JP2020158072A - Vessel performance estimation method and vessel performance estimation system by assimilation of data - Google Patents

Vessel performance estimation method and vessel performance estimation system by assimilation of data Download PDF

Info

Publication number
JP2020158072A
JP2020158072A JP2019062647A JP2019062647A JP2020158072A JP 2020158072 A JP2020158072 A JP 2020158072A JP 2019062647 A JP2019062647 A JP 2019062647A JP 2019062647 A JP2019062647 A JP 2019062647A JP 2020158072 A JP2020158072 A JP 2020158072A
Authority
JP
Japan
Prior art keywords
ship
data
cfd
model
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019062647A
Other languages
Japanese (ja)
Inventor
勝 辻本
Masaru Tsujimoto
辻本  勝
康雄 一ノ瀬
Yasuo Ichinose
康雄 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2019062647A priority Critical patent/JP2020158072A/en
Publication of JP2020158072A publication Critical patent/JP2020158072A/en
Pending legal-status Critical Current

Links

Abstract

To provide a vessel performance estimation method and a vessel performance estimation system by assimilation of data for improving accuracy of performance estimation of a vessel by using data acquired from a model vessel or an actual vessel.SOLUTION: Accuracy of performance estimation for a vessel is improved in numerical fluid dynamics (CFD) calculation by having data assimilated in the numerical fluid dynamics (CFD) calculation by using at least one of model vessel data measured by using a model vessel of the vessel and actual vessel data measured in the actual vessel for calculation of the numerical fluid dynamics (CFD) for the performance estimation of the vessel.SELECTED DRAWING: Figure 1

Description

本発明は、船舶の性能推定をするための数値流体力学(CFD)計算結果の精度を向上させるデータ同化による船舶性能推定方法及び船舶性能推定システムに関する。 The present invention relates to a ship performance estimation method and a ship performance estimation system by data assimilation that improves the accuracy of computational fluid dynamics (CFD) calculation results for estimating ship performance.

船舶の性能予測は、実船との相似模型を使用した水槽試験からの予測が行われている。近年の数値計算技術の進展によりCFD(数値流体力学、計算流体力学)でも性能計算を行うことが可能だが、まだ数値流体力学(CFD)のみで性能予測ができるレベルには至っていない。 The performance of a ship is predicted from a water tank test using a model similar to the actual ship. With the progress of numerical calculation technology in recent years, it is possible to perform performance calculation by CFD (Computational Fluid Dynamics, Computational Fluid Dynamics), but it has not yet reached the level where performance can be predicted only by Computational Fluid Dynamics (CFD).

ここで、特許文献1には、船舶に搭載したGPSと、ジャイロコンパスと、LOG船速計と、これらの取得情報について情報取得時刻を含んだ沿岸海流個別情報として記憶するメモリと、記憶した沿岸海流個別情報を無線通信手段にて送信する通信装置と、送信された沿岸海流個別情報を受信する通信装置と、受信した沿岸海流個別情報を処理して複数の船舶の位置と時刻に対応させた沿岸海流観測データを得る沿岸海流観測データ処理部と、沿岸海流予測データ処理部を具備した海流データ同化システムが開示されている。
また、特許文献2には、第一推定値の気象予報値を観測値で修正した大気解析データに含まれる風向及び風速データを基にデータ補間してN時の波浪予報データを推算すると、これをN+α時の波浪予測のための初期条件値として波浪推算プログラムに設定し、N+α時の波浪を予測する波浪予測システムが開示されている。
また、特許文献3には、データ同化処理で用いる観測データを効率的に収集することを目的として、数値海洋モデルに基づいて予報対象となる海洋環境に関する物理的相関係数を算出し、算出値を利用してガウス型相関係数分布を仮定することにより物理的相関距離を算出する一方で、測定対象となる海域の水深、コリオリパラメータ、重力加速度等の特性に基づいて海洋に発生する擾乱が影響を及ぼす範囲であるロスビーの変形半径を算出し、数値海洋モデルによる物理量の予測結果、あるいはロスビーの変形半径の算出結果を計測間隔とする、あるいは相関距離とロスビーの変形半径の大小関係を比較しより小さい方を選択する海洋環境計測間隔決定方法が開示されている。
Here, Patent Document 1 describes a GPS mounted on a ship, a gyro compass, a LOG ship speed meter, a memory for storing these acquired information as individual coastal current information including information acquisition time, and a stored coast. A communication device that transmits individual ocean current information by wireless communication means, a communication device that receives the transmitted individual ocean current information, and the received individual ocean current information are processed to correspond to the positions and times of multiple vessels. A sea current data assimilation system including a coastal current observation data processing unit for obtaining coastal current observation data and a coastal current prediction data processing unit is disclosed.
Further, in Patent Document 2, the wave forecast data at N o'clock is estimated by data interpolation based on the wind direction and wind speed data included in the atmospheric analysis data obtained by correcting the weather forecast value of the first estimated value with the observed value. Is set in the wave estimation program as an initial condition value for wave prediction at N + α, and a wave prediction system for predicting waves at N + α is disclosed.
Further, in Patent Document 3, for the purpose of efficiently collecting observation data used in data assimilation processing, a physical correlation coefficient relating to the marine environment to be predicted is calculated based on a numerical ocean model, and the calculated value is obtained. While calculating the physical correlation distance by assuming a Gaussian correlation coefficient distribution using, the disturbance that occurs in the ocean based on the characteristics such as the water depth, colioli parameter, and gravity acceleration of the sea area to be measured Calculate the deformation radius of Rosby, which is the range of influence, and use the prediction result of the physical quantity by the numerical ocean model or the calculation result of the deformation radius of Rosby as the measurement interval, or compare the magnitude relationship between the correlation distance and the deformation radius of Rosby. A method for determining the marine environment measurement interval for selecting the smaller one is disclosed.

特開2010−223639号公報JP-A-2010-223639 特開2010−54460号公報Japanese Unexamined Patent Publication No. 2010-54460 特開2004−28616号公報Japanese Unexamined Patent Publication No. 2004-28616

特許文献1から特許文献3は、データ同化により船舶の性能推定の精度を向上させようとするものではない。
数値流体力学(CFD)のみによる伴流係数や推力減少係数等の自航要素の推定では、2種類の船体形状の場合の結果が水槽試験値と逆の傾向を示す場合があるなど定性的にも精度が不足している。
そこで本発明は、模型船又は実船から取得したデータを用いて船舶の性能推定の精度を向上させるデータ同化による船舶性能推定方法及び船舶性能推定システムを提供することを目的とする。
Patent Documents 1 to 3 do not attempt to improve the accuracy of ship performance estimation by assimilating data.
Qualitatively, in the estimation of self-propelled factors such as the wake-up coefficient and thrust reduction coefficient using only computational fluid dynamics (CFD), the results for the two types of hull shapes may show the opposite tendency to the water tank test values. However, the accuracy is insufficient.
Therefore, an object of the present invention is to provide a ship performance estimation method and a ship performance estimation system by data assimilation that improves the accuracy of ship performance estimation using data acquired from a model ship or an actual ship.

請求項1記載に対応したデータ同化による船舶性能推定方法においては、船舶の性能推定をするための数値流体力学(CFD)計算に、船舶の模型船を使用して計測した模型船データ及び船舶の実船で計測した実船データの少なくとも1つを用いて数値流体力学(CFD)計算にデータ同化させて、数値流体力学(CFD)計算における船舶の性能推定の精度を向上することを特徴とする。
請求項1に記載の本発明によれば、実船性能推定を高精度で可能とすることができる。
In the ship performance estimation method by data assimilation corresponding to claim 1, the model ship data measured using the ship model ship and the ship's model ship data are used for the computational fluid dynamics (CFD) calculation for estimating the ship performance. It is characterized by improving the accuracy of ship performance estimation in numerical fluid dynamics (CFD) calculation by assimilating the data into numerical fluid dynamics (CFD) calculation using at least one of the actual ship data measured on the actual ship. ..
According to the first aspect of the present invention, it is possible to estimate the performance of an actual ship with high accuracy.

請求項2記載の本発明は、模型船データとして模型船流場データを用い、実船データとして実船流場データを用いることを特徴とする。
請求項2に記載の本発明によれば、数値流体力学(CFD)計算における船舶の流場の性能推定の精度をより一層向上させることができる。
The present invention according to claim 2 is characterized in that model ship flow field data is used as model ship data and actual ship flow field data is used as actual ship data.
According to the second aspect of the present invention, the accuracy of estimating the performance of the flow field of a ship in the computational fluid dynamics (CFD) calculation can be further improved.

請求項3記載の本発明は、データ同化のためのパラメータとして、乱流モデルの数値パラメータを用いることを特徴とする。
請求項3に記載の本発明によれば、乱流モデルにより流体力学の基礎方程式であるナビエ・ストークス(Navier-Stokes)方程式を近似することで数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。
The present invention according to claim 3 is characterized in that a numerical parameter of a turbulence model is used as a parameter for data assimilation.
According to the third aspect of the present invention, the accuracy can be improved while simplifying the computational fluid dynamics (CFD) calculation by approximating the Navier-Stokes equation, which is a basic equation of fluid dynamics, by using a turbulence model. Can be improved.

