WO2016098491A1 - Optimum rotation speed estimation device, optimum rotation speed estimation system, and rotation speed control device - Google Patents

Optimum rotation speed estimation device, optimum rotation speed estimation system, and rotation speed control device Download PDF

Info

Publication number
WO2016098491A1
WO2016098491A1 PCT/JP2015/081578 JP2015081578W WO2016098491A1 WO 2016098491 A1 WO2016098491 A1 WO 2016098491A1 JP 2015081578 W JP2015081578 W JP 2015081578W WO 2016098491 A1 WO2016098491 A1 WO 2016098491A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
unit
ship
value
rotational speed
Prior art date
Application number
PCT/JP2015/081578
Other languages
French (fr)
Japanese (ja)
Inventor
千津 川崎
仁 前野
尚志 今坂
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2016098491A1 publication Critical patent/WO2016098491A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H25/04Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring automatic, e.g. reacting to compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/22Plotting boards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft

Definitions

  • the present invention includes an optimum rotational speed estimation device that estimates an optimal rotational speed of a propeller for generating a thrust of a ship, an optimal rotational speed estimation system that includes an optimal rotational speed estimation device, and an optimal rotational speed estimation device.
  • the present invention relates to a rotation speed control device.
  • a navigation device that instructs an automatic steering device along a preset navigation route is known.
  • This device is configured to notify the user of caution information such as a navigation prohibition area on the route created by the user.
  • the following methods are conceivable. Specifically, for example, by dividing the distance of the navigation route by the target time, the ground speed of the ship necessary to arrive at the destination at the target time can be obtained. Then, by calculating the rotation speed of the propeller necessary for the ship to navigate at the ground speed from the experimental data, etc., the rotation speed of the propeller (optimum rotation speed) required to arrive at the destination at the target time. Can be obtained. However, with this method, there is a possibility that the optimum rotational speed cannot be accurately calculated.
  • the present invention is for solving the above-mentioned problems, and the object thereof is to accurately estimate the optimum rotational speed of the propeller for generating the thrust of the ship.
  • an optimal rotational speed estimation device is an optimal rotational speed estimation device that estimates the optimal rotational speed of the propeller in a ship propelled by the rotation of the propeller.
  • the ground velocity vector of the ship necessary for the ship navigating along the preset navigation route to arrive at the destination by the target arrival time, and the surface current at the target point that is the point on the navigation route
  • a water speed prediction unit that predicts a water speed prediction value that is a water speed vector at the target point required to arrive at the destination by the target arrival time based on the predicted speed value
  • a wind speed prediction value output unit that outputs a wind speed prediction value that is a wind speed vector that is predicted to act on the ship at the target point, and a mutual value indicating the rotation speed of the propeller
  • the rotational speed candidate value output unit that outputs different rotational speed candidate values that are different data and are candidates for the optimal rotational speed, the predicted wind speed value at the target point, and the multiple rotational speed candidate values.
  • a value corresponding to each condition that is input and specified by a combination of the wind speed prediction value and the rotation speed candidate value is output as a water speed candidate value that is a candidate for the water speed vector of the ship at the target point.
  • an optimum rotational speed estimation unit that estimates the optimum rotational speed at the point.
  • the water speed candidate value calculation unit is configured using a neural network, and at least one of the data related to the predicted wind speed value and the data related to the rotation speed candidate value is input to each.
  • An output unit that outputs two candidates for water velocity, and outputs a value output from the unit on the input side in the neural network after being multiplied by a coupling coefficient; Is transmitted.
  • the optimum rotational speed estimation device includes a ground speed calculation unit that calculates a ground speed vector of the ship that sails at sea, a propeller rotational speed detection unit that detects the rotational speed of the propeller, A wind speed anemometer mounted on a ship and measuring a wind speed vector of wind force with respect to the ship, each input unit including data relating to the rotation speed of the propeller detected by the propeller rotation speed detector; and One of the data relating to the wind speed vector measured by the wind speed anemometer is input, and from the output unit, the rotation speed of the propeller detected by the propeller rotation speed detector and the wind speed anemometer are measured.
  • the value corresponding to each condition specified by the combination of the wind speed vector is estimated as the water speed vector of the ship, and the water speed estimated value
  • the optimum rotational speed estimation device compares the water speed estimated value with the ground speed vector as a teacher signal calculated by the ground speed calculating unit, and the water speed estimated value And an updating unit for updating the coupling coefficient so that an error between the teaching signal and the teacher signal is reduced.
  • an optimal rotational speed estimation device that estimates the optimal rotational speed of the propeller in a ship propelled by the rotation of the propeller.
  • the ground velocity vector of the ship necessary for the ship navigating along the preset navigation route to arrive at the destination by the target arrival time, and the surface current at the target point that is the point on the navigation route A water speed prediction unit that predicts a water speed prediction value that is a water speed vector at the target point required to arrive at the destination by the target arrival time based on the predicted speed value; and A wind speed prediction value output unit that outputs a wind speed prediction value that is a wind speed vector that is predicted to act on the ship at the target point, the rotation speed of the propeller, and the ship
  • a plurality of cell units that store the ground speed vector of the ship for each condition specified by a combination of wind speed vectors of wind power for each of the plurality of conditions, and stored in each cell unit
  • the optimum rotational speed estimation device includes a ground speed calculation unit that calculates a ground speed vector of the ship that sails at sea, a propeller rotational speed detection unit that detects the rotational speed of the propeller, and the ship And an anemometer for measuring the wind speed vector of the wind force with respect to the ship, and the storage unit calculates the ground speed vector calculated by the ground speed calculation unit to calculate the ground speed vector.
  • An update unit for storing in the cell unit specified by a combination of the rotation number detected by the propeller rotation number detection unit and the wind speed vector measured by the wind speed and anemometer when necessary data is acquired. are further provided.
  • the optimum rotational speed estimation device is a ground speed prediction which is a ground speed vector of the ship necessary for the ship navigating along the navigation route to arrive at the destination by a target arrival time.
  • a ground speed prediction unit that predicts a value, and the water speed prediction unit predicts the water speed prediction value based on the ground speed vector predicted by the ground speed prediction unit.
  • the optimum rotational speed estimation device receives the navigation route, the departure time of the ship, and the target arrival time, and the input navigation route, the departure time, and the target.
  • a navigation plan input unit that outputs the arrival time to the ground speed prediction unit;
  • the optimum rotational speed estimation device estimates the departure time based on at least one of a stop time of the main engine of the ship and a start time of the main engine of the ship.
  • a departure time estimation unit that outputs the departure time to the navigation plan input unit as a predicted departure time.
  • the optimum rotation speed estimation device detects the departure time based on the rotation speed of the propeller and the ground speed of the ship, and sets the departure time as a departure time fixed value, the navigation plan input unit. And a departure time detection unit for outputting the information.
  • the optimum rotational speed estimation device is mounted on the ship as the ship.
  • an optimal rotational speed estimation system is provided with any of the above-described optimal rotational speed estimation devices mounted at a place different from the ship as a ship. , Arranged at a location different from the optimum rotational speed estimation device, and transmits data relating to the navigation route of the ship, the departure time of the own ship, and the target arrival time of the own ship to the optimum rotational speed estimation device And a receiving unit that is arranged at a location different from the optimum rotation speed estimation device and receives data related to the optimum rotation speed estimated by the optimum rotation speed estimation device.
  • a rotational speed control device includes any of the above-described optimal rotational speed estimation device and a ship propeller estimated by the optimal rotational speed estimation device.
  • a rotation speed control unit that controls the rotation speed of the propeller of the ship based on the optimum rotation speed.
  • FIG. 1 It is a block diagram which shows the structure of the estimation apparatus which concerns on embodiment of this invention. It is a schematic diagram which shows an example of a structure of the water velocity output part shown in FIG. It is a vector diagram which shows the relationship between ground speed, water speed, and surface layer flow velocity. It is a figure for demonstrating the reason the water speed estimated value from the water speed output part shown in FIG. 1 converges on a water speed. It is a figure shown corresponding to FIG. 2, Comprising: The relationship between the rotation speed candidate value and wind speed prediction value which are input into a water speed output part, and the water speed candidate value output corresponding to these input values It is a figure shown about. It is a graph for demonstrating operation
  • FIG. 10 is a diagram for explaining in detail an optimum rotational speed estimation unit shown in FIG. 9. It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. It is a block diagram which shows the structure of the learning coefficient setting process part shown in FIG.
  • FIG. 1 is a block diagram showing a configuration of an estimation apparatus 1 according to an embodiment of the present invention.
  • the estimation device 1 is mounted on a ship that sails on the sea by thrust generated by the rotation of a propeller.
  • the estimation device 1 of the present embodiment is suitable for a ship (for example, a merchant ship) that navigates a predetermined route to a destination, and will be described later in detail, but does not arrive too early in time for a target arrival time (estimated arrival time).
  • the rotation speed of the propeller is determined so as to estimate the rotation speed (that is, the optimum rotation speed from the viewpoint of fuel consumption).
  • the estimation device 1 includes a surface flow estimation device 8 and an optimum rotational speed estimation device 9 as shown in FIG.
  • the surface layer flow estimation device 8 is configured to estimate the direction and magnitude of the surface layer flow at the ship position, that is, the velocity vector of the surface layer flow at the ship position.
  • the optimal rotational speed estimation device 9 is configured to estimate the optimal rotational speed of the propeller. Below, the structure of the surface layer flow estimation apparatus 8 and the structure of the optimal rotation speed estimation apparatus 9 are demonstrated in order.
  • the surface layer flow is a flow in a depth range of the range from the sea surface to the ship bottom.
  • the surface layer flow estimation device 8 includes a GPS signal receiving unit 2, a propeller rotational speed detection unit 3, an anemometer 4 and a part of the configuration requirements of the calculation unit 10 (details will be described later on the ground speed calculation unit 11, A velocity output unit 12, a surface flow calculation unit 13, a coupling coefficient update unit 14), and a display unit 5.
  • the GPS signal receiving unit 2 is provided as a GNSS signal receiving unit for receiving a GPS signal as a navigation signal (GNSS signal) transmitted from a navigation satellite (not shown).
  • the GPS signal receiving unit 2 is configured by, for example, a GPS antenna.
  • the GPS signal received by the GPS signal receiving unit 2 (that is, the position information of the ship) is notified to the calculation unit 10 together with the time when the GPS signal is received.
  • GNSS Global Navigation Satellite System
  • GALILEO Global Navigation Satellite System
  • GLONASS Global Navigation Satellite System
  • the propeller rotational speed detection unit 3 is for detecting the rotational speed per unit time of the propeller for generating the thrust of the ship, and is constituted by a sensor capable of detecting the rotational speed, for example. The rotation speed detected by the propeller rotation speed detection unit 3 is notified to the calculation unit 10.
  • the wind direction anemometer 4 is for measuring the true wind speed in the bow direction and the true wind speed in the starboard direction as information on the wind direction and the wind speed.
  • the anemometer 4 is installed in a place where there are no obstacles that block the wind in the ship where the surface flow estimation device 8 according to the present embodiment is mounted.
  • the bow direction true wind speed and starboard direction true wind speed measured by the anemometer 4 are notified to the calculation unit 10.
  • the calculation unit 10 estimates the surface layer flow at the ship position (target point) at each predetermined timing based on various information notified from the GPS signal reception unit 2, the propeller rotation number detection unit 3, and the wind direction anemometer 4. Is configured to do.
  • the calculation unit 10 includes a ground speed calculation unit 11, a water speed output unit 12, a surface layer flow calculation unit 13, a coupling coefficient update unit 14, and an optimum rotation number estimation unit 15. Note that, among these structural requirements constituting the arithmetic unit 10, the optimal rotational speed estimation unit 15 is provided as a structural requirement of the optimal rotational speed estimation device 9.
  • the ground speed calculation unit 11 calculates the ground speed (ground speed vector) of the ship based on the position information of the ship notified from the GPS signal receiving unit 2 and the time when the ship position information is acquired. Specifically, the ground speed calculation unit 11 calculates the ground speed of the ship based on the ship position at at least two timings and the time when the position information of each ship position is acquired. The ground speed calculation unit 11 notifies the surface speed calculation unit 13 and the coupling coefficient update unit 14 of the ground speed calculated in this way.
  • the water speed output unit 12 is configured to estimate the water speed of the ship and output the estimated water speed as an estimated water speed value.
  • the water speed output unit 12 includes the propeller rotation speed detected by the propeller rotation speed detection unit 3, the bow direction true wind speed and the starboard direction true wind speed measured by the wind direction anemometer, Is entered.
  • the water speed output unit 12 sets a value corresponding to a condition specified by a combination of these input values (a condition specified by a combination of a certain rotation speed, a certain bow direction true wind speed, and a certain starboard direction true wind speed). It outputs to the surface layer flow calculation part 13 and the coupling coefficient update part 14 as a water velocity estimated value.
  • FIG. 2 is a diagram schematically illustrating an example of the configuration of the water velocity output unit 12.
  • the water velocity output unit 12 is configured using a generally known neural network.
  • the water velocity output unit 12 includes a plurality of input units U IN_1 , U IN_2 , U IN_3 constituting an input layer, and a plurality of intermediate units U MID_1 , U MID_2 , U MID_3 constituting a hidden layer.
  • output units U OUT — 1 and U OUT — 2 constituting the output layer.
  • the configuration of the water velocity output unit 12 illustrated in FIG. 2 is merely an example, and the number of units in each layer and the number of hidden layers are not limited to those illustrated in FIG.
  • Each of the hidden layer intermediate units U MID — 1 , U MID — 2 and U MID — 3 sums the input values and multiplies the values based on the total values by the coupling coefficients W M, O to the output units U OUT — 1 and U OUT — 2 . Output.
  • the output units U OUT — 1 and U OUT — 2 add up the input values and output a value based on the total value to the surface flow calculation unit 13 and the coupling coefficient update unit 14 as an estimated water velocity value.
  • the value input to the water speed output unit 12 is not necessarily the parameter value itself such as the propeller rotation number, but is a numerical value that has a one-to-one relationship with these parameters (for example, rotation Or a voltage value that changes in proportion to the number).
  • each coupling coefficient W is updated by the coupling coefficient updating unit 14 as needed. Specifically, each coupling coefficient W reduces an error between the estimated water speed output from the water speed output unit 12 and the ground speed (teacher signal) calculated by the ground speed calculation unit 11.
  • the coupling coefficient update unit 14 updates the value. As a result, the estimated water speed value output from the water speed output unit 12 converges to the water speed of the ship every time the coupling coefficient W is updated.
  • the surface flow calculation unit 13 is based on the estimated water velocity output from the water velocity output unit 12 and the ground velocity calculated by the ground velocity calculation unit 11. Velocity vector). Specifically, the surface layer flow calculation unit 13 calculates the surface layer flow velocity by subtracting the water velocity from the ground velocity.
  • Figure 3 is a vector diagram illustrating the ground speed vector V G, and to water velocity vector V WT, the relationship between the surface layer flow velocity vector V T.
  • the ground speed V G is a speed with respect to the ground surface
  • the water speed V WT is a speed with respect to the water surface (sea surface).
  • a surface current is a flow of water in the surface layer of the sea. Therefore, the relationship between the ground speed vector V G , the water speed vector V WT , and the surface layer flow speed vector V T can be expressed as shown in FIG. Therefore, surface current calculating unit 13, as described above, by subtracting the-water velocity V WT from ground speed V G, the surface velocity V T is calculated.
  • the coupling coefficient updating unit 14 is configured to reduce the error between the estimated water speed output from the water speed output unit 12 and the ground speed (teacher signal) calculated by the ground speed calculation unit 11.
  • the coupling coefficient W of the speed output unit 12 is updated.
  • the coupling coefficient updating unit 14 updates the coupling coefficient W by using back propagation (error back propagation method), for example.
  • the display unit 5 displays the direction and size of the surface flow calculated by the surface flow calculation unit 13. Thereby, the user can know the velocity of the surface layer flow at the ship position.
  • FIG. 4 illustrates the reason why the estimated water speed output from the water speed output unit 12 converges to the water speed every time the coupling coefficient W of the water speed output unit 12 is updated. It is a figure for doing.
  • each coupling coefficient W stored in the water speed output unit 12 includes the water speed estimation value output from the water speed output unit 12 as needed and the ground speed as a teacher signal calculated as needed. Is updated by the coupling coefficient updating unit 14 so as to reduce the error.
  • the surface current is different in size and direction due to the sea area, time, weather conditions, and the like. Therefore, the ground speed when the water speed is the same (that is, when the speed of the propeller, the true wind speed in the bow direction, and the true wind speed in the starboard direction are the same) includes components of surface flow velocity of any magnitude and direction. It is thought that. Therefore, when these are averaged (V G1 to V G6 in the case of FIG. 4 are averaged), the surface layer flow velocity components cancel each other, and the water velocity component remains. That is, when the coupling coefficient W of the water speed output unit 12 is updated so as to reduce the error between the water speed estimated value of the water speed output unit 12 and the ground speed as described above, the ground speed is increased.
  • the estimated water velocity value of the water velocity output unit 12 converges to the water velocity. Therefore, when the learning data (ground speed data) is sufficiently obtained and the learning is sufficiently advanced (that is, when the coupling coefficient is updated a sufficient number of times), the pair of data from the water speed output unit 12 is The estimated water velocity can be estimated as the water velocity.
  • the rotational speed is detected by the propeller rotational speed detection unit 3 at each predetermined timing during navigation of the ship, and the true wind speed in the bow direction and the true wind speed in the starboard direction are measured by the wind direction anemometer 4. These pieces of information are output to the water speed output unit 12 as needed. Based on these, the water speed output unit 12 generates the water speed estimation value using a coupling coefficient W that is updated as needed during the navigation of the ship.
  • the optimum rotational speed estimation device 9 Based on the navigation plan (the navigation route, the departure time, and the target arrival time) input by the user or the like, the optimum rotational speed estimation device 9 is suitable for propellers that are in time for the destination by the target arrival time and do not arrive too early. Estimate the rotation speed (optimum rotation speed). At that time, as will be described later in detail, the optimum rotational speed estimation device 9 estimates the optimal rotational speed in consideration of the wind speed forecast value and the tidal current forecast value. Thereby, in the optimal rotation speed estimation apparatus 9 which concerns on this embodiment, an optimal rotation speed can be estimated more correctly.
  • the optimum rotational speed estimation device 9 includes a GPS signal receiver 2, a propeller rotational speed detector 3, an anemometer 4, a navigation plan input unit 31, a ground speed predictor 32, The tidal current predicted value output unit 33, the water speed prediction unit 34, the rotation speed candidate value output unit 35, the wind speed predicted value output unit 36, and some of the configuration requirements of the calculation unit 10 (ground speed calculation unit 11, A water speed output unit 12, a coupling coefficient update unit 14, and an optimum rotational speed estimation unit 15). Since the GPS signal receiving unit 2, the propeller rotation number detecting unit 3, and the wind direction anemometer 4 have the same configuration and operation as those of the surface layer flow estimation device 8, the description thereof is omitted.
  • the navigation plan input unit 31 includes, for example, a keyboard, a touch panel, and the like. The user appropriately operates the navigation plan input unit 31 to input a navigation plan (specifically, a navigation route, a departure time, and a target arrival time).
  • a navigation plan specifically, a navigation route, a departure time, and a target arrival time.
  • the ground speed prediction unit 32 predicts the ground speed of the ship necessary to arrive by the target arrival time based on the navigation plan input by the navigation plan input unit 31. Specifically, the ground speed prediction unit 32 divides the navigation distance obtained from the navigation route input from the navigation plan input unit 31 by the navigation time obtained from the departure time and the target arrival time, thereby obtaining the destination. Predict the optimal ground speed to arrive by the target arrival time. The ground speed prediction unit 32 outputs the predicted ground speed to the water speed prediction unit 34 as a ground speed prediction value.
  • the tidal current predicted value output unit 33 acquires data (direction and speed of the tidal current) related to the tidal current (surface flow) that is announced from a public organization as needed, and uses the acquired data as a tidal current predicted value to measure the water velocity.
  • the prediction unit 34 is notified.
  • the tidal current predicted value output unit 33 outputs the tidal current predicted value at each of a plurality of target points that are points on the navigation route of the ship to the water speed predicting unit 34 among information on tidal currents from public institutions and the like. To do.
  • the water speed prediction unit 34 is based on the ground speed prediction value output from the ground speed prediction unit 32 and the tidal current prediction value at each target point output from the tidal current prediction value output unit 33 until the target arrival time. Predict the ship's water speed required to arrive. Specifically, the water speed prediction unit 34 subtracts the tidal current predicted value at each target point expressed as a vector from the ground speed vector output from the ground speed prediction unit 32 to thereby automatically Predict ship water speed. The water speed prediction unit 34 notifies the optimum rotation speed estimation unit 15 of the predicted water speed prediction value at each target point.
  • the wind speed predicted value output unit 36 acquires information on wind speed (wind direction and wind speed) announced by a public institution or the like, and uses the acquired data as a bow direction true wind speed and a starboard direction true wind speed. 12 is notified.
  • the predicted wind speed value output unit 36 outputs the predicted wind speed value at each target point among the information on the wind speed from a public organization or the like to the water speed output unit 12.
  • the rotational speed candidate value output unit 35 outputs a plurality of rotational speed candidate values (for example, values in increments of 1 rpm) that are different from each other and are candidates for the optimal rotational speed to the water speed output unit 12.
  • FIG. 5 is a diagram corresponding to FIG. 2, and the rotational speed candidate value and the wind speed prediction value input to the water speed output unit 12 and the water speed output corresponding to these input values. It is a figure shown about the relationship with a candidate value.
  • the water speed output unit 12 is provided as a water speed candidate value calculation unit.
  • the predicted wind speed value V n can be expressed as a wind speed vector and can be divided into a bow direction true wind speed V An and a starboard direction true wind speed V Bn .
  • the water speed output unit 12 includes a plurality of input data (R 1 ) in which a wind speed prediction value V n at a certain target point and a plurality of rotation speed candidate values (R 1 , R 2 ,...) Are combined. And V n , R 2 and V n , R 3 and V n ,...) Are sequentially input.
  • the water speed output unit 12 estimates the optimum rotational speed using the water speeds V WT1 , V WT2 ,... Output from the output unit corresponding to each of the plurality of input data sequentially input as water speed candidate values.
  • FIG. 6 is a graph for explaining the operation of the optimum rotational speed estimation unit 15.
  • the optimum rotational speed estimation unit 15 is the target point predicted by the water speed prediction unit 34 from among a plurality of water speed candidate values V WT1 , V WT2 ,... Output from the water speed output unit 12.
  • the display unit 5 displays the optimal rotational speed at each target point estimated by the optimal rotational speed estimation unit 15 as needed.
  • the user adjusts the speed of the propeller of the ship based on the speed of the ship, so that the speed of the propeller can be adjusted so that the ship is in time for the target arrival time and does not arrive too early. At a high speed).
  • the ship arrives at the destination by the target arrival time based on the predicted tidal current speed at each target point on the navigation route. Predicting the water velocity vector of the ship necessary for this purpose. Thereby, since the water velocity vector can be predicted in consideration of the tidal velocity that has a great influence on the ground velocity of the ship, the water velocity can be predicted more accurately.
