WO2011125466A1 - Ship main engine control system and method - Google Patents

Ship main engine control system and method Download PDF

Info

Publication number
WO2011125466A1
WO2011125466A1 PCT/JP2011/056621 JP2011056621W WO2011125466A1 WO 2011125466 A1 WO2011125466 A1 WO 2011125466A1 JP 2011056621 W JP2011056621 W JP 2011056621W WO 2011125466 A1 WO2011125466 A1 WO 2011125466A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
main engine
ship
control system
speed
Prior art date
Application number
PCT/JP2011/056621
Other languages
French (fr)
Japanese (ja)
Inventor
辻康之
稲見昭一
宮田淳也
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to KR1020127025555A priority Critical patent/KR20130012123A/en
Priority to CN201180014910XA priority patent/CN102811903A/en
Publication of WO2011125466A1 publication Critical patent/WO2011125466A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H21/213Levers or the like for controlling the engine or the transmission, e.g. single hand control levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal

Definitions

  • the present invention relates to a ship main engine control system and method, and more particularly to a main engine control system that switches governor control between a plurality of modes.
  • control is generally performed using the PID control or the like so that the actual rotational speed is maintained at the target rotational speed. Further, in such control that keeps the rotational speed constant, for the purpose of improving fuel efficiency while maintaining ship maneuverability, when the value of the actual rotational speed or the set rotational speed exceeds a predetermined range, the PID control unit Has been proposed (Patent Document 1). JP 2009-191774 A
  • Patent Document 1 since the configuration of Patent Document 1 is not a control that takes into account sea conditions and ship speed, the effect of improving fuel efficiency is not sufficient.
  • the object of the present invention is to perform governor control in accordance with sea conditions and further suppress fuel consumption of the main engine.
  • the main engine control system of the present invention uses control means for controlling the main engine under a plurality of control modes, control amount detection means for detecting a control amount in the control of the main engine, and ship speed and sea area wave information. It is characterized by comprising a mode selection means for selecting a control mode based on the estimated fluctuation amount of the control amount and the detected control amount.
  • the main engine control system includes, for example, allowable deviation calculation means for calculating the allowable deviation of the control amount from the estimated fluctuation amount. Further, the main engine control system includes a comparison unit that compares, for example, the allowable deviation and the control deviation of the control amount, and the control mode is selected based on, for example, comparison by the comparison unit. As a result, it is possible to select a control mode according to sea conditions with a very simple configuration.
  • the control amount is, for example, the rotation speed of the main machine
  • the allowable deviation calculation means calculates the allowable deviation taking into account a margin from the maximum rated rotation speed of the main machine, for example.
  • the allowable deviation is a value calculated based on the standard deviation of the fluctuation amount, for example.
  • the allowable deviation is, for example, a constant multiple of the standard deviation, and may include a constant changing means for changing the constant.
  • the constant is, for example, 2 to 3.5.
  • the permissible deviation calculating means calculates the fluctuation amount with reference to a database based on, for example, ship speed and wave information.
  • the fluctuation amount is a value in consideration of the weight of the ship, for example, and the database includes items related to the weight of the ship.
  • the control mode includes, for example, an active control mode that actively returns to a target value of a control amount that varies due to waves, and a negative control mode that performs passive control that allows the control amount to vary due to waves, for example. Included, the mode selection means selects the active control mode when the value of the control amount exceeds the allowable deviation.
  • the mode selection means prohibits the change to the negative control mode for a predetermined time after changing from the negative control mode to the positive control mode, for example.
  • the predetermined time is longer than the response time of the main engine. Thereby, it can prevent returning to the depolarization control mode before the main machine responds.
  • the ship speed is, for example, a water speed
  • the water speed is calculated from, for example, a ground speed, geodetic information, and ocean current data.
  • the main engine control system includes an input means for inputting wave information, for example.
  • the ship of the present invention is characterized by including the main engine control system.
  • the ship main engine control method of the present invention controls the operation of the main engine under a plurality of control modes, detects the control amount, and the amount of change in the control amount estimated using the ship speed and wave information of the navigational sea area.
  • the control mode is selected based on the detected control amount.
  • governor control in accordance with sea conditions can be performed, and fuel consumption of the main engine can be further suppressed.
  • FIG. 1 is a control block diagram showing a configuration of a main engine control system for a ship according to an embodiment of the present invention.
  • the output shaft (not shown) of the main machine 11 is directly connected to a propeller for propulsion (not shown) or indirectly connected via a transmission.
  • the main machine 11 is feedback-controlled so that the actual engine speed (control amount) becomes the target engine speed (target value), for example.
  • the target rotational speed is set by the operator C through the control console 12, for example.
  • the set target rotational speed is input to the rotational speed deviation calculating unit 13 as a rotational speed command No.
  • the rotation of the output shaft is detected using a sensor (not shown), and is input to the rotational speed deviation calculation unit 13 as the actual rotational speed Ne.
  • the rotation speed deviation calculation unit 13 calculates a rotation speed deviation (Ne-No) between the detected actual rotation speed Ne and the rotation speed command No.
  • the calculated rotation speed deviation (Ne-No) is output to the control unit 14 and the comparison unit 15.
  • the control unit 14 calculates a governor command that is an operation amount based on the input rotation speed deviation (Ne-No), and controls the operation end (fuel control valve and steam valve (not shown)) of the main engine 11. The fuel supply amount is adjusted.
  • the comparison unit 15 includes a timer 15C, and the comparison unit 15 determines whether the rotation speed deviation (Ne-No) that is a control deviation and the value of the timer 15C satisfy a predetermined condition (described later). Determined.
  • the comparison unit 15 outputs a mode selection signal to the control unit 14 based on this determination, and the control unit 14 selects / switches a control mode (described later) based on the mode selection signal.
  • the allowable rotational speed ⁇ Nt is calculated by the allowable rotational speed calculation unit 17 with reference to a reference deviation database 16 created in advance by simulation or experiment, for example.
  • the reference deviation database 16 of the present embodiment includes an engine speed reference deviation (rotational speed fluctuation) for combinations of values of wave conditions (for example, wave height, wave period, etc.), ship speed against water, and load condition (ship weight). Standard deviation) ⁇ is recorded, and the allowable rotational speed calculation unit 17 obtains the allowable rotational speed ⁇ Nt from the engine rotational speed standard deviation ⁇ obtained by referring to the standard deviation database 16 (described later).
  • the wave condition and the state of the load are input by the operator C via the control console 12.
  • the ship speed Vr is obtained from the ship speed Vg and the ocean current speed Vm.
  • the ground ship speed Vg is acquired using a geodetic / ground ship speed device 18 such as GPS, and the ocean current speed Vm is acquired from the point information obtained by the geodetic / ground ship speed device 18 and the ocean current database 19. That is, the water speed Vr is calculated using the values of the ground speed Vg and the ocean current speed Vm in the ground speed correction unit 20 and is input to the reference deviation database 16.
  • control unit 14 Details of the control unit 14 will be described with reference to the control block diagram of FIG. In this embodiment, for example, a velocity type PID algorithm is used.
  • a depolarization control mode and a positive control mode are prepared as control modes, and the rotation speed deviation (Ne-No) from the rotation speed deviation calculation unit 13 is a depolarization control calculation unit 22 corresponding to the depolarization control mode, Each is output to the active control calculation unit 23 corresponding to the active control mode.
  • the depolarization control calculation unit 22 calculates 1 / T i1 , s, and T D1 ⁇ s 2 (s is a Laplace operator) for the rotational speed deviation, and then adds and controls three values.
  • the gain Kp1 is multiplied and output to the switching unit 24.
