WO2011124295A1 - Verbrennungskraftmaschine - Google Patents

Verbrennungskraftmaschine Download PDF

Info

Publication number
WO2011124295A1
WO2011124295A1 PCT/EP2011/000808 EP2011000808W WO2011124295A1 WO 2011124295 A1 WO2011124295 A1 WO 2011124295A1 EP 2011000808 W EP2011000808 W EP 2011000808W WO 2011124295 A1 WO2011124295 A1 WO 2011124295A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
combustion engine
internal combustion
turbine
exhaust
Prior art date
Application number
PCT/EP2011/000808
Other languages
English (en)
French (fr)
Inventor
Thomas Kuhn
Nils Brinkert
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to JP2013503019A priority Critical patent/JP5832515B2/ja
Priority to CN201180027879.3A priority patent/CN102933815B/zh
Publication of WO2011124295A1 publication Critical patent/WO2011124295A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine in the preamble of
  • Patent claim 1 specified type.
  • Exhaust gas turbocharger wherein the exhaust gas turbocharger comprises a turbine housing with two spiral channels.
  • the spiral channels in turn have respective nozzle cross-sections, which are arranged distributed about the axis of rotation of a turbine wheel received in the turbine housing over a circumference of the turbine wheel and via which the turbine wheel with exhaust gas of the internal combustion engine can be acted upon.
  • the exhaust gas turbocharger has further potential to reduce its wear.
  • An internal combustion engine according to the invention comprises at least one
  • Exhaust gas turbocharger which comprises a turbine arranged in an exhaust gas tract of the internal combustion engine and having a turbine wheel which can be acted upon with exhaust gas of the internal combustion engine. Furthermore, the
  • Internal combustion engine at least one combustion chamber, in particular a cylinder, from which via an exhaust pipe of the exhaust gas exhaust gas of
  • the turbine In this case, it comprises at least two spiral channels which are arranged distributed around the axis of rotation of the turbine wheel over a circumference of the turbine wheel
  • the internal combustion engine is characterized in that the exhaust gas discharged from the combustion chamber can be divided in the flow direction of the exhaust gas upstream of the turbine by means of the exhaust gas piping into at least two partial exhaust gas streams, which can be fed to one of the spiral channels by means of the exhaust gas piping.
  • one of the partial exhaust gas streams is fed to one of the spiral channels and the other of the partial exhaust gas streams to the other of the spiral channels by means of the exhaust gas piping.
  • Exhaust gas turbocharger by means of which the turbine wheel, a compressor wheel of a compressor of the exhaust gas turbocharger and a rotatably connected to the turbine wheel and the compressor wheel and mounted in a bearing housing of the turbocharger shaft is mounted.
  • This very low load on the bearing results from the fact that resulting, normal to the axis of rotation of the turbine wheel canceling forces cancel or at least greatly reduced.
  • an efficiency advantage of the turbine is verified by a better implementation of a shock application of the turbine wheel, so what with an efficient Stoßaufladung the internal combustion engine by the
  • Turbine are arranged.
  • two spiral channels whereby a segment turbine with two segments is shown as a turbine, these are advantageously offset by 180 ° relative to one another over the circumference of the segment
  • Turbinerads arranged, resulting in the very low burden of storage results. If more than two spiral channels, i. Segments provided, they are arranged in pairs offset by an equal angle to each other over the circumference of the turbine wheel. Alternatively it can be provided that the nozzle cross-sections of the
  • Spiral channels are arranged unevenly distributed over the circumference of the turbine wheel. In the case of two spiral channels, this therefore means that the nozzle cross-sections are offset from each other by an angle different from 180 °. This has the advantage that, for example, run-length differences for the exhaust gas through the
  • the nozzle cross sections have different cross sections from each other, wherein the cross sections
  • the spiral channels can each be supplied to each other for different purposes. If two spiral channels are provided, then, for example, a spiral channel can function as a so-called ⁇ spiral channel, by means of which a spiral channel can be used
  • Combustion air ratio of the internal combustion engine is adjustable.
  • EGR exhaust gas recirculation
  • This EGR spiral channel supports an exhaust gas recirculation of the internal combustion engine, since by means of the EGR spiral channel, the exhaust gas can be stowed well and thus a particularly high amount of exhaust gas from the exhaust system to a
  • spiral channels have mutually different wrap angles. But it is also possible that they are the same
  • the internal combustion engine has a plurality of combustion chambers, wherein respective exhaust gas at least two of these combustion chambers downstream of the combustion chambers initially by means of the exhaust piping at least one collection point together feasible and then downstream of the collection point and upstream of the turbine in the at least two
  • Part of the exhaust gas streams can be divided, which in turn can be fed to one of the spiral channels by means of the exhaust gas piping. This therefore means that the exhaust gas from two combustion chambers is first combined to form an overall exhaust gas stream, which is subsequently split again and fed to the spiral channels.