  • the optimum rotational speed estimation device 9 estimates the optimal rotational speed of the ship based on the predicted wind speed at each target point. As a result, the optimum rotational speed can be estimated in consideration of the wind speed that greatly affects the ground speed of the ship, and thus the optimal rotational speed can be estimated more accurately.
  • the optimum speed of the propeller for generating the thrust of the ship can be accurately estimated.
  • the water speed output unit 12 is configured using a neural network. Thereby, the water speed output part 12 which can output a water speed can be comprised appropriately.
  • the water speed is adjusted so that an error between the water speed estimated value output from the water speed output unit 12 and the ground speed calculated by the ground speed calculation unit 11 is reduced.
  • the output unit 12 is updated.
  • the water speed output part 12 provided with the learning function can be comprised.
  • the optimum rotational speed estimation device 9 can accumulate a large amount of data necessary for estimating an accurate water speed during navigation. Therefore, it is possible to save the trouble of preparing a large number of these learning data (ground speed data under certain conditions) in advance and setting an appropriate coupling coefficient based on these learning data.
  • the optimum rotational speed estimation device 9 predicts the water speed prediction value based on the ground speed prediction value predicted by the ground speed prediction unit 32. Thereby, a predicted water velocity value can be appropriately predicted.
  • the ground speed prediction unit 32 can calculate the navigation distance from the navigation route and can calculate the navigation time from the departure time and the target arrival time. Therefore, the ground speed required to arrive at the destination by the target arrival time. Can be appropriately predicted.
  • the optimum rotational speed estimation device 9 since the data on the tidal current and the wind speed announced from a public institution or the like can be used at any time, it is possible to save time and effort for predicting the tidal current and the wind speed.
  • the optimum rotational speed estimation device 9 is mounted on the own ship. As a result, the user on the ship can appropriately operate the optimum rotation speed estimation device 9 and check the optimum rotation speed displayed on the display unit 5.
  • a number estimation device can be provided.
  • FIG. 7 is a block diagram illustrating a configuration of an estimation apparatus 1a according to a modification.
  • the calculation unit 10a of the estimation device 1a according to the present modification has a configuration in which the surface layer flow calculation unit 13 is omitted. That is, the estimation device 1 a according to this modification does not have a function as the surface layer flow estimation device 8, and is provided as the optimum rotational speed estimation device 9. Therefore, according to the estimation apparatus 1a according to the present modification, unlike the case of the above embodiment, the surface layer flow near the ship cannot be estimated, but the optimum rotation speed of the propeller is set in the same manner as in the above embodiment. Can be estimated.
  • FIG. 8 is a block diagram showing a configuration of the estimation apparatus 1b according to the modification.
  • the estimation apparatus 1b according to this modification has a configuration in which the coupling coefficient update unit 14 is omitted. That is, the estimation device 1b according to this modification does not have a learning function.
  • the estimation device 1b according to this modification has a configuration in which the GPS signal receiving unit 2, the ground speed calculation unit 11, the propeller rotation number detection unit 3, and the wind direction anemometer 4 are also omitted.
  • FIG. 9 is a block diagram showing a configuration of the estimation apparatus 1c according to the modification.
  • the estimation apparatus 1c according to the present modification is different from the estimation apparatus 1a illustrated in FIG. 7 in that the water speed output unit, the coupling coefficient update unit, and the rotation number candidate value output unit are omitted, and the optimum rotation number estimation unit The configuration is very different.
  • the optimum rotation speed estimation unit 15c of the present modification includes a detection value output from the propeller rotation speed detection unit 3, a measurement value output from the anemometer 4 and a wind speed prediction value output from the wind speed prediction value output unit 36. , And a predicted water speed value output from the water speed prediction unit 34.
  • FIG. 10 is a diagram for explaining the optimum rotational speed estimation unit 15c in detail. As shown in FIGS. 9 and 10, the optimum rotation speed estimation unit 15 c includes a storage unit 16 and an update unit 17.
  • a matrix table is stored as shown in FIG.
  • each condition in each cell portion 16a of the table) specified by a combination of each value (X1, X2, X3,%) Of the wind speed and wind direction and each value (R1, R2, R3,.
  • the ground speed calculated at the time of (corresponding) is stored.
  • one ground speed value is indicated by one circle. That is, the storage unit 16 stores, for example, five ground speed values calculated when the wind speed and the wind direction value are X1 and the rotation speed value is R1.
  • the update unit 17 calculates the ground speed calculated at the timing when the rotational speed from the propeller rotational speed detection unit 3 input to the optimal rotational speed estimation unit 15c and the wind direction and wind speed measured by the anemometer 4 are detected. Is used to update the table stored in the storage unit 16. Specifically, the ground speed calculated when a predetermined rotation speed (for example, R3) and a predetermined wind direction and wind speed (for example, X2) are detected or measured is added to the cell specified by R3 and X2. By performing this operation as needed, learning data is accumulated even during navigation, and the water speed can be estimated more accurately. That is, the optimum rotational speed estimation unit 15c according to this modification also has a learning function. As a result, the water speed can be calculated more accurately.
  • a predetermined rotation speed for example, R3
  • a predetermined wind direction and wind speed for example, X2
  • the optimum rotation speed estimation unit 15c When the wind speed prediction value and the water speed prediction value at a certain target point are input to the optimum rotation speed estimation unit 15c, the optimum rotation speed estimation unit 15c, based on the wind speed prediction value and the water speed prediction value, Estimate the optimum number of revolutions at the target point.
  • the optimum rotational speed estimation unit 15 c includes a plurality of cell units 16 a (in the same column as X ⁇ b> 2 in the case of FIG. 10) identified by the input wind speed prediction value (for example, X ⁇ b> 2). A value obtained by averaging the ground speeds included in each of the cell parts) for each cell part 16a is compared with the predicted water speed.
  • the rotation speed of the propeller specified by the cell section 16a having the average value closest to the predicted water speed among the plurality of cell sections 16a is estimated as the optimum rotation speed. Even with such a method, as in the case of the above-described embodiment, the optimum rotational speed can be estimated more accurately.
  • the estimation apparatus 1d which does not have a learning function can be comprised (refer FIG. 11). In this case, it is necessary to store a plurality of previously acquired learning data (data corresponding to one circle in FIG. 10) in the storage unit 16.
  • FIG. 12 is a block diagram showing a configuration of the estimation apparatus 1e according to the modification.
  • the estimation apparatus 1e according to the present modification has a configuration in which a learning coefficient setting processing unit 20 is further provided with respect to the estimation apparatus 1a shown in FIG.
  • the water velocity output unit 12e is configured using a neural network, as in the above embodiment, and is configured so that the coupling coefficient is updated as needed by so-called supervised learning.
  • an error between the output value from the water speed output unit 12e and the teacher signal (ground speed) is calculated.
  • the estimating apparatus 1e updates the coupling coefficient W while propagating the error as a learning signal from the unit on the output layer side to the unit on the input layer side.
  • the correction amount of the coupling coefficient is given by the following equation (1).
  • ⁇ W i, j n, n ⁇ 1 (t) is a correction amount for the weight of the coupling between the unit j of the n ⁇ 1 layer and the unit i of the n layer
  • is a learning coefficient
  • ⁇ i n is a learning signal returned from the unit i of the nth layer to each unit of the n ⁇ 1 layer
  • X j n ⁇ 1 is an output value of the unit j of the n ⁇ 1 layer
  • is a stabilization coefficient
  • ⁇ W i, j n , n-1 (t-1) indicates the previous correction amount.
  • the n-1th layer is one layer on the input side than the nth layer.
  • FIG. 13 is a block diagram illustrating a configuration of the learning coefficient setting processing unit 20.
  • the learning coefficient setting processing unit 20 is for setting the learning coefficient in Expression (1) as needed.
  • the learning coefficient setting processing unit 20 includes a storage unit 21, an SOM update unit 22, a count unit 23, a learning coefficient calculation unit 24, and a learning coefficient setting unit 25. .
  • FIG. 14 is a diagram schematically showing a table stored in the storage unit 21 and a self-organizing map SOM stored corresponding to each cell of the table.
  • the storage unit 21 stores a table cut in a mesh shape for each predetermined propeller rotational speed and for each predetermined wind speed and wind direction.
  • a corresponding self-organizing map SOM is stored in each cell of this table.
  • Each self-organizing map SOM of this modification is a two-dimensional SOM composed of n ⁇ n units.
  • Each unit stores a reference vector having the same dimension as the input vector. In an initial state (a state in which learning is not performed), an appropriate reference vector is set for each unit.
  • the SOM update unit 22 updates the SOM according to an input vector (a vector composed of a propeller rotation speed, a wind direction, a wind speed, a ground speed, and the like input at every predetermined timing). Specifically, the SOM update unit 22 updates the SOM stored in the cell including the input rotation speed and wind direction and wind speed as follows.
  • the SOM update unit 22 sets the unit having the shortest Euclidean distance from the input vector as the winner unit, the reference vector stored in the winner unit, and the reference vector stored in units around the winner unit. Is updated based on the following equation (2).
  • m i is a reference vector
  • x (t) is an input vector
  • h i is a neighborhood function represented by c ⁇ exp ( ⁇ dis 2 / ⁇ 2 ).
  • c is a learning rate coefficient
  • dis
  • mc is a reference vector that minimizes the Euclidean distance from x (t).
  • the SOM update unit 22 updates the self-organizing map SOM at any time using the above-described equation (2) according to the input vector input at any time.
  • the counting unit 23 counts the number of units having a reference vector whose difference from the input vector (Euclidean distance) is a threshold value or less.
  • the learning coefficient calculation unit 24 takes the reciprocal of the value counted by the counting unit 23 and calculates the value as a learning coefficient. That is, the learning coefficient is small when the count value is large (when there are many similar input data), and the learning coefficient is large when the count value is small (when there are few similar input data).
  • the learning coefficient setting unit 25 notifies the water speed output unit 12e of the value calculated by the learning coefficient calculation unit 24, and sets it as the learning coefficient ⁇ in the equation (1).
  • the water speed output unit 12e uses the learning coefficient ⁇ to update the coupling coefficient based on the equation (1), and then calculates the water speed vector based on the updated coupling coefficient.
  • the learning coefficient when a large number of similar learning data (input vectors) are accumulated, the learning coefficient becomes small.
  • the correction amount ⁇ W i, j n, n ⁇ 1 (t) of the coupling coefficient becomes small.
  • the correction amount of the coupling coefficient becomes large.
  • FIG. 15 is a block diagram illustrating a configuration of the learning coefficient setting processing unit 26 of the estimation apparatus according to the modification.
  • the learning coefficient setting processing unit 26 according to the present modification is expressed by the equation (1) used in the water velocity output unit configured using a neural network. This is for setting the learning coefficient ⁇ .
  • the learning coefficient setting processing unit 26 according to the present modification is different in configuration from the learning coefficient setting processing unit 20 of the above-described modification.
  • the learning coefficient setting processing unit 26 according to the present modification includes a storage unit 27, a learning coefficient calculation unit 28, and a learning coefficient setting unit 29.
  • FIG. 16 is a diagram showing a table stored in the storage unit 27 and learning data stored corresponding to each cell (each area) of the table.
  • the storage unit 27 stores a table cut in a mesh shape for each predetermined propeller rotational speed and each predetermined wind speed and wind direction, as in the case of the above-described modification.
  • the learning data stored in each area is mapped according to the ground speed of each learning data.
  • FIG. 17 in a map having a plurality of subareas cut in a mesh shape for each predetermined bow direction ground speed and each predetermined starboard direction ground speed, each learning data is It is mapped according to the speed.
  • the learning coefficient calculation unit 28 calculates the number of learning data (4 in the case of FIG. 16) stored in the subarea including the most recently input learning data among all the subareas of the area including the subarea. A value obtained by normalizing the reciprocal of the value divided by the number of learning data stored in the subarea with the largest number of learning data (10 in subarea A in the case of FIG. 16) is set as the learning coefficient. Then, the learning coefficient setting unit 29 notifies the estimator of the learning coefficient set by the learning coefficient calculation unit 28 and sets it as the learning coefficient ⁇ in the equation (1), similarly to the learning coefficient setting unit 25 of the modified example. . Even with such a configuration, the learning coefficient can be set appropriately.
  • FIG. 17 is a block diagram showing a configuration of a rotational speed control device 1f provided with the optimal rotational speed estimation device 9 shown in FIG.
  • the rotational speed estimated by the optimal rotational speed estimation device 9 is displayed on the display unit 5, but is not limited thereto.
  • a propeller rotational speed control unit 6 that rotates the propeller of the ship at the optimal rotational speed estimated by the optimal rotational speed estimation device 9 may be provided. . Thereby, it can control automatically so that the rotation speed of the propeller of a ship may become the optimal rotation speed.
  • the optimum rotation speed of the propeller is estimated at each target point, and each optimum rotation speed is displayed on the display unit 5 as needed.
  • the present invention is not limited to this. Specifically, the optimal rotational speed of the propeller estimated at each target point may be averaged, and the averaged optimal rotational speed may be displayed on the display unit 5.
  • FIG. 18 is a block diagram showing a configuration of an estimation apparatus 1g according to a modification.
  • the user appropriately operates the navigation plan input unit 31 and inputs the navigation plan (specifically, the navigation route, the departure time, and the target arrival time). Absent.
  • the estimation device 1g according to this modification includes a departure time automatic input unit 40.
  • the departure time automatic input unit 40 estimates or detects the departure time of the ship, and automatically inputs the departure time to the navigation plan input unit 31 as needed.
  • the operation of the end of the navigation (stop of the main engine), the start of the main engine, and the departure of the ship is repeated for each navigation.
  • the departure time automatic input unit 40 of the estimation device 1g according to the present modification as will be described in detail later, until the main aircraft (mechanism portion for generating thrust in the ship) is stopped in the past until the next departure. (Hereinafter also referred to as ship stop time).
  • the departure time automatic input unit 40 stores a time from when the main engine is activated in the past until the departure (hereinafter also referred to as warm-up operation time). Based on these data, the departure time automatic input unit 40 estimates the time at which the ship departs before the ship actually departs. Therefore, the estimation device 1g according to the present modification is suitable for a ship (for example, a regular ship) in which the time until the next departure after the main engine is stopped is generally determined.
  • FIG. 19 is a block diagram illustrating a configuration of the departure time automatic input unit 40.
  • the departure time automatic input unit 40 includes a main engine stop time detection unit 41, a main machine activation time detection unit 42, a departure time detection unit 43, a first storage unit 44, a second storage unit 45, and a first departure time estimation.
  • the main machine stop time detection unit 41 detects the time (main machine stop time) every time the operation of the main machine is stopped.
  • the main machine stop time detection unit 41 outputs the detected main machine stop time to the first storage unit 44 and the first departure time estimation unit 46 each time.
  • the main machine activation time detector 42 detects the time (main machine activation time) each time the main machine is activated.
  • the main machine activation time detection unit 42 outputs the detected main machine activation time to the second storage unit 45 and the second departure time estimation unit 47 each time.
  • the departure time detection unit 43 detects the time (departure time) every time the ship departs. Specifically, the departure time detector 43 detects the rotation speed and ground speed of the propeller of the ship, and detects the departure time of the ship based on the detected rotation speed and ground speed. The departure time detection unit 43 outputs the detected departure time to the first storage unit 44, the second storage unit 45, and the navigation plan input unit 31 each time as a departure time fixed value.
  • the first storage unit 44 calculates the ship stop time based on the main engine stop time output from the main engine stop time detection unit 41 as needed and the departure time output from the departure time detection unit 43 as needed, The ship stop time is stored. In the present modification, the first storage unit 44 stores a plurality of ship stop times that occur for each navigation.
  • the second storage unit 45 calculates the warm-up operation time based on the main unit start time output from the main unit start time detection unit 42 as needed and the departure time output from the departure time detection unit 43 as needed, The warm-up operation time is stored. In the present modification, the second storage unit 45 stores a plurality of warm-up operation times that occur for each navigation.
  • the first departure time estimation unit 46 estimates the departure time of the ship based on the main engine stop time detected by the main engine stop time detection unit 41 and the ship stop time stored in the first storage unit 44. Specifically, for example, as an example, the first departure time estimation unit 46 estimates the time when the average value of the plurality of ship stop times stored in the first storage unit 44 has elapsed from the main engine stop time as the departure time. This is output to the navigation plan input unit 31 as the first departure time predicted value.
  • the second departure time estimation unit 47 estimates the departure time of the ship based on the main unit start time detected by the main unit start time detection unit 42 and the warm-up operation time stored in the second storage unit 45. Specifically, for example, as an example, the second departure time estimation unit 47 estimates the time when the average value of a plurality of warm-up operation times stored in the second storage unit 45 has elapsed from the main engine start time as the departure time. This is output to the navigation plan input unit 31 as the second departure time predicted value.
  • the navigation plan input unit 31 outputs the first departure time prediction value, the second departure time prediction value, and the departure time fixed value that are input as needed together with the navigation route and the target arrival time that are input in advance.
  • the optimal rotation speed estimation device 9g of the present modification updates the optimal rotation speed every time the first departure time predicted value, the second departure time predicted value, and the departure time fixed value are calculated.
  • the navigation plan input unit 31 outputs a first estimated departure time estimated value that is estimated earliest before the departure, together with the navigation route and the target arrival time. Then, the optimum rotational speed estimation device 9g estimates the optimal rotational speed after the predicted first departure time is calculated. In this way, in this modification, the optimum rotation speed can be known at a relatively early stage before departure, so that the ship's operation plan can be planned at an early stage based on the optimum rotation speed.
  • the navigation plan input unit 31 outputs the second departure time predicted value estimated next to the first departure time predicted value together with the navigation route and the target arrival time in the stage before departure. Then, after the second departure time predicted value is calculated, the optimal rotation speed estimation device 9g estimates and updates the optimal rotation speed.
  • the first departure time predicted value is predicted based on the time from when the main engine of the ship stops until the next departure (ship stop time).
  • the ship stop time is likely to vary greatly depending on the operation status of the ship, and there is a risk that the error from the actual departure time will increase.
  • the navigation plan input unit 31 outputs the departure time fixed value detected by the departure time detection unit 43 together with the navigation route and the target arrival time. Then, the optimum rotational speed estimation device 9g estimates and updates the optimal rotational speed after the departure time fixed value is detected. As described above, in the present modification, the optimum rotational speed is estimated based on the actual departure time, so that the optimal rotational speed can be predicted more accurately. Moreover, in this modified example, since the departure time fixed value is automatically input, it is possible to save the user from inputting the departure time.
  • statistics may be taken for each day of the week, and the first departure time may be estimated based on the statistical results.
  • FIG. 20 is a block diagram illustrating a configuration of the departure time automatic input unit 40a of the estimation apparatus according to the modification. Unlike the departure time automatic input unit 40 shown in FIG. 19, the departure time automatic input unit 40 a of the estimation apparatus according to the present modification further includes an external environment detection unit 48.
  • the second storage unit 45 stores the external environment (for example, temperature and humidity) detected by the external environment detection unit 48 when the warm-up operation has been performed in the past, for a plurality of warm-up operation times. Is stored in association with each of the above.
  • the 2nd departure time estimation part 47 estimates the 2nd departure time based also on the external environment memorize
  • the time (ie, warm-up operation time) from when the main engine is started until it is ready to sail varies depending on the season, for example. Specifically, since it takes more time for the engine to warm in cold weather than in hot weather, it is necessary to extend the warm-up time.
  • FIG. 21 is a block diagram showing a configuration of an optimal rotational speed estimation system 1h provided with an optimal rotational speed estimation apparatus 9h configured by removing the display unit 5 from the optimal rotational speed estimation apparatus 9b shown in FIG. is there.
  • the optimal rotational speed estimation system 1h includes an optimal rotational speed estimation device 9h, a transmission unit 18a, and a reception unit 18b.
  • the optimum rotation speed estimation device 9h is provided at a position different from the own ship (for example, the data center 19 provided on land as an example). As described above, the optimum rotational speed estimation device 9h is configured by removing the display unit 5 from the optimal rotational speed estimation device 9b shown in FIG. Since this is the same, the description thereof is omitted.
  • Both the transmission unit 18a and the reception unit 18b are provided at a position different from the data center 19 described above (for example, the ship).
  • the transmission unit 18a transmits data relating to the navigation plan of the ship (the navigation route, the departure time, and the estimated arrival time) input by the user to the optimum rotational speed estimation device 9h of the data center 19.
  • the receiving unit 18b receives data related to the optimum rotational speed estimated by the optimum rotational speed estimation device 9h. Data relating to the optimum rotational speed received by the receiving unit 18 b is displayed on the display unit 5.
  • the optimal rotational speed estimation device 9h having a relatively large calculation load can be provided in a place different from the own ship.
  • the optimum number of revolutions can be obtained without providing the optimum number of revolutions estimation device 9h on the own ship, so that the number of devices mounted on the own ship can be reduced.
  • the optimum rotation speed estimation device 9b illustrated in FIG. 8 is described as an example of the optimum rotation speed estimation device provided in the optimum rotation speed estimation system 1h.
  • An estimation device may be provided.
  • the optimal rotational speed estimation system may include the optimal rotational speed estimation device described in the above-described embodiments and modifications.
  • the optimal rotational speed estimation device 9h of the optimal rotational speed estimation system 1h estimates the optimal rotational speed based on the tidal current predicted value and the wind speed predicted value
  • the present invention is not limited to this. Specifically, it is not a predicted value announced by a public institution, but the surface flow velocity actually measured by a tidal meter, wind propulsion speed (propulsion speed of own ship caused by wind force), the influence of waves,
  • the optimum rotational speed may be estimated based on the propulsion performance of the ship, the deterioration state of the main engine of the ship, and the like.
  • the learning data can be supplemented when the learning data is not sufficiently accumulated.
  • FIG. 22 is a schematic diagram for explaining learning data complementation. Since the shape of the ship is generally bilaterally symmetric, it is expected that the wind power characteristics (the traveling speed of the ship due to the wind direction and wind speed) are also bilaterally symmetric. Specifically, for example, a ship that is sailing under certain conditions receives 45 degrees of wind behind the starboard and 45 degrees of wind behind the starboard (the wind speed is the same). Then, the traveling direction is expected to be symmetrical. Thus, with reference to FIG. 22, for example, when the propeller speed is a predetermined speed, wind direction port backward 45 degrees, when the wind speed is a predetermined magnitude, of the ground speed was V G, the learned Based on the data, the data can be supplemented as follows.
  • the size of the propeller speed and the wind speed is the same as the learning data, it is possible to wind direction starboard aft 45 degrees, as learning data when the complements the vector V 'G obtained by mirror-inverting .
  • the learning data By supplementing the learning data in this way, it is possible to accurately estimate the optimum rotational speed even at an initial stage where the learning data is not sufficiently accumulated, for example.
  • Rotational speed controller 1h Optimal rotational speed estimation system 9, 9b, 9c, 9d, 9e, 9g, 9h Optimal rotational speed estimator 12, 12e Water speed output part (water speed candidate value calculation part) 15, 15c, 15d Optimal rotation speed estimation unit 34 Water speed prediction unit 35 Speed candidate value output unit 36 Wind speed prediction value output unit

