JP6777970B2 - How to control the number of revolutions of a marine engine - Google Patents

How to control the number of revolutions of a marine engine Download PDF

Info

Publication number
JP6777970B2
JP6777970B2 JP2016206803A JP2016206803A JP6777970B2 JP 6777970 B2 JP6777970 B2 JP 6777970B2 JP 2016206803 A JP2016206803 A JP 2016206803A JP 2016206803 A JP2016206803 A JP 2016206803A JP 6777970 B2 JP6777970 B2 JP 6777970B2
Authority
JP
Japan
Prior art keywords
rotation speed
disturbance
control
periodic
marine engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016206803A
Other languages
Japanese (ja)
Other versions
JP2018066350A (en
Inventor
ふぇいふぇい 伊藤
ふぇいふぇい 伊藤
雅則 伊藤
雅則 伊藤
義広 謝花
義広 謝花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEN EYES K.K.
Original Assignee
TEN EYES K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEN EYES K.K. filed Critical TEN EYES K.K.
Priority to JP2016206803A priority Critical patent/JP6777970B2/en
Publication of JP2018066350A publication Critical patent/JP2018066350A/en
Application granted granted Critical
Publication of JP6777970B2 publication Critical patent/JP6777970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンの回転数を一定にするガバナを備えた舶用エンジンの回転数制御方法に関する。 The present invention relates to a method for controlling the rotation speed of a marine engine provided with a governor that keeps the rotation speed of the engine constant.

特許文献1には、海象に応じて選択可能な3つの制御モードが記載されている。第1制御モードは、主機関の実回転速度(回転数)を目標回転速度(回転数)に維持する回転速度制御、第2制御モードは、主機関の出力を目標値に維持する出力制御、第3制御モードは、燃料噴射量(フューエルインデックス)を目標値に維持するフューエルインデックス制御である。また、何れの制御モードを行う場合でも、制御の対象は回転速度である。 Patent Document 1 describes three control modes that can be selected according to the sea condition. The first control mode is the rotation speed control that maintains the actual rotation speed (rotation speed) of the main engine at the target rotation speed (rotation speed), and the second control mode is the output control that maintains the output of the main engine at the target value. The third control mode is fuel index control that maintains the fuel injection amount (fuel index) at the target value. Further, regardless of which control mode is performed, the object of control is the rotation speed.

特許文献2には、燃費向上を目的とした舶用エンジン制御方法として、目標回転数が所定の回転数範囲(例えば船舶が外洋を航海するときに設定される回転数の最低値以上且つ過回転数以下)か否かを判断し、所定の範囲内にあると判断した場合にはガバナオフ条件(切り替えスイッチがオフに切り替えられている場合を含む)が成立しているか否かを判断し、成立していない場合には回転数調整を実行する内容が記載されている。 In Patent Document 2, as a marine engine control method for improving fuel efficiency, a target rotation speed is set to a predetermined rotation speed range (for example, a minimum value or more of a rotation speed set when a ship sails in the open sea and an over-rotation speed). If it is judged that it is within the predetermined range, it is judged whether or not the governor off condition (including the case where the changeover switch is switched off) is satisfied, and it is satisfied. If not, the content to execute the rotation speed adjustment is described.

特許第4750881号公報Japanese Patent No. 47508881 特開2008−045484号公報Japanese Unexamined Patent Publication No. 2008-045484

特許文献1及び特許文献2に示すように、舶用エンジンの回転数制御は目標回転数を定め、この目標回転数と実際の回転数との偏差に応じガバナを操作して、目標回転数を保持するよう、エンジンへの供給燃料をPIDなどの制御で加減するようにしている。 As shown in Patent Document 1 and Patent Document 2, the rotation speed control of the marine engine determines the target rotation speed, and the governor is operated according to the deviation between the target rotation speed and the actual rotation speed to maintain the target rotation speed. The fuel supplied to the engine is adjusted by controlling the PID or the like.