  • the internal combustion engine according to the invention has the advantage of a greater degree of freedom in the design of the turbine wheel, resulting in a low consumption and thus low C0 2 emissions of the internal combustion engine result. Another advantage that can be achieved is a better one
  • the internal combustion engine according to the invention allows a
  • the internal combustion engine according to the invention is in one
  • Combustion chambers wherein exhaust gas from a subset of this plurality of combustion chambers by means of the exhaust pipe to a first exhaust gas flow and the exhaust of the other subset of the plurality of combustion chambers to a second exhaust stream downstream of the combustion chambers but still upstream of the turbine is brought together or merged so are represented by the exhaust pipe two floods, via which in each case one of the exhaust gas streams of the turbine can be fed. Further downstream and still upstream of the turbine then both the first and the second exhaust gas flow in each case in turn into two partial exhaust gas streams by means of
  • Subdivided exhaust gas piping which are each fed to a spiral channel of the turbine by means of the exhaust piping or are supplied.
  • This principle is readily applicable to a higher number of floods and leads in any way to a particularly low burden of storage of the exhaust gas turbocharger and thus a very low wear desselbigen.
  • Fig. 1 is a schematic diagram of an internal combustion engine with six cylinders and an exhaust gas turbocharger with a turbine, wherein by means of an exhaust gas exhaust gas each three of the cylinder is merge to a respective tide, and wherein the floods are each divided upstream of the turbine by means of the exhaust piping in two partial floods ;
  • FIG. 2 shows a schematic cross-sectional view of the turbine of the exhaust gas turbocharger of the internal combustion engine according to FIG. 1.
  • FIG. 1 shows an internal combustion engine 10 with an exhaust-gas turbocharger 12, which has one on an intake side 14 of the internal combustion engine 10
  • Internal combustion engine 10 arranged turbine 20 includes.
  • the compressor 16 includes a compressor wheel 22 which is non-rotatably connected to a shaft 24 of the exhaust gas turbocharger 12. Also rotatably connected to the shaft 24 is a in one
  • Turbine housing 26 of the turbine 20 received turbine 28, which is acted upon by exhaust gas of the internal combustion engine 10 and driven. As a result, the turbine wheel 28 drives the compressor wheel 22 via the shaft 24.
  • Directional arrow 36 in an air collector 38 in which the air is first collected and then the cylinders of the internal combustion engine 10 is supplied. These it is a direct-injection internal combustion engine 10, so the air in the cylinders is supplied with fuel, whereupon a combustion of this fuel-air mixture takes place by self-ignition or spark ignition.
  • the exhaust gas resulting from this combustion is discharged from the cylinders of the internal combustion engine 10 by means of an exhaust gas piping 40.
  • the exhaust gas of each of the three cylinders of the six-cylinder internal combustion engine is first combined by means of the exhaust gas piping 40 into a respective flood 42 and 44 and fed to the turbine 20.
  • This means that three of the six cylinders will deliver their exhaust to the flood 42 and the other cylinders will deliver their exhaust to the high tide 44.
  • An associated reduction of exhaust-carrying volumes between the cylinders and the turbine 20 for each of the floods 42 and 44 leads to the effect of a bumping charge, whereby the internal combustion engine 10 by means of the
  • Exhaust gas turbocharger 12 is shock charged.
  • the turbine housing 26 of the turbine 20 has four spiral channels 46, 48, 50 and 52, which in turn have a respective nozzle cross-section A R.
  • the nozzle cross sections A R are distributed around the axis of rotation 56 of the turbine wheel 28 over its circumference.
  • the turbine wheel 28 can be acted upon via the nozzle cross sections A R with the exhaust gas from the cylinders and thus drivable.
  • the shaft 24 and the turbine 28 is discharged from the cylinders with the exhaust piping 40 and first each merged to the flood 42 and 44 exhaust upstream of the turbine 20 each split into two partial exhaust streams 58 and 60 or 62 and 64, which By means of the exhaust piping in each case one of the spiral channels 46, 48, 50 and 52 can be fed.
  • Nozzle cross-sections A R can differ from each other or to each other
  • nozzle cross sections A R need not necessarily be evenly distributed over the circumference of the turbine wheel 28. An uneven distribution is advantageous, for example, to compensate for run length differences for the exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft eine Verbrennungskraftmaschine (10) mit wenigstens einem Abgasturbolader (12), welcher eine in einem Abgastrakt (18) der Verbrennungskraftmaschine (10) angeordnete und ein mit Abgas der Verbrennungskraftmaschine (10) beaufschlagbares Turbinenrad (28) aufweisende Turbine (20) umfasst, und mit zumindest einem Verbrennungsraum aus welchem über eine Abgasverrohrung (40) des Abgastrakts (18) Abgas der Verbrennungskraftmaschine (10) ausleitbar und der Turbine (20) zuführbar ist, wobei die Turbine (20) zumindest zwei Spiralkanäle (46, 48, 50, 52) umfasst, welche jeweilige, um die Drehachse (56) des Turbinenrads (28) über einem Umfang des Turbinenrads (28) verteilt angeordnete Düsenquerschnitte (AR) aufweisen, über welche das Turbinenrad (28) mit dem Abgas beaufschlagbar ist, wobei das aus dem Verbrennungsraum ausgeleitete Abgas stromauf der Turbine (20) mittels der Abgasverrohrung (40) in zumindest zwei Abgasteilströme (58, 60, 62, 64) aufteilbar ist, welche mittels der Abgasverrohrung (40) jeweils einem der Spiralkanäle (46, 48, 50, 52) zuführbar sind.