Abstract

[Problem] To accurately estimate the optimum rotation speed of a propeller. [Solution] An optimum rotation speed estimation device (9b) is provided with: a speed through water prediction unit (34) for predicting a prediction value of the speed through water necessary for a ship to arrive at a destination by a target arrival time; a wind velocity prediction value output unit (36) for outputting a prediction value of wind velocity that is expected to act on the ship at a point of interest on a navigation route; a rotation speed candidate value output unit (35) for outputting multiple rotation speed candidate values as candidates for an optimum rotation speed; a speed through water candidate value calculation part (12) which receives input of the wind velocity estimation value at the point of interest and the multiple rotation speed candidate values and outputs, as speed through water candidate values of the ship at the point of interest, values that correspond to conditions specified by combinations of the wind velocity estimation value and the rotation speed candidate values; and an optimum rotation speed estimation part (15) that estimates that the optimum rotation speed is the rotation speed candidate value that is obtained when a speed through water candidate value at which the difference between the speed through water candidate value corresponding to the rotation speed candidate value and the speed through water prediction value is the smallest is output.

Description

最適回転数推定装置、最適回転数推定システム、及び回転数制御装置Optimal rotational speed estimation device, optimal rotational speed estimation system, and rotational speed control device
 本発明は、船舶の推力を発生させるためのプロペラの最適な回転数を推定する最適回転数推定装置、最適回転数推定装置を備えた最適回転数推定システム、及び最適回転数推定装置を備えた回転数制御装置、に関する。 The present invention includes an optimum rotational speed estimation device that estimates an optimal rotational speed of a propeller for generating a thrust of a ship, an optimal rotational speed estimation system that includes an optimal rotational speed estimation device, and an optimal rotational speed estimation device. The present invention relates to a rotation speed control device.
 従来より、例えば特許文献1の段落(0038)に開示されるように、予め設定された航行ルートに沿って自動操舵装置を指示する航法装置が知られている。この装置では、ユーザによって作成されたルート上に航行禁止エリア等の注意情報がある場合、それをユーザに通知するように構成されている。 Conventionally, as disclosed in paragraph (0038) of Patent Document 1, for example, a navigation device that instructs an automatic steering device along a preset navigation route is known. This device is configured to notify the user of caution information such as a navigation prohibition area on the route created by the user.
特開2013-217860号公報JP 2013-217860 A
 一方、予め設定された航行ルートを目標時間で航行するために必要となる船舶のプロペラ回転数を算出しようとする場合、以下のような方法が考えられる。具体的には、例えば一例として、航行ルートの距離を目標時間で除算することにより、目標時間で目的地に到着するために必要な船舶の対地速度を求めることができる。そして、船舶が当該対地速度で航行するために必要となるプロペラの回転数を実験データ等から算出することにより、目標時間で目的地に到着するために必要なプロペラの回転数(最適回転数)を得ることができる。しかし、この方法では、最適回転数を正確に算出できない可能性がある。 On the other hand, when trying to calculate the propeller rotation speed of a ship necessary for navigating a preset navigation route at a target time, the following methods are conceivable. Specifically, for example, by dividing the distance of the navigation route by the target time, the ground speed of the ship necessary to arrive at the destination at the target time can be obtained. Then, by calculating the rotation speed of the propeller necessary for the ship to navigate at the ground speed from the experimental data, etc., the rotation speed of the propeller (optimum rotation speed) required to arrive at the destination at the target time. Can be obtained. However, with this method, there is a possibility that the optimum rotational speed cannot be accurately calculated.
 本発明は、上記課題を解決するためのものであり、その目的は、船舶の推力を発生させるためのプロペラの最適な回転数を、正確に推定することである。 The present invention is for solving the above-mentioned problems, and the object thereof is to accurately estimate the optimum rotational speed of the propeller for generating the thrust of the ship.
 (1)上記課題を解決するために、この発明のある局面に係る最適回転数推定装置は、プロペラの回転によって推進する船舶における前記プロペラの最適回転数を推定する最適回転数推定装置であって、予め設定された航行ルートに沿って航行する前記船舶が目標到着時刻までに目的地に到着するために必要な前記船舶の対地速度ベクトルと、前記航行ルート上の地点である対象地点における表層流速度の予測値とに基づいて、前記目標到着時刻までに前記目的地に到着するために必要な前記対象地点における対水速度ベクトルである対水速度予測値を予測する対水速度予測部と、前記対象地点において前記船舶に作用すると予測される風速ベクトルである風速予測値を出力する風速予測値出力部と、前記プロペラの回転数を示す互いに値が異なるデータであって、前記最適回転数の候補となる複数の回転数候補値、を出力する回転数候補値出力部と、前記対象地点における前記風速予測値、及び前記複数の回転数候補値が入力され、前記風速予測値と前記回転数候補値との組み合わせにより特定される各条件に対応する値を、前記対象地点における前記船舶の対水速度ベクトルの候補となる対水速度候補値として出力する対水速度候補値算出部と、複数の前記対水速度候補値のうち、前記対水速度予測値との差が最も小さい対水速度候補値、に対応する回転数候補値を、前記対象地点における前記最適回転数として推定する最適回転数推定部と、を備えている。 (1) In order to solve the above-described problem, an optimal rotational speed estimation device according to an aspect of the present invention is an optimal rotational speed estimation device that estimates the optimal rotational speed of the propeller in a ship propelled by the rotation of the propeller. , The ground velocity vector of the ship necessary for the ship navigating along the preset navigation route to arrive at the destination by the target arrival time, and the surface current at the target point that is the point on the navigation route A water speed prediction unit that predicts a water speed prediction value that is a water speed vector at the target point required to arrive at the destination by the target arrival time based on the predicted speed value; and A wind speed prediction value output unit that outputs a wind speed prediction value that is a wind speed vector that is predicted to act on the ship at the target point, and a mutual value indicating the rotation speed of the propeller The rotational speed candidate value output unit that outputs different rotational speed candidate values that are different data and are candidates for the optimal rotational speed, the predicted wind speed value at the target point, and the multiple rotational speed candidate values. A value corresponding to each condition that is input and specified by a combination of the wind speed prediction value and the rotation speed candidate value is output as a water speed candidate value that is a candidate for the water speed vector of the ship at the target point. A target rotational speed value corresponding to a candidate water speed value having a smallest difference from the predicted water speed value among the plurality of water speed candidate values. And an optimum rotational speed estimation unit that estimates the optimum rotational speed at the point.
 (2)好ましくは、前記対水速度候補値算出部は、ニューラルネットワークを用いて構
成され、それぞれに、前記風速予測値に関するデータ及び前記回転数候補値に関するデータのいずれか一方が入力される少なくとも2つの入力ユニットと、前記対水速度候補値を出力する出力ユニットとを有し、前記ニューラルネットワークにおける入力側のユニットから出力される値には、結合係数が乗算された後、出力側のユニットに伝送される。
(2) Preferably, the water speed candidate value calculation unit is configured using a neural network, and at least one of the data related to the predicted wind speed value and the data related to the rotation speed candidate value is input to each. An output unit that outputs two candidates for water velocity, and outputs a value output from the unit on the input side in the neural network after being multiplied by a coupling coefficient; Is transmitted.
 (3)更に好ましくは、前記最適回転数推定装置は、海上を航行する前記船舶の対地速度ベクトルを算出する対地速度算出部と、前記プロペラの回転数を検出するプロペラ回転数検出部と、前記船舶に搭載されて該船舶に対する風力の風速ベクトルを計測する風速風向計と、を更に備え、各前記入力ユニットには、前記プロペラ回転数検出部で検出された前記プロペラの回転数に関するデータ、及び前記風速風向計で計測された前記風速ベクトルに関するデータ、の一方が入力され、前記出力ユニットからは、前記プロペラ回転数検出部で検出された前記プロペラの回転数、及び前記風速風向計で計測された前記風速ベクトル、の組み合わせにより特定される各条件に対応する値が、該船舶の対水速度ベクトルと推定されて対水速度推定値として出力され、前記最適回転数推定装置は、前記対水速度推定値と、前記対地速度算出部で算出された教師信号としての前記対地速度ベクトルとを比較するとともに、該対水速度推定値と該教師信号との誤差が少なくなるように、前記結合係数を更新する更新部を更に備えている。 (3) More preferably, the optimum rotational speed estimation device includes a ground speed calculation unit that calculates a ground speed vector of the ship that sails at sea, a propeller rotational speed detection unit that detects the rotational speed of the propeller, A wind speed anemometer mounted on a ship and measuring a wind speed vector of wind force with respect to the ship, each input unit including data relating to the rotation speed of the propeller detected by the propeller rotation speed detector; and One of the data relating to the wind speed vector measured by the wind speed anemometer is input, and from the output unit, the rotation speed of the propeller detected by the propeller rotation speed detector and the wind speed anemometer are measured. The value corresponding to each condition specified by the combination of the wind speed vector is estimated as the water speed vector of the ship, and the water speed estimated value The optimum rotational speed estimation device compares the water speed estimated value with the ground speed vector as a teacher signal calculated by the ground speed calculating unit, and the water speed estimated value And an updating unit for updating the coupling coefficient so that an error between the teaching signal and the teacher signal is reduced.
 (4)上記課題を解決するために、この発明のある局面に係る最適回転数推定装置は、プロペラの回転によって推進する船舶における前記プロペラの最適回転数を推定する最適回転数推定装置であって、予め設定された航行ルートに沿って航行する前記船舶が目標到着時刻までに目的地に到着するために必要な前記船舶の対地速度ベクトルと、前記航行ルート上の地点である対象地点における表層流速度の予測値とに基づいて、前記目標到着時刻までに前記目的地に到着するために必要な前記対象地点における対水速度ベクトルである対水速度予測値を予測する対水速度予測部と、前記対象地点において前記船舶に作用すると予測される風速ベクトルである風速予測値を出力する風速予測値出力部と、前記プロペラの回転数、及び前記船舶に対する風力の風速ベクトル、の組み合わせにより特定される各条件のときの前記船舶の対地速度ベクトルを、複数の前記条件毎に記憶する複数のセル部、を有し、各セル部に記憶される前記対地速度ベクトルの平均値を該各セル部に対応する前記各条件のときの対水速度ベクトルとして記憶する記憶部と、前記記憶部において、前記風速予測値及び前記対水速度予測値で特定される回転数を、最適回転数として推定する最適回転数推定部と、を備えている。 (4) In order to solve the above-described problem, an optimal rotational speed estimation device according to an aspect of the present invention is an optimal rotational speed estimation device that estimates the optimal rotational speed of the propeller in a ship propelled by the rotation of the propeller. , The ground velocity vector of the ship necessary for the ship navigating along the preset navigation route to arrive at the destination by the target arrival time, and the surface current at the target point that is the point on the navigation route A water speed prediction unit that predicts a water speed prediction value that is a water speed vector at the target point required to arrive at the destination by the target arrival time based on the predicted speed value; and A wind speed prediction value output unit that outputs a wind speed prediction value that is a wind speed vector that is predicted to act on the ship at the target point, the rotation speed of the propeller, and the ship A plurality of cell units that store the ground speed vector of the ship for each condition specified by a combination of wind speed vectors of wind power for each of the plurality of conditions, and stored in each cell unit A storage unit that stores an average value of the ground speed vector as a water speed vector for each of the conditions corresponding to each cell unit, and the storage unit is specified by the wind speed predicted value and the water speed predicted value. And an optimal rotational speed estimation unit that estimates the rotational speed as the optimal rotational speed.
 (5)好ましくは、前記最適回転数推定装置は、海上を航行する前記船舶の対地速度ベクトルを算出する対地速度算出部と、前記プロペラの回転数を検出するプロペラ回転数検出部と、前記船舶に搭載されて該船舶に対する風力の風速ベクトルを計測する風速風向計と、を更に備え、前記記憶部は、前記対地速度算出部で算出された前記対地速度ベクトルを、該対地速度ベクトルの算出に必要なデータが取得されたときに前記プロペラ回転数検出部で検出された前記回転数、及び前記風速風向計で計測された前記風速ベクトル、の組み合わせにより特定される前記セル部に記憶させる更新部、を更に備えている。 (5) Preferably, the optimum rotational speed estimation device includes a ground speed calculation unit that calculates a ground speed vector of the ship that sails at sea, a propeller rotational speed detection unit that detects the rotational speed of the propeller, and the ship And an anemometer for measuring the wind speed vector of the wind force with respect to the ship, and the storage unit calculates the ground speed vector calculated by the ground speed calculation unit to calculate the ground speed vector. An update unit for storing in the cell unit specified by a combination of the rotation number detected by the propeller rotation number detection unit and the wind speed vector measured by the wind speed and anemometer when necessary data is acquired. Are further provided.
 (6)好ましくは、前記最適回転数推定装置は、前記航行ルートに沿って航行する前記船舶が目標到着時刻までに目的地に到着するために必要な前記船舶の対地速度ベクトルである対地速度予測値を予測する対地速度予測部、を更に備え、前記対水速度予測部は、前記対地速度予測部で予測された前記対地速度ベクトルに基づいて、前記対水速度予測値を予測する。 (6) Preferably, the optimum rotational speed estimation device is a ground speed prediction which is a ground speed vector of the ship necessary for the ship navigating along the navigation route to arrive at the destination by a target arrival time. A ground speed prediction unit that predicts a value, and the water speed prediction unit predicts the water speed prediction value based on the ground speed vector predicted by the ground speed prediction unit.
 (7)更に好ましくは、前記最適回転数推定装置は、前記航行ルート、前記船舶の出航時刻、及び前記目標到着時刻が入力されるとともに、入力された前記航行ルート、前記出航時刻、及び前記目標到着時刻を前記対地速度予測部に出力する航行計画入力部、を更に
備える。
(7) More preferably, the optimum rotational speed estimation device receives the navigation route, the departure time of the ship, and the target arrival time, and the input navigation route, the departure time, and the target. A navigation plan input unit that outputs the arrival time to the ground speed prediction unit;
 (8)更に好ましくは、前記最適回転数推定装置は、前記出航時刻を、前記船舶の主機の停止時刻、及び前記船舶の主機の起動時刻、の少なくとも一方に基づいて推定するとともに、推定した該出航時刻を出航時刻予測値として前記航行計画入力部に出力する出航時刻推定部、を更に備える。 (8) More preferably, the optimum rotational speed estimation device estimates the departure time based on at least one of a stop time of the main engine of the ship and a start time of the main engine of the ship. A departure time estimation unit that outputs the departure time to the navigation plan input unit as a predicted departure time.
 (9)好ましくは、前記最適回転数推定装置は、前記プロペラの回転数及び前記船舶の対地速度に基づいて前記出航時刻を検出するとともに、該出航時刻を出航時刻確定値として前記航行計画入力部に出力する出航時刻検出部、を更に備える。 (9) Preferably, the optimum rotation speed estimation device detects the departure time based on the rotation speed of the propeller and the ground speed of the ship, and sets the departure time as a departure time fixed value, the navigation plan input unit. And a departure time detection unit for outputting the information.
 (10)好ましくは、前記最適回転数推定装置は、前記船舶としての自船に搭載されている。 (10) Preferably, the optimum rotational speed estimation device is mounted on the ship as the ship.
 (11)上記課題を解決するために、この発明のある局面に係る最適回転数推定システムは、船舶としての自船とは異なる場所に搭載された、上述したいずれかの最適回転数推定装置と、前記最適回転数推定装置とは異なる場所に配置され、該自船の航行ルート、該自船の出航時刻、及び該自船の目標到着時刻、に関するデータを、前記最適回転数推定装置に送信する送信部と、前記最適回転数推定装置とは異なる場所に配置され、前記最適回転数推定装置で推定された最適回転数に関するデータを受信する受信部と、を備えている。 (11) In order to solve the above-described problem, an optimal rotational speed estimation system according to an aspect of the present invention is provided with any of the above-described optimal rotational speed estimation devices mounted at a place different from the ship as a ship. , Arranged at a location different from the optimum rotational speed estimation device, and transmits data relating to the navigation route of the ship, the departure time of the own ship, and the target arrival time of the own ship to the optimum rotational speed estimation device And a receiving unit that is arranged at a location different from the optimum rotation speed estimation device and receives data related to the optimum rotation speed estimated by the optimum rotation speed estimation device.
 (12)上記課題を解決するために、この発明のある局面に係る回転数制御装置は、上述したいずれかの最適回転数推定装置と、前記最適回転数推定装置で推定された船舶のプロペラの最適回転数に基づき、該船舶のプロペラの回転数を制御する回転数制御部と、を備えている。 (12) In order to solve the above-described problem, a rotational speed control device according to an aspect of the present invention includes any of the above-described optimal rotational speed estimation device and a ship propeller estimated by the optimal rotational speed estimation device. A rotation speed control unit that controls the rotation speed of the propeller of the ship based on the optimum rotation speed.
 本発明によれば、船舶の推力を発生させるためのプロペラの最適な回転数を、正確に推定できる。 According to the present invention, it is possible to accurately estimate the optimum rotational speed of the propeller for generating the thrust of the ship.
本発明の実施形態に係る推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the estimation apparatus which concerns on embodiment of this invention. 図1に示す対水速度出力部の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the water velocity output part shown in FIG. 対地速度、対水速度、及び表層流速度の関係を示すベクトル図である。It is a vector diagram which shows the relationship between ground speed, water speed, and surface layer flow velocity. 図1に示す対水速度出力部からの対水速度推定値が、対水速度に収束する理由を説明するための図である。It is a figure for demonstrating the reason the water speed estimated value from the water speed output part shown in FIG. 1 converges on a water speed. 図2に対応させて示す図であって、対水速度出力部に入力される回転数候補値及び風速予測値と、これらの入力値に対応して出力される対水速度候補値との関係について示す図である。It is a figure shown corresponding to FIG. 2, Comprising: The relationship between the rotation speed candidate value and wind speed prediction value which are input into a water speed output part, and the water speed candidate value output corresponding to these input values It is a figure shown about. 図1に示す最適回転数推定部の動作を説明するためのグラフである。It is a graph for demonstrating operation | movement of the optimal rotation speed estimation part shown in FIG. 変形例に係る推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. 変形例に係る推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. 変形例に係る推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. 図9に示す最適回転数推定部について詳細に説明するための図である。FIG. 10 is a diagram for explaining in detail an optimum rotational speed estimation unit shown in FIG. 9. 変形例に係る推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. 変形例に係る推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. 図12に示す学習係数設定処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the learning coefficient setting process part shown in FIG. 記憶部に記憶されるテーブルと、そのテーブルの各セルに対応して記憶される自己組織化マップSOMと、を模式的に示す図である。It is a figure which shows typically the table memorize | stored in a memory | storage part, and the self-organization map SOM memorize | stored corresponding to each cell of the table. 変形例に係る推定装置の学習係数設定処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the learning coefficient setting process part of the estimation apparatus which concerns on a modification. 記憶部に記憶されるテーブルと、そのテーブルの各セルに対応して記憶される学習データとを示す図である。It is a figure which shows the table memorize | stored in a memory | storage part, and the learning data memorize | stored corresponding to each cell of the table. 回転数制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a rotation speed control apparatus. 変形例に係る推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the estimation apparatus which concerns on a modification. 図18に示す出航時刻自動入力部の構成を示すブロック図である。It is a block diagram which shows the structure of the departure time automatic input part shown in FIG. 変形例に係る推定装置の出航時刻自動入力部の構成を示すブロック図である。It is a block diagram which shows the structure of the departure time automatic input part of the estimation apparatus which concerns on a modification. 最適回転数推定システムの構成を示すブロック図である。It is a block diagram which shows the structure of an optimal rotation speed estimation system. 学習データの補完について説明するための模式図である。It is a schematic diagram for demonstrating complementation of learning data.
 図1は、本発明の実施形態に係る推定装置1の構成を示すブロック図である。推定装置1は、プロペラの回転による推力によって海上を航行する船舶に搭載されている。本実施形態の推定装置1は、目的地まで所定のルートを航行する船舶(例えば商船)に好適であり、詳しくは後述するが、目標到着時刻(到着予定時刻)に間に合い且つ早く到着しすぎない程度のプロペラの回転数(すなわち、燃費の観点において最適な回転数)を推定するように構成されている。 FIG. 1 is a block diagram showing a configuration of an estimation apparatus 1 according to an embodiment of the present invention. The estimation device 1 is mounted on a ship that sails on the sea by thrust generated by the rotation of a propeller. The estimation device 1 of the present embodiment is suitable for a ship (for example, a merchant ship) that navigates a predetermined route to a destination, and will be described later in detail, but does not arrive too early in time for a target arrival time (estimated arrival time). The rotation speed of the propeller is determined so as to estimate the rotation speed (that is, the optimum rotation speed from the viewpoint of fuel consumption).
 推定装置1は、図1に示すように、表層流推定装置8と、最適回転数推定装置9と、を備えている。表層流推定装置8は、自船位置における表層流の向き及び大きさ、すなわち自船位置における表層流の速度ベクトルを推定するように構成されている。一方、最適回転数推定装置9は、プロペラの最適回転数を推定するように構成されている。以下では、表層流推定装置8の構成、及び最適回転数推定装置9の構成を、順に説明する。なお、表層流とは、海面から自船の船底に亘る範囲程度の深さ範囲における流れである。 The estimation device 1 includes a surface flow estimation device 8 and an optimum rotational speed estimation device 9 as shown in FIG. The surface layer flow estimation device 8 is configured to estimate the direction and magnitude of the surface layer flow at the ship position, that is, the velocity vector of the surface layer flow at the ship position. On the other hand, the optimal rotational speed estimation device 9 is configured to estimate the optimal rotational speed of the propeller. Below, the structure of the surface layer flow estimation apparatus 8 and the structure of the optimal rotation speed estimation apparatus 9 are demonstrated in order. The surface layer flow is a flow in a depth range of the range from the sea surface to the ship bottom.
 [表層流推定装置の構成]
 表層流推定装置8では、所定のタイミング毎に所定のパラメータ(本実施形態では、自船のプロペラの回転数、船首方向真風速、及び右舷方向真風速)が自動で求められるとともに、各パラメータの値の組み合わせにより特定される条件毎に、自船位置の表層流速度(表層流速度ベクトル)が算出される。表層流推定装置8は、GPS信号受信部2と、プロペラ回転数検出部3と、風向風速計4と、演算部10の構成要件の一部(詳しくは後述する対地速度算出部11、対水速度出力部12、表層流算出部13、及び結合係数更新部14)と、表示部5と、を備えている。
[Configuration of surface flow estimation device]
In the surface layer flow estimation device 8, predetermined parameters (in this embodiment, the rotation speed of the propeller of the ship, the true wind speed in the bow direction, and the true wind speed on the starboard direction) are automatically obtained at each predetermined timing. For each condition specified by the combination of values, the surface flow velocity (surface flow velocity vector) at the ship position is calculated. The surface layer flow estimation device 8 includes a GPS signal receiving unit 2, a propeller rotational speed detection unit 3, an anemometer 4 and a part of the configuration requirements of the calculation unit 10 (details will be described later on the ground speed calculation unit 11, A velocity output unit 12, a surface flow calculation unit 13, a coupling coefficient update unit 14), and a display unit 5.
 GPS信号受信部2は、航法衛星(図示省略)から送信される航法信号(GNSS信号)としてのGPS信号を受信するための、GNSS信号受信部として設けられている。GPS信号受信部2は、例えば、GPSアンテナによって構成されている。GPS信号受信部2で受信されたGPS信号(すなわち、自船の位置情報)は、該GPS信号が受信された時刻とともに、演算部10に通知される。 The GPS signal receiving unit 2 is provided as a GNSS signal receiving unit for receiving a GPS signal as a navigation signal (GNSS signal) transmitted from a navigation satellite (not shown). The GPS signal receiving unit 2 is configured by, for example, a GPS antenna. The GPS signal received by the GPS signal receiving unit 2 (that is, the position information of the ship) is notified to the calculation unit 10 together with the time when the GPS signal is received.
 なお、本実施形態では、GNSS信号受信部としてGPS信号受信部2を用いているが、これに限らず、その他のGNSSシステムにおいて用いられる受信部を用いてもよい。ここで、GNSSとは、全地球航法衛星システム(GNSS;Global Navigation Satellite Systems)の略語である。このGNSSは、米国により運営される「GPS」、欧州により運営される「GALILEO」及びロシアにより運営される「GLONASS」等の総称である。 In this embodiment, the GPS signal receiving unit 2 is used as the GNSS signal receiving unit. However, the present invention is not limited to this, and a receiving unit used in other GNSS systems may be used. Here, GNSS is an abbreviation for Global Navigation Satellite System (GNSS). This GNSS is a collective term for “GPS” operated by the United States, “GALILEO” operated by Europe, “GLONASS” operated by Russia, and the like.
