WO2011122608A1 - マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法及び半導体デバイスの製造方法 - Google Patents

マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法及び半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2011122608A1
WO2011122608A1 PCT/JP2011/057766 JP2011057766W WO2011122608A1 WO 2011122608 A1 WO2011122608 A1 WO 2011122608A1 JP 2011057766 W JP2011057766 W JP 2011057766W WO 2011122608 A1 WO2011122608 A1 WO 2011122608A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
mask
manufacturing
mask blank
substrate
Prior art date
Application number
PCT/JP2011/057766
Other languages
English (en)
French (fr)
Inventor
勝 田辺
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020147008463A priority Critical patent/KR101746094B1/ko
Priority to CN201180016169.0A priority patent/CN102822743B/zh
Priority to US13/638,505 priority patent/US8785085B2/en
Priority to KR1020127025357A priority patent/KR101447063B1/ko
Priority to JP2012508336A priority patent/JP5296260B2/ja
Publication of WO2011122608A1 publication Critical patent/WO2011122608A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers

Definitions

  • the present invention relates to a mask blank substrate manufacturing method, a mask blank manufacturing method, a transfer mask manufacturing method, and a semiconductor device manufacturing method in the semiconductor field.
  • the transfer mask when the transfer mask is set (chucked) to the exposure apparatus by vacuum suction or the like, the transfer mask is deformed and the flatness thereof is lowered as compared with that before setting (chuck).
  • the focal position When the mask pattern is transferred to a semiconductor substrate, which is a transfer target, the focal position may shift and transfer accuracy may decrease.
  • DRAM hp 32 nm or less it is considered to apply a double patterning technology.
  • double patterning technology one fine and high-density pattern is divided into two relatively sparse patterns, transfer masks are produced for each of the two patterns, and the two transfer masks are used to create fine patterns on the object.
  • -A high density pattern is formed.
  • Several methods have been proposed for double patterning technology, such as double exposure technology, narrow patterning double patterning technology, technology using spacers, and technology based on resist freezing. The same process is performed to form one fine and high-density pattern by performing the exposure process.
  • each transfer mask is chucked to the mask stage of the exposure apparatus, and the transfer pattern is transferred by irradiating exposure light. Do the process. Therefore, it is necessary to significantly increase the alignment accuracy of the two patterns as compared with the conventional technique. For this reason, it is necessary to design a transfer pattern to be formed on the transfer mask in consideration of the positional deviation of the pattern that occurs when chucked on the mask stage of the exposure apparatus for the transfer mask.
  • Non-Patent Document 1 When the transfer pattern is drawn on the mask blank with the photoresist, the transfer pattern is corrected by using the simulation result of the substrate shape, and the corrected transfer pattern is drawn.
  • the present inventors considered reducing the amount of data by approximating the simulation result to a predetermined approximate curved surface, and the approximate accuracy and data amount of the position at each point on the substrate We considered to select an appropriate approximate curved surface in consideration of.
  • a preparation step for preparing a light-transmitting substrate whose main surface is precisely polished, and a plurality of measurement points set in an actual measurement region of the main surface are used as a reference.
  • a shape measuring step for measuring the height information of the main surface with respect to the surface to obtain the main surface shape before chucking, and the plurality of measurement points when the translucent substrate is chucked on a mask stage of an exposure apparatus A simulation step of obtaining a post-chuck main surface shape which is height information of the main surface with reference to the reference surface, an approximate curved surface calculation step of calculating an approximate curved surface based on the post-chuck main surface shape, A recording step of recording information on the approximate curved surface in a recording apparatus in association with the translucent substrate.
  • the shape measuring step is performed using a known flatness measuring device using an optical interferometer, and the simulation step is performed using a computer.
  • the approximate curved surface is represented by a three-dimensional coordinate system in which the X coordinate axis and the Y coordinate axis are set on the reference plane, and the Z coordinate axis is set in a direction orthogonal to the reference plane. It is preferable that the recording step includes recording information on each coefficient of the multivariable function in the recording device as approximate curved surface information.
  • the approximate curved surface is expressed by a multivariable function in which X or Y is fourth order or higher.
  • calculation of an X partial differential function for performing partial differentiation with respect to X of a multivariable function and calculation of a Y partial differential function for performing partial differentiation with respect to Y of a multivariable function.
  • information on each coefficient of the X partial differentiation function and the Y partial differentiation function is preferably recorded in the recording device as information on the approximate curved surface.
  • a preparatory step for preparing a translucent substrate whose main surface is precisely polished, and a plurality of measurement points set in an actual measurement region of the main surface, a reference plane is provided.