請求項4記載の本発明は、乱流モデルの数値パラメータとして、MSA(Modified Spalart-Allmaras) モデルの場合は渦度調整パラメータ(Cvor)、乱流遷移位置、DES(Detached Eddy Simulation)モデルの場合はモデル定数(cdes)、又は変化傾向を含む入力調整パラメータのいずれか1つを用いることを特徴とする。
請求項4に記載の本発明によれば、数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。
According to the fourth aspect of the present invention, as the numerical parameters of the turbulence model, in the case of the MSA (Modified Spalart-Allmaras) model, the vorticity adjustment parameter (Cvor), the turbulence transition position, and in the case of the DES (Detached Eddy Simulation) model. Is characterized by using either a model constant (cdes) or an input adjustment parameter including a change tendency.
According to the fourth aspect of the present invention, the accuracy can be improved while simplifying the computational fluid dynamics (CFD) calculation.

請求項5記載の本発明は、データ同化のためのパラメータとして、船舶の船体境界面に壁関数のパラメータを用い、壁関数のパラメータにより船体表面の境界条件を修正することを特徴とする。
請求項5に記載の本発明によれば、壁関数モデルを用いて境界層流れを近似することで数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。
The present invention according to claim 5 is characterized in that a wall function parameter is used for the hull boundary surface of a ship as a parameter for data assimilation, and the boundary condition of the hull surface is modified by the wall function parameter.
According to the fifth aspect of the present invention, the accuracy can be improved while simplifying the computational fluid dynamics (CFD) calculation by approximating the boundary layer flow using the wall function model.

請求項6記載の本発明は、データ同化のためのパラメータとして、船舶の船体まわりの流場及び/又は船体後の流場を計測し、境界条件を修正することを特徴とする。
請求項6に記載の本発明によれば、数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。
The present invention according to claim 6 is characterized in that, as a parameter for data assimilation, the flow field around the hull of the ship and / or the flow field after the hull is measured, and the boundary condition is modified.
According to the sixth aspect of the present invention, the accuracy can be improved while simplifying the computational fluid dynamics (CFD) calculation.

請求項7記載の本発明は、データ同化のためのパラメータとして、複数の船舶の模型流場データ又は実船流場データを用い、数値流体力学(CFD)計算の計算結果の流場から、数値流体力学(CFD)計算の解析対象の流場の補正を行なうことを特徴とする。
請求項7に記載の本発明によれば、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。
The present invention according to claim 7 uses model flow field data or actual ship flow field data of a plurality of ships as parameters for data assimilation, and numerical values are obtained from the flow field of the calculation result of computational fluid dynamics (CFD) calculation. It is characterized by correcting the flow field to be analyzed in computational fluid dynamics (CFD) calculation.
According to the seventh aspect of the present invention, the accuracy of estimating the performance of a ship in computational fluid dynamics (CFD) calculation can be further improved.

請求項8記載の本発明は、船体形状を変えた複数の船舶の模型船について水槽試験により模型船流場データを取得し、船体形状を変えた複数の船舶について数値流体力学(CFD)計算を行い、模型船流場データの変化傾向を数値流体力学(CFD)計算に取り込むことを特徴とする。
請求項8に記載の本発明によれば、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。
According to the eighth aspect of the present invention, model ship flow field data is acquired by a water tank test for model ships of a plurality of ships having different hull shapes, and computational fluid dynamics (CFD) calculation is performed for a plurality of ships having different hull shapes. It is characterized in that the change tendency of the model ship flow field data is incorporated into the computational fluid dynamics (CFD) calculation.
According to the eighth aspect of the present invention, the accuracy of estimating the performance of a ship in computational fluid dynamics (CFD) calculation can be further improved.

請求項9記載の本発明は、船舶の相似形状の複数の模型船について水槽試験により模型船流場データを取得し、レイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込むことを特徴とする。
請求項9に記載の本発明によれば、数値流体力学(CFD)計算におけるレイノルズ数の影響を反映し、船舶の性能推定の精度をより一層向上させることができる。
According to the ninth aspect of the present invention, model ship flow field data is acquired by a water tank test for a plurality of model ships having similar shapes to the ship, the influence of the Reynolds number is extracted, and the influence of the Reynolds number is calculated by computational fluid dynamics (CFD). It is characterized by being incorporated into the calculation.
According to the ninth aspect of the present invention, the accuracy of ship performance estimation can be further improved by reflecting the influence of the Reynolds number in the computational fluid dynamics (CFD) calculation.

請求項10記載の本発明は、模型船に付加物を取り付け模型船の周囲の流速分布を制御してレイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込むことを特徴とする。
請求項10に記載の本発明によれば、付加物により流速分布を制御して、レイノルズ数の影響を適切に取り込むことができる。
According to the tenth aspect of the present invention, an adduct is attached to the model ship, the flow velocity distribution around the model ship is controlled to extract the influence of the Reynolds number, and the influence of the Reynolds number is incorporated into the computational fluid dynamics (CFD) calculation. It is characterized by.
According to the tenth aspect of the present invention, the flow velocity distribution can be controlled by the adduct to appropriately incorporate the influence of the Reynolds number.

請求項11記載の本発明は、模型船の実験を行なう試験水槽の一部に閉塞路を設け、さらに閉塞路にフローライナーを設けて模型船の周囲の流速分布を制御してレイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込むことを特徴とする。
請求項11に記載の本発明によれば、レイノルズ数の影響を適切に取り込み、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。
According to the eleventh aspect of the present invention, an obstruction path is provided in a part of a test water tank for conducting an experiment of a model ship, and a flow liner is further provided in the obstruction path to control the flow velocity distribution around the model ship to influence the Reynolds number. Is extracted, and the influence of the Reynolds number is incorporated into the computational fluid dynamics (CFD) calculation.
According to the eleventh aspect of the present invention, the influence of the Reynolds number can be appropriately taken in, and the accuracy of the performance estimation of the ship in the computational fluid dynamics (CFD) calculation can be further improved.

請求項12記載の本発明は、データ同化を船舶の自航要素の性能推定に関連した範囲で行ったことを特徴とする。
請求項12に記載の本発明によれば、数値流体力学(CFD)計算において狂いやすい船尾周りの自航要素を精度よく推定して数値流体力学(CFD)計算の精度を向上させることができる。
The present invention according to claim 12 is characterized in that data assimilation is performed within a range related to performance estimation of a self-propelled element of a ship.
According to the twelfth aspect of the present invention, it is possible to accurately estimate the self-propelled element around the stern, which tends to be out of order in the computational fluid dynamics (CFD) calculation, and improve the accuracy of the computational fluid dynamics (CFD) calculation.

請求項13記載の本発明は、船舶の模型船を使用して計測した模型船データを用いて数値流体力学(CFD)計算にデータ同化させて、数値流体力学(CFD)計算における船舶の性能推定の精度を向上した結果を、船舶の実船スケールの数値流体力学(CFD)計算に適用し、船舶の実船の性能を予測することを特徴とする。
請求項13に記載の本発明によれば、実船の性能を高精度で推定することができる。
The present invention according to claim 13 uses model ship data measured using a model ship of a ship to assimilate the data into computational fluid dynamics (CFD) calculation, and estimates the performance of the ship in computational fluid dynamics (CFD) calculation. The result of improving the accuracy of the above is applied to the computational fluid dynamics (CFD) calculation of the actual ship scale of the ship, and the performance of the actual ship of the ship is predicted.
According to the thirteenth aspect of the present invention, the performance of an actual ship can be estimated with high accuracy.

請求項14記載の本発明は、船舶の実船の性能の予測結果と、実船で計測した実船データとを比較し、船舶の状態を判断することを特徴とする。
請求項14に記載の本発明によれば、例えば、実船における異常値を検出することができる。また、実船における汚損影響や、プロペラの損傷、主機の不調等を検出することが可能となる。
The present invention according to claim 14 is characterized in that the state of the ship is determined by comparing the prediction result of the performance of the actual ship of the ship with the data of the actual ship measured by the actual ship.
According to the 14th aspect of the present invention, for example, an abnormal value in an actual ship can be detected. In addition, it is possible to detect the effects of contamination on the actual ship, damage to the propeller, malfunction of the main engine, and the like.

請求項15記載に対応したデータ同化による船舶性能推定システムにおいては、船舶の性能推定をするための数値流体力学(CFD)計算手段と、船舶の模型船を使用して計測した模型船データ及び船舶の実船で計測した実船データの少なくとも1つを入力するデータ入力手段と、数値流体力学(CFD)計算手段にデータ同化させるデータ同化手段と、データ同化の結果を数値流体力学(CFD)計算手段に反映する数値流体力学(CFD)計算更新手段とを備え、船舶の性能推定の精度を向上することを特徴とする。
請求項15に記載の本発明によれば、実船性能推定を高精度で可能とすることができる。
In the data assimilation ship performance estimation system corresponding to claim 15, the computational fluid dynamics (CFD) calculation means for estimating the performance of the ship, the model ship data measured using the model ship of the ship, and the ship Data input means for inputting at least one of the actual ship data measured on the actual ship, data assimilation means for assimilating the data to the computational fluid dynamics (CFD) calculation means, and numerical fluid dynamics (CFD) calculation for the result of data assimilation. It is provided with numerical fluid dynamics (CFD) calculation updating means to be reflected in the means, and is characterized by improving the accuracy of performance estimation of a ship.
According to the fifteenth aspect of the present invention, it is possible to estimate the performance of an actual ship with high accuracy.

請求項16記載の本発明は、データ入力手段に模型船データ及び実船データの少なくとも1つを直接又は間接的に入力するデータ通信手段を備えたことを特徴とする。
請求項16に記載の本発明によれば、例えば、遠隔地から任意の模型船データ又は実船データを直接又は間接的に入力したデータを用いてデータ同化を行うことができる。
The present invention according to claim 16 is characterized in that the data input means includes a data communication means for directly or indirectly inputting at least one of model ship data and actual ship data.
According to the sixteenth aspect of the present invention, for example, data assimilation can be performed using data obtained by directly or indirectly inputting arbitrary model ship data or actual ship data from a remote location.