 プロペラ回転数検出部3は、自船の推力を発生させるためのプロペラの単位時間当たり
の回転数を検出するためのものであって、例えば、回転数を検出可能なセンサによって構成されている。プロペラ回転数検出部3で検出された回転数は、演算部10に通知される。
The propeller rotational speed detection unit 3 is for detecting the rotational speed per unit time of the propeller for generating the thrust of the ship, and is constituted by a sensor capable of detecting the rotational speed, for example. The rotation speed detected by the propeller rotation speed detection unit 3 is notified to the calculation unit 10.
 風向風速計4は、風向及び風速に関する情報として、船首方向真風速及び右舷方向真風速を計測するためのものである。風向風速計4は、本実施形態に係る表層流推定装置8が搭載される自船における、周囲に風を遮る障害物がない場所に設置される。風向風速計4で計測された船首方向真風速及び右舷方向真風速は、演算部10に通知される。 The wind direction anemometer 4 is for measuring the true wind speed in the bow direction and the true wind speed in the starboard direction as information on the wind direction and the wind speed. The anemometer 4 is installed in a place where there are no obstacles that block the wind in the ship where the surface flow estimation device 8 according to the present embodiment is mounted. The bow direction true wind speed and starboard direction true wind speed measured by the anemometer 4 are notified to the calculation unit 10.
 演算部10は、GPS信号受信部2、プロペラ回転数検出部3、及び風向風速計4から通知された各種情報に基づき、所定のタイミング毎に、自船位置(対象地点)における表層流を推定するように構成されている。演算部10は、対地速度算出部11と、対水速度出力部12と、表層流算出部13と、結合係数更新部14と、最適回転数推定部15と、を備えている。なお、演算部10を構成するこれらの構成要件のうち、最適回転数推定部15は、最適回転数推定装置9の構成要件として設けられている。 The calculation unit 10 estimates the surface layer flow at the ship position (target point) at each predetermined timing based on various information notified from the GPS signal reception unit 2, the propeller rotation number detection unit 3, and the wind direction anemometer 4. Is configured to do. The calculation unit 10 includes a ground speed calculation unit 11, a water speed output unit 12, a surface layer flow calculation unit 13, a coupling coefficient update unit 14, and an optimum rotation number estimation unit 15. Note that, among these structural requirements constituting the arithmetic unit 10, the optimal rotational speed estimation unit 15 is provided as a structural requirement of the optimal rotational speed estimation device 9.
 対地速度算出部11は、GPS信号受信部2から通知される自船の位置情報、及びその自船位置情報が取得された時刻に基づき、自船の対地速度(対地速度ベクトル)を算出する。具体的には、対地速度算出部11は、少なくとも2つのタイミングにおける自船位置、及び各自船位置の位置情報が取得された時刻に基づき、自船の対地速度を算出する。対地速度算出部11は、このようにして算出した対地速度を、表層流算出部13及び結合係数更新部14に通知する。 The ground speed calculation unit 11 calculates the ground speed (ground speed vector) of the ship based on the position information of the ship notified from the GPS signal receiving unit 2 and the time when the ship position information is acquired. Specifically, the ground speed calculation unit 11 calculates the ground speed of the ship based on the ship position at at least two timings and the time when the position information of each ship position is acquired. The ground speed calculation unit 11 notifies the surface speed calculation unit 13 and the coupling coefficient update unit 14 of the ground speed calculated in this way.
 対水速度出力部12は、自船の対水速度を推定し、推定された対水速度を対水速度推定値として出力するように構成されている。本実施形態では、対水速度出力部12には、プロペラ回転数検出部3で検出された自船のプロペラの回転数、及び風向風速計で計測された船首方向真風速及び右舷方向真風速、が入力される。対水速度出力部12は、これらの入力値の組み合わせによって特定される条件(ある回転数、ある船首方向真風速、及びある右舷方向真風速の組み合わせで特定される条件)に対応する値を、対水速度推定値として、表層流算出部13及び結合係数更新部14に出力する。 The water speed output unit 12 is configured to estimate the water speed of the ship and output the estimated water speed as an estimated water speed value. In this embodiment, the water speed output unit 12 includes the propeller rotation speed detected by the propeller rotation speed detection unit 3, the bow direction true wind speed and the starboard direction true wind speed measured by the wind direction anemometer, Is entered. The water speed output unit 12 sets a value corresponding to a condition specified by a combination of these input values (a condition specified by a combination of a certain rotation speed, a certain bow direction true wind speed, and a certain starboard direction true wind speed). It outputs to the surface layer flow calculation part 13 and the coupling coefficient update part 14 as a water velocity estimated value.
 図2は、対水速度出力部12の構成の一例を模式的に示す図である。本実施形態では、対水速度出力部12は、一般的に知られているニューラルネットワークを用いて構成されている。具体的には、対水速度出力部12は、入力層を構成する複数の入力ユニットUIN_1,UIN_2,UIN_3と、隠れ層を構成する複数の中間ユニットUMID_1,UMID_2,UMID_3と、出力層を構成する出力ユニットUOUT_1,UOUT_2と、を備えている。なお、図2に示す対水速度出力部12の構成はあくまで一例であり、各層におけるユニット数、隠れ層の層数については、図2に示す限りでない。 FIG. 2 is a diagram schematically illustrating an example of the configuration of the water velocity output unit 12. In this embodiment, the water velocity output unit 12 is configured using a generally known neural network. Specifically, the water velocity output unit 12 includes a plurality of input units U IN_1 , U IN_2 , U IN_3 constituting an input layer, and a plurality of intermediate units U MID_1 , U MID_2 , U MID_3 constituting a hidden layer. And output units U OUT — 1 and U OUT — 2 constituting the output layer. The configuration of the water velocity output unit 12 illustrated in FIG. 2 is merely an example, and the number of units in each layer and the number of hidden layers are not limited to those illustrated in FIG.
 対水速度出力部12では、各入力ユニットUIN_1,UIN_2,UIN_3に各入力値(プロペラの回転数等)が入力されると、それらの入力値に対して結合係数WI,Mが乗算されて、隠れ層の中間ユニットUMID_1,UMID_2,UMID_3に出力される。隠れ層の各中間ユニットUMID_1,UMID_2,UMID_3は、入力された各値を合計し、その合計値に基づく値に結合係数WM,Oを乗算して出力ユニットUOUT_1,UOUT_2に出力する。出力ユニットUOUT_1,UOUT_2は、入力された各値を合計し、その合計値に基づく値を対水速度推定値として、表層流算出部13及び結合係数更新部14に出力する。なお、上記対水速度出力部12に入力される値は、必ずしも、プロペラ回転数等、パラメータの値そのものでなくてもよく、それらのパラメータと一対一の関係にある数値(例えば一例として、回転数と比例して変化する電圧値)等であってもよい。 In-water velocity output section 12, the input unit U IN_1, U IN_2, when the input value U IN_3 (rotational speed of the propeller, etc.) is input, the coupling coefficient W I for those input values, M is Multiply and output to hidden layer intermediate units U MID — 1 , U MID — 2 , U MID — 3 . Each of the hidden layer intermediate units U MID — 1 , U MID — 2 and U MID — 3 sums the input values and multiplies the values based on the total values by the coupling coefficients W M, O to the output units U OUT — 1 and U OUT — 2 . Output. The output units U OUT — 1 and U OUT — 2 add up the input values and output a value based on the total value to the surface flow calculation unit 13 and the coupling coefficient update unit 14 as an estimated water velocity value. Note that the value input to the water speed output unit 12 is not necessarily the parameter value itself such as the propeller rotation number, but is a numerical value that has a one-to-one relationship with these parameters (for example, rotation Or a voltage value that changes in proportion to the number).
 対水速度出力部12では、初期状態においては、各結合係数Wに適当な初期値が設定されている。そして、各結合係数Wは、結合係数更新部14によって随時、更新される。具体的には、各結合係数Wは、対水速度出力部12から出力される対水速度推定値と、対地速度算出部11で算出された対地速度(教師信号)との誤差が少なくなるように、結合係数更新部14によって更新される。これにより、対水速度出力部12から出力される対水速度推定値は、詳しくは後述するが、結合係数Wが更新される毎に、自船の対水速度に収束していく。 In the water velocity output unit 12, an appropriate initial value is set for each coupling coefficient W in the initial state. Each coupling coefficient W is updated by the coupling coefficient updating unit 14 as needed. Specifically, each coupling coefficient W reduces an error between the estimated water speed output from the water speed output unit 12 and the ground speed (teacher signal) calculated by the ground speed calculation unit 11. The coupling coefficient update unit 14 updates the value. As a result, the estimated water speed value output from the water speed output unit 12 converges to the water speed of the ship every time the coupling coefficient W is updated.
 表層流算出部13は、対水速度出力部12から出力された対水速度推定値、及び対地速度算出部11で算出された対地速度に基づき、表層流の速度である表層流速度(表層流速度ベクトル)を算出する。具体的には、表層流算出部13は、対地速度から対水速度を減算することにより、表層流速度を算出する。 The surface flow calculation unit 13 is based on the estimated water velocity output from the water velocity output unit 12 and the ground velocity calculated by the ground velocity calculation unit 11. Velocity vector). Specifically, the surface layer flow calculation unit 13 calculates the surface layer flow velocity by subtracting the water velocity from the ground velocity.
 図3は、対地速度ベクトルVと、対水速度ベクトルVWTと、表層流速度ベクトルVとの関係を示すベクトル図である。対地速度Vは、地表に対する速度であり、対水速度VWTは、水面(海面)に対する速度である。また、表層流は、海の表層の部分における水の流れである。よって、対地速度ベクトルV、対水速度ベクトルVWT、及び表層流速度ベクトルVの関係は、図3に示すように表すことができる。よって、表層流算出部13が、上述のように、対地速度Vから対水速度VWTを減算することにより、表層流速度Vが算出される。 Figure 3 is a vector diagram illustrating the ground speed vector V G, and to water velocity vector V WT, the relationship between the surface layer flow velocity vector V T. The ground speed V G is a speed with respect to the ground surface, and the water speed V WT is a speed with respect to the water surface (sea surface). A surface current is a flow of water in the surface layer of the sea. Therefore, the relationship between the ground speed vector V G , the water speed vector V WT , and the surface layer flow speed vector V T can be expressed as shown in FIG. Therefore, surface current calculating unit 13, as described above, by subtracting the-water velocity V WT from ground speed V G, the surface velocity V T is calculated.
 結合係数更新部14は、対水速度出力部12から出力される対水速度推定値と、対地速度算出部11で算出された対地速度(教師信号)との誤差が少なくなるように、対水速度出力部12の結合係数Wを更新する。結合係数更新部14は、例えば一例として、バックプロパゲーション(誤差逆伝播法)を用いて、結合係数Wを更新する。 The coupling coefficient updating unit 14 is configured to reduce the error between the estimated water speed output from the water speed output unit 12 and the ground speed (teacher signal) calculated by the ground speed calculation unit 11. The coupling coefficient W of the speed output unit 12 is updated. For example, the coupling coefficient updating unit 14 updates the coupling coefficient W by using back propagation (error back propagation method), for example.
 表示部5には、表層流算出部13で算出された表層流の向き及び大きさが表示される。これにより、ユーザは、自船位置における表層流の速度を知ることができる。 The display unit 5 displays the direction and size of the surface flow calculated by the surface flow calculation unit 13. Thereby, the user can know the velocity of the surface layer flow at the ship position.
 [対水速度出力部から出力される対水速度推定値について]
 図4は、対水速度出力部12から出力される対水速度推定値が、該対水速度出力部12の結合係数Wが更新される毎に、対水速度に収束していく理由を説明するための図である。上述のように、対水速度出力部12に記憶される各結合係数Wは、対水速度出力部12から随時出力される対水速度推定値と、随時算出される教師信号としての対地速度との誤差が小さくなるように、結合係数更新部14によって更新される。
[About estimated water velocity output from the water velocity output unit]
FIG. 4 illustrates the reason why the estimated water speed output from the water speed output unit 12 converges to the water speed every time the coupling coefficient W of the water speed output unit 12 is updated. It is a figure for doing. As described above, each coupling coefficient W stored in the water speed output unit 12 includes the water speed estimation value output from the water speed output unit 12 as needed and the ground speed as a teacher signal calculated as needed. Is updated by the coupling coefficient updating unit 14 so as to reduce the error.
 表層流は、海域、時刻、気象条件等に起因して、その大きさ及び向きが異なる。よって、対水速度が同じ場合(すなわち、プロペラの回転数、船首方向真風速、及び右舷方向真風速が同じ場合)における対地速度には、あらゆる大きさ及び向きの表層流速度の成分が含まれていると考えられる。よって、これらを平均化すると(図4の場合におけるVG1~VG6を平均化すると)、表層流速度成分が互いに打ち消し合い、対水速度成分が残る。すなわち、対水速度出力部12の結合係数Wが、上述のように、対水速度出力部12の対水速度推定値と対地速度との誤差が小さくなるように更新されていくと、対地速度に含まれる表層流速度成分の影響が徐々に小さくなるため、対水速度出力部12の対水速度推定値は、対水速度に収束していく。従って、学習データ(対地速度データ)が十分に得られ、学習が十分進んだ段階においては(すなわち、結合係数が十分な回数、更新された段階においては)、対水速度出力部12からの対水速度推定値を、対水速度と推定することができる。 The surface current is different in size and direction due to the sea area, time, weather conditions, and the like. Therefore, the ground speed when the water speed is the same (that is, when the speed of the propeller, the true wind speed in the bow direction, and the true wind speed in the starboard direction are the same) includes components of surface flow velocity of any magnitude and direction. It is thought that. Therefore, when these are averaged (V G1 to V G6 in the case of FIG. 4 are averaged), the surface layer flow velocity components cancel each other, and the water velocity component remains. That is, when the coupling coefficient W of the water speed output unit 12 is updated so as to reduce the error between the water speed estimated value of the water speed output unit 12 and the ground speed as described above, the ground speed is increased. Since the influence of the surface layer flow velocity component included in is gradually reduced, the estimated water velocity value of the water velocity output unit 12 converges to the water velocity. Therefore, when the learning data (ground speed data) is sufficiently obtained and the learning is sufficiently advanced (that is, when the coupling coefficient is updated a sufficient number of times), the pair of data from the water speed output unit 12 is The estimated water velocity can be estimated as the water velocity.
 表層流推定装置8では、自船の航行中の所定のタイミング毎に、プロペラ回転数検出部3によって回転数が検出されるとともに、風向風速計4によって船首方向真風速及び右舷方向真風速が計測され、これらの情報は随時、対水速度出力部12に出力される。対水速度出力部12は、これらに基づき、自船の航行中において随時更新される結合係数Wを用いて、上記対水速度推定値を生成する。 In the surface flow estimator 8, the rotational speed is detected by the propeller rotational speed detection unit 3 at each predetermined timing during navigation of the ship, and the true wind speed in the bow direction and the true wind speed in the starboard direction are measured by the wind direction anemometer 4. These pieces of information are output to the water speed output unit 12 as needed. Based on these, the water speed output unit 12 generates the water speed estimation value using a coupling coefficient W that is updated as needed during the navigation of the ship.
 [最適回転数推定装置の構成]
 最適回転数推定装置9は、ユーザ等によって入力された航行計画(航行ルート、出航時刻、及び目標到着時刻)に基づき、目標到着時刻までに目的地に間に合い且つ早く到着しすぎない程度のプロペラの回転数(最適回転数)を推定する。その際、最適回転数推定装置9は、詳しくは後述するが、風速の予報値及び潮流の予報値を考慮にいれて、最適回転数を推定する。これにより、本実施形態に係る最適回転数推定装置9では、最適回転数をより正確に推定することができる。
[Configuration of optimal speed estimation device]
Based on the navigation plan (the navigation route, the departure time, and the target arrival time) input by the user or the like, the optimum rotational speed estimation device 9 is suitable for propellers that are in time for the destination by the target arrival time and do not arrive too early. Estimate the rotation speed (optimum rotation speed). At that time, as will be described later in detail, the optimum rotational speed estimation device 9 estimates the optimal rotational speed in consideration of the wind speed forecast value and the tidal current forecast value. Thereby, in the optimal rotation speed estimation apparatus 9 which concerns on this embodiment, an optimal rotation speed can be estimated more correctly.
 最適回転数推定装置9は、図1に示すように、GPS信号受信部2と、プロペラ回転数検出部3と、風向風速計4と、航行計画入力部31と、対地速度予測部32と、潮流予測値出力部33と、対水速度予測部34と、回転数候補値出力部35と、風速予測値出力部36と、演算部10の構成要件の一部(対地速度算出部11、対水速度出力部12、結合係数更新部14、及び最適回転数推定部15)と、を備えている。GPS信号受信部2、プロペラ回転数検出部3、及び風向風速計4は、上述した表層流推定装置8の場合と同様の構成及び動作であるため、その説明を省略する。 As shown in FIG. 1, the optimum rotational speed estimation device 9 includes a GPS signal receiver 2, a propeller rotational speed detector 3, an anemometer 4, a navigation plan input unit 31, a ground speed predictor 32, The tidal current predicted value output unit 33, the water speed prediction unit 34, the rotation speed candidate value output unit 35, the wind speed predicted value output unit 36, and some of the configuration requirements of the calculation unit 10 (ground speed calculation unit 11, A water speed output unit 12, a coupling coefficient update unit 14, and an optimum rotational speed estimation unit 15). Since the GPS signal receiving unit 2, the propeller rotation number detecting unit 3, and the wind direction anemometer 4 have the same configuration and operation as those of the surface layer flow estimation device 8, the description thereof is omitted.
 航行計画入力部31は、例えばキーボード、タッチパネル等によって構成されている。ユーザは、この航行計画入力部31を適宜操作して、航行計画(具体的には、航行ルート、出航時刻、及び目標到着時刻)を入力する。 The navigation plan input unit 31 includes, for example, a keyboard, a touch panel, and the like. The user appropriately operates the navigation plan input unit 31 to input a navigation plan (specifically, a navigation route, a departure time, and a target arrival time).
 対地速度予測部32は、航行計画入力部31によって入力された航行計画に基づき、目標到着時刻までに到着するために必要となる自船の対地速度を予測する。具体的には、対地速度予測部32は、航行計画入力部31から入力された航行ルートから求められる航行距離を、出航時刻及び目標到着時刻から求められる航行時間で除算することにより、目的地に目標到着時刻までに到着するのに最適な対地速度を予測する。対地速度予測部32は、予測した対地速度を、対地速度予測値として、対水速度予測部34に出力する。 The ground speed prediction unit 32 predicts the ground speed of the ship necessary to arrive by the target arrival time based on the navigation plan input by the navigation plan input unit 31. Specifically, the ground speed prediction unit 32 divides the navigation distance obtained from the navigation route input from the navigation plan input unit 31 by the navigation time obtained from the departure time and the target arrival time, thereby obtaining the destination. Predict the optimal ground speed to arrive by the target arrival time. The ground speed prediction unit 32 outputs the predicted ground speed to the water speed prediction unit 34 as a ground speed prediction value.
 潮流予測値出力部33は、公的機関等から随時、発表される潮流(表層流)に関するデータ(潮流の向き及び速さ)を取得するとともに、取得したデータを潮流予測値として、対水速度予測部34に通知する。潮流予測値出力部33は、公的機関等からの潮流に関する情報のうち、自船の航行ルート上の地点である複数の対象地点のそれぞれにおける潮流予測値を、対水速度予測部34に出力する。 The tidal current predicted value output unit 33 acquires data (direction and speed of the tidal current) related to the tidal current (surface flow) that is announced from a public organization as needed, and uses the acquired data as a tidal current predicted value to measure the water velocity. The prediction unit 34 is notified. The tidal current predicted value output unit 33 outputs the tidal current predicted value at each of a plurality of target points that are points on the navigation route of the ship to the water speed predicting unit 34 among information on tidal currents from public institutions and the like. To do.
 対水速度予測部34は、対地速度予測部32から出力された対地速度予測値と、潮流予測値出力部33から出力された各前記対象地点における潮流予測値とに基づき、目標到着時刻までに到着するために必要となる自船の対水速度を予測する。具体的には、対水速度予測部34は、対地速度予測部32から出力された対地速度ベクトルから、ベクトルとして表される各対象地点における潮流予測値を減算することにより、各対象地点における自船の対水速度を予測する。対水速度予測部34は、予測した各対象地点における対水速度予測値を、最適回転数推定部15に通知する。 The water speed prediction unit 34 is based on the ground speed prediction value output from the ground speed prediction unit 32 and the tidal current prediction value at each target point output from the tidal current prediction value output unit 33 until the target arrival time. Predict the ship's water speed required to arrive. Specifically, the water speed prediction unit 34 subtracts the tidal current predicted value at each target point expressed as a vector from the ground speed vector output from the ground speed prediction unit 32 to thereby automatically Predict ship water speed. The water speed prediction unit 34 notifies the optimum rotation speed estimation unit 15 of the predicted water speed prediction value at each target point.
 風速予測値出力部36は、公的機関等から発表される風速に関する情報(風向及び風速)を取得するとともに、取得したデータを、船首方向真風速及び右舷方向真風速として、対水速度出力部12に通知する。風速予測値出力部36は、公的機関等からの風速に関す
る情報のうち、各前記対象地点における風速予測値を、対水速度出力部12に出力する。
The wind speed predicted value output unit 36 acquires information on wind speed (wind direction and wind speed) announced by a public institution or the like, and uses the acquired data as a bow direction true wind speed and a starboard direction true wind speed. 12 is notified. The predicted wind speed value output unit 36 outputs the predicted wind speed value at each target point among the information on the wind speed from a public organization or the like to the water speed output unit 12.
 回転数候補値出力部35は、最適回転数の候補となる互いに値が異なる複数の回転数候補値(例えば一例として、1rpmきざみの値)を、対水速度出力部12に出力する。 The rotational speed candidate value output unit 35 outputs a plurality of rotational speed candidate values (for example, values in increments of 1 rpm) that are different from each other and are candidates for the optimal rotational speed to the water speed output unit 12.
 図5は、図2に対応させて示す図であって、対水速度出力部12に入力される回転数候補値及び風速予測値と、これらの入力値に対応して出力される対水速度候補値との関係について示す図である。最適回転数推定装置9においては、対水速度出力部12は、対水速度候補値算出部として設けられている。最適回転数推定装置9の対水速度出力部12には、ある対象地点における風速予測値V(n=1,2,…、nは対象地点の数)と、複数の回転数候補値R,R,…とが入力される。風速予測値Vは、風速ベクトルとして表すことができ、船首方向真風速VAn及び右舷方向真風速VBnに分けることができる。 FIG. 5 is a diagram corresponding to FIG. 2, and the rotational speed candidate value and the wind speed prediction value input to the water speed output unit 12 and the water speed output corresponding to these input values. It is a figure shown about the relationship with a candidate value. In the optimum rotational speed estimation device 9, the water speed output unit 12 is provided as a water speed candidate value calculation unit. The water speed output unit 12 of the optimum rotational speed estimation device 9 includes a wind speed prediction value V n (n = 1, 2,..., N is the number of target points) at a certain target point, and a plurality of rotational speed candidate values R. 1 , R 2 ,... Are input. The predicted wind speed value V n can be expressed as a wind speed vector and can be divided into a bow direction true wind speed V An and a starboard direction true wind speed V Bn .
 対水速度出力部12には、ある対象地点における風速予測値Vと、複数の回転数候補値(R,R,…)のそれぞれとが組となった複数の入力データ(R及びV、R及びV、R及びV、…)が、順次、入力される。対水速度出力部12は、順次入力される複数の入力データのそれぞれに対応して出力ユニットから出力される対水速度VWT1,VWT2,…を、対水速度候補値として最適回転数推定部15に出力する。 The water speed output unit 12 includes a plurality of input data (R 1 ) in which a wind speed prediction value V n at a certain target point and a plurality of rotation speed candidate values (R 1 , R 2 ,...) Are combined. And V n , R 2 and V n , R 3 and V n ,...) Are sequentially input. The water speed output unit 12 estimates the optimum rotational speed using the water speeds V WT1 , V WT2 ,... Output from the output unit corresponding to each of the plurality of input data sequentially input as water speed candidate values. To the unit 15.
 図6は、最適回転数推定部15の動作を説明するためのグラフである。最適回転数推定部15は、対水速度出力部12から出力される複数の対水速度候補値VWT1,VWT2,…の中から、対水速度予測部34で予測された前記ある対象地点における対水速度予測値VWTPn(n=1,2,…、nは対象地点の数)と最も近い対水速度候補値を選び、当該対水速度候補値のときの回転数候補値を、最適回転数として推定する。具体的には、図6を参照して説明すると、最適回転数推定部15は、ベクトルで表される対水速度予測値VWTPnと、ベクトルで表される対水速度候補値VWT1,VWT2,…との差をとり、その差が最も小さいときの対水速度候補値VWTmを特定する回転数候補値Rを、最適回転数として出力する。 FIG. 6 is a graph for explaining the operation of the optimum rotational speed estimation unit 15. The optimum rotational speed estimation unit 15 is the target point predicted by the water speed prediction unit 34 from among a plurality of water speed candidate values V WT1 , V WT2 ,... Output from the water speed output unit 12. The water speed predicted value V WTPn (n = 1, 2,..., N is the number of target points) closest to the water speed candidate value is selected, and the rotation speed candidate value at the time of the water speed candidate value is Estimated as the optimum rotational speed. More specifically, with reference to FIG. 6, the optimum rotation speed estimation unit 15 performs the water speed prediction value V WTPn represented by a vector and the water speed candidate values V WT1 , V represented by a vector. WT2, taking the difference between ... and the rotational speed candidate value R m that identifies the-water speed candidate value V WTm when the difference is smallest, and outputs the optimum rotating speed.
 上述のように、各対象地点において推定された対水速度予測値VWTPn(n=1,2,…)は、自船が目的地に目標到着時刻で到着するための、各対象地点における最適な自船の対水速度である。よって、この対水速度予測値との差が最も少ない対水速度候補値、を特定する回転数候補値が、自船が目的地に目標到着時刻で到着するための、各対象地点における自船のプロペラの最適回転数となる。 As described above, the predicted water speed V WTPn (n = 1, 2,...) Estimated at each target point is the optimum value at each target point for the ship to arrive at the destination at the target arrival time. This is the speed of the ship's water against water. Therefore, the rotation speed candidate value that identifies the water speed candidate value with the smallest difference from the water speed prediction value is the ship's own ship at each target point for the ship to arrive at the destination at the target arrival time. This is the optimum rotation speed of the propeller.
