ⁇ m-thick stainless steel mesh.
  • a lithium metal (lithium electrode layer) as a lithium ion supply part source is produced by pressure bonding to a lithium electrode current collector, and this lithium ion supply part source is opposed to the negative electrode plate on the upper side of the electrode laminate. Arranged.
  • a sealant film is heat-sealed in advance to a seal portion on each uncoated portion of the 10 positive electrode plates of the produced electrode laminate, and is made of aluminum having a width of 50 mm, a length of 50 mm, and a thickness of 0.2 mm.
  • the connecting portions of the positive electrode terminal members were overlapped and ultrasonically welded.
  • a sealant film was previously heat-sealed to the uncoated portion of each of the 11 negative electrode plates of the electrode laminate and the lithium ion supply member, and a width of 50 mm, a length of 0.5 mm, and a thickness of 0.
  • the connecting portions of 2 mm copper negative electrode terminal members were stacked and resistance-welded.
  • a lithium ion capacitor element (electric storage device element) was produced as described above.
  • a PP layer, an aluminum layer, and a nylon layer are laminated.
  • the dimensions are 125 mm (vertical width) ⁇ 168 mm (horizontal width) ⁇ 0.15 mm (thickness), and 105 mm (vertical width) ⁇
  • the upper exterior film 21A width of the outer peripheral edge serving as a joint portion is 10 mm
  • a PP layer, an aluminum layer, and a nylon layer are laminated, and the dimension is 125 mm (vertical width) ) ⁇ 168 mm (horizontal width) ⁇ 0.15 mm (thickness) lower exterior film 21B.
  • the gas inflow port for pressure tests with a diameter of 1 mm was formed in the center position of one side of the sides extending in the lateral direction in the upper exterior film 21A. And in the position used as the accommodating part 23 on the lower exterior film 21B, the lithium ion capacitor element (electric storage device element) 11 is connected to the positive electrode terminal member 14 and the negative electrode terminal member 15 attached to the lithium ion capacitor element 11.
  • Each of the upper exterior films 21A is arranged so as to protrude outwardly from one side 22a of the upper exterior film 21A and the other side 22b opposite thereto, and then the upper exterior film 21A is overlaid on the lithium ion capacitor element 11, and the upper exterior film 21A and the lower By heat-sealing three sides (three sides excluding the side where the gas inflow port is formed) at the outer peripheral edge of the exterior film 21B, a joint portion 22 having a width of 10 mm surrounding the accommodating portion 23 is formed on the three sides. .
  • the upper exterior film 21A and the lower exterior film 21B are formed by the stainless steel plate 50 in which the tubular gas inlet 51 having an outer diameter suitable for the gas inlet formed in the upper exterior film 21A and the normal stainless steel plate are formed.
  • One side of the non-fused portion of the outer peripheral edge of the sheet was clamped and fixed.
  • the stainless steel plate 50 was arranged such that the gas inlet 51 overlapped with the gas inlet formed in the upper exterior film 21A.
  • the pressure test power storage device laminate exterior power storage lithium without safety valve
  • An ion capacitor was produced.
  • the side sandwiched between the stainless plate on which the gas injection port is formed and the normal stainless plate among the three sides on which the joint is formed It is made of natural rubber having a width of 5 mm having a thickness larger than the thickness of the power storage device main body for pressure test in a region other than a region of 3 mm in width (width in the circumferential direction of the joint portion of the exterior body) at the center position of the opposite sides
  • a rubber sheet was disposed on each of the upper exterior film side and the lower exterior film side.
  • the electrical storage device main body for pressure tests which has arrange
  • a total of three laminated exterior electricity storage devices laminate exterior electricity storage lithium ion capacitor without a safety valve) for pressure test having a configuration in which a sandwiched portion and an unpinched portion were formed were produced.
  • the site where the nitrogen gas was discharged was confirmed by observing the exterior body in the laminate exterior electricity storage device for pressure test, in the laminate exterior electricity storage device for 3 pressure tests,
  • the opening is formed only in a specific part (common part), that is, when the opening is formed only in the unflanged part in the outer peripheral edge portion "A”
  • the opening position fluctuates randomly, That is, the case where an opening was formed in addition to the unclamped portion was evaluated as “B”.
  • the results are shown in Table 1.
  • the internal pressure at the time when the injected nitrogen gas was discharged to the outside was 1.5 MPa.
  • Example 2 ⁇ Examples 2 to 9>
  • the pressure test was performed in the same manner as in Example 1.
  • a laminated exterior electricity storage device was prepared and subjected to a pressure test. The results are shown in Table 1.
  • the internal pressure when the injected nitrogen gas was discharged to the outside was 1.5 MPa.
  • Example 1 the gas shown in Table 1 was formed without sandwiching a rubber sheet with respect to each of the three laminated test electricity storage devices for pressure test (laminate external lithium ion capacitor main body without safety valve). A pressure test was performed in the same manner as in Example 1 with the injection rate and cell temperature. The results are shown in Table 1.
  • “A” indicates that the opening is formed only in a specific part (common part) in the three laminated exterior power storage device bodies for pressure test. The case where it fluctuated randomly was evaluated as “B”.
  • the internal pressure at the time when the injected nitrogen gas was discharged to the outside was 1.5 MPa.
  • Example 10 In Example 1, except that a laminate-cased electricity storage device for pressure test was produced as follows, a laminate-cased electricity storage device for pressure test was produced and subjected to a pressure test in the same manner as in Example 1. . The results are shown in Table 1.
  • the electrical storage device main body for pressure tests (laminated exterior electrical storage lithium ion capacitor main body with a safety valve) was produced as follows.
  • the pressure test power storage device main body (laminate external power storage lithium ion capacitor main body with a safety valve) in FIG. 10 is sandwiched between two stainless steel plates without being heat-sealed, and a gas inlet is provided on this side. 6 has the same configuration as that of the power storage device body according to FIG.
  • a PP layer, an aluminum layer, and a nylon layer are laminated.
  • the dimensions are 125 mm (vertical width) ⁇ 168 mm (horizontal width) ⁇ 0.15 mm (thickness), and 105 mm (vertical width) ⁇
  • the upper exterior film 21A width of the outer peripheral edge serving as a joint portion is 10 mm
  • a PP layer, an aluminum layer, and a nylon layer are laminated, and the dimension is 125 mm (vertical width) ) ⁇ 168 mm (horizontal width) ⁇ 0.15 mm (thickness) lower exterior film 21B, and hole portion 27 having a diameter of 2.5 mm was formed on the outer peripheral edge of the upper exterior film.
  • the dimensions are 8 mm (vertical width) ⁇ 30 mm (horizontal width) ⁇ 0.02 mm (thickness), and a circular through-hole having a diameter of 5 mm is formed in the center.
  • a non-heat-bondable sheet was produced. And while fixing a non-heat-fusion sheet
  • a gas inlet for a pressure test having a diameter of 1 mm was formed at the central position.
  • the lithium ion capacitor element (electric storage device element) 11 is connected to the positive electrode terminal member 14 and the negative electrode terminal member 15 attached to the lithium ion capacitor element 11.
  • Each is arranged so as to protrude outward from one side 22a of the upper exterior film 21A and the other side 22b opposite thereto, and the upper exterior film 21A is overlaid on the lithium ion capacitor element 11, and the upper exterior film 21A and the lower
  • a joining portion 22 surrounding the accommodating portion 23 is formed on the three sides, and heat
  • the non-joining part 24 and the hole part 2 which are connected to the accommodating part 23 on one side where the fusible sheet is arranged And to form a safety valve 25 having a seal portion 26.
  • the upper exterior film 21A and the lower exterior film 21B are formed by the stainless steel plate 50 in which the tubular gas inlet 51 having an outer diameter suitable for the gas inlet formed in the upper exterior film 21A and the normal stainless steel plate are formed.
  • One side of the non-fused portion of the outer peripheral edge of the sheet was clamped and fixed.
  • the stainless steel plate 50 was arranged such that the gas inlet 51 overlapped with the gas inlet formed in the upper exterior film 21A.
  • a total of three power storage device bodies for pressure testing laminate exterior power storage lithium ion capacitor body with safety valve
  • the pressure test power storage device laminate external power storage lithium with safety valve
  • An ion capacitor was produced.
  • a rubber sheet made of natural rubber having a width of 5 mm having a thickness larger than the thickness of the power storage device main body for pressure test is placed on the upper exterior film side and the lower portion in a region other than the non-bonded portion 24 at the center position of the opposite sides. It arranged in each of the exterior film side.