  • a shape measuring step for measuring the height information of the main surface as a reference to obtain a main surface shape before chucking, and the plurality of measurement points when the translucent substrate is chucked on a mask stage of an exposure apparatus A simulation step for obtaining a post-chuck main surface shape, which is height information of the main surface with reference to the reference surface, by simulation using a computer, and an X coordinate axis and Y on the reference surface based on the post-chuck main surface shape
  • the approximate curved surface calculation step and the partial differential function calculation step are performed using a computer.
  • the approximate curved surface is expressed by a multivariable function in which X or Y is fourth order or higher.
  • the simulation step includes a gravity deformation amount that is a deformation amount due to gravity of the main surface when the translucent substrate is placed on the mask stage, and the translucent light beam. Corrects the amount of leverage deformation due to lever deformation, deformation following the shape of the mask stage on the main surface, and torsion of the main surface when the mask substrate on the main surface is chucked to the mask stage. It is preferable that the torsional deformation amount due to the deformation to be calculated is calculated and superimposed on the pre-chuck main surface shape to calculate the post-chuck main surface shape.
  • the method for manufacturing a mask blank substrate according to the present invention preferably includes a selection step of selecting a mask blank substrate having a flatness within a calculation area determined from the main surface shape after chucking of a predetermined value or less. It is.
  • the calculation area is preferably an area within a 132 mm square with respect to the center of the translucent substrate.
  • the flatness has a predetermined value of 0.24 ⁇ m or less.
  • the method includes a step of selecting a translucent substrate having a flatness of 0.4 ⁇ m or less in a predetermined region of the main surface shape before chucking. is there.
  • the flatness means a difference between a maximum value and a minimum value of the height of the main surface from the reference plane in the calculation area or the predetermined area.
  • the manufacturing method of the mask blank which concerns on this invention has a thin film formation process which forms the thin film for pattern formation on the said main surface of the substrate for mask blanks manufactured by the manufacturing method of the said substrate for mask blanks. is there.
  • the manufacturing method of the transfer mask which concerns on this invention is a method of manufacturing a transfer mask using the mask blank manufactured by the manufacturing method of the said mask blank, Comprising: Of the said thin film for pattern formation of the said mask blank A resist film forming process for forming a resist film thereon, a pattern correction process for correcting a transfer pattern formed on the resist film based on the information of the approximate curved surface, and a transfer pattern corrected in the pattern correction process are formed on the resist film And a resist pattern forming step.
  • the semiconductor device manufacturing method uses the transfer mask manufactured by the transfer mask manufacturing method, and exposes and transfers the transfer pattern of the transfer mask onto the resist film on the wafer by photolithography. It has a process.
  • the manufacturing method of the mask blank according to the present invention includes a preparation step of preparing a mask blank including a thin film on the main surface of the light-transmitting substrate, and a plurality of set in the actual measurement region of the main surface of the mask blank.
  • a shape measuring step for measuring the height information of the main surface with respect to the reference surface as a reference to obtain the main surface shape before chucking, and the plurality of the mask blanks when the mask blank is chucked on the mask stage of the exposure apparatus A simulation step of obtaining a post-chuck main surface shape, which is height information of the main surface with reference to the reference surface at the measurement point, and an approximate curved surface calculation step of calculating an approximate curved surface based on the post-chuck main surface shape And a recording step of recording information on the approximate curved surface in a recording apparatus in association with the mask blank.
  • the approximate curved surface is represented by a three-dimensional coordinate system in which the X coordinate axis and the Y coordinate axis are set on the reference plane, and the Z coordinate axis is set in a direction orthogonal to the reference plane. It is expressed by a variable function, and it is preferable that the recording step includes recording information on each coefficient of the multivariable function in the recording device as information on the approximate curved surface.
  • the approximate curved surface is expressed by a multivariable function in which X or Y is fourth order or higher.
  • an X partial differential function for performing partial differentiation with respect to X of the multivariable function and a Y partial differential function for performing partial differentiation with respect to Y of the multivariable function are calculated. It is preferable that a partial differential function calculating step is included, and in the recording step, information on each coefficient of the X partial differential function and the Y partial differential function is also recorded on the recording device as approximate curved surface information.
  • the mask blank manufacturing method includes a preparation step of preparing a mask blank having a thin film on a main surface of a translucent substrate, and a plurality of measurement points set in an actual measurement region of the main surface of the mask blank.
