WO2011147513A1 - Verbrennungskraftmaschine - Google Patents

Verbrennungskraftmaschine Download PDF

Info

Publication number
WO2011147513A1
WO2011147513A1 PCT/EP2011/002021 EP2011002021W WO2011147513A1 WO 2011147513 A1 WO2011147513 A1 WO 2011147513A1 EP 2011002021 W EP2011002021 W EP 2011002021W WO 2011147513 A1 WO2011147513 A1 WO 2011147513A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral channel
combustion engine
internal combustion
exhaust gas
turbine
Prior art date
Application number
PCT/EP2011/002021
Other languages
English (en)
French (fr)
Inventor
Nils Brinkert
Siegfried Sumser
Torsten Hirth
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2011147513A1 publication Critical patent/WO2011147513A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/16Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system with EGR valves located at or near the connection to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/64Systems for actuating EGR valves the EGR valve being operated together with an intake air throttle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine in the preamble of
  • Patent claim 1 specified type.
  • an internal combustion engine for a motor vehicle with an exhaust gas turbocharger which comprises a compressor in an intake tract of the internal combustion engine and a turbine in an exhaust gas tract of the internal combustion engine.
  • the turbine has a turbine housing, the one with a
  • Exhaust line of the exhaust tract coupled spiral channel and a turbine wheel comprises, which arranged within a receiving space of the turbine housing and for driving a non-rotatably connected via a shaft to the turbine wheel
  • the turbine comprises an adjusting device, by means of which a spiral inlet cross-section of the spiral channel and a
  • Nozzle cross-section of the spiral channel to the receiving space are adjustable together.
  • the spiral channel can be formed as a partial spiral with a wrap angle between 350 ° and 30 °.
  • This internal combustion engine has further potential to further reduce its fuel consumption.
  • An internal combustion engine according to the invention comprises at least one
  • Exhaust gas recirculation line by means of which exhaust gas of the internal combustion engine is traceable from an exhaust gas side to an air side of the internal combustion engine.
  • the internal combustion engine further includes a turbine having
  • Exhaust gas turbocharger which comprises a turbine housing, in which a turbine wheel of the turbine is accommodated, and which at least one of exhaust gas of the
  • an adjusting device of the turbine is provided, by means of which at least one nozzle cross-section of the spiral channel is adjustable.
  • Adjustment of the nozzle cross section of the spiral channel and a flow area of the return line together adjustable.
  • the turbine housing has at least one further spiral channel, via which exhaust gas of the internal combustion engine for driving the turbine wheel can be fed to the turbine wheel.
  • the first spiral channel for example, as a partial spiral channel, in particular with a
  • Wrap angle in a range of including 350 ° to 30 ° inclusive, formed while the other spiral channel as a full spiral channel, in particular with a wrap angle of more than 350 °, is formed. It acts the
  • Full spiral channel for example, as a so-called ⁇ -spiral channel, by means of which the combustion air ratio of the internal combustion engine for displaying a desired torque and a desired power is adjustable.
  • the sectionspiralkanal acts as a so-called EGR spiral channel (EGR - exhaust gas recirculation), by means of which particularly efficient exhaust gas of the internal combustion engine from the exhaust side to the air side is traceable, on which the exhaust gas of the Internal combustion engine sucked air is supplied.
  • Exhaust gas recirculation can lower emissions, in particular nitrogen oxide emissions, of the internal combustion engine.
  • the accumulation behavior of the EGR spiral channel can be adjusted as required by means of the adjusting device.
  • the nozzle cross section By narrowing the nozzle cross section, a particularly high amount of exhaust gas can be accumulated and returned in the spiral channel. If the nozzle cross-section is released by contrast by means of the adjusting device, less exhaust gas is accumulated and returned in comparison with a nozzle cross-section narrowed for this purpose, with this accumulation behavior of the EGR spiral channel being required to reduce the emissions of the internal combustion engine to different levels
  • the turbocharger of the exhaust-gas turbocharger is designed, for example, as a partial-flow turbine with two passages, wherein one of the passages is at least partially formed by the first spiral passage and the other is at least partially formed by the other spiral passage.
  • the first spiral channel is formed in the circumferential direction of the turbine wheel at least almost over its entire circumference, wherein the first spiral channel has a wrap angle of at least substantially due to a tongue 350 °, and the further spiral channel is formed as a partial spiral channel, which in the circumferential direction of the turbine wheel over its circumference the turbine wheel wraps around in an angular range of substantially smaller than 350 °, the angular range in which the partial spiral does not wrap around the turbine wheel is preferred for the adjusting device, in particular one
  • Turbine housing which is used for accumulation and recirculation of exhaust gas, will thus be significantly larger, resulting in that an EGR throttling at
  • the nozzle cross section is variably adjustable, wherein the adjusting device is preferably continuously adjustable between mutually different positions, in particular pivot positions, and for example via a Cover or a blading reduces the wrap angle and thus an effective area at the entrance of the turbine wheel, ie obstructs, or on the other hand releases.
  • the adjusting device Characterized in that by means of the adjusting device, both the nozzle cross section and together with this the passage cross section of the return line is adjustable, the adjusting device has a high functionality with a low number of parts, what the space requirement, the weight, the number of parts and thus the cost of
  • Fig. 1 is a schematic side view of a turbine housing for a
  • FIG. 2 shows a schematic perspective view of the turbine housing according to FIG. 1;
  • Fig. 3 is a schematic sectional view of the full spiral channel of
  • Fig. 4 is a schematic sectional view of the partial spiral channel of
  • Turbine housing according to the preceding figures, wherein an adjusting device is provided, by means of which a nozzle cross-section of the Generalspiralkanals is adjustable and which comprises a tongue which is set in a first rotational position;
  • FIG. 5 shows a schematic sectional view of the partial spiral channel according to FIG. 4, wherein the tongue is set in a further rotational position;
  • FIGS. 6 is a schematic sectional view of the partial spiral channel according to FIGS.
  • Fig. 7 is a schematic sectional view of the partial spiral channel according to FIGS. 4 to 6, wherein the tongue is set in a further rotational position and wherein by means of the tongue of the nozzle cross-section of the partial spiral channel and a flow cross-section of a return line a