請求項17記載の本発明は、解析対象船の船舶条件を入力する船舶条件入力手段と、船舶条件に基づいて精度を向上した数値流体力学(CFD)計算手段で性能推定を行った結果を出力する性能推定結果出力手段とを備えたことを特徴とする。
請求項17に記載の本発明によれば、解析対象船についてデータ同化した数値流体力学(CFD)計算により精度よく性能推定を行った結果を出力して得ることができる。
The present invention according to claim 17 outputs a result of performance estimation by a ship condition input means for inputting ship conditions of a ship to be analyzed and a computational fluid dynamics (CFD) calculation means with improved accuracy based on the ship conditions. It is characterized by being equipped with a performance estimation result output means.
According to the 17th aspect of the present invention, it is possible to output and obtain the result of accurately estimating the performance by the computational fluid dynamics (CFD) calculation assimilating the data of the ship to be analyzed.

請求項18記載の本発明は、遠隔地から船舶条件入力手段へ入力を行い、遠隔地に性能推定結果出力手段から出力を行なう入出力通信手段とを備えたことを特徴とする。
請求項18に記載の本発明によれば、遠隔地においても、解析対象船についてデータ同化した数値流体力学(CFD)計算により精度よく性能推定を行った結果を得ることができる。
The present invention according to claim 18 is characterized in that it is provided with an input / output communication means for inputting from a remote place to a ship condition input means and outputting from a performance estimation result output means to the remote place.
According to the eighteenth aspect of the present invention, it is possible to obtain the result of accurately estimating the performance by the computational fluid dynamics (CFD) calculation assimilating the data of the ship to be analyzed even in a remote place.

本発明のデータ同化による船舶性能推定方法によれば、実船性能推定を高精度で可能とすることができる。 According to the ship performance estimation method by data assimilation of the present invention, it is possible to estimate the actual ship performance with high accuracy.

また、模型船データとして模型船流場データを用い、実船データとして実船流場データを用いる行う場合には、数値流体力学(CFD)計算における船舶の流場の性能推定の精度をより一層向上させることができる。 In addition, when model ship flow field data is used as model ship data and actual ship flow field data is used as actual ship data, the accuracy of ship flow field performance estimation in computational fluid dynamics (CFD) calculation is further improved. Can be improved.

また、データ同化のためのパラメータとして、乱流モデルの数値パラメータを用いる行う場合には、乱流モデルにより流体力学の基礎方程式であるナビエ・ストークス(Navier-Stokes)方程式を近似することで数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。 In addition, when the numerical parameters of the turbulence model are used as the parameters for data assimilation, the numerical fluid is approximated by the Navier-Stokes equation, which is the basic equation of fluid dynamics, by the turbulence model. Accuracy can be improved while simplifying computational fluid dynamics (CFD) calculations.

また、乱流モデルの数値パラメータとして、MSA(Modified Spalart-Allmaras) モデルの場合は渦度調整パラメータ(Cvor)、乱流遷移位置、DES(Detached Eddy Simulation)モデルの場合はモデル定数(cdes)、又は変化傾向を含む入力調整パラメータのいずれか1つを用いる場合には、数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。 In addition, as the numerical parameters of the turbulence model, the vorticity adjustment parameter (Cvor) in the case of the MSA (Modified Spalart-Allmaras) model, the turbulence transition position, and the model constant (cdes) in the case of the DES (Detached Eddy Simulation) model. Alternatively, when any one of the input adjustment parameters including the tendency of change is used, the accuracy can be improved while simplifying the computational fluid dynamics (CFD) calculation.

また、データ同化のためのパラメータとして、船舶の船体境界面に壁関数のパラメータを用い、壁関数のパラメータにより船体表面の境界条件を修正する場合には、壁関数モデルを用いて境界層流れを近似することで数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。 In addition, as a parameter for data assimilation, the parameter of the wall function is used for the hull boundary surface of the ship, and when the boundary condition of the hull surface is modified by the parameter of the wall function, the boundary layer flow is calculated using the wall function model. Approximation can improve accuracy while simplifying computational fluid dynamics (CFD) calculations.

また、データ同化のためのパラメータとして、船舶の船体まわりの流場及び/又は船体後の流場を計測し、境界条件を修正する場合には、数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。 In addition, as a parameter for data assimilation, when measuring the flow field around the hull and / or the flow field after the hull and modifying the boundary conditions, the accuracy while simplifying the computational fluid dynamics (CFD) calculation. Can be improved.

また、データ同化のためのパラメータとして、複数の船舶の模型流場データ又は実船流場データを用い、数値流体力学(CFD)計算の計算結果の流場から、数値流体力学(CFD)計算の解析対象の流場の補正を行なう場合には、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。 In addition, as parameters for data assimilation, model flow field data or actual ship flow field data of multiple ships are used, and from the flow field of the calculation result of computational fluid dynamics (CFD) calculation, computational fluid dynamics (CFD) calculation is performed. When the flow field to be analyzed is corrected, the accuracy of the performance estimation of the ship in the computational fluid dynamics (CFD) calculation can be further improved.

また、船体形状を変えた複数の船舶の模型船について水槽試験により模型船流場データを取得し、船体形状を変えた複数の船舶について数値流体力学(CFD)計算を行い、模型船流場データの変化傾向を数値流体力学(CFD)計算に取り込む場合には、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。 In addition, model ship flow field data was acquired by a water tank test for model ships of multiple ships with different hull shapes, and computational fluid dynamics (CFD) calculations were performed for multiple ships with different hull shapes. When the change tendency of is incorporated into the computational fluid dynamics (CFD) calculation, the accuracy of the performance estimation of the ship in the computational fluid dynamics (CFD) calculation can be further improved.

また、船舶の相似形状の複数の模型船について水槽試験により模型船流場データを取得し、レイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込む場合には、数値流体力学(CFD)計算におけるレイノルズ数の影響を反映し、船舶の性能推定の精度をより一層向上させることができる。 In addition, when acquiring model ship flow field data by water tank test for multiple model ships with similar shapes, extracting the influence of Reynolds number, and incorporating the influence of Reynolds number into computational fluid dynamics (CFD) calculation, Reflecting the influence of the Reynolds number on computational fluid dynamics (CFD) calculations, the accuracy of ship performance estimation can be further improved.

また、模型船に付加物を取り付け模型船の周囲の流速分布を制御してレイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込む場合には、付加物により流速分布を制御して、レイノルズ数の影響を適切に取り込むことができる。 In addition, when an additive is attached to the model ship and the flow velocity distribution around the model ship is controlled to extract the influence of the Reynolds number and the influence of the Reynolds number is incorporated into the computational fluid dynamics (CFD) calculation, the flow velocity by the addition The distribution can be controlled to properly capture the effects of Reynolds numbers.

また、模型船の実験を行なう試験水槽の一部に閉塞路を設け、さらに閉塞路にフローライナーを設けて模型船の周囲の流速分布を制御してレイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込む場合には、レイノルズ数の影響を適切に取り込み、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。 In addition, a closed path is provided in a part of the test water tank where the model ship is tested, and a flow liner is provided in the closed path to control the flow velocity distribution around the model ship and extract the influence of the Reynolds number to extract the Reynolds number. When the influence is incorporated into the computational fluid dynamics (CFD) calculation, the influence of the Reynolds number can be appropriately incorporated, and the accuracy of ship performance estimation in the computational fluid dynamics (CFD) calculation can be further improved.

また、データ同化を船舶の自航要素の性能推定に関連した範囲で行った場合には、数値流体力学(CFD)計算において狂いやすい船尾周りの自航要素を精度よく推定して数値流体力学(CFD)計算の精度を向上させることができる。 In addition, when data assimilation is performed within the range related to the performance estimation of the self-propelled elements of the ship, the self-propelled elements around the stern, which are likely to go wrong in the computational fluid dynamics (CFD) calculation, are estimated accurately and the numerical fluid dynamics (CFD). CFD) The accuracy of calculation can be improved.

また、船舶の模型船を使用して計測した模型船データを用いて数値流体力学(CFD)計算にデータ同化させて、数値流体力学(CFD)計算における船舶の性能推定の精度を向上した結果を、船舶の実船スケールの数値流体力学(CFD)計算に適用し、船舶の実船の性能を予測する場合には、実船の性能を高精度で推定することができる。 In addition, the results of improving the accuracy of ship performance estimation in computational fluid dynamics (CFD) calculation by assimilating the data into numerical fluid dynamics (CFD) calculation using model ship data measured using the model ship of the ship. When applied to computational fluid dynamics (CFD) calculation of the actual ship scale of a ship and predicting the performance of the actual ship, the performance of the actual ship can be estimated with high accuracy.

また、船舶の実船の性能の予測結果と、実船で計測した実船データとを比較し、船舶の状態を判断する場合には、例えば、実船における異常値を検出することができる。また、実船における汚損影響や、プロペラの損傷、主機の不調等を検出することが可能となる。 Further, when the state of the ship is determined by comparing the prediction result of the performance of the actual ship with the actual ship data measured by the actual ship, for example, an abnormal value in the actual ship can be detected. In addition, it is possible to detect the effects of contamination on the actual ship, damage to the propeller, malfunction of the main engine, and the like.