  • a shape measuring step of measuring the height information of the main surface with respect to the reference surface to obtain the main surface shape before chucking, and the plurality of measurements when the mask blank is chucked on a mask stage of an exposure apparatus A simulation process for obtaining a post-chuck main surface shape, which is height information of the main surface with reference to the reference surface of the point, and an X coordinate axis and a Y coordinate axis on the reference surface based on the post-chuck main surface shape Set and calculate an approximated surface expressed by a multivariable function expressed in a three-dimensional coordinate system with the Z coordinate axis set in the direction perpendicular to the reference plane
  • the approximate curved surface is expressed by a multivariable function in which X or Y is quartic or higher.
  • the simulation step includes a gravity deformation amount that is a deformation amount due to gravity of the main surface when the mask blank is placed on the mask stage, and the mask blank is used as the mask stage.
  • the mask blank manufacturing method according to the present invention preferably includes a selection step of selecting, as a mask blank, a flatness within a calculation region obtained from the post chuck main surface shape that is not more than a predetermined value. It is.
  • the calculation area is an area within a 132 mm square with respect to the center of the translucent substrate.
  • the predetermined value of the flatness is 0.24 ⁇ m or less.
  • the mask blank manufacturing method according to the present invention preferably includes a step of selecting a mask blank having a flatness of 0.4 ⁇ m or less in a predetermined region obtained from the main surface shape before chucking. It is.
  • the manufacturing method of the transfer mask which concerns on this invention is a method of manufacturing a transfer mask using the mask blank manufactured by the manufacturing method of the said mask blank, Comprising: Of the said thin film for pattern formation of the said mask blank A resist film forming process for forming a resist film thereon, a pattern correction process for correcting a transfer pattern formed on the resist film based on the information of the approximate curved surface, and a transfer pattern corrected in the pattern correction process are formed on the resist film And a resist pattern forming step.
  • the semiconductor device manufacturing method uses the transfer mask manufactured by the transfer mask manufacturing method, and exposes and transfers the transfer pattern of the transfer mask onto the resist film on the wafer by photolithography. It has a process.
  • the method for manufacturing a transfer mask according to the present invention includes a preparation step of preparing a mask blank having a thin film on a main surface of a translucent substrate, and a plurality of measurements set in an actual measurement region of the main surface of the mask blank.
  • the approximate curved surface is a three-dimensional coordinate system in which an X coordinate axis and a Y coordinate axis are set on a reference plane, and a Z coordinate axis is set in a direction orthogonal to the reference plane. It is preferable that it is expressed by a multivariable function to be expressed.
  • the approximate curved surface is expressed by a multivariable function in which X or Y is fourth order or higher.
  • calculation of an X partial differential function for performing partial differentiation with respect to X of a multivariable function and calculation of a Y partial differential function for performing partial differentiation with respect to Y of a multivariable function are performed. It is preferable to have a partial differential function calculation step to be performed.
  • the simulation step includes a gravity deformation amount that is a deformation amount due to gravity of the main surface when the mask blank is placed on the mask stage, and the mask blank is used as the mask stage.
  • the amount of leverage deformation due to lever deformation with the mask stage on the main surface as a fulcrum when chucked to the surface, the amount of deformation following deformation following the shape of the mask stage on the main surface, and the amount of twist deformation due to deformation correcting the main surface twist Are preferably calculated and superimposed on the pre-chuck main surface shape to calculate the post-chuck main surface shape.
  • the transfer mask manufacturing method according to the present invention preferably includes a selection step of selecting a mask blank having a flatness within a calculation region determined from the post chuck main surface shape of a predetermined value or less. is there.
  • the calculation area is preferably an area within a 132 mm square with respect to the center of the translucent substrate.
  • the predetermined value of the flatness is 0.24 ⁇ m or less.
  • the method for manufacturing a transfer mask according to the present invention includes a step of selecting a mask blank having a flatness of 0.4 ⁇ m or less in a predetermined region determined from the main surface shape before chucking. Is preferred.
  • the semiconductor device manufacturing method uses the transfer mask manufactured by the transfer mask manufacturing method, and exposes and transfers the transfer pattern of the transfer mask onto the resist film on the wafer by photolithography. It has a process.
  • the data of the approximate curved surface is used. Therefore, the approximate curved surface is located between each measurement point for obtaining the height information of the substrate main surface (gap). Therefore, the calculation of the positional deviation amount and the correction of the design transfer pattern can be performed easily and accurately. In addition, since a 4th to 6th order polynomial curved surface is selected as the approximate curved surface, the calculation time can be shortened and the approximation accuracy can be ensured.
  • FIG. 1 is a flowchart showing a manufacturing process of a transfer mask including a method for manufacturing a mask blank substrate according to the present invention.