 表示部5には、最適回転数推定部15で推定された各対象地点における最適回転数が、随時、表示される。ユーザが、当該回転数に基づき自船のプロペラの回転数を調整することにより、自船が、目標到着時刻に間に合い且つ早く到着しすぎない程度のプロペラの回転数(すなわち、燃費の観点において最適な回転数)で航行される。 The display unit 5 displays the optimal rotational speed at each target point estimated by the optimal rotational speed estimation unit 15 as needed. The user adjusts the speed of the propeller of the ship based on the speed of the ship, so that the speed of the propeller can be adjusted so that the ship is in time for the target arrival time and does not arrive too early. At a high speed).
 [効果]
 以上のように、本実施形態に係る推定装置1の最適回転数推定装置9では、航行ルート上の各対象地点における潮流速度予測値に基づいて、船舶が目標到着時刻までに目的地に到着するために必要な該船舶の対水速度ベクトルを予測している。これにより、船舶の対地速度に大きな影響を与える潮流速度を考慮して対水速度ベクトルを予測することができるため、より正確に対水速度を予測することができる。また、最適回転数推定装置9では、各対象地点における風速予測値に基づいて、船舶の最適回転数を推定している。これにより、船舶の対地速度に大きな影響を与える風速を考慮して最適回転数を推定することができるため、より正確に最適回転数を推定できる。
[effect]
As described above, in the optimum rotation speed estimation device 9 of the estimation device 1 according to the present embodiment, the ship arrives at the destination by the target arrival time based on the predicted tidal current speed at each target point on the navigation route. Predicting the water velocity vector of the ship necessary for this purpose. Thereby, since the water velocity vector can be predicted in consideration of the tidal velocity that has a great influence on the ground velocity of the ship, the water velocity can be predicted more accurately. In addition, the optimum rotational speed estimation device 9 estimates the optimal rotational speed of the ship based on the predicted wind speed at each target point. As a result, the optimum rotational speed can be estimated in consideration of the wind speed that greatly affects the ground speed of the ship, and thus the optimal rotational speed can be estimated more accurately.
 従って、最適回転数推定装置9によれば、船舶の推力を発生させるためのプロペラの最適な回転数を、正確に推定できる。 Therefore, according to the optimum speed estimation device 9, the optimum speed of the propeller for generating the thrust of the ship can be accurately estimated.
 また、最適回転数推定装置9では、対水速度出力部12を、ニューラルネットワークを用いて構成している。これにより、対水速度を出力可能な対水速度出力部12を適切に構成することができる。 Further, in the optimum rotation speed estimation device 9, the water speed output unit 12 is configured using a neural network. Thereby, the water speed output part 12 which can output a water speed can be comprised appropriately.
 また、最適回転数推定装置9では、対水速度出力部12から出力される対水速度推定値と、対地速度算出部11で算出された対地速度との誤差が少なくなるように、対水速度出力部12を更新している。これにより、学習機能を備えた対水速度出力部12を構成することができる。しかも、最適回転数推定装置9では、正確な対水速度を推定するために必要な多量のデータを航行中に蓄積することができる。よって、これらの多数の学習データ(ある条件時における対地速度のデータ)を予め準備し、且つこれらの学習データに基づいて適切な結合係数を設定しておく手間を省くことができる。 Further, in the optimum rotational speed estimation device 9, the water speed is adjusted so that an error between the water speed estimated value output from the water speed output unit 12 and the ground speed calculated by the ground speed calculation unit 11 is reduced. The output unit 12 is updated. Thereby, the water speed output part 12 provided with the learning function can be comprised. Moreover, the optimum rotational speed estimation device 9 can accumulate a large amount of data necessary for estimating an accurate water speed during navigation. Therefore, it is possible to save the trouble of preparing a large number of these learning data (ground speed data under certain conditions) in advance and setting an appropriate coupling coefficient based on these learning data.
 また、最適回転数推定装置9では、対地速度予測部32で予測された対地速度予測値に基づいて、対水速度予測値が予測される。これにより、対水速度予測値を適切に予測することができる。 Further, the optimum rotational speed estimation device 9 predicts the water speed prediction value based on the ground speed prediction value predicted by the ground speed prediction unit 32. Thereby, a predicted water velocity value can be appropriately predicted.
 また、最適回転数推定装置9では、ユーザによって入力される航行ルート、船舶の出航時刻、及び目標到着時刻が、対地速度予測部32に入力される。これにより、対地速度予測部32は、航行ルートから航行距離を算出でき、出航時刻及び目標到着時刻から航行時間を算出できるため、目的地に目的到着時刻までに到着するために必要となる対地速度を、適切に予測することができる。 Further, in the optimum rotational speed estimation device 9, the navigation route, the ship departure time, and the target arrival time input by the user are input to the ground speed prediction unit 32. As a result, the ground speed prediction unit 32 can calculate the navigation distance from the navigation route and can calculate the navigation time from the departure time and the target arrival time. Therefore, the ground speed required to arrive at the destination by the target arrival time. Can be appropriately predicted.
 また、最適回転数推定装置9によれば、公的機関等から随時、発表される潮流及び風速に関するデータを利用することができるため、潮流及び風速を予測する手間を省くことができる。 Further, according to the optimum rotational speed estimation device 9, since the data on the tidal current and the wind speed announced from a public institution or the like can be used at any time, it is possible to save time and effort for predicting the tidal current and the wind speed.
 また、最適回転数推定装置9は、自船に搭載されている。これにより、自船に搭乗しているユーザが適宜、最適回転数推定装置9を操作し、且つ表示部5に表示される最適回転数を確認することができるため、利便性に優れた最適回転数推定装置を提供できる。 Further, the optimum rotational speed estimation device 9 is mounted on the own ship. As a result, the user on the ship can appropriately operate the optimum rotation speed estimation device 9 and check the optimum rotation speed displayed on the display unit 5. A number estimation device can be provided.
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 [変形例]
 (1)図7は、変形例に係る推定装置1aの構成を示すブロック図である。本変形例に係る推定装置1aの演算部10aは、上記実施形態の演算部10と異なり、表層流算出部13が省略された構成となっている。すなわち、本変形例に係る推定装置1aは、表層流推定装置8としての機能を有しておらず、最適回転数推定装置9として設けられている。よって、本変形例に係る推定装置1aによれば、上記実施形態の場合と異なり、自船付近の表層流の推定はできないものの、上記実施形態の場合と同様にして、プロペラの最適回転数を推定することができる。
[Modification]
(1) FIG. 7 is a block diagram illustrating a configuration of an estimation apparatus 1a according to a modification. Unlike the calculation unit 10 of the above-described embodiment, the calculation unit 10a of the estimation device 1a according to the present modification has a configuration in which the surface layer flow calculation unit 13 is omitted. That is, the estimation device 1 a according to this modification does not have a function as the surface layer flow estimation device 8, and is provided as the optimum rotational speed estimation device 9. Therefore, according to the estimation apparatus 1a according to the present modification, unlike the case of the above embodiment, the surface layer flow near the ship cannot be estimated, but the optimum rotation speed of the propeller is set in the same manner as in the above embodiment. Can be estimated.
 (2)図8は、変形例に係る推定装置1bの構成を示すブロック図である。本変形例に係る推定装置1bは、図8に示す推定装置1aと異なり、結合係数更新部14が省略された構成となっている。すなわち、本変形例に係る推定装置1bは、学習機能を有さない。また、本変形例に係る推定装置1bは、GPS信号受信部2、対地速度算出部11、プロ
ペラ回転数検出部3、及び風向風速計4も省略された構成となっている。
(2) FIG. 8 is a block diagram showing a configuration of the estimation apparatus 1b according to the modification. Unlike the estimation apparatus 1a shown in FIG. 8, the estimation apparatus 1b according to this modification has a configuration in which the coupling coefficient update unit 14 is omitted. That is, the estimation device 1b according to this modification does not have a learning function. In addition, the estimation device 1b according to this modification has a configuration in which the GPS signal receiving unit 2, the ground speed calculation unit 11, the propeller rotation number detection unit 3, and the wind direction anemometer 4 are also omitted.
 本変形例に係る推定装置1bでは、予め取得された多くの学習データ(ある条件時における対地速度のデータ)に基づいて結合係数Wが決定された対水速度出力部12から出力される対水速度候補値に基づいて、最適回転数が推定される。このような構成であっても、図7に示す推定装置1aの場合と同様、プロペラの最適回転数を推定することができる。 In the estimation apparatus 1b according to the present modification, the water-to-water output from the water-speed output unit 12 in which the coupling coefficient W is determined based on a lot of learning data (ground speed data at a certain condition) acquired in advance. Based on the speed candidate value, the optimum rotational speed is estimated. Even with such a configuration, the optimum rotational speed of the propeller can be estimated as in the case of the estimation device 1a shown in FIG.
 (3)図9は、変形例に係る推定装置1cの構成を示すブロック図である。本変形例に係る推定装置1cは、図7に示す推定装置1aと比べて、対水速度出力部、結合係数更新部、及び回転数候補値出力部が省略され、且つ最適回転数推定部の構成が大きく異なっている。本変形例の最適回転数推定部15cには、プロペラ回転数検出部3から出力される検出値、風向風速計4から出力される測定値、風速予測値出力部36から出力される風速予測値、及び対水速度予測部34から出力される対水速度予測値、が入力される。 (3) FIG. 9 is a block diagram showing a configuration of the estimation apparatus 1c according to the modification. The estimation apparatus 1c according to the present modification is different from the estimation apparatus 1a illustrated in FIG. 7 in that the water speed output unit, the coupling coefficient update unit, and the rotation number candidate value output unit are omitted, and the optimum rotation number estimation unit The configuration is very different. The optimum rotation speed estimation unit 15c of the present modification includes a detection value output from the propeller rotation speed detection unit 3, a measurement value output from the anemometer 4 and a wind speed prediction value output from the wind speed prediction value output unit 36. , And a predicted water speed value output from the water speed prediction unit 34.
 図10は、最適回転数推定部15cについて詳細に説明するための図である。図9及び図10に示すように、最適回転数推定部15cは、記憶部16及び更新部17を有している。 FIG. 10 is a diagram for explaining the optimum rotational speed estimation unit 15c in detail. As shown in FIGS. 9 and 10, the optimum rotation speed estimation unit 15 c includes a storage unit 16 and an update unit 17.
 記憶部16には、図10に示すように、マトリックス状のテーブルが記憶されている。このテーブルには、風速風向の各値(X1,X2,X3,…)及び回転数の各値(R1,R2,R3,…)の組み合わせによって特定される各条件(テーブルの各セル部16aに対応)のときに算出された、対地速度が記憶されている。図10では、1つの対地速度の値が、1つの丸印で示されている。すなわち、記憶部16には、例えば、風速風向の値がX1であり且つ回転数の値がR1のときに算出された対地速度の値が、5つ、記憶されている。 In the storage unit 16, a matrix table is stored as shown in FIG. In this table, each condition (in each cell portion 16a of the table) specified by a combination of each value (X1, X2, X3,...) Of the wind speed and wind direction and each value (R1, R2, R3,. The ground speed calculated at the time of (corresponding) is stored. In FIG. 10, one ground speed value is indicated by one circle. That is, the storage unit 16 stores, for example, five ground speed values calculated when the wind speed and the wind direction value are X1 and the rotation speed value is R1.
 図4を用いて上述したように、ある条件(ある回転数及びある風向風速の組み合わせで特定される条件)における対地速度を平均化すると、対地速度に含まれる表層流速度成分が互いに相殺されるため、その平均値は、対水速度に近い値になる。従って、本変形例に係る最適回転数推定部15cの各セル部16aに含まれる対地速度の平均値をとると、その値は対水速度に近い値となる。 As described above with reference to FIG. 4, when the ground speed under a certain condition (a condition specified by a combination of a certain rotation speed and a certain wind direction and wind speed) is averaged, the surface flow velocity components included in the ground speed cancel each other. Therefore, the average value is close to the water velocity. Therefore, when the average value of the ground speeds included in each cell unit 16a of the optimum rotational speed estimation unit 15c according to this modification is taken, the value is close to the water speed.
 更新部17は、最適回転数推定部15cに入力されたプロペラ回転数検出部3からの回転数、及び風向風速計4で測定された風向及び風速、が検出されたタイミングにおいて算出された対地速度を用いて、記憶部16に記憶されているテーブルを更新する。具体的には、所定の回転数(例えばR3)及び所定の風向風速(例えばX2)が検出又は計測されたときに算出された対地速度を、R3及びX2で特定されるセルに追加する。この動作が随時、行われることにより、航行中であっても学習データが蓄積され、より正確に対水速度を推定することができる。すなわち、本変形例に係る最適回転数推定部15cも、学習機能を有している。その結果、より正確に対水速度を算出できる。 The update unit 17 calculates the ground speed calculated at the timing when the rotational speed from the propeller rotational speed detection unit 3 input to the optimal rotational speed estimation unit 15c and the wind direction and wind speed measured by the anemometer 4 are detected. Is used to update the table stored in the storage unit 16. Specifically, the ground speed calculated when a predetermined rotation speed (for example, R3) and a predetermined wind direction and wind speed (for example, X2) are detected or measured is added to the cell specified by R3 and X2. By performing this operation as needed, learning data is accumulated even during navigation, and the water speed can be estimated more accurately. That is, the optimum rotational speed estimation unit 15c according to this modification also has a learning function. As a result, the water speed can be calculated more accurately.
 最適回転数推定部15cに、ある対象地点における風速予測値及び対水速度予測値が入力されると、最適回転数推定部15cは、その風速予測値及び対水速度予測値に基づいて、その対象地点における最適回転数を推定する。具体的には、最適回転数推定部15cは、図10を参照して、入力された風速予測値(例えばX2)によって特定される複数のセル部16a(図10の場合、X2と同じ列のセル部)のそれぞれに含まれる対地速度をセル部16a毎に平均した値と、前記対水速度予測値とを比較する。そして、前記複数のセル部16aのうち、最も該対水速度予測値に近い平均値を有するセル部16a、によって特定されるプロペラの回転数が、最適回転数として推定される。このような方法であって
も、上記実施形態の場合と同様、最適回転数をより正確に推定できる。
When the wind speed prediction value and the water speed prediction value at a certain target point are input to the optimum rotation speed estimation unit 15c, the optimum rotation speed estimation unit 15c, based on the wind speed prediction value and the water speed prediction value, Estimate the optimum number of revolutions at the target point. Specifically, referring to FIG. 10, the optimum rotational speed estimation unit 15 c includes a plurality of cell units 16 a (in the same column as X <b> 2 in the case of FIG. 10) identified by the input wind speed prediction value (for example, X <b> 2). A value obtained by averaging the ground speeds included in each of the cell parts) for each cell part 16a is compared with the predicted water speed. And the rotation speed of the propeller specified by the cell section 16a having the average value closest to the predicted water speed among the plurality of cell sections 16a is estimated as the optimum rotation speed. Even with such a method, as in the case of the above-described embodiment, the optimum rotational speed can be estimated more accurately.
 なお、本変形例において更新部17を省略した構成とすることにより、学習機能を有さない推定装置1dを構成することができる(図11参照)。この場合、記憶部16に、予め所得した複数の学習データ(図10における丸印1つに対応するデータ)を記憶させておく必要がある。 In addition, by setting it as the structure which abbreviate | omitted the update part 17 in this modification, the estimation apparatus 1d which does not have a learning function can be comprised (refer FIG. 11). In this case, it is necessary to store a plurality of previously acquired learning data (data corresponding to one circle in FIG. 10) in the storage unit 16.
 (4)図12は、変形例に係る推定装置1eの構成を示すブロック図である。本変形例に係る推定装置1eは、図7に示す推定装置1aに対して、学習係数設定処理部20を更に設けた構成となっている。 (4) FIG. 12 is a block diagram showing a configuration of the estimation apparatus 1e according to the modification. The estimation apparatus 1e according to the present modification has a configuration in which a learning coefficient setting processing unit 20 is further provided with respect to the estimation apparatus 1a shown in FIG.
 対水速度出力部12eは、上記実施形態の場合と同様、ニューラルネットワークを用いて構成されるとともに、いわゆる教師あり学習によって結合係数が随時、更新されるように構成されている。推定装置1eでは、該対水速度出力部12eからの出力値と教師信号(対地速度)との誤差が計算される。そして、推定装置1eは、その誤差を学習信号として出力層側のユニットから入力層側のユニットへ伝播させながら、結合係数Wを更新していく。結合係数の修正量は、次の(1)式で与えられる。 The water velocity output unit 12e is configured using a neural network, as in the above embodiment, and is configured so that the coupling coefficient is updated as needed by so-called supervised learning. In the estimation device 1e, an error between the output value from the water speed output unit 12e and the teacher signal (ground speed) is calculated. Then, the estimating apparatus 1e updates the coupling coefficient W while propagating the error as a learning signal from the unit on the output layer side to the unit on the input layer side. The correction amount of the coupling coefficient is given by the following equation (1).
 [数1]
 ΔWi,j n,n-1(t)=ηδi nj n-1+αΔWi,j n,n-1(t-1)…(1)
[Equation 1]
ΔW i, j n, n−1 (t) = ηδ i n X j n−1 + αΔW i, j n, n−1 (t−1) (1)
 式(1)において、ΔWi,j n,n-1(t)は、n-1層のユニットjとn層のユニットiの間の結合の重みに対する修正量、ηは学習係数、δi nはn層目のユニットiからn-1層の各ユニットへ戻される学習信号、Xj n-1はn-1層のユニットjの出力値、αは安定化係数、ΔWi,j n,n-1(t-1)は前回の修正量、を示す。なお、n-1層目の層は、n層目の層よりも1つ、入力側の層である。 In Equation (1), ΔW i, j n, n−1 (t) is a correction amount for the weight of the coupling between the unit j of the n−1 layer and the unit i of the n layer, η is a learning coefficient, δ i n is a learning signal returned from the unit i of the nth layer to each unit of the n−1 layer, X j n−1 is an output value of the unit j of the n−1 layer, α is a stabilization coefficient, ΔW i, j n , n-1 (t-1) indicates the previous correction amount. Note that the n-1th layer is one layer on the input side than the nth layer.
 図13は、学習係数設定処理部20の構成を示すブロック図である。学習係数設定処理部20は、式(1)における学習係数を随時、設定するためのものである。学習係数設定処理部20は、図13に示すように、記憶部21と、SOM更新部22と、カウント部23と、学習係数算出部24と、学習係数設定部25と、を有している。 FIG. 13 is a block diagram illustrating a configuration of the learning coefficient setting processing unit 20. The learning coefficient setting processing unit 20 is for setting the learning coefficient in Expression (1) as needed. As illustrated in FIG. 13, the learning coefficient setting processing unit 20 includes a storage unit 21, an SOM update unit 22, a count unit 23, a learning coefficient calculation unit 24, and a learning coefficient setting unit 25. .
 図14は、記憶部21に記憶されるテーブルと、そのテーブルの各セルに対応して記憶される自己組織化マップSOMと、を模式的に示す図である。図14に示すように、記憶部21には、所定のプロペラ回転数毎及び所定の風速風向毎にメッシュ状に切られたテーブルが記憶されている。このテーブルの各セルには、対応する自己組織化マップSOMが記憶されている。本変形例の各自己組織化マップSOMは、n×n個のユニットで構成された2次元SOMである。各ユニットには、入力ベクトルと同次元の参照ベクトルが記憶されている。初期状態(学習が行われていない状態)では、各ユニットには、適当な参照ベクトルが設定されている。 FIG. 14 is a diagram schematically showing a table stored in the storage unit 21 and a self-organizing map SOM stored corresponding to each cell of the table. As shown in FIG. 14, the storage unit 21 stores a table cut in a mesh shape for each predetermined propeller rotational speed and for each predetermined wind speed and wind direction. A corresponding self-organizing map SOM is stored in each cell of this table. Each self-organizing map SOM of this modification is a two-dimensional SOM composed of n × n units. Each unit stores a reference vector having the same dimension as the input vector. In an initial state (a state in which learning is not performed), an appropriate reference vector is set for each unit.
 SOM更新部22は、入力ベクトル(所定のタイミング毎に入力されるプロペラの回転数、風向風速、対地速度、等で構成されるベクトル)に応じて、SOMを更新する。具体的には、SOM更新部22は、入力された回転数及び風向風速が含まれるセルに記憶されるSOMを、以下のようにして更新する。 The SOM update unit 22 updates the SOM according to an input vector (a vector composed of a propeller rotation speed, a wind direction, a wind speed, a ground speed, and the like input at every predetermined timing). Specifically, the SOM update unit 22 updates the SOM stored in the cell including the input rotation speed and wind direction and wind speed as follows.
 具体的には、SOM更新部22は、入力ベクトルとのユークリッド距離が最も近いユニットを勝者ユニットとし、その勝者ユニットに記憶される参照ベクトルと、勝者ユニットの周囲のユニットに記憶される参照ベクトルとを、次の(2)式に基づいて、更新する。 Specifically, the SOM update unit 22 sets the unit having the shortest Euclidean distance from the input vector as the winner unit, the reference vector stored in the winner unit, and the reference vector stored in units around the winner unit. Is updated based on the following equation (2).
 [数2]
 mi(t+1)=mi(t)+hi(t)[x(t)-mi(t)]…(2)
[Equation 2]
m i (t + 1) = m i (t) + h i (t) [x (t) −m i (t)] (2)
 但し、miは参照ベクトル、x(t)は入力ベクトル、hiは、c・exp(-dis/α)で表される近傍関数である。近傍関数において、cは学習率係数、dis=|x-m|である。ここで、mは、x(t)とのユークリッド距離を最小にする参照ベクトルである。 Here, m i is a reference vector, x (t) is an input vector, and h i is a neighborhood function represented by c · exp (−dis 2 / α 2 ). In the neighborhood function, c is a learning rate coefficient, and dis = | x−m c |. Here, mc is a reference vector that minimizes the Euclidean distance from x (t).
 SOM更新部22は、随時入力される入力ベクトルによって、上述した式(2)を用いて、自己組織化マップSOMを随時、更新する。 The SOM update unit 22 updates the self-organizing map SOM at any time using the above-described equation (2) according to the input vector input at any time.
 カウント部23は、入力ベクトルとの差(ユークリッド距離)がある閾値以下となる参照ベクトルを有するユニットの数をカウントする。 The counting unit 23 counts the number of units having a reference vector whose difference from the input vector (Euclidean distance) is a threshold value or less.
 学習係数算出部24は、カウント部23でカウントされた値の逆数をとり、その値を学習係数として算出する。すなわち、カウント値が多い場合(類似する入力データが多い場合)には学習係数が小さくなり、カウント値が少ない場合(類似する入力データが少ない場合)には学習係数が大きくなる。 The learning coefficient calculation unit 24 takes the reciprocal of the value counted by the counting unit 23 and calculates the value as a learning coefficient. That is, the learning coefficient is small when the count value is large (when there are many similar input data), and the learning coefficient is large when the count value is small (when there are few similar input data).
 学習係数設定部25は、学習係数算出部24で算出された値を、対水速度出力部12eに通知し、(1)式における学習係数ηとして設定する。対水速度出力部12eは、その学習係数ηを用いて、(1)式に基づいて結合係数を更新した後、更新された結合係数に基づいて、対水速度ベクトルを算出する。 The learning coefficient setting unit 25 notifies the water speed output unit 12e of the value calculated by the learning coefficient calculation unit 24, and sets it as the learning coefficient η in the equation (1). The water speed output unit 12e uses the learning coefficient η to update the coupling coefficient based on the equation (1), and then calculates the water speed vector based on the updated coupling coefficient.
 本変形例によれば、類似する学習データ(入力ベクトル)が多数、蓄積されている場合には、学習係数が小さくなる。この場合、上述した式(1)より明らかなように、結合係数の修正量ΔWi,j n,n-1(t)が小さくなる。一方、類似する学習データが蓄積されていない、又は少ししか蓄積されていない場合には、学習係数が大きくなる。この場合、式(1)より明らかなように、結合係数の修正量が大きくなる。これにより、本変形例によれば、類似する学習データが多く蓄積されることに起因する、対水速度出力部からの出力値の偏りを抑制することができる。 According to this modification, when a large number of similar learning data (input vectors) are accumulated, the learning coefficient becomes small. In this case, as is clear from the above-described expression (1), the correction amount ΔW i, j n, n−1 (t) of the coupling coefficient becomes small. On the other hand, when similar learning data is not accumulated or only a little is accumulated, the learning coefficient is increased. In this case, as is clear from the equation (1), the correction amount of the coupling coefficient becomes large. Thereby, according to this modification, the bias | inclination of the output value from a water speed output part resulting from accumulating many similar learning data can be suppressed.
 (5)図15は、変形例に係る推定装置の学習係数設定処理部26の構成を示すブロック図である。本変形例に係る学習係数設定処理部26は、上述した変形例の学習係数設定処理部20の場合と同様、ニューラルネットワークを用いて構成された対水速度出力部で用いられる式(1)の学習係数ηを設定するためのものである。しかし、本変形例に係る学習係数設定処理部26は、上述した変形例の学習係数設定処理部20と構成が異なる。本変形例の学習係数設定処理部26は、図15に示すように、記憶部27と、学習係数算出部28と、学習係数設定部29と、を有している。 (5) FIG. 15 is a block diagram illustrating a configuration of the learning coefficient setting processing unit 26 of the estimation apparatus according to the modification. As in the case of the learning coefficient setting processing unit 20 of the modification described above, the learning coefficient setting processing unit 26 according to the present modification is expressed by the equation (1) used in the water velocity output unit configured using a neural network. This is for setting the learning coefficient η. However, the learning coefficient setting processing unit 26 according to the present modification is different in configuration from the learning coefficient setting processing unit 20 of the above-described modification. As illustrated in FIG. 15, the learning coefficient setting processing unit 26 according to the present modification includes a storage unit 27, a learning coefficient calculation unit 28, and a learning coefficient setting unit 29.