  • the active control calculation unit 23 calculates 1 / T i2 , s, and T D2 ⁇ s 2 for the rotation speed deviation, and then adds three values and multiplies the control gain K p2. And output to the switching unit 24.
  • the switching unit 24 selectively outputs only the outputs from the computing units 22 and 23 corresponding to the selected control mode to the integrating unit 25 in accordance with the mode selection signal from the comparing unit 15 (see FIG. 1).
  • the integral operation 1 / s is applied to the output from the depolarization control calculating unit 22 selected by the switching unit 24 or the output from the positive control calculating unit, and as a governor command (operation amount) of the main engine 11. Output to the operation end.
  • the negative control mode is a mode in which the negative control is performed to the extent that the fluctuation of the actual rotational speed (control amount) Ne caused by the waves is allowed, and the fluctuation of the actual rotational speed Ne is a normal fluctuation range in the current wave situation. It is selected when it is within, and is selected in a state where there is no danger of over-rotation due to racing.
  • the active control mode is a mode in which the actual rotational speed (control amount) Ne, which fluctuates due to waves, is actively (early) returned to the target rotational speed (target value) No. This is selected when there is a large fluctuation in the actual rotational speed Ne.
  • K p1 of the deactivation control calculation unit 22 is set to a value smaller than K p2 of the positive control calculation unit 23.
  • T i1 and T i2 , T D1 and T D2 are set according to the frequency characteristics of the controlled object, and generally the same value is set, but when the disturbance and the controlled frequency characteristics are similar , T i1 , T i2 and T D1 , T D2 may have different values (similar values for each set).
  • the governor system of the present embodiment includes a manual control mode and an automatic control mode, and the process shown in the flowchart of FIG. 3 is started when the automatic control mode is selected by the operator C.
  • the depolarization control mode is selected immediately after the automatic control mode is selected, and a mode selection signal corresponding to the depolarization control mode is output from the comparison unit 15 to the control unit 14.
  • the manual control mode for example, the positive control mode is always selected.
  • step S100 the count value CN of the timer 15C is set to zero. Thereafter, in step S102, it is determined whether or not the absolute value
  • step S104 If it is determined in step S104 that CN> CS, the mode selection signal output to the control unit 14 in step S106 is switched to a signal corresponding to the negative control mode, and the process returns to step S102. On the other hand, if it is determined in step S104 that CN> CS is not satisfied, the process immediately returns to step S102.
  • step S108 If it is determined in step S102 that
  • the count value CN is reset and the timer 15C is started in step S110, and counting of the count value CN is started every predetermined time. Thereafter, in step S112, the mode selection signal output to the control unit 14 is switched to a signal corresponding to the positive control mode, and the process returns to step S102.
  • step S108 when it is determined in step S108 that the currently selected mode selection signal is not the negative control mode, the process immediately returns to step S102.
  • the prohibition of control mode switching is canceled after a lapse of a predetermined time, and when it is determined that the absolute value
  • the predetermined time can prevent the control mode from returning to the negative control mode faster than the response of the engine speed, It is determined in consideration of the period.
  • the time constant when the engine speed response to the input of the operating end of the main engine is simplified to the first order delay, and the time longer than the load fluctuation period induced by the wave condition in which automatic operation can be performed (for example, 8 to 12). Seconds).
  • the permissible speed ⁇ Nt is calculated by the permissible speed calculation unit 17 as a constant multiple of the engine speed reference deviation (standard deviation) ⁇ , for example, 2 to 3.5 times, more preferably 2.5 to 3 times. Is done. That is, the absolute value of the rotational speed deviation
  • This constant is preferably set / changed by the operator C.
  • the allowable rotation speed calculation unit 17 automatically changes the value of ⁇ Nt to a value smaller than (Nm ⁇ No) so that the value of the sum (No + ⁇ Nt) does not exceed the maximum rated rotation speed Nm. It has a function to do.
  • the allowable rotational speed calculation unit 17 corrects and outputs the above-described allowable rotational speed ⁇ Nt from the set margin and the maximum rated rotational speed of the main machine 10.
  • the engine speed reference deviation ⁇ is obtained in advance using fluid analysis as follows. That is, for the propulsion by performing fluid analysis considering the hull motion for combinations of water speed (vessel speed), wave height, wave frequency (wave information), ship weight, etc. The fluctuation of the inflow speed to the propeller is calculated, and the engine speed reference deviation ⁇ for each combination is obtained based on the fluctuation of the propeller inflow speed.
  • the simulation considering the hull motion can be omitted because the hull motion is small.
  • items related to the weight of the ship can be omitted from the reference deviation database, and the information related to the weight of the ship by the operator C is not required.
  • the vessel operator C only has to input the wave information and the target rotational speed through the control console 12. Further, in a large tanker or the like, only the data at the time of empty load and full load may be prepared, and the operator C may select either of them.
  • the present embodiment it is possible to appropriately select the control mode of the main engine in accordance with the sea condition from the current speed of water vessel and wave information, and it is possible to greatly reduce fuel consumption.
  • an allowable deviation of the rotational speed fluctuation is obtained from the rotational speed reference deviation (standard deviation) of the main engine rotational speed fluctuation estimated from the current ship speed and wave information, and the control mode Since switching is performed, governor control corresponding to sea conditions can be realized with a very simple configuration.
  • the rotation speed reference deviation (standard deviation) corresponding to various ship speeds and wave information is simulated in advance, and these relationships are stored and used as a database. Standard deviation corresponding to ship speed and wave information can be obtained.
  • the control mode can be switched with high accuracy. it can.
  • the ship weight is also one item of the rotation speed reference deviation classification in the reference deviation database, and the accurate weight of the ship is grasped by inputting the load state. A more accurate estimation of the deviation is possible.
  • the allowable deviation is corrected in relation to the maximum rated speed of the main machine, the main machine is prevented from over-rotating. Furthermore, by providing a margin between the sum of the allowable rotational speed deviation and the target value and the maximum rated rotational speed and making it adjustable, more flexible and safe governor control is possible.
  • two control modes are prepared in automatic control.
  • a fuel mode for fixing a fuel index may be further added as a control mode in automatic control.
  • a second allowable rotation speed deviation smaller than the above-described allowable rotation speed deviation (first allowable rotation speed deviation) is used for switching determination between the depolarization control mode and the fuel mode, and the second allowable rotation speed deviation is determined.
  • Switching to the depolarization control mode when the rotation speed deviation is larger than the rotation speed deviation for example, switching from the depolarization control mode to the fuel mode when the rotation speed deviation does not exceed the second allowable rotation speed deviation for a predetermined time. You may make it perform.
  • automatic control may be configured only by the positive control mode and the fuel mode, or a control mode (for example, output control using a torque sensor or the like) using another physical quantity as a control amount, or a combination thereof is automatically controlled. It can also be used.
  • the speed type PID is used, but other control types may be used.
  • a database of reference speed deviation (standard deviation) with respect to ship speed, wave information, and ship weight is used.
  • an approximate expression or a structure using both a database and an interpolation expression may be used.
  • the allowable deviation of the rotation speed can be obtained from a value other than the standard deviation. That is, it is calculated from a representative value other than the standard deviation representing the distribution of fluctuations in the control amount, for example, the difference between the maximum value, the minimum value and the average value of the control amount in each cycle of the fluctuation of the control amount.
  • the allowable deviation can also be obtained from In this embodiment, the control deviation and the allowable deviation are compared, but the sum of the target value and the allowable deviation may be compared with the control amount.
  • the wave information is visually confirmed and input by the ship operator.
  • such information may be automatically acquired using a sensor or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Abstract