  • Exhaust gas recirculation device for an internal combustion engine is adjustable
  • FIG. 8 is a schematic diagram of an internal combustion engine with a
  • FIG. 1 and 2 show a twin-bladed turbine housing 10 for a turbine 58 (FIG. 8), an exhaust gas turbocharger 56 for an internal combustion engine 25, wherein a
  • Actuation of the turbine 58 via two floods 30, 32 takes place, wherein one of the floods 30, 32 are at least partially formed by a spiral channel formed as a full spiral channel 12 and the other of the floods 30, 32 at least partially by a spiral channel formed as a partial spiral channel 14 of the turbine housing 10 ,
  • the internal combustion engine 25 has, for example, a plurality of cylinders 28, wherein the internal combustion engine 25 exhaust from a first subset of the cylinder 28 to one of the floods 30, 32 and exhaust from another, different from the first subset, the second subset of the cylinder 28 to the other of the floods 30, 32 promotes. Indicates the internal combustion engine 25
  • a turbine wheel 18 is accommodated, to which the exhaust gas of the internal combustion engine 25 can be supplied at least partially via the full spiral channel 12 and the partial spiral channel 14, whereby the turbine wheel 18 can be driven by the exhaust gas.
  • the exhaust gas first flows through respective respective respective
  • Turbine wheel inlet 18 of the turbine wheel 18 this flows and drives.
  • the full spiral channel 12 in the circumferential direction of the turbine wheel 18 over the circumference of a wrap angle ⁇ ⁇ which is for example at least 350 ° or greater.
  • the partial spiral channel 14 has a wrap angle cp s , which in comparison to
  • Nozzle cross section A R than the full spiral channel 12. This results in a
  • Partial spiral channel 14 can accumulate a higher amount of exhaust gas than the full spiral channel 12th
  • the partial spiral channel 14 is used in the formed as a twin-flow turbine turbine 58 with the turbine housing 0 to 16 by means of a gas recirculation via an exhaust gas recirculation line exhaust gas from an exhaust side 52 of the
  • Internal combustion engine 25 on an air side 54 derselbigen return and of Apply the recirculated exhaust gas to the internal combustion engine 25 sucked air. As a result, emissions, in particular nitrogen oxide emissions, of the internal combustion engine 25 can be reduced.
  • EGR exhaust gas recirculation To represent different EGR rates (EGR exhaust gas recirculation), that is to represent different amounts of recirculating exhaust gas, is a
  • Adjusting device 20 is provided with a blocking body connected to an adjusting ring in the form of a tongue 22, by means of which the nozzle cross section A R of the split spiral channel 14 is variably adjustable.
  • the tongue 22 is rotatable about the rotational axis 24 of the turbine wheel 18 between different rotational positions, in which it completely releases the nozzle cross-section A R (FIGS. 4 and 7), or the nozzle cross-section A R In contrast, at least partially closes (Fig.5 and Fig. 6). It can be seen in particular from FIG. 1 that, in particular, an angular region not wrapped around by the partial spiral channel 14 in the circumferential direction of the turbine wheel 18 is used over its circumference for providing or arranging the tongue 22.
  • Nozzle cross-section A R is completely closed by means of the tongue 22, the
  • Partial spiral channel 14 has a very high Aufstau , with a very high amount of exhaust gas can be stowed and traceable via the return line 16.
  • the internal combustion engine 25 has six cylinders 28 as working spaces, wherein the exhaust gas from three cylinders 28 is conveyed at a pressure p 3 via the first flow 30 to the sub-spiral channel 14. The exhaust gas of the remaining cylinders 28 is delivered to the full spiral passage 12 via the second passage 32 at a pressure p 32 .
  • the turbine wheel 18 is from the full spiral channel 12th as well as the partial spiral channel 14 by flowing exhaust gas drivable and connected to a schematically illustrated shaft 34 of a rotor of the exhaust gas turbocharger 56, with which a compressor 36 is rotatably connected, whereby the compressor wheel 36 is driven.
  • the compressor wheel 36 compresses air drawn by the internal combustion engine 25 according to a directional arrow 38, whereby the air is heated.
  • the air flows according to a directional arrow 40 on to a charge air cooler 42, which cools the air.
  • the air flows according to a direction arrow 44 with a pressure p 2s in the cylinder 28, where it is supplied with fuel and burned, from which the exhaust gas is produced, which is supplied to the floods 30 and 32.
  • the adjusting device 20 is also shown schematically with the tongue 22, by means of which the nozzle cross section A R of the partial spiral channel 14 is variably adjustable.
  • the tongue 22 By means of the tongue 22 is also a flow cross-section A A G of the exhaust gas recirculation line 16 is adjustable, via which according to a directional arrow 46 at least a portion of the partial spiral channel 14 flowing exhaust gas to the air side 54 of
  • the exhaust gas first flows through an exhaust gas recirculation cooler 48, with which the exhaust gas is cooled, before it is finally supplied according to a direction arrow 50 of the compressed air.
  • the nozzle cross-section A R and, at the same time, the narrowest flow cross-section A AG R of the exhaust gas recirculation line 16 are thus determined via the tongue 22.
  • the flow area A A GR of the exhaust gas recirculation line 16 are completely closed, if no amounts of lessness arises of the internal combustion engine 25 are needed. In principle, however, diverse combinations are coupled in this way
  • Flow cross-section A AGR possible, which can be adjusted for example via the adjusting ring with the tongue 22 in the form of an annular slide.
  • Fig. 7 shows the described double action of the tongue 22, which is in a rotational position in which the flow cross-section A AGR is fully opened.
  • the adjusting device 20 or the tongue 22 thus represents not only a way to adjust the nozzle cross-section A R , but also provides the Functionality of an EGR valve, which makes it possible to set different EGR rates as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft eine Verbrennungskraftmaschine (25) mit wenigstens einer Abgasrückführleitung (16), mittels welcher Abgas der Verbrennungskraftmaschine (25) von einer Abgasseite (52) auf eine Luftseite (54) der Verbrennungskraftmaschine (25) rückführbar ist, und mit einem eine Turbine (58) aufweisenden Abgasturbolader (56), welcher ein Turbinengehäuse (10) umfasst, in welchem ein Turbinenrad (18) der Turbine (58) aufgenommen ist, und welches zumindest einen von Abgas der Verbrennungskraftmaschine (25) durchströmbaren Spiralkanal (12, 14) aufweist, über welchen dem Turbinenrad (18) das Abgas zuführbar ist, wobei eine Versteileinrichtung (20) der Turbine (58) vorgesehen ist, mittels welcher zumindest ein Düsenquerschnitt (AR) des Spiralkanals (12, 14) einstellbar ist, wobei mittels der VerStelleinrichtung (20) der Düsenquerschnitt (AR) des Spiralkanals (12, 14) und ein Durchströmquerschnitt (AAGR) der Rückführleitung (16) gemeinsam einstellbar sind.