  • the mask blank substrate manufacturing method includes a translucent substrate (synthetic quartz glass substrate) preparation step (S1), a shape measurement step (S2), a simulation step (S3), and an approximate curved surface calculation step in FIG. (S4)
  • the process up to the recording process (S5) is included.
  • a pattern forming thin film is formed on the main surface of the manufactured mask blank substrate by a thin film forming step (S6) to manufacture a mask blank.
  • a transfer mask is manufactured by a resist film forming step (S7), a pattern correcting step (S8), a resist pattern forming step (S9), and an etching step (S10).
  • a film stress control step may be provided for the purpose of reducing the film stress.
  • the resist film forming step (S7) may be included in the mask blank manufacturing step.
  • synthetic quartz glass is used as the light-transmitting substrate, but there is no particular limitation as long as it can be used as a substrate for a transfer mask. Examples thereof include soda lime glass, aluminosilicate glass, borosilicate glass, alkali-free glass, calcium fluoride glass, and the like.
  • the size of the translucent substrate is described as being about 152 mm ⁇ about 152 mm ⁇ 6.35 mm, but is not particularly limited. A similar effect can be obtained even in the case of a light-transmitting substrate larger or smaller than about 152 mm ⁇ about 152 mm ⁇ 6.35 mm.
  • the region for calculating the flatness can be appropriately set according to the size of the translucent substrate.
  • Translucent substrate preparation step (S1) 2A is a perspective view of the light-transmitting substrate
  • FIG. 2B is a cross-sectional view of the outer peripheral portion of the light-transmitting substrate.
  • the translucent substrate can be obtained by cutting out about 152.4 mm ⁇ about 152.4 mm ⁇ about 6.8 mm from a synthetic quartz glass ingot produced by a generally known method.
  • the resulting synthetic quartz glass plate is subjected to chamfering or grinding of the main surface, etc., and then the main surfaces 1 and 2, the end surface 3 and the chamfered surface 4 which are the surfaces of the synthetic quartz glass plate are mirror-polished,
  • the main surfaces 1 and 2 are precisely polished to prepare a translucent substrate (synthetic quartz glass substrate, about 152 mm ⁇ about 152 mm ⁇ 6.35 mm) 5.
  • a thin film for pattern formation (a light shielding film, a light semi-transmissive film, etc.) is formed on the main surface 1 in the thin film forming step.
  • the surface roughness of both the main surfaces 1 and 2 in the translucent substrate 5 is about 0.2 nm or less in terms of root mean square roughness (Rq), and the end surface 3 and the chamfer
  • the surface roughness of the surface 4 is about 0.03 ⁇ m or less in terms of arithmetic average roughness (Ra).
  • the portions of the prepared translucent substrate 5 that are not affected during exposure by the exposure apparatus (end surface 3, chamfered surface 4, notch mark portion, outer peripheral region of the region where the transfer patterns of main surfaces 1 and 2 are formed, etc. ) Is provided with a marker formed by irradiating a laser beam as described in JP-A-2006-309143 to form a plurality of recesses, and this is used as an individual identification mark in a subsequent step.
  • the marker provided on the translucent substrate 5 used as the individual identification mark is not limited to the surface of the translucent substrate 5, but is locally altered by irradiating laser light from a plurality of laser light sources so that the focal point is gathered inside the substrate. You may form by making.
  • (B) Shape measurement process (S2) As means for acquiring the pre-chuck main surface shape which is the main surface shape before being placed on the mask stage of the main surface 1 of the translucent substrate 5, a flatness measuring device using a known optical interferometer (not shown) ) Etc. In order to suppress the bending due to its own weight as much as possible, it is preferable that the flatness can be measured in a state where the translucent substrate 5 stands vertically or substantially vertically (free standing state).
  • the pre-chuck main surface shape referred to here is, as shown in FIG. 2, a plurality of measurement points P (Xm, Yn) in an actual measurement region (a ⁇ a) provided in the main surface 1 of the translucent substrate 5.
  • the height information Zk (k is an integer) from the reference plane 7 (focal plane calculated by the method of least squares).
  • the height information Zk is preferably one that can be measured with as high accuracy as possible, and one that can be measured in the order of nm.
  • the lattice in the main surface 1 of the translucent substrate 5 is a virtual line for representing a plurality of measurement points P (Xm, Yn), and is not a line actually on the main surface 1. Absent.
  • the size of the translucent substrate 5, the measurement accuracy of the flatness measuring device, and the mask stage of the exposure device are on the main surface 1 of the translucent substrate 5. It selects suitably by the area
  • the actual measurement region (a ⁇ a) of the main surface 1 for acquiring the pre-chuck main surface shape is a peripheral region b of more than 0 mm and 3 mm or less from the chamfered surface 4 of the translucent substrate 5. A region removed from the entire surface 1 is preferable.