 図16は、記憶部27に記憶されるテーブルと、そのテーブルの各セル(各エリア)に対応して記憶される学習データとを示す図である。図16に示すように、記憶部27には、上述した変形例の場合と同様、所定のプロペラ回転数毎及び所定の風速風向毎にメッシュ状に切られたテーブルが記憶されている。本変形例では、各エリアに記憶されている学習データが、各学習データの対地速度に応じてマッピングされている。具体的には、図17に示すように、所定の船首方向対地速度毎、及び所定の右舷方向対地速度毎にメッシュ状に切られた複数のサブエリアを有するマップにおいて、各学習データが、対地速度に応じてマッピングされている。 FIG. 16 is a diagram showing a table stored in the storage unit 27 and learning data stored corresponding to each cell (each area) of the table. As illustrated in FIG. 16, the storage unit 27 stores a table cut in a mesh shape for each predetermined propeller rotational speed and each predetermined wind speed and wind direction, as in the case of the above-described modification. In this modification, the learning data stored in each area is mapped according to the ground speed of each learning data. Specifically, as shown in FIG. 17, in a map having a plurality of subareas cut in a mesh shape for each predetermined bow direction ground speed and each predetermined starboard direction ground speed, each learning data is It is mapped according to the speed.
 学習係数算出部28は、直近で入力された学習データが含まれるサブエリアに記憶され
る学習データの数(図16の場合は4)を、該サブエリアが含まれるエリアの全サブエリアのうち最も学習データの数が多いサブエリアに記憶される学習データの数(図16の場合はサブエリアAの10)で除算した値の逆数を正規化した値を、学習係数として設定する。そして、学習係数設定部29は、上記変形例の学習係数設定部25と同様、学習係数算出部28で設定された学習係数を推定器に通知し、(1)式における学習係数ηとして設定する。このような構成であっても、学習係数を適切に設定することができる。
The learning coefficient calculation unit 28 calculates the number of learning data (4 in the case of FIG. 16) stored in the subarea including the most recently input learning data among all the subareas of the area including the subarea. A value obtained by normalizing the reciprocal of the value divided by the number of learning data stored in the subarea with the largest number of learning data (10 in subarea A in the case of FIG. 16) is set as the learning coefficient. Then, the learning coefficient setting unit 29 notifies the estimator of the learning coefficient set by the learning coefficient calculation unit 28 and sets it as the learning coefficient η in the equation (1), similarly to the learning coefficient setting unit 25 of the modified example. . Even with such a configuration, the learning coefficient can be set appropriately.
 (6)図17は、図7に示す最適回転数推定装置9を備えた回転数制御装置1fの構成を示すブロック図である。図7に示す例では、最適回転数推定装置9で推定された回転数が表示部5に表示されたが、これに限らない。具体的には、図17に示すように、表示部5の代わりに、最適回転数推定装置9によって推定された最適回転数によって船舶のプロペラを回転させるプロペラ回転数制御部6を設けてもよい。これにより、船舶のプロペラの回転数が最適回転数となるように自動で制御できる。 (6) FIG. 17 is a block diagram showing a configuration of a rotational speed control device 1f provided with the optimal rotational speed estimation device 9 shown in FIG. In the example shown in FIG. 7, the rotational speed estimated by the optimal rotational speed estimation device 9 is displayed on the display unit 5, but is not limited thereto. Specifically, as shown in FIG. 17, instead of the display unit 5, a propeller rotational speed control unit 6 that rotates the propeller of the ship at the optimal rotational speed estimated by the optimal rotational speed estimation device 9 may be provided. . Thereby, it can control automatically so that the rotation speed of the propeller of a ship may become the optimal rotation speed.
 (7)上記実施形態では、各対象地点においてプロペラの最適回転数を推定し、各最適回転数を随時、表示部5に表示したが、これに限らない。具体的には、各対象地点において推定されたプロペラの最適回転数を平均化し、その平均化された最適回転数を表示部5に表示してもよい。 (7) In the above embodiment, the optimum rotation speed of the propeller is estimated at each target point, and each optimum rotation speed is displayed on the display unit 5 as needed. However, the present invention is not limited to this. Specifically, the optimal rotational speed of the propeller estimated at each target point may be averaged, and the averaged optimal rotational speed may be displayed on the display unit 5.
 (8)図18は、変形例に係る推定装置1gの構成を示すブロック図である。上述した実施形態及び変形例では、ユーザが、航行計画入力部31を適宜操作して、航行計画(具体的には、航行ルート、出航時刻、及び目標到着時刻)を入力したが、これに限らない。具体的には、本変形例に係る推定装置1gは、出航時刻自動入力部40を備えている。出航時刻自動入力部40は、船舶の出航時刻を推定又は検出するとともに、これらの出航時刻を航行計画入力部31に随時、自動で入力する。 (8) FIG. 18 is a block diagram showing a configuration of an estimation apparatus 1g according to a modification. In the embodiment and the modification described above, the user appropriately operates the navigation plan input unit 31 and inputs the navigation plan (specifically, the navigation route, the departure time, and the target arrival time). Absent. Specifically, the estimation device 1g according to this modification includes a departure time automatic input unit 40. The departure time automatic input unit 40 estimates or detects the departure time of the ship, and automatically inputs the departure time to the navigation plan input unit 31 as needed.
 船舶では、航行ごとに、航行の終了(主機の停止)、主機の起動、出航、の動作が繰り返される。そして、本変形例に係る推定装置1gの出航時刻自動入力部40では、詳しくは後述するが、過去において主機(船舶において推力を発生させるための機構部分)が停止されてから次に出航するまでの時間(以下、船舶停止時間と称する場合もある)、が記憶されている。また、出航時刻自動入力部40では、過去において主機が起動されてから出航するまでの時間(以下、暖気運転時間と称する場合もある)、が記憶されている。出航時刻自動入力部40では、これらのデータに基づき、実際に船舶が出航する前に、該船舶が出航する時刻が推定される。よって、本変形例に係る推定装置1gは、主機が停止されてから次に出航するまでの時刻が概ね決まっている船舶(例えば定期船)に好適である。 In the ship, the operation of the end of the navigation (stop of the main engine), the start of the main engine, and the departure of the ship is repeated for each navigation. Then, in the departure time automatic input unit 40 of the estimation device 1g according to the present modification, as will be described in detail later, until the main aircraft (mechanism portion for generating thrust in the ship) is stopped in the past until the next departure. (Hereinafter also referred to as ship stop time). The departure time automatic input unit 40 stores a time from when the main engine is activated in the past until the departure (hereinafter also referred to as warm-up operation time). Based on these data, the departure time automatic input unit 40 estimates the time at which the ship departs before the ship actually departs. Therefore, the estimation device 1g according to the present modification is suitable for a ship (for example, a regular ship) in which the time until the next departure after the main engine is stopped is generally determined.
 図19は、出航時刻自動入力部40の構成を示すブロック図である。出航時刻自動入力部40は、主機停止時刻検出部41と、主機起動時刻検出部42と、出航時刻検出部43と、第1記憶部44と、第2記憶部45と、第1出航時刻推定部46と、第2出航時刻推定部47と、を有している。 FIG. 19 is a block diagram illustrating a configuration of the departure time automatic input unit 40. The departure time automatic input unit 40 includes a main engine stop time detection unit 41, a main machine activation time detection unit 42, a departure time detection unit 43, a first storage unit 44, a second storage unit 45, and a first departure time estimation. Unit 46 and a second departure time estimating unit 47.
 主機停止時刻検出部41は、主機の作動が停止される毎に、その時刻(主機停止時刻)を検出する。主機停止時刻検出部41は、検出した主機停止時刻を、その都度、第1記憶部44及び第1出航時刻推定部46に出力する。 The main machine stop time detection unit 41 detects the time (main machine stop time) every time the operation of the main machine is stopped. The main machine stop time detection unit 41 outputs the detected main machine stop time to the first storage unit 44 and the first departure time estimation unit 46 each time.
 主機起動時刻検出部42は、主機が起動される毎に、その時刻(主機起動時刻)を検出する。主機起動時刻検出部42は、検出した主機起動時刻を、その都度、第2記憶部45及び第2出航時刻推定部47に出力する。 The main machine activation time detector 42 detects the time (main machine activation time) each time the main machine is activated. The main machine activation time detection unit 42 outputs the detected main machine activation time to the second storage unit 45 and the second departure time estimation unit 47 each time.
 出航時刻検出部43は、船舶が出航する毎に、その時刻(出航時刻)を検出する。具体的には、出航時刻検出部43は、自船のプロペラの回転数及び対地速度を検出し、検出された回転数及び対地速度に基づいて、船舶の出航時刻を検出する。出航時刻検出部43は、検出した出航時刻を、出航時刻確定値として、その都度、第1記憶部44、第2記憶部45、及び航行計画入力部31に出力する。 The departure time detection unit 43 detects the time (departure time) every time the ship departs. Specifically, the departure time detector 43 detects the rotation speed and ground speed of the propeller of the ship, and detects the departure time of the ship based on the detected rotation speed and ground speed. The departure time detection unit 43 outputs the detected departure time to the first storage unit 44, the second storage unit 45, and the navigation plan input unit 31 each time as a departure time fixed value.
 第1記憶部44は、主機停止時刻検出部41から随時、出力される主機停止時刻と、出航時刻検出部43から随時、出力される出航時刻とに基づいて、船舶停止時間を算出するとともに、当該船舶停止時間を記憶する。本変形例では、第1記憶部44は、航行毎に生じる船舶停止時間を複数、記憶している。 The first storage unit 44 calculates the ship stop time based on the main engine stop time output from the main engine stop time detection unit 41 as needed and the departure time output from the departure time detection unit 43 as needed, The ship stop time is stored. In the present modification, the first storage unit 44 stores a plurality of ship stop times that occur for each navigation.
 第2記憶部45は、主機起動時刻検出部42から随時、出力される主機起動時刻と、出航時刻検出部43から随時、出力される出航時刻とに基づいて、暖気運転時間を算出するとともに、当該暖気運転時間を記憶する。本変形例では、第2記憶部45は、航行毎に生じる暖気運転時間を複数、記憶している。 The second storage unit 45 calculates the warm-up operation time based on the main unit start time output from the main unit start time detection unit 42 as needed and the departure time output from the departure time detection unit 43 as needed, The warm-up operation time is stored. In the present modification, the second storage unit 45 stores a plurality of warm-up operation times that occur for each navigation.
 第1出航時刻推定部46は、主機停止時刻検出部41で検出された主機停止時刻と、第1記憶部44に記憶されている船舶停止時間とに基づき、船舶の出航時刻を推定する。具体的には、例えば一例として、第1出航時刻推定部46は、主機停止時刻から、第1記憶部44に記憶される複数の船舶停止時間の平均値が経過した時刻を出航時刻と推定し、これを第1出航時刻予測値として、航行計画入力部31に出力する。 The first departure time estimation unit 46 estimates the departure time of the ship based on the main engine stop time detected by the main engine stop time detection unit 41 and the ship stop time stored in the first storage unit 44. Specifically, for example, as an example, the first departure time estimation unit 46 estimates the time when the average value of the plurality of ship stop times stored in the first storage unit 44 has elapsed from the main engine stop time as the departure time. This is output to the navigation plan input unit 31 as the first departure time predicted value.
 第2出航時刻推定部47は、主機起動時刻検出部42で検出された主機起動時刻と、第2記憶部45に記憶されている暖気運転時間とに基づき、船舶の出航時間を推定する。具体的には、例えば一例として、第2出航時刻推定部47は、主機起動時刻から、第2記憶部45に記憶される複数の暖気運転時間の平均値が経過した時刻を出航時刻と推定し、これを第2出航時刻予測値として、航行計画入力部31に出力する。 The second departure time estimation unit 47 estimates the departure time of the ship based on the main unit start time detected by the main unit start time detection unit 42 and the warm-up operation time stored in the second storage unit 45. Specifically, for example, as an example, the second departure time estimation unit 47 estimates the time when the average value of a plurality of warm-up operation times stored in the second storage unit 45 has elapsed from the main engine start time as the departure time. This is output to the navigation plan input unit 31 as the second departure time predicted value.
 航行計画入力部31は、随時入力される第1出航時刻予測値、第2出航時刻予測値、及び出航時刻確定値を、予め入力されている航行ルート及び目標到着時刻とともに出力する。これにより、本変形例の最適回転数推定装置9gは、第1出航時刻予測値、第2出航時刻予測値、及び出航時刻確定値が算出される毎に、最適回転数を更新する。 The navigation plan input unit 31 outputs the first departure time prediction value, the second departure time prediction value, and the departure time fixed value that are input as needed together with the navigation route and the target arrival time that are input in advance. Thereby, the optimal rotation speed estimation device 9g of the present modification updates the optimal rotation speed every time the first departure time predicted value, the second departure time predicted value, and the departure time fixed value are calculated.
 具体的には、航行計画入力部31は、出航前の段階において最も早く推定される第1出航時刻予測値を、航行ルート及び目標到着時刻とともに出力する。そして、最適回転数推定装置9gは、その第1出航時刻予測値が算出された後に、最適回転数を推定する。このように、本変形例では、出航前の比較的早い段階で最適回転数を知ることができるため、当該最適回転数に基づいて、自船の運航計画を早い段階で計画できる。 Specifically, the navigation plan input unit 31 outputs a first estimated departure time estimated value that is estimated earliest before the departure, together with the navigation route and the target arrival time. Then, the optimum rotational speed estimation device 9g estimates the optimal rotational speed after the predicted first departure time is calculated. In this way, in this modification, the optimum rotation speed can be known at a relatively early stage before departure, so that the ship's operation plan can be planned at an early stage based on the optimum rotation speed.
 また、航行計画入力部31は、出航前の段階において、第1出航時刻予測値の次に推定される第2出航時刻予測値を、航行ルート及び目標到着時刻とともに出力する。そして、最適回転数推定装置9gは、その第2出航時刻予測値が算出された後に、最適回転数を推定して更新する。 In addition, the navigation plan input unit 31 outputs the second departure time predicted value estimated next to the first departure time predicted value together with the navigation route and the target arrival time in the stage before departure. Then, after the second departure time predicted value is calculated, the optimal rotation speed estimation device 9g estimates and updates the optimal rotation speed.
 上述のように、第1出航時刻予測値は、船舶の主機が停止されてから次に出航するまでの時間(船舶停止時間)に基づいて予測される。しかし、船舶停止時間は、船舶の運航状況等によって大きく変わる可能性が高く、実際の出航時刻との誤差が大きくなる虞がある。 As described above, the first departure time predicted value is predicted based on the time from when the main engine of the ship stops until the next departure (ship stop time). However, the ship stop time is likely to vary greatly depending on the operation status of the ship, and there is a risk that the error from the actual departure time will increase.
 これに対して、本変形例では、第2出航時刻予測値が暖気運転時間に基づいて予測され
るため、第1出航時刻予測値よりも、実際の出航時刻に近い可能性が高い。よって、第1出航時刻予測値よりは推定される時刻が遅くなるものの、自船の出航時刻を比較的正確に予測でき、その結果、正確な最適回転数を推定できる。
On the other hand, in this modification, since the second departure time predicted value is predicted based on the warm-up operation time, there is a high possibility that it is closer to the actual departure time than the first departure time predicted value. Therefore, although the estimated time is later than the predicted value of the first departure time, the departure time of the ship can be predicted relatively accurately, and as a result, the accurate optimum rotational speed can be estimated.
 また、航行計画入力部31は、出航時刻検出部43によって検出された出航時刻確定値を、航行ルート及び目標到着時刻とともに出力する。そして、最適回転数推定装置9gは、その出航時刻確定値が検出された後に、最適回転数を推定して更新する。このように、本変形例では、実際に出航した時刻によって最適回転数が推定されるため、最適回転数をより正確に予測することができる。また、本変形例では、出航時刻確定値が自動で入力されるため、ユーザが出航時刻を入力する手間を省くことができる。 Further, the navigation plan input unit 31 outputs the departure time fixed value detected by the departure time detection unit 43 together with the navigation route and the target arrival time. Then, the optimum rotational speed estimation device 9g estimates and updates the optimal rotational speed after the departure time fixed value is detected. As described above, in the present modification, the optimum rotational speed is estimated based on the actual departure time, so that the optimal rotational speed can be predicted more accurately. Moreover, in this modified example, since the departure time fixed value is automatically input, it is possible to save the user from inputting the departure time.
 なお、本変形例において、曜日ごとに統計をとり、その統計結果にも基づいて第1出航時刻を推定してもよい。 In this modification, statistics may be taken for each day of the week, and the first departure time may be estimated based on the statistical results.
 (9)図20は、変形例に係る推定装置の出航時刻自動入力部40aの構成を示すブロック図である。本変形例に係る推定装置の出航時刻自動入力部40aは、図19に示す出航時刻自動入力部40と異なり、外部環境検出部48を更に備えている。 (9) FIG. 20 is a block diagram illustrating a configuration of the departure time automatic input unit 40a of the estimation apparatus according to the modification. Unlike the departure time automatic input unit 40 shown in FIG. 19, the departure time automatic input unit 40 a of the estimation apparatus according to the present modification further includes an external environment detection unit 48.
 本変形例では、第2記憶部45には、過去に暖気運転が行われていた際に外部環境検出部48によって検出された外部環境(例えば、温度及び湿度等)が、複数の暖気運転時間のそれぞれに対応づけて記憶されている。そして、本変形例では、第2出航時刻推定部47は、各暖気運転時間に対応づけて記憶されている外部環境にも基づいて、第2出航時刻を推定する。 In this modification, the second storage unit 45 stores the external environment (for example, temperature and humidity) detected by the external environment detection unit 48 when the warm-up operation has been performed in the past, for a plurality of warm-up operation times. Is stored in association with each of the above. And in this modification, the 2nd departure time estimation part 47 estimates the 2nd departure time based also on the external environment memorize | stored corresponding to each warming-up operation time.
 主機を起動させてから出航可能な状態となるまでの時間(すなわち、暖気運転時間)は、例えば季節によって変動する。具体的には、寒い時期には、暑い時期よりもエンジンが温まる時間がかかるため、暖気運転時間を長くする必要がある。 The time (ie, warm-up operation time) from when the main engine is started until it is ready to sail varies depending on the season, for example. Specifically, since it takes more time for the engine to warm in cold weather than in hot weather, it is necessary to extend the warm-up time.
 これに対して、本変形例のように、温度等の外部環境を考慮に入れて第2出航時刻を推定することにより、より正確に最適回転数を推定できる。 On the other hand, as in this modification, it is possible to estimate the optimum rotational speed more accurately by estimating the second departure time in consideration of the external environment such as temperature.
 (10)図21は、図8に示す最適回転数推定装置9bのうち表示部5を除いて構成された最適回転数推定装置9hを備えた最適回転数推定システム1hの構成を示すブロック図である。最適回転数推定システム1hは、最適回転数推定装置9hと、送信部18aと、受信部18bと、を備えている。 (10) FIG. 21 is a block diagram showing a configuration of an optimal rotational speed estimation system 1h provided with an optimal rotational speed estimation apparatus 9h configured by removing the display unit 5 from the optimal rotational speed estimation apparatus 9b shown in FIG. is there. The optimal rotational speed estimation system 1h includes an optimal rotational speed estimation device 9h, a transmission unit 18a, and a reception unit 18b.
 最適回転数推定装置9hは、自船とは異なる位置(例えば一例として、陸地に設けられたデータセンタ19)に設けられている。最適回転数推定装置9hは、上述の通り、図8に示す最適回転数推定装置9bのうち表示部5を除いた構成であり、その動作は表示部5の動作を除き最適回転数推定装置9bと同様であるため、その説明を省略する。 The optimum rotation speed estimation device 9h is provided at a position different from the own ship (for example, the data center 19 provided on land as an example). As described above, the optimum rotational speed estimation device 9h is configured by removing the display unit 5 from the optimal rotational speed estimation device 9b shown in FIG. Since this is the same, the description thereof is omitted.
 送信部18a及び受信部18bは、ともに、上述したデータセンタ19とは異なる位置(例えば一例として、自船)に設けられている。送信部18aは、ユーザによって入力された自船の航行計画(航行ルート、出航時刻、及び到着予定時間)に関するデータを、データセンタ19の最適回転数推定装置9hに送信する。受信部18bは、最適回転数推定装置9hによって推定された最適回転数に関するデータを受信する。受信部18bで受信された最適回転数に関するデータは、表示部5に表示される。 Both the transmission unit 18a and the reception unit 18b are provided at a position different from the data center 19 described above (for example, the ship). The transmission unit 18a transmits data relating to the navigation plan of the ship (the navigation route, the departure time, and the estimated arrival time) input by the user to the optimum rotational speed estimation device 9h of the data center 19. The receiving unit 18b receives data related to the optimum rotational speed estimated by the optimum rotational speed estimation device 9h. Data relating to the optimum rotational speed received by the receiving unit 18 b is displayed on the display unit 5.
 以上のように、最適回転数推定システム1hでは、比較的計算負荷の大きい最適回転数推定装置9hを、自船とは異なる場所に設けることができる。これにより、自船に最適回
転数推定装置9hを設けなくても最適回転数を求めることができるため、自船に搭載される機器を少なくすることができる。
As described above, in the optimal rotational speed estimation system 1h, the optimal rotational speed estimation device 9h having a relatively large calculation load can be provided in a place different from the own ship. As a result, the optimum number of revolutions can be obtained without providing the optimum number of revolutions estimation device 9h on the own ship, so that the number of devices mounted on the own ship can be reduced.
 なお、図21では、最適回転数推定システム1hが備える最適回転数推定装置として、図8に示す最適回転数推定装置9bを例に挙げて説明したが、これに限らず、その他の最適回転数推定装置を備えていてもよい。例えば、最適回転数推定システムは、上述した実施形態及び各変形例で説明した最適回転数推定装置を備えていてもよい。 In FIG. 21, the optimum rotation speed estimation device 9b illustrated in FIG. 8 is described as an example of the optimum rotation speed estimation device provided in the optimum rotation speed estimation system 1h. An estimation device may be provided. For example, the optimal rotational speed estimation system may include the optimal rotational speed estimation device described in the above-described embodiments and modifications.
 また、本変形例に係る最適回転数推定システム1hの最適回転数推定装置9hは、潮流予測値及び風速予測値に基づいて最適回転数を推定したが、これに限らない。具体的には、公的機関から発表される予測値ではなく、潮流計等によって実際に測定される表層流の速度、風力推進速度(風力に起因する自船の推進速度)、波の影響、船舶の推進性能、船舶の主機の劣化状態、等にも基づいて、最適回転数を推定してもよい。 Moreover, although the optimal rotational speed estimation device 9h of the optimal rotational speed estimation system 1h according to the present modified example estimates the optimal rotational speed based on the tidal current predicted value and the wind speed predicted value, the present invention is not limited to this. Specifically, it is not a predicted value announced by a public institution, but the surface flow velocity actually measured by a tidal meter, wind propulsion speed (propulsion speed of own ship caused by wind force), the influence of waves, The optimum rotational speed may be estimated based on the propulsion performance of the ship, the deterioration state of the main engine of the ship, and the like.
 (11)また、上述した実施形態及び各変形例において、学習データの蓄積が十分でない場合に、学習データを補完することもできる。 (11) In the above-described embodiment and each modification, the learning data can be supplemented when the learning data is not sufficiently accumulated.
 図22は、学習データの補完について説明するための模式図である。船舶の形状は概ね左右対称であるため、風力特性(風向風速に起因する船の進行速度)も、左右対称となることが予想される。具体的には、例えば、ある条件下で航行している船が、左舷後方45度の風を受けた場合と、右舷後方45度の風(風速の大きさは互いに同じ)を受けた場合とでは、その進行方向が左右対称になると予想される。よって、図22を参照して、例えば、プロペラ回転数が所定の回転数、風向が左舷後方45度、風速が所定の大きさ、のときに、対地速度がVであった場合、その学習データに基づいて、以下のようにデータを補完することができる。具体的には、プロペラ回転数及び風速の大きさは上記学習データと同じであり、風向が右舷後方45度、のときの学習データとして、左右反転させたベクトルV'を補完することができる。このように学習データを補完することにより、例えば学習データの蓄積が不十分な初期段階であっても、精度よく最適回転数を推定することができる。 FIG. 22 is a schematic diagram for explaining learning data complementation. Since the shape of the ship is generally bilaterally symmetric, it is expected that the wind power characteristics (the traveling speed of the ship due to the wind direction and wind speed) are also bilaterally symmetric. Specifically, for example, a ship that is sailing under certain conditions receives 45 degrees of wind behind the starboard and 45 degrees of wind behind the starboard (the wind speed is the same). Then, the traveling direction is expected to be symmetrical. Thus, with reference to FIG. 22, for example, when the propeller speed is a predetermined speed, wind direction port backward 45 degrees, when the wind speed is a predetermined magnitude, of the ground speed was V G, the learned Based on the data, the data can be supplemented as follows. Specifically, the size of the propeller speed and the wind speed is the same as the learning data, it is possible to wind direction starboard aft 45 degrees, as learning data when the complements the vector V 'G obtained by mirror-inverting . By supplementing the learning data in this way, it is possible to accurately estimate the optimum rotational speed even at an initial stage where the learning data is not sufficiently accumulated, for example.
 1f           回転数制御装置
 1h           最適回転数推定システム
 9,9b,9c,9d,9e,9g,9h   最適回転数推定装置
 12,12e       対水速度出力部(対水速度候補値算出部)
 15,15c,15d   最適回転数推定部
 34           対水速度予測部
 35           回転数候補値出力部
 36           風速予測値出力部
1f Rotational speed controller 1h Optimal rotational speed estimation system 9, 9b, 9c, 9d, 9e, 9g, 9h Optimal rotational speed estimator 12, 12e Water speed output part (water speed candidate value calculation part)
15, 15c, 15d Optimal rotation speed estimation unit 34 Water speed prediction unit 35 Speed candidate value output unit 36 Wind speed prediction value output unit