The disclosed ship main engine control system and method calculate by simulation a propeller inflow rate which takes into account the ship motion relative to the combination of wave height, wave period, ship velocity relative to the water, ship weight, etc. The change in main engine rotation speed is calculated from the change in the calculated propeller inflow rate, and the standard deviation σ thereof is found. These results are stored as a standard deviation database (16). Referring to the standard deviation database (16), standard deviations are found during ship travel from the wave height, wave period, ship velocity relative to the water, and the ship weight, and an allowable rotation speed deviation ΔNt is calculated. In the control unit (14), PID control of the main engine (11) is performed, and multiple control modes with different gains are provided. The control mode of the control unit (14) is switched on the basis of comparing the rotation speed deviation and the allowable rotation speed deviation ΔNt in a comparison unit (15).

Description

船舶の主機制御システムおよび方法Ship main engine control system and method
 本発明は、船舶の主機制御システムおよび方法に関し、特に複数のモード間でガバナ制御を切り替える主機制御システムに関する。 The present invention relates to a ship main engine control system and method, and more particularly to a main engine control system that switches governor control between a plurality of modes.
 船舶における主機の調速制御では、一般にPID制御などを用いて実回転数が目標回転数に維持されるような制御が行われる。また、このような回転数を一定に維持する制御において、操船性を維持しつつ燃費の向上を図る目的で、実回転数または設定回転数の値が所定範囲を超えたときに、PID制御部のゲインを変更する制御方法が提案されている(特許文献1)。
特開2009-191774号公報
In the speed control of the main engine in a ship, control is generally performed using the PID control or the like so that the actual rotational speed is maintained at the target rotational speed. Further, in such control that keeps the rotational speed constant, for the purpose of improving fuel efficiency while maintaining ship maneuverability, when the value of the actual rotational speed or the set rotational speed exceeds a predetermined range, the PID control unit Has been proposed (Patent Document 1).
JP 2009-191774 A
 しかし、特許文献1の構成は、海象や船速を考慮した制御ではないので、燃費改善の効果は十分ではない。 However, since the configuration of Patent Document 1 is not a control that takes into account sea conditions and ship speed, the effect of improving fuel efficiency is not sufficient.
 本発明は、海象に合わせたガバナ制御を行い、主機の燃料消費を更に抑えることを目的としている。 The object of the present invention is to perform governor control in accordance with sea conditions and further suppress fuel consumption of the main engine.
 本発明の主機制御システムは、主機の制御を複数の制御モードの下で行う制御手段と、主機の制御における制御量を検出する制御量検出手段と、船速および航行海域の波浪情報を用いて推定される制御量の変動量と、検出された制御量とに基づいて制御モードの選択を行うモード選択手段とを備えたことを特徴としている。 The main engine control system of the present invention uses control means for controlling the main engine under a plurality of control modes, control amount detection means for detecting a control amount in the control of the main engine, and ship speed and sea area wave information. It is characterized by comprising a mode selection means for selecting a control mode based on the estimated fluctuation amount of the control amount and the detected control amount.
 主機制御システムは、例えば推定された変動量から制御量の許容偏差を算出する許容偏差算出手段を備える。更に、主機制御システムは、例えば許容偏差と制御量の制御偏差との比較を行う比較手段を備え、制御モードの選択は、例えば比較手段における比較に基づいて行われる。これにより、極めて簡略な構成で、海象に応じた制御モードの選択が可能になる。 The main engine control system includes, for example, allowable deviation calculation means for calculating the allowable deviation of the control amount from the estimated fluctuation amount. Further, the main engine control system includes a comparison unit that compares, for example, the allowable deviation and the control deviation of the control amount, and the control mode is selected based on, for example, comparison by the comparison unit. As a result, it is possible to select a control mode according to sea conditions with a very simple configuration.
 制御量は例えば主機の回転数であり、許容偏差算出手段は、例えば主機の最大定格回転数からのマージンを考慮した許容偏差を算出する。また、マージンを変更するためのマージン変更手段を備えてもよい。これにより、主機の過回転の発生をより確実に防止することができる。 The control amount is, for example, the rotation speed of the main machine, and the allowable deviation calculation means calculates the allowable deviation taking into account a margin from the maximum rated rotation speed of the main machine, for example. Moreover, you may provide the margin change means for changing a margin. As a result, it is possible to more reliably prevent the main engine from over-rotating.
 許容偏差は、例えば変動量の標準偏差に基づき算出される値である。許容偏差は、例えば標準偏差の定数倍とされ、定数を変更するための定数変更手段を備えてもよい。また許容偏差が標準偏差の定数倍のとき、定数は、例えば2~3.5である。 The allowable deviation is a value calculated based on the standard deviation of the fluctuation amount, for example. The allowable deviation is, for example, a constant multiple of the standard deviation, and may include a constant changing means for changing the constant. When the allowable deviation is a constant multiple of the standard deviation, the constant is, for example, 2 to 3.5.
 許容偏差算出手段は、例えば船速、波浪情報に基づくデータベースを参照して変動量を算出する。また、変動量は例えば船舶の重量を考慮した値であり、データベースは船舶の重量に関わる項目を含む。これにより、簡単な構成で迅速・正確に海象に合せた制御モードの切り替えを行うことができる。 The permissible deviation calculating means calculates the fluctuation amount with reference to a database based on, for example, ship speed and wave information. The fluctuation amount is a value in consideration of the weight of the ship, for example, and the database includes items related to the weight of the ship. As a result, the control mode can be switched quickly and accurately according to the sea state with a simple configuration.
 制御モードには、例えば波浪により変動する制御量の目標値へ復帰を積極的に行う積極制御モードと、例えば波浪による制御量の変動を許容する程度の消極的な制御を行う消極制御モードとが含まれ、モード選択手段は、制御量の値が許容偏差を超えているときに積極制御モードを選択する。 The control mode includes, for example, an active control mode that actively returns to a target value of a control amount that varies due to waves, and a negative control mode that performs passive control that allows the control amount to vary due to waves, for example. Included, the mode selection means selects the active control mode when the value of the control amount exceeds the allowable deviation.
 モード選択手段は、例えば消極制御モードから積極制御モードへの変更後、所定時間、消極制御モードへの変更を禁止する。このとき所定時間は主機の応答時間よりも長い。これにより、主機が応答する前に消極制御モードに戻ってしまうことを防止できる。また上記船速は例えば対水船速であり、対水船速は例えば対地船速と測地情報と海流データとから算出される。更に、主機制御システムは、例えば波浪情報を入力するための入力手段を備える。 The mode selection means prohibits the change to the negative control mode for a predetermined time after changing from the negative control mode to the positive control mode, for example. At this time, the predetermined time is longer than the response time of the main engine. Thereby, it can prevent returning to the depolarization control mode before the main machine responds. Further, the ship speed is, for example, a water speed, and the water speed is calculated from, for example, a ground speed, geodetic information, and ocean current data. Further, the main engine control system includes an input means for inputting wave information, for example.
 本発明の船舶は、上記主機制御システムを備えたことを特徴としている。 The ship of the present invention is characterized by including the main engine control system.
 また本発明の船舶の主機制御方法は、複数の制御モードの下で主機の運転を制御し、制御量を検出し、船速および航行海域の波浪情報を用いて推定される制御量の変動量と、検出された制御量とに基づいて、制御モードの選択を行うことを特徴としている。 Further, the ship main engine control method of the present invention controls the operation of the main engine under a plurality of control modes, detects the control amount, and the amount of change in the control amount estimated using the ship speed and wave information of the navigational sea area. The control mode is selected based on the detected control amount.
 本発明によれば、海象に合わせたガバナ制御を行うことができ、主機の燃料消費を更に抑えることができる。 According to the present invention, governor control in accordance with sea conditions can be performed, and fuel consumption of the main engine can be further suppressed.
本実施形態の船用主機制御システムの構成を示す制御ブロック図である。It is a control block diagram which shows the structure of the ship main engine control system of this embodiment. 図1の制御部の詳細を示すブロック図である。It is a block diagram which shows the detail of the control part of FIG. 比較部で行われる制御モード切替判定処理のフローチャートである。It is a flowchart of the control mode switching determination process performed in a comparison part.
 10 主機制御システム
 11 主機
 12 制御卓
 13 回転数偏差算出部
 14 制御部
 15 比較部
 16 基準データベース
 17 許容回転数算出部
 18 測地・対地船速器
 19 海流データベース
 20 対地船速補正部
 22 消極制御演算部
 23 積極制御演算部
 24 切替部