  • the peripheral region b is 0.5 mm or more and 2.5 mm or less from the chamfered surface 4 of the translucent substrate 5, and more preferably, the peripheral region b is 1 mm or more and 2 mm or less from the chamfered surface 4 of the translucent substrate 5.
  • the area obtained by removing each from the entire main surface 1 is an actual measurement area (a ⁇ a) for acquiring the main surface shape before chucking.
  • the actual measurement area (a ⁇ a) for obtaining the main surface shape before chucking is 146 mm ⁇ 146 mm, more preferably 148 mm ⁇ 148 mm.
  • the measurement point P (Xm, Yn) can be 256 ⁇ 256 points.
  • Information on the main surface shape before chucking obtained here (various information on the main surface of the substrate such as each measurement point P and height information Zk at the measurement point) is associated with the measured translucent substrate 5. It may be recorded on a recording device (PC, network server, IC tag, etc.). The recorded information on the main surface shape before chucking can be used in the manufacturing process of the transfer mask in the subsequent process. Further, when an individual identification mark is formed on the translucent substrate 5 itself in the process of preparing the translucent substrate, information about the individual identification mark and the main surface shape before chucking (each measurement point P and its measurement) Various information regarding the main surface of the substrate such as the height information Zk at the points) may be recorded in association with each other.
  • FIG. 3 is a view showing a state where the translucent substrate 5 is set on a mask stage 8 of an exposure apparatus (not shown).
  • FIG. 3B is a view from above
  • FIG. 3A is a cross-sectional view taken along the line III-III.
  • the mask stage 8 includes two suction chuck portions arranged in parallel to each other on an XY plane substantially perpendicular to the direction of gravity.
  • the two suction chuck portions are arranged at positions separated from each other by a distance L1 in the X direction so that the longitudinal direction is along the Y direction (perpendicular to the X direction).
  • Each suction chuck portion has a width in the X direction of L2 and a length in the Y direction of L3.
  • FIG. 3C is a cross-sectional view taken along the line III-III of FIG. 3B, and the shape of the light-transmitting substrate 5 is exaggerated for easy understanding.
  • the translucent substrate 5 in a state before setting (suction chuck) on the mask stage 8 is indicated by a solid line, and the translucency in a state after setting on the mask stage 8 (suction chuck).
  • the conductive substrate 5 is indicated by a broken line.
  • Each of the two suction chuck portions constituting the mask stage 8 has three support portions 9 extending linearly in parallel with the main surface 1 of the translucent substrate 5 and two suction ports 10 formed therebetween. The configuration may be acceptable.
  • the translucent substrate 5 is bent by gravity as shown by a solid line only on the mask stage 8. When set on the mask stage 8 (suction chuck), it is deformed so as to come into contact with the mask stage 8 by the suction chuck as shown by the broken line.
  • height information ZSk (FIG. 2A) of the plurality of measurement points P (Xm, Yn) on the translucent substrate 5 when the translucent substrate 5 is sucked and chucked on the exposure apparatus.
  • height information Zk from the reference surface 7 of the plurality of measurement points P (Xm, Yn) on the main surface 1 of the translucent substrate 5 obtained in the surface shape information acquisition step, and a mask stage 8 of the exposure apparatus Includes shape information (the width L2, the width L2, the region having the width L2 in the X direction and the width L3 in the Y direction) of the mask stage 8 in contact with the main surface 1 of the translucent substrate 5.
  • the width L3 and the distance L1 between the mask stages 8 are used.
  • a plurality of measurement points P (Xm on the main surface 1 of the translucent substrate 5 when the translucent substrate 5 is sucked and chucked on the mask stage 8 of the exposure apparatus by a deflection differential equation in material mechanics. , Yn) can be obtained by simulating the height information ZSk from the reference plane 7.
  • the bending differential equation takes the positive direction of the Z axis in the direction of gravity, and is obtained as follows, for example.
  • (Height information Zsk on the main surface of the translucent substrate when suction chucked on the mask stage) (Height information Zk on the main surface of the translucent substrate obtained in the shape measurement step) + (Predicted value of deformation due to bending of translucent substrate along the X direction due to gravity) [gravity deformation amount] + (Predicted value of warpage (leverage effect) of translucent substrate along X direction with mask stage by suction chuck as fulcrum) [Lever deformation] + (Predicted value of deformation of translucent substrate along Y direction (longitudinal direction of mask stage) by suction chuck) + (Predicted value of deformation (twist deformation) acting in a direction in which the twist of the translucent substrate is corrected when the translucent substrate is sucked and chucked on the mask stage) [twist deformation amount]
  • the X direction and the Y direction are
  • the X direction is a direction orthogonal to the longitudinal direction of the mask stage 8
  • the Y direction is a direction along the longitudinal direction of the mask stage 8.
