TW201144580A - Ship main engine control system and method - Google Patents

Ship main engine control system and method Download PDF

Info

Publication number
TW201144580A
TW201144580A TW100110715A TW100110715A TW201144580A TW 201144580 A TW201144580 A TW 201144580A TW 100110715 A TW100110715 A TW 100110715A TW 100110715 A TW100110715 A TW 100110715A TW 201144580 A TW201144580 A TW 201144580A
Authority
TW
Taiwan
Prior art keywords
control
ship
amount
item
control system
Prior art date
Application number
TW100110715A
Other languages
Chinese (zh)
Inventor
Yasuyuki Tsuji
Shouichi Inami
Junya Miyata
Original Assignee
Mitsui Engineering & Amp Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Amp Shipbuilding Co Ltd filed Critical Mitsui Engineering & Amp Shipbuilding Co Ltd
Publication of TW201144580A publication Critical patent/TW201144580A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H21/213Levers or the like for controlling the engine or the transmission, e.g. single hand control levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Abstract

The disclosed ship main engine control system and method calculate by simulation a propeller inflow rate which takes into account the ship motion relative to the combination of wave height, wave period, ship velocity relative to the water, ship weight, etc. The change in main engine rotation speed is calculated from the change in the calculated propeller inflow rate, and the standard deviation s thereof is found. These results are stored as a standard deviation database (16). Referring to the standard deviation database (16), standard deviations are found during ship travel from the wave height, wave period, ship velocity relative to the water, and the ship weight, and an allowable rotation speed deviation ?Nt is calculated. In the control unit (14), PID control of the main engine (11) is performed, and multiple control modes with different gains are provided. The control mode of the control unit (14) is switched on the basis of comparing the rotation speed deviation and the allowable rotation speed deviation ?Nt in a comparison unit (15).

Description

201144580 、發明說明: 【發明所屬之技術領域】 本發明是關於一種船舶主機和^ 關於-種在複數個模式間切換以之先及方法’特別 之主機控制系統。 叹益(gove聊〇控制 【先前技術】 來谁在ίΐΐ主機的調速控制’―般是採用™控制等 貫!旋轉數在目標旋轉數的控制。又,: 轉二 ==)定範圍時’變更PID控制部的增二轉) 專利文獻1 :特開2009-191774號公報 ’專利讀1的結構,並*是考慮到海象戋护 逮的控制,所以簡消耗改善效果不夠。 认 【發明内容】 控制,以進一步抑 本發明是進行配合海象的調速器 制主機的燃料消耗為目的。 ,發明的主機控制系統,其特徵為具備:控制手 ^ ’二,控制模式下進行主機控制;控制量檢測手BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a host control system in which a ship host and a switch between a plurality of modes are prior art methods. Sigh (gove talk about control [previous technology] who is in the speed control of the host '" is generally controlled by TM control! The number of rotations in the target rotation number control. Also, turn two ==) In the case of the control of the patent reading 1, and the control of the walrus protection is taken into consideration, the improvement effect of the simple consumption is insufficient. SUMMARY OF THE INVENTION [Control Summary] The present invention is directed to the fuel consumption of a governor system in conjunction with a walrus. The invented host control system is characterized in that: control hand ^ '2, host control in control mode; control amount detection hand