  • the electrical storage device main body for pressure tests which has arrange
  • a total of three laminated exterior electricity storage devices laminate exterior electricity storage lithium ion capacitor with a safety valve) for pressure test, each having a sandwiched portion and an un sandwiched portion, were formed.
  • Example 10 for the pressure test in the same manner as in Example 10 except that the material of the sandwiching material, the sandwiching width (width dimension of the sandwiching material), the gas injection rate, and the cell temperature were set to Table 1.
  • a laminated exterior electricity storage device (a laminated exterior electricity storage lithium ion capacitor with a safety valve) was prepared and subjected to a pressure test. The results are shown in Table 1.
  • Example 10 the gas shown in Table 1 was used without sandwiching a rubber sheet for each of the three laminate-coated electricity storage devices for pressure test (laminate-coated lithium ion capacitor main body with safety valve). A pressure test was performed in the same manner as in Example 10 with the injection rate and cell temperature. The results are shown in Table 1.
  • Comparative Example 4 the case where the opening was formed only in a specific part (common part) in the three laminated exterior power storage device bodies for pressure test was “A”, and the opening position was randomly The case where it fluctuated was evaluated as “B”.
  • Example 5 Example 9, Example 14, Example 18, Comparative Example 3 and Comparative Example 4 were subjected to a pressure test under the condition that the cell state of the laminate-coated lithium ion capacitor main body for pressure test was high.
  • Comparative Example 3 it was confirmed that the adhesive strength of the joint portion was weakened, and the position where the joint portion peeled fluctuated randomly.
  • gas is discharged safely at a specific part (unclamped part) without causing an explosion even under high temperature conditions. It was confirmed. From this, it is apparent that the present invention is applicable even when used in in-vehicle applications such as an automatic transporter, an automobile, and a forklift, which are expected to be a high temperature environment condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、外装体の内部においてガスが発生した場合において、そのガスを、使用環境によらず、特定の部位から確実に排出することができるラミネート外装蓄電デバイスを提供すること、および上記のようなラミネート外装蓄電デバイスを容易に製造することのできるラミネート外装蓄電デバイスの製造方法を提供することを目的とするものである。 本発明のラミネート外装蓄電デバイスは、互いに重ね合わせられた外装フィルムが、それぞれの外周縁部に形成された接合部において相互に気密に接合された外装体と、当該外装体に形成された収容部内に収容された蓄電デバイス要素および電解液とを具え、前記外装体における接合部を挟むように装着され、当該外周縁部に沿って伸びる挟扼部材を備えた挟扼機構が設けられており、当該挟扼部材の少なくとも一部に未挟扼部分形成部が形成されていることを特徴とする。

Description

ラミネート外装蓄電デバイスおよびその製造方法
 本発明は、ラミネート外装蓄電デバイスおよびその製造方法に関し、更に詳しくは、電池やキャパシタ(コンデンサ)などの蓄電デバイス要素が、外装フィルムよりなる外装体によって収容されてなるラミネート外装蓄電デバイスおよびその製造方法に関する。
 近年、正極板と負極板とがセパレータを介して巻回または交互に積層されて構成された電池要素などの蓄電デバイス要素を、電解液と共に2枚の外装フィルムよりなる外装体内に収容してなるラミネート外装蓄電デバイス(具体的には、例えば電池およびキャパシタ等)が、携帯機器や電気自動車等の電源として使用されている。
 ラミネート外装蓄電デバイスにおいては、過充電されたり、高温にさらされたりすることにより、電解液が電気分解または加熱分解されることに起因して、外装体の内部(セル内部)に可燃性ガス等のガスが発生し、これにより、外装体の内部圧力が上昇することがある。
 而して、このような問題を解決するため、種々の構成のラミネート外装蓄電デバイスが提案されている(例えば、特許文献1~特許文献4参照)。
 具体的には、例えば特許文献1および特許文献2には、外装体における2枚の外装フィルムの接合部の一部分に接合力の弱い部分(以下、「弱接合部分」ともいう。)を形成し、外装体の内部のガス圧(内部圧力)が上昇した場合に、この弱接合部分をガス抜き用の安全弁として機能させる構成の安全機構や、外装体を構成する外装フィルムの一部分に薄肉化した部分(以下、「薄肉化部分」ともいう。)を形成し、この薄肉化部分をガス抜き用の安全弁として機能させる構成の安全機構などが設けられたラミネート外装蓄電デバイスが提案されている。
 このような構成のラミネート外装蓄電デバイスの安全機構を構成する弱接合部分および薄肉化部分には、外装体の内部圧力が所定の値に達したときに確実に剥離あるいは破裂して排気口が形成されること、さらに、通常の使用状態においては、確実に密閉されて十分な信頼性が確保される程度の強度が要求される。然るに、製造上の観点から、このような強度を有する弱接合部分および薄肉化部分を確実に形成することは容易ではない。
 さらに、外装体の内部におけるガス圧が徐々に上昇していくような場合であっても、弱接合部分は徐々に引き剥がされ、一方、薄肉化部分は薄肉化が進行する。その結果、弱接合部分および薄肉化部分の強度が弱くなり、安全機構の作動圧が経時的に低下してしまう、という問題がある。また、特に、薄肉化部分においては、外装フィルムとして金属フィルムがラミネートされてなる構成のものが用いられている場合、当該金属フィルムと電解液とが接触して腐食が生じてしまうおそれがある、という問題もある。
 また、特許文献3には、ラミネート外装蓄電デバイスの安全機構として、接合部の近辺に形成された内部と外部とを連通する貫通穴が、当該貫通穴の穴縁部を圧接するよう設けられた弁体によって密閉されており、外装体の内部におけるガス圧が上昇した場合に弁体が変形して開弁状態とされ、これにより貫通穴が開放される構成のものが提案されている。
 しかしながら、このような構成の安全機構においては、弁体の圧接力が経時的に低下することに起因して弁作動圧が変動してしまうおそれがあった。しかも外装体の温度が上昇するような場合においては、接合部の接合力が低下して剥離が生じることによって開口が形成されてしまうおそれもある。