Description

Verbrennungskraftmaschine
Die Erfindung betrifft eine Verbrennungskraftmaschine der im Oberbegriff des
Patentanspruchs 1 angegebenen Art.
Aus der DE 10 2008 039 085 A1 ist eine Brennkraftmaschine für ein Kraftfahrzeug mit einem Abgasturbolader bekannt, welcher einen Verdichter in einem Ansaugtrakt der Brennkraftmaschine und eine Turbine in einem Abgastrakt der Brennkraftmaschine umfasst. Die Turbine weist dabei ein Turbinengehäuse auf, das einen mit einer
Abgasleitung des Abgastrakts gekoppelten Spiralkanal und ein Turbinenrad umfasst, welches innerhalb eines Aufnahmeraums des Turbinengehäuses angeordnet und zum Antreiben eines über eine Welle drehfest mit dem Turbinenrad verbundenen
Verdichterrads des Verdichters mit durch den Spiralkanal führbarem Gas der
Brennkraftmaschine beaufschlagbar ist. Die Turbine umfasst eine VerStelleinrichtung, mittels welcher ein Spiraleneintrittsquerschnitt des Spiralkanals sowie ein
Düsenquerschnitt des Spiralkanals zum Aufnahmeraum gemeinsam einstellbar sind. Der Spiralkanal kann dabei als Teilspirale mit einem Umschlingungswinkel zwischen 350° und 30° ausgebildet sein.
Diese Brennkraftmaschine weist weiteres Potential auf, ihren Kraftstoffverbrauch weiter zu reduzieren.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Verbrennungskraftmaschine der eingangs genannten Art derart weiter zu entwickeln, dass sie einen reduzierten
Kraftstoffverbrauch aufweist.
Diese Aufgabe wird durch eine Verbrennungskraftmaschine mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nichttrivialen Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben. Eine erfindungsgemäße Verbrennungskraftmaschine umfasst wenigstens eine
Abgasrückführleitung, mittels welcher Abgas der Verbrennungskraftmaschine von einer Abgasseite auf eine Luftseite der Verbrennungskraftmaschine rückführbar ist. Die Verbrennungskraftmaschine umfasst weiterhin einen eine Turbine aufweisenden
Abgasturbolader, welcher ein Turbinengehäuse umfasst, in welchem ein Turbinenrad der Turbine aufgenommen ist, und welches zumindest einen von Abgas der
Verbrennungskraftmaschine durchströmbaren Spiralkanal aufweist, über welchen dem Turbinenrad das Abgas zuführbar ist. Dabei ist eine Versteileinrichtung der Turbine vorgesehen, mittels welcher zumindest ein Düsenquerschnitt des Spiralkanals einstellbar ist. Bei der erfindungsgemäßen Verbrennungskraftmaschine sind nun mittels der
Versteileinrichtung der Düsenquerschnitt des Spiralkanals und ein Durchströmquerschnitt der Rückführleitung gemeinsam einstellbar. Dadurch kann mittels der Versteileinrichtung der Durchströmquerschnitt der Rückführleitung und damit ein Durchsatz von die
Rückführleitung durchströmendem Abgas parallel zum Düsenquerschnitt und damit zu einem gewünschten und notwendigen Aufstau von Abgas durch den Spiralkanal eingestellt und an diesen Aufstau angepasst werden. Dies ermöglicht eine positive Beeinflussung eines Ladungswechsels der Verbrennungskraftmaschine infolge der Möglichkeit, einen Abgasgegendruck beim Ausschieben von Abgas aus einem
Arbeitsraum der Verbrennungskraftmaschine bedarfsgerecht an einen aktuell
vorliegenden Betriebspunkt anpassen zu können, was mit einem sehr geringen
Kraftstoffverbrauch und damit C02-Emissionen der Verbrennungskraftmaschine einhergeht.
In einer vorteilhaften Ausführungsform der Erfindung weist das Turbinengehäuse zumindest einen weiteren Spiralkanal auf, über welchen dem Turbinenrad Abgas der Verbrennungskraftmaschine zum Antreiben des Turbinenrads zuführbar ist. Dabei ist der erste Spiralkanal beispielsweise als Teilspiralkanal, insbesondere mit einem
Umschlingungswinkel in einem Bereich von einschließlich 350° bis einschließlich 30°, ausgebildet, während der weitere Spiralkanal als Vollspiralkanal, insbesondere mit einem Umschlingungswinkel von mehr als 350°, ausgebildet ist. Dabei fungiert der
Vollspiralkanal beispielsweise als so genannter λ-Spiralkanal, mittels welchem das Verbrennungsluftverhältnis der Verbrennungskraftmaschine zur Darstellung eines gewünschten Drehmoments sowie einer gewünschten Leistung einstellbar ist. Der Teilspiralkanal fungiert als so genannter AGR-Spiralkanal (AGR - Abgasrückführung), mittels welchem besonders effizient Abgas der Verbrennungskraftmaschine von der Abgasseite auf die Luftseite rückführbar ist, auf welcher das Abgas einer von der Verbrennungskraftmaschine angesaugten Luft zugeführt wird. Durch diese
Abgasrückführung lassen sich die Emissionen, insbesondere Stickoxid-Emissionen, der Verbrennungskraftmaschine absenken.