Lr 1機㈣的控制量;以及模式選擇手段,根 康用船速及航行海域的波浪#訊估計控制量的變動 201144580 量,與檢測到的控制量,來進行控制模式的選擇。 主機控制系統,具備例如容許偏差算出手段,從估 計到的變動量算出控制量的容許偏差。再者,主機控制 系統,具備例如比較手段,進行容許偏差與控制量的控 制偏差的比較,控制模式的選擇是例如根據在比較手段 的比較來進行。由此,以極簡略的結構可以選擇對應海 象的控制模式。 控制量為例如主機之旋轉數,容許偏差算出手段為 例如將從來自主機的額定最大旋轉數的裕度(margin ) 來考慮的容許偏差給算出。又,也可以具備裕度變更手 段,用以變更裕度。由此,可以確實地防止主機過度旋 轉的發生。 容許偏差是例如根據變動量的標準差所算出的 值。例如容許偏差被做為標準差的定數倍,也可以具備 定數變更手段,用以變更定數。又,容許偏差是標準差 的定數倍時,定數為例如2〜3.5。 容許偏差算出手段,是參照根據例如船速、波浪資 訊的資料庫來算出變動量。又,變動量為例如考慮船舶 重量的值,資料庫包含關於船舶重量的項目。由此,能 以簡單的結構,迅速正確地配合海象的控制模式進行切 換。 控制模式包含:積極控制模式,積極地進行回到例 如因波浪而變動的控制量的目標值;以及消極控制模 式,進行消極控制到例如容許控制量因波浪而變動的程 度,其中模式選擇手段是在控制量的值超過容許偏差 4 201144580 時,選擇積極控制模式。 模式選擇手段是例如從消極控制模式變更到積極 控制模式後的特定時間,禁止變更至消極控制模式。此 時,特定時間比主機的回答時間長。由此,在主機回答 前,可以防止回到消極控制模式。又,上述船速是例如 對水船速,對水船速是例如從對地船速、測地資訊與海 流資料來算出。再者,主機控制系統具備例如輸入手 段,用來輸入波浪資訊。 本發明的船舶其特徵在於具備上述主機控制系統。 又,本發明的船舶主機控制方法,其特徵在於在複 數個控制模式下控制主機之運轉,檢測控制量,根據用 船速及航行海域的波浪資訊估計控制量的變動量,與檢 測到的控制量,來進行控制模式的選擇。 根據本發明,可以進行配合海象的調速器控制,進 一步抑制主機的燃料消費。 【實施方式】 以下參照附帶圖式說明關於本發明的實施形態。 第一圖表示本實施形態的船舶主機控制系統的結 構的控制方塊圖。 在主機控制系統10,主機11的輸出軸(圖未顯示) 直接連接或經由變速器間接連接推進用的螺槳(圖未顯 示)。主機11例如被回饋控制成引擎的實際旋轉數(控 制量)變成目標旋轉數(目標值)。目標旋轉數是例如 被駕船者C經由控制台12來設定。設定的目標旋轉數 201144580 做為旋轉數指令No被輸入至旋轉數偏差算出部13。輸 出軸的旋轉是用圖未顯示的感應器來檢測,做為實際旋 轉數Ne被輸入至旋轉數偏差算出部13。 在旋轉數偏差算出部13,算出檢測到的實際旋轉 ,Ne與旋轉數指令No之間的旋轉數偏差(Ne_N〇)。 异出的旋轉數偏差(Ne-N〇)被輸出至控制部14及比較 =15。在控制部14根據輸入的旋轉數偏差(Ne_N〇)X 算出做為操作量的調速器指令,控制主機n的操作端 (燃料控制閥或蒸汽閥(圖未顯示)),調整燃料供= π ° '、 、口 隹不貫施形態 ν 〜于乂叶丹侑砟日子器15C, 在比較部15狀做為控制偏差的旋轉數偏差(Ne· 以及計時S 15C的值衫滿足特㈣件(後述)。比 部15根據該判定’輸出模式選擇訊號至控制部μ 控制部14根據模式選擇訊號,進行控 _ 的選擇切換。 、U交返j 在本實施形態’做為—特定條件,例如判斷旋 2差,絕對值丨Ne_N。丨Μ被收斂於容許 ^容許旋轉數請是例如參照以模 = 建^的基準偏差資料庫16,在容許旋轉 被异出。在本貫施形態的基準偏差資料庫! 對於波浪狀況(例如浪高皮_ °,彔相 物狀態(船的重量)的各值組皮合^^^ (;轉數變動的標準差)。,在容許旋轉== 從參照基準偏差㈣庫16獲得㈣料馳基i偏差 201144580 σ,求得容許旋轉數ΔΝι (後述)。 在此,波浪狀況與貨物狀態(船的重量)被駕船者 C經由控制台12輸入。另一方面’對水船速Vr是從對 地船速Vg與海流速度Vm求得。對地船速Vg是例如 用GPS等測地對地船速器丨8來取得’海流速度Vm是 從以測地對地船速器18得到的地點資訊與海流資料庫 19取得。也就是說’在對地船速補正部20,用對地船 速Vg與海流速度Vm的值算出對水船速Vr,輸入至基 準偏差資料庫16。 接下來,參照第二圖的控制方塊圖來說明關於控制 =14的細節。在本實施形態,採用例如速度型的piD /汽算法(algorithm )。 與在本實施形態,做為控制模式,準備消極控制模式 控制模式,來自旋轉數偏差算出部13的旋轉數 控制i ΝΛΝ〇 )分別被輸出至對應消極控制模式的消極 U。次异部22與對應積極控制模式的積極控制演算部 1/'在5控制^^22,對於旋轉數偏差分別施以 力口 〇丨· S演异(s是拉普拉斯運算子),其後, 叉,=個值,並乘以控制增益Kpi而輸出至切換部Μ。 積?控制,算部23,對於旋轉數偏差分別施以 制増益κ :2二ΐ算,其後,加上三個值,並乘以控 9幾κρ2而輸出至切換部24。 式、s =換部24依照來自比較部15 (參照第-圖) ""擇訊號’僅將來自選擇的控制模式所對應的讀^部 201144580 22、23的輸出’選擇性 25,對於來自在切換部24、㈣。”5。在累加部 r做為調速―)輸 波浪ί ϊ ^祕騎肖_ _容許因 ^ μ =際疋轉數⑹的變動在現在波浪 =通常變動範圍内的狀況,特別是被選擇在^因良 工轉raemg)等導致過度旋轉產生的危險的狀離。 又,積極控制模式是積極地(早期)皮;The control amount of the Lr 1 machine (4); and the mode selection means, the root speed and the wave of the navigation sea are used to estimate the change of the control amount, and the control quantity is selected. The host control system includes, for example, a tolerance calculation means for calculating an allowable deviation of the control amount from the estimated fluctuation amount. Further, the host control system includes, for example, comparison means for performing comparison of the control deviation of the tolerance and the control amount, and the selection of the control mode is performed, for example, based on comparison by the comparison means. Thereby, the control mode corresponding to the sea image can be selected with a very simple structure. The control amount is, for example, the number of rotations of the host, and the tolerance calculation means is, for example, a calculation of the tolerance from the margin of the rated maximum number of rotations from the host. Further, a margin change means may be provided to change the margin. Thereby, it is possible to surely prevent the occurrence of excessive rotation of the host. The tolerance is, for example, a value calculated based on the standard deviation of the fluctuation amount. For example, the tolerance is set to be a multiple of the standard deviation, and a fixed number change means may be provided to change the fixed number. Further, when the tolerance is a fixed number of standard deviations, the fixed number is, for example, 2 to 3.5. The tolerance calculation means calculates the amount of fluctuation based on a database of, for example, ship speed and wave information. Further, the amount of change is, for example, a value considering the weight of the ship, and the database contains items relating to the weight of the ship. Thereby, it is possible to quickly and correctly match the control mode of the walrus with a simple structure. The control mode includes: a positive control mode that actively returns to a target value of a control amount that changes, for example, due to a wave; and a negative control mode that performs a negative control to, for example, a degree that the allowable control amount fluctuates due to a wave, wherein the mode selection means is When the value of the control amount exceeds the tolerance 4 201144580, the active control mode is selected. The mode selection means is, for example, a specific time after the change from the negative control mode to the active control mode, and the change to the negative control mode is prohibited. At this time, the specific time is longer than the response time of the host. Thus, it is possible to prevent returning to the negative control mode before the host answers. Further, the ship speed is, for example, a watercraft speed, and the watercraft speed is calculated, for example, from the ground speed, geodetic information, and current data. Furthermore, the host control system has, for example, an input means for inputting wave information. The ship of the present invention is characterized by comprising the above-described host control system. Furthermore, the ship master control method of the present invention is characterized in that the operation of the host is controlled in a plurality of control modes, the amount of control is detected, and the amount of fluctuation of the control amount is estimated based on the wave speed of the ship speed and the navigation sea, and the detected control. Quantity to select the control mode. According to the present invention, governor control in conjunction with walrus can be performed to further suppress fuel consumption of the main unit. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The first figure shows a control block diagram of the structure of the ship host control system of the present embodiment. In the host control system 10, the output shaft (not shown) of the main unit 11 is directly connected or indirectly connected via propellers for propulsion (not shown). The host 11 is, for example, fed back to control that the actual number of rotations (control amount) of the engine becomes the target number of rotations (target value). The number of target rotations is set by the ship operator C via the console 12, for example. The number of target rotations to be set 201144580 is input to the rotation number deviation calculation unit 13 as the rotation number command No. The rotation of the output shaft is detected by an inductor not shown in the figure, and is input to the rotation number deviation calculating unit 13 as the actual number of rotations Ne. The rotation number deviation calculation unit 13 calculates a rotation number deviation (Ne_N〇) between the detected actual rotation and Ne and the number of rotation commands No. The deviation of the number of rotations (Ne-N〇) is output to the control unit 14 and the comparison =15. The control unit 14 calculates a governor command as an operation amount based on the input rotation number deviation (Ne_N〇)X, and controls the operation end of the host n (fuel control valve or steam valve (not shown)) to adjust the fuel supply = π ° ', 隹 隹 形态 形态 形态 形态 形态 形态 形态 乂 乂 乂 乂 乂 乂 乂 乂 乂 乂 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较 比较According to the determination, the output mode selection signal to the control unit μ control unit 14 performs selection switching of the control_ according to the mode selection signal. U-return j is a specific condition in the present embodiment. For example, it is determined that the rotation is 2, and the absolute value is _Ne_N. The 收敛 is converged to the allowable number of rotations. For example, the reference deviation database 16 with the modulo = construction is referred to, and the allowable rotation is different. Base deviation database! For wave conditions (such as wave height _ °, 彔 phase state (ship weight), each value group is combined with ^^^ (; standard deviation of the number of revolutions). Obtain the (four) feed-base i deviation from the reference datum deviation (4) library 16 144580 σ, the allowable rotation number ΔΝι (described later) is obtained. Here, the wave condition and the cargo state (the weight of the ship) are input by the ship operator C via the console 12. On the other hand, the water ship speed Vr is from the ground. The ship speed Vg and the sea current speed Vm are obtained. The ground speed Vg is obtained by, for example, measuring the ground speed of the ship GPS8 by GPS or the like. The sea current speed Vm is the position information and the current obtained from the geodetic ship speeder 18. In the ship-to-ground speed correction unit 20, the watercraft speed Vr is calculated by the value of the ground speed Vg and the current velocity Vm, and is input to the reference deviation database 16. Next, reference is made to The control block diagram of the second figure illustrates the details regarding the control = 14. In the present embodiment, for example, a speed type piD / steam algorithm is employed. In the present embodiment, as the control mode, the negative control mode control mode is prepared. The rotation number control i ΝΛΝ〇) from the rotation number deviation calculation unit 13 is respectively output to the negative U corresponding to the negative control mode. The sub-division 22 and the positive control calculation unit 1/' corresponding to the active control mode are controlled in 5^^ 22, for the number of rotations The difference is respectively applied to the force 〇丨 · S variant (s is a Laplacian operator), and then, the fork, = value, multiplied by the control gain Kpi and output to the switching unit Μ. The portion 23 applies a factor κ:2 to the rotation number deviation, and then adds three values and multiplies the control by 9 κρ2 to output to the switching unit 24. Equation, s = change portion 24 From the comparison unit 15 (refer to the first figure) "" selection signal number, only the output 'selectivity 25' from the read portion 201144580 22, 23 corresponding to the selected control mode is derived from the switching unit 24, (four). "5. In the accumulating part r as the speed control -) the wave ί ϊ ^ secret riding _ _ allowable ^ μ = the number of revolutions (6) changes in the current wave = the range of normal fluctuations, especially selected In the case of ^ because of good work turned to raemg), the risk of excessive rotation caused by the separation. Also, the positive control mode is positive (early) skin;