 さらに、特許文献4には、ラミネート外装蓄電デバイスの安全機構として、接合部が形成された領域の少なくとも一箇所に、非接合部位が蓄電デバイス要素が収容される収容部に連続しかつ収容部に対して入り江状に設けられることにより、圧力集中部が形成され、この非接合部位が形成された領域に、外装フィルムの剥離によって内部と外部とを連通させる圧力開放部が形成されてなるものが提案されている。
 しかしながら、このような構成の安全機構においては、外装体を構成するラミネート外装フィルムの接合部に入り江状の非接合部位を形成する部分を設けることが必要となるため、デバイスの小型化を図ることが困難となる、という問題がある。
特許第3554155号公報 特開2004-327046公報 特開2007-157678号公報 特許第3859645号公報
 本発明は、以上の事情に基づいてなされたものであって、その第1の目的は、外装体の内部(セル内部)においてガスが発生した場合に、そのガスを、使用環境によらず、特定の部位から確実に排出することができるラミネート外装蓄電デバイスを提供することにある。
 また、本発明の第2の目的は、外装体の内部(セル内部)においてガスが発生した場合に、そのガスを、使用環境によらず、特定の部位から確実に排出することができ、しかも小型化を図ることのできるラミネート外装蓄電デバイスを提供することにある。
 本発明の第3の目的は、上記のようなラミネート外装蓄電デバイスを容易に製造することのできるラミネート外装蓄電デバイスの製造方法を提供することにある。
 本発明のラミネート外装蓄電デバイスは、互いに重ね合わせられた外装フィルムが、それぞれの外周縁部に形成された接合部において相互に気密に接合された外装体と、当該外装体に形成された収容部内に収容された蓄電デバイス要素および電解液とを具えたラミネート外装蓄電デバイスであって、
 前記外装体における接合部を挟むように装着され、当該外周縁部に沿って伸びる挟扼部材を備えた挟扼機構が設けられており、当該挟扼部材の少なくとも一部に未挟扼部分形成部が形成されていることを特徴とする。
 本発明のラミネート外装蓄電デバイスにおいては、前記挟扼部材の未挟扼部分形成部が、切欠部または開口部であることが好ましい。
 本発明のラミネート外装蓄電デバイスにおいては、前記挟扼部材が前記外装フィルムの外周縁部に沿って伸びる環状構造を有することが好ましい。
 本発明のラミネート外装蓄電デバイスにおいては、前記外装体における前記未挟扼部分形成部の位置する領域に形成される未挟扼部分に安全弁が設けられていることが好ましい。
 本発明のラミネート外装蓄電デバイスの製造方法は、前記のラミネート外装蓄電デバイスを製造するためのラミネート外装蓄電デバイスの製造方法であって、
 互いに重ね合わせられた外装フィルムが、それぞれの外周縁部に形成された接合部において相互に気密に接合された外装体と、当該外装体に形成された収容部内に収容された蓄電デバイス要素および電解液とを具えたデバイス本体に対して、当該デバイス本体を構成する外装体における接合部に、当該外周縁部に沿って少なくとも一部に未挟扼部分形成部が形成されている挟扼部材を備えた挟扼機構を、重ね合わせられた外装フィルムの各々の表面側から挟むように設ける挟扼機構形成工程を有することを特徴とする。
 本発明のラミネート外装蓄電デバイスの製造方法においては、前記挟扼機構形成工程において、前記挟扼部材を備えた挟扼機構が前記外装フィルムにおける外周縁部の周方向に沿って配設されることが好ましい。
 本発明のラミネート外装蓄電デバイスの製造方法においては、前記挟扼機構を構成する挟扼部材の未挟扼部分形成部が切欠部または開口部であることが好ましい。
 本発明のラミネート外装蓄電デバイスにおいては、外装体における接合部を挟むようにして未挟扼部分形成部が形成されている挟扼部材を備えた挟扼機構が設けられている。そのため、この挟扼部材が設けられている領域においては、未挟扼部分形成部の位置する未挟扼部分以外は、挟扼部材によって接合部が挟扼されて押圧されていることから、外装体における蓄電デバイス要素が収容されている収容部内にガスが発生した場合には、外装体の内部圧力が上昇することによって外装体が膨張し、接合部には、その内部側の全周にわたって応力が作用することとなるが、その応力の作用により、接合部の未挟扼部分が選択的に剥離することによって開口が形成され、この開口から外装体内のガスが外部に排出される。
 また、外装体の温度が上昇する、あるいは内部圧力が徐々に上昇していくような使用環境下において接合部に接合強度の低下が生じた場合であっても、接合部における挟扼部材の未挟扼部分形成部の位置する未挟扼部分以外の領域においては、挟扼部材による押圧作用によって開口が形成されることが防止される。
 従って、本発明のラミネート外装蓄電デバイスによれば、外装体の内部(セル内部)でガスが発生した場合においては、そのガスを、使用環境によらず、特定の部位から確実に排出することができる。
 また、本発明のラミネート外装蓄電デバイスにおいては、ガスを排出するための特定の部位に係る外装体の接合部に、他の領域と異なる特別な構造が必要とされないことから、小型化を図ることができる。
 さらに、本発明のラミネート外装蓄電デバイスにおいては、外装体における未挟扼部分形成部の位置する領域に形成される未挟扼部分の位置する領域に安全弁を設けることにより、この安全弁が挟扼部材によって取り囲まれるように位置することとなるため、安全弁が形成されている領域以外の領域において接合部が剥離して開口が形成され難いため、より一層確実にガスを排出するための開口が形成される位置を限定することができる。
 本発明のラミネート外装蓄電デバイスの製造方法によれば、デバイス本体における外装体の接合部に挟扼部材を備えた挟扼機構を設けることにより、容易に、上記のラミネート外装蓄電デバイスを得ることができる。
本発明のラミネート外装蓄電デバイスの構成の一例を示す説明用平面図である。 図1のラミネート外装蓄電デバイスの説明用側面図である。 図1のラミネート外装蓄電デバイスを構成するデバイス本体の内部の構成を示す説明用断面図である。 本発明のラミネート外装蓄電デバイスの構成の他の実施形態を示す説明用平面図である。 図4のラミネート外装蓄電デバイスの説明用側面図である。 本発明のラミネート外装蓄電デバイスの構成の更に他の実施形態を示す説明用平面図である。 図6のラミネート外装蓄電デバイスを構成するデバイス本体に設けられている安全弁の構成を示す説明用部分拡大図である。 図7の安全弁の説明用断面図である。 実施例1~9および比較例1~3において用いた圧力試験用のラミネート外装リチウムイオンキャパシタ本体の構成を示す説明用平面図である。 実施例10~18および比較例4において用いた圧力試験用のラミネート外装リチウムイオンキャパシタ本体の構成を示す説明用平面図である。
 以下、本発明の実施の形態について詳細に説明する。
 図1は、本発明のラミネート外装蓄電デバイスの構成の一例を示す説明用平面図であり、図2は、図1のラミネート外装蓄電デバイスの説明用側面図であり、図3は、図1のラミネート外装蓄電デバイスを構成するデバイス本体の内部の構成を示す説明用断面図である。
 このラミネート外装蓄電デバイス10においては、外装体20は、それぞれ熱融着性を有する長方形の上部外装フィルム21Aおよび下部外装フィルム21Bが、互いに重ね合わせられた状態で、それぞれの外周縁部の全周にわたって形成された接合部22において相互に気密に接合されて構成されている。外装体20には、蓄電デバイス要素11を収容するための収容部23が形成され、当該収容部23内には、蓄電デバイス要素11が有機電解液と共に収容されており、この外装体20、蓄電デバイス要素11および有機電解液によってデバイス本体10aが構成されている。
 図示の例では、上部外装フィルム21Aにおける収容部23を形成する部分には、絞り加工が施されている。
 外装体20の接合部22における一辺(図1において左辺)22aには、その一端が外装体20の内部において蓄電デバイス要素11の正極集電体12aに電気的に接続され、その他端が接合部22の一辺22aから外部に突出する正極用端子部材14が設けられている。一方、外装体20の接合部22における一辺に対向する他辺(図1において右辺)22bには、その一端が外装体20の内部において蓄電デバイス要素11の負極集電体13aに電気的に接続され、その他端が接合部22の他辺22bから外部に突出する負極用端子部材15が設けられている。
 そして、このラミネート外装蓄電デバイス10には、デバイス本体10a上に、外装体20における外周縁部に沿い、少なくとも3辺にわたって伸びる挟扼部材30が、当該外周縁部に形成されている接合部22を挟むようにして設けられており、この挟扼部材30によって挟扼機構が構成されている。
 図示の例では、挟扼部材30は、外装体20における外周縁部の全周にわたって伸びる構成のものである。
 挟扼部材30は、デバイス本体10aを構成する外装体20における外周縁部に形成されている接合部22の周方向に沿って伸びる環状構造を有し、その一部に切欠部30aよりなる未挟扼部分形成部が形成されてなるものであり、外装体20の接合部22を、上部外装フィルム21A側および下部外装フィルム21B側から挟むように装着される。
 この挟扼部材30が装着されることにより、外装体20の接合部22には、その周方向の一部分、具体的には挟扼部材30の切欠部30aの位置する領域に、挟扼部材30によって挟装されていない未挟扼部分が形成されていると共に、当該挟扼部材30の切欠部30a以外の部分が位置する領域には、挟扼部材30が挟装されてなる挟扼部分が形成されている。