また、本発明のデータ同化による船舶性能推定システムによれば、実船性能推定を高精度で可能とすることができる。 Further, according to the ship performance estimation system by data assimilation of the present invention, it is possible to estimate the actual ship performance with high accuracy.

また、データ入力手段に模型船データ及び実船データの少なくとも1つを直接又は間接的に入力するデータ通信手段を備えた場合には、例えば、遠隔地から任意の模型船データ又は実船データを直接又は間接的に入力したデータを用いてデータ同化を行うことができる。 Further, when the data input means is provided with a data communication means for directly or indirectly inputting at least one of the model ship data and the actual ship data, for example, any model ship data or the actual ship data can be input from a remote location. Data assimilation can be performed using directly or indirectly input data.

また、解析対象船の船舶条件を入力する船舶条件入力手段と、船舶条件に基づいて精度を向上した数値流体力学(CFD)計算手段で性能推定を行った結果を出力する性能推定結果出力手段とを備えた場合には、解析対象船についてデータ同化した数値流体力学(CFD)計算により精度よく性能推定を行った結果を出力して得ることができる。 In addition, a ship condition input means for inputting the ship conditions of the ship to be analyzed and a performance estimation result output means for outputting the result of performance estimation by the computational fluid dynamics (CFD) calculation means with improved accuracy based on the ship conditions. Is provided, the result of accurate performance estimation by computational fluid dynamics (CFD) calculation assimilated with the data of the ship to be analyzed can be output and obtained.

また、遠隔地から船舶条件入力手段へ入力を行い、遠隔地に性能推定結果出力手段から出力を行なう入出力通信手段とを備えた場合には、遠隔地においても、解析対象船についてデータ同化した数値流体力学(CFD)計算により精度よく性能推定を行った結果を得ることができる。 In addition, if an input / output communication means that inputs to the ship condition input means from a remote location and outputs from the performance estimation result output means is provided in the remote location, data assimilation of the ship to be analyzed is performed even in the remote location. It is possible to obtain the result of accurate performance estimation by computational fluid dynamics (CFD) calculation.

本実施形態のデータ同化による船舶性能推定方法の概念図Conceptual diagram of ship performance estimation method by data assimilation of this embodiment 同船舶性能推定システムの概要図Schematic diagram of the ship performance estimation system 同壁関数を用いた境界条件修正の説明図Explanatory diagram of boundary condition correction using the same wall function 同船体まわりの流場及び船体後の流場の計測値を境界条件として使用することの説明図Explanatory drawing of using the measured values of the flow field around the hull and the flow field after the hull as boundary conditions 同複数の船舶の模型流場データと数値流体力学(CFD)計算の計算結果の流場を用いて数値流体力学(CFD)計算の解析対象の流場の補正を行なうことの説明図Explanatory drawing of correcting the flow field to be analyzed in computational fluid dynamics (CFD) calculation using the model flow field data of the same multiple vessels and the flow field of the calculation result of computational fluid dynamics (CFD) calculation. 同水槽試験に用いる試験水槽の断面図Cross-sectional view of the test tank used for the tank test 同他の水槽試験に用いる試験水槽の断面図Cross-sectional view of the test tank used for the same other tank test 同更に他の水槽試験に用いる試験水槽の断面図Cross-sectional view of the test tank used for the same and other tank tests 同更に他の水槽試験に用いる試験水槽の断面図Cross-sectional view of the test tank used for the same and other tank tests

以下に、本発明の実施形態によるデータ同化による船舶性能推定方法及び船舶性能推定システムについて説明する。 The ship performance estimation method and the ship performance estimation system by data assimilation according to the embodiment of the present invention will be described below.

図1は、本実施形態のデータ同化による船舶性能推定方法の概念図である。図2は、同船舶性能推定システムの概要図である。
船舶性能推定システム10は、船舶の性能推定をするための数値流体力学(CFD)計算手段11と、船舶の模型船を使用して計測した模型船データ及び船舶の実船で計測した実船データの少なくとも1つを入力するデータ入力手段12と、数値流体力学(CFD)計算手段11にデータ同化させるデータ同化手段13と、データ同化の結果を数値流体力学(CFD)計算手段11に反映する数値流体力学(CFD)計算更新手段14と、データ入力手段12に模型船データ及び実船データの少なくとも1つを直接又は間接的に入力するデータ通信手段15と、解析対象船の船舶条件を入力する船舶条件入力手段16と、船舶条件に基づいて精度を向上した数値流体力学(CFD)計算手段11で性能推定を行った結果を出力する性能推定結果出力手段17とを備える。
数値流体力学(CFD)計算だけでは、自航要素推定に難があり、船型差の評価が困難である。そこで、模型船10を用いた水槽試験における計測により取得した模型船データ、又は実船モニタリングにより取得した実船データを、数値流体力学(CFD)計算に取り込む。
このように、船舶の性能推定をするための数値流体力学(CFD)計算に、船舶の模型船を使用して計測した模型船データ、及び船舶の実船で計測した実船データの少なくとも1つを用いて数値流体力学(CFD)計算にデータ同化させて、数値流体力学(CFD)計算における船舶の性能推定の精度を向上することで、実船性能推定を高精度で可能とすることができる。
また、データ入力手段12に模型船データ又は実船データを直接又は遠隔等から間接的に入力するデータ通信手段15を備えることで、例えば、遠隔地から任意の模型船データ又は実船データを直接又は間接的に入力したデータを用いてデータ同化を行うことができる。実船データは、複数の船舶で得られた各種データをネットワーク(図示は省略)とデータ通信手段15を介して収集し、入力することもできる。また、模型船データであっても遠隔地の水槽で得られた各種データをネットワーク(図示は省略)とデータ通信手段15を介して収集し、入力してもよい。
また、船舶条件入力手段16と、性能推定結果出力手段17を備えることで、解析対象船についてデータ同化した数値流体力学(CFD)計算により精度よく性能推定を行った結果を出力して得ることができる。
なお、図示は省略するが、遠隔地に性能推定結果出力手段17から出力を行なう入出力通信手段を設け、遠隔地から船舶条件入力手段16へ入力し遠隔地に出力を行うこともできる。これにより、遠隔地においても、解析対象船について条件入力を行い、データ同化した数値流体力学(CFD)計算により精度よく性能推定を行った結果を得ることができる。
FIG. 1 is a conceptual diagram of a ship performance estimation method by data assimilation of the present embodiment. FIG. 2 is a schematic view of the ship performance estimation system.
The ship performance estimation system 10 includes numerical fluid dynamics (CFD) calculation means 11 for estimating the performance of the ship, model ship data measured using the model ship of the ship, and actual ship data measured by the actual ship. Data input means 12 for inputting at least one of the above, data assimilation means 13 for data assimilation to the numerical fluid dynamics (CFD) calculation means 11, and numerical value for reflecting the result of data assimilation in the numerical fluid dynamics (CFD) calculation means 11. The fluid dynamics (CFD) calculation updating means 14, the data communication means 15 for directly or indirectly inputting at least one of the model ship data and the actual ship data to the data input means 12, and the ship conditions of the ship to be analyzed are input. It includes a ship condition input means 16 and a performance estimation result output means 17 that outputs the result of performance estimation by the numerical fluid dynamics (CFD) calculation means 11 whose accuracy is improved based on the ship condition.
Computational fluid dynamics (CFD) calculation alone makes it difficult to estimate self-propelled elements, and it is difficult to evaluate ship type differences. Therefore, the model ship data acquired by the measurement in the water tank test using the model ship 10 or the actual ship data acquired by the actual ship monitoring is incorporated into the computational fluid dynamics (CFD) calculation.
In this way, at least one of the model ship data measured using the ship's model ship and the actual ship data measured on the actual ship for the computational fluid dynamics (CFD) calculation for estimating the performance of the ship. By assimilating data into computational fluid dynamics (CFD) calculations and improving the accuracy of ship performance estimation in computational fluid dynamics (CFD) calculations, it is possible to enable actual ship performance estimation with high accuracy. ..
Further, by providing the data communication means 15 for directly or indirectly inputting the model ship data or the actual ship data from the data input means 12, for example, any model ship data or the actual ship data can be directly input from a remote location. Alternatively, data assimilation can be performed using indirectly input data. The actual ship data can also be input by collecting various data obtained by a plurality of ships via a network (not shown) and a data communication means 15. Further, even if it is model ship data, various data obtained in a water tank at a remote location may be collected and input via a network (not shown) and a data communication means 15.
Further, by providing the ship condition input means 16 and the performance estimation result output means 17, it is possible to output and obtain the result of accurate performance estimation by the computational fluid dynamics (CFD) calculation assimilating the data of the ship to be analyzed. it can.
Although not shown, it is also possible to provide an input / output communication means for outputting from the performance estimation result output means 17 in a remote place, and input the input to the ship condition input means 16 from the remote place to output to the remote place. As a result, it is possible to obtain the result of accurate performance estimation by numerical fluid dynamics (CFD) calculation assimilating data by inputting conditions for the ship to be analyzed even in a remote place.