No^##V ^,J * } ^ § ^ . ^ ―、吴式被選擇在目前的波浪狀況下通常不會產 貫際旋轉數Ne有大變動發生的狀況。 曰 巧’消極㈣演算部22的&被設 控制演算部23的κρ2小的值。又,因為Tii盘τ.2、積丁才 與對應控制對象的頻率特性來設定者,所以通^ 會被設定在大致相同的值,但是外部擾動與控制對 頻率特性類似時,可以分別給予不同值(每組類似 於Tn、Ti2組與了⑴、Td2組。 接下來,參照第一圖以及第三圖的流程圖,說明關 於在比^交部15執行的處理以及特定條件的具體例。 又,本實施形態的調速器系統具備手動控制模式與自動 控制模式,第三圖的流程圖所示的處理,在自動控制模 式被駕船者C選擇時開始。又,自動控制模式被選擇後 201144580 务、接著’消極控制模式就被選擇’從比較部15輸出對 應消極控制模式的模式選擇訊號至控制部14。又,在 手動控制模式,例如經常選擇積極控制模式。 在步驟S100,計時器15C的計數值cn被設定為 0。其後在步驟S102,判定旋轉數偏差的絕對值|Ne_N〇| 疋否比谷許旋轉數ANt小。當判定絕對值|Ne_N〇|小於 容許旋轉數ΔΝΐ ’則在步驟S104,計時器15C的計數 值CN會被判定大於預設特定值cs。 在步驟S104,若判定為CN>CS,則在步驟sl〇6 輸出至控制部14的模式選擇訊號,被切換至對應消極 控制模式的訊號’處理會回到步驟S102。另一方面, 在步驟S1G4,當判定不是CN>CS,則處 回到 步驟S102。 =S^08,判定現在的模式選擇訊號是否對應於消極 ^制模式者。若是消極控制模式,則在步驟川〇,計 被重設,並啟動計數器15C,開始計數值CN 在各特定時間的計數。其後在步驟SU2, 控 切擇訊號被切換至對應於積極控制模式的 讯唬,處理回到步驟Sl〇2。 S’ ’當判定現在輪出的模式選擇訊 號不疋沾極控制訊號,則處理回到步驟 也就是說’㈣比較部丨5的±述 制模式的切換,當旋 筆侧被狀大於容許旋轉數_,則立刻進行控制 201144580 模式的切換。另一方面,在從積極控制模 控制极式’選擇積極控·式後的特 對姓極 會被變更。控制模式切換的禁止,經過^ = 2也不 當判定旋轉數偏差的絕對值,_Ν。丨小於“ :J :: △Nt,則從積極控制模式切換至消極控制模式。數 制定時間(设定值CS)是例如考慮防止將杵 的控制模式立刻回到消極控制模式 週期來決定。也就是說,設定成比對於 =的引擎旋轉數回應被—階延遲地單純化時的時門」 及二以實施自動運轉的波浪狀況所誘發的負i: 動週期更長的時間(例如8〜12秒程度)。 、戰文 A接下來,說明關於容許旋轉數ΔΝί。在本眚# 態’容許旋轉數請是引擎旋轉數基準偏差 也) σ的定數倍,例如2〜3.5倍,更佳為2 5〜3二 ) 算出部Π鲁也就是說,旋“偏差: 、-、邑對值|Ne-N〇|變得比容許旋轉數ΔΝ1;更大, 的 旋轉變動範圍幾乎不會發生,在這種狀況被認為 極控制。又,較數較佳輕被駕船者c狀、積 又,當目標旋轉數(旋轉數指令)Ν〇與 數ANt的和(No+ANt) ’大於主機u的最大 = 數Nm,則實際旋轉數Ne有可能超過最大額定 Nm。因此,在本實施形態,容許旋轉數算出部i7 j 自動變更ΔΝί的值小於(Nm-No)的值,使和 201144580No^##V ^,J * } ^ § ^ . ^ ―, Wu is selected in the current wave conditions, usually does not produce a large number of changes in the number of rotations Ne. & ’ ' Negative (4) The calculation unit 22 is set to a value that is smaller than κρ2 of the control calculation unit 23. In addition, since the Tii disk τ.2 and the product are set to the frequency characteristics of the corresponding control object, the pass is set to substantially the same value, but when the external disturbance and the control are similar to the frequency characteristics, they can be given differently. Values (each group is similar to the group of Tn, Ti2, and (1), Td2. Next, a specific example of the processing executed in the comparison unit 15 and the specific conditions will be described with reference to the flowcharts of the first diagram and the third diagram. Further, the governor system of the present embodiment includes a manual control mode and an automatic control mode, and the processing shown in the flowchart of the third diagram is started when the automatic control mode is selected by the ship operator C. Further, the automatic control mode is selected. After 201144580, the 'negative control mode is selected', the mode selection signal corresponding to the negative control mode is output from the comparison unit 15 to the control unit 14. Again, in the manual control mode, for example, the active control mode is often selected. In step S100, timing is performed. The count value cn of the unit 15C is set to 0. Thereafter, in step S102, it is determined that the absolute value of the rotation number deviation |Ne_N〇| 疋 is smaller than the number of rotations Ant. The value |Ne_N〇| is smaller than the allowable rotation number ΔΝΐ'. Then, in step S104, the count value CN of the timer 15C is determined to be greater than the preset specific value cs. In step S104, if it is determined to be CN>CS, then in step sl6 The mode selection signal output to the control unit 14 is switched to the signal corresponding to the negative control mode. The process returns to step S102. On the other hand, if it is determined in step S1G4 that it is not CN>CS, the process returns to step S102. S^08, it is determined whether the current mode selection signal corresponds to the passive control mode. If it is the negative control mode, then in the step, the meter is reset, and the counter 15C is started, and the counting value of the count value CN is started at each specific time. Then, in step SU2, the control cut signal is switched to the signal corresponding to the active control mode, and the process returns to step S1. 2 S' 'When it is determined that the mode selection signal that is now rotated is not the control signal, Then, the process returns to the step, that is, the switching of the ± description mode of the (4) comparison unit ,5, and when the stylus side is larger than the allowable number of rotations _, the mode switching of the 201144580 mode is immediately performed. From the active control mode control pole type, the special pair of poles after the selection of the active control type will be changed. The control mode switching is prohibited, and the absolute value of the rotation number deviation is determined by ^ = 2, _Ν. 丨 is less than " :J :: △ Nt, then switch from the active control mode to the negative control mode. The number setting time (set value CS) is determined, for example, by preventing the control mode of the 杵 from immediately returning to the negative control mode cycle. The time is longer than the negative (i.e., 8 to 12 seconds) induced by the negative i: induced by the wave condition in which the automatic operation is performed in response to the number of engine revolutions for =. , war text A Next, explain the allowable rotation number ΔΝί. In this 眚# state, the allowable number of rotations is the engine rotation number reference deviation. The fixed number of times of σ, for example, 2 to 3.5 times, more preferably 2 5 to 3 2) : , -, 邑 value | Ne-N〇| becomes larger than the allowable rotation number ΔΝ1; the range of the rotation fluctuation hardly occurs, and in this case, it is considered to be extremely controlled. The driver is c-shaped and accumulates. When the target rotation number (rotation number command) Ν〇 and the number ANt (No+ANt) ' is greater than the maximum value of the host u = Nm, the actual rotation number Ne may exceed the maximum rating. Therefore, in the present embodiment, the allowable rotation number calculation unit i7 j automatically changes the value of ΔΝί to be smaller than (Nm-No), and makes the sum 201144580.

Nt)的值不超過最大額定旋轉數^^。此時,△奶的值 ^ (Nm-Να)的值之間’較佳為設有旋轉數裕度,旋轉 數裕度是例如能被駕船者C設定、變更。也就是說,容 =轉數算出部17,從設定的裕度與主機1()的最大額 疋疋轉數,補正上述的容許旋轉數^价並輸出。 箱土 ί ’引擎旋轉數基準偏差σ是用如以下的流體解析 戶Ϊ就是說’對於在各種狀況的船舶的對水速 ^ f ί 波高、波解(波浪資訊)、船舶重量 :、,、且° ’卩進行考慮船體運動的流體解析,來計算至 進=槳的流人速度變動,根據該螺紫流人速度的變 動,求得對各組合的引擎旋轉數基準偏差^。 浐螺3細Γΐ明,若螺槳形狀(例如螺距)是已知, 人速度’在螺槳效率最大的條 的J適螺槳旋轉速度。因此,對於 J唯 連接的主機輸出軸的最適度ί 忒的%轉數變動是做為其定數倍來 數變動的模擬,算出對於對水和 :/〜引擎%轉 2率)、船舶重量的各組合的主機旋轉數變動的標準 以者二重量極大的船舶,由於船體運動小,可 乂名略考慮船體運動的模擬。這種 差資料庫省略關於船泊重量# / 攸基準偏 入關於船舶重量的資二m需要駕船者c輸 台12’僅輸入波浪資u目種經由控制 型油輪(tanker)笙_/、知靛轉數即可。又,在大 ,可以僅準備空船時與滿载時的資 201144580 料,駕船者c則從兩者中任選一。 如以上所述,根據本實施形態,從現在的對水船速 與波浪資afl,將主機的控制模式配合海象而可適當選 擇,並可以大幅抑制燃料消費。特別是,在本實施形態, 從現在的對水船速、波浪資訊估計的主機旋轉數變動的 旋轉數基準偏差(標準差)來求得旋轉數變動的容許偏 差,據此進行控制模式的切換,所以以極端簡略的結 構,可實現對應海象的調速器控制。特別是波高數公尺 的波浪狀況下,在外海航行的時候,相較於用以往的一 身又主機疋轉數控制的船舶’有1 %〜2 %的燃料費改善 效果。 … ° 又’在本實施形態’將對應各種船速、波浪資訊的 力疋轉數基準偏差(標準差)預先模擬,將這些關係做為 資料庫保存利用,因此能以簡略結構求得對應現在船 速、波浪資訊的基準偏差。 u 再者’在本實施形態,因為從以測地、對地船速器 得到的資料與海流資料庫的資訊,得到更正確的現在對 水船速,所以可以以高精確度進行控制模式的切換。 又,在本實施形態,船舶的重量也做為在基準偏差資料 庫的旋轉數基準偏差分類的一項目,並輸入貨物狀態, 藉此來把握船舶的正確重量,所以可以更正確地估計旋 轉數基準偏差。 以與主機之最大額定旋轉數的關係來補正容許偏 差,所以防止主機的過度旋轉。再者,容許旋轉數偏差 與目標值的和,與最大額定旋轉數之間設有裕度,將裕 201144580 度做為可調整者,藉此可以進行更有彈性且安全 器控制。 王“。、 又’本實施形態在自動控制中’準備了消極於制模 式與積極控制模式兩個控制模式,但例如將燃^指標 (fuel index)固定的燃料模式進一步做為自動^制 控制模式來加入也可以。這種狀況,將例如比:沭六 許旋轉數偏差(第一容許旋轉數偏差)小的第二^許广 轉數偏差用於消極控制模式與燃料控制模式疋 換判定,當旋轉數偏差大於第二容許旋轉數偏差j := 換為消極控制模式’例如在特定時間之期減= 不超過第二容許旋轉數偏差的狀況,也可以=: 控制模式到燃料模式的切換。又,也可::巧極 模式與燃料模式構成自動控制,也可 亟二制 為控制量的控制模式(例如用力矩感應; 準旋轉數偏差(=。ΐ波浪會讯、船舶重量的基 似式、或資料庫與内插式的結構。 K併用近 的容準差以外的值求出旋轉數(控制量) 準差以外的代,從表示控制量的變動分佈的標 週期的最大值、最】…例如’求出在控制4變動的各 這些平均值求出4:^控:量二平均值的差,可以從 卉偏差。又,在本實施形態,比較了 201144580 控制偏差與容許偏差,但也可以比較目標值與容許偏差 的和與控制量。 又,海流的影響變少時,也考慮用對地船速代替對 水船速。在本實施形態’波浪資訊以目視確認,而被駕 船者輸入,但也可以用感應器等自動取得這些資訊。 【圖式簡單說明】 第一圖:表示本實施形態的船舶主機控制系統的結構的 控制方塊圖。 第=圖:詳細表示第一圖的控制部的方塊圖。 ^圖:在比較部進行的控制模式切換判定處理的流程 【主要元件符號說明】 10 主機控制系統 11 主機 12 控制台 13 旋轉數偏差算出部 14 控制部 15 比較部 15C 計時器 16 基準資料庫 17 容許旋轉數算出部 18 測地、對地船速器 19 海流資料庫 201144580 20 對地船速補正部 22 消極控制演算部 23 積極控制演算部 24 切換部 25 累加部 C 駕船者The value of Nt) does not exceed the maximum rated rotation number ^^. In this case, it is preferable that the value Δ milk has a rotation number margin between the values of (Nm - Να), and the rotation number margin can be set and changed by the ship operator C, for example. In other words, the capacity=rotation number calculation unit 17 corrects the above-described allowable number of rotations from the set margin and the maximum number of revolutions of the host 1(), and outputs them. Box soil ί 'engine rotation number reference deviation σ is the same as the following fluid analysis households that say 'for the water speed of the ship in various conditions ^ f ί wave height, wave solution (wave information), ship weight:,,, In addition, the fluid analysis of the hull movement is performed to calculate the flow velocity change of the forward/pitch, and the engine rotation reference deviation ^ for each combination is obtained based on the fluctuation of the vortex flow velocity. The snail 3 is fine, if the shape of the propeller (for example, the pitch) is known, the speed of the man's rotation is the maximum efficiency of the propeller. Therefore, for the J-connected host output shaft, the optimum value of the % rotation is the simulation for the number of changes in the number of times, calculated for the water and: / ~ engine % 2 rate), ship weight The standard of the change in the number of revolutions of the main unit of each combination is that the ship with the second most heavy weight can slightly consider the simulation of the hull movement due to the small movement of the hull. This difference database omits the ship's mooring weight # / 攸 偏 偏 关于 关于 关于 关于 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 需要 ' ' ' ' ' ' ' ' ' The number of revolutions can be. In addition, when it is large, it is possible to prepare only one empty ship and the full load of 201144580, and the driver c is one of the two. As described above, according to the present embodiment, the current control mode of the host is matched with the walrus from the current watercraft speed and the wave afl, and the fuel consumption can be greatly suppressed. In particular, in the present embodiment, the allowable deviation of the fluctuation of the number of rotations is obtained from the current rotation number reference deviation (standard deviation) in which the number of rotations of the main engine is estimated for the watercraft speed and the wave information, and the control mode is switched accordingly. Therefore, with a very simple structure, the