 挟扼部材30は、環状構造を有すると共に、切欠部30aが形成されてなるものであることにより、外装体20の接合部22における未挟扼部分とされる部分以外、すなわち挟扼部分とされる部分を一巡するように挟装することができる。
 具体的に、挟扼部材30は、例えば外装体20の接合部22上、すなわち接合部22を構成する上部外装フィルム21Aおよび下部外装フィルム21Bのそれぞれの外周縁部の表面上に、当該接合部22を挟むように配置される、切欠部を有する環状の挟着材31、31と、この接合部22を介して相対する挟着材31、31の各々に対して、挟着材31、31が互いに接近する方向(図2における上下方向)に圧力を加え、これにより接合部22を介して相対する挟着材31、31を締め付けて固定された状態とするための保持材(図示せず)とにより構成される。
 図の例において、上部外装フィルム21Aおよび下部外装フィルム21Bのそれぞれの外周縁部の表面上に配置されている挟着材31、31は、同様の形状を有するものであり、それぞれの切欠部は重なるように位置されている。
 挟扼部材30を構成する挟着材31は、その外観形状が切欠部を有する環状であってデバイス本体10aを構成する外装体20の接合部22の周方向に沿って伸びる構成を有するものである。
 挟着材31においては、その幅(挟扼部材30が外装体20の周方向に沿って伸びる方向に直交する方向の寸法)は、図の例のように外装体20の外周縁部の幅(接合部22の接合幅)よりも小さいものであってもよく、また外装体20の外周縁部の幅(接合部22の接合幅)と同等であってもよく、さらに後述の図4および図5に示すように、外装体20の外周縁部の幅(接合部22の接合幅)よりも大きく接合部22を覆うような構造のものであってもよい。 
 また、挟着材31は、一の構成材によって形成されてなる一体的なものであってもよく、また複数の構成材によって形成されてなるものであってもよい。
 挟着材31は、保持材によって圧力を加えられた状態においても破壊されない強度を有するものであれば特に限定されるものではないが、ラミネート外装蓄電デバイス10における放熱性の観点からは、熱伝導率の高い材料(以下、「高熱伝導性材料」ともいう。)よりなるものが好適に用いられる。また、ラミネート外装蓄電デバイス10における挟扼部材30による挟扼構造を確実なものとする観点からは、保持材によって締め付けられた状態とされることが必要となるため、その状態においても破損し難いように、ゴム材料類などの変形に強い材料よりなるものが好適に用いられる。
 挟着材31を構成する高熱伝導性材料としては、例えばアルミニウム、鉄、金、銀、銅、ステンレスなどの金属材料が挙げられる。これらのうちでは、軽量かつ好適な熱伝導率を有することからアルミニウムが特に好ましい。
 ここに、接合部22から外部に突出する正極用端子部材14および/または負極用端子部材15を有する構成のデバイス本体10aに対して、挟着材31として金属材料よりなるものを用いる場合においては、挟着材31が正極用端子部材14および負極用端子部材15と接触して短絡を生じることのないようにする必要がある。具体的には、例えば挟着材31の幅を外装体20の外周縁部の幅よりも小さくする、あるいは正極用端子部材14および負極用端子部材15と挟着材31との間に、例えばポリエチレン、ポリプロピレン、ポリアミド、アラミドなどよりなる絶縁体を挟入する必要がある。
 挟着材31を構成するゴム材料類としては、天然ゴム、合成ゴム、シリコーンゴムなどが挙げられる。
 また、挟着材31として用いることのできる変形に強い材料としては、ゴム材料類の他、例えばポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル等の汎用樹脂類、ポリカーボネート、ポリエチレンテレフタレート、ABS樹脂、ポリアミド、ポリイミド、ポリアセタール、ポリスルホン、ポリエーテルエーテルケトン、フッ素樹脂等のエンジニアリングプラスチック類等が挙げられる。
 また、挟着材31は、適宜、設計変更により最適化が可能であるが、デバイス本体10aの厚み、すなわち接合部22の伸びる方向に垂直な方向(図2における上下方向)における、上部外装フィルム21Aおよび下部外装フィルム21Bの各々における接合部22表面からの突出高さと同等あるいは同等以上であることが好ましい。
 挟着材31がデバイス本体10aの厚みと同等あるいは同等以上の厚みを有することにより、接合部22上に挟着材31が配置されたデバイス本体10a全体を保持材により挟み込むことによって挟扼構造を形成することができ、従って、挟扼構造を容易に形成することができる。
 図の例においては、挟着材31は、デバイス本体10aにおける収容部23の高さ、すなわち収容部23の上部外装フィルム21Aにおける接合部22からの突出高さhと同等の厚みを有している。
 挟扼部材30を構成する保持材としては、例えば角型治具などが挙げられる。
 保持材の好適な具体例としては、デバイス本体10aの表面の縦横寸法よりも大きな寸法を有する薄板を備えてなるものが挙げられる。保持材を構成する角型治具は、例えば鉄、ステンレス、アルミニウムなどの金属製または樹脂製の薄板2枚と、これらの2枚の薄板を螺合させるためのネジとを備えた角型治具よりなり、接合部22上に挟着材31が配置されたデバイス本体10aを、その表面を2枚の薄板によって覆うように、上部外装フィルム21Aおよび下部外装フィルム21Bの各々の表面側から挟み込み、この2枚の薄板を、その外周縁部(接合部22上に挟着材31が配置されたデバイス本体10aの外方に突出している部分)において外側からネジ止めし、これにより、挟着材31が締め付けられ、デバイス本体10aに固定された状態とするものである。
 なお、挟扼部材30においては、挟着材31が切欠部を有する環状ものであることにより、当該挟扼部材30が切欠部30aよりなる未挟扼部分形成部を有する環状構造ものとされていることから、保持材はいかなる構成を有するものであってもよい。
 挟扼部材30によって接合部22における挟扼部分に加えられる圧力は、0.1~100MPaであることが好ましく、1~3MPaであることが更に好ましい。
 外装体20を構成する上部外装フィルム21Aおよび下部外装フィルム21Bとしては、例えば内側からポリプロピレン(以下、「PP」という。)層、アルミニウム層およびナイロン層などがこの順で積層されてなるものを好適に用いることができる。
 上部外装フィルム21Aおよび下部外装フィルム21Bとして、例えばPP層、アルミニウム層およびナイロン層が積層されてなるものを用いる場合には、その厚みは、通常、50~300μmである。
 上部外装フィルム21Aおよび下部外装フィルム21Bの縦横の寸法は、収容部23に収容される蓄電デバイス要素11の寸法に応じて適宜選択されるが、例えば縦方向の寸法が40~200mm、横方向の寸法が60~300mmである。
 また、デバイス本体10aにおける接合部22の接合幅は、未挟扼部分に形成されている接合部22の接合幅と、挟扼部分に形成されている接合部22の接合幅とが同等であることが好ましく、その差が0.1~3mm以内であることが好ましい。すなわち、接合部22の幅が、外装体20における外周縁部の全周にわたって同等であることが好ましい。
 具体的に、接合部22の接合幅は、例えば2~15mmである。
 ラミネート外装蓄電デバイス10を構成する蓄電デバイス要素11は、セパレータSを介して、それぞれ正極集電体12a上に、必要に応じて導電層を介して正極層12が形成されてなる複数の正極板と、それぞれ負極集電体13a上に、必要に応じて導電層を介して負極層13が形成されてなる複数の負極板とが交互に積層されて構成された電極積層体を有している。また、電極積層体の上面には、リチウムイオンの供給源であるリチウム金属(リチウム極層)18が配置され、このリチウム金属18上には、リチウム極集電体18aが積層されている。
 複数の正極板の各々における正極集電体12aには、それぞれ取り出し部16が形成され、これらの取り出し部16は、互いに溶接されて正極用端子部材14に電気的に接続されている。一方、複数の負極板の各々における負極集電体13aには、それぞれ取り出し部17が形成され、互いに溶接されて負極用端子部材15に電気的に接続されている。
 図3において、19は、リチウム極取り出し部材である。
 蓄電デバイス要素11を構成する正極層12としては、電極材料を、必要に応じて導電材(例えば、活性炭、カーボンブラック等)およびバインダー等を加えて成形したものが用いられる。正極層12を構成する電極材料としては、リチウムを可逆的に担持可能であれば、特に限定されないが、例えば、LiCoO、LiNiO、LiFeO等の一般式:Li(但し、Mは金属原子を示し、x、yおよびzは各々整数である。)で表される金属酸化物等の正極活物質、活性炭などが挙げられる。
 また、蓄電デバイス要素11を構成する負極層13としては、電極材料をバインダーで成形したものが用いられる。負極層13を構成する電極材料としては、リチウムを可逆的に担持できるものであれば特に限定されないが、例えばグラファイト、種々の炭素材料、ポリアセン系物質、錫酸化物、珪素酸化合物等の粉末状、粒状の負極活物質などが挙げられる。
 また、電解液としては、適宜の有機溶媒中に電解質が溶解されてなるものを用いることが好ましい。
 有機溶媒の具体例としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、アセトニトリル、ジメトキシエタン等の非プロトン性有機溶媒が挙げられ、これらは単独でまたは2種類以上を組み合わせて用いることができる。