一方、船舶が航行する場合、波浪などに起因する外乱を受けると、ピッチングによって船体が前後に上下動しエンジンに直結するプロペラの水深が変化する。水深が深くなるとプロペラトルクが大きくなりエンジン出力を上回ってエンジン回転数が低下し、逆にプロペラの水深が浅くなるとエンジン回転数が目標回転数よりも高くなってしまう。 On the other hand, when a ship is navigating, when it receives a disturbance caused by waves or the like, the hull moves up and down due to pitching, and the water depth of the propeller directly connected to the engine changes. When the water depth becomes deep, the propeller torque increases and exceeds the engine output, and the engine speed decreases. On the contrary, when the water depth of the propeller becomes shallow, the engine speed becomes higher than the target speed.

ここで、船舶に作用する外乱には、比較的穏やかな海面を航行する場合の波浪による周期性外乱と、荒天の場合の非周期性外乱があり、従来の制御では、外乱の有無、周期性或は非周期性外乱の区別なく、一律の制御特性により回転数制御を行っており、燃料消費量の増加・黒煙などの有害物質の排出・エンジン内部の汚れ等々の問題につながっている。 Here, the disturbances acting on the ship include periodic disturbances due to waves when navigating on a relatively calm sea surface and aperiodic disturbances in the case of stormy weather. With conventional control, the presence or absence of disturbances and periodicity Or, regardless of aperiodic disturbance, the number of revolutions is controlled by uniform control characteristics, which leads to problems such as increased fuel consumption, emission of harmful substances such as black smoke, and dirt inside the engine.

非周期的外乱の場合にエンジン回転数を制御しないと、オーバースピード、オーバーロードとなって航行が不安定になり、燃費の損失も大きくなる。
一方、周期性外乱の場合は、回転数は、常時一定となるような厳密な制御を行わなくても一定の幅内に収まっており、一定値を厳格に保持するため敏感な回転数の制御を繰り返すと、特に回転数を上げるためガバナによって供給燃料量を多くする場合に、燃料噴射量が燃焼可能量を上回り、不完全燃焼となって、却って燃費が悪くなる傾向があること、これが黒煙等有害物質の排出、さらにはエンジン内部の汚れにつながることを本発明者は知見した。
If the engine speed is not controlled in the case of aperiodic disturbance, overspeed and overload will occur, resulting in unstable navigation and a large loss of fuel consumption.
On the other hand, in the case of periodic disturbance, the rotation speed is within a certain width without strict control so that it is always constant, and sensitive rotation speed control is performed to strictly maintain a constant value. Repeatedly, especially when the amount of fuel supplied by the governor is increased in order to increase the number of revolutions, the fuel injection amount exceeds the combustible amount, resulting in incomplete combustion, which tends to worsen fuel efficiency. The present inventor has found that it leads to emission of harmful substances such as smoke and further contamination inside the engine.

上記の知見に基づき本発明をなしたものであり、本発明はガバナによって燃料噴射量を制御する舶用エンジンの回転数制御方法において、船体のピッチングの大きさに基づき航行時の外乱の有無およびその性状について判断し、外乱がないと判断した場合には通常の制御特性によって回転数が目標回転数になるように制御し、外乱が周期性であると判断した場合には、例えばPID制御の場合は比例ゲインを操作し許容される回転数変動及びトルク変動の範囲でエンジンを運転するようにした。 The present invention was made based on the above findings, and the present invention is a method for controlling the rotation speed of a marine engine in which the fuel injection amount is controlled by a governor. Judging about the properties, if it is judged that there is no disturbance, the rotation speed is controlled to reach the target rotation speed by normal control characteristics, and if it is judged that the disturbance is periodic, for example, in the case of PID control. Manipulated the proportional gain to operate the engine within the allowable range of rotation speed fluctuation and torque fluctuation.