Zur Darstellung voneinander unterschiedlicher Mengen an rückzuführendem Abgas sowie zur Darstellung besonders großer Mengen von rückzuführendem Abgas kann das Aufstauverhalten des AGR-Spiralkanals mittels der VerStelleinrichtung bedarfsgerecht angepasst werden. Durch eine Verengung des Düsenquerschnitts kann eine besonders hohe Menge an Abgas in dem Spiralkanal aufgestaut und rückgeführt werden. Wird der Düsenquerschnitt mittels der VerStelleinrichtung demgegenüber freigegeben, so wird im Vergleich zu einem dazu verengten Düsenquerschnitt weniger Abgas aufgestaut und rückgeführt, wobei dieses Aufstauverhalten des AGR-Spiralkanals zur Reduzierung der Emissionen der Verbrennungskraftmaschine bedarfsgerecht an unterschiedliche
Betriebspunkte der Verbrennungskraftmaschine anpassbar ist.
Die Turbine des Abgasturboladers ist beispielsweise als Teilstromturbine mit zwei Fluten ausgebildet, wobei die eine Flut zumindest teilweise durch den ersten Spiralkanal und die andere Flut zumindest teilweise durch den anderen Spiralkanal gebildet ist. Ist der erste Spiralkanal in Umfangsrichtung des Turbinenrads zumindest nahezu über dessen gesamten Umfang ausgebildet, wobei der erste Spiralkanal einen Umschlingungswinkel von zumindest im Wesentlichen wegen einer Zunge 350° aufweist, und ist der weitere Spiralkanal als Teilspiralkanal ausgebildet, welcher in Umfangsrichtung des Turbinenrads über dessen Umfang das Turbinenrad in einem Winkelbereich von wesentlich kleiner als 350° umschlingt, so wird der Winkelbereich, in welchem die Teilspirale das Turbinenrad nicht umschlingt, bevorzugt für die Versteileinrichtung, insbesondere einen
Drehmechanismus, genutzt, welche bedarfsgerecht den Teilspiralkanal bzw. dessen Düsenquerschnitt mittels eines Versperrkörpers, insbesondere einer Zunge, zumindest im Wesentlichen freigeben oder demgegenüber verengen kann zur Einstellung des
Aufstauverhaltens dieses Teilspiralkanals. Die Auslegung des Spiralkanals des
Turbinengehäuses, welcher zum Aufstauen und Rückführen von Abgas genutzt wird, wird somit deutlich größer ausfallen, was dazu führt, dass eine AGR-Drosselung bei
Verringern des Umschlingungswinkels des Spiralkanals minimal ist.
Mittels der VerStelleinrichtung ist der Düsenquerschnitt variabel einstellbar, wobei die VerStelleinrichtung bevorzugt kontinuierlich zwischen voneinander unterschiedlichen Stellungen, insbesondere Schwenkstellungen, verstellbar ist und zum Beispiel über eine Abdeckung oder eine Beschaufelung den Umschlingungswinkel und somit eine effektive Fläche am Eintritt des Turbinenrads reduziert, d.h. versperrt, bzw. demgegenüber freigibt.
Ausgehend von einem vollständig geöffneten Umschlingungswinkel, d.h. einem
vollständig freigegebenen Düsenquerschnitt des Spiralkanals, wird mit Betätigung der VerStelleinrichtung der Düsenquerschnitt des Spiralkanals zur Erhöhung der Menge an aufgestautem Abgas reduziert bis hin zu einem minimal erforderlichen bzw.
geschlossenen Düsenquerschnitt. Somit ist es möglich, mittels der VerStelleinrichtung das Aufstauverhalten des Spiralkanals und damit der Turbine zu beeinflussen hin zu höheren AGR-Raten, gleichzeitig aber bei Bedarf eine AGR-Rate, das heißt eine Menge an rückzuführendem Abgas, zu reduzieren bzw. eine solche Abgasrückführung gänzlich zu deaktivieren.
Dadurch, dass mittels der Versteileinrichtung sowohl der Düsenquerschnitt als auch gemeinsam mit diesem der Durchtrittsquerschnitt der Rückführleitung einstellbar ist, weist die Versteileinrichtung eine hohe Funktionalität bei einer geringen Teileanzahl auf, was den Bauraumbedarf, das Gewicht, die Teileanzahl und damit die Kosten des
Abgasturboladers in einem geringen Rahmen hält sowie die Möglichkeit schafft, den Durchströmquerschnitt an den Düsenquerschnitt und damit das Aufstauverhalten anzupassen und weitere Potentiale zur Reduzierung des Kraftstoffverbrauchs sowie der C02-Emissionen zu nutzen.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnungen. Die vorstehend in der Beschreibung genannten Merkmale und
Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnungen zeigen in:
Fig. 1 eine schematische Seitenansicht eines Turbinengehäuses für einen
Abgasturbolader mit einem als Vollspiralkanal ausgebildeten Spiralkanal und mit einem als Teilspiralkanal ausgebildeten Spiralkanal; Fig. 2 eine schematische Perspektivansicht des Turbinengehäuses gemäß Fig. 1 ;
Fig. 3 eine schematische Schnittansicht des Vollspiralkanals des
Turbinengehäuses gemäß den vorhergehenden Figuren;
Fig. 4 eine schematische Schnittansicht des Teilspiralkanals des
Turbinengehäuses gemäß den vorhergehenden Figuren, wobei eine Versteileinrichtung vorgesehen ist, mittels welcher ein Düsenquerschnitt des Teilspiralkanals einstellbar ist und welche eine Zunge umfasst, die in einer ersten Drehstellung eingestellt ist;
Fig. 5 eine schematische Schnittansicht des Teilspiralkanals gemäß Fig. 4, wobei die Zunge in einer weiteren Drehstellung eingestellt ist;
Fig. 6 eine schematische Schnittdarstellung des Teilspiralkanals gemäß den Fig.
4 und 5, wobei die Zunge in einer weiteren Drehstellung eingestellt ist;
Fig. 7 eine schematische Schnittansicht des Teilspiralkanals gemäß den Fig. 4 bis 6, wobei die Zunge in einer weiteren Drehstellung eingestellt ist und wobei mittels der Zunge der Düsenquerschnitt des Teilspiralkanals sowie ein Durchströmquerschnitt einer Rückführleitung einer
Abgasrückführeinrichtung für eine Verbrennungskraftmaschine einstellbar ist; und
Fig. 8 eine Prinzipskizze einer Verbrennungskraftmaschine mit einem
Abgasturbolader mit einem Turbinengehäuse gemäß den vorhergehenden Figuren.
Die Fig. 1 und 2 zeigen ein zweiflutiges Turbinengehäuse 10 für eine Turbine 58 (Fig. 8) eine Abgasturboladers 56 für eine Verbrennungskraftmaschine 25, wobei eine
Beaufschlagung der Turbine 58 über zwei Fluten 30, 32 erfolgt, wobei eine der Fluten 30, 32 zumindest teilweise durch einen als Vollspiralkanal 12 ausgebildeten Spiralkanal und die andere der Fluten 30, 32 zumindest teilweise durch einen als Teilspiralkanal 14 gebildeten Spiralkanal des Turbinengehäuses 10 gebildet sind. Die Verbrennungskraftmaschine 25 weist dabei beispielsweise eine Mehrzahl von Zylindern 28 auf, wobei die Verbrennungskraftmaschine 25 Abgas aus einer ersten Teilmenge der Zylinder 28 zu einer der Fluten 30, 32 und Abgas aus einer anderen, von der ersten Teilmenge unterschiedlichen, zweiten Teilmenge der Zylinder 28 zu der anderen der Fluten 30, 32 fördert. Weist die Verbrennungskraftmaschine 25
beispielsweise vier Zylinder 28 auf, so wird beispielsweise das Abgas von zwei dieser Zylinder 28 zu der einen Flut 30, 32 und damit zu dem Vollspiralkanal 12 und das Abgas der anderen beiden Zylinder 28 zu anderen der Fluten 30, 32 und damit beispielsweise zu dem Teilspiralkanal 14 gefördert.
In dem Turbinengehäuse 10 ist ein Turbinenrad 18 aufgenommen, welchem das Abgas der Verbrennungskraftmaschine 25 zumindest teilweise über den Vollspiralkanal 12 sowie den Teilspiralkanal 14 zuführbar ist, wodurch das Turbinenrad 18 von dem Abgas angetrieben werden kann. Dazu durchströmt das Abgas zunächst jeweilige
Durchströmquerschnitte As des Vollspiralkanals 2 beziehungsweise des Teilspiralkanals 14, woraufhin es über jeweilige Düsenquerschnitte AR im Bereich eines
Turbinenradeintritts des Turbinenrads 18 dieses anströmt und antreibt. Wie insbesondere den Figuren 3 und 4 zu entnehmen ist, weist der Vollspiralkanal 12 in Umfangsrichtung des Turbinenrads 18 über dessen Umfang einen Umschlingungswinkel φδ auf, welcher beispielsweise zumindest 350° oder größer beträgt. Im Gegensatz dazu weist der Teilspiralkanal 14 einen Umschlingungswinkel cps auf, welcher im Vergleich zum
Umschlingungswinkel φδ des Vollspiralkanals 12 in einem wesentlich kleineren
Winkelbereich ausgebildet ist.
Schon dadurch weist der Teilspiralkanal 14 einen wesentlich geringeren
Düsenquerschnitt AR als der Vollspiralkanal 12 auf. Daraus resultiert ein
Durchsatzparameter des den Teilspiralkanal 14 durchströmenden Abgases, welcher geringer ist als ein Durchsatzparameter des den Vollspiralkanal 12 durchströmenden Abgases der Verbrennungskraftmaschine 25. Damit einher geht ein höherer
Abgasgegendruck im Teilspiralkanal 14 als im Vollspiralkanal 12, wodurch der
Teilspiralkanal 14 eine höhere Menge an Abgas aufstauen kann als der Vollspiralkanal 12.
Somit wird der Teilspiralkanal 14 bei der als Zwillingsstromturbine ausgebildeten Turbine 58 mit dem Turbinengehäuse 0 genutzt, um mittels einer Gasrückführeinrichtung über eine Abgasrückführleitung 16 Abgas von einer Abgasseite 52 der
Verbrennungskraftmaschine 25 auf eine Luftseite 54 derselbigen rückzuführen und von der Verbrennungskraftmaschine 25 angesaugte Luft mit dem rückgeführten Abgas zu beaufschlagen. Dadurch lassen sich Emissionen, insbesondere Stickoxid-Emissionen, der Verbrennungskraftmaschine 25 reduzieren.
Zur Darstellung unterschiedlicher AGR-Raten (AGR - Abgasrückführung), das heißt zur Darstellung unterschiedlicher Mengen von rückzuführendem Abgas, ist eine
Versteileinrichtung 20 mit einem mit einem Verstellring verbundenen Sperrkörper in Form einer Zunge 22 vorgesehen, mittels welcher der Düsenquerschnitt AR des Teilspiralkanals 14 variabel einstellbar ist.