 また、電解質としては、リチウムイオンを生成しうるものが用いられ、その具体例としては、LiI、LiCIO、LiAsF、LiBF、LiPFなどが挙げられる。
 このようなラミネート外装蓄電デバイス10は、デバイス本体10aに対して、当該デバイス本体10aを構成する外装体20における接合部22に、当該外装体20の外周縁部の周方向に沿って挟扼部材30を、重ね合わせられた上部外装フィルム21Aおよび下部外装フィルム21Bの各々の表面側から挟むように設ける挟扼機構形成工程を経ることによって製造することができる。
 具体的には、例えば以下のようにして製造することができる。
 先ず、下部外装フィルム21B上における収容部23となる位置に、正極用端子部材14および負極用端子部材15が接続された蓄電デバイス要素11を配置し、その後、蓄電デバイス要素11上に、上部外装フィルム21Aを重ね合わせ、上部外装フィルム21Aおよび下部外装フィルム21Bの外周縁部における3辺を熱融着する。
 そして、上部外装フィルム21Aおよび下部外装フィルム21Bの間に電解液を注入した後、上部外装フィルム21Aおよび下部外装フィルム21Bの外周縁部における未融着の1辺を熱融着することによって外装体20を形成することにより、デバイス本体10aが得られる。
 次いで、このようにして得られたデバイス本体10aの外周縁部の全周にわたって形成された接合部22を構成する上部外装フィルム21Aおよび下部外装フィルム21Bの表面上に、各々、挟着材31、31を、それぞれの切欠部が未挟扼部分となる位置において重なり合うようにして配置し、この挟着材31、31を保持材によって固定することにより、挟着材31、31および保持材よりなる構成の挟扼部材30によって外装体20における接合部22の一部分に未挟扼部分が形成されてなる挟扼構造を有するラミネート外装蓄電デバイス10が得られる。
 このようなラミネート外装蓄電デバイス10においては、外装体20における接合部22を挟むようにして挟扼部材30が設けられており、この挟扼部材30の切欠部30aの位置する未挟扼部分が形成されている領域以外の領域においては、挟扼部材30によって接合部22が挟扼されて押圧されている。そのため、外装体20における蓄電デバイス要素11が収容される収容部23内にガスが発生すると、外装体20の内部圧力が上昇することによって外装体20が膨張し、それによって接合部22には、その内部側の全周にわたって応力が作用することとなるが、その応力の作用により、接合部22の未挟扼部分のみが選択的に剥離することによって開口が形成され、この開口から外装体20内のガスが外部に排出される。
 また、外装体20の温度が上昇する、あるいは内部圧力が徐々に上昇していくような使用環境下において接合部22に接合強度の低下が生じた場合であっても、未挟扼部分以外の領域においては、挟扼部材30による押圧作用によって開口が形成されることが防止される。
 従って、ラミネート外装蓄電デバイス10によれば、外装体20の内部(セル内部)においてガスが発生した場合においては、そのガスを、使用環境によらず、未挟扼部分が形成されてなる特定の部位から確実に排出することができる。
 また、ラミネート外装蓄電デバイス10においては、未挟扼部分に位置する接合部22を、挟扼部分に位置する接合部22の接合幅と略同等の接合幅を有するものとする。すなわち、外装体20における接合部22のすべてを同等の接合幅とすることにより、外装体20の接合部22において、他の領域と異なる接合幅を有する特別な領域を設ける必要がないことから、その製造が容易となって作業効率が向上されると共に、小型化を図ることができる。その上、外装体20に予めガスを排出させるための開口を形成しておく必要もないことから、通常の使用状態において十分な気密性が得られるため、液漏れなどの発生が抑制され、高い信頼性を有するものとなる。
 そして、このラミネート外装蓄電デバイス10は、デバイス本体10aにおける外装体20の接合部22に挟扼部材30を挟装することにより、容易に得ることができる。
 このような構成を有する本発明のラミネート外装蓄電デバイス10は、リチウムイオンキャパシタなどの有機電解質キャパシタの他、有機電解質電池に適用することができる。特に、有機電解質キャパシタが、有機電解質電池に比して充電容量が小さい割に瞬時に充電および放電をすることができ、それに伴ってガス圧変化(外装体の内部圧力変化)が大きくなる可能性を有するものであることから、本発明のラミネート外装蓄電デバイスを有機電解質キャパシタに適用することが有効である。
 以上、本発明の実施形態について説明したが、上記実施形態に限定されるものではなく、種々の変更を加えることができる。
 例えば、挟扼部材は、図4および図5に示すように、挟着材35が、その断面形状がコ字状のものであってもよい。このような構成の挟着材35を有する挟扼部材30は、上部外装フィルム21Aの表面上に配置される上部側挟着部分35aと、下部外装フィルム21Bの表面上に配置される下部側挟着部分35bとの間に形成されてなる間隙に外装体20の外周縁部が挟入された状態において、保持材(図示せず)により、上部側挟着部分35aおよび下部側挟着部分35bの各々に対して外装体20の外周縁部に向かう方向(図5における上下方向)に圧力が加えられて固定されることとなる。この挟扼部材30においては、挟着材35の正極用端子部材14および負極用端子部材15に対応する位置に、当該端子部材に適合する貫通孔が形成されており、この貫通孔に端子部材が挿通された状態とされている。
 また挟扼部材は、外装部20における未挟扼部分に位置する領域に未挟扼部分形成部が形成されているものであるが、当該未挟扼部分形成部は、図1、図4および図6に示されるような切欠部の他、開口部であってもよい。また、未挟扼部分形成部は、挟扼力(押圧力)が加えられない領域によって構成されてなるものであってもよく、その具体的としては、例えば挟扼部部材が、外装体における外周縁部の全周を覆うように配置される環状の挟着材と、当該挟着材を押圧して固定された状態とするための保持材とによりなり、当該保持部材によって挟着材の一部の領域が押圧されておらず、この押圧されていない領域によって未挟扼部分形成部が形成されてなる構成が挙げられる。
 ここに、挟扼部材において未挟扼部分形成部を構成する開口部は、外装体の外周縁部の幅方向(接合部幅方向)に伸びる貫通穴によって形成されるものである。開口部を構成する貫通穴の形状は、特に限定されるものではなく、例えば円形状、楕円状、多角形状などであってもよい。なお、開口部の大きさは、挟扼部材に形成することのできる大きさであればよい。
 また、挟扼部材は、少なくとも一部に未挟扼部分形成部が形成されていればよく、複数の未挟扼部分形成部を有するものであってもよい。
 さらに挟扼部材は、デバイス本体の外装体における外周縁部に沿って伸びるものであれば、図1、図4および図6に示されるように外装体における外周縁部の全周にわたって形成されてなる構成の他、外周縁部の一部分、例えば図1、図4および図6に示されるような4つの辺を有する外装体の3つの辺に係る外周縁部に沿ってコ字状に伸び、当該3つの辺以外の一辺に係る外周縁部に対応する領域に未挟扼部分形成部が形成されてなる構成のものであってもよい。このような構成のラミネート外装蓄電デバイスにおいては、挟扼部材の未挟扼部分形成部の位置する一辺に係る外周縁部に未挟扼部分が形成されることとなり、この未挟扼部分から選択的にガスの排出を促すことが可能となる。
 また、デバイス本体は、外装体における未挟扼部分形成部の位置する領域に形成される未挟扼部分に安全弁が設けられてなる構成のものであってもよい。
 図6は、本発明のラミネート外装蓄電デバイスの構成の更に他の例を示す説明用平面図であり、図7は、図6のラミネート外装蓄電デバイスを構成するデバイス本体に設けられている安全弁の構成を示す説明用部分拡大図であり、図8は、図7の安全弁の説明用断面図である。
 このラミネート外装蓄電デバイス40は、デバイス本体40aに安全弁25が形成されており、当該安全弁25が外装体20における未挟扼部分、すなわち挟扼部材30の切欠部30aの位置する領域に設けられていること以外は図1に係るラミネート外装蓄電デバイス10と同様の構成を有するものである。
 デバイス本体40aには、外装体20における上部外装フィルム21Aおよび下部外装フィルム21Bの外周縁部に、その一辺が収容部23に連通し、その他の辺が接合部22に包囲された、平面矩形の非接合部位24が形成されており、この非接合部位24の中央位置には、上部外装フィルム21Aおよび下部外装フィルム21Bの一部分が相互に接合されてなる円環状のシール部26が形成され、このシール部26の中央位置には、上部外装フィルム21Aを貫通する孔口部27が形成され、これにより、安全弁25が構成されている。
 図の例において、非接合部位24には、上部外装フィルム21Aおよび下部外装フィルム21Bの間に、シール部26の外径と同等の直径を有する貫通孔43が形成された、例えばポリイミド、ポリフェニレンサルファイドまたはセルロースよりなる非熱融着性シート42が介在されており、この非熱融着性シート42は、粘着剤層44によって例えば上部外装フィルム21Aに固定されている。