データ同化に用いる模型船データ又は実船データとしては、抵抗値等の積分値を用いることもできるが、模型船データとして模型船流場データを用い、実船データとして実船流場データを用いることが好ましい。これにより、数値流体力学(CFD)計算における船舶の流場の性能推定の精度をより一層向上させることができる。なお、模型船流場データは、PIV(Particle Image Velocimetry=粒子イメージ流速)計測法等により取得する。
また、データ同化のためのパラメータとして、乱流モデルの数値パラメータを用いることが好ましい。例えば、流体力学の基礎方程式であるナビエ・ストークス方程式(NS:Navier-Stokes equations)をレイノルズ平均モデル(RANS:Reynolds Averaged Navier-Stokes)にする際に乱流モデルを用いて近似する。その際、乱流モデルの数値パラメータの未定乗数を水槽試験の結果をもって合わせ込む。このように乱流モデルを用いて近似することで数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。
また、乱流モデルの数値パラメータとして、以下のいずれか1つを用いることが好ましい。これにより、数値流体力学(CFD)計算の結果の精度をより一層向上させることができる。
(1)MSA(Modified Spalart-Allmaras) モデルの場合:渦度調整パラメータ(Cvor)
(2)乱流遷移位置
(3)DES(Detached Eddy Simulation)モデルの場合:モデル定数(cdes)
(4)変化傾向を含む入力調整パラメータ
As the model ship data or the actual ship data used for data assimilation, an integrated value such as a resistance value can be used, but the model ship flow field data is used as the model ship data, and the actual ship flow field data is used as the actual ship data. Is preferable. This makes it possible to further improve the accuracy of estimating the performance of the ship's flow field in computational fluid dynamics (CFD) calculations. The model ship flow field data is acquired by a PIV (Particle Image Velocimetry) measurement method or the like.
Moreover, it is preferable to use the numerical parameters of the turbulence model as the parameters for data assimilation. For example, when the Navier-Stokes equations (NS), which is the basic equation of fluid dynamics, is converted into the Reynolds Averaged Navier-Stokes (RANS), it is approximated by using a turbulence model. At that time, the undetermined multiplier of the numerical parameters of the turbulence model is combined with the result of the water tank test. By approximating using the turbulence model in this way, it is possible to improve the accuracy while simplifying the computational fluid dynamics (CFD) calculation.
Further, it is preferable to use any one of the following as a numerical parameter of the turbulence model. This makes it possible to further improve the accuracy of the results of computational fluid dynamics (CFD) calculations.
(1) For MSA (Modified Spalart-Allmaras) model: Vorticity adjustment parameter (Cvor)
(2) Turbulence transition position (3) For DES (Detached Eddy Simulation) model: Model constant (cdes)
(4) Input adjustment parameters including change tendency

また、流場データを用いる場合のデータ同化のためのパラメータとして、船舶の船体境界面に壁関数のパラメータを用い、壁関数のパラメータで境界条件を修正することが好ましい。
船体表面には摩擦があるため境界層で粘性の影響を受けて流体の速度に変化が生じる。数値流体力学(CFD)計算において壁関数モデルを用いて境界層流れを近似することで計算を簡略化することができる。また、壁関数のパラメータについて模型船流場データ又は実船流場データを用いて同定することで、計算精度を向上させることができる。
ここで図3は、壁関数を用いた境界条件修正の説明図であり、縦軸を流体の速度(無次元)、横軸を物体壁面からの距離(無次元)としている。
図3の■を結ぶ曲線は数値流体力学(CFD)計算により求めた速度である。3本の直線は理論値であり、■を結ぶ曲線は、3本の直線のうちの中央の実線の一部に接している。ここでは壁関数のパラメータについて模型船流場データ又は実船流場データを用いて合わせ込む。合わせ込む一つ目のパラメータは縦軸の切片である。壁面の粗さによって速度の切片の程度が決まる。例えば壁面が滑らかであれば切片を下方へ移動させ、壁面の粗さが大きければ切片を上方へ移動させる。合わせ込む二つ目のパラメータは、速度が一定となる壁面からの距離である。
このように流場データを用いる場合のデータ同化のためのパラメータとして、船舶の船体境界面に壁関数のパラメータを用い、壁関数のパラメータにより船体表面の境界条件を修正することで、数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。
Further, as a parameter for data assimilation when the flow field data is used, it is preferable to use the parameter of the wall function for the hull boundary surface of the ship and modify the boundary condition with the parameter of the wall function.
Since there is friction on the surface of the hull, the velocity of the fluid changes due to the influence of viscosity at the boundary layer. Computational fluid dynamics (CFD) calculations can be simplified by approximating the boundary layer flow using a wall function model. In addition, the calculation accuracy can be improved by identifying the parameters of the wall function using the model ship flow field data or the actual ship flow field data.
Here, FIG. 3 is an explanatory diagram of boundary condition correction using a wall function, in which the vertical axis represents the velocity of the fluid (dimensionless) and the horizontal axis represents the distance from the wall surface of the object (dimensionless).
The curve connecting (3) in FIG. 3 is the velocity obtained by computational fluid dynamics (CFD) calculation. The three straight lines are theoretical values, and the curve connecting ■ is in contact with a part of the solid line in the center of the three straight lines. Here, the parameters of the wall function are adjusted using the model ship flow field data or the actual ship flow field data. The first parameter to fit is the intercept on the vertical axis. The roughness of the wall surface determines the degree of velocity section. For example, if the wall surface is smooth, the section is moved downward, and if the wall surface is rough, the section is moved upward. The second parameter to match is the distance from the wall where the velocity is constant.
In this way, as a parameter for data assimilation when using flow field data, the parameter of the wall function is used for the hull boundary surface of the ship, and the boundary condition of the hull surface is modified by the parameter of the wall function. (CFD) The accuracy can be improved while simplifying the calculation.

また、流場データを用いる場合のデータ同化のためのパラメータとして、船舶の船体まわりの流場又は船体後の流場の少なくとも一方を計測し、境界条件としてデータ同化をすることが好ましい。
ここで図4は、船体まわりの流場及び船体後の流場の計測値を境界条件として使用することの説明図である。
図4においては、船首を図の左側を向けて流れの中を航走する船舶20を示している。例えば、船舶20のプロペラの前の流れを数値流体力学(CFD)計算により計算するにあたって、従来は解析対象だけでなく計算空間全体を計算対象としていたが、本実施形態では、解析対象の前側(船体まわり)の流場及び後側(船体後)の流場を計測し、計測した模型船流場データ又は実船流場データを境界条件として使用し、解析対象だけを計算する。これにより、数値流体力学(CFD)計算を簡略化しつつ精度を向上させることができる。なお、船体まわりの流場又は船体後の流場の一方のみを計測し、その計測結果からもう一方を推定してもよい。
Further, as a parameter for data assimilation when using flow field data, it is preferable to measure at least one of the flow field around the hull of the ship and the flow field after the hull, and perform data assimilation as a boundary condition.
Here, FIG. 4 is an explanatory diagram of using the measured values of the flow field around the hull and the flow field after the hull as boundary conditions.
FIG. 4 shows a ship 20 sailing in a flow with the bow facing the left side of the figure. For example, when calculating the flow in front of the propeller of a ship 20 by computational fluid dynamics (CFD) calculation, not only the analysis target but also the entire calculation space was conventionally calculated, but in the present embodiment, the front side of the analysis target ( The flow field around the hull and the flow field on the rear side (after the hull) are measured, and the measured model ship flow field data or the actual ship flow field data is used as a boundary condition to calculate only the analysis target. This makes it possible to improve accuracy while simplifying computational fluid dynamics (CFD) calculations. In addition, only one of the flow field around the hull or the flow field after the hull may be measured, and the other may be estimated from the measurement result.

また、データ同化のためのパラメータとして、複数の船舶の模型流場データ又は実船流場データを用い、数値流体力学(CFD)計算の計算結果の流場から、数値流体力学(CFD)計算の解析対象の流場の補正を行なうことが好ましい。
ここで図5は、複数の船舶の模型流場データと数値流体力学(CFD)計算の計算結果の流場を用いて数値流体力学(CFD)計算の解析対象の流場の補正を行なうことの説明図である。
図5においては、数値流体力学(CFD)計算による流場を左側に示し、模型流場データを右側に示している。また、上側から船型1、船型2、船型3・・・船型nというように船型を異ならせている。それぞれの船型における数値流体力学(CFD)計算による流場と模型流場データとを合わせ込むことで、解析対象の流場補正を行う。これにより、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。
なお、ディープラーニング等の機械学習手法の技術を用いて、数値流体力学(CFD)計算による流場から模型流場データを推定してもよい。
In addition, as parameters for data assimilation, model flow field data or actual ship flow field data of multiple ships are used, and the flow field of the calculation result of the computational fluid dynamics (CFD) calculation is used to calculate the computational fluid dynamics (CFD). It is preferable to correct the flow field to be analyzed.
Here, FIG. 5 shows that the flow field to be analyzed in the computational fluid dynamics (CFD) calculation is corrected by using the model flow field data of a plurality of vessels and the flow field of the calculation result of the computational fluid dynamics (CFD) calculation. It is explanatory drawing.
In FIG. 5, the flow field calculated by computational fluid dynamics (CFD) is shown on the left side, and the model flow field data is shown on the right side. Further, from the upper side, the ship types are different, such as ship type 1, ship type 2, ship type 3 ... Ship type n. The flow field correction of the analysis target is performed by combining the flow field calculated by computational fluid dynamics (CFD) and the model flow field data for each ship type. This makes it possible to further improve the accuracy of ship performance estimation in computational fluid dynamics (CFD) calculations.
Model flow field data may be estimated from a flow field calculated by computational fluid dynamics (CFD) using a technique of a machine learning method such as deep learning.

図6は、水槽試験に用いる試験水槽の断面図であり、模型船を背面側から見ている。試験水槽30の水面を航走する模型船Aに向けて試験水槽30の底面側からレーザー光αをシート状に当てPIV計測を行っている。
図6に示すように、船体形状が互いに異なる模型船A〜Cを準備しておき、水槽試験で流場を計測する。同じくそれぞれの船体形状について数値流体力学(CFD)計算を行い、水槽試験の船体形状による変化傾向(傾斜)を数値流体力学(CFD)計算に取り込む(データ同化)。なお、本実施形態では、船体形状のなかでも特に流場への影響が大きい船尾形状を変えるため、船尾取り替え式としている。また、船体形状は3パターン以上変えて試験することが好ましい。
このように、船体形状を変えた複数の船舶の模型船について水槽試験により模型船流場データを取得し、船体形状を変えた複数の船舶について数値流体力学(CFD)計算を行い、模型船流場データの変化傾向を数値流体力学(CFD)計算に取り込むことで、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。
FIG. 6 is a cross-sectional view of the test water tank used for the water tank test, and the model ship is viewed from the rear side. PIV measurement is performed by applying laser light α in a sheet shape from the bottom surface side of the test water tank 30 toward the model ship A navigating the water surface of the test water tank 30.
As shown in FIG. 6, model ships A to C having different hull shapes are prepared, and the flow field is measured by a water tank test. Similarly, numerical fluid dynamics (CFD) calculation is performed for each hull shape, and the change tendency (inclination) due to the hull shape of the water tank test is incorporated into the numerical fluid dynamics (CFD) calculation (data assimilation). In this embodiment, the stern is replaceable in order to change the stern shape, which has a particularly large effect on the flow field, among the hull shapes. Further, it is preferable to test the hull shape by changing three or more patterns.
In this way, model ship flow field data is acquired by a water tank test for model ships of multiple ships with different hull shapes, and computational fluid dynamics (CFD) calculations are performed for multiple ships with different hull shapes. By incorporating the trend of change in field data into computational fluid dynamics (CFD) calculations, the accuracy of ship performance estimation in computational fluid dynamics (CFD) calculations can be further improved.

図7は、他の水槽試験に用いる試験水槽の断面図であり、模型船を背面側から見ている。試験水槽30の水面を航走する模型船A2に向けて試験水槽30の底面側からレーザー光αをシート状に当てPIV計測を行っている。
図7に示すように、大きさが互いに異なる相似形状の模型船A1〜A3(A1<A2<A3)を用いて水槽試験を行い、レイノルズ影響を取得して数値流体力学(CFD)計算に取り込む。
このように、船舶の相似形状の複数の模型船について水槽試験により模型船流場データを取得し、レイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込むことで、数値流体力学(CFD)計算におけるレイノルズ数の影響を反映し、船舶の性能推定の精度をより一層向上させることができる。
FIG. 7 is a cross-sectional view of a test tank used for another tank test, and the model ship is viewed from the rear side. PIV measurement is performed by irradiating a sheet of laser light α from the bottom surface side of the test water tank 30 toward the model ship A2 navigating the water surface of the test water tank 30.
As shown in FIG. 7, a water tank test is conducted using model ships A1 to A3 (A1 <A2 <A3) having similar shapes and different sizes, and the Reynolds effect is acquired and incorporated into computational fluid dynamics (CFD) calculation. ..
In this way, by acquiring model ship flow field data by water tank test for multiple model ships with similar shapes of ships, extracting the influence of Reynolds number, and incorporating the influence of Reynolds number into computational fluid dynamics (CFD) calculation. , Reflecting the influence of Reynolds number in computational fluid dynamics (CFD) calculation, the accuracy of ship performance estimation can be further improved.

図8は、更に他の水槽試験に用いる試験水槽の断面図であり、模型船を背面側から見ている。試験水槽30の水面を航走する模型船Aに向けて試験水槽30の底面側からレーザー光αをシート状に当てPIV計測を行っている。
図8に示すように、流場を実船に対して合わせるために、模型船Aの船尾の船体外に舵板状の付加物40を複数取り付け、レイノルズ数影響を考慮して流速分布をコントロールする。なお、抵抗は実船に対して合わなくてよい。
このように、模型船に付加物40を取り付け模型船の周囲の流速分布を制御してレイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込むことで、付加物40により流速分布を制御して、レイノルズ数の影響を適切に取り込むことができ、付加物40の実船効果が評価(少なくとも逆転しないように)できる。
なお、速度又は喫水状態により、付加物40を可働させることも可能である。また、付加物40は、試験水槽30の水を模型船の内部に吸い込んで吐出するものとすることもできる。
FIG. 8 is a cross-sectional view of a test tank used for another tank test, and the model ship is viewed from the rear side. PIV measurement is performed by applying laser light α in a sheet shape from the bottom surface side of the test water tank 30 toward the model ship A navigating the water surface of the test water tank 30.
As shown in FIG. 8, in order to adjust the flow field to the actual ship, a plurality of rudder plate-shaped additions 40 are attached to the outside of the stern of the model ship A, and the flow velocity distribution is controlled in consideration of the influence of the Reynolds number. To do. The resistance does not have to match the actual ship.
In this way, the adduct 40 is attached to the model ship, the flow velocity distribution around the model ship is controlled to extract the influence of the Reynolds number, and the influence of the Reynolds number is incorporated into the computational fluid dynamics (CFD) calculation. The flow velocity distribution can be controlled by 40 to appropriately capture the influence of the Reynolds number, and the actual ship effect of the adduct 40 can be evaluated (at least not reversed).
It is also possible to activate the adduct 40 depending on the speed or draft condition. Further, the adduct 40 may suck the water in the test water tank 30 into the model ship and discharge it.

図9は、更に他の水槽試験に用いる試験水槽の断面図であり、図9(a)は模型船を背面側から見た図、図9(b)は模型船を側面側から見た図である。試験水槽30の水面を航走する模型船Aに向けて試験水槽30の底面側からレーザー光αをシート状に当てPIV計測を行っている。
図9に示すように、試験水槽30内の一部に一対の壁31を設置することにより閉塞路32を設けている。閉塞路32内には壁31沿って一対のフローライナー33を設けている。これにより実船における縮流を再現することができ、レイノルズ数影響を考慮して流速分布をコントロールすることができる。
このように、模型船の実験を行なう試験水槽30の一部に閉塞路32を設け、さらに閉塞路32にフローライナー33を設けて模型船の周囲の流速分布を制御してレイノルズ数の影響を抽出し、レイノルズ数の影響を数値流体力学(CFD)計算に取り込むことで、レイノルズ数の影響を適切に取り込み、数値流体力学(CFD)計算における船舶の性能推定の精度をより一層向上させることができる。
9A and 9B are cross-sectional views of a test tank used for another tank test, FIG. 9A is a view of the model ship from the rear side, and FIG. 9B is a view of the model ship from the side. Is. PIV measurement is performed by applying laser light α in a sheet shape from the bottom surface side of the test water tank 30 toward the model ship A navigating the water surface of the test water tank 30.
As shown in FIG. 9, the closed passage 32 is provided by installing a pair of walls 31 in a part of the test water tank 30. A pair of flow liners 33 are provided along the wall 31 in the closed path 32. As a result, the contraction of the actual ship can be reproduced, and the flow velocity distribution can be controlled in consideration of the influence of the Reynolds number.
In this way, a closed passage 32 is provided in a part of the test water tank 30 for conducting the experiment of the model ship, and a flow liner 33 is further provided in the closed passage 32 to control the flow velocity distribution around the model ship to control the influence of the Reynolds number. By extracting and incorporating the influence of Reynolds number into computational fluid dynamics (CFD) calculation, it is possible to appropriately incorporate the influence of Reynolds number and further improve the accuracy of ship performance estimation in computational fluid dynamics (CFD) calculation. it can.

また、データ同化を船舶の自航要素の性能推定に関連した範囲で行うことで、数値流体力学(CFD)計算において狂いやすい船尾周りの伴流係数や推力減少係数等の自航要素を精度よく推定して数値流体力学(CFD)計算の精度を向上させることができる。 In addition, by assimilating the data within the range related to the performance estimation of the self-propelled elements of the ship, the self-propelled elements such as the wake coefficient around the stern and the thrust reduction coefficient, which are likely to go wrong in computational fluid dynamics (CFD) calculation, can be accurately determined. It can be estimated to improve the accuracy of computational fluid dynamics (CFD) calculations.

また、船舶の模型船を使用して計測した模型船データを用いて数値流体力学(CFD)計算にデータ同化させて、数値流体力学(CFD)計算における船舶の性能推定の精度を向上した結果を、船舶の実船スケールの数値流体力学(CFD)計算に適用し、船舶の実船の性能を予測することで、実船の性能を高精度で推定することができる。 In addition, the results of improving the accuracy of ship performance estimation in computational fluid dynamics (CFD) calculation by assimilating the data into numerical fluid dynamics (CFD) calculation using model ship data measured using the model ship of the ship. By applying it to the computational fluid dynamics (CFD) calculation of the actual ship scale of the ship and predicting the performance of the actual ship, the performance of the actual ship can be estimated with high accuracy.

また、船舶の実船の性能の予測結果と、実船で計測した実船データとを比較し、船舶の状態を判断することで、例えば、実船における異常値を検出することができる。また、実船における汚損影響や、プロペラの損傷、主機の不調等を検出することが可能となる。
なお、データ同化は、平水中のみならず波浪を伴う流場や、さらに風の影響を考慮した大気流場についても展開が可能である。
Further, for example, an abnormal value in the actual ship can be detected by comparing the prediction result of the performance of the actual ship with the actual ship data measured by the actual ship and determining the state of the ship. In addition, it is possible to detect the effects of contamination on the actual ship, damage to the propeller, malfunction of the main engine, and the like.
Data assimilation can be applied not only to flat water but also to flow fields accompanied by waves and atmospheric flow fields considering the influence of wind.

本発明は、水槽試験等で船体まわりの流場データを取得し、この流場データと数値流体力学(CFD)計算を同化させることで、実船性能推定を高精度で可能とし、実船馬力推定等の高度化に資することができるため、実船性能評価や、GHG(温室効果ガス)削減で競争力を持つ船舶の建造等に活用できる。 The present invention makes it possible to estimate actual ship performance with high accuracy by acquiring flow field data around the hull in a water tank test or the like and assimilating this flow field data with computational fluid dynamics (CFD) calculation, and the actual ship horsepower. Since it can contribute to the sophistication of estimation, it can be used for evaluation of actual ship performance and construction of ships that are competitive in reducing GHG (greenhouse gas).

10 船舶性能推定システム
11 数値流体力学(CFD)計算手段
12 データ入力手段
13 データ同化手段
14 数値流体力学(CFD)計算更新手段14
15 データ通信手段
16 船舶条件入力手段
17 性能推定結果出力手段
20 船舶
30 試験水槽
32 閉塞路
33 フローライナー
40 付加物
A 模型船
10 Computational fluid dynamics (CFD) calculation means 12 Data input means 13 Data assimilation means 14 Computational fluid dynamics (CFD) calculation update means 14
15 Data communication means 16 Ship condition input means 17 Performance estimation result output means 20 Ship 30 Test water tank 32 Blocked road 33 Flowliner 40 Addition A Model ship

Claims (18)

船舶の性能推定をするための数値流体力学(CFD)計算に、前記船舶の模型船を使用して計測した模型船データ及び前記船舶の実船で計測した実船データの少なくとも1つを用いて前記数値流体力学(CFD)計算にデータ同化させて、前記数値流体力学(CFD)計算における前記船舶の前記性能推定の精度を向上することを特徴とするデータ同化による船舶性能推定方法。 For numerical fluid dynamics (CFD) calculation for estimating the performance of a ship, at least one of the model ship data measured using the model ship of the ship and the actual ship data measured by the actual ship of the ship is used. A ship performance estimation method by data assimilation, which comprises assimilating data into the computational fluid dynamics (CFD) calculation to improve the accuracy of the performance estimation of the ship in the computational fluid dynamics (CFD) calculation. 前記模型船データとして模型船流場データを用い、前記実船データとして実船流場データを用いることを特徴とする請求項1に記載のデータ同化による船舶性能推定方法。 The ship performance estimation method by data assimilation according to claim 1, wherein model ship flow field data is used as the model ship data, and actual ship flow field data is used as the actual ship data. 前記データ同化のためのパラメータとして、乱流モデルの数値パラメータを用いることを特徴とする請求項2に記載のデータ同化による船舶性能推定方法。 The ship performance estimation method by data assimilation according to claim 2, wherein a numerical parameter of a turbulence model is used as a parameter for data assimilation. 前記乱流モデルの前記数値パラメータとして、MSA(Modified Spalart-Allmaras) モデルの場合は渦度調整パラメータ(Cvor)、乱流遷移位置、DES(Detached Eddy Simulation)モデルの場合はモデル定数(cdes)、又は変化傾向を含む入力調整パラメータのいずれか1つを用いることを特徴とする請求項3に記載のデータ同化による船舶性能推定方法。 The numerical parameters of the turbulence model include vorticity adjustment parameters (Cvor) in the case of the MSA (Modified Spalart-Allmaras) model, turbulence transition positions, and model constants (cdes) in the case of the DES (Detached Eddy Simulation) model. Alternatively, the ship performance estimation method by data assimilation according to claim 3, wherein any one of the input adjustment parameters including the change tendency is used. 前記データ同化のためのパラメータとして、前記船舶の船体境界面に壁関数のパラメータを用い、前記壁関数のパラメータにより船体表面の境界条件を修正することを特徴とする請求項2に記載のデータ同化による船舶性能推定方法。 The data assimilation according to claim 2, wherein a parameter of a wall function is used for the hull boundary surface of the ship as a parameter for the data assimilation, and the boundary condition of the hull surface is modified by the parameter of the wall function. Ship performance estimation method by. 前記データ同化のためのパラメータとして、前記船舶の船体まわりの流場及び/又は船体後の流場を計測し、境界条件としてデータ同化をすることを特徴とする請求項2に記載のデータ同化による船舶性能推定方法。 The data assimilation according to claim 2, wherein as a parameter for the data assimilation, the flow field around the hull and / or the flow field after the hull of the ship is measured and the data is assimilated as a boundary condition. Ship performance estimation method. 前記データ同化のためのパラメータとして、複数の前記船舶の前記模型流場データ又は前記実船流場データを用い、前記数値流体力学(CFD)計算の計算結果の流場から、前記数値流体力学(CFD)計算の解析対象の流場の補正を行なうことを特徴とする請求項2に記載のデータ同化による船舶性能推定方法。 Using the model flow field data of a plurality of the ships or the actual ship flow field data as parameters for assimilating the data, the computational fluid dynamics (CFD) calculation results from the computational fluid dynamics (CFD) calculation result CFD) The method for estimating ship performance by data assimilation according to claim 2, wherein the flow field to be analyzed in the calculation is corrected. 船体形状を変えた複数の前記船舶の前記模型船について水槽試験により前記模型船流場データを取得し、前記船体形状を変えた複数の前記船舶について前記数値流体力学(CFD)計算を行い、前記模型船流場データの変化傾向を前記数値流体力学(CFD)計算に取り込むことを特徴とする請求項2に記載のデータ同化による船舶性能推定方法。 The model ship flow field data was acquired by a water tank test for the model ships of the plurality of ships having different hull shapes, and the computational fluid dynamics (CFD) calculation was performed for the plurality of ships with different hull shapes. The ship performance estimation method by data assimilation according to claim 2, wherein the change tendency of the model ship flow field data is incorporated into the computational fluid dynamics (CFD) calculation. 前記船舶の相似形状の複数の前記模型船について水槽試験により前記模型船流場データを取得し、レイノルズ数の影響を抽出し、前記レイノルズ数の影響を前記数値流体力学(CFD)計算に取り込むことを特徴とする請求項2に記載のデータ同化による船舶性能推定方法。 The model ship flow field data is acquired by a water tank test for a plurality of the model ships having similar shapes to the ship, the influence of the Reynolds number is extracted, and the influence of the Reynolds number is incorporated into the computational fluid dynamics (CFD) calculation. The method for estimating ship performance by assimilating data according to claim 2, wherein the ship performance is estimated. 前記模型船に付加物を取り付け前記模型船の周囲の流速分布を制御してレイノルズ数の影響を抽出し、前記レイノルズ数の影響を前記数値流体力学(CFD)計算に取り込むことを特徴とする請求項2に記載のデータ同化による船舶性能推定方法。 A claim characterized by attaching an adduct to the model ship, controlling the flow velocity distribution around the model ship, extracting the influence of the Reynolds number, and incorporating the influence of the Reynolds number into the computational fluid dynamics (CFD) calculation. Item 2. The method for estimating ship performance by assimilating data according to item 2. 前記模型船の実験を行なう試験水槽の一部に閉塞路を設け、さらに前記閉塞路にフローライナーを設けて前記模型船の周囲の流速分布を制御してレイノルズ数の影響を抽出し、前記レイノルズ数の影響を前記数値流体力学(CFD)計算に取り込むことを特徴とする請求項2に記載のデータ同化による船舶性能推定方法。 A closed path is provided in a part of the test water tank for conducting the experiment of the model ship, and a flow liner is further provided in the closed path to control the flow velocity distribution around the model ship to extract the influence of the Reynolds number. The method for estimating ship performance by data assimilation according to claim 2, wherein the influence of numbers is incorporated into the computational fluid dynamics (CFD) calculation. 前記データ同化を前記船舶の自航要素の前記性能推定に関連した範囲で行ったことを特徴とする請求項1から請求項11のいずれか1項に記載のデータ同化による船舶性能推定方法。 The ship performance estimation method by data assimilation according to any one of claims 1 to 11, wherein the data assimilation is performed within a range related to the performance estimation of the self-propelled element of the ship. 前記船舶の前記模型船を使用して計測した前記模型船データを用いて前記数値流体力学(CFD)計算に前記データ同化させて、前記数値流体力学(CFD)計算における前記船舶の前記性能推定の精度を向上した結果を、前記船舶の実船スケールの前記数値流体力学(CFD)計算に適用し、前記船舶の前記実船の性能を予測することを特徴とする請求項1から請求項12のいずれか1項に記載のデータ同化による船舶性能推定方法。 Using the model ship data measured using the model ship of the ship, the data is assimilated into the computational fluid dynamics (CFD) calculation, and the performance estimation of the ship in the computational fluid dynamics (CFD) calculation is performed. The first to twelfth claims, wherein the result of improved accuracy is applied to the computational fluid dynamics (CFD) calculation of the actual ship scale of the ship to predict the performance of the actual ship of the ship. A method for estimating ship performance by assimilating data according to any one of the items. 前記船舶の前記実船の性能の予測結果と、前記実船で計測した実船データとを比較し、前記船舶の状態を判断することを特徴とする請求項13に記載のデータ同化による船舶性能推定方法。 The ship performance by data assimilation according to claim 13, wherein the prediction result of the performance of the actual ship of the ship is compared with the actual ship data measured by the actual ship to determine the state of the ship. Estimating method. 船舶の性能推定をするための数値流体力学(CFD)計算手段と、前記船舶の模型船を使用して計測した模型船データ及び前記船舶の実船で計測した実船データの少なくとも1つを入力するデータ入力手段と、前記数値流体力学(CFD)計算手段にデータ同化させるデータ同化手段と、前記データ同化の結果を前記数値流体力学(CFD)計算手段に反映する数値流体力学(CFD)計算更新手段とを備え、前記船舶の前記性能推定の精度を向上することを特徴とするデータ同化による船舶性能推定システム。 Enter at least one of the computational fluid dynamics (CFD) calculation means for estimating the performance of the ship, the model ship data measured using the model ship of the ship, and the actual ship data measured by the actual ship of the ship. Data input means to be performed, data assimilation means to be assimilated by the computational fluid dynamics (CFD) calculation means, and computational fluid dynamics (CFD) calculation update to reflect the result of the data assimilation in the computational fluid dynamics (CFD) calculation means. A ship performance estimation system by data assimilation, which comprises means and improves the accuracy of the performance estimation of the ship. 前記データ入力手段に前記模型船データ及び前記実船データの少なくとも1つを直接又は間接的に入力するデータ通信手段を備えたことを特徴とする請求項15に記載のデータ同化による船舶性能推定システム。 The ship performance estimation system by data assimilation according to claim 15, wherein the data input means includes a data communication means for directly or indirectly inputting at least one of the model ship data and the actual ship data. .. 解析対象船の船舶条件を入力する船舶条件入力手段と、前記船舶条件に基づいて前記精度を向上した前記数値流体力学(CFD)計算手段で前記性能推定を行った結果を出力する性能推定結果出力手段とを備えたことを特徴とする請求項15又は請求項16に記載のデータ同化による船舶性能推定システム。 Performance estimation result output that outputs the result of performing the performance estimation by the ship condition input means for inputting the ship conditions of the ship to be analyzed and the computational fluid dynamics (CFD) calculation means with the accuracy improved based on the ship conditions. The ship performance estimation system by data assimilation according to claim 15 or 16, characterized in that the means is provided. 遠隔地から前記船舶条件入力手段へ入力を行い、遠隔地に前記性能推定結果出力手段から出力を行なう入出力通信手段とを備えたことを特徴とする請求項17に記載のデータ同化による船舶性能推定システム。 The ship performance by data assimilation according to claim 17, wherein an input / output communication means for inputting from a remote place to the ship condition input means and outputting from the performance estimation result output means is provided at the remote place. Estimate system.
JP2019062647A 2019-03-28 2019-03-28 Vessel performance estimation method and vessel performance estimation system by assimilation of data Pending JP2020158072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019062647A JP2020158072A (en) 2019-03-28 2019-03-28 Vessel performance estimation method and vessel performance estimation system by assimilation of data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062647A JP2020158072A (en) 2019-03-28 2019-03-28 Vessel performance estimation method and vessel performance estimation system by assimilation of data

Publications (1)

Publication Number Publication Date
JP2020158072A true JP2020158072A (en) 2020-10-01

Family

ID=72641506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062647A Pending JP2020158072A (en) 2019-03-28 2019-03-28 Vessel performance estimation method and vessel performance estimation system by assimilation of data

Country Status (1)

Country Link
JP (1) JP2020158072A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113420507A (en) * 2021-07-08 2021-09-21 刘维烁 Fluid flow simulation method, device and medium
CN114117641A (en) * 2021-12-01 2022-03-01 中国船舶科学研究中心 Method for evaluating underwater radiation noise caused by equipment under real ship installation condition
CN114462141A (en) * 2021-12-31 2022-05-10 武汉理工大学 Multi-scale simulation method, system and storage medium based on CFD
CN114604391A (en) * 2022-03-24 2022-06-10 中船黄埔文冲船舶有限公司 Pile fixing frame construction method
CN115017609A (en) * 2022-05-23 2022-09-06 中国船舶科学研究中心 Method for evaluating effective attack angle of cavitation part of real-scale ship appendage
WO2023054039A1 (en) * 2021-09-30 2023-04-06 国立研究開発法人 海上・港湾・航空技術研究所 Performance evaluation method, performance evaluation program, and performance evaluation system through actual ship monitoring analysis of ship
WO2024005351A1 (en) * 2022-07-01 2024-01-04 한국해양과학기술원 System and method for estimating ship performance coefficient by using convolutional neural network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138981A (en) * 1999-11-18 2001-05-22 Nkk Corp Viscous resistance estimating method and design method for enlarged ship, and enlarged ship
JP2006306304A (en) * 2005-04-28 2006-11-09 Niigata Shipbuilding & Repair Inc Propulsion device and its manufacturing method
JP2019010983A (en) * 2017-06-30 2019-01-24 川崎重工業株式会社 Ship performance analysis system and ship performance analysis method
JP2019018761A (en) * 2017-07-19 2019-02-07 国立研究開発法人 海上・港湾・航空技術研究所 Underwater noise estimation method of sailing body, underwater noise estimation program and underwater noise estimation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138981A (en) * 1999-11-18 2001-05-22 Nkk Corp Viscous resistance estimating method and design method for enlarged ship, and enlarged ship
JP2006306304A (en) * 2005-04-28 2006-11-09 Niigata Shipbuilding & Repair Inc Propulsion device and its manufacturing method
JP2019010983A (en) * 2017-06-30 2019-01-24 川崎重工業株式会社 Ship performance analysis system and ship performance analysis method
JP2019018761A (en) * 2017-07-19 2019-02-07 国立研究開発法人 海上・港湾・航空技術研究所 Underwater noise estimation method of sailing body, underwater noise estimation program and underwater noise estimation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
児玉良明、日野孝則、右近良孝、日夏宗彦: "キャビテーション・タンネルにおけるフローライナ—を用いた制限水路影響軽減法の数値シミュレーション", 日本船舶海洋工学会論文集, vol. 第11号, JPN7022005618, 30 June 2010 (2010-06-30), JP, pages 81 - 89, ISSN: 0004936752 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113420507A (en) * 2021-07-08 2021-09-21 刘维烁 Fluid flow simulation method, device and medium
CN113420507B (en) * 2021-07-08 2023-11-21 刘维烁 Fluid flow simulation method, device and medium
WO2023054039A1 (en) * 2021-09-30 2023-04-06 国立研究開発法人 海上・港湾・航空技術研究所 Performance evaluation method, performance evaluation program, and performance evaluation system through actual ship monitoring analysis of ship
CN114117641A (en) * 2021-12-01 2022-03-01 中国船舶科学研究中心 Method for evaluating underwater radiation noise caused by equipment under real ship installation condition
CN114462141A (en) * 2021-12-31 2022-05-10 武汉理工大学 Multi-scale simulation method, system and storage medium based on CFD
CN114462141B (en) * 2021-12-31 2023-09-19 武汉理工大学 CFD-based multi-scale simulation method, system and storage medium
CN114604391A (en) * 2022-03-24 2022-06-10 中船黄埔文冲船舶有限公司 Pile fixing frame construction method
CN114604391B (en) * 2022-03-24 2023-05-05 中船黄埔文冲船舶有限公司 Method for constructing pile fixing frame
CN115017609A (en) * 2022-05-23 2022-09-06 中国船舶科学研究中心 Method for evaluating effective attack angle of cavitation part of real-scale ship appendage
WO2024005351A1 (en) * 2022-07-01 2024-01-04 한국해양과학기술원 System and method for estimating ship performance coefficient by using convolutional neural network

Similar Documents

Publication Publication Date Title
JP2020158072A (en) Vessel performance estimation method and vessel performance estimation system by assimilation of data
EP3330171B1 (en) Apparatus for predicting a power consumption of a maritime vessel
EP3176068B1 (en) Vessel characteristic estimation device and automatic steering device
KR102340167B1 (en) Methods and systems for optimizing the operation of ships
Fer et al. Autonomous ocean turbulence measurements using shear probes on a moored instrument
JP6974828B2 (en) Underwater noise estimation method for ships, underwater noise estimation program and underwater noise estimation device
WO2010031399A1 (en) System for dynamically optimizing the operation of a ship
CN107179693A (en) Based on the Huber robust adaptive filtering estimated and method for estimating state
Prins et al. Green retrofitting through optimisation of hull-propulsion interaction–GRIP
CN109917151A (en) A kind of opposite wind blending algorithm of ship based on Dynamic Weights distribution
EP3428655B1 (en) Meter for ship speed relative to water and method for correcting measurement values of meter for ship speed relative to water
KR20080071269A (en) System of optimum course selection for ship&#39;s speed trial and method thereof
JP3562494B2 (en) Sonar detection range prediction visualization system, method and program
KR101860482B1 (en) Calibration method of ship’s speed measurement device using numerical method
JP2019010983A (en) Ship performance analysis system and ship performance analysis method
JP6984874B2 (en) Voyage planning method and voyage planning system
KR20200024094A (en) Gm calculation system, method and program thereof, and shear wave period prediction system, method and program thereof
JP3589186B2 (en) Onboard marine forecasting device
JP7189764B2 (en) Ship performance estimation device and ship performance estimation program
JP6154540B2 (en) Ship characteristic estimation device
JP3562493B2 (en) Sonar detection range prediction system, method and program
Bons et al. EconomyPlanner; optimal use of inland waterways
JP7274732B2 (en) Model ship test method, test program and test system
Dhar et al. Real-Time Ship Draft Measurement and Optimal Estimation Using Kalman Filter
Pennino et al. Sea state monitoring based on ship motion measurements onboard an icebreaker in the Antarctic waters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231121