governor control corresponding to the walrus can be realized. In particular, in the case of waves with a wave height of several meters, when sailing in the open sea, there is a fuel cost improvement effect of 1% to 2% compared to ships that have been controlled by the previous one. ... ° In the present embodiment, the force deviation number standard deviation (standard deviation) corresponding to various ship speeds and wave information is pre-simulated, and these relationships are stored and used as a database, so that the current structure can be obtained in a simple structure. The base deviation of the ship speed and wave information. u In addition, in this embodiment, since the data obtained from the geodesic and ground speed ship and the information of the current database are obtained, the current water speed is more accurate, so that the control mode can be switched with high accuracy. . Further, in the present embodiment, the weight of the ship is also classified as an item classified in the reference number of rotations of the reference deviation database, and the state of the cargo is input, whereby the correct weight of the ship is grasped, so that the number of rotations can be estimated more accurately. Base deviation. The tolerance is corrected in relation to the maximum number of revolutions of the host, so that excessive rotation of the host is prevented. Furthermore, there is a margin between the allowable rotation number deviation and the target value, and the maximum rated rotation number, and the 201144580 degree can be adjusted as an adjuster, thereby making it possible to perform more flexible and safe control. Wang "., and 'this embodiment in the automatic control' prepared a negative control mode and a positive control mode two control modes, but for example, the fuel index fixed fuel mode is further controlled as automatic control It is also possible to add a mode. In this case, for example, the second variation of the number of revolutions (the first allowable number of rotations) is smaller than that of the negative control mode and the fuel control mode. When the rotation number deviation is greater than the second permissible rotation number deviation j := to the negative control mode 'for example, during a certain period of time minus = no more than the second allowable rotation number deviation, it is also possible to = control mode to fuel mode Switching. In addition, it can also be: automatic mode and fuel mode constitute automatic control, and can also be used as control mode control mode (for example, with torque sensing; quasi-rotation number deviation (=. ΐ wave information, ship weight The basic formula, or the structure of the database and the interpolation type. K uses the value other than the near tolerance difference to obtain the number of rotations (control amount). The generation other than the quasi-difference, the variation distribution from the control quantity. The maximum value of the standard period, the most ..., for example, 'determine the average value of each of the fluctuations of the control 4, and find the difference between the average value of the quantity 2 and the average value of the quantity 2, which can be derived from the deviation. In this embodiment, the comparison is made. 201144580 Control deviation and tolerance, but it is also possible to compare the sum of the target value and the tolerance and the control amount. When the influence of the current is reduced, it is also considered to replace the watercraft speed with the ground speed. In this embodiment, the wave The information is visually confirmed and input by the ship operator, but the information can be automatically obtained by an inductor or the like. [Simplified Schematic] FIG. 1 is a control block diagram showing the configuration of the ship host control system of the present embodiment. Fig. 1 is a block diagram showing in detail the control unit of the first figure. ^Fig. Flow of control mode switching determination processing performed by the comparison unit [Description of main component symbols] 10 Host control system 11 Host 12 Console 13 Rotation number deviation Calculation unit 14 Control unit 15 Comparison unit 15C Timer 16 Reference database 17 Permissible rotation number calculation unit 18 Geodesic and ground speeder 19 Ocean current database 201144 580 20 Ground speed correction unit 22 Negative control calculation unit 23 Active control calculation unit 24 Switching unit 25 Accumulation unit C Driver