 このようにデバイス本体40aに安全弁が設けられてなる構成のラミネート外装蓄電デバイス40においては、安全弁25を、挟扼部材30によって取り囲まれるような位置に形成することにより、安全弁25が形成されている領域以外の領域において接合部22が剥離して開口が形成されることがないため、より一層確実にガスを排出するための開口が形成される位置を限定することができる。
 以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
〈実施例1〉
(1)正極板の作製:
 幅200mm、厚み15μmの帯状のアルミニウム箔に、パンチング方式により、開口面積0.79mmの円形の複数の貫通孔を千鳥状に配列して形成することにより、開口率42%の集電体を作製した。この集電体の一部分に、導電材としてグラファイトを含んだ導電塗料を、縦型ダイ方式の両面塗工機を用い、塗工幅130mm、塗工速度8m/minの塗工条件により、両面合わせた塗布厚みの目標値を20μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、集電体の表裏面に導電層を形成した。
 次いで、集電体の表裏面に形成された導電層上に、電極材料として活性炭を含んだ正極塗料を、縦型ダイ方式の両面塗工機を用い、塗工速度8m/minの塗工条件により、両面合わせた塗布厚みの目標値を150μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、導電層上に正極層を形成した。
 このようにして得られた、集電体の一部分に導電層および正極層が積層されてなる材料を、導電層および正極層が積層されてなる部分(以下、正極板について「塗工部」ともいう。)が98mm×128mm、いずれの層も形成されてない部分(以下、正極板について「未塗工部」ともいう。)が98mm×15mmとなるように、98mm×143mmの大きさに切断することにより、正極板を作製した。
(2)負極板の作製:
 幅200mm、厚み10μmの帯状の銅箔に、パンチング方式により、開口面積0.79mmの円形の複数の貫通孔を千鳥状に配列して形成することにより、開口率42%の集電体を得た。この集電体の一部分に、電極材料としてアセチレンブラックを含んだ負極塗料を、縦型ダイ方式の両面塗工機を用い、塗工幅130mm、塗工速度8m/minの塗工条件により、両面合わせた塗布厚みの目標値を80μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、集電体の表裏面に負極層を形成した。
 このようにして得られた、集電体の一部分に負極層が形成されてなる材料を、負極層が形成されてなる部分(以下、負極板について「塗工部」という。)が100mm×128mm、負極層が形成されてない部分(以下、負極板について「未塗工部」という。)が100mm×15mmになるように、100mm×143mmの大きさに切断することにより、負極板を作製した。
(3)蓄電デバイス要素(リチウムイオンキャパシタ要素)の作製:
 先ず、正極板10枚、負極板11枚、厚みが50μmのセルロース/レーヨンよりなるセパレータ22枚を用意し、正極板と負極板とを、それぞれの塗工部は重なるが、それぞれの未塗工部は反対側になり重ならないよう、セパレータ、負極板、セパレータ、正極板の順で積重し、積重体の4辺をテープにより固定することにより、電極積層体を作製した。
 次いで、厚み260μmのリチウム箔を用意し、電極積層体を構成する各負極活物質1g当り550mAh/gになるようにしてリチウム箔を切断し、この切断したリチウム箔を、厚さ40μmのステンレス網よりなるリチウム極集電体に圧着することにより、リチウムイオンの供給部源としてのリチウム金属(リチウム極層)を作製し、このリチウムイオン供給部源を電極積層体の上側に負極板と対向するよう配置した。
 そして、作製した電極積層体の10枚の正極板の各々の未塗工部に、予めシール部分にシーラントフィルムを熱融着した、幅50mm、長さ50mm、厚さ0.2mmのアルミニウム製の正極用端子部材の接続部を重ねて超音波溶接した。一方、電極積層体の11枚の負極板の各々の未塗工部およびリチウムイオン供給部材の各々に、予めシール部分にシーラントフィルムを熱融着した、幅50mm、長さ50mm、厚さ0.2mmの銅製の負極用端子部材の接続部を重ねて抵抗溶接した。以上のようにして、リチウムイオンキャパシタ要素(蓄電デバイス要素)を作製した。
(4-1)圧力試験用のラミネート外装蓄電デバイス(安全弁なしラミネート外装蓄電リチウムイオンキャパシタ)の作製:
 先ず、図9に示す構成に従い、以下のようにして圧力試験用の蓄電デバイス本体(安全弁なしラミネート外装蓄電リチウムイオンキャパシタ本体)を作製した。
 図9の圧力試験用の蓄電デバイス本体(安全弁なしラミネート外装蓄電リチウムイオンキャパシタ本体)は、外装体の一辺が熱融着されずに2枚のステンレス板によって挟持されおり、この一辺にガス流入口が設けられていること以外は図1に係る蓄電デバイス本体と同様の構成を有するものである。
 PP層、アルミニウム層およびナイロン層が積層されてなり、寸法が125mm(縦幅)×168mm(横幅)×0.15mm(厚み)で、収容部23となる中央部分に、105mm(縦幅)×148mm(横幅)の絞り加工が施された上部外装フィルム21A(接合部となる外周縁部の幅が10mm)と、PP層、アルミニウム層およびナイロン層が積層されてなり、寸法が125mm(縦幅)×168mm(横幅)×0.15mm(厚み)の下部外装フィルム21Bとを作製した。そして、上部外装フィルム21Aにおける横方向に伸びる辺のうちの一辺の中央位置に、直径1mmの圧力試験用のガス流入口を形成した。
 そして、下部外装フィルム21B上における収容部23となる位置に、リチウムイオンキャパシタ要素(蓄電デバイス要素)11を、当該リチウムイオンキャパシタ要素11に取り付けられた正極用端子部材14および負極用端子部材15の各々が、上部外装フィルム21Aの一辺22aおよびこれに対向する他辺22bから外方に突出するよう配置した後、リチウムイオンキャパシタ要素11に、上部外装フィルム21Aを重ね合わせ、上部外装フィルム21Aおよび下部外装フィルム21Bの外周縁部における3辺(ガス流入口が形成された辺を除く3辺)を熱融着することにより、当該3辺に収容部23を取り囲む幅10mmの接合部22を形成した。
 その後、上部外装フィルム21Aに形成されたガス流入口に適合した外径を有する管状のガス注入口51が形成されたステンレス板50と通常のステンレス板とによって、上部外装フィルム21Aおよび下部外装フィルム21Bの外周縁部における未融着の一辺を挟持して固定した。この際、ステンレス板50を、そのガス注入口51が上部外装フィルム21Aに形成されたガス流入口に重なるよう配置した。
 以上のようにして、圧力試験用の蓄電デバイス本体(安全弁なしラミネート外装蓄電リチウムイオンキャパシタ本体)を合計で3個作製した。
 次いで、以下のようにして、作製した圧力試験用の蓄電デバイス本体の接合部を挟むように天然ゴムよりなる挟着材を装着することにより、圧力試験用の蓄電デバイス(安全弁なしラミネート外装蓄電リチウムイオンキャパシタ)を作製した。
 作製した3個の圧力試験用の蓄電デバイス本体の各々に対して、接合部の形成された3辺のうちのガス注入口の形成されたステンレス板と通常のステンレス板に挟持されている辺に対向する辺の中央位置における幅(外装体の接合部の周方向における幅)3mmの領域以外の領域に、圧力試験用の蓄電デバイス本体の厚みより大きな厚みを有する、5mm幅の天然ゴムよりなるゴム製のシートを、上部外装フィルム側および下部外装フィルム側の各々に配置した。そして、ゴム製のシートを配置した圧力試験用の蓄電デバイス本体を、当該圧力試験用の蓄電デバイス本体の表面の縦横寸法よりも大きな寸法(縦幅135mm、横幅190mm)を有する、厚み1mmの2枚のステンレス板により、上部外装フィルム21Aおよび下部外装フィルム21Bの各々の表面側から挟み込み、この2枚のステンレス板の外周縁部(圧力試験用の蓄電デバイス本体の外方に突出している部分)を外側からネジ止めすることによって固定し、これにより、圧力2MPaの条件で押圧して挟装した。
 以上のようにして、挟扼部分および未挟扼部分が形成されてなる構成の圧力試験用のラミネート外装蓄電デバイス(安全弁なしラミネート外装蓄電リチウムイオンキャパシタ)を合計で3個作製した。
(5)圧力試験:
 作製した3個の圧力試験用のラミネート外装蓄電デバイスの各々を、10mmの間隔で離間して配置された2枚のアクリル板の間に配置し、圧力試験用のラミネート外装蓄電デバイス(安全弁なしラミネート外装リチウムイオンキャパシタ)の温度(以下、「セル温度」ともいう。)が25℃となる条件下において、ガス注入口から内部に、内部における昇圧速度が0.1MPa/sとなる条件で窒素ガスを注入し、その窒素ガスが外部に排出された時点で窒素ガスの注入を停止した。
 注入を停止した後、圧力試験用のラミネート外装蓄電デバイスにおける外装体を観察することによって窒素ガスの排出された部位(開口位置)を確認し、3個の圧力試験用のラミネート外装蓄電デバイスにおいて、特定の部位(共通の部位)のみに開口が形成されていた場合、すなわち外周縁部における未挟扼部分のみに開口が形成されていた場合を「A」、開口位置がランダムに変動した場合、すなわち未挟扼部分以外にも開口が形成されていた場合を「B」と評価した。結果を表1に示す。
 なお、注入された窒素ガスが外部に排出された時点の内部圧力を測定したところ、1.5MPaであった。
〈実施例2~9〉