上記PID制御は、目標回転数をnr、実回転数をnとするとき、
P(nr−n)+KI∫(nr−n)dt+KDd/dt(nr−n)
で表される。制御方式にはこのPID制御の他に比例項と積分項からなるPI制御、比例項と微分項からなるPD制御なども用いられる。
本発明にあっては、周期性外乱と判断した場合には、制御方式の感度を代表する項、上記では比例項であるKP(nr−n)のゲインKPのみを操作する。
In the above PID control, when the target rotation speed is n r and the actual rotation speed is n,
K P (n r −n) + K I ∫ (n r −n) dt + K D d / dt (n r −n)
It is represented by. In addition to this PID control, PI control consisting of proportional terms and integral terms, PD control consisting of proportional terms and differential terms, and the like are also used as the control method.
In the present invention, when it is determined that the disturbance is periodic, only the gain K P of K P (n r −n), which is a term representing the sensitivity of the control method, which is a proportional term in the above, is operated.

本発明に係る制御方法は、電気式制御回路を有するガバナに有利ではあるが、機械式ガバナであっても出力リンク機構の動きを制御することで、本発明方法を適用することが可能である。 The control method according to the present invention is advantageous for a governor having an electric control circuit, but the method of the present invention can be applied even to a mechanical governor by controlling the movement of the output link mechanism. ..

本発明に係る舶用エンジンの回転数制御方法によれば、通常航行時の周期的外乱が船体に加わった場合に、回転数変動及びトルク変動が所定の範囲内であれば、必要以上に細かな制御を行わないことで、燃料の過剰供給を抑制することができる。その結果、燃費が向上するのみならず、黒煙などの有害物質の排出を抑えることが出来る。また、燃料の未燃分によるエンジン内部の汚れも少なくすることが可能となる。 According to the method for controlling the rotation speed of a marine engine according to the present invention, when a periodic disturbance during normal navigation is applied to the hull, if the rotation speed fluctuation and the torque fluctuation are within a predetermined range, it is finer than necessary. By not performing control, it is possible to suppress an excessive supply of fuel. As a result, not only fuel efficiency can be improved, but also emission of harmful substances such as black smoke can be suppressed. In addition, it is possible to reduce the dirt inside the engine due to the unburned portion of the fuel.

本発明に係る舶用エンジンの回転数制御方法を適用するシミュレーションモデルの概要を示す図。The figure which shows the outline of the simulation model which applies the rotation speed control method of the marine engine which concerns on this invention. 同制御方法のフローチャート。Flow chart of the control method. 図2の省エネモードの詳細を示すフローチャート。The flowchart which shows the detail of the energy saving mode of FIG. 周期性外乱時の運転時間と回転数を示すグラフであり、(a)は従来の制御方法を適用した場合、(b)は本発明の制御方法を適用した場合を示す。It is a graph which shows the operation time and the rotation speed at the time of a periodic disturbance, (a) shows the case where the conventional control method is applied, and (b) shows the case where the control method of this invention is applied. 周期性外乱時の運転時間と燃料噴射量を示すグラフであり、(a)は従来の制御方法を適用した場合、(b)は本発明の制御方法を適用した場合を示す。It is a graph which shows the operation time and the fuel injection amount at the time of a periodic disturbance, (a) shows the case where the conventional control method is applied, and (b) shows the case where the control method of this invention is applied.

図1に示すように、目標回転数をガバナに設定すると、ガバナはエンジンに対し目標回転数に応じた量の燃料を噴射するため、燃料噴射弁を開く期間(燃料噴射期間)を調整する。このときガバナゲイン調整器は応答特性などの制御特性を調整する。 As shown in FIG. 1, when the target rotation speed is set to the governor, the governor injects an amount of fuel corresponding to the target rotation speed into the engine, so that the period for opening the fuel injection valve (fuel injection period) is adjusted. At this time, the governor gain adjuster adjusts control characteristics such as response characteristics.

エンジンの回転数は回転系において計測され、この計測値はガバナにフィードバックされ目標回転数(nr)と実際の回転数(n)との差をなくすようにガバナ出力すなわち燃料噴射期間が調整される。 The engine speed is measured in the rotating system, and this measured value is fed back to the governor, and the governor output, that is, the fuel injection period is adjusted so as to eliminate the difference between the target speed (n r ) and the actual speed (n). To.