DESCRIPTION OF SYMBOLS 10 Main-machine control system 11 Main-machine 12 Control console 13 Rotational speed deviation calculation part 14 Control part 15 Comparison part 16 Reference | standard database 17 Permissible rotational speed calculation part 18 Geodetic and ground speed machine 19 Current database 20 Ground speed correction part 22 Unit 23 Active control calculation unit 24 Switching unit
 以下、本発明の実施形態について添付図面を参照して説明する。
 図1は、本発明の一実施形態である船舶の主機制御システムの構成を示す制御ブロック図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a control block diagram showing a configuration of a main engine control system for a ship according to an embodiment of the present invention.
 主機制御システム10において、主機11の出力軸(不図示)は推進用のプロペラ(不図示)に直結、または変速機を介して間接的に連結される。主機11は、例えば機関の実回転数(制御量)が目標回転数(目標値)になるようにフィードバック制御される。目標回転数は、例えば操船者Cにより制御卓12を通して設定される。設定された目標回転数は、回転数指令Noとして回転数偏差算出部13に入力される。出力軸の回転は図示しないセンサを用いて検出され、実回転数Neとして回転数偏差算出部13に入力される。 In the main machine control system 10, the output shaft (not shown) of the main machine 11 is directly connected to a propeller for propulsion (not shown) or indirectly connected via a transmission. The main machine 11 is feedback-controlled so that the actual engine speed (control amount) becomes the target engine speed (target value), for example. The target rotational speed is set by the operator C through the control console 12, for example. The set target rotational speed is input to the rotational speed deviation calculating unit 13 as a rotational speed command No. The rotation of the output shaft is detected using a sensor (not shown), and is input to the rotational speed deviation calculation unit 13 as the actual rotational speed Ne.
 回転数偏差算出部13では、検出された実回転数Neと回転数指令Noとの間の回転数偏差(Ne-No)が算出される。算出された回転数偏差(Ne-No)は、制御部14および比較部15に出力される。制御部14では、入力された回転数偏差(Ne-No)に基づき操作量であるガバナ指令が算出され、主機11の操作端(燃料制御バルブや蒸気弁(図示せず))が制御され、燃料供給量が調整される。 The rotation speed deviation calculation unit 13 calculates a rotation speed deviation (Ne-No) between the detected actual rotation speed Ne and the rotation speed command No. The calculated rotation speed deviation (Ne-No) is output to the control unit 14 and the comparison unit 15. The control unit 14 calculates a governor command that is an operation amount based on the input rotation speed deviation (Ne-No), and controls the operation end (fuel control valve and steam valve (not shown)) of the main engine 11. The fuel supply amount is adjusted.
 また、本実施形態では、比較部15はタイマ15Cを備え、比較部15では制御偏差である回転数偏差(Ne-No)およびタイマ15Cの値が所定条件(後述)を満たしているか否かが判定される。比較部15は、この判定に基づき制御部14へモード選択信号を出力し、制御部14ではモード選択信号に基づいて制御モード(後述)の選択・切替えが行われる。 Further, in the present embodiment, the comparison unit 15 includes a timer 15C, and the comparison unit 15 determines whether the rotation speed deviation (Ne-No) that is a control deviation and the value of the timer 15C satisfy a predetermined condition (described later). Determined. The comparison unit 15 outputs a mode selection signal to the control unit 14 based on this determination, and the control unit 14 selects / switches a control mode (described later) based on the mode selection signal.
 本実施形態では、所定条件の1つとして、例えば回転数偏差の絶対値|Ne-No|が許容回転数ΔNt内に収まっているか否かが判定される。許容回転数ΔNtは、例えばシミュレーションや実験等により予め作成された基準偏差データベース16を参照して許容回転数算出部17において算出される。本実施形態の基準偏差データベース16には、波浪状況(例えば波高、波周期など)、対水船速、積荷の状態(船の重量)の各値の組合せに対する機関回転数基準偏差(回転数変動の標準偏差)σが記録され、許容回転数算出部17では、基準偏差データベース16を参照して得られた機関回転数基準偏差σから、許容回転数ΔNtが求められる(後述)。 In the present embodiment, as one of the predetermined conditions, for example, it is determined whether or not the absolute value | Ne−No | of the rotational speed deviation is within the allowable rotational speed ΔNt. The allowable rotational speed ΔNt is calculated by the allowable rotational speed calculation unit 17 with reference to a reference deviation database 16 created in advance by simulation or experiment, for example. The reference deviation database 16 of the present embodiment includes an engine speed reference deviation (rotational speed fluctuation) for combinations of values of wave conditions (for example, wave height, wave period, etc.), ship speed against water, and load condition (ship weight). Standard deviation) σ is recorded, and the allowable rotational speed calculation unit 17 obtains the allowable rotational speed ΔNt from the engine rotational speed standard deviation σ obtained by referring to the standard deviation database 16 (described later).
 ここで、波浪状況と積荷の状態(船の重量)は、操船者Cにより制御卓12を介して入力される。一方、対水船速Vrは、対地船速Vgと海流速度Vmから求められる。対地船速Vgは、例えばGPSなどの測地・対地船速器18を用いて取得され、海流速度Vmは、測地・対地船速器18で得られる地点情報と海流データベース19から取得される。すなわち、対水船速Vrは、対地船速補正部20において対地船速Vgと海流速度Vmの値を用いて算出され、基準偏差データベース16へと入力される。 Here, the wave condition and the state of the load (the weight of the ship) are input by the operator C via the control console 12. On the other hand, the ship speed Vr is obtained from the ship speed Vg and the ocean current speed Vm. The ground ship speed Vg is acquired using a geodetic / ground ship speed device 18 such as GPS, and the ocean current speed Vm is acquired from the point information obtained by the geodetic / ground ship speed device 18 and the ocean current database 19. That is, the water speed Vr is calculated using the values of the ground speed Vg and the ocean current speed Vm in the ground speed correction unit 20 and is input to the reference deviation database 16.
 次に図2の制御ブロック図を参照して制御部14の詳細について説明する。本実施形態では、例えば速度形のPIDアルゴリズムが用いられる。 Next, details of the control unit 14 will be described with reference to the control block diagram of FIG. In this embodiment, for example, a velocity type PID algorithm is used.
 本実施形態では、制御モードとして消極制御モードと積極制御モードが用意され、回転数偏差算出部13からの回転数偏差(Ne-No)は、消極制御モードに対応する消極制御演算部22と、積極制御モードに対応する積極制御演算部23にそれぞれ出力される。 In the present embodiment, a depolarization control mode and a positive control mode are prepared as control modes, and the rotation speed deviation (Ne-No) from the rotation speed deviation calculation unit 13 is a depolarization control calculation unit 22 corresponding to the depolarization control mode, Each is output to the active control calculation unit 23 corresponding to the active control mode.
 消極制御演算部22では、回転数偏差に対してそれぞれ1/Ti1、s、TD1・sの演算(sはラプラス演算子)が施され、その後、3つの値が加算されるとともに制御ゲインKp1が掛けられて切替部24に出力される。また、積極制御演算部23では、回転数偏差に対してそれぞれ1/Ti2、s、TD2・sの演算が施され、その後、3つの値が加算されるとともに制御ゲインKp2が掛けられて切替部24に出力される。 The depolarization control calculation unit 22 calculates 1 / T i1 , s, and T D1 · s 2 (s is a Laplace operator) for the rotational speed deviation, and then adds and controls three values. The gain Kp1 is multiplied and output to the switching unit 24. Further, the active control calculation unit 23 calculates 1 / T i2 , s, and T D2 · s 2 for the rotation speed deviation, and then adds three values and multiplies the control gain K p2. And output to the switching unit 24.
 切替部24は、比較部15(図1参照)からのモード選択信号に従って、選択された制御モードに対応する演算部22、23からの出力のみを選択的に積算部25へと出力する。積算部25では、切替部24で選択された消極制御演算部22からの出力、または積極制御演算部からの出力に対して積分演算1/sが施されガバナ指令(操作量)として主機11の操作端へと出力される。 The switching unit 24 selectively outputs only the outputs from the computing units 22 and 23 corresponding to the selected control mode to the integrating unit 25 in accordance with the mode selection signal from the comparing unit 15 (see FIG. 1). In the integrating unit 25, the integral operation 1 / s is applied to the output from the depolarization control calculating unit 22 selected by the switching unit 24 or the output from the positive control calculating unit, and as a governor command (operation amount) of the main engine 11. Output to the operation end.
 ここで消極制御モードは、波浪による実回転数(制御量)Neの変動を許容する程度の消極的な制御を行うモードであり、実回転数Neの変動が現在の波浪状況における通常の変動範囲内にある場合に選択され、特にレーシングなどによる過回転発生の危険のない状態で選択される。 Here, the negative control mode is a mode in which the negative control is performed to the extent that the fluctuation of the actual rotational speed (control amount) Ne caused by the waves is allowed, and the fluctuation of the actual rotational speed Ne is a normal fluctuation range in the current wave situation. It is selected when it is within, and is selected in a state where there is no danger of over-rotation due to racing.
 また積極制御モードは、波浪により変動する実回転数(制御量)Neの目標回転数(目標値)Noへの復帰を積極的(早期)に行うモードであり、現状の波浪状況において通常起こりえない大きな実回転数Neの変動が発生した場合に選択される。 The active control mode is a mode in which the actual rotational speed (control amount) Ne, which fluctuates due to waves, is actively (early) returned to the target rotational speed (target value) No. This is selected when there is a large fluctuation in the actual rotational speed Ne.