Claims (12)

  1.  プロペラの回転によって推進する船舶における前記プロペラの最適回転数を推定する最適回転数推定装置であって、
     予め設定された航行ルートに沿って航行する前記船舶が目標到着時刻までに目的地に到着するために必要な前記船舶の対地速度ベクトルと、前記航行ルート上の地点である対象地点における表層流速度の予測値とに基づいて、前記目標到着時刻までに前記目的地に到着するために必要な前記対象地点における対水速度ベクトルである対水速度予測値を予測する対水速度予測部と、
     前記対象地点において前記船舶に作用すると予測される風速ベクトルである風速予測値を出力する風速予測値出力部と、
     前記プロペラの回転数を示す互いに値が異なるデータであって、前記最適回転数の候補となる複数の回転数候補値、を出力する回転数候補値出力部と、
     前記対象地点における前記風速予測値、及び前記複数の回転数候補値が入力され、前記風速予測値と前記回転数候補値との組み合わせにより特定される各条件に対応する値を、前記対象地点における前記船舶の対水速度ベクトルの候補となる対水速度候補値として出力する対水速度候補値算出部と、
     複数の前記対水速度候補値のうち、前記対水速度予測値との差が最も小さい対水速度候補値、に対応する回転数候補値を、前記対象地点における前記最適回転数として推定する最適回転数推定部と、
     を備えていることを特徴とする、最適回転数推定装置。
    An optimal rotational speed estimation device for estimating an optimal rotational speed of the propeller in a ship propelled by rotation of a propeller,
    The ground velocity vector of the ship necessary for the ship navigating along the preset navigation route to arrive at the destination by the target arrival time, and the surface layer flow velocity at the target point that is a point on the navigation route A water speed prediction unit that predicts a water speed prediction value that is a water speed vector at the target point required to arrive at the destination by the target arrival time based on the predicted value of
    A wind speed predicted value output unit that outputs a wind speed predicted value that is a wind speed vector predicted to act on the ship at the target point;
    A rotation number candidate value output unit that outputs a plurality of rotation number candidate values that are candidates for the optimum rotation number, and are data having different values indicating the rotation number of the propeller,
    The wind speed prediction value at the target point and the plurality of rotation number candidate values are input, and values corresponding to the respective conditions specified by the combination of the wind speed prediction value and the rotation number candidate value are determined at the target point. A water speed candidate value calculation unit that outputs a water speed candidate value that is a candidate for the water speed vector of the ship;
    The optimum rotational speed value corresponding to the water speed candidate value having the smallest difference from the water speed predicted value among the plurality of water speed candidate values is estimated as the optimum rotational speed at the target point. A rotation speed estimation unit;
    An optimum rotational speed estimation device comprising:
  2.  請求項1に記載の最適回転数推定装置において、
     前記対水速度候補値算出部は、ニューラルネットワークを用いて構成され、
     それぞれに、前記風速予測値に関するデータ及び前記回転数候補値に関するデータのいずれか一方が入力される少なくとも2つの入力ユニットと、
     前記対水速度候補値を出力する出力ユニットと
     を有し、
     前記ニューラルネットワークにおける入力側のユニットから出力される値には、結合係数が乗算された後、出力側のユニットに伝送されることを特徴とする、最適回転数推定装置。
    In the optimal rotation speed estimation device according to claim 1,
    The water speed candidate value calculation unit is configured using a neural network,
    Each of at least two input units to which any one of the data regarding the wind speed prediction value and the data regarding the rotation speed candidate value is input,
    An output unit that outputs the water speed candidate value,
    The optimum rotational speed estimation apparatus, wherein a value output from an input side unit in the neural network is multiplied by a coupling coefficient and then transmitted to an output side unit.
  3.  請求項2に記載の、最適回転数推定装置において、
     海上を航行する前記船舶の対地速度ベクトルを算出する対地速度算出部と、
     前記プロペラの回転数を検出するプロペラ回転数検出部と、
     前記船舶に搭載されて該船舶に対する風力の風速ベクトルを計測する風速風向計と、
     を更に備え、
     各前記入力ユニットには、前記プロペラ回転数検出部で検出された前記プロペラの回転数に関するデータ、及び前記風速風向計で計測された前記風速ベクトルに関するデータ、の一方が入力され、
     前記出力ユニットからは、前記プロペラ回転数検出部で検出された前記プロペラの回転数、及び前記風速風向計で計測された前記風速ベクトル、の組み合わせにより特定される各条件に対応する値が、該船舶の対水速度ベクトルと推定されて対水速度推定値として出力され、
     前記対水速度推定値と、前記対地速度算出部で算出された教師信号としての前記対地速度ベクトルとを比較するとともに、該対水速度推定値と該教師信号との誤差が少なくなるように、前記結合係数を更新する更新部
     を更に備えていることを特徴とする、最適回転数推定装置。
    In the optimal rotation speed estimation device according to claim 2,
    A ground speed calculation unit for calculating a ground speed vector of the ship navigating at sea;
    A propeller rotational speed detector for detecting the rotational speed of the propeller;
    An anemometer mounted on the vessel and measuring a wind velocity vector of wind force with respect to the vessel;
    Further comprising
    Each of the input units receives one of data relating to the rotation speed of the propeller detected by the propeller rotation speed detector and data relating to the wind speed vector measured by the wind speed and anemometer.
    From the output unit, a value corresponding to each condition specified by a combination of the rotation speed of the propeller detected by the propeller rotation speed detection unit and the wind speed vector measured by the wind speed anemometer, Estimated as the water velocity vector of the ship and output as the water velocity estimate,
    While comparing the water speed estimated value and the ground speed vector as the teacher signal calculated by the ground speed calculator, so that the error between the water speed estimated value and the teacher signal is reduced, An optimum rotational speed estimation apparatus, further comprising: an update unit that updates the coupling coefficient.
  4.  プロペラの回転によって推進する船舶における前記プロペラの最適回転数を推定する最
    適回転数推定装置であって、
     予め設定された航行ルートに沿って航行する前記船舶が目標到着時刻までに目的地に到着するために必要な前記船舶の対地速度ベクトルと、前記航行ルート上の地点である対象地点における表層流速度の予測値とに基づいて、前記目標到着時刻までに前記目的地に到着するために必要な前記対象地点における対水速度ベクトルである対水速度予測値を予測する対水速度予測部と、
     前記対象地点において前記船舶に作用すると予測される風速ベクトルである風速予測値を出力する風速予測値出力部と、
     前記プロペラの回転数、及び前記船舶に対する風力の風速ベクトル、の組み合わせにより特定される各条件のときの前記船舶の対地速度ベクトルを、複数の前記条件毎に記憶する複数のセル部、を有し、各セル部に記憶される前記対地速度ベクトルの平均値を該各セル部に対応する前記各条件のときの対水速度ベクトルとして記憶する記憶部と、
     前記記憶部において、前記風速予測値及び前記対水速度予測値で特定される回転数を、最適回転数として推定する最適回転数推定部と、
     を備えていることを特徴とする、最適回転数推定装置。
    An optimal rotational speed estimation device for estimating an optimal rotational speed of the propeller in a ship propelled by rotation of a propeller,
    The ground velocity vector of the ship necessary for the ship navigating along the preset navigation route to arrive at the destination by the target arrival time, and the surface layer flow velocity at the target point that is a point on the navigation route A water speed prediction unit that predicts a water speed prediction value that is a water speed vector at the target point required to arrive at the destination by the target arrival time based on the predicted value of
    A wind speed predicted value output unit that outputs a wind speed predicted value that is a wind speed vector predicted to act on the ship at the target point;
    A plurality of cell units for storing, for each of the plurality of conditions, a ground speed vector of the ship at each condition specified by a combination of the rotation speed of the propeller and the wind speed vector of the wind force with respect to the ship; A storage unit that stores an average value of the ground speed vectors stored in each cell unit as a water speed vector for each of the conditions corresponding to each cell unit;
    In the storage unit, an optimal rotational speed estimation unit that estimates the rotational speed specified by the predicted wind speed value and the predicted water speed value as the optimal rotational speed;
    An optimum rotational speed estimation device comprising:
  5.  請求項4に記載の最適回転数推定装置において、
     海上を航行する前記船舶の対地速度ベクトルを算出する対地速度算出部と、
     前記プロペラの回転数を検出するプロペラ回転数検出部と、
     前記船舶に搭載されて該船舶に対する風力の風速ベクトルを計測する風速風向計と、
     を更に備え、
     前記記憶部は、前記対地速度算出部で算出された前記対地速度ベクトルを、該対地速度ベクトルの算出に必要なデータが取得されたときに前記プロペラ回転数検出部で検出された前記回転数、及び前記風速風向計で計測された前記風速ベクトル、の組み合わせにより特定される前記セル部に記憶させる更新部、を更に備えていることを特徴とする、最適回転数推定装置。
    In the optimal rotation speed estimation device according to claim 4,
    A ground speed calculation unit for calculating a ground speed vector of the ship navigating at sea;
    A propeller rotational speed detector for detecting the rotational speed of the propeller;
    An anemometer mounted on the vessel and measuring a wind velocity vector of wind force with respect to the vessel;
    Further comprising
    The storage unit is configured to detect the rotation speed detected by the propeller rotation speed detection unit when the data necessary for calculation of the ground speed vector is acquired from the ground speed vector calculated by the ground speed calculation unit, And an update unit for storing in the cell unit specified by a combination of the wind velocity vector measured by the wind velocity and anemometer.
  6.  請求項1から請求項5のいずれか1項に記載の最適回転数推定装置において、
     前記航行ルートに沿って航行する前記船舶が目標到着時刻までに目的地に到着するために必要な前記船舶の対地速度ベクトルである対地速度予測値を予測する対地速度予測部、を更に備え、
     前記対水速度予測部は、前記対地速度予測部で予測された前記対地速度ベクトルに基づいて、前記対水速度予測値を予測することを特徴とする、最適回転数推定装置。
    In the optimal rotation speed estimation device according to any one of claims 1 to 5,
    A ground speed prediction unit that predicts a ground speed prediction value that is a ground speed vector of the ship necessary for the ship navigating along the navigation route to reach a destination by a target arrival time;
    The said water speed prediction part predicts the said water speed prediction value based on the said ground speed vector estimated in the said ground speed prediction part, The optimal rotation speed estimation apparatus characterized by the above-mentioned.
  7.  請求項6に記載の最適回転数推定装置において、
     前記航行ルート、前記船舶の出航時刻、及び前記目標到着時刻が入力されるとともに、入力された前記航行ルート、前記出航時刻、及び前記目標到着時刻を前記対地速度予測部に出力する航行計画入力部、を更に備えることを特徴とする、最適回転数推定装置。
    In the optimum rotational speed estimation device according to claim 6,
    A navigation plan input unit that inputs the navigation route, the departure time of the ship, and the target arrival time, and outputs the input navigation route, the departure time, and the target arrival time to the ground speed prediction unit And an optimum rotational speed estimation device.
  8.  請求項7に記載の最適回転数推定装置において、
     前記出航時刻を、前記船舶の主機の停止時刻、及び前記船舶の主機の起動時刻、の少なくとも一方に基づいて推定するとともに、推定した該出航時刻を出航時刻予測値として前記航行計画入力部に出力する出航時刻推定部、を更に備えることを特徴とする、最適回転数推定装置。
    In the optimum rotational speed estimation device according to claim 7,
    The departure time is estimated based on at least one of the stop time of the main engine of the ship and the start time of the main engine of the ship, and the estimated departure time is output to the navigation plan input unit as a predicted departure time An optimum rotational speed estimation device, further comprising a departure time estimation unit.
  9.  請求項7又は請求項8に記載の最適回転数推定装置において、
     前記プロペラの回転数及び前記船舶の対地速度に基づいて前記出航時刻を検出するとともに、該出航時刻を出航時刻確定値として前記航行計画入力部に出力する出航時刻検出部、を更に備えることを特徴とする、最適回転数推定装置。
    In the optimum rotational speed estimation device according to claim 7 or 8,
    A departure time detection unit that detects the departure time based on the rotation speed of the propeller and the ground speed of the ship, and outputs the departure time to the navigation plan input unit as a departure time fixed value. An optimum rotational speed estimation device.
  10.  請求項1から請求項9のいずれか1項に記載の最適回転数推定装置において、
     前記船舶としての自船に搭載されていることを特徴とする、最適回転数推定装置。
    In the optimal rotation speed estimation device according to any one of claims 1 to 9,
    An optimum rotational speed estimation device mounted on the ship as the ship.
  11.  船舶としての自船とは異なる場所に搭載された、請求項1から請求項9のいずれか1項に記載の最適回転数推定装置と、
     前記最適回転数推定装置とは異なる場所に配置され、該自船の航行ルート、該自船の出航時刻、及び該自船の目標到着時刻、に関するデータを、前記最適回転数推定装置に送信する送信部と、
     前記最適回転数推定装置とは異なる場所に配置され、前記最適回転数推定装置で推定された最適回転数に関するデータを受信する受信部と、
     を備えていることを特徴とする、最適回転数推定システム。
    The optimal rotation speed estimation device according to any one of claims 1 to 9, which is mounted in a place different from the ship as a ship,
    It is arranged at a location different from the optimum rotational speed estimation device, and transmits data relating to the navigation route of the own ship, the departure time of the own ship, and the target arrival time of the own ship to the optimum rotational speed estimation device. A transmission unit;
    A receiving unit that is arranged at a different location from the optimal rotational speed estimation device and receives data relating to the optimal rotational speed estimated by the optimal rotational speed estimation device;
    An optimum rotational speed estimation system comprising:
  12.  請求項1から請求項10のいずれか1項に記載の最適回転数推定装置と、
     前記最適回転数推定装置で推定された船舶のプロペラの最適回転数に基づき、該船舶のプロペラの回転数を制御する回転数制御部と、
     を備えていることを特徴とする、回転数制御装置。
    The optimal rotation speed estimation device according to any one of claims 1 to 10,
    A rotational speed control unit that controls the rotational speed of the propeller of the ship based on the optimal rotational speed of the propeller of the ship estimated by the optimal rotational speed estimation device;
    A rotation speed control device comprising:
PCT/JP2015/081578 2014-12-16 2015-11-10 Optimum rotation speed estimation device, optimum rotation speed estimation system, and rotation speed control device WO2016098491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014254248 2014-12-16
JP2014-254248 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016098491A1 true WO2016098491A1 (en) 2016-06-23