Ne 實際旋轉數Ne actual number of rotations

No 旋轉數指令 V g 對地船速 Vm 海流速度 Vr 對水船速 △ Nt容許旋轉數 σ 引擎旋轉數基準偏差No Number of rotation commands V g Ground speed Vm Current velocity Vr Water speed △ Nt Allowable rotation σ Engine rotation reference deviation

Claims (1)

201144580 七、申請專利範圍: 1. 一種船舶主機控制系統,其特徵為具備: &制在複數個控制模式下進行主機的控制; ^制里檢測手段,檢測在前述控制的控制量;以及 拉^選擇手&,根據縣速及航行海域的波浪資訊估計 j控制量的變動量,與檢測到的前述控制量,來進 行别述控制模式的選擇。 2.二申請,請第1項所述之船舶主機控制系統, 山、f、·、^偏差异出手段,從估計到的前述變動量算 出别述控制量的容許偏差。 # U請專利範圍第2項所述之船舶主機控制系統, 二較手段,進行前述容許偏差與前述控制量的 的比較,前述控制模式的選擇是根據前述比 第2或3項所述之船絵機控制系 統,其中別述控制量是前述主機的旋轉數。 5.:申:奢專利範圍第4項所述之船 ;中前述容許偏差算出手段是將從來自前=二 6·=申請專利範圍第5項所述之船舶主機控制李統, 裕度變更手段,用以變更前述裕度。 項中任—項所述之船舶主機 ==出其的/。述容許偏差是根據前述變動量的標 201144580 8·如申請專利範圍第4 其中前述容許偏差被做為船舶主機控制系統, 舶主機控制系統具備··定U》準I的定數倍,該船 定數。 邊更手段,用以變更前述 9_如申請專利範圍第8 其中前述定數為2〜35〕 ^之船舶主機控制系統, 10.如t請專利範圍第2 其t前述容許偏差算出手主機控制系統, 前”浪資訊的資料庫來算出前述船速、 .如申請專利範圍第10項 里 庫也包含闕於前述船舶重量的項目f的值H貝枓 12·如申睛專利範圍第1〜11項中彳 機控制系統,其中所述之船舶主 式,積極地進行回到因波浪而變動^、=?制模 述目標值;以及消極控制槿述控制量的前 前述控制量因波、、f @進仃消極控制到容許 手段是在的程度’其中前述模式選擇 前述積極控制^式里的值超過則述容許偏差時,選擇 13以=第12項所述之船舶主機控制系統, 式遠擇手段是從前述消極控 消==:_式後㈣定時間’禁止變更S述 14.ί7ΐ2?;第13項所述之船舶主機控制系統, 中則34特定時間比前述主機的回答時間長。 17 201144580 15·如申請專利範園第丨〜 以r述船‘ 其令前述心是機控制系統, 料來算出。 ί也熬速、測地貧訊與海流資 ===::16項中任-項所述之船舶主 ^錢,具備··輸人手段,用錢人前述波浪資 17 其特徵為具備如申請專利範圍第1 員中任-項所述之船舶域控制系統。 19二種ί舶主機控制方法,其特徵在於:在複數個押 及機之運轉’檢測控制量,根據用船i ΐ浪計㈣量的變動量,與檢測 J的刖述拴制置,來進行前述控制模式的選擇。201144580 VII. Patent application scope: 1. A ship host control system, which is characterized in that: & control system performs host control in a plurality of control modes; ^ system detection means detects the control amount in the foregoing control; ^Select hand &, according to the wave speed information of the county speed and navigation sea area, estimate the amount of change of the control amount, and select the control mode to select the control mode. 2. For the second application, please refer to the ship master control system described in item 1 for the difference between the mountains, f, ·, and ^, and the allowable deviation of the control amount from the estimated fluctuation amount. # U Please refer to the ship main engine control system described in item 2 of the patent scope, and compare the aforementioned tolerance to the aforementioned control amount. The control mode is selected according to the ship described in item 2 or 3 above. The downtime control system, wherein the control amount is the number of rotations of the aforementioned host. 5.: Application: The ship mentioned in item 4 of the scope of the luxury patent; the calculation method for the above-mentioned tolerance is to change the means of the margin from the ship's main engine, as described in item 5 of the former patent application. To change the aforementioned margin. The ship's main engine as described in the item -= is out of /. The allowable deviation is based on the above-mentioned variation amount 201144580. 8. If the above-mentioned tolerance is used as the ship's main engine control system, the host control system has a fixed number of times. Fixed number. The means for changing the above 9_ is as in the scope of the patent application, wherein the above-mentioned fixed number is 2 to 35] ^ the ship host control system, 10. If the patent range is the second, the t The system, the former "wave information database" to calculate the aforementioned ship speed, as in the scope of application for the 10th item, the library also contains the value of the item f of the aforementioned ship weight H. 枓 12 · If the scope of the patent is the first 1~ 11 intermediate control systems, wherein the main mode of the ship is actively returned to change by the wave ^, = system model target value; and the negative control control amount of the previous control amount wave, , f @进仃 negative control to the extent that the permissible means is in the case where the aforementioned mode selects the value in the positive control formula above the allowable deviation, and selects 13 to = the ship master control system described in item 12, The remote selection means is from the above-mentioned negative control ==:_ after (four) fixed time 'prohibited change S. 14. ΐ7ΐ2?; the ship master control system described in item 13, 34 is the specific time than the previous host's answer time Long. 17 201144580 15·If you apply for the patent Fanyuan 丨 以 以 述 述 以 以 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The ship owner has the money, and has the means of inputting, and the use of the aforementioned wave fund 17 is characterized by having the ship domain control system as described in the first item of the patent application scope. The host control method is characterized in that: in the operation of the plurality of escrow machines, the detection control amount is generated based on the amount of fluctuation of the amount of the ship i ΐ 计 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( select.
TW100110715A 2010-03-31 2011-03-29 Ship main engine control system and method TW201144580A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082367A JP5033210B2 (en) 2010-03-31 2010-03-31 Ship main engine control system and method