 したがって、消極制御演算部22のKp1は、積極制御演算部23のKp2よりも小さい値に設定される。また、Ti1とTi2、TD1とTD2は制御対象の周波数特性に応じて設定されるもので、通常は略同じ値が設定されるが、外乱と制御対象の周波数特性が類似するときには、Ti1、Ti2の組とTD1、TD2の組にそれぞれ異なる値(組毎に類似する値)が与えられ得る。 Therefore, K p1 of the deactivation control calculation unit 22 is set to a value smaller than K p2 of the positive control calculation unit 23. Also, T i1 and T i2 , T D1 and T D2 are set according to the frequency characteristics of the controlled object, and generally the same value is set, but when the disturbance and the controlled frequency characteristics are similar , T i1 , T i2 and T D1 , T D2 may have different values (similar values for each set).
 次に、図1および図3のフローチャートを参照して、比較部15において実行される処理および所定の条件の具体例について説明する。なお、本実施形態のガバナシステムは、手動制御モードと自動制御モードを備え、図3のフローチャートに示される処理は、操船者Cにより自動制御モードが選択されときに開始される。なお、自動制御モードが選択された直後には消極制御モードが選択され、比較部15からは消極制御モードに対応するモード選択信号が制御部14に出力されている。また、手動制御モードでは、例えば常に積極制御モードが選択されている。 Next, a specific example of processing executed in the comparison unit 15 and predetermined conditions will be described with reference to the flowcharts of FIGS. The governor system of the present embodiment includes a manual control mode and an automatic control mode, and the process shown in the flowchart of FIG. 3 is started when the automatic control mode is selected by the operator C. The depolarization control mode is selected immediately after the automatic control mode is selected, and a mode selection signal corresponding to the depolarization control mode is output from the comparison unit 15 to the control unit 14. In the manual control mode, for example, the positive control mode is always selected.
 ステップS100では、タイマ15Cのカウント値CNが0に設定される。その後ステップS102において、回転数偏差の絶対値|Ne-No|が許容回転数ΔNtよりも小さいか否かが判定される。絶対値|Ne-No|が許容回転数ΔNtよりも小さいと判定されると、ステップS104においてタイマ15Cのカウント値CNが、予め設定された所定値CSよりも大きいか否かが判定される。 In step S100, the count value CN of the timer 15C is set to zero. Thereafter, in step S102, it is determined whether or not the absolute value | Ne−No | of the rotational speed deviation is smaller than the allowable rotational speed ΔNt. If it is determined that the absolute value | Ne−No | is smaller than the allowable rotational speed ΔNt, it is determined in step S104 whether or not the count value CN of the timer 15C is larger than a predetermined value CS set in advance.
 ステップS104においてCN>CSと判定されるとステップS106において制御部14に出力されるモード選択信号が消極制御モードに対応する信号に切り替えられ処理はステップS102へと戻る。一方、ステップS104においてCN>CSでないと判定されると、処理は直ちにステップS102へと戻る。 If it is determined in step S104 that CN> CS, the mode selection signal output to the control unit 14 in step S106 is switched to a signal corresponding to the negative control mode, and the process returns to step S102. On the other hand, if it is determined in step S104 that CN> CS is not satisfied, the process immediately returns to step S102.
 また、ステップS102において|Ne-No|<ΔNtでないと判定されると、ステップS108において現在のモード選択信号が消極制御モードに対応するものであるか否かが判定される。消極制御モードであると、ステップS110においてカウント値CNがリセットされるとともにタイマ15Cが起動され、カウント値CNの所定時間毎の計数が開始される。その後ステップS112において、制御部14に出力されるモード選択信号が積極制御モードに対応する信号へと切り替えられ処理はステップS102へと戻る。 If it is determined in step S102 that | Ne-No | <ΔNt, it is determined in step S108 whether or not the current mode selection signal corresponds to the depolarization control mode. In the depolarization control mode, the count value CN is reset and the timer 15C is started in step S110, and counting of the count value CN is started every predetermined time. Thereafter, in step S112, the mode selection signal output to the control unit 14 is switched to a signal corresponding to the positive control mode, and the process returns to step S102.
 また、ステップS108において現在出力されているモード選択信号が消極制御モードではないと判定されると処理は直ちにステップS102に戻る。 Further, when it is determined in step S108 that the currently selected mode selection signal is not the negative control mode, the process immediately returns to step S102.
 すなわち、比較部15における上記処理によれば、消極制御モードから積極制御モードへの切替えでは、回転数偏差の絶対値|Ne-No|が許容回転数ΔNtよりも大きいと判定されると、直ちに制御モードの切替えが行われる。一方、積極制御モードから消極制御モードへの切替えでは、積極制御モードが選択されてから所定時間(所定値CSに対応)、制御モードの切替えが禁止され、この間モード選択信号が変更されることはない。制御モード切替えの禁止は、所定時間経過後に解除され、回転数偏差の絶対値|Ne-No|が許容回転数ΔNtよりも小さいと判定されると、積極制御モードから消極制御モードへと切り替えられる。 That is, according to the above processing in the comparison unit 15, when it is determined that the absolute value | Ne−No | of the rotational speed deviation is larger than the allowable rotational speed ΔNt in the switching from the negative control mode to the active control mode. The control mode is switched. On the other hand, in switching from the positive control mode to the negative control mode, switching of the control mode is prohibited for a predetermined time (corresponding to the predetermined value CS) after the positive control mode is selected, and the mode selection signal is changed during this time. Absent. The prohibition of control mode switching is canceled after a lapse of a predetermined time, and when it is determined that the absolute value | Ne-No | of the rotational speed deviation is smaller than the allowable rotational speed ΔNt, the control mode is switched from the positive control mode to the negative control mode. .
 上記所定時間(設定値CS)は、例えば積極制御モードへと制御モードを切り替えた直後に、機関回転数の応答よりも速く制御モードが消極制御モードへ戻ることを防止することや、負荷変動の周期を考慮して決定される。すなわち、主機の操作端の入力に対する機関回転数応答を一次遅れに単純化したときの時定数、および自動運転が実施され得る波浪状況により誘起される負荷変動周期よりも長い時間(例えば8~12秒程度)が設定される。 For example, immediately after switching the control mode to the active control mode, the predetermined time (set value CS) can prevent the control mode from returning to the negative control mode faster than the response of the engine speed, It is determined in consideration of the period. In other words, the time constant when the engine speed response to the input of the operating end of the main engine is simplified to the first order delay, and the time longer than the load fluctuation period induced by the wave condition in which automatic operation can be performed (for example, 8 to 12). Seconds).
 次に、許容回転数ΔNtについて説明する。許容回転数ΔNtは、本実施形態では機関回転数基準偏差(標準偏差)σの定数倍、例えば2~3.5倍、より好ましくは2.5~3倍として許容回転数算出部17において算出される。すなわち、回転数偏差の絶対値|Ne-No|が許容回転数ΔNtよりも大きくなることは、通常の回転数変動の範囲においては殆どあり得ず、このような場合には積極制御が必要になると考えられる。なお、この定数は、操船者Cによって設定・変更可能であることが好ましい。 Next, the allowable rotational speed ΔNt will be described. In this embodiment, the permissible speed ΔNt is calculated by the permissible speed calculation unit 17 as a constant multiple of the engine speed reference deviation (standard deviation) σ, for example, 2 to 3.5 times, more preferably 2.5 to 3 times. Is done. That is, the absolute value of the rotational speed deviation | Ne−No | is hardly larger than the allowable rotational speed ΔNt in the range of the normal rotational speed fluctuation. In such a case, active control is necessary. It is considered to be. This constant is preferably set / changed by the operator C.
 また、目標回転数(回転数指令)Noと許容回転数ΔNtの和(No+ΔNt)が主機11の最大定格回転数Nmよりも大きいと、実回転数Neが最大定格回転数Nmを超えてしまう可能性がある。したがって、本実施形態において許容回転数算出部17は、和(No+ΔNt)の値が最大定格回転数Nmを超えないように、ΔNtの値を(Nm-No)よりも小さい値に自動的に変更する機能を備える。このとき、ΔNtの値と(Nm-No)の値の間に回転数マージンを設けることが好ましく、回転数マージンは例えば操船者Cにより設定・変更可能である。すなわち、許容回転数算出部17は、設定されたマージンと主機10の最大定格回転数から上述された許容回転数ΔNtを補正して出力する。 Further, if the sum (No + ΔNt) of the target rotational speed (rotational speed command) No and the allowable rotational speed ΔNt is larger than the maximum rated rotational speed Nm of the main machine 11, the actual rotational speed Ne may exceed the maximum rated rotational speed Nm. There is sex. Therefore, in the present embodiment, the allowable rotation speed calculation unit 17 automatically changes the value of ΔNt to a value smaller than (Nm−No) so that the value of the sum (No + ΔNt) does not exceed the maximum rated rotation speed Nm. It has a function to do. At this time, it is preferable to provide a rotation speed margin between the value of ΔNt and the value of (Nm−No), and the rotation speed margin can be set / changed by the operator C, for example. That is, the allowable rotational speed calculation unit 17 corrects and outputs the above-described allowable rotational speed ΔNt from the set margin and the maximum rated rotational speed of the main machine 10.
 また、機関回転数基準偏差σは以下のように流体解析を用いて予め求められる。すなわち、様々な状況における船舶の対水速度(対水船速)、波高、波周波数(波浪情報)、船舶の重量等の組合せに対して、船体運動を考慮した流体解析を行うことで推進用プロペラへの流入速度の変動を計算し、このプロペラ流入速度の変動に基づいて各組合せに対する機関回転数基準偏差σを求める。 Also, the engine speed reference deviation σ is obtained in advance using fluid analysis as follows. That is, for the propulsion by performing fluid analysis considering the hull motion for combinations of water speed (vessel speed), wave height, wave frequency (wave information), ship weight, etc. The fluctuation of the inflow speed to the propeller is calculated, and the engine speed reference deviation σ for each combination is obtained based on the fluctuation of the propeller inflow speed.