 実施例1において、挟着材の材質、挟扼幅(挟着材の幅寸法)、ガスの注入速度およびセル温度を表1としたこと以外は、当該実施例1と同様にして圧力試験用のラミネート外装蓄電デバイスを作製して圧力試験を行った。結果を表1に示す。
 なお、実施例2において、注入された窒素ガスが外部に排出された時点の内部圧力を測定したところ、1.5MPaであった。
〈比較例1~3〉
 実施例1において、作製した3個の圧力試験用のラミネート外装蓄電デバイス(安全弁なしラミネート外装リチウムイオンキャパシタ本体)の各々に対して、ゴム製のシートを挟装することなく、表1に示すガスの注入速度およびセル温度により、当該実施例1と同様の手法によって圧力試験を行った。結果を表1に示す。
 ここに、比較例1~3においては、3個の圧力試験用のラミネート外装蓄電デバイス本体において、特定の部位(共通の部位)のみに開口が形成されていた場合を「A」、開口位置がランダムに変動した場合を「B」と評価した。
 なお、比較例1においては、注入された窒素ガスが外部に排出された時点の内部圧力を測定したところ、1.5MPaであった。
〈実施例10〉
 実施例1において、以下のようにして圧力試験用のラミネート外装蓄電デバイスを作製したこと以外は、当該実施例1と同様にして圧力試験用のラミネート外装蓄電デバイスを作製して圧力試験を行った。結果を表1に示す。
(4-2)圧力試験用のラミネート外装蓄電デバイス(安全弁ありラミネート外装蓄電リチウムイオンキャパシタ)の作製:
 先ず、図10に示す構成に従い、以下のようにして圧力試験用の蓄電デバイス本体(安全弁ありラミネート外装蓄電リチウムイオンキャパシタ本体)を作製した。
 図10の圧力試験用の蓄電デバイス本体(安全弁ありラミネート外装蓄電リチウムイオンキャパシタ本体)は、外装体の一辺が熱融着されずに2枚のステンレス板によって挟持されおり、この一辺にガス流入口が設けられていること以外は図6に係る蓄電デバイス本体と同様の構成を有するものである。
 PP層、アルミニウム層およびナイロン層が積層されてなり、寸法が125mm(縦幅)×168mm(横幅)×0.15mm(厚み)で、収容部23となる中央部分に、105mm(縦幅)×148mm(横幅)の絞り加工が施された上部外装フィルム21A(接合部となる外周縁部の幅が10mm)と、PP層、アルミニウム層およびナイロン層が積層されてなり、寸法が125mm(縦幅)×168mm(横幅)×0.15mm(厚み)の下部外装フィルム21Bとを作製し、上部外装フィルムの外周縁部に、直径が2.5mmの孔口部27を形成した。
 一方、寸法が8mm(縦幅)×30mm(横幅)×0.02mm(厚み)で、中央部に、直径が5mmの円形の貫通孔が形成された、一面に粘着剤層を有するポリイミド製の非熱融着性シートを作製した。そして、上部外装フィルムの外周縁部における一辺の中央位置(非接合部位24となる位置)に、非熱融着性シートを粘着材層を介して固定すると共に、当該一辺に対向する他辺の中央位置に、直径1mmの圧力試験用のガス流入口を形成した。
 そして、下部外装フィルム21B上における収容部23となる位置に、リチウムイオンキャパシタ要素(蓄電デバイス要素)11を、当該リチウムイオンキャパシタ要素11に取り付けられた正極用端子部材14および負極用端子部材15の各々が、上部外装フィルム21Aの一辺22aおよびこれに対向する他辺22bから外方に突出するよう配置し、このリチウムイオンキャパシタ要素11に、上部外装フィルム21Aを重ね合わせ、上部外装フィルム21Aおよび下部外装フィルム21Bの外周縁部における3辺(ガス流入口が形成された辺を除く3辺)を熱融着することにより、当該3辺に収容部23を取り囲む接合部22を形成すると共に、熱融着性シートが配置された1辺に収容部23に連通する非接合部位24および孔口部27およびシール部26を有する安全弁25を形成した。
 その後、上部外装フィルム21Aに形成されたガス流入口に適合した外径を有する管状のガス注入口51が形成されたステンレス板50と通常のステンレス板とによって、上部外装フィルム21Aおよび下部外装フィルム21Bの外周縁部における未融着の一辺を挟持して固定した。この際、ステンレス板50を、そのガス注入口51が上部外装フィルム21Aに形成されたガス流入口に重なるよう配置した。
 以上のようにして、圧力試験用の蓄電デバイス本体(安全弁ありラミネート外装蓄電リチウムイオンキャパシタ本体)を合計で3個作製した。
 次いで、以下のようにして、作製した圧力試験用の蓄電デバイス本体の接合部を挟むように天然ゴムよりなる挟着材を装着することにより、圧力試験用の蓄電デバイス(安全弁ありラミネート外装蓄電リチウムイオンキャパシタ)を作製した。
 作製した3個の圧力試験用の蓄電デバイス本体の各々に対して、接合部の形成された3辺のうちのガス注入口の形成されたステンレス板と通常のステンレス板に挟持されている辺に対向する辺の中央位置における非接合部位24以外の領域に、圧力試験用の蓄電デバイス本体の厚みより大きな厚みを有する、5mm幅の天然ゴムよりなるゴム製のシートを、上部外装フィルム側および下部外装フィルム側の各々に配置した。そして、ゴム製のシートを配置した圧力試験用の蓄電デバイス本体を、当該圧力試験用の蓄電デバイス本体の表面の縦横寸法よりも大きな寸法(縦幅135mm、横幅190mm)を有する、厚み1mmの2枚のステンレス板により、上部外装フィルム21Aおよび下部外装フィルム21Bの各々の表面側から挟み込み、この2枚のステンレス板の外周縁部(圧力試験用の蓄電デバイス本体の外方に突出している部分)を外側からネジ止めすることによって固定し、これにより、圧力2MPaの条件で押圧して挟装した。
 以上のようにして、挟扼部分および未挟扼部分が形成されてなる構成の圧力試験用のラミネート外装蓄電デバイス(安全弁ありラミネート外装蓄電リチウムイオンキャパシタ)を合計で3個作製した。
〈実施例11~18〉
 実施例10において、挟着材の材質、挟扼幅(挟着材の幅寸法)、ガスの注入速度およびセル温度を表1としたこと以外は、当該実施例10と同様にして圧力試験用のラミネート外装蓄電デバイス(安全弁ありラミネート外装蓄電リチウムイオンキャパシタ)を作製して圧力試験を行った。結果を表1に示す。
〈比較例4〉
 実施例10において、作製した3個の圧力試験用のラミネート外装蓄電デバイス(安全弁ありラミネート外装リチウムイオンキャパシタ本体)の各々に対して、ゴム製のシートを挟装することなく、表1に示すガスの注入速度およびセル温度により、当該実施例10と同様の手法によって圧力試験を行った。結果を表1に示す。
 ここに、比較例4においては、3個の圧力試験用のラミネート外装蓄電デバイス本体において、特定の部位(共通の部位)のみに開口が形成されていた場合を「A」、開口位置がランダムに変動した場合を「B」と評価した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例1~18に係る圧力試験用のラミネート外装リチウムイオンキャパシタ本体においては、接合部の未挟扼部分において選択的に剥離が生じ、窒素ガスが排出された。これに対して、比較例1~4に係る圧力試験用のラミネート外装リチウムイオンキャパシタ本体においては、いずれも窒素ガスが外部に排出されるものの、窒素ガスが排出された部位(開口位置)、すなわち接合部における剥離が生じる位置がランダムに変動した。
 さらに、圧力試験用のラミネート外装リチウムイオンキャパシタ本体のセル状態を高温とした条件下において圧力試験を行った実施例5、実施例9、実施例14、実施例18、比較例3および比較例4においては、比較例3では、接合部の接着力が弱まり、接合部の剥がれの生じる位置がランダムに変動することが確認された。しかしながら、実施例5、実施例9、実施例14および実施例18においては、高温条件下においても爆発が生じることなく、安全に、特定の部位(未挟扼部分)においてガスの排出が行われることが確認された。このことから、高温環境条件となることが予想される、例えば自動搬送機、自動車、フォークリフトなどの車載用途で用いられる場合においても、適用可能であることが明らかである。
10 ラミネート外装蓄電デバイス
10a デバイス本体
11 蓄電デバイス要素
12 正極層
12a 正極集電体
13 負極層
13a 負極集電体
14 正極用端子部材
15 負極用端子部材
16、17 取り出し部
18 リチウム金属(リチウム極層)
18a リチウム極集電体
19 リチウム極取り出し部材
20 外装体
21A 上部外装フィルム
21B 下部外装フィルム
22 接合部
22a 接合部の一辺
22b 接合部の他辺
23 収容部
24 非接合部位
25 安全弁
26 シール部
27 孔口部
30 挟扼部材
30a 切欠部
31 挟着材
35 挟着材
35a 上部側挟着部分
35b 下部側挟着部分
40 ラミネート外装蓄電デバイス
40a デバイス本体
42 非熱融着性シート
43  貫通孔
44 粘着剤層
S セパレータ
50 ステンレス板
51 ガス注入口
 

Claims (7)

  1.  互いに重ね合わせられた外装フィルムが、それぞれの外周縁部に形成された接合部において相互に気密に接合された外装体と、当該外装体に形成された収容部内に収容された蓄電デバイス要素および電解液とを具えたラミネート外装蓄電デバイスであって、
     前記外装体における接合部を挟むように装着され、当該外周縁部に沿って伸びる挟扼部材を備えた挟扼機構が設けられており、当該挟扼部材の少なくとも一部に未挟扼部分形成部が形成されていることを特徴とするラミネート外装蓄電デバイス。