Publications (1)

Publication Number Publication Date
TW201144580A true TW201144580A (en) 2011-12-16

Family

ID=44762422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100110715A TW201144580A (en) 2010-03-31 2011-03-29 Ship main engine control system and method

Country Status (5)

Country Link
JP (1) JP5033210B2 (en)
KR (1) KR20130012123A (en)
CN (1) CN102811903A (en)
TW (1) TW201144580A (en)
WO (1) WO2011125466A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786860B (en) * 2014-02-19 2016-05-04 哈尔滨工程大学 Marine main engine executing agency and control method thereof
EP3112877B1 (en) * 2014-02-25 2018-07-18 Furuno Electric Co., Ltd. Surface current estimation device, surface current estimation system, ocean model estimation device, and risk determination device
WO2015129338A1 (en) * 2014-02-25 2015-09-03 古野電気株式会社 Vessel characteristics estimation device
US10137972B2 (en) 2014-07-28 2018-11-27 Furuno Electric Co., Ltd. Vessel characteristic estimation device and automatic steering device
CN104595040B (en) * 2014-12-09 2017-10-20 倪杰峰 The control method and device of ship energy saving navigation
CN104590529B (en) * 2014-12-09 2017-06-30 倪杰峰 The control method and device of ship energy saving navigation
CN104590526B (en) * 2014-12-09 2017-07-07 倪杰峰 The control method and device of ship energy saving navigation
WO2016098491A1 (en) * 2014-12-16 2016-06-23 古野電気株式会社 Optimum rotation speed estimation device, optimum rotation speed estimation system, and rotation speed control device
WO2016103463A1 (en) 2014-12-26 2016-06-30 日本郵船株式会社 Device, program, recording medium, and method for determining device normality and abnormality involving loads
WO2018006962A1 (en) * 2016-07-07 2018-01-11 Cpac Systems Ab Method for a propulsion arrangement for a marine vessel
JP6777970B2 (en) * 2016-10-21 2020-10-28 テンアイズ株式会社 How to control the number of revolutions of a marine engine
CN107688721B (en) * 2017-09-26 2019-04-09 广船国际有限公司 A kind of ship self-propulsion point method for numerical simulation, device and computer equipment
CN108825389B (en) * 2018-06-29 2020-07-03 潍柴重机股份有限公司 System for controlling engine speed in linkage manner and control method using system
CN113874614B (en) * 2019-05-22 2023-06-02 国立研究开发法人海上·港湾·航空技术研究所 Engine control method, engine control system and ship
JP2021113507A (en) * 2020-01-16 2021-08-05 ナブテスコ株式会社 Fuel supply control device, fuel supply control method and fuel supply control program
CN111232152B (en) * 2020-01-17 2021-05-04 智慧航海(青岛)科技有限公司 Method for testing side thruster and side thruster controller of intelligent ship
JP7448415B2 (en) * 2020-01-28 2024-03-12 ナブテスコ株式会社 Fuel control device and rudder control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804032B2 (en) * 2005-05-11 2011-10-26 日本無線株式会社 Automatic navigation assistance system for ships
CN1776555A (en) * 2005-12-08 2006-05-24 上海交通大学 Marine power positioning control method based on fuzzy adaptive algorithm
WO2009021522A1 (en) * 2007-08-14 2009-02-19 Propeller Control Aps Efficiency optimizing propeller speed control for ships
JP5090957B2 (en) * 2008-02-15 2012-12-05 日本郵船株式会社 Marine engine control method and control device thereof
JP5232500B2 (en) * 2008-02-28 2013-07-10 三菱重工業株式会社 Automatic ship position holding device, method and program thereof

Also Published As

Publication number Publication date
JP5033210B2 (en) 2012-09-26
WO2011125466A1 (en) 2011-10-13
KR20130012123A (en) 2013-02-01
JP2011214471A (en) 2011-10-27
CN102811903A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
TW201144580A (en) Ship main engine control system and method
JP6513677B2 (en) Ship characteristic estimation device and automatic steering device
US11169524B2 (en) Heading control device and heading control method for ship
CN109756169B (en) Current sensor fault mitigation for permanent magnet DC-driven steering systems
GB2440088A (en) Automatic vessel position holding control method and controller
CN106515849A (en) Model based driver torque estimation
CN106460793A (en) Control of wind turbines in response to wind shear
JP4854756B2 (en) Marine engine control system
Vrijdag et al. Control of propeller cavitation in operational conditions
JP6189278B2 (en) Main machine load distribution calculation device and main machine load distribution calculation method
JP6047923B2 (en) Variable pitch propeller control device, ship equipped with variable pitch propeller control device, and variable pitch propeller control method
JP4897450B2 (en) Ship automatic steering system
TWI409384B (en) Control device and method for ship engine
JP5296736B2 (en) Incidence wave height and wave direction estimation method, automatic channel or / and ship position maintaining control method, automatic channel or / and ship position maintaining control system, and ship and offshore structure
JP7448414B2 (en) Rudder control device and ship
JP6262116B2 (en) Ship speed calculation device and ship speed calculation method
US20180148034A1 (en) Device and method for controlling a propulsion effect of a ship
WO2016098491A1 (en) Optimum rotation speed estimation device, optimum rotation speed estimation system, and rotation speed control device
Han et al. A Ship Path Tracking Control Method Using a Fuzzy Control Integrated Line-of-Sight Guidance Law
JP5084788B2 (en) Marine fuel regulator
CN117742352B (en) Vector propulsion unmanned ship-based track control method, device, equipment and medium
JP7448415B2 (en) Fuel control device and rudder control device
JP6278795B2 (en) Ship automatic steering system
CN111907641A (en) Method and device for controlling oil tank of multi-hull ship and multi-hull ship
Herzer et al. Disturbance estimation for feedforward control of inland vessels