 より詳しく説明すると、プロペラ形状(例えばピッチ)が既知であれば、プロペラ流入速度から、プロペラ効率最大の条件の下で、最適なプロペラ回転速度が一意的に決定される。したがって、プロペラと直結、または変速機を介して連結された主機出力軸の最適プロペラ回転速度に対する回転数の変動は、その定数倍として計算される。この機関回転数変動のシミュレーションから、対水船速、波浪情報(波高、波周波数)、船舶の重量の各組合せに対する主機の回転数変動の標準偏差σが算出される。 More specifically, if the propeller shape (for example, pitch) is known, the optimum propeller rotation speed is uniquely determined from the propeller inflow speed under the condition of maximum propeller efficiency. Therefore, the fluctuation of the rotational speed with respect to the optimum propeller rotational speed of the main engine output shaft directly connected to the propeller or connected via the transmission is calculated as a constant multiple thereof. From the engine speed fluctuation simulation, the standard deviation σ of the main engine speed fluctuation for each combination of water speed, wave information (wave height, wave frequency) and ship weight is calculated.
 なお、船体重量が極めて大きい船舶では、船体運動が小さいため船体運動を考慮したシミュレーションを省略できる。この場合、船舶の重量に関わる項目を基準偏差データベースから省くことができ、船舶重量に関わる情報の操船者Cによる入力も不要となる。この場合、操船者Cは、波浪情報と目標回転数のみを制御卓12を通して入力さればよい。また、大型タンカーなどでは、空荷時と満載時におけるデータのみを用意し、操船者Cは、両者の何れかを選択する構成であってもよい。 It should be noted that in a ship with a very large hull weight, the simulation considering the hull motion can be omitted because the hull motion is small. In this case, items related to the weight of the ship can be omitted from the reference deviation database, and the information related to the weight of the ship by the operator C is not required. In this case, the vessel operator C only has to input the wave information and the target rotational speed through the control console 12. Further, in a large tanker or the like, only the data at the time of empty load and full load may be prepared, and the operator C may select either of them.
 以上のように、本実施形態によれば、現在の対水船速と波浪情報から主機の制御モードを海象に合わせて適切に選択でき燃料消費を大幅に抑えることができる。特に、本実施形態では、現在の対水船速、波浪情報から推定される主機回転数変動の回転数基準偏差(標準偏差)から回転数変動の許容偏差を求め、これに基づいて制御モードの切替えを行うので極めて簡略な構成で海象に対応したガバナ制御を実現できる。特に波高数メートルの波浪状況下で外洋を航行する場合には、従来の一般的な主機回転数制御を用いた船舶に比べ1%~2%の燃費改善効果がある。 As described above, according to the present embodiment, it is possible to appropriately select the control mode of the main engine in accordance with the sea condition from the current speed of water vessel and wave information, and it is possible to greatly reduce fuel consumption. In particular, in the present embodiment, an allowable deviation of the rotational speed fluctuation is obtained from the rotational speed reference deviation (standard deviation) of the main engine rotational speed fluctuation estimated from the current ship speed and wave information, and the control mode Since switching is performed, governor control corresponding to sea conditions can be realized with a very simple configuration. In particular, when navigating in the open sea under wave conditions of several meters high, there is a fuel efficiency improvement effect of 1% to 2% compared to a conventional ship using general main engine speed control.
 また、本実施形態では、様々な船速、波浪情報に対応する回転数基準偏差(標準偏差)を予めシュミレーションし、これらの関係をデータベースとして保存・利用するため、簡略な構成で迅速に現在の船速、波浪情報に対応した基準偏差を求められる。 Further, in this embodiment, the rotation speed reference deviation (standard deviation) corresponding to various ship speeds and wave information is simulated in advance, and these relationships are stored and used as a database. Standard deviation corresponding to ship speed and wave information can be obtained.
 更に本実施形態では、測地・対地船速器で得られるデータと、海流データベースの情報とから、現在のより正確な対水船速が得られるので、高い精度で制御モードの切替えを行うことができる。また、本実施形態では、船舶の重量も基準偏差データベースにおける回転数基準偏差分類の1項目とするとともに、積荷の状態を入力することで船舶の正確な重量を把握しているので、回転数基準偏差のより正確な推定が可能である。 Furthermore, in this embodiment, since the current more accurate anti-watercraft speed can be obtained from the data obtained by the geodetic / ground speedometer and the information of the ocean current database, the control mode can be switched with high accuracy. it can. In the present embodiment, the ship weight is also one item of the rotation speed reference deviation classification in the reference deviation database, and the accurate weight of the ship is grasped by inputting the load state. A more accurate estimation of the deviation is possible.
 また本実施形態では、主機の最大定格回転数との関係で許容偏差の補正を行うので、主機の過回転が防止される。更に、許容回転数偏差と目標値との和と、最大定格回転数との間にマージンを設け、これを調整可能とすることで、より柔軟かつ安全なガバナ制御が可能である。 Further, in this embodiment, since the allowable deviation is corrected in relation to the maximum rated speed of the main machine, the main machine is prevented from over-rotating. Furthermore, by providing a margin between the sum of the allowable rotational speed deviation and the target value and the maximum rated rotational speed and making it adjustable, more flexible and safe governor control is possible.
 なお、本実施形態では、自動制御において、消極制御モードと積極制御モードの2つの制御モードが用意されたが、例えばフューエルインデックスを固定するフューエルモードを更に自動制御における制御モードとして加えてもよい。この場合、例えば、上述した許容回転数偏差(第1の許容回転数偏差)よりも小さい第2の許容回転数偏差を消極制御モードとフューエルモードとの間の切替判定に用い、第2の許容回転数偏差よりも回転数偏差が大きいときに消極制御モードに切替え、例えば所定時間の間、回転数偏差が第2の許容回転数偏差を超えない場合に消極制御モードからフューエルモードへの切替えを行うようにしてもよい。なお、自動制御を積極制御モードとフューエルモードのみで構成してもよいし、別の物理量を制御量とする制御モード(例えばトルクセンサ等を用いた出力制御)や、それらとの組合せを自動制御に用いることも可能である。更に、本実施形態では、速度形のPIDを用いたがそれ以外の制御形式であってもよい。 In the present embodiment, two control modes, a deactivation control mode and an active control mode, are prepared in automatic control. For example, a fuel mode for fixing a fuel index may be further added as a control mode in automatic control. In this case, for example, a second allowable rotation speed deviation smaller than the above-described allowable rotation speed deviation (first allowable rotation speed deviation) is used for switching determination between the depolarization control mode and the fuel mode, and the second allowable rotation speed deviation is determined. Switching to the depolarization control mode when the rotation speed deviation is larger than the rotation speed deviation, for example, switching from the depolarization control mode to the fuel mode when the rotation speed deviation does not exceed the second allowable rotation speed deviation for a predetermined time. You may make it perform. In addition, automatic control may be configured only by the positive control mode and the fuel mode, or a control mode (for example, output control using a torque sensor or the like) using another physical quantity as a control amount, or a combination thereof is automatically controlled. It can also be used. Furthermore, in this embodiment, the speed type PID is used, but other control types may be used.
 また、本発明をフィードバック制御以外に適用することも可能である。また本実施形態では、船速、波浪情報、船舶の重量に対する基準回転数偏差(標準偏差)のデータベースを用いたが、近似式や、データベースと補間式を併用する構成とすることもできる。 It is also possible to apply the present invention other than feedback control. In this embodiment, a database of reference speed deviation (standard deviation) with respect to ship speed, wave information, and ship weight is used. However, an approximate expression or a structure using both a database and an interpolation expression may be used.
 また回転数(制御量)の許容偏差を標準偏差以外の値から求めることも可能である。すなわち、制御量の変動の分布を表す標準偏差以外の代表値から算出さ、例えば、制御量の変動の各周期における最大値、最小値と制御量の平均値の差を求め、これの平均値から許容偏差を求めることもできる。なお、本実施形態では制御偏差と許容偏差を比較したが、目標値と許容偏差の和と制御量を比較してもよい。 Also, the allowable deviation of the rotation speed (control amount) can be obtained from a value other than the standard deviation. That is, it is calculated from a representative value other than the standard deviation representing the distribution of fluctuations in the control amount, for example, the difference between the maximum value, the minimum value and the average value of the control amount in each cycle of the fluctuation of the control amount The allowable deviation can also be obtained from In this embodiment, the control deviation and the allowable deviation are compared, but the sum of the target value and the allowable deviation may be compared with the control amount.
 また、海流による影響が少ないときには、対水船速の代わりに対地船速を用いることも考えられる。本実施形態では、波浪情報が目視により確認され操船者によって入力されたが、これらの情報をセンサ等を用いて自動的に取得してもよい。 Also, when the influence of the ocean current is small, it is possible to use the ground speed instead of the water speed. In this embodiment, the wave information is visually confirmed and input by the ship operator. However, such information may be automatically acquired using a sensor or the like.