  • the “region along the Y direction where the translucent substrate contacts the mask stage” is obtained from the region where the mask stage 8 contacts the main surface 1 of the translucent substrate 5 as the shape information of the mask stage 8. .
  • the translucent substrate In the simulation process, paying attention to the fact that the translucent substrate usually has a twist component, the translucent substrate is twisted when the translucent substrate 5 is set (adsorbed) on the mask stage 8.
  • a simulation is performed in consideration of deformation (torsional deformation) acting in the direction to be corrected, an accurate simulation result at a level comparable to the simulation result by the finite element method can be obtained.
  • the time required for the simulation can be significantly shortened compared to the finite element method.
  • the mask stage 8 may include information on the flatness of the mask stage 8 in the region (surface) in contact with the main surface 1 of the translucent substrate 5. Further, the simulation is not limited to the above method, and simulation by a finite element method or the like may be used.
  • Information on the main surface shape after chucking obtained here (various information on the main surface after chucking obtained by simulation such as height information Zk after simulation at each measurement point P, information on the mask stage 8, etc.)
  • a recording device PC, network server, IC tag, etc.
  • This recorded post-chuck main surface shape information can be used in the manufacturing process of the transfer mask in the subsequent process.
  • (D) Approximate curved surface calculation step (S4)
  • the height information ZSk from the reference surface at a plurality of measurement points P (Xm, Yn) which is information related to the post chuck main surface shape obtained in the simulation step, is approximated to a predetermined curved surface. It is.
  • Zsk at each measurement point P (Xm, Yn) is fitted to an nth-order polynomial curved surface (n is 4, 5, or 6) by, for example, the method of least squares.
  • a [j, k] is a coefficient relating to each term of the polynomial (j, k; an integer from 0 to 4).
  • the horizontal axis represents the order of the approximate polynomial, and was examined from the second order to the tenth order.
  • the left vertical axis shows the calculation time required for approximation, and the time required for the calculation of the fourth-order polynomial is shown as 1.
  • the right vertical axis is the approximation accuracy, and the approximation accuracy in the fourth-order polynomial is shown as 1.
  • a determination coefficient ratio of the sum of squares of the model to the total sum of squares
  • the mark ⁇ represents the calculation time. From this figure, it can be seen that the calculation time increases as the order increases. On the other hand, the ⁇ mark representing the approximation accuracy shows that the approximation accuracy is hardly changed in the order from the fourth order to the upper order. In the case of the 7th order and the order of 3 or more times that require 3 times or more of the case where the calculation time is 4th order, the approximation accuracy does not change for the calculation time. Therefore, it has been found that the degree of polynomial of the approximate curved surface is suitable because the degree of approximation can be obtained with a short calculation time of 4th order, 5th order or 6th order.
  • the translucent substrate is obtained by using the coefficient a [j, k] of each term of the n- th order polynomial An obtained as an approximate curved surface of Zsk at each measurement point P (Xm, Yn) in the approximation process as coefficient information.
  • coefficient information are recorded on a commonly used recording device (for example, PC, network server, IC tag, nonvolatile memory, various media such as CD-R, DVD-R, etc.).
  • a serial number is assigned to the translucent substrate, and the serial number and coefficient information are recorded in association with each other. Further, the serial number and information such as the material and size of the translucent substrate are recorded in association with each other.
  • the process from the above (A) translucent substrate preparation step to (E) recording step is a method for producing a translucent substrate for mask blank.
  • a mask blank is manufactured by forming a pattern forming thin film for forming a mask pattern on the main surface of the mask blank substrate manufactured through the above steps by a sputtering method.
  • the thin film is formed using, for example, a DC magnetron sputtering apparatus.
  • the thin film for pattern formation includes a light-shielding film, a halftone phase shift film, a light semi-transmissive film used for an enhancer mask, etc.
  • An etching mask film or the like to be used can be applied.
  • the material constituting the light shielding film include chromium, a material composed of a transition metal and silicon (transition metal silicide), and tantalum.
  • the light shielding film has a single layer, a two-layer laminated structure of a light shielding layer and a surface antireflection layer from the substrate side, or a three layer laminated structure of a back surface antireflection layer, a light shielding layer, and a surface antireflection layer from the substrate side. can give.
  • a material obtained by adding oxygen or nitrogen to the material used for the light-shielding layer is suitable.