  2.  前記挟扼部材の未挟扼部分形成部が、切欠部または開口部であることを特徴とする請求項1に記載のラミネート外装蓄電デバイス。
  3.  前記挟扼部材が前記外装フィルムの外周縁部に沿って伸びる環状構造を有することを特徴とする請求項1または請求項2に記載のラミネート外装蓄電デバイス。
  4.  前記外装体における前記未挟扼部分形成部の位置する領域に形成される未挟扼部分に安全弁が設けられていることを特徴とする請求項1~請求項3のいずれかに記載のラミネート外装蓄電デバイス。
  5.  請求項1~請求項4のいずれかに記載のラミネート外装蓄電デバイスを製造するためのラミネート外装蓄電デバイスの製造方法であって、
     互いに重ね合わせられた外装フィルムが、それぞれの外周縁部に形成された接合部において相互に気密に接合された外装体と、当該外装体に形成された収容部内に収容された蓄電デバイス要素および電解液とを具えたデバイス本体に対して、当該デバイス本体を構成する外装体における接合部に、当該外周縁部に沿って少なくとも一部に未挟扼部分形成部が形成されている挟扼部材を備えた挟扼機構を、重ね合わせられた外装フィルムの各々の表面側から挟むように設ける挟扼機構形成工程を有することを特徴とするラミネート外装蓄電デバイスの製造方法。
  6.  前記挟扼機構形成工程において、前記挟扼部材を備えた挟扼機構が前記外装フィルムにおける外周縁部の周方向に沿って配設されることを特徴とする請求項5に記載のラミネート外装蓄電デバイスの製造方法。
  7.  前記挟扼機構を構成する挟扼部材の未挟扼部分形成部が切欠部または開口部であることを特徴とする請求項5または請求項6に記載のラミネート外装蓄電デバイスの製造方法。
PCT/JP2011/057741 2010-04-07 2011-03-29 ラミネート外装蓄電デバイスおよびその製造方法 WO2011125634A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509474A JPWO2011125634A1 (ja) 2010-04-07 2011-03-29 ラミネート外装蓄電デバイスおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010088274 2010-04-07
JP2010-088274 2010-04-07

Publications (1)

Publication Number Publication Date
WO2011125634A1 true WO2011125634A1 (ja) 2011-10-13

Family

ID=44762581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057741 WO2011125634A1 (ja) 2010-04-07 2011-03-29 ラミネート外装蓄電デバイスおよびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2011125634A1 (ja)
TW (1) TW201222601A (ja)
WO (1) WO2011125634A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203619A1 (ja) * 2015-06-18 2016-12-22 Jsr株式会社 ラミネート外装蓄電デバイスおよびその製造方法
JP2018006182A (ja) * 2016-07-04 2018-01-11 Necエナジーデバイス株式会社 フィルム外装電池
JP2020126859A (ja) * 2016-07-04 2020-08-20 株式会社エンビジョンAescエナジーデバイス フィルム外装電池
CN117269177A (zh) * 2023-11-20 2023-12-22 深圳市佑富智能装备有限公司 一种涂布机加工用瑕疵检测设备及其检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204816A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 組電池、この組電池を搭載した車両、及び、この組電池を搭載した電池搭載機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207558A (ja) * 1983-05-11 1984-11-24 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
US7597992B2 (en) * 2004-03-31 2009-10-06 Nec Lamilion Energy, Ltd Film covered electrical device, frame member, and housing system for film covered electrical device
JP2007087922A (ja) * 2005-03-04 2007-04-05 Toyota Motor Corp フィルムパッケージ蓄電装置
JP2009021067A (ja) * 2007-07-11 2009-01-29 Fuji Heavy Ind Ltd 蓄電組立体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204816A (ja) * 2007-02-20 2008-09-04 Toyota Motor Corp 組電池、この組電池を搭載した車両、及び、この組電池を搭載した電池搭載機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203619A1 (ja) * 2015-06-18 2016-12-22 Jsr株式会社 ラミネート外装蓄電デバイスおよびその製造方法
JPWO2016203619A1 (ja) * 2015-06-18 2018-03-29 Jsr株式会社 ラミネート外装蓄電デバイスおよびその製造方法
JP2018006182A (ja) * 2016-07-04 2018-01-11 Necエナジーデバイス株式会社 フィルム外装電池
JP2020126859A (ja) * 2016-07-04 2020-08-20 株式会社エンビジョンAescエナジーデバイス フィルム外装電池
CN117269177A (zh) * 2023-11-20 2023-12-22 深圳市佑富智能装备有限公司 一种涂布机加工用瑕疵检测设备及其检测方法
CN117269177B (zh) * 2023-11-20 2024-02-02 深圳市佑富智能装备有限公司 一种涂布机加工用瑕疵检测设备及其检测方法

Also Published As

Publication number Publication date
JPWO2011125634A1 (ja) 2013-07-08
TW201222601A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
KR101251868B1 (ko) 라미네이트 외장 축전 디바이스
KR101370265B1 (ko) 이차전지, 이에 적용되는 이차전지용 부품 및 이차전지의 제조 방법
JP5219587B2 (ja) ラミネート式電池及びそのラミネート式電池を備えた電池モジュール
KR101216422B1 (ko) 실링부의 절연성이 향상된 이차전지
KR100879893B1 (ko) 실링부의 안전성이 향상된 이차전지
EP3316349B1 (en) Method for manufacturing electrochemical device
WO2011045841A1 (ja) 電池モジュール
JP2010153841A (ja) ラミネート外装蓄電デバイスの安全機構
JP2011044332A (ja) ラミネート外装蓄電デバイス
JP2012243556A (ja) ラミネート電池とその膨張検知方法および電池モジュール
JP2011086760A (ja) 蓄電素子
JP2018060670A (ja) 蓄電装置
KR101306190B1 (ko) 절연성이 향상된 이차전지
JP4830267B2 (ja) ラミネート電池
KR20080087192A (ko) 우수한 내구성의 이차전지
WO2011125634A1 (ja) ラミネート外装蓄電デバイスおよびその製造方法
JP2014123699A (ja) 蓄電デバイス
JP2010225496A (ja) ラミネート外装蓄電デバイスの安全機構
JP3191677U (ja) ラミネート外装蓄電デバイス
JP7098189B2 (ja) 二次電池及び電池モジュール
JP5479203B2 (ja) 蓄電デバイス
JP5178606B2 (ja) ラミネート外装蓄電デバイス
JP6454164B2 (ja) ラミネート外装蓄電デバイスおよびその製造方法
JP2010238861A (ja) ラミネート外装蓄電デバイス
JP2010238482A (ja) ラミネート外装蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509474

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765534

Country of ref document: EP

Kind code of ref document: A1