Claims (19)

  1.  主機の制御を複数の制御モードの下で行う制御手段と、
     前記制御における制御量を検出する制御量検出手段と、
     船速および航行海域の波浪情報を用いて推定される前記制御量の変動量と、検出された前記制御量とに基づいて前記制御モードの選択を行うモード選択手段と
     を備えることを特徴とする船舶の主機制御システム。
    Control means for controlling the main machine under a plurality of control modes;
    Control amount detection means for detecting a control amount in the control;
    And a mode selection means for selecting the control mode based on the fluctuation amount of the control amount estimated using the wave information of the ship speed and the sea area of navigation and the detected control amount. Main engine control system for ships.
  2.  推定された前記変動量から前記制御量の許容偏差を算出する許容偏差算出手段を備えることを特徴とする請求項1に記載の主機制御システム。 2. The main engine control system according to claim 1, further comprising an allowable deviation calculating unit that calculates an allowable deviation of the control amount from the estimated amount of change.
  3.  前記許容偏差と前記制御量の制御偏差との比較を行う比較手段を備え、前記制御モードの選択が前記比較に基づいて行われることを特徴とする請求項2に記載の主機制御システム。 3. The main engine control system according to claim 2, further comprising comparison means for comparing the allowable deviation with a control deviation of the control amount, wherein the control mode is selected based on the comparison.
  4.  前記制御量が前記主機の回転数であることを特徴とする請求項2または請求項3の何れか一項に記載の主機制御システム。 4. The main machine control system according to claim 2, wherein the control amount is a rotation speed of the main machine.
  5.  前記許容偏差算出手段は、前記主機の最大定格回転数からのマージンを考慮した許容偏差を算出することを特徴とした請求項4に記載の主機制御システム。 5. The main engine control system according to claim 4, wherein the allowable deviation calculating means calculates an allowable deviation considering a margin from a maximum rated speed of the main engine.
  6.  前記マージンを変更するためのマージン変更手段を備えることを特徴とする請求項5に記載の主機制御システム。 6. The main engine control system according to claim 5, further comprising margin changing means for changing the margin.
  7.  前記許容偏差が前記変動量の標準偏差に基づき算出される値であることを特徴とする請求項2~6の何れか一項に記載の主機制御システム。 The main engine control system according to any one of claims 2 to 6, wherein the allowable deviation is a value calculated based on a standard deviation of the fluctuation amount.
  8.  前記許容偏差が前記標準偏差の定数倍とされ、前記定数を変更するための定数変更手段を備えることを特徴とする請求項4に記載の主機制御システム。 5. The main engine control system according to claim 4, wherein the allowable deviation is a constant multiple of the standard deviation, and further includes constant changing means for changing the constant.
  9.  前記定数が2~3.5であることを特徴とする請求項8に記載の主機制御システム。 9. The main engine control system according to claim 8, wherein the constant is 2 to 3.5.
  10.  前記許容偏差算出手段が、前記船速、前記波浪情報に基づくデータベースを参照して前記変動量を算出することを特徴とする請求項2に記載の主機制御システム。 3. The main engine control system according to claim 2, wherein the allowable deviation calculating means calculates the fluctuation amount with reference to a database based on the ship speed and the wave information.
  11.  前記変動量が前記船舶の重量を考慮した値であり、前記データベースが前記船舶の重量に関わる項目も含むことを特徴とする請求項10に記載の主機制御システム。 The main engine control system according to claim 10, wherein the fluctuation amount is a value in consideration of the weight of the ship, and the database includes items related to the weight of the ship.
  12.  前記制御モードには、波浪により変動する前記制御量の前記目標値へ復帰を積極的に行う積極制御モードと、波浪による前記制御量の変動を許容する程度の消極的な制御を行う消極制御モードとが含まれ、前記モード選択手段は、前記制御量の値が前記許容偏差を超えているときに前記積極制御モードを選択することを特徴とする請求項1~11の何れか一項に記載の主機制御システム。 The control mode includes an active control mode that actively returns the control amount that varies due to waves to the target value, and a negative control mode that performs passive control to the extent that the variation of the control amount due to waves is allowed. The mode selection means selects the positive control mode when the value of the control amount exceeds the allowable deviation. Main engine control system.
  13.  前記モード選択手段が、前記消極制御モードから前記積極制御モードへの変更後、所定時間、前記消極制御モードへの変更を禁止することを特徴とする請求項12に記載の主機制御システム。 13. The main engine control system according to claim 12, wherein the mode selection unit prohibits the change to the deactivation control mode for a predetermined time after the change from the deactivation control mode to the active control mode.
  14.  前記所定時間が前記主機の応答時間よりも長いことを特徴とする請求項13に記載の主機制御システム。 The main unit control system according to claim 13, wherein the predetermined time is longer than a response time of the main unit.
  15.  前記船速が対水船速であることを特徴とする請求項1~14の何れか一項に記載の主機制御システム。 The main engine control system according to any one of claims 1 to 14, wherein the ship speed is an anti-water ship speed.
  16.  前記対水船速が、対地船速と測地情報と海流データとから算出されることを特徴とする請求項15に記載の主機制御システム。 The main engine control system according to claim 15, wherein the speed of the ship against water is calculated from the speed of the ship to ground, geodetic information, and ocean current data.
  17.  前記波浪情報を入力するための入力手段を備えることを特徴とする請求項1~16の何れか一項に記載の主機制御システム。 The main engine control system according to any one of claims 1 to 16, further comprising an input unit for inputting the wave information.
  18.  請求項1~17の何れか一項に記載の主機制御システムを備えることを特徴とする船舶。 A ship comprising the main engine control system according to any one of claims 1 to 17.
  19.  複数の制御モードの下で主機の運転を制御し、制御量を検出し、船速および航行海域の波浪情報を用いて推定される制御量の変動量と、検出された前記制御量とに基づいて、前記制御モードの選択を行うことを特徴とする船舶の主機制御方法。
     