  • the transition metal in the transition metal silicide Mo, W, Ta, Ti, Hf, Zr, Pd, Nb, Ru, Ni, V, Rh, Cr, and the like are applicable.
  • MSiON M: transition metal, hereinafter the same
  • MSiO if it is a transition metal silicide-based material such as CrO, CrON, CrOCN.
  • TaO, TaON, TaBO, TaBON or the like is preferably used as long as it is a tantalum-based material such as MSiN, MSiOC, or MSiOCN.
  • the thin film for pattern formation can be formed by sputtering.
  • a DC magnetron sputtering apparatus an RF magnetron sputtering apparatus, an ion beam sputtering apparatus, or the like can be used.
  • phase angle and transmission when the film is formed by rotating the substrate and placing the target at a position inclined by a predetermined angle from the rotation axis of the substrate, the phase angle and transmission
  • the in-plane distribution of the rate also changes depending on the positional relationship between the substrate and the target. It is desirable to use a film forming method as described in JP-A-2003-280174.
  • (G) Resist film forming step (S7) After applying a resist on the surface of the thin film for pattern formation in the mask blank by a usual method such as a spin coat method, a heat treatment is performed to form a resist film.
  • the resist those for electron beam drawing exposure capable of forming a fine pattern are preferable, and those of chemical amplification type are particularly preferable. From the above (A) translucent substrate preparation step to (F) thin film formation step or (G) resist film formation step is a mask blank manufacturing method.
  • Pattern correction process (S8) In the pattern correction step, the transfer pattern formed on the designed thin film for pattern formation is corrected using the coefficient information stored in association with the serial number of the translucent substrate in the recording step. Prediction of the amount of positional deviation of the pattern that occurs when suction chucking is performed on the mask stage of the exposure apparatus reproduces the polynomial of the approximate curved surface from the coefficient information, and the polynomial that is partially differentiated by X and the polynomial that is partially differentiated by Y After that, the predicted positional deviation amounts in the X direction and the Y direction are calculated by the method described in the prior art document. Then, the designed transfer pattern is corrected using the calculated predicted positional deviation amounts in the X direction and the Y direction. Further, drawing data used for drawing a resist pattern in the next process is prepared from the corrected transfer pattern.
  • Resist pattern forming step (S9) In the resist pattern formation step, the transfer pattern corrected in the pattern correction step (S8) is drawn by a general drawing apparatus, and development processing and cleaning processing are performed to form a resist pattern.
  • (K) Manufacturing process of semiconductor device The obtained transfer mask is set (suction chuck) on the mask stage of the exposure apparatus, this transfer mask is used, ArF excimer laser is used as exposure light, and photolithography technology is used to make the semiconductor A transfer pattern of the transfer mask is transferred to a resist film formed on the substrate, a desired circuit pattern is formed on the semiconductor substrate, and a semiconductor device is manufactured.
  • the substrate main surface is flattened in a predetermined calculation area based on the post-chuck main surface shape information.
  • the degree of flatness is calculated, and only those whose calculated flatness is equal to or less than a predetermined value are selected as mask blank substrates.
  • (D) approximate curved surface calculation step (S4) and subsequent steps It is preferable to perform the process. This is because, in the case of a mask blank substrate used as a transfer mask having a finer pattern than the DRAM hp45 generation to which immersion exposure technology is applied, a substrate having a low flatness on the main surface after chucking is not suitable.
  • the calculation area in this case is determined by the exposure wavelength, the type of fine pattern (circuit pattern) formed on the semiconductor substrate, and the like.
  • the calculation area including the transfer area of the transfer mask is a 104 mm ⁇ 132 mm rectangular shape with reference to the center of the main surface of the substrate, or a transfer pattern by rotating 90 degrees.
  • a square shape of 132 mm ⁇ 132 mm can be obtained.
  • it is more preferable to ensure the flatness of the outer peripheral area of 132 mm ⁇ 132 mm and for example, a square shape of 142 mm ⁇ 142 mm may be used as the calculation area.
  • the flatness value calculated from the main surface after chucking is calculated as the flatness allowable for the mask blank (or transfer mask) depending on the exposure wavelength and the substrate chuck method of the mask stage of the exposure device.
  • the exposure light source is an ArF excimer laser (exposure wavelength: 193 nm)
  • the substrate chuck system supporting structure of the translucent substrate 5
  • the flatness is 0.24 ⁇ m or less in the calculation region including the transfer region of the transfer mask.
  • it is desirable that the flatness is 0.12 ⁇ m or less in the same calculation region as described above.
  • the mask blank substrate is selected based only on the criterion that the flatness of the main surface after chucking is less than or equal to a predetermined value, those having poor flatness of the main surface before chucking are also acceptable products.