また、エンジンの回転はプロペラに伝えられ、プロペラが回転することで、その反力がプロペラトルクとしてエンジンの発生するトルクと拮抗し、エンジンおよびプロペラからなる回転系の回転数が定まる。 Further, the rotation of the engine is transmitted to the propeller, and when the propeller rotates, the reaction force antagonizes the torque generated by the engine as the propeller torque, and the rotation speed of the rotation system including the engine and the propeller is determined.

また、航行時には波浪などによって船体に外乱が加わり、ピッチングなどの船体運動を引き起こす。この結果プロペラの水深が変化し、プロペラトルクも変化することとなり更にはエンジンの回転数も変化する。また外乱によって船速も変化する。 In addition, when sailing, disturbances are added to the hull due to waves and the like, causing hull movement such as pitching. As a result, the water depth of the propeller changes, the propeller torque also changes, and the engine speed also changes. The ship speed also changes due to disturbance.

上記のように、外乱によってエンジン回転数が変化するため、ガバナはPID制御などによって出力を調整し、回転数を目標回転数に近づけるための制御を行う。具体的には以下の制御を行う。 As described above, since the engine speed changes due to the disturbance, the governor adjusts the output by PID control or the like to control the speed to approach the target speed. Specifically, the following control is performed.

図2に示すように、先ずは通常のPID制御、即ちエンジン回転数を一定に維持する高ゲインによる回転数制御で航行を開始し、外乱が無ければその状態を維持するが、海象の変化により外乱を受けるようになったとき、船体に加わる外乱が周期性外乱か否かを判断する。 As shown in FIG. 2, the navigation is first started by normal PID control, that is, rotation speed control by high gain that keeps the engine speed constant, and if there is no disturbance, the state is maintained, but due to changes in the sea condition. When it comes to be disturbed, it is judged whether the disturbance applied to the hull is a periodic disturbance.

外乱の有無および周期性外乱か否かの判断はピッチングの大きさによって判断する。すなわり、外乱が無しの場合は前記したようにその状態を維持し、外乱が周期性外乱であると判断した場合には、省エネモードでエンジンを回転させ、外乱が周期性外乱でないと判断した場合、即ち、プロペラが水面上に突出するような危険外乱と判断した場合には、通常の制御特性による制御のままで目標回転数を影響の無い範囲まで下げる。 Whether or not there is a disturbance and whether or not it is a periodic disturbance is judged by the magnitude of pitching. That is, if there is no disturbance, the state is maintained as described above, and if it is determined that the disturbance is a periodic disturbance, the engine is rotated in the energy saving mode and it is determined that the disturbance is not a periodic disturbance. If this is the case, that is, if it is determined that the propeller is a dangerous disturbance that protrudes above the water surface, the target rotation speed is lowered to a range that does not affect the control while maintaining the normal control characteristics.

省エネモードでは図3に示すように、比例ゲインKPを徐々に小さくして行く。この実施例では、回転数変動とトルク変動が所定の範囲内であれば前回のゲインKPに0.9をかけて今回の比例ゲインKPとする制御を行い、回転数変動とトルク変動の少なくとも一方が所定の範囲を超えた場合には、前回のゲインKPを0.9で割って今回の比例ゲインKPとする制御を行い、回転数変動とトルク変動が共に所定の範囲を超えない場合には再び比例ゲインKPを徐々に小さくして行く制御に戻り、KPがKPの初期値KPOを超えた場合には省エネモードを終了する。 In the energy saving mode, as shown in FIG. 3, the proportional gain K P is gradually reduced. In this embodiment, if the rotation speed fluctuation and the torque fluctuation are within a predetermined range, the previous gain K P is multiplied by 0.9 to obtain the proportional gain K P this time, and the rotation speed fluctuation and the torque fluctuation are controlled. When at least one of them exceeds a predetermined range, the previous gain K P is divided by 0.9 to obtain the proportional gain K P this time, and both the rotation speed fluctuation and the torque fluctuation exceed the predetermined range. If there is no return to the control gradually decreases the proportional gain K P again, when K P exceeds the initial value K PO of K P terminates the power saving mode.