Durch rotatorisches und/oder translatorisches Bewegen des Verstellrings ist die Zunge 22 um die Drehachse 24 des Turbinenrads 18 zwischen voneinander unterschiedlichen Drehstellungen drehbar, in welchen sie den Düsenquerschnitt AR komplett freigibt (Fig. 4 und Fig. 7), oder den Düsenquerschnitt AR demgegenüber zumindest teilweise verschließt (Fig.5 und Fig. 6). Insbesondere der Fig. 1 zu entnehmen ist, dass dabei insbesondere ein von dem Teilspiralkanal 14 nicht umschlungener Winkelbereich in Umfangsrichtung des Turbinenrads 18 über dessen Umfang genutzt wird zum Vorsehen beziehungsweise Anordnen der Zunge 22.
In einer in der Fig. 5 dargestellten Schließstellung der Zunge 22, in welcher der
Düsenquerschnitt AR komplett mittels der Zunge 22 geschlossen ist, weist der
Teilspiralkanal 14 ein sehr hohes Aufstauverhalten auf, wobei eine sehr hohe Menge an Abgas aufstaubar und über die Rückführleitung 16 rückführbar ist.
Im Gegensatz dazu weist der Teilspiralkanal 14 in einer in der Fig. 4 gezeigten
Offenstellung der Zunge 22, in welcher der Düsenquerschnitt AR komplett freigegeben ist, ein sehr geringes Aufstauverhalten auf, wobei eine sehr geringe Menge von Abgas aufgestaut und nur eine sehr geringe Menge oder gegebenenfalls gar kein Abgas über die Abgasrückführleitung 16 rückgeführt wird.
Die Fig. 8 zeigt die Verbrennungskraftmaschine 25 mit einer Aufladeeinrichtung 26, bei welcher der Abgasturbolader 56 mit der Turbine 58 mit dem Turbinengehäuse 10 gemäß den vorhergehenden Figuren zum Einsatz kommt. Die Verbrennungskraftmaschine 25 weist sechs Zylinder 28 als Arbeitsräume auf, wobei das Abgas aus drei Zylindern 28 mit einem Druck p3 über die erste Flut 30 zu dem Teilspiralkanal 14 gefördert wird. Das Abgas der übrigen Zylinder 28 wird mit einem Druck p32 über die zweite Flut 32 zu dem Vollspiralkanal 12 gefördert. Das Turbinenrad 18 ist dabei von dem den Vollspiralkanal 12 sowie den Teilspiralkanal 14 durchströmenden Abgas antreibbar und mit einer schematisch dargestellten Welle 34 eines Rotors des Abgasturboladers 56 verbunden, mit welcher ein Verdichterrad 36 drehfest verbunden ist, wodurch das Verdichterrad 36 antreibbar ist. Das Verdichterrad 36 verdichtet von der Verbrennungskraftmaschine 25 gemäß einem Richtungspfeil 38 angesaugte Luft, wodurch die Luft erwärmt wird. Die Luft strömt gemäß einem Richtungspfeil 40 weiter zu einem Ladeluftkühler 42, welcher die Luft abkühlt. Weiterhin strömt die Luft gemäß einem Richtungspfeil 44 mit einem Druck p2s in die Zylinder 28, wo sie mit Kraftstoff beaufschlagt und verbrannt wird, woraus das Abgas entsteht, das den Fluten 30 und 32 zugeführt wird.
In der Fig. 8 ist ebenfalls die VerStelleinrichtung 20 mit der Zunge 22 schematisch dargestellt, mittels welcher der Düsenquerschnitt AR des Teilspiralkanals 14 variabel einstellbar ist. Wie in Zusammenschau der Figuren 7 und 8 deutlich wird, ist mittels der Zunge 22 nicht nur der Düsenquerschnitt AR des Teilspiralkanals 14 variabel einstellbar. Mittels der Zunge 22 ist auch ein Durchströmquerschnitt AAG der Abgasrückführleitung 16 einstellbar, über welche gemäß einem Richtungspfeil 46 zumindest ein Teil des den Teilspiralkanal 14 durchströmenden Abgases auf die Luftseite 54 der
Verbrennungskraftmaschine 25 rückführbar ist. Dazu durchströmt das Abgas zunächst einen Abgasrückführkühler 48, mit welchem das Abgas gekühlt wird, bevor es schließlich gemäß einem Richtungspfeil 50 der verdichteten Luft zugeführt wird.
Über die Zunge 22 wird somit der Düsenquerschnitt AR sowie simultan dazu der engste Durchströmquerschnitt AAGR der Abgasrückführleitung 16 bestimmt. In dem Fall, dass der Düsenquerschnitt AR mit der geringsten Aufstauwirkung für das Abgas den größten Wert hat, kann auslegungsgemäß der Durchströmquerschnitt AAGR der Abgasrückführleitung 16 vollständig geschlossen werden, falls keine Mengen an rückzuführendem Abgas in entsprechenden Betriebsbereichen der Verbrennungskraftmaschine 25 benötigt werden. Grundsätzlich sind jedoch vielfältige Kombinationen derart gekoppelter
Strömungsquerschnitte in Form des Düsenquerschnitts AR und des
Durchströmquerschnitts AAGR möglich, welche beispielsweise über den Verstellring mit der Zunge 22 in Form eines Ringschiebers eingeregelt werden können. Auch die Fig. 7 zeigt die geschilderte Doppelwirkung der Zunge 22, welche sich in einer Drehstellung befindet, in welcher der Durchströmquerschnitt AAGR vollständig geöffnet ist.
Die VerStelleinrichtung 20 beziehungsweise die Zunge 22 stellt somit nicht nur eine Möglichkeit dar, den Düsenquerschnitt AR einzustellen, sondern bietet auch die Funktionalität eines AGR-Ventils, welches es ermöglicht, unterschiedlicher AGR-Raten bedarfsgerecht einzustellen.

Claims

Patentansprüche
Verbrennungskraftmaschine (25) mit wenigstens einer Abgasrückführleitung (16), mittels welcher Abgas der Verbrennungskraftmaschine (25) von einer Abgasseite (52) auf eine Luftseite (54) der Verbrennungskraftmaschine (25) rückführbar ist, und mit einem eine Turbine (58) aufweisenden Abgasturbolader (56), welcher ein Turbinengehäuse (10) umfasst, in welchem ein Turbinenrad (18) der Turbine (58) aufgenommen ist, und welches zumindest einen von Abgas der
Verbrennungskraftmaschine (25) durchströmbaren Spiralkanal (12, 14) aufweist, über welchen dem Turbinenrad (18) das Abgas zuführbar ist, wobei eine
Versteileinrichtung (20) der Turbine (58) vorgesehen ist, mittels welcher zumindest ein Düsenquerschnitt (AR) des Spiralkanals (12, 14) einstellbar ist,
dadurch gekennzeichnet, dass
mittels der Versteileinrichtung (20) der Düsenquerschnitt (AR) des Spiralkanals (12, 14) und ein Durchströmquerschnitt (AAGR) der Rückführleitung (16) gemeinsam einstellbar sind.
Verbrennungskraftmaschine (25) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
das Turbinengehäuse (10) zumindest einen weiteren Spiralkanal (12, 14) aufweist, über welchen dem Turbinenrad (18) Abgas der Verbrennungskraftmaschine (25) zuführbar ist.
Verbrennungskraftmaschine (25) nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass
der Spiralkanal (12, 14) und/oder gegebenenfalls der weitere Spiralkanal (12, 14) als Vollspiralkanal (12), insbesondere mit einem Umschlingungswinkel { φ5 ) von größer als 350 Grad, und/oder als Teilspiralkanal (14), insbesondere mit einem Umschlingungswinkel ( ) in einem Bereich von einschließlich 350 Grad bis einschließlich 30 Grad, ausgebildet ist bzw. sind.
Verbrennungskraftmaschine (25) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die VerStelleinrichtung (20) wenigstens einen Versperrkörper (22) umfasst, welcher im Wesentlichen rotatorisch bewegbar ist und mittels welchem der
Düsenquerschnitt (AR) des Spiralkanals (12, 14) und der Durchströmquerschnitt (AAG ) der Rückführleitung (16) gemeinsam einstellbar sind.
Verbrennungskraftmaschine (25) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Versteileinrichtung (20) zwischen einer den Düsenquerschnitt (AR) des
Spiralkanals (12, 14) und/oder gegebenenfalls des weiteren Spiralkanals (12, 14) im Wesentlichen verschließenden Schließstellung und einer den Düsenquerschnitt (AR) des Spiralkanals (12, 14) und/oder gegebenenfalls des weiteren Spiralkanals (12, 14) zumindest bereichsweise freigebenden Offenstellung verstellbar ist.
Verbrennungskraftmaschine (25) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Versteileinrichtung (20) zwischen einer den Durchströmquerschnitt (AAGR) der Rückführleitung (16) im Wesentlichen verschließenden Schließstellung und einer den Durchströmquerschnitt (AAGR) der Rückführleitung (16) zumindest
bereichsweise freigebenden Offenstellung verstellbar ist.
PCT/EP2011/002021 2010-05-28 2011-04-20 Verbrennungskraftmaschine WO2011147513A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010021926A DE102010021926A1 (de) 2010-05-28 2010-05-28 Verbrennungskraftmaschine
DE102010021926.6 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011147513A1 true WO2011147513A1 (de) 2011-12-01

Family

ID=44259727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/002021 WO2011147513A1 (de) 2010-05-28 2011-04-20 Verbrennungskraftmaschine

Country Status (2)

Country Link
DE (1) DE102010021926A1 (de)
WO (1) WO2011147513A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749757B1 (de) * 2012-12-28 2019-05-15 FPT Industrial S.p.A. Verfahren und Vorrichtung zum Steuern eines Aufladers mit zwei Spiralkanälen und variabler Turbinengeometrie abhängig von der Abgasrückführung
DE102015005120A1 (de) 2015-04-22 2015-12-03 Daimler Ag Turbine für einen Abgasturbolader

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042305A1 (en) * 1999-01-15 2000-07-20 Borg-Warner Automotive, Inc. Turbocharger and egr system
DE19918232C2 (de) * 1999-04-22 2001-03-01 Daimler Chrysler Ag Mehrzylindriger Verbrennungsmotor mit einem Abgasturbolader
US20010032467A1 (en) * 2000-03-03 2001-10-25 Martin Steven P. Turbocharger with integrated exhaust gas recirculation valve
EP1213468A2 (de) * 2000-12-07 2002-06-12 Caterpillar Inc. Abgasrückführsystem mit Abgasgegendruckventil im Abgaskrümmer
EP1273775A1 (de) * 2001-07-02 2003-01-08 BorgWarner Inc. Staudruck Abgasrückführleitung
DE102008039085A1 (de) 2008-08-21 2010-02-25 Daimler Ag Brennkraftmaschine mit einem Abgasturbolader

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042305A1 (en) * 1999-01-15 2000-07-20 Borg-Warner Automotive, Inc. Turbocharger and egr system
DE19918232C2 (de) * 1999-04-22 2001-03-01 Daimler Chrysler Ag Mehrzylindriger Verbrennungsmotor mit einem Abgasturbolader
US20010032467A1 (en) * 2000-03-03 2001-10-25 Martin Steven P. Turbocharger with integrated exhaust gas recirculation valve
EP1213468A2 (de) * 2000-12-07 2002-06-12 Caterpillar Inc. Abgasrückführsystem mit Abgasgegendruckventil im Abgaskrümmer
EP1273775A1 (de) * 2001-07-02 2003-01-08 BorgWarner Inc. Staudruck Abgasrückführleitung
DE102008039085A1 (de) 2008-08-21 2010-02-25 Daimler Ag Brennkraftmaschine mit einem Abgasturbolader
WO2010020322A1 (de) * 2008-08-21 2010-02-25 Daimler Ag Brenhkraftmaschine mit einem abgasturbolader

Also Published As

Publication number Publication date
DE102010021926A1 (de) 2011-12-01

Similar Documents

Publication Publication Date Title
EP1766209B1 (de) Brennkraftmaschine mit einem abgasturbolader
DE102011010744A1 (de) Turbine für einen Abgasturbolader sowie Abgasturbolader mit einer solchen Turbine
DE102010053951B4 (de) Turbine für einen Abgasturbolader
EP2705222B1 (de) Turbine für einen abgasturbolader
DE102008064264B4 (de) Abgastrakt und Verfahren zum Betreiben eines Abgastrakts
EP2462333B1 (de) Verbrennungskraftmaschine
EP1939427A2 (de) Abgasturbolader
EP3019734B1 (de) Verbrennungskraftmaschine für einen kraftwagen sowie verfahren zum betreiben einer solchen verbrennungskraftmaschine
WO2013127664A1 (de) Abgasturbolader mit relativ zueinander verdrehbaren leitgitterringen
WO2010069301A2 (de) Vollvarioturbinen für abgasturbolader
DE102009026797A1 (de) Antriebsaggregat
EP2576989B1 (de) Turbine für einen Abgasturbolader
EP1673525B1 (de) Verdichter im ansaugtrakt einer brennkraftmaschine
EP2959152B1 (de) Abgastrakt für eine brennkraftmaschine
WO2012065675A1 (de) Turbine für einen abgasturbolader einer verbrennungskraftmaschine
WO2011147513A1 (de) Verbrennungskraftmaschine
DE102005056955A1 (de) Brennkraftmaschine mit Niederdruck-Abgasrückführung
DE102012013047A1 (de) Verdichter für eine Verbrennungskraftmaschine
DE102012016984A1 (de) Turbine für einen Abgasturbolader sowie Verbrennungskraftmaschine mit einer solchen Turbine
DE102005032002A1 (de) Abgasturbolader für eine Brennkraftmaschine und Brennkraftmaschine mit einem Abgasturbolader
DE102011120168A1 (de) Verdichter für einen Abgasturbolader
DE102012102186A1 (de) Turbine für einen Abgasturbolader
DE102007036933A1 (de) Brennkraftmaschine für ein Kraftfahrzeug mit einem ersten und zweiten Abgasturbolader
DE102012022510A1 (de) Turbine für einen Abgasturbolader sowie Verfahren zum Betreiben einer solchen Turbine
DE102013017145A1 (de) Turbine für einen Abgasturbolader

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11715887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11715887

Country of ref document: EP

Kind code of ref document: A1