Family

ID=56126390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081578 WO2016098491A1 (en) 2014-12-16 2015-11-10 Optimum rotation speed estimation device, optimum rotation speed estimation system, and rotation speed control device

Country Status (1)

Country Link
WO (1) WO2016098491A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533823A (en) * 2018-07-31 2021-03-19 施奥泰尔有限公司 Method for evaluating influence of shallow water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233595A (en) * 1995-02-27 1996-09-13 Fuji Royal:Kk Display device of navigation information
JP2010223639A (en) * 2009-03-19 2010-10-07 National Maritime Research Institute Ocean current data assimilation method and assimilation system
JP2011214471A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Ship main engine control system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233595A (en) * 1995-02-27 1996-09-13 Fuji Royal:Kk Display device of navigation information
JP2010223639A (en) * 2009-03-19 2010-10-07 National Maritime Research Institute Ocean current data assimilation method and assimilation system
JP2011214471A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Ship main engine control system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533823A (en) * 2018-07-31 2021-03-19 施奥泰尔有限公司 Method for evaluating influence of shallow water
CN112533823B (en) * 2018-07-31 2022-11-15 施奥泰尔有限公司 Method for evaluating influence of shallow water

Similar Documents

Publication Publication Date Title
JP6513677B2 (en) Ship characteristic estimation device and automatic steering device
EP3388327B1 (en) Route setting method for underwater vehicle, underwater vehicle optimum control method using same, and underwater vehicle
JP5312425B2 (en) Ship operation support system
JP5276720B2 (en) Ship maneuvering control method and ship maneuvering control system
US8761975B2 (en) Method and apparatus for real-time polars
EP3321631B1 (en) A inertial and terrain based navigation system
Subramani et al. Time-optimal path planning: Real-time sea exercises
CN109562819B (en) Method and sensor system for determining the water velocity of a marine vessel
Woithe et al. Improving slocum glider dead reckoning using a doppler velocity log
JP2020158072A (en) Vessel performance estimation method and vessel performance estimation system by assimilation of data
JP6251842B2 (en) Ship operation support system and ship operation support method
WO2019004416A1 (en) Optimal route searching method and device
JP6340067B2 (en) Surface flow estimation device, surface flow estimation system, ocean model estimation device, and risk determination device
CN105263798A (en) Navigation device and component service life notification method
WO2016098491A1 (en) Optimum rotation speed estimation device, optimum rotation speed estimation system, and rotation speed control device
JP2019010983A (en) Ship performance analysis system and ship performance analysis method
Jin et al. A compensation algorithm with motion constraint in DVL/SINS tightly coupled positioning
JP6154540B2 (en) Ship characteristic estimation device
JP2019043289A (en) Cruising controller and cruising control method
WO2019188530A1 (en) Search support device, search support method, and computer-readable recording medium
JP2006330884A (en) Tide prediction system
JP6864483B2 (en) Disturbance guesser
JP2019090645A (en) Log speed estimation device, log speed display device, periodic current measuring device, automatic navigation device, and method for estimating log speed
WO2019004362A1 (en) Vessel operation assistance apparatus and vessel operation assistance program
JP2016114478A (en) Flow velocity difference estimation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP