WO2011124019A1 - Led灯芯、led芯片及led芯片制造方法 - Google Patents

Led灯芯、led芯片及led芯片制造方法 Download PDF

Info

Publication number
WO2011124019A1
WO2011124019A1 PCT/CN2010/071583 CN2010071583W WO2011124019A1 WO 2011124019 A1 WO2011124019 A1 WO 2011124019A1 CN 2010071583 W CN2010071583 W CN 2010071583W WO 2011124019 A1 WO2011124019 A1 WO 2011124019A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
heat
diffusion sheet
heat diffusion
aluminum
Prior art date
Application number
PCT/CN2010/071583
Other languages
English (en)
French (fr)
Inventor
秦彪
Original Assignee
Qin Biao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qin Biao filed Critical Qin Biao
Priority to PCT/CN2010/071583 priority Critical patent/WO2011124019A1/zh
Priority to US13/636,661 priority patent/US9583690B2/en
Publication of WO2011124019A1 publication Critical patent/WO2011124019A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/001Arrangement of electric circuit elements in or on lighting devices the elements being electrical wires or cables
    • F21V23/002Arrangements of cables or conductors inside a lighting device, e.g. means for guiding along parts of the housing or in a pivoting arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • the invention belongs to the field of LED technology, and particularly relates to a heat conduction technology in an LED wick and an LED chip.
  • LED heat dissipation is a key technical issue in the current promotion of LED lighting. Since the LED chip needs to dissipate heat, the LED illuminator is like a current incandescent lamp and a fluorescent lamp.
  • the wick (bulb) is a standardized component and is convenient to install, adding a layer of difficulty. LED luminaires, luminaires and wicks have not yet been standardized and are relatively easy to assemble, making them more costly.
  • LED heat dissipation is only a normal temperature heat transfer process, which is not complicated.
  • the knowledge of heat transfer and mature heat transfer technology, and other basic knowledge related to heat transfer which is not fully recognized by the LED industry, the current LED heat dissipation technology and products are complicated and are in the initial stage.
  • the heat transfer process from the LED junction to the air convection heat transfer surface is a thermally conductive process. Since the LED wafer area is small and the heat flux density is very high, the heat conduction process is very important in the heat dissipation of the entire LED.
  • the most effective and simple way to reduce the thermal resistance of the thermal conduction process is to use high thermal conductivity materials such as copper and aluminum, high thermal conductivity, low material cost, and easy processing. However, copper and aluminum are metal conductors.
  • electrical safety requirements must be met. A certain high insulation requirement must be achieved between the LED junction and the heat sink (metal exposed component). Generally, the withstand voltage should reach thousands. Volt insulation requirements. Insulation and heat conduction are contradictory.
  • LED chips are often placed on a ceramic insulating lining.
  • ceramics with high withstand voltage and low thermal conductivity.
  • ceramics such as A1 2 0 3 ceramics, have a thermal conductivity of up to 20 W/m'K, they are ten times smaller than aluminum and nearly twenty times smaller than copper.
  • the heat flux density on LED wafers is as high as 10 6 W/m 2 ; M1 thick A1 2 0 3 insulation lining, the thermal conduction temperature difference on the insulation lining only reaches 10 ° C, and the processing cost of the 0.2 mm thick A1 2 0 3 ceramic piece is not low.
  • a low thermal conductivity solid-state adhesive typically silver paste
  • the object of the present invention is to address the heat conduction process in the heat dissipation process of the LED.
  • First solve the problem of heat conduction in the actual standardization of wick;
  • Second the contradiction between heat conduction and insulation in the LED chip, propose a technical scheme with simple structure and low cost.
  • the LED wick mainly comprises a wafer, a heat diffusion sheet and a heat conductive core.
  • the heat generated by the wafer is transmitted to the heat conductive core through the heat diffusion sheet, and then transferred to the heat sink by the heat core.
  • the invention is characterized in that: the heat conducting core adopts aluminum or copper; the heat conducting core and the heat sink (ie, the heat conducting core heat transfer outward) contact heat transfer surface adopts a conical column structure, or a threaded column structure or a tapered stud
  • the wafer is soldered to the heat diffusion sheet; the area of the heat diffusion sheet is more than five times the wafer area, the thickness is not less than 0.5 mm, and the copper or aluminum, or copper-aluminum composite material is used; and the heat diffusion sheet is disposed between the heat diffusion core and the heat conductive core.
  • There is a high voltage insulation layer and the thickness of the high voltage insulation layer is greater than 0.1 mm.
  • the heat conducting core adopts a conical column structure, and the fins also have a matching conical hole.
  • the contact pressure between the biconducting surface of the heat conducting core and the conical surface of the fin can be obtained several times.
  • the contact thermal resistance is reduced, the tapered hole and the tapered column are easy to be formed, the matching precision is easy to ensure, the cost is low, and the installation is convenient.
  • the surface area of the threaded cylinder is enlarged, the contact heat transfer area is enlarged, and the thermal resistance between the heat conducting core and the heat sink is reduced.
  • a common 60° triangular thread has a surface area twice that of the cylindrical surface.
  • the LED wick is mounted in a heat sink (lamp) by means of rotation, which can be operated without tools.
  • the tapered stud structure combines the advantages of a conical column structure and a threaded post structure: high contact pressure and large contact area for easy installation.
  • the LED chip area is small, such as lxlmm size wafer, even if the power consumption is 1.2W, the heat density reaches 10 6 W/m 2 , which is very high, so the problem of the contact thermal resistance between the wafer and the heat diffusion sheet is solved.
  • the primary problem, and the problem of electrical insulation between the two is second.
  • Welding process even with the lowest cost soldering, the thermal conductivity of metallic tin is 60W/m, K is more than ten times higher than that of advanced thermal paste. Therefore, the wafer is soldered and soldered to the heat diffusion sheet. The heat conduction temperature difference between the wafer and the heat diffusion sheet will be effectively reduced.
  • the heat diffusion sheet not only has to use a material having high thermal conductivity, but also has a large area and thickness, so that the heat diffusion sheet is made of copper and aluminum, and the area of the heat diffusion sheet is required to be more than 5 times the wafer area, and the thickness is required. Not less than 0.5mm, the design is preferably to select not less than 10 times the wafer area. If the wafer is lxlmm, 1W, the thickness of the heat diffusion sheet should be 1.0mm or more. The purpose and function is to effectively spread heat in the heat diffusion sheet. , reducing the heat flux density between the heat diffusion sheet and the heat conductive core. In order to meet the insulation problem required by the electrical safety specification, it can be solved by a high-voltage insulation layer between the heat diffusion sheet and the heat-conducting core.
  • the high voltage insulating layer is defined as an insulating layer having a DC voltage resistance of 500 V or more.
  • the thickness of the high-voltage insulating layer between the heat diffusion sheet and the heat-conducting core is greater than 0.1 mm.
  • the A1 2 0 3 ceramic insulating layer is used, and the 0.1-m thick DC voltage can reach 1 kV, which is to allow the heat diffusion sheet to
  • the insulating layer between the thermal conductive cores assumes the insulation requirements for most or all of the safety regulations, reduces the insulation requirements between the wafer and the thermal diffusion sheet, or does not consider the insulation between the two at all, to reduce the Heat transfer temperature difference.
  • the thickness of the tin between the two is 20 m.
  • the present invention has also proposed a specific structure and manufacturing method from the viewpoint of reducing the heat conduction resistance, reducing the cost, and facilitating the manufacture.
  • the heat diffusion sheet is made of aluminum or copper or copper-aluminum composite material; the solder contact area of the wafer and the heat diffusion sheet is greater than one third of the wafer area; the heat diffusion sheet is provided with a high voltage insulation layer or a low voltage insulation layer;
  • the layer adopts an aluminum oxide film grown directly from the surface of the metal aluminum on the heat diffusion sheet by anodization, and the thickness of the film is greater than 50 m ;
  • the low-voltage insulation layer is formed by a ceramic insulating film formed by vapor deposition, or directly by anodization An aluminum oxide film grown from the surface of the metal aluminum on the heat diffusion sheet, the film thickness being less than 50 m.
  • the pn junction electrode of the wafer is a V-type electrode, and adopts a flip-chip structure;
  • the heat diffusion sheet is made of copper or aluminum, or a copper-aluminum composite material;
  • the thermal pad is disposed on the wafer;
  • the solder joint contact area of the wafer and the heat diffusion sheet is larger than One-third of the wafer area;
  • the outside of the ⁇ junction electrode and the ⁇ junction electrode or the partial ⁇ junction electrode on the wafer is covered by a ceramic insulating film formed by vapor deposition, and a thermal pad is disposed outside the ceramic insulating film.
  • a wafer positioning piece made of an insulating sheet is used.
  • the wafer positioning piece is soldered or bonded to the heat diffusion sheet, and the wafer is embedded in the wafer positioning insert in the positioning piece, and the wafer is soldered on the heat diffusion sheet.
  • a method for manufacturing an LED chip package characterized in that: a wafer positioning plate is used, a plurality of wafer positioning inserts are opened on the wafer positioning plate, and no less than two positioning holes; corresponding on the heat diffusion sheet Pad and locating hole; wafer Firstly fixed in the wafer positioning insert, and then attached to the heat diffusion sheet together, and then heated together to carry out the welding process of the wafer and the heat diffusion sheet; or the wafer positioning board is first attached to the heat diffusion sheet, and then the wafer is embedded in the wafer. In the positioning of the insert, the heating process of the wafer and the heat diffusion sheet is performed together.
  • FIG. 1 is a schematic cross-sectional view showing a feature of an LED wick of the present invention equipped with a heat sink, wherein the heat conducting core is a conical column structure, showing the cooperation relationship between the wick and the heat sink.
  • FIG. 2 is a schematic cross-sectional view of a LED wick of the present invention, wherein the heat conducting core is a threaded column structure.
  • the heat conducting core is a tapered stud structure and is provided with a lamp cover, which shows the structure of the lead wire and the characteristics of the sealing waterproofing measure.
  • Figure 4 is a schematic cross-sectional view showing the LED wick of the present invention equipped with a heat sink, showing the electrical connection between the wick and the luminaire (heat sink) using a resilient contact and a contact type structure.
  • Figures 5 and 6 are schematic views of the distribution of the wafer on the LED wick, indicating that the wafer or wafer set is radially spaced apart and dispersed as much as possible.
  • Fig. 7 is a schematic cross-sectional view showing a high-power LED wick of the present invention, which is penetrated in the middle and provided with heat dissipating fins.
  • Fig. 8 and Fig. 9 are schematic cross-sectional views showing the characteristics of two LED chips of the present invention, respectively, and the pn junction electrode is an L-type electrode, which is particularly suitable for a wafer of a silicon carbide substrate.
  • Fig. 10 is a schematic cross-sectional view showing the characteristics of an LED chip of the present invention.
  • the pn junction electrode is a V-type electrode and is a flip-chip structure.
  • the thermal pad and the p-pole pad are integrated, and are particularly suitable for a wafer of a sapphire substrate.
  • Figure 11 is a schematic view of a wafer of the chip of Figure 10 showing p, n junction electrodes and their pads, ceramic insulating film, thermally conductive pads, showing n-pole pads at four corners.
  • Figure 12 is a schematic view of the ceramic insulating film and the thermally conductive pad of Figure 11.
  • Figure 13 is a schematic cross-sectional view showing the characteristics of an LED chip of the present invention.
  • Figure 14 is a schematic illustration of a wafer in the chip of Figure 13 showing p, n junction electrodes and their pads, ceramic insulating film, thermally conductive pads.
  • Figure 15 is a schematic view of the ceramic insulating film and the thermally conductive pad of Figure 14.
  • Fig. 16 and Fig. 17 are views showing the characteristics of the wafer positioning plate of the present invention for ensuring the alignment welding of the wafer and the heat diffusion sheet, and Fig. 17 is a schematic sectional view showing the structure of Fig. 16.
  • Fig. 18 is a view showing a characteristic of the wafer positioning plate of the present invention for ensuring the alignment welding of the wafer and the heat diffusion sheet.
  • 19 and 20 are respectively schematic cross-sectional views of two LED chips of the present invention using a wafer positioning piece, and an L-type pn junction electrode, which is suitable for a wafer of a silicon carbide substrate.
  • 21, 22, and 23 are respectively schematic cross-sectional views of three LED chips of the present invention using a wafer positioning piece, a V-type pn junction electrode, and a flip-chip structure.
  • Figure 24 is a diagram showing the characteristics of a wafer in the chip shown in Figure 23.
  • FIG. 1 shows:
  • the heat conducting core 6 adopts a conical column structure, and the conical cylindrical surface (i.e., the heat transfer surface of the heat conducting core outward) is in close contact with the central tapered hole of the heat sink 3, through which the heat is passed from the heat conducting core 6 It is transmitted to the heat sink 3, so the gap between the contact faces should be as small as possible, that is, the matching precision is high and the contact pressure is large.
  • the tapered column and the tapered hole are easy to process, and the precision is easy to ensure. As long as the pushing force is small, the contact pressure can be amplified by several times.
  • the screw 5 is used to tighten the heat conducting core 6 tightly on the heat sink. 3 in the center of the tapered hole.
  • a thermal paste such as silicone grease should be applied to the cylinder or hole.
  • the thermal conductivity of aluminum is not as good as that of copper, the price of aluminum is low and it is easier to form, for example, by using a hot press process to produce an aluminum heat conductive core, which is low in efficiency and low in cost; and because the heat flux density in the heat conductive core has been lowered, In terms of cost of manufacture, the heat conducting core is preferably made of aluminum.
  • Fig. 1 there is only one heat diffusion sheet 2, and a plurality of wafers 1 are disposed (welded) on the heat diffusion sheet 2, and the heat diffusion sheet 2 is attached to one end surface of the heat conduction core 6 through the high voltage insulation layer 4, and the end surface will be It is called the heat absorbing surface, and the other end, that is, the end provided with the screw 5 is called the rear end of the heat conducting core.
  • the side of the heat diffusion sheet that is in close contact with the heat absorbing surface of the heat transfer core is referred to as the B side of the heat diffusion sheet, and the side on which the wafer is placed is referred to as the A side of the heat diffusion sheet.
  • the use of ceramic sheets as the high-voltage insulation layer has the following problems: 1.
  • the processing cost of the ceramic sheets is not low and brittle; 2.
  • the anodizing process is used to directly grow an aluminum oxide film from the surface of the metal foil on the heat conducting core or the heat diffusion sheet.
  • the high voltage insulating layer the contact thermal resistance between the high voltage insulating layer and the heat diffusion sheet or the heat conducting core is eliminated.
  • the anodizing process is low in cost and high in efficiency, and is suitable for mass production.
  • the aluminum oxide film formed by anodization has pores and pores which are disadvantageous for heat conduction and insulation. It should be sealed, for example, with insulating varnish or paraffin, preferably with a high thermal conductivity silicone grease.
  • the hard anodization process and micro-arc oxidation (also known as micro-plasma oxidation or anode spark deposition) process produce a thicker aluminum oxide film that is more suitable for the fabrication of high-voltage insulation.
  • the heat conducting core 6 adopts a threaded column structure, and also adopts a single piece heat diffusion sheet structure, but the wafer 1 is collectively disposed (welded) at the center of the heat diffusion sheet 2, and in the heat diffusion sheet 2
  • the A side is provided with a low voltage insulating layer 8.
  • a circuit and pads corresponding to the wafer and electrode leads can be disposed on the A side of the heat diffusion sheet, and those auxiliary elements (such as an antistatic protection element) can be disposed together with the wafer in thermal diffusion.
  • auxiliary elements such as an antistatic protection element
  • the dielectric strength is not important, and it is not necessary to meet the requirements of the electrical safety specification. As long as the highest value of the voltage used is reached, the 220V mains peak voltage can be reached. 380V, that is to say, the dielectric strength of the insulating layer is up to 450V, which is low-voltage insulation, the insulating layer is called low-voltage insulation layer.
  • Ceramic membranes produced by vapor deposition such as diamond, SiC, A1N, BN, BeO, A1 2 0 3 and other ceramic membranes, dense, good insulation, high thermal conductivity, especially diamond, SiC, A1N, BN, BeO is a highly thermally conductive ceramic which can be used not only for the low-voltage insulating layer on the surface of the heat diffusion sheet A in the present invention, but also for the ceramic insulating film on the wafer which will be described later.
  • the vapor deposition process includes physical vapor deposition (PVD) and chemical vapor deposition (VCD), both of which can be used to fabricate the low voltage insulating layer of the present invention.
  • the ceramic film produced by the vapor deposition process has high density and high thermal conductivity, it can also produce a highly thermally conductive ceramic film, but the thickness of the ceramic film is thin (several micrometers), and the cost is high, especially to obtain a ceramic film with a pressure of several hundred volts. (The film thickness should be more than 10 m), and the cost is higher.
  • the aluminum anodizing process can also be used in the manufacture of the low-voltage insulating layer of the heat-dissipating sheet A surface of the present invention. Although the thermal conductivity of the produced aluminum oxide film is not as high as that of the vapor deposition process, the cost is low, and a thick film is easily obtained. The insulation strength reaches 100V or more. When designing, the thickness of the aluminum oxide film of the low-voltage insulation layer should be less than 50 ⁇ ⁇ , control the Thermal resistance at the location.
  • the heat diffusion sheet should first use copper.
  • a copper-aluminum composite material should be used, and a layer of aluminum is coated on the surface of the copper plate.
  • the thickness of the aluminum layer on the surface of the heat diffusion sheet A is thin, and the thickness thereof is sufficient for the thickness of aluminum required for anodization.
  • the heat conducting core 6 adopts a tapered stud structure, and is further provided with a lamp cover 12 through which the lead wire 9 passes through the heat conducting core 6 and is led out from the rear end of the heat conducting core.
  • the connection structure is not only compact, easy to assemble, but also easy to achieve a waterproof and insulating seal with high requirements for the wick.
  • the lead wire 9 is taken out and provided with a sealant 10, which is very easy to realize the lead-out wire 9 lead-out, and a reliable waterproof and insulating seal.
  • the waterproof and insulating seal of the front end of the wick can be realized by the lamp cover 12 and the potting sealant. Waterproof insulation is very important for outdoor appliances, such as street lamps.
  • the lampshade 12 not only functions as a waterproof insulation for the wick, but also serves as an optical reflection, condensing, and the like.
  • Each of the wafers in FIG. 3 is provided with a heat diffusion sheet, that is, a multi-LED chip structure, and the high-voltage insulation layer 4 is provided not only on the heat absorption surface of the heat transfer core but also on the B surface of the heat diffusion sheet, so that the single LED
  • the chip has high voltage insulation properties.
  • Such a structure is particularly suitable for forming an aluminum oxide insulating layer by an anodizing process.
  • the thickness of the aluminum oxide film is required to be 200 ⁇ m, which is difficult to grow on one side. It is divided into two sides and grows separately. Each lOO m is thick, the difficulty is reduced, and the density is higher and the thermal conductivity is better.
  • the figure shows a PCB board 11.
  • the LED chip is embedded in the PCB board 11, and the auxiliary circuit of the LED chip can be disposed on the PCB board 11, and the lead wire 9 is also soldered to the circuit on the PCB board 11.
  • the wick in Figure 3 is connected to the external power supply by lead type. It can also be used as a terminal block type or a contact or touch pad type.
  • the terminal block or contact (contact pad) is placed at the rear end of the heat conducting core, and the connecting wire (lead wire 9) ) Pass through the thermal core, which is built into the thermal core.
  • the LED wick shown in Fig. 4 employs a contact type structure in which the contacts 13 on the wick are in contact with the spring contacts 14 fixed to the heat sink 3, just like the existing one.
  • the plug-in electrical connection structure is a contact type structure.
  • Fig. 6 shows that four LED chips are arranged on the heat conducting core 6, and each chip has a wafer set of three wafers.
  • the number of wafers or chipsets should be as large as possible, at least not less than three or three groups, but too many quantities will lead to increased production costs; the power of a single wafer should be as small as possible, and the maximum power should not be greater than 4W, but too small a single wafer power means an increase in the number of wafers, which may lead to increased costs.
  • the wafers or chipsets (chips) in Figures 5 and 6 are radially dispersed and dispersed, and such radial dispersion is most reasonable.
  • the LED wick shown in Fig. 7 has a central portion of the heat conducting core 6 and is provided with a heat dissipating fin 7.
  • This structure is designed for a high power LED wick, because the wick has a large power, a large number of wafers or chips, and a radial direction.
  • the dispersion is arranged in a dispersed manner, so that the outer diameter of the heat conducting core is particularly large, and the central portion is vacant, and the heat dissipating fins 7 are used to increase the heat dissipating area, which not only reduces the volume of the entire fin, but also reduces the aluminum material for heat dissipation.
  • the LED chip in FIGS. 3, 4, and 7 is provided with a high voltage insulating layer 4 on the B surface of the heat diffusion sheet 2, if it is to pass through the aluminum anode
  • the high-voltage insulating layer is formed by the extreme oxidation.
  • the heat-dissipating sheet 2 should be made of aluminum or copper-aluminum composite material, and a copper-aluminum composite material is preferably used.
  • the wafer is soldered to the heat diffusion sheet, which can effectively solve the problem of high heat conduction temperature difference caused by high heat flux density, but must ensure sufficient welding contact area.
  • the present invention considers that the solder contact area between the wafer and the heat diffusion sheet should be not less than one third of the wafer area, and the area of the heat diffusion sheet should be greater than 5 times (preferably not less than 10 times), and the thickness is not Less than 0.5mm.
  • the pn junction electrode is a L-contact (Laterial-Contact), which is simply referred to as an L-type electrode, and an LED chip of a silicon carbide substrate is suitable for such an electrode type.
  • L-contact Line-Contact
  • the silicon carbide substrate can serve as an n-junction electrode, and the outer surface of the substrate 15 is provided with a heat-conductive pad 16, that is, an n-pole pad, and the area of the heat-conductive pad is also the wafer 1
  • the LED chip shown in FIG. 9 is similar to that shown in FIG. 8. The main difference is: In FIG. 9, the thermal conductive pad 16 on the substrate 15 is directly soldered to the metal on the heat diffusion sheet 2, in the B of the heat diffusion sheet 2. The surface is provided with a high voltage insulating layer 4 which can be obtained by anodizing aluminum.
  • the pn junction electrode is a V-contact (Vertical-Contact), abbreviated as a V-type electrode, and adopts a flip-chip structure, also called a flip chip structure, and the LED chip of the sapphire substrate is suitable for such a method.
  • Electrode type The figure shows that the thermal pad 16 is directly soldered to the metal surface of the thermal diffusion sheet 2, the thermal pad 16 is in communication with the p junction electrode 20, the thermal pad 16 is also the p pad, the thermal pad 16 and the p junction electrode 20 ceramic insulating films 21 are formed by vapor deposition.
  • the heat diffusion sheet 2 is also a p-pole lead, and the p-pole of the chip can be directly soldered to the heat diffusion sheet 2.
  • a high-voltage insulating layer 4 is provided on the B surface of the thermal diffusion sheet 2, and can be formed by anodization of aluminum.
  • the A-plane of the heat diffusion sheet 2 is provided with an n-pole lead 18 and is provided with an electrode lead insulating layer 19, and the n-pole lead 18 has a pad thereon, which is directly soldered to the n-pole pad 17 on the wafer 1.
  • the solder contact area between the wafer 1 and the heat diffusion sheet 2 includes the area of the heat conductive pad 16 and the area of the n pole pad. If the area of the heat conductive pad 16 is sufficiently large, the problem of heat conduction resistance of the electrode lead insulating layer 19 is Not important. As can be seen from FIGS.
  • the n junction electrode 22 and the partial p junction electrode 20 are covered by the ceramic insulating film 21, and the heat conduction pad 16 is outside the ceramic insulating film 21, so that the ceramic insulating film structure is used as much as possible
  • the area of the thermal pad is increased, that is, the solder contact area between the wafer and the heat diffusion sheet.
  • the LED chip shown in FIG. 13 is similar to that shown in FIG. 10, and the V-type electrode and the flip-chip structure are different in that: the n junction electrode 22 and the p junction electrode 20 (excluding the pads) are all covered by the ceramic insulating film 21.
  • the thermally conductive pad 16 is spaced apart from the p-pole pad 23 and is insulated from the two electrodes, see Figures 14 and 15.
  • the A side of the heat diffusion sheet 2 is further provided with a p-pole lead 24 and is provided with an electrode lead insulating layer 19.
  • the lXlmm large LED chip is a large-sized wafer.
  • the electrode pad and the thermal pad are disposed on such a small area.
  • the size of the electrode pad is generally as small as 0.1 mm in diameter, and must be ensured.
  • Short-circuit soldering must not occur, so the alignment accuracy of the wafer and the heat diffusion sheet is high. Generally, eutectic soldering is used, and the heating time takes a few seconds. If the ground is aligned and reheated, the required equipment is not only high, expensive, but also very low in productivity. High-power LED chip packaging, low efficiency, high cost, is also a major problem in the LED industry.
  • the present invention provides a method for using a wafer positioning plate to solve the above problems.
  • a plurality of wafer positioning inserts are opened on a wafer positioning plate 25, and the wafer 1 is embedded in the wafer positioning.
  • the wafer positioning plate 25 is also provided with a positioning hole 26, which is illustrated as having six positioning holes 26, and the positioning holes are designed to be at least two.
  • the punching process is used to process the positioning hole 26 and the wafer positioning insert, which has high precision, simple equipment and high efficiency.
  • the heat diffusion sheet 27 is provided with corresponding positioning holes, and the corresponding pads on the wafer are disposed on the basis of the positioning holes.
  • the position of the wafer is determined by the wafer positioning insert on the wafer positioning plate 25, and the wafer positioning plate 25 is aligned with the thermal diffusion sheet 27 through the positioning hole 26, thus It can ensure that the pads on each wafer are aligned correctly with the corresponding pads on the heat diffusion sheet, and then heat-welded together, and several wafers are soldered at one time (55 in the figure).
  • This method is not only efficient. High, the equipment is simple. When heating and soldering, pressure is required to force the wafer to be attached to the heat diffusion sheet to ensure the quality of the solder. Since the wafer is embedded in the wafer positioning insert, it is easy to ensure that it is not displaced during pressurization. There are two kinds of steps: 1.
  • the wafer 1 is firstly embedded and fixed in the wafer positioning plate 25, positioned by the positioning holes 26, and then attached to the heat diffusion sheet 27, and then heated together to perform the welding process of the wafer and the heat diffusion sheet.
  • the wafer positioning plate 25 is positioned by the positioning hole 26, first attached to the heat diffusion sheet 27, and then the wafer 1 is embedded in the wafer positioning insert, and then heated together to perform the welding process of the wafer and the heat diffusion sheet.
  • the wafer positioning plate can be removed or retained.
  • the wafer positioning plate that is slit and left in the LED chip is called the wafer positioning piece 28. At this time, the wafer positioning piece should be used. Insulating material, high temperature resistant polyester film can be used.
  • the above method not only makes the wafer and the heat diffusion sheet have accurate alignment, high welding efficiency, simple equipment, but also is advantageous for the subsequent process efficiency improvement, for example, after the wafer and the heat diffusion sheet are welded, the large sheet is first cut into one piece.
  • the strip that is, the wafer and the heat diffusion sheet are arranged in a row, and the lead pins of the chip are also processed into corresponding arrangement, so that the welding can be performed at one time, and the sealing material can be filled in one position, and then cut into one. LED chip.
  • Fig. 18 is a view showing a method of producing the LED chip of the single heat diffusion sheet multi-wafer structure shown in Fig. 5 by the above-described process of the present invention.
  • the large wafer positioning plate and the heat diffusion plate are processed by a punching process to process the wafer positioning pieces and the heat diffusion sheets connected in a row.
  • the connected portions are cut into one. LED chip.
  • Fig. 19 shows an LED chip with a wafer positioning piece on which electrode leads and pads (or circuits) are provided.
  • the wafer in the figure uses an L-shaped electrode, and the thermal pad 16 is an n-pole pad.
  • the n-pole 18 is led out through the wafer positioning piece 28, and the wafer positioning piece 28 is provided with a p-pole 24 on the wafer.
  • the pad pads 23 and pads on the p-pole leads 24 are soldered through wires 29.
  • the electrode pad (p-electrode pad 23) on the wafer is placed against the edge of the wafer (preferably at the corner), and the electrode lead (p-pole lead 24) on the wafer positioning piece 28 is placed.
  • the pads are placed against the corresponding pads on the wafer (p-pole pads 23) and the two electrode pads are soldered directly to the solder 30 (such as tin).
  • the LED chip with a wafer positioning piece shown in FIG. 21 adopts a V-shaped electrode and a flip-chip structure.
  • the A surface of the heat diffusion sheet 2 is provided with a low-voltage insulating layer 8, and the B surface is provided with a high-voltage insulating layer 4, and the low-voltage insulating layer 8 is provided.
  • Electrode leads n-pole leads 18, not shown in the p-pole leads
  • thermally conductive pads also p-lead-lead pads
  • the LED chip shown in Fig. 22 is similar to that of Fig. 21.
  • the V-shaped electrode and the flip-chip structure are significantly different in that the n-pole pad 17 is disposed on the sidewall of the wafer, and the pad of the n-pole lead 18 on the wafer positioning piece 28 is Immediately adjacent to the pads on the sidewalls of the wafer (n-pole pads 17), the solder pads 30 directly solder the two pads.
  • the four corners of the wafer are cut into a quarter circle, and the n-pole pad 17 and the p-pole pad 23 on the wafer are disposed in the four corner-shaped sidewalls.
  • the diagonal distribution; the ceramic insulating film 21 covers the entire surface of the wafer, the thermal conductive pad 16 is insulated from the two electrodes, the thermal diffusion sheet 2 is a pure metal plate, and the thermal conductive pad 16 on the wafer directly contacts the thermal diffusion sheet. 2 metal welding.
  • Such a structure is advantageous for increasing the area of the thermal conductive pad (welding contact area) and reducing the alignment accuracy requirement.
  • Figures 11, 14, and 24 show that the electrode pads are all disposed at the corners, and of course may be disposed near the edge of the wafer, but at the corners, it is more advantageous to make full use of the wafer area to obtain more illuminating regions.
  • the n-pole and p-pole pads shown in Figs. 14 and 24 are both at the corners and are diagonally distributed, and the wafer is rectangular. Such a structure is advantageous in preventing alignment of the two electrode pads.
  • a reflective film should be provided on the outer surface of the wafer positioning piece to reflect the light reflected on the surface of the wafer positioning piece.

Description

LED灯芯、 LED芯片及 LED芯片制造方法
技术领域
本发明属于 LED技术领域, 特别涉及到 LED灯芯和 LED芯片内的热传导技术。
技术背景
LED散热问题是当前 LED照明普及推广的一大关键技术问题。由于 LED 芯片需要散热, 使得 LED照明灯要象现白炽灯和日光灯等一样, 灯芯 (灯泡)是标准化的部件, 并且方便安 装, 增加了一层困难。 现 LED照明灯、 灯具和灯芯, 还没有实现相对独立、 并便于装配的标 准化部件, 因而使得其成本更高。
从单纯的传热学来分析, LED散热只是一常温传热过程, 并不复杂。 但由于传热学和成 熟的传热技术知识, 以及与传热关联的其他基础知识没有充分地被 LED行业内人员认知, 因 而当前 LED散热技术及产品被复杂化, 处于初级阶段。
从 LED结点到空气对流换热面 (也就是散热片) 的传热过程是导热过程, 由于 LED晶 片面积小,热流密度非常高,该导热过程在整个 LED散热中非常重要。减小导热过程的热阻, 最有效又简单的办法就是采用高导热材料, 比如铜和铝, 导热系数高, 材料成本低, 易加工 成型。但铜和铝为金属导体, 作为电器的 LED照明器具, 必须满足用电安全要求, LED结点 与散热片 (金属外露部件) 之间必须达到一定高的绝缘要求, 一般耐电压要达到上千伏的绝 缘要求。 绝缘和导热是相互矛盾的, 现产品常常将 LED晶片设置在一陶瓷绝缘衬片上, 利用 陶瓷耐电压高, 导热系数也不低, 来解决此问题。 虽然陶瓷, 比如 A1203陶瓷导热系数可达 20W/m'K,但比铝小十倍,比铜小近二十倍, LED晶片上的热流密度高达 106W/m2;采用 0.2mm 厚的 A1203绝缘衬, 仅在该绝缘衬上的导热温差就要达到 10°C, 另外 0.2mm厚的 A1203陶瓷 片的加工成本也不低。 现通常都采用导热性不高的固晶胶(一般为银胶), 固定晶片, 这又导 致晶片与绝缘衬两界面间非常高的导热温差。
发明内容
本发明的目的就是针对 LED散热过程中的导热过程。一、解决现实灯芯标准化中的热传 导问题; 二、 LED芯片内的导热和绝缘之间的矛盾, 提出结构简单、 成本低的技术方案。
本发明的技术方案: LED灯芯主要包括有晶片、 热扩散片以及导热芯构成, 晶片产生的 热量通过热扩散片传到导热芯, 再由热芯传到散热片。 本发明的特征是: 导热芯采了用铝或 铜; 导热芯与散热片的 (即导热芯向外传热的) 接触传热面采用了圆锥柱结构、 或螺纹柱结 构或锥形螺柱结构; 晶片是焊接贴在热扩散片上; 热扩散片的面积大于五倍的晶片面积, 厚 度不小于 0.5mm, 并且采用铜或铝、 或铜铝复合材料; 热扩散片与导热芯之间设置有高压绝 缘层, 高压绝缘层的厚度大于 0.1mm。
导热芯采用圆锥柱结构, 散热片上也有相配的圆锥孔, 只要很小的推挤力, 就可得到被 放大数倍的导热芯圆锥柱面与散热片的圆锥孔面之间的接触压力, 因而接触热阻减小, 圆锥 孔和圆锥柱容易加工成型, 配合精度容易保证, 造价低, 安装也方便。 由于螺纹柱面的表面 积被放大, 接触传热面积就被放大, 导热芯与散热片之间的接触热阻就减小, 比如采用普通 的 60°三角牙螺纹, 其表面积为圆柱面的两倍, 采用旋转方式将 LED灯芯装入散热片(灯具) 中, 可以不需要工具, 操作方便。 锥形螺柱结构则综合了圆锥柱结构和螺纹柱结构的优点: 接触压力大、 接触面积大, 便于安装。 采用本发明的导热芯, 解决了 LED灯芯与散热片之间 的热传导问题, 并且便于 LED灯芯的装配, 也就解决了现实 LED灯芯标准化首要问题。 本发明中的热扩散片, 虽然与现产品的热沉的作用和传热过程类似, 但本发明首次明确 其重要作用——热扩散作用, 并称之为热扩散片。 因为 LED晶片面积小, 如 lxlmm大小的 晶片, 即使耗电 1.2W, 其热密度就达到 106W/m2, 非常之高, 因而解决晶片与热扩散片之间 的接触热阻问题成了首要问题, 而两者之间的电绝缘问题次之。 焊接工艺, 即使采用成本最 低的锡焊, 金属锡的导热系数也是 60W/m,K之多, 比高级的导热膏也要高十倍多, 因而晶 片采用焊接工艺, 焊接贴在热扩散片上, 将有效降低晶片与热扩散片之间的导热温差。 作为 热扩散作用的热扩散片不仅要采用导热性高的材料, 其面积和厚度也要足够大, 因而热扩散 片采用铜和铝, 并且要求热扩散片面积要 5倍以上的晶片面积, 厚度不小于 0.5mm, 设计时 最好是选不小于 10倍的晶片面积, 如果晶片为 lxlmm、 1W, 热扩散片厚度应达到 1.0mm以 上, 其目的和作用就是使热量在热扩散片内有效扩散, 降低热扩散片与导热芯之间的热流密 度。 为满足用电安全规范要求的绝缘问题, 就可以由热扩散片与导热芯之间的高压绝缘层来 解决。
本发明中, 高压绝缘层定义为耐直流电压达到 500V以上的绝缘层。
前面提出热扩散片与导热芯之间的高压绝缘层的厚度大于 0.1mm, 如采用 A1203陶瓷绝 缘层, 0.1mm厚耐直流电压可达 1千伏, 这是为了让热扩散片与导热芯之间的绝缘层承担决 大部分或全部安规所定的绝缘要求, 减少晶片与热扩散片之间的绝缘要求, 或根本就不考虑 两者之间的绝缘, 以降低两者之间传热温差。
如果晶片与热扩散片之间采用锡焊, 两者之间的锡料厚为 20 m, 在 106W/m2热流密度 情况下, 两者界面之间传热温差计算可得 At=0.32°C, 经热扩散片, 如果热流密度降低 8倍为 1.25xl05 W/m2, 热扩散片与导热芯之间的高压绝缘层采用 0.2mm厚的 A1203陶瓷, 导热系数 为 20W · K, 则计算可得高压绝缘层处的传热温差 At=1.25°C, 也就是说 LED灯芯内的两处 界面的热传导温差之和在 2°C度内。 如果将 0.2mm厚的 A1203陶瓷绝缘片设在晶片和热扩散 片 (热沉) 之间 (一种现产品结构), 仅陶瓷片两侧传热温差计算可得 At=10°C, 是上述的 5 倍之多,可见采用本发明可以显著降低 LED灯芯内的热传导温差。在以后的具体实施方式中, 将进一步阐述本发明的 LED灯芯便于防水密封, 大批量生产, 标准化实现等优点。
针对由晶片和热扩散片组成的 LED芯片部件, 本发明还从降低导热热阻, 降低成本, 方 便制造方面出发, 提出了具体结构和制造方法。
一、 热扩散片采用铝或铜、 或铜铝复合材料; 晶片与热扩散片的焊接触面积大于三分之 一的晶片面积; 热扩散片上设有高压绝缘层, 或低压绝缘层; 高压绝缘层采用通过阳极氧化 方法, 直接从热扩散片上的金属铝表面生长出的氧化铝膜, 该膜的厚度大于 50 m; 低压绝 缘层采用了通过气相沉积生成的陶瓷绝缘膜、 或通过阳极氧化直接从热扩散片上的金属铝表 面生长出的氧化铝膜, 该膜厚小于 50 m。
二、 晶片的 ρη结电极为 V型电极, 采用倒装结构; 热扩散片采用铜或铝、 或铜铝复合 材料; 晶片上设置有导热焊盘; 晶片与热扩散片的焊结接触面积大于三分之一的晶片面积; 晶片上的 η结电极和 ρ结电极或部分 ρ结电极外侧被一层通过气相沉积生成的陶瓷绝缘膜覆 盖, 导热焊盘设在该陶瓷绝缘膜的外侧。
三、 LED芯片中采用了绝缘片材制成的晶片定位片, 晶片定位片焊接或粘接贴在热扩散 片上, 晶片镶嵌在定位片中的晶片定位嵌口中, 晶片焊接贴在热扩散片上。
四、 一种 LED芯片封装制造方法, 其特征在于: 采用了晶片定位板, 在晶片定位板上开 有数多晶片定位嵌口, 和不少于两个定位孔; 热扩散片板上有相对应的焊盘和定位孔; 晶片 先固定嵌在晶片定位嵌口中, 再一起贴在热扩散片板上, 再一起加热进行晶片与热扩散片的 焊接工序; 或晶片定位板先贴在热扩散片板上, 再将晶片嵌入晶片定位嵌口中, 再一起加热 进行晶片与热扩散片的焊接工序。
附图说明
下面结合附图和具体实施方式对本发明作进一步说明。
图 1是一种装配有散热片的本发明 LED灯芯的特征剖面示意图, 导热芯为圆锥柱结构, 示出了灯芯与散热片的配合关系。
图 2是一种本发明的 LED灯芯的特征剖面示意图, 导热芯为螺纹柱结构。
图 3是一种本发明的 LED灯芯的特征剖面示意图,导热芯为锥形螺柱结构,并配有灯罩, 示出了引出导线结构以及密封防水措施特征。
图 4是一种装配有散热片的本发明 LED灯芯的特征剖面示意图, 示出了灯芯与灯具(散 热片) 之间的电的连接采用弹性触头与触点式结构。
图 5和图 6为 LED灯芯上的晶片分布示意图, 表示晶片或晶片组呈径向散开布置, 尽可 能均匀分散。
图 7是一种本发明的大功率 LED灯芯的特征剖面示意图,中部贯通,并设置有散热肋片。 图 8和图 9分别是两种本发明的 LED芯片特征剖面示意图, pn结电极为 L型电极, 特 别适合碳化硅衬底的晶片。
图 10是一种本发明的 LED芯片特征剖面示意图, pn结电极为 V型电极, 并且是倒装结 构, 导热焊盘和 p极焊盘为一体, 特别适用于蓝宝石衬底的晶片。
图 11是一种图 10所示芯片的晶片特征示意图, 示出了 p、 n结电极及其焊盘、 陶瓷绝缘 膜、 导热焊盘, 示出 n极焊盘在四个角上。
图 12是图 11中的陶瓷绝缘膜和导热焊盘的示意图。
图 13是一种本发明的 LED芯片特征剖面示意图。
图 14是一种图 13所示芯片中的晶片的特征示意图, 示出了 p、 n结电极及其焊盘、 陶瓷 绝缘膜、 导热焊盘。
图 15是图 14中的陶瓷绝缘膜和导热焊盘的示意图。
图 16和图 17是表示一种本发明的采用晶片定位板, 保证晶片与热扩散片对位焊接的特 征示意图, 图 17是图 16的特征剖面示意图。
图 18 是表示一种本发明的采用晶片定位板, 保证晶片与热扩散片对位焊接的特征示意 图。
图 19、 20分别是两种本发明的采用了晶片定位片的 LED芯片特征剖面示意图, L型 pn 结电极, 适用于碳化硅衬底的晶片。
图 21、 22、 23分别是三种本发明的采用了晶片定位片的 LED芯片特征剖面示意图, V 型 pn结电极电极, 倒装结构。
图 24是一种图 23所示芯片中的晶片特征示意图。
图中: 1、 晶片, 2、 热扩散片, 3、 散热片, 4、 高压绝缘层, 5、 螺钉, 6、 导热芯, 7、 散热肋片, 8、 低压绝缘层, 9、 引出导线, 10、 封胶, 11、 PCB板, 12、 灯罩, 13、 触点, 14、 弹性触头, 15、 衬底, 16、 导热焊盘, 17、 n极焊盘, 18、 n极引线, 19、 电极引线绝缘 层, 20、 p结电极, 21、 陶瓷绝缘膜, 22、 n结电极, 23、 p极焊盘, 24、 p极引线, 25、 晶 片定位板, 26、 定位孔, 27、 热扩散片板, 28、 晶片定位片, 29、 导线, 30、 焊料。 具体实施方式
图 1示出: 导热芯 6采用圆锥柱结构, 圆锥形柱面 (即导热芯向外的传热面) 与散热片 3的中心锥形孔紧密接触, 热量就是通过该接触面从导热芯 6传到散热片 3上的, 因而接触 面之间的间隙要尽可能小, 即配合精度要高、 接触压力要大。 圆锥柱和圆锥孔加工简单, 精 度容易保证, 只要很小的推挤力就可得到放大数十倍的接触压力, 图中采用螺钉 5拉紧力, 将导热芯 6紧紧地被套在散热片 3的中心锥形孔中。 为进一步减小导热芯与散热片之间的接 触热阻, 应在柱面或孔内涂上导热膏, 比如硅脂。
虽然铝的导热系数不如铜, 但是铝的价格低, 更容易加工成形, 比如采用热压注工艺, 生产铝导热芯, 效率高费用低; 又由于在导热芯内的热流密度已被降低, 因而从造价成本来 考虑, 导热芯最好采用铝。
图 1中示出, 只有一片热扩散片 2, 有数个晶片 1设置 (焊接) 在热扩散片 2上, 热扩 散片 2通过高压绝缘层 4贴在导热芯 6的一端面, 该端面将被称为吸热面, 相对的另一端, 也就是设有螺钉 5的那端称为导热芯后端。 紧贴导热芯吸热面的热扩散片的那面称为热扩散 片的 B面, 而设置晶片的那面称为热扩散片的 A面。
采用陶瓷片作为高压绝缘层, 存有以下问题: 一、 陶瓷片加工成本不低, 易碎; 二、 存 在陶瓷片与热扩散片以及导热芯之间的界面接触热阻问题, 如果采用焊接工艺, 效率低, 成 本高。 如果采用胶粘工艺, 则接触热阻高。 采用阳极氧化工艺, 直接从导热芯或热扩散片上 的金属铝表面生长出氧化铝膜, 作为高压绝缘层, 则消除了高压绝缘层与热扩散片或导热芯 之间界面的接触热阻问题。 阳极氧化工艺成本低, 效率高, 适合大批生产。 通过阳极氧化生 成的氧化铝膜, 有孔隙, 孔隙对导热和绝缘都不利, 应进行封孔处理, 比如用绝缘漆或石蜡, 最好是采用导热系数高的硅脂等材料。 硬质阳极氧化工艺和微弧氧化 (又称微等离子体氧化 或阳极火花沉积) 工艺, 生成的氧化铝膜更加厚, 更加适用于制造高压绝缘层。
图 2所示的 LED灯芯, 导热芯 6采用螺纹柱结构, 同样也采用单片热扩散片结构, 但晶 片 1集中设置 (焊接) 在热扩散片 2的中心处, 并且在热扩散片 2的 A面设置有低压绝缘层 8。 有了该绝缘层, 就可在热扩散片的 A面上设置电路和与晶片相对应的焊盘和电极引线, 以及那些辅助元件 (比如防静电保护元件) 就可和晶片一起设置在热扩散片上, 一起封装, 这样的结构集成度高, 便于下游生产。 由于晶片的热流密度高, 因而降低该绝缘层的导热热 阻尤为重要, 绝缘强度并不重要, 不必达到用电安全规范要求, 只要达到所用电压的最高值 即可, 220V市电峰值电压可达到 380V, 也就是说, 该绝缘层绝缘强度最高达到 450V就可 以了, 此为低压绝缘, 则该绝缘层称为低压绝缘层。
采用气相沉积工艺生成的陶瓷膜, 比如金钢石、 SiC、 A1N、 BN、 BeO、 A1203等陶瓷膜, 致密、 绝缘性好、 导热性高, 特别是金刚石、 SiC、 A1N、 BN、 BeO 为高导热性陶瓷, 不仅 可用于本发明中的热扩散片 A面上的低压绝缘层, 更加适用于以后将阐述的晶片上的陶瓷绝 缘膜。 气相沉积工艺包括有物理气相沉积(PVD)和化学气相沉积(VCD), 这两种工艺都可 用于制造本发明中的低压绝缘层。
气相沉积工艺虽然生成的陶瓷膜, 致密、 导热性高, 还能生成高导热性陶瓷膜, 但陶瓷 膜的厚度薄 (几微米), 成本高, 特别是要得到耐压上百伏的陶瓷膜 (膜厚度要达到 lO m 以上), 成本就更高。 铝阳极氧化工艺同样可用于本发明中热扩散片 A面的低压绝缘层的制 造, 虽然生成的氧化铝膜的导热性不如气相沉积工艺制造的高, 但成本低, 容易得到较厚的 膜, 绝缘强度达到 100V以上。 设计时, 低压绝缘层的氧化铝膜厚度应小于 50 μ ηι, 控制该 处的导热热阻。
虽然铜比铝贵,更不容易加工成型,但由于热扩散片材料用量非常少,外形简单(片状), 制造容易, 更重要的是晶片的热流密度高, 则高导热性材料更重要, 因而热扩散片应首先选 用铜。 要想在铜热扩散片表面生成阳极氧化的氧化铝绝缘层, 就应采用铜铝复合材料, 在铜 板表面覆有一层铝。 热扩散片 A面上的铝层厚度要薄, 其厚度只要够用于阳极氧化所需的铝 厚即可。
图 3所示的一种本发明 LED灯芯, 导热芯 6采用锥形螺柱结构, 并且还配有灯罩 12, 引出导线 9穿过导热芯 6, 从导热芯的后端引出, 这样的电的连接结构, 不仅结构紧凑, 便 于装配, 而且容易实现灯芯高要求的防水绝缘密封。 如图中所示, 在导热芯后端, 引出导线 9引出处, 设有封胶 10, 非常容易地实现引出导线 9引出处, 可靠的防水绝缘密封。 灯芯的 前端的防水绝缘密封则可通过灯罩 12以及灌封密封胶处理来实现。 防水绝缘对于户外电器, 如路灯, 非常重要。 灯罩 12不仅起着灯芯防水绝缘作用, 还可用作光学上的反射、 聚光等作 用。
图 3中每颗晶片配有一热扩散片, 即是多 LED芯片结构, 并且高压绝缘层 4不仅在导热 芯吸热面上设有, 而且在热扩散片的 B面上也有, 因而单颗 LED芯片具有高压绝缘特性。这 样的结构, 特别适合采用阳极氧化工艺生成氧化铝绝缘层, 比如, 要实现绝缘强度达到耐电 压 2千伏, 氧化铝膜的厚度就要达到 200 μ ηι, 采用单面生长, 难度大, 如果分成两面, 分别 生长, 各 lOO m厚, 难度就减小, 并且致密度更高, 导热性也更好。 图中示出有 PCB板 11, LED芯片嵌装在 PCB板 11中, 可将 LED芯片的辅助电路就设置在 PCB板 11上, 引出导线 9也与 PCB板 11上的电路焊接连接。
图 3中的灯芯与外供电源连接采用引线式, 也可采用接线端子式或触点或触盘式, 接线 端子或触点 (触盘) 设置在导热芯后端, 连接电线 (引出导线 9) 穿过导热芯, 即内藏在导 热芯内。 图 4中示出的 LED灯芯就采用了触点式结构, 灯芯上的触点 13与固定在散热片 3 上的弹性触头 14相接触, 就象现有的灯泡一样。 接插式电连接结构属于触点式结构。
通过采用专用的传热计算软件, 计算模拟九颗 lXlmm, 发热 1W的晶片, 在一散热片中 的导热传热过程, 得出: 九颗晶片集中在一起时的结点温度要比分散布置 (相互间距达 5mm 时), 要高出近 5°C之多。 从传热基本知识也可分析得出, 为降低导热热阻, LED晶片在热扩 散片上或晶片与热扩散片组成的 LED芯片在导热芯上, 应尽可能分散布置, 单颗晶片的功率 尽可能小,数量尽可能多。图 5是 6颗晶片在一热扩散片上分散布置图。图 6示出, 四颗 LED 芯片在导热芯 6上分散布置, 每颗芯片中有三颗晶片构成的晶片组。 在实际设计应用中, 存 在多颗晶片必须成组在一起, 不可分的情况, 比如三色基白光 LED芯片中有三颗晶片不可分 开。 在设计 LED灯芯时, 晶片或晶片组的数量尽可能多, 最少不能少于三颗或三组, 但数量 太多会导致生产成本增加; 单颗晶片的功率尽可能小, 最大功率不应大于 4W, 但太小的单 颗晶片功率, 就意味晶片数量增加, 将可能导致成本增加。 图 5、 6中的晶片或 晶片组 (芯 片) 都呈径向散开, 分散布置, 这样的径向分散布置最合理。
图 7所示的 LED灯芯, 导热芯 6中部贯通, 并设有散热肋片 7, 这样的结构是为大功率 LED灯芯设计的, 因为灯芯功率大, 晶片或芯片数量多, 又要沿径向散开分散布置, 因而导 热芯外径特别大, 中心部分空置, 就被利用来设置散热肋片 7, 增加散热面积, 不仅减小了 整个散热片体积, 还有利于减少散热用铝材料。
图 3、 4、 7中的 LED芯片, 在热扩散片 2的 B面设置有高压绝缘层 4, 如果要通过铝阳 极氧化生成该高压绝缘层, 热扩散片 2就应采用铝或铜铝复合材料, 最好选用铜铝复合材料。 晶片焊接贴在热扩散片上, 能有效解决高热流密度引起的导热温差高的问题, 但必须保证有 足够的焊接接触面积。 本发明认为晶片与热扩散片之间的焊接接触面积应不小于三分之一的 晶片面积, 同样热扩散片的面积应大于 5倍(最好选不小于 10倍) 的晶片面积, 厚度不小于 0.5mm。
图 8所示的 LED芯片, pn结电极为 L接触 (Laterial-Contact, 水平接触), 简称为 L型 电极, 碳化硅衬底的 LED晶片适合采用这样的电极型式。 因为 SiC可通过掺杂成为导体, 碳 化硅衬底就可作为 n结电极, 衬底 15外表面设置有导热焊盘 16, 也就是 n极焊盘, 此时导 热焊盘的面积也就是晶片 1与热扩散片 2之间的焊接接触面积。 图 8中的热扩散片 2的 A面 设有低压绝缘层 8, 可通过气相沉积或铝阳极氧化制得, 在低压绝缘层 8表面应有相对应的 导热焊盘(也就是 n极引线焊盘) 以及 n极引线。 图 9所示的 LED芯片和图 8所示类似, 主 要不同的是: 图 9中, 衬底 15上的导热焊盘 16直接与热扩散片 2上的金属焊接, 在热扩散 片 2的 B面设置有高压绝缘层 4, 可通过铝阳极氧化制得。
图 10所示的 LED芯片, pn结电极为 V接触 (Vertical-Contact, 垂直接触), 简称 V型 电极,并且采用倒装结构,也称覆晶结构,蓝宝石衬底的 LED晶片适合采用这样的电极型式。 图中示出,导热焊盘 16直接与热扩散片 2的金属表面焊接,导热焊盘 16与 p结电极 20连通, 导热焊盘 16也就是 p极焊盘,导热焊盘 16与 p结电极 20间有通过气相沉积生成的陶瓷绝缘 膜 21。 热扩散片 2也就是 p极引线, 芯片的 p极管脚可采用直接与热扩散片 2焊连。 在热扩 散片 2的 B面设置有高压绝缘层 4, 可以通过铝阳极氧化生成。 热扩散片 2的 A面设置有 n 极引线 18, 并隔有电极引线绝缘层 19, n极引线 18上有焊盘, 与晶片 1上的 n极焊盘 17直 接焊接。晶片 1与热扩散片 2之间的焊接接触面积包括有导热焊盘 16的面积和 n极焊盘的面 积, 如果导热焊盘 16的面积足够大, 电极引线绝缘层 19的导热热阻问题就不重要了。 从图 11、 12可以看出, n结电极 22和部分 p结电极 20被陶瓷绝缘膜 21覆盖, 导热焊盘 16在该 陶瓷绝缘膜 21的外侧, 采用这样陶瓷绝缘膜结构的目的是尽可能增大导热焊盘的面积, 即晶 片与热扩散片之间的焊接接触面积。
图 13所示 LED芯片与图 10所示的类似, V型电极、 倒装结构, 不同之处有: n结电极 22和 p结电极 20 (除焊盘外)全部被陶瓷绝缘膜 21覆盖, 导热焊盘 16与 p极焊盘 23隔开, 与两电极绝缘隔开, 参见图 14和图 15。 热扩散片 2的 A面还设有 p极引线 24, 并隔有电极 引线绝缘层 19。
lXlmm大的 LED晶片就属大尺寸晶片, 在这样小的面积上设置电极焊盘和导热焊盘, 如图 11、 14所示, 电极焊盘的尺寸一般小到直径为 0.1mm, 又必须保证不得出现短路焊接, 因而晶片与热扩散片对位精度要求高。 一般都采用共晶焊接, 加热时间就需几秒钟, 如果采 用一颗一颗地对位、 再加热焊接, 所需设备不仅要求高、 昂贵, 生产效率也非常低。 大功率 LED芯片封装, 效率低下, 成本高, 也是目前 LED产业中一大问题。
本发明提出一种采用晶片定位板的方法, 来解决以上问题, 如图 16、 17所示, 在一张晶 片定位板 25上开有数多的晶片定位嵌口, 晶片 1被镶嵌在晶片定位嵌口中, 晶片定位板 25 还开有定位孔 26, 图示出有 6个定位孔 26, 设计时定位孔最少不得少于两个。采用冲切工艺 加工定位孔 26和晶片定位嵌口, 不仅精度高, 设备简单, 效率也高。 热扩散片板 27上开有 相应的定位孔, 并以该定位孔为基准设置有与晶片上对应的焊盘。 晶片的位置由晶片定位板 25上的晶片定位嵌口确定, 晶片定位板 25与热扩散片板 27对位通过定位孔 26确定, 因而 就可保证每个晶片上的焊盘与热扩散片板上对应的焊盘对位准确, 再整体一起加热焊接, 一 次完成数多颗晶片焊接 (图中有 55颗), 这种方法不仅效率高, 设备又简单。 加热焊接时, 需要加压, 使晶片受力贴在热扩散片上, 保证焊接质量。 由于晶片是嵌在晶片定位嵌口中, 容易保证加压时不移位。 该工序有两种: 一、 晶片 1先镶嵌固定在晶片定位板 25中, 通过定 位孔 26定位, 再一起贴在热扩散片板 27上, 再一起加热, 进行晶片与热扩散片的焊接工序; 二、 晶片定位板 25, 通过定位孔 26定位, 先贴固定在热扩散片板 27上, 再将晶片 1镶嵌到 晶片定位嵌口中, 再一起加热, 进行晶片与热扩散片的焊接工序。 焊接完成后, 晶片定位板 可以拆除, 也可以保留, 如图 19、 20所示, 被分切留在 LED芯片中的晶片定位板就称为晶 片定位片 28, 此时, 晶片定位片应采用绝缘材料, 可采用耐高温的聚脂膜片。
采用以上方法, 不仅使晶片与热扩散片对位准确、 焊接效率高, 设备简单, 而且对以后 的工序效率提高非常有利, 比如: 完成晶片与热扩散片的焊接后, 大张板先分切成一条条, 即晶片与热扩散片成列排列, 芯片的引线管脚也加工成与之相对应的排列, 这样可以一次对 位焊接, 又可一次对位灌注封胶, 之后再分切成一颗颗的 LED芯片。
图 18示出, 采用以上提出本发明工艺, 生产图 5所示的单热扩散片多晶片结构的 LED 芯片的方法。 大张的晶片定位板和热扩散板, 采用冲切工艺, 加工出成排相连的晶片定位片 和热扩散片, 当对位焊接以及灌注封胶等工序完成后, 再切断相连部分, 成一颗颗的 LED芯 片。
图 19示出了一种带晶片定位片的 LED芯片,在晶片定位片 28上设置有电极引线及焊盘 (或电路)。 图中的晶片采用 L型电极, 导热焊盘 16也就是 n极焊盘, n极引线 18穿过晶片 定位片 28从上面引出, 晶片定位片 28上面设置有 p极引线 24, 晶片上的 p极焊盘 23与 p 极引线 24上的焊盘通过导线 29焊接连通。 图 20所示的 LED芯片, 晶片上的电极焊盘 (p 极焊盘 23) 靠着晶片的边缘 (最好设在角上), 晶片定位片 28上的电极引线 (p极引线 24) 上的焊盘紧靠着晶片上对应的焊盘 (p极焊盘 23), 直接用焊料 30 (比如锡) 将两电极焊盘 焊接连通。
图 21所示的带晶片定位片的 LED芯片, 采用 V型电极, 倒装结构, 热扩散片 2的 A面 设置有低压绝缘层 8, B面设置有高压绝缘层 4, 低压绝缘层 8上设置有电极引线 (n极引线 18, p极引线图中未示出), 和导热焊盘 (也是 p极引线焊盘)。 图 22所示 LED芯片与图 21 类似, V型电极和倒装结构, 明显不同的是: n极焊盘 17设置在晶片的侧壁上, 晶片定位片 28上的 n极引线 18的焊盘紧靠晶片侧壁上的焊盘 (n极焊盘 17), 通过焊料 30直接将两焊 盘焊接连通。
图 23和图 24示出的 LED芯片, 晶片四角被切, 呈四分之一圆缺, 晶片上的 n极焊盘 17和 p极焊盘 23就设置在四个缺角的侧壁内, 并且对角分布; 陶瓷绝缘膜 21将晶片的一整 面覆盖, 导热焊盘 16与两电极绝缘隔开, 热扩散片 2为纯金属板片, 晶片上的导热焊盘 16 直接与热扩散片 2的金属焊接。 这样的结构有利于增大导热焊盘面积(焊接接触面积), 降低 对位精度要求。
图 11、 14、 24示出, 电极焊盘都设置在角上, 当然也可设置在靠近晶片的边缘, 但在角 上更有利于充分利用晶片面积, 获得更多的发光区。 图 14和图 24所示的 n极和 p极焊盘都 在角上, 并成对角分布, 晶片为长方形, 这样的结构有利于防止两种电极焊盘对位出错。
为提高出光率, 应在晶片定位片外表面设有反光膜, 将反射到晶片定位片表面的光, 再 反射出去。

Claims

WO 2011/124019 权 利 要 求 书 PCT/CN2010/071583
1、 一种 LED灯芯, 包括有: 导热芯 (6)、 热扩散片 (2) 和晶片 (1 ), 其特征在于: 导热芯 (6) 采用了铝或铜; 导热芯 (6) 向外传热的接触传热面采用了圆锥柱结构、 或螺 纹柱结构或锥形螺柱结构; 热扩散片 (2) 采用了铜或铝、 或铜铝复合材料; 热扩散片 (2) 的厚度不小于 0.5mm, 面积大于 5倍的晶片面积; 晶片 (1 ) 是焊接贴在热扩散片 (2) 上; 热扩散片 (2) 与导热芯 (6) 的吸热面之间设置有高压绝缘层 (4), 高压绝缘层 (4) 的厚 度大于 0.1mm。
2、 根据权利要求 1所述的 LED灯芯, 其特征在于: 高压绝缘层 (4) 采用了通过阳极 氧化直接从导热芯 (6) 上或热扩散片 (2) 上、 或两者上的金属铝表面生长出的氧化铝膜。
3、 根据权利要求 1所述的 LED灯芯, 其特征在于: 晶片或晶片组是径向散开, 分散布 置, 单颗晶片的功率不大于 4W。
4、 根据权利要求 1所述的 LED灯芯, 其特征在于: 引出导线 (9)从导热芯 (6) 内穿 过, 在导热芯后端伸出、 或在导热芯的后端设置有接电端子或触点或触盘。
5、 根据权利要求 1所述的 LED灯芯, 其特征在于: 导热芯 (6) 中部贯通, 并设置有 散热肋片 (7)。
6、 一种 LED芯片, 包括有晶片 (1 )和热扩散片 (2), 其特征在于: 热扩散片 (2)采 用了铜或铝、或铜铝复合材料;热扩散片 (2)的面积大于 5倍的晶片面积,厚度不小于 0.5mm; 晶片 (1 )设置有导热焊盘(16), 焊贴在热扩散片 (2) 的 A面, 晶片 (1 )与热扩散片 (2) 之间的焊接接触面积不小于三分之一的晶片面积; 热扩散片的 B面设置有高压绝缘层 (4) 或热扩散片的 A面设置有低压绝缘层(8)、 或热扩散片的 A面和 B面分别设置有低压绝缘 层 (8) 和高压绝缘层 (4); 高压绝缘层 (4) 采用了通过阳极氧化直接从热扩散片上的金 属铝表面生长出的氧化铝膜, 该氧化铝膜的厚度大于 50 μ ηι; 低压绝缘层 (8)采用了通过 气相沉积生成的陶瓷绝缘膜、 或通过阳极氧化直接从热扩散片上的金属铝表面生长出的氧 化铝膜, 该氧化铝膜的厚度小于 50 m。
7、 一种 LED芯片, 包括有晶片 (1 )和热扩散片 (2), pn结电极为 V型电极, 采用倒 装结构, 其特征在于: 热扩散片 (2) 采用了铜或铝、 或铜铝复合材料; 热扩散片 (2) 的 面积大于 5倍的晶片面积, 厚度不小于 0.5mm; 晶片(1 )设置有导热焊盘(16), 晶片(1 ) 与热扩散片(2)之间的焊接接触面积不小于晶片面积的三分之一; 晶片上的 n结电极(22 ) 和 p结电极 (20) 或部分 p结电极外侧被一层通过气相沉积生成的陶瓷绝缘膜覆盖, 导热 焊盘 (16) 在该陶瓷绝缘膜的外侧。
8、 一种 LED芯片, 包括有: 热扩散片 (2)、 晶片 (1 )和晶片定位片 (28), 其特征在 于: 热扩散片(2)采用了铜或铝、 或铜铝复合材料; 热扩散片的面积大于 5倍的晶片面积, 厚度不小于 0.5mm; 晶片定位片采用绝缘片材制成; 晶片定位片 (28) 焊接或粘接贴在热 扩散片 (2) 的 A面, 晶片 (1 ) 镶嵌在晶片定位片 (28) 中。
9、根据权利要求 7或 8所述的 LED芯片, 其特征在于: 晶片上的 n极焊盘和 p极焊盘 分别设在四个角上, 并且成对角分布。
10、 根据权利要求 8所述的 LED芯片, 其特征在于: 在靠晶片 (1 ) 的边缘或侧壁设置 有电极焊盘, 在晶片定位片 (28 ) 上设置有相对应的电极引线, 该电极引线上的焊盘靠近 相对应的晶片上的电极焊盘, 两焊盘通过导线或焊料直接焊接连通。
11、 一种 LED芯片封装制造方法, 该 LED芯片包括有晶片 (1 ) 和热扩散片 (2), 其 WO 2011/124019 权 禾 ij 要 求 书 PCT/CN2010/071583 特征在于: 采用了晶片定位板 (25), 在晶片定位板 (25) 上开有数多晶片定位嵌口, 和不 少于两个的定位孔 (26); 在热扩散片板 (27 ) 上开有相对应的定位孔 (26) , 并设置有与 晶片相应的焊盘: 晶片定位板 (25), 通过定位孔 (26) 定位, 贴在热扩散片板 (27) 上, 晶片 (1 ) 镶嵌在晶片定位板 (25 ) 中的晶片定位嵌口内, 一起加热完成晶片与热扩散片的 焊接工序。
PCT/CN2010/071583 2010-04-07 2010-04-07 Led灯芯、led芯片及led芯片制造方法 WO2011124019A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/071583 WO2011124019A1 (zh) 2010-04-07 2010-04-07 Led灯芯、led芯片及led芯片制造方法
US13/636,661 US9583690B2 (en) 2010-04-07 2010-04-07 LED lampwick, LED chip, and method for manufacturing LED chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071583 WO2011124019A1 (zh) 2010-04-07 2010-04-07 Led灯芯、led芯片及led芯片制造方法

Publications (1)

Publication Number Publication Date
WO2011124019A1 true WO2011124019A1 (zh) 2011-10-13

Family

ID=44762012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071583 WO2011124019A1 (zh) 2010-04-07 2010-04-07 Led灯芯、led芯片及led芯片制造方法

Country Status (2)

Country Link
US (1) US9583690B2 (zh)
WO (1) WO2011124019A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127816B2 (en) 2011-01-19 2015-09-08 GE Lighting Solutions, LLC LED light engine/heat sink assembly
KR20150025231A (ko) * 2013-08-28 2015-03-10 서울반도체 주식회사 광원 모듈 및 그 제조 방법, 및 백라이트 유닛
WO2016142258A1 (en) * 2015-03-11 2016-09-15 Koninklijke Philips N.V. Light emitting device cooling
JP6677816B2 (ja) * 2016-10-25 2020-04-08 京セラ株式会社 発光素子搭載用基板、発光装置および発光モジュール
US11382215B2 (en) * 2017-09-28 2022-07-05 Kyocera Corporation Electronic element mounting substrate and electronic device
CN112289695B (zh) * 2020-09-22 2023-03-21 中国电子科技集团公司第二十九研究所 一种用于多焊件自动共晶的通用共晶装置及共晶方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914731A (en) * 1987-08-12 1990-04-03 Chen Shen Yuan Quickly formed light emitting diode display and a method for forming the same
CN1251942A (zh) * 1998-10-21 2000-05-03 松下电器产业株式会社 半导体封装、半导体器件及其制造方法
JP2007088089A (ja) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd 発光装置
CN201045486Y (zh) * 2007-04-25 2008-04-09 鹤山丽得电子实业有限公司 一种led照明灯
CN201084746Y (zh) * 2007-08-17 2008-07-09 广东昭信光电科技有限公司 低成本大功率发光二极管封装结构
CN101346584A (zh) * 2005-12-22 2009-01-14 松下电工株式会社 具有led的照明器具
CN101521253A (zh) * 2008-02-29 2009-09-02 富士迈半导体精密工业(上海)有限公司 固态发光元件及光源模组

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653297B (zh) * 2002-05-08 2010-09-29 佛森技术公司 高效固态光源及其使用和制造方法
EP1733439B1 (en) * 2004-03-18 2013-05-15 Panasonic Corporation Nitride based led with a p-type injection region
JP4754850B2 (ja) * 2004-03-26 2011-08-24 パナソニック株式会社 Led実装用モジュールの製造方法及びledモジュールの製造方法
ATE465374T1 (de) * 2004-11-01 2010-05-15 Panasonic Corp Lichtemittierendes modul, beleuchtungsvorrichtung und anzeigevorrichtung
US20060098440A1 (en) * 2004-11-05 2006-05-11 David Allen Solid state lighting device with improved thermal management, improved power management, adjustable intensity, and interchangable lenses
KR101115800B1 (ko) * 2004-12-27 2012-03-08 엘지디스플레이 주식회사 발광소자 패키지, 이의 제조 방법 및 백라이트 유닛
EP1977456A4 (en) * 2005-12-29 2014-03-05 Lam Chiang Lim HIGH POWER LIGHT EMITTING DIODE HOUSING FIXED REMOVABLE TO A HEAT SINK
US20080266869A1 (en) * 2006-09-13 2008-10-30 Yun Tai LED module
US7527397B2 (en) * 2006-09-26 2009-05-05 Chia-Mao Li Solid state lighting package structure
US7625104B2 (en) * 2007-12-13 2009-12-01 Philips Lumileds Lighting Company, Llc Light emitting diode for mounting to a heat sink
US8431950B2 (en) * 2008-05-23 2013-04-30 Chia-Lun Tsai Light emitting device package structure and fabricating method thereof
JP5191837B2 (ja) * 2008-08-28 2013-05-08 株式会社東芝 半導体発光素子及び半導体発光装置
JP5359734B2 (ja) * 2008-11-20 2013-12-04 豊田合成株式会社 発光装置及びその製造方法
US8602593B2 (en) * 2009-10-15 2013-12-10 Cree, Inc. Lamp assemblies and methods of making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914731A (en) * 1987-08-12 1990-04-03 Chen Shen Yuan Quickly formed light emitting diode display and a method for forming the same
CN1251942A (zh) * 1998-10-21 2000-05-03 松下电器产业株式会社 半导体封装、半导体器件及其制造方法
JP2007088089A (ja) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd 発光装置
CN101346584A (zh) * 2005-12-22 2009-01-14 松下电工株式会社 具有led的照明器具
CN201045486Y (zh) * 2007-04-25 2008-04-09 鹤山丽得电子实业有限公司 一种led照明灯
CN201084746Y (zh) * 2007-08-17 2008-07-09 广东昭信光电科技有限公司 低成本大功率发光二极管封装结构
CN101521253A (zh) * 2008-02-29 2009-09-02 富士迈半导体精密工业(上海)有限公司 固态发光元件及光源模组

Also Published As

Publication number Publication date
US9583690B2 (en) 2017-02-28
US20130010481A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
CN102109116B (zh) Led光模组和led芯片
CN201412704Y (zh) 一种集成led芯片的光源
WO2009094829A1 (en) A high heat dissipation led light source module and a high heat dissipation and high power led light source assembly
CN101984511B (zh) Led芯片和led晶片及芯片制造方法
TW200814362A (en) Light-emitting diode device with high heat dissipation property
CN101614333A (zh) 高效散热led照明光源及制造方法
WO2011124019A1 (zh) Led灯芯、led芯片及led芯片制造方法
TWI447975B (zh) 發光二極體晶片之結構、發光二極體封裝基板之結構、發光二極體封裝結構及其製法
CN102208498A (zh) 一种led高导热绝缘基座封装的方法及器件
CN201766098U (zh) 一种大功率led与散热器的零热阻结构及led灯
WO2010006475A1 (zh) 一种高功率led陶瓷封装基座
CN108461616B (zh) 一种大功率led用热电分离散热结构的封装方法
CN102013452B (zh) Led灯芯和led芯片及制造方法
CN206003823U (zh) 提高散热性能的高功率led光源模组
US20140197434A1 (en) Light emitting diode device and method for manufacturing heat dissipation substrate
CN102679187B (zh) 用于照明的led光模组和led芯片
CN201412705Y (zh) 高效散热led照明光源
TWI402460B (zh) LED wick and LED chip and manufacturing method
CN105870113A (zh) 一种led光源结构及其制备方法
CN105826452A (zh) Led芯片及制造方法
CN205264751U (zh) 一种低热阻led光源
TWI447972B (zh) LED chip and LED chip and chip manufacturing methods
CN203503690U (zh) 一种带陶瓷散热基板的led灯
WO2012079238A1 (zh) Led芯片和led晶片及芯片制造方法
CN108630799B (zh) 一种大功率led用热电分离散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13636661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849256

Country of ref document: EP

Kind code of ref document: A1