Description

Verbrennungskraftmaschine
Die Erfindung betrifft eine Verbrennungskraftmaschine der im Oberbegriff des
Patentanspruchs 1 angegebenen Art.
Die DE 102 12 675 B4 offenbart eine Verbrennungskraftmaschine mit einem
Abgasturbolader, wobei der Abgasturbolader ein Turbinengehäuse mit zwei Spiralkanälen umfasst. Die Spiralkanäle weisen wiederum jeweilige Düsenquerschnitte auf, die um die Drehachse eines in dem Turbinengehäuse aufgenommenen Turbinenrads über einen Umfang des Turbinenrads verteilt angeordnet sind und über welche das Turbinenrad mit Abgas der Brennkraftmaschine beaufschlagbar ist.
Der Abgasturbolader weist dabei weiteres Potential auf, seinen Verschleiß zu reduzieren.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Verbrennungskraftmaschine mit wenigstens einem Abgasturbolader bereitzustellen, wobei der Abgasturbolader einen besonders niedrigen Verschleiß aufweist.
Diese Aufgabe wird durch eine Verbrennungskraftmaschine mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nichttrivialen Weiterbildung der Erfindung sind in den abhängigen Ansprüchen angegeben.
Eine erfindungsgemäße Verbrennungskraftmaschine umfasst wenigstens einen
Abgasturbolader, welcher eine in einem Abgastrakt der Verbrennungskraftmaschine angeordnete und ein mit Abgas der Verbrennungskraftmaschine beaufschlagbares Turbinenrad aufweisende Turbine umfasst. Des Weiteren umfasst die
Verbrennungskraftmaschine zumindest einen Verbrennungsraum, insbesondere einen Zylinder, aus welchem über eine Abgasverrohrung des Abgastrakts Abgas der
Verbrennungskraftmaschine ausleitbar und der Turbine zuführbar ist. Die Turbine umfasst dabei zumindest zwei Spiralkanäle, welche jeweilige, um die Drehachse des Turbinenrads über einem Umfang des Turbinenrads verteilt angeordnete
Düsenquerschnitte aufweisen, über welche das Turbinenrad mit dem Abgas
beaufschlagbar ist. Die Verbrennungskraftmaschine zeichnet sich dadurch aus, dass das aus dem Verbrennungsraum ausgeleitete Abgas in Strömungsrichtung des Abgases stromauf der Turbine mittels der Abgasverrohrung zumindest in zwei Abgasteilströme aufteilbar ist, welche mittels der Abgasverrohrung jeweils einem der Spiralkanäle zuführbar sind. Bevorzugt ist einer der Abgasteilströme einem der Spiralkanäle und der andere der Abgasteilströme dem anderen der Spiralkanäle mittels der Abgasverrohrung zuführbar.
Mit anderen Worten bedeutet dies, dass ein Versorgungsvolumen für die Turbine, aus welchem die Turbine mit dem Abgas versorgbar ist, aufgeteilt ist und das Abgas aus dem Versorgungsvolumen dem Turbinenrad über dessen Umfang verteilt zugeführt wird.
Dies führt zu einer sehr geringen Belastung und damit zu einem sehr geringen Verschleiß einer Lagerung des Turbinenrads bzw. einer gesamten Rotorlagerung des
Abgasturboladers, mittels welcher das Turbinenrad, ein Verdichterrad eines Verdichters des Abgasturboladers sowie eine mit dem Turbinenrad und dem Verdichterrad drehfest verbundene und in einem Lagergehäuse des Turboladers gelagerte Welle gelagert ist. Diese sehr geringe Belastung der Lagerung resultiert daraus, dass sich ergebende, normal zur Drehachse des Turbinenrads verlaufende Kräfte aufheben oder zumindest sehr stark reduziert sind. Des Weiteren wird ein Wirkungsgradvorteil der Turbine über eine bessere Umsetzung einer Stoßbeaufschlagung des Turbinenrads verifiziert, was also mit einer effizienten Stoßaufladung der Verbrennungskraftmaschine durch den
Abgasturbolader einhergeht.
Bei einer vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass die
Düsenquerschnitte der Spiralkanäle gleichmäßig verteilt über dem Umfang des
Turbinenrads angeordnet sind. Sind also beispielsweise zwei Spiralkanäle vorgesehen, wodurch als Turbine eine Segmentturbine mit zwei Segmenten dargestellt ist, so sind diese vorteilhafter Weise um 180° versetzt zueinander über dem Umfang des
Turbinerads angeordnet, woraus die sehr geringe Belastung der Lagerung resultiert. Sind mehr als zwei Spiralkanäle, d.h. Segmente, vorgesehen, so sind diese paarweise um einen gleichen Winkel versetzt zueinander über den Umfang des Turbinenrads angeordnet. Alternativ kann vorgesehen sein, dass die Düsenquerschnitte der
Spiralkanäle ungleichmäßig verteilt über dem Umfang des Turbinenrads angeordnet sind. Bei zwei Spiralkanälen bedeutet dies also, dass die Düsenquerschnitte um einen von 180° verschiedenen Winkel versetzt zueinander angeordnet sind. Dies birgt den Vorteil, dass dadurch beispielsweise Lauflängenunterschiede für das Abgas durch die
Abgasverrohrung korrigierbar sind.
Bei einer vorteilhaften Ausführungsform der Erfindung weisen die Düsenquerschnitte voneinander unterschiedliche Querschnitte auf, wobei sich die Querschnitte
beispielsweise hinsichtlich ihrer Größe, Form und/oder dergleichen unterscheiden können. Dies bedeutet eine zueinander asymmetrische Ausbildung der
Düsenquerschnitte. Somit können die Spiralkanäle jeweils voneinander unterschiedlichen Zwecken zugeführt werden. Sind zwei Spiralkanäle vorgesehen, so kann beispielsweise ein Spiralkanal als sogenannter λ-Spiralkanal fungieren, mittels welchem ein
Verbrennungsluftverhältnis der Verbrennungskraftmaschine einstellbar ist. Der andere Spiralkanal weist beispielsweise einen geringeren Querschnitt seines Düsenquerschnitts auf, wodurch dieser die Funktion eines sogenannte AGR-Spiralkanals übernimmt (AGR = Abgasrückführung). Dieser AGR-Spiralkanal unterstützt dabei eine Abgasrückführung der Verbrennungskraftmaschine, da mittels des AGR-Spiralkanals das Abgas gut aufstaubar und somit eine besonders hohe Menge an Abgas von dem Abgastrakt auf eine
Ansaugseite der Verbrennungskraftmaschine rückführbar ist.
Weiterhin kann vorgesehen sein, dass die Spiralkanäle voneinander unterschiedliche Umschlingungswinkel aufweisen. Es ist aber auch möglich, dass sie gleiche
Umschlingungswinkel aufweisen.
Bei einer weiteren vorteilhaften Ausführungsform weist die Verbrennungskraftmaschine eine Mehrzahl von Verbrennungsräumen auf, wobei jeweiliges Abgas zumindest zweier dieser Verbrennungsräume stromab der Verbrennungsräume zunächst mittels der Abgasverrohrung an zumindest einer Sammelstelle zusammen führbar und anschließend stromab der Sammelstelle und stromauf der Turbine in die zumindest zwei
Abgasteilströme aufteilbar ist, welche wiederum mittels der Abgasverrohrung jeweils einem der Spiralkanäle zuführbar sind. Das bedeutet also, dass das Abgas aus zwei Verbrennungsräumen zunächst zu einem Gesamtabgasstrom zusammen geführt wird, welcher anschließend wieder aufgeteilt und den Spiralkanälen zugeführt wird. Dies führt zu der bereits beschriebenen, sehr geringen Belastung der Lagerung, was mit einem sehr geringen Verschleiß des Abgasturboladers einhergeht. Weiterhin birgt die erfindungsgemäße Verbrennungskraftmaschine den Vorteil eines größeren Freiheitsgrads bei der Auslegung des Turbinenrads, woraus ein geringer Verbrauch und damit geringe C02-Emissionen der Verbrennungskraftmaschine resultieren. Ein weiterer Vorteil, der dadurch zu erreichen ist, ist ein besseres
Ansprechverhalten und damit ein zumindest nahezu verzögerungsfreies Bereitstellen eines entsprechenden Aufladungssgrads zur Darstellung eines bestimmten
Drehmoments bzw. einer bestimmten Leistung der Verbrennungskraftmaschine.
Weiterhin ermöglicht die erfindungsgemäße Verbrennungskraftmaschine eine
verbesserte Rotordynamik sowie eine verbesserte Dauerfestigkeit.
Außerdem ist die erfindungsgemäße Verbrennungskraftmaschine in einem
Stoßaufladungsbetrieb betreibbar, da durch eine Volumenverkleinerung von dem
Verbrennungsraum zu der Abgasverrohrung und damit von abgasführenden Volumina zwischen dem Verbrennungsraum und dem Abgasturbolader der Effekt der
Stoßaufladung realisiert ist.
Das zu der erfindungsgemäßen Verbrennungskraftmaschine bisher Aufgeführte gilt sowohl für eine Turbine, welche von einer Flut der Abgasverrohrung mit Abgas versorgt wird als auch für eine Turbine, welche von zwei oder mehr Fluten mit Abgas versorgt wird. Weist die Verbrennungskraftmaschine beispielsweise eine Mehrzahl von
Verbrennungsräumen auf, wobei Abgas aus einer Teilmenge dieser Mehrzahl von Verbrennungsräumen mittels der Abgasverrohrung zu einem ersten Abgasstrom und das Abgas der anderen Teilmenge der Mehrzahl von Verbrennungsräumen zu einem zweiten Abgasstrom stromab der Verbrennungsräume aber noch stromauf der Turbine zusammen geführt ist bzw. zusammenführbar ist, so sind durch die Abgasverrohrung zwei Fluten dargestellt, über welche jeweils einer der Abgasströme der Turbine zuführbar ist. Weiter stromab und noch stromauf der Turbine ist dann sowohl der erste als auch der zweite Abgasstrom jeweils wiederum in zwei Abgasteilströme mittels der
Abgasverrohrung unterteilbar, die jeweils einem Spiralkanal der Turbine mittels der Abgasverrohrung zuführbar sind bzw. zugeführt werden. Das bedeutet, dass zunächst zwei Versorgungsvolumina für die Turbine in Form der zwei Fluten in vier Abgasteilströme aufgeteilt und jeweils einem Spiralkanal zugeführt sind. Dieses Prinzip ist ohne Weiteres auf eine höhere Anzahl von Fluten übertragbar und führt in jeglicher Hinsicht zu einer besonders niedrigen Belastung der Lagerung des Abgasturboladers und damit zu einem sehr niedrigen Verschleiß desselbigen. Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnungen. Die vorstehend in der Beschreibung genannten Merkmale und
Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnungen zeigen in:
Fig. 1 eine Prinzipskizze einer Verbrennungskraftmaschine mit sechs Zylindern und einem Abgasturbolader mit einer Turbine, wobei mittels einer Abgasverrohrung Abgas jeweils dreier der Zylinder zu einer jeweiligen Flut zusammenführbar ist, und wobei die Fluten jeweils stromauf der Turbine mittels der Abgasverrohrung in jeweils zwei Teilfluten aufgeteilt sind; und
Fig. 2 eine schematische Querschnittsansicht der Turbine des Abgasturboladers der Verbrennungskraftmaschine gemäß Fig. 1.
Die Fig. 1 zeigt eine Verbrennungskraftmaschine 10 mit einem Abgasturbolader 12, welcher einen auf einer Ansaugseite 14 der Verbrennungskraftmaschine 10
angeordneten Verdichter 16 sowie eine in einem Abgastrakt 18 der
Verbrennungskraftmaschine 10 angeordnete Turbine 20 umfasst. Der Verdichter 16 umfasst ein Verdichterrad 22, welches drehfest mit einer Welle 24 des Abgasturboladers 12 verbunden ist. Ebenso drehfest mit der Welle 24 verbunden ist ein in einem
Turbinengehäuse 26 der Turbine 20 aufgenommenes Turbinenrad 28, welches von Abgas der Verbrennungskraftmaschine 10 beaufschlagbar und antreibbar ist. Dadurch treibt das Turbinenrad 28 über die Welle 24 das Verdichterrad 22 an.
Durch das von dem Turbinenrad 28 angetriebene Verdichterrad 22 wird von der
Verbrennungskraftmaschine 10 gemäß einem Richtungspfeil 30 angesaugte Luft verdichtet und bei dieser Verdichtung erwärmt. Die verdichtete und erwärmte Luft strömt gemäß einem Richtungspfeil 32 durch einen Ladeluftkühler 34, durch welchen diese wieder abgekühlt wird. Anschließend strömt die verdichtete Luft gemäß einem
Richtungspfeil 36 in einen Luftsammler 38, in welchem die Luft zunächst gesammelt und anschließend den Zylindern der Verbrennungskraftmaschine 10 zugeführt wird. Handelt es sich um eine direkt einspritzende Verbrennungskraftmaschine 10, so wird die Luft in den Zylindern mit Kraftstoff beaufschlagt, worauf eine Verbrennung dieses Kraftstoff- Luft-Gemisches durch Selbst- oder Fremdzündung erfolgt.
Das aus dieser Verbrennung entstehende Abgas wird mittels einer Abgasverrohrung 40 aus den Zylindern der Verbrennungskraftmaschine 10 ausgeleitet. Wie der Fig. 1 zu entnehmen ist, wird dabei mittels der Abgasverrohrung 40 zunächst das Abgas jeweils dreier Zylinder der sechszylindrigen Verbrennungskraftmaschine zu jeweils einer Flut 42 und 44 zusammengeführt und der Turbine 20 zugeführt. Das bedeutet, dass drei der sechs Zylinder ihr Abgas zur Flut 42 und die anderen Zylinder ihr Abgas zur Flut 44 fördern. Eine damit verbundene Verkleinerung von abgasführenden Volumina zwischen den Zylindern und der Turbine 20 für jede der Fluten 42 und 44 führt zum Effekt einer Stoßaufladung, wodurch also die Verbrennungskraftmaschine 10 mittels des
Abgasturboladers 12 stoßaufgeladen ist.
Wie der Fig. 1 insbesondere in Zusammenschau mit der Fig. 2 zu entnehmen ist, weist das Turbinengehäuse 26 der Turbine 20 vier Spiralkanäle 46, 48, 50 und 52 auf, die wiederum einen jeweiligen Düsenquerschnitt AR aufweisen. Die Düsenquerschnitte AR sind dabei um die Drehachse 56 des Turbinenrads 28 über dessen Umfang verteilt angeordnet. Außerdem ist das Turbinenrad 28 über die Düsenquerschnitte AR mit dem Abgas aus den Zylindern beaufschlagbar und damit antreibbar.
Zur Realisierung einer besonders niedrigen Belastung einer Lagerung für das
Verdichterrad 22, der Welle 24 sowie des Turbinenrads 28 ist das aus den Zylindern mit der Abgasverrohrung 40 ausgeleitet und zunächst jeweils zu der Flut 42 und 44 zusammengeführte Abgas stromauf der Turbine 20 jeweils in zwei Abgasteilströme 58 und 60 bzw. 62 und 64 aufteilbar, welche mittels der Abgasverrohrung jeweils einem der Spiralkanäle 46, 48, 50 und 52 zuführbar sind. Das bedeutet also, dass durch Aufteilung der Fluten 42 und 44 die vier Abgasteilströme 58, 60, 62 und 64 gebildet sind, wobei der Abgasteilstrom 58 dem Spiralkanal 50, der Abgasteilstrom 60 dem Spiralkanal 46, der Abgasteilstrom 62 dem Spiralkanal 52 und der Abgasteilstrom 64 dem Spiralkanal 48 zuführbar sind. Da die Düsenquerschnitte AR der Spiralkanäle 48 und 52 bzw. der Spiralkanäle 46 und 50, die jeweils aus der gemeinsamen Flut 42 bzw. 44 mit Abgas versorgt werden, zumindest im Wesentlichen gegenüber liegen, heben sich normal zur Drehachse 56 verlaufende Kräfte infolge von Gaskräften des Abgases zumindest nahezu auf. Dies führt zu einer sehr geringen Belastung der Lagerung und damit zu einem sehr niedrigen Verschleiß des Abgasturboladers 12. Die Spiralkanäle 46, 48, 50 und 52 weisen jeweilige Umschlingungswinkel φ5 auf, welche gleich oder voneinander unterschiedlich ausgebildet sein können. Auch die
Düsenquerschnitte AR können voneinander unterschiedlich oder zueinander
asymmetrisch bezüglich ihrer Form und/oder ihres Querschnitts ausgebildet sein. Auch müssen die Düsenquerschnitte AR nicht notwendigerweise gleichmäßig verteilt über dem Umfang des Turbinenrads 28 angeordnet sein. Eine ungleichmäßige Verteilung ist beispielsweise vorteilhaft, um Lauflängenunterschiede für das Abgas auszugleichen.
Bezugszeichenliste
10 Verbrennungskraftmaschine
12 Abgasturbolader
14 Ansaugseite
16 Verdichter
18 Abgastrakt
20 Turbine
22 Verdichterrad
24 Welle
26 Turbinengehäuse
28 Turbinenrad
30 Richtungspfeil
32 Richtungspfeil
34 Ladeluftkühler
36 Richtungspfeil
38 Luftsammler
40 Abgasverrohrung
42 Flut
44 Flut
46 Spiralkanal
48 Spiralkanal
50 Spiralkanal
52 Spiralkanal
56 Drehachse
58 Abgasteilstrom
60 Abgasteilstrom
62 Abgasteilstrom
64 Abgasteilstrom
AR Düsenquerschnitt
Umschlingungswinkel

Claims

Patentansprüche
1. Verbrennungskraftmaschine (10) mit wenigstens einem Abgasturbolader (12), welcher eine in einem Abgastrakt (18) der Verbrennungskraftmaschine (10) angeordnete und ein mit Abgas der Verbrennungskraftmaschine (10)
beaufschlagbares Turbinenrad (28) aufweisende Turbine (20) umfasst, und mit zumindest einem Verbrennungsraum aus welchem über eine Abgasverrohrung (40) des Abgastrakts (18) Abgas der Verbrennungskraftmaschine (10) ausleitbar und der Turbine (20) zuführbar ist, wobei die Turbine (20) zumindest zwei Spiralkanäle (46, 48, 50, 52) umfasst, welche jeweilige, um die Drehachse (56) des Turbinenrads (28) über einem Umfang des Turbinenrads (28) verteilt angeordnete
Düsenquerschnitte (AR) aufweisen, über welche das Turbinenrad (28) mit dem Abgas beaufschlagbar ist,
dadurch gekennzeichnet, dass
das aus dem Verbrennungsraum ausgeleitete Abgas stromauf der Turbine (20) mittels der Abgasverrohrung (40) in zumindest zwei Abgasteilströme (58, 60, 62, 64) aufteilbar ist, welche mittels der Abgasverrohrung (40) jeweils einem der Spiralkanäle (46, 48, 50, 52) zuführbar sind.
2. Verbrennungskraftmaschine (10) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Düsenquerschnitte (AR) der Spiralkanäle (46, 48, 50, 52) gleichmäßig verteilt über dem Umfang des Turbinenrads (28), insbesondere um 180 Grad versetzt zueinander, angeordnet sind.
3. Verbrennungskraftmaschine (10) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Düsenquerschnitte (AR) der Spiralkanäle (46, 48, 50, 52) ungleichmäßig verteilt über dem Umfang des Turbinenrads (28) , insbesondere um einen von 180 Grad verschiedenen Winkel versetzt zueinander, angeordnet sind.
4. Verbrennungskraftmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Düsenquerschnitte (AR) voneinander unterschiedliche Querschnitte aufweisen.
5. Verbrennungskraftmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Spiralkanäle (46, 48, 50, 52) voneinander unterschiedliche
Umschlingungswinkel ( φ5 ) aufweisen.
6. Verbrennungskraftmaschine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Verbrennungskraftmaschine (10) eine Mehrzahl von Verbrennungsräumen aufweist, wobei jeweiliges Abgas zumindest zweier dieser Verbrennungsräume stromab der Verbrennungsräume zunächst mittels der Abgasverrohrung (40) an zumindest einer Sammelstelle zusammenführbar und anschließend stromab der Sammelstelle und stromauf der Turbine (20) in die zumindest zwei Abgasteilströme (58, 60, 62, 64) aufteilbar ist, welche mittels der Abgasverrohrung (40) jeweils einem der Spiralkanäle (46, 48, 50, 52) zuführbar sind.
PCT/EP2011/000808 2010-04-07 2011-02-19 Verbrennungskraftmaschine WO2011124295A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013503019A JP5832515B2 (ja) 2010-04-07 2011-02-19 内燃機関
CN201180027879.3A CN102933815B (zh) 2010-04-07 2011-02-19 内燃机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010014096.1 2010-04-07
DE201010014096 DE102010014096A1 (de) 2010-04-07 2010-04-07 Verbrennungskraftmaschine

Publications (1)

Publication Number Publication Date
WO2011124295A1 true WO2011124295A1 (de) 2011-10-13

Family

ID=43836771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/000808 WO2011124295A1 (de) 2010-04-07 2011-02-19 Verbrennungskraftmaschine

Country Status (5)

Country Link
US (1) US9097173B2 (de)
JP (1) JP5832515B2 (de)
CN (1) CN102933815B (de)
DE (1) DE102010014096A1 (de)
WO (1) WO2011124295A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523332A (ja) * 2013-06-04 2016-08-08 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited 独立した排気ガスの流れのためのタービン幾何学的形状が異なる排気ターボチャージャ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021928A1 (de) * 2010-05-28 2011-12-01 Daimler Ag Turbine für einen Abgasturbolader
DE102010051777A1 (de) * 2010-11-18 2012-05-24 Daimler Ag Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine
JP6304110B2 (ja) * 2015-04-15 2018-04-04 マツダ株式会社 ターボ過給機付エンジンの排気装置
SE539356C2 (en) * 2015-11-03 2017-08-01 Scania Cv Ab Four Stroke Internal Combustion Engine Efficiently Utilizing the Blowdown Energy in a Turbine
DE102017009452A1 (de) * 2017-10-11 2019-04-11 Daimler Ag Verbrennungskraftmaschine für ein Kraftfahrzeug und Kraftfahrzeug mit einer solchen Verbrennungskraftmaschine
US20220412221A1 (en) * 2021-06-23 2022-12-29 International Engine Intellectual Property Company, Llc Multiple Scroll Entry Turbine Turbocharger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1044176A (en) * 1962-08-07 1966-09-28 Snecma Device for the regulation of a super-charging turbo-compressor for an engine of small cylinder capacity
DE3943705A1 (de) * 1989-10-24 1993-07-15 Daimler Benz Ag Verfahren zum betreiben einer motorbremse fuer eine brennkraftmaschine
DE10212675B4 (de) 2002-03-22 2006-05-18 Daimlerchrysler Ag Abgasturbolader in einer Brennkraftmaschine

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1529632A (en) * 1921-12-22 1925-03-10 Allis Chalmers Mfg Co Hydraulic turbine
US1879561A (en) * 1931-04-13 1932-09-27 Gen Electric Diffuser for centrifugal compressors
US2390506A (en) * 1942-05-23 1945-12-11 Buchi Alfred Turbine with overhung rotor
US2635849A (en) * 1946-08-13 1953-04-21 Buchi Alfred Turbine stage
US2764944A (en) * 1954-02-03 1956-10-02 Lucas Industries Ltd Centrifugal pumps
US3287597A (en) 1962-12-24 1966-11-22 Varian Associates Vacuum tube with structurally integrated by-pass capacitor
CH577632A5 (de) * 1974-07-09 1976-07-15 Charmilles Sa Ateliers
US4177005A (en) * 1975-09-06 1979-12-04 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft (M.A.N.) Variable-throat spiral duct system for rotary stream-flow machines
DE2934041C2 (de) * 1979-08-23 1983-08-11 Günther Prof. Dr.-Ing. 5100 Aachen Dibelius Gesteuerte Abgasturboladerturbine
DE4242494C1 (en) * 1992-12-16 1993-09-09 Mercedes-Benz Aktiengesellschaft, 70327 Stuttgart, De Adjustable flow-guide for engine exhaust turbocharger - has axially-adjustable annular insert in sectors forming different kinds of guide grilles supplied simultaneously by spiral passages
DE19905637C1 (de) * 1999-02-11 2000-08-31 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE19918232C2 (de) * 1999-04-22 2001-03-01 Daimler Chrysler Ag Mehrzylindriger Verbrennungsmotor mit einem Abgasturbolader
US20060112689A1 (en) * 2004-11-30 2006-06-01 Savage Patrick W Jr Divided housing turbocharger with a variable nozzle area
DE102004062091A1 (de) * 2004-12-23 2006-07-06 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine und Brennkraftmaschine
DE102006019780A1 (de) * 2006-04-28 2007-11-08 Daimlerchrysler Ag Abgasturbolader in einer Brennkraftmaschine
DE102007034235A1 (de) * 2007-07-23 2009-01-29 Continental Automotive Gmbh Strömungsgehäuse eines Turboladers
JP2009144665A (ja) * 2007-12-17 2009-07-02 Toyota Central R&D Labs Inc ターボ過給機及び過給エンジンシステム
JP2009144664A (ja) * 2007-12-17 2009-07-02 Toyota Central R&D Labs Inc ターボ過給機及び過給エンジンシステム
DE102008020406A1 (de) * 2008-04-24 2009-10-29 Daimler Ag Abgasturbolader für eine Brennkraftmaschine eines Kraftfahrzeugs und Brennkraftmaschine
DE102009012131A1 (de) * 2009-03-06 2010-09-09 Daimler Ag Verstelleinrichtung
JP5257193B2 (ja) * 2009-03-26 2013-08-07 マツダ株式会社 過給機付きエンジン
US8585353B2 (en) * 2009-08-30 2013-11-19 Steven Don Arnold Variable volute turbine
DE102010021928A1 (de) * 2010-05-28 2011-12-01 Daimler Ag Turbine für einen Abgasturbolader
JP5602531B2 (ja) 2010-07-30 2014-10-08 日本製紙クレシア株式会社 ホルダアタッチメント及びシート状物品収納ボックス
DE102010051777A1 (de) * 2010-11-18 2012-05-24 Daimler Ag Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine
JP5479316B2 (ja) * 2010-12-28 2014-04-23 三菱重工業株式会社 遠心圧縮機のスクロール構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1044176A (en) * 1962-08-07 1966-09-28 Snecma Device for the regulation of a super-charging turbo-compressor for an engine of small cylinder capacity
DE3943705A1 (de) * 1989-10-24 1993-07-15 Daimler Benz Ag Verfahren zum betreiben einer motorbremse fuer eine brennkraftmaschine
DE10212675B4 (de) 2002-03-22 2006-05-18 Daimlerchrysler Ag Abgasturbolader in einer Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523332A (ja) * 2013-06-04 2016-08-08 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited 独立した排気ガスの流れのためのタービン幾何学的形状が異なる排気ターボチャージャ

Also Published As

Publication number Publication date
CN102933815B (zh) 2016-05-11
CN102933815A (zh) 2013-02-13
DE102010014096A1 (de) 2011-10-13
JP5832515B2 (ja) 2015-12-16
US9097173B2 (en) 2015-08-04
US20130047606A1 (en) 2013-02-28
JP2013524081A (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
WO2011124295A1 (de) Verbrennungskraftmaschine
EP2705222B1 (de) Turbine für einen abgasturbolader
EP2742219B1 (de) Verbrennungskraftmaschine für einen kraftwagen
EP2496805B1 (de) V-motor
WO2012076095A1 (de) Turbine für einen abgasturbolader
DE102014216820A1 (de) Aufgeladene Brennkraftmaschine mit in Reihe angeordneten Abgasturboladern und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
WO2008125555A1 (de) Turboladeranordnung
DE102011016528A1 (de) Turbine für einen Abgasturbolader
EP2576989B1 (de) Turbine für einen Abgasturbolader
WO2012065675A1 (de) Turbine für einen abgasturbolader einer verbrennungskraftmaschine
WO2011110209A1 (de) Stauaufgeladene verbrennungskraftmaschine
DE102012016984B4 (de) Turbine für einen Abgasturbolader sowie Verbrennungskraftmaschine mit einer solchen Turbine
DE102011115251A1 (de) Verbrennungskraftmaschine für einen Kraftwagen
DE202015101927U1 (de) Aufgeladene Brennkraftmaschine mit Kompressor und Elektromaschine
DE102013216608B4 (de) Abgasturboaufgeladene Brennkraftmaschine umfassend einen Verdichter mit zwei Laufrädern
WO2011147513A1 (de) Verbrennungskraftmaschine
DE102018221147B4 (de) Aufgeladene Brennkraftmaschine mit Verdichter und stromaufwärts des Verdichters angeordneter Leiteinrichtung
DE102015016591A1 (de) Turbine für einen Abgasturbolader
DE102013006370A1 (de) Turbine für einen Abgasturbolader sowie Baukastensystem für eine solche Turbine
DE202013104297U1 (de) Aufgeladene Brennkraftmaschine mit in Reihe angeordneten Abgasturboladern
DE102016212795A1 (de) Aufgeladene Brennkraftmaschine mit segmentierter Turbine
DE102012016167A1 (de) Verbrennungskraftmaschine für einen Kraftwagen sowie Kraftwagen mit einer solchen Verbrennungskraftmaschine
DE102015205997A1 (de) Aufgeladene selbstzündende Brennkraftmaschine mit zweiflutiger Turbine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE202015101748U1 (de) Aufgeladene selbstzündende Brennkraftmaschine mit zweiflutiger Turbine
DE102015205996A1 (de) Aufgeladene selbstzündende Vier-Zylinder-Brennkraftmaschine mit zweiflutiger Turbine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027879.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11704418

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013503019

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11704418

Country of ref document: EP

Kind code of ref document: A1