    Control the operation of the main engine under multiple control modes, detect the control amount, and based on the fluctuation amount of the control amount estimated using ship speed and wave information of the navigational sea, and the detected control amount A ship main engine control method, wherein the control mode is selected.
PCT/JP2011/056621 2010-03-31 2011-03-18 Ship main engine control system and method WO2011125466A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127025555A KR20130012123A (en) 2010-03-31 2011-03-18 Ship main engine control system and method
CN201180014910XA CN102811903A (en) 2010-03-31 2011-03-18 Ship main engine control system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-082367 2010-03-31
JP2010082367A JP5033210B2 (en) 2010-03-31 2010-03-31 Ship main engine control system and method

Publications (1)

Publication Number Publication Date
WO2011125466A1 true WO2011125466A1 (en) 2011-10-13

Family

ID=44762422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056621 WO2011125466A1 (en) 2010-03-31 2011-03-18 Ship main engine control system and method

Country Status (5)

Country Link
JP (1) JP5033210B2 (en)
KR (1) KR20130012123A (en)
CN (1) CN102811903A (en)
TW (1) TW201144580A (en)
WO (1) WO2011125466A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006962A1 (en) * 2016-07-07 2018-01-11 Cpac Systems Ab Method for a propulsion arrangement for a marine vessel
WO2019061705A1 (en) * 2017-09-26 2019-04-04 广船国际有限公司 Method and device for numerical simulation of ship self-propulsion point, and computer apparatus
CN111232152A (en) * 2020-01-17 2020-06-05 智慧航海(青岛)科技有限公司 Method and system for testing side thruster and side thruster controller of intelligent ship
US10895211B2 (en) 2014-12-26 2021-01-19 Nippon Yusen Kabushiki Kaisha Device, program, recording medium, and method for determining device normality and abnormality involving loads

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786860B (en) * 2014-02-19 2016-05-04 哈尔滨工程大学 Marine main engine executing agency and control method thereof
WO2015129337A1 (en) * 2014-02-25 2015-09-03 古野電気株式会社 Surface current estimation device, surface current estimation system, ocean model estimation device, and risk determination device
WO2015129338A1 (en) * 2014-02-25 2015-09-03 古野電気株式会社 Vessel characteristics estimation device
US10137972B2 (en) * 2014-07-28 2018-11-27 Furuno Electric Co., Ltd. Vessel characteristic estimation device and automatic steering device
CN104595040B (en) * 2014-12-09 2017-10-20 倪杰峰 The control method and device of ship energy saving navigation
CN104590529B (en) * 2014-12-09 2017-06-30 倪杰峰 The control method and device of ship energy saving navigation
CN104590526B (en) * 2014-12-09 2017-07-07 倪杰峰 The control method and device of ship energy saving navigation
WO2016098491A1 (en) * 2014-12-16 2016-06-23 古野電気株式会社 Optimum rotation speed estimation device, optimum rotation speed estimation system, and rotation speed control device
JP6777970B2 (en) * 2016-10-21 2020-10-28 テンアイズ株式会社 How to control the number of revolutions of a marine engine
CN108825389B (en) * 2018-06-29 2020-07-03 潍柴重机股份有限公司 System for controlling engine speed in linkage manner and control method using system
JP7349670B2 (en) * 2019-05-22 2023-09-25 国立研究開発法人 海上・港湾・航空技術研究所 Engine control method, engine control system, and ship
JP2021113507A (en) * 2020-01-16 2021-08-05 ナブテスコ株式会社 Fuel supply control device, fuel supply control method and fuel supply control program
JP7448415B2 (en) 2020-01-28 2024-03-12 ナブテスコ株式会社 Fuel control device and rudder control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315474A (en) * 2005-05-11 2006-11-24 Japan Radio Co Ltd Automatic navigation assistance system for ship
JP2009191774A (en) * 2008-02-15 2009-08-27 Nippon Yusen Kk Control method of ship engine and its control device
JP2009202792A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Automatic ship position holding device, and method and program therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776555A (en) * 2005-12-08 2006-05-24 上海交通大学 Marine power positioning control method based on fuzzy adaptive algorithm
CN101827748B (en) * 2007-08-14 2013-09-18 螺旋桨控制有限责任公司 Efficiency optimizing propeller speed control for ships

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315474A (en) * 2005-05-11 2006-11-24 Japan Radio Co Ltd Automatic navigation assistance system for ship
JP2009191774A (en) * 2008-02-15 2009-08-27 Nippon Yusen Kk Control method of ship engine and its control device
JP2009202792A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Automatic ship position holding device, and method and program therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895211B2 (en) 2014-12-26 2021-01-19 Nippon Yusen Kabushiki Kaisha Device, program, recording medium, and method for determining device normality and abnormality involving loads
WO2018006962A1 (en) * 2016-07-07 2018-01-11 Cpac Systems Ab Method for a propulsion arrangement for a marine vessel
CN109415114A (en) * 2016-07-07 2019-03-01 科派克系统公司 The method of puopulsion equipment for marine ships
US11027812B2 (en) 2016-07-07 2021-06-08 Cpac Systems Ab Method for a propulsion arrangement for a marine vessel
CN109415114B (en) * 2016-07-07 2022-05-27 科派克系统公司 Method for a propulsion arrangement for a marine vessel
WO2019061705A1 (en) * 2017-09-26 2019-04-04 广船国际有限公司 Method and device for numerical simulation of ship self-propulsion point, and computer apparatus
CN111232152A (en) * 2020-01-17 2020-06-05 智慧航海(青岛)科技有限公司 Method and system for testing side thruster and side thruster controller of intelligent ship
CN111232152B (en) * 2020-01-17 2021-05-04 智慧航海(青岛)科技有限公司 Method for testing side thruster and side thruster controller of intelligent ship

Also Published As

Publication number Publication date
JP5033210B2 (en) 2012-09-26
JP2011214471A (en) 2011-10-27
CN102811903A (en) 2012-12-05
KR20130012123A (en) 2013-02-01
TW201144580A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
JP5033210B2 (en) Ship main engine control system and method
EP2536999B1 (en) Fault tolerant vessel stabiliser control system
CN108983774B (en) Single-jet-pump-propelled unmanned surface vehicle self-adaptive course control method based on fuzzy state observer
US20190041857A1 (en) Ship handling device
JP6047923B2 (en) Variable pitch propeller control device, ship equipped with variable pitch propeller control device, and variable pitch propeller control method
WO2010150349A1 (en) Control method and controller of marine engine
JP5680716B2 (en) Marine engine control method and control device thereof
JP4750881B2 (en) Marine engine control system and method
JP4790072B1 (en) Marine engine control apparatus and method
JP2010285089A (en) Propulsion control device of vessel
EP3481717B1 (en) Method for a propulsion arrangement for a marine vessel
KR20180009349A (en) Apparatus and method for controlling the propulsion effect of a ship
KR102521829B1 (en) Control apparatus for rudder and ship
JP2010236502A (en) Marine engine control system
JP5090957B2 (en) Marine engine control method and control device thereof
JP5280553B2 (en) Marine engine control method and control device thereof
JP2012077758A5 (en)
JP2012077758A (en) Method and device for controlling ship engine
JP5084788B2 (en) Marine fuel regulator
JP5551723B2 (en) Marine engine control method and control device thereof
CN111907641A (en) Method and device for controlling oil tank of multi-hull ship and multi-hull ship
JP2012077759A (en) Method and device for controlling ship engine
JP2009300290A (en) Axial torque control method of dynamometer system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014910.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025555

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765368

Country of ref document: EP

Kind code of ref document: A1