図3では、回転数変動とトルク変動の少なくとも一方が所定の範囲を超えない範囲で、比例ゲインKPを徐々に小さくしていく方式としたが、省エネモードにおける比例ゲインKPの値を通常制御のままとし、比例項KP(nr−n)の変化幅を縮小或いは拡大させ制御することも可能である。 In FIG. 3, the proportional gain K P is gradually reduced within a range in which at least one of the rotation speed fluctuation and the torque fluctuation does not exceed a predetermined range, but the value of the proportional gain K P in the energy saving mode is usually set. It is also possible to control the change width of the proportional term K P (n r −n) by reducing or expanding it while keeping the control.

そして、省エネモードが終了したならば再び図2に戻り、回転数とトルクを測定し、回転数変動またはトルク変動の少なくとも一方が所定値よりも小さければ、再度外乱の有無および周期性外乱か否かを判断し、外乱が無ければ通常のPID制御を行い、周期性外乱と判断した場合には省エネモードに移行する。 Then, when the energy saving mode is completed, the process returns to FIG. 2, the rotation speed and the torque are measured, and if at least one of the rotation speed fluctuation or the torque fluctuation is smaller than the predetermined value, the presence or absence of disturbance and whether or not it is a periodic disturbance again. If there is no disturbance, normal PID control is performed, and if it is determined that there is a periodic disturbance, the mode shifts to the energy saving mode.

また回転数変動及びトルク変動の両方が所定値よりも大きい場合には荒天航行モードに移行する。この荒天航行モードではオーバースピード及びオーバーロードを避けるため、目標回転数を下げ、許容される運転条件で運転する。 If both the rotation speed fluctuation and the torque fluctuation are larger than the predetermined values, the mode shifts to the stormy weather navigation mode. In this stormy weather navigation mode, in order to avoid overspeed and overload, the target rotation speed is lowered and the vehicle is operated under acceptable operating conditions.

荒天航行モードでは一定間隔ごとに回転数変動とトルク変動を測定し、これら回転数変動またはトルク変動が所定値以下となった場合には、外乱が周期性か否かを判断し、周期性と判断した場合には省エネモードで運転し、周期性でないと判断した場合にはKP値が高い通常の制御に戻る。 In stormy weather navigation mode, rotation speed fluctuations and torque fluctuations are measured at regular intervals, and if these rotation speed fluctuations or torque fluctuations fall below a predetermined value, it is determined whether the disturbance is periodic or not, and the periodicity is determined. If it is judged, it operates in the energy saving mode, and if it is judged that it is not periodic, it returns to the normal control with a high K P value.

図4は周期性外乱時の運転時間と回転数を示すグラフであり、(a)は従来の制御方法を適用した場合、(b)は本発明の制御方法を適用した場合を示す。
この図4から比例ゲインKPを高く設定した従来法は、比例ゲインKPを低く設定した本発明方法での制御よりも回転数の変動幅が小さいことが分かる。
FIG. 4 is a graph showing the operation time and the number of revolutions at the time of periodic disturbance. FIG. 4A shows a case where a conventional control method is applied, and FIG. 4B shows a case where the control method of the present invention is applied.
The 4 conventional method set high proportional gain K P from, it can be seen that the fluctuation range of the rotational speed than the control of the present invention method set low proportional gain K P is small.

一方、図5は図4と同時に行った周期性外乱時の運転時間と燃料噴射量を示すグラフであり、(a)は従来の制御方法を適用した場合、(b)は本発明の制御方法を適用した場合を示す。
この図5から比例ゲインKPを高く設定した従来法は、比例ゲインKPを低く設定した本発明方法での制御よりも1回の燃料噴射量の上下の幅が大きくしかも変化の中心が上方ずれていることが分かる。
On the other hand, FIG. 5 is a graph showing the operating time and the fuel injection amount at the time of periodic disturbance performed at the same time as FIG. 4, where (a) is the case where the conventional control method is applied, and (b) is the control method of the present invention. Is applied.
The 5 conventional method set high proportional gain K P from the proportional gain K 1 times the vertical width is increased moreover the center of a change in the fuel injection amount than the control of the P in the present invention method set low is above You can see that they are out of alignment.

また、以下の表1はトルク変動が10〜25%の範囲での、比例ゲインKPを高く設定した従来法と比例ゲインKPを低く設定した本発明方法の燃料節約%を比較したものである。 Further, Table 1 below in which the torque variation in the range 10 to 25%, compared with the fuel savings% of the proportional gain K P to set high the conventional method and the proportional gain K invention method P was set lower is there.

Figure 0006777970
Figure 0006777970

図5の燃料噴射量はトルクと同等であり、このことからプロペラトルクの変動幅が大きいほど、比例ゲインKPを低く設定した本発明方法の方が燃費向上に有利であることが分かる。 The fuel injection amount in FIG. 5 is equivalent to the torque, and from this, it can be seen that the larger the fluctuation range of the propeller torque, the more advantageous the method of the present invention in which the proportional gain K P is set is to improve the fuel efficiency.

即ち、比例ゲインKPを低く設定することで過剰な燃料供給を抑制することができ、これによって不完全燃焼が防止され、その結果燃費向上が達成できる。 That is, by setting the proportional gain K P low, it is possible to suppress an excessive fuel supply, thereby preventing incomplete combustion, and as a result, improving fuel efficiency can be achieved.

本発明に係る舶用エンジンの回転数制御方法は、電気式或は機械式のガバナを備えた船舶であれば、商船やフェリーに限らず漁船などあらゆる船舶に適用することが可能である。 The method for controlling the rotation speed of a marine engine according to the present invention can be applied to any ship such as a fishing boat, not limited to a commercial ship or a ferry, as long as it is a ship equipped with an electric or mechanical governor.

Claims (3)

ガバナによって燃料噴射量を制御する舶用エンジンの回転数制御方法において、船体のピッチングの大きさに基づき航行時の外乱の有無および外乱が周期性か否かを判断し、外乱がないと判断した場合には応答性を重視した比例ゲインを有する制御方式によって回転数が目標回転数になるように制御し、外乱が周期性であると判断した場合には、比例ゲインを小さくし許容される回転数変動及びトルク変動の範囲で制御を行うことを特徴とする舶用エンジンの回転数制御方法。 In the method of controlling the rotation speed of a marine engine in which the fuel injection amount is controlled by the governor, the presence or absence of disturbance during navigation and whether or not the disturbance is periodic are judged based on the size of the pitching of the hull, and it is judged that there is no disturbance. The rotation speed is controlled to reach the target rotation speed by a control method having a proportional gain that emphasizes responsiveness, and when it is judged that the disturbance is periodic, the proportional gain is reduced to allow the rotation speed. A method for controlling the rotation speed of a marine engine, which comprises controlling within a range of fluctuation and torque fluctuation. ガバナによって燃料噴射量を制御する舶用エンジンの回転数制御方法において、船体のピッチングの大きさに基づき航行時の外乱の有無および外乱が周期性か否かを判断し、外乱がないと判断した場合には応答性を重視した比例項を有する制御方式によって回転数が目標回転数になるように制御し、外乱が周期性であると判断した場合には、前記制御方式における比例項の変動幅よりも狭い値を周期性外乱時の比例項の変動幅と定めて制御を行うことを特徴とする舶用エンジンの回転数制御方法。 In the method of controlling the number of revolutions of a marine engine in which the fuel injection amount is controlled by the governor, the presence or absence of disturbance during navigation and whether or not the disturbance is periodic are judged based on the pitching size of the hull, and it is judged that there is no disturbance. The rotation speed is controlled to reach the target rotation speed by a control method having a proportional term that emphasizes responsiveness, and when it is determined that the disturbance is periodic, the fluctuation range of the proportional term in the control method is used. A method for controlling the rotation speed of a marine engine, which is characterized in that a narrow value is set as the fluctuation range of the proportional term at the time of periodic disturbance and controlled. 請求項1または2に記載の舶用エンジンの回転数制御方法において、前記ガバナは電気式または機械式制御回路を備えることを特徴とする舶用エンジンの回転数制御方法。 The method for controlling the rotation speed of a marine engine according to claim 1 or 2, wherein the governor includes an electric or mechanical control circuit.
JP2016206803A 2016-10-21 2016-10-21 How to control the number of revolutions of a marine engine Active JP6777970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016206803A JP6777970B2 (en) 2016-10-21 2016-10-21 How to control the number of revolutions of a marine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206803A JP6777970B2 (en) 2016-10-21 2016-10-21 How to control the number of revolutions of a marine engine

Publications (2)

Publication Number Publication Date
JP2018066350A JP2018066350A (en) 2018-04-26
JP6777970B2 true JP6777970B2 (en) 2020-10-28

Family

ID=62086990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206803A Active JP6777970B2 (en) 2016-10-21 2016-10-21 How to control the number of revolutions of a marine engine

Country Status (1)

Country Link
JP (1) JP6777970B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109334894B (en) * 2018-11-02 2023-09-12 中国船舶重工集团公司第七0三研究所 Intelligent digital speed regulator for ship
JP2021113507A (en) * 2020-01-16 2021-08-05 ナブテスコ株式会社 Fuel supply control device, fuel supply control method and fuel supply control program
JP2022091049A (en) 2020-12-08 2022-06-20 ヤマハ発動機株式会社 Boat
JP2023023442A (en) 2021-08-05 2023-02-16 ナブテスコ株式会社 Main machine control device, control method for main machine control device, and control program for main machine control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200131A (en) * 1995-01-26 1996-08-06 Mitsubishi Heavy Ind Ltd Load fluctuation control unit of electronic governor for marine use
JP4750880B2 (en) * 2009-08-31 2011-08-17 三井造船株式会社 Marine engine control system and method
JP5033210B2 (en) * 2010-03-31 2012-09-26 三井造船株式会社 Ship main engine control system and method

Also Published As

Publication number Publication date
JP2018066350A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6777970B2 (en) How to control the number of revolutions of a marine engine
EP2178745B1 (en) Efficiency optimizing propeller speed control for ships
US7416456B1 (en) Automatic trim system for a marine vessel
US6458003B1 (en) Dynamic trim of a marine propulsion system
JP6021752B2 (en) Ship operation method and ship operation device
KR102521164B1 (en) Methods for controlling the fuel consumption of ships
JP2008045484A (en) Control method and control device for marine internal combustion engine
CA2921006C (en) Control apparatus for outboard motor
Smogeli et al. The concept of anti-spin thruster control
JP7163358B2 (en) Method for controlling ship propulsion
JP4750880B2 (en) Marine engine control system and method
JP2009126331A (en) Control device of angle of inclination of outboard motor
KR101189101B1 (en) Marine engine control system and method
JP6907139B2 (en) Control system for main marine engine
CN112839867A (en) Improved engine control
JP2011189884A (en) Automatic steering device, automatic steering method, and automatic steering program
JP2004291773A (en) Rocking reduction system for hull
Mahmud The applicability of hydrofoils as a ship control device
JP2009191774A (en) Control method of ship engine and its control device
JP6058046B2 (en) Outboard motor control device
JP3809984B2 (en) Acceleration fuel injection amount control method for internal combustion engine
JP2004359059A (en) Propulsion control device of variable pitch propeller ship
JP2023013216A (en) Controller, control method for controller, and control program for controller
JP2023005152A (en) Control device and method and program for controlling the same
JPS6217345A (en) Speed governor for ship engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6777970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250