  • the flatness of the main surface before chucking is not good, the mask blank substrate that the flatness of the main surface after chucking is good below a predetermined value has the characteristic that the main surface shape changes greatly before and after the chuck.
  • a transfer pattern formed of a pattern forming thin film has a relatively large amount of movement on the XY plane before and after the chuck. End up.
  • the flatness of the main surface before chucking is calculated in a predetermined calculation region, It is desirable to select one below the value and send it to the next step. In this case, it is preferable to perform the first selection before the simulation step (C).
  • the predetermined area for calculating the flatness of the main surface shape before chucking may be the same as the calculation area for calculating the flatness of the main surface shape after chucking, but it is desirable to ensure a wider area.
  • the flatness should be ensured in a 132 mm ⁇ 132 mm square area with the center of the main surface of the substrate as the reference, and the flatness in the 142 mm ⁇ 142 mm manufacturing shape area. It is still preferable to guarantee.
  • a mask blank substrate used for a transfer mask having a finer pattern than the DRAM hp45 generation to which the immersion exposure technology is applied it is preferably 0.4 ⁇ m or less.
  • a film stress control step may be provided for the purpose of reducing the film stress.
  • the film stress control step for example, when a mask blank is heat-treated at a temperature of 150 ° C. or higher at the time of forming a thin film for pattern formation and / or after the thin film is formed, a pattern forming thin film formed on a mask blank substrate is used.
  • a plurality of layers are used, and a layered structure of a layer having compressive stress and a layer having tensile stress cancels the film stress of each layer.
  • the pattern correction step (S8) is any time after the n- th order polynomial An of the approximate curved surface is calculated in the approximate curved surface calculation step (S4) and before the resist pattern forming step (S9). It may be done in stages.
  • FIG. 5 is a flowchart showing a mask blank manufacturing method and a transfer mask manufacturing process according to the present invention.
  • the second embodiment of the mask blank and transfer mask manufacturing method of the present invention includes a translucent substrate preparation step (S201), a thin film formation step (S202), a shape measurement step (S203), a simulation step (S204), and an approximation. It has steps up to a curved surface calculation step (S205) and a recording step (S206). Subsequently, using the manufactured mask blank, a transfer mask is manufactured by the resist film forming step (S207), the pattern correcting step (S208), the resist pattern forming step (S209), and the etching step (S210). .
  • the resist film forming step (S207) may be included in the mask blank manufacturing step.
  • the translucent substrate preparation step (S201) is performed by the same procedure as the translucent substrate preparation step (S1) of the first embodiment to prepare the translucent substrate 5.
  • a thin film forming step (S202) is performed in the same procedure as the thin film forming step (S6) of the first embodiment, and a mask blank in which a thin film for pattern formation is formed on the main surface 1 of the translucent substrate 5 is prepared.
  • Transparent substrate preparation step (S201) to thin film formation step (S202) correspond to mask blank preparation step).
  • the film stress control process is performed in the same procedure as the film stress control process of the first embodiment to reduce the stress of the pattern forming thin film.
  • the absolute value of the amount of change before and after the film formation on the main surface 1 needs to be controlled to at least 0.1 ⁇ m or less by TIR (Total Indicated Reading), and is less than 0.1 ⁇ m Preferably, it is 50 nm or less.
  • the main surface before the mask blank is placed on the mask stage of the main surface of the mask blank by performing the shape measuring step (S203) in the same procedure as the shape measuring step (S2) of the first embodiment.
  • the main surface shape before chucking that is the shape is acquired.
  • the main surface shape of the mask blank before chucking obtained by the flatness measuring device is the surface shape of the thin film for pattern formation formed on the main surface 1 of the translucent substrate 5.
  • the film thickness distribution of the pattern forming thin film 11 formed by sputtering is very high.
  • the film stress of the pattern forming thin film is controlled to be very low. For this reason, even if the surface shape of the pattern forming thin film is equivalent to the main surface shape before chucking of the main surface 1 of the translucent substrate 5, the simulation accuracy is not substantially affected.
  • the simulation step (S204) is performed in the same procedure as the simulation step (S3) of the first embodiment, and the main surface shape of the mask blank after chucking is performed.
  • the bending differential equation used in this simulation step (S204) relates to a light-transmitting substrate.
  • the thickness of the translucent substrate is about 6 mm
  • the thickness of the pattern forming thin film is 100 nm or less, and the influence on the cross-sectional second moment and the like is very small. Further, the film stress of the pattern forming thin film is controlled to be very low.
  • the main surface shape after chucking of the mask blank obtained here can be equivalent to the main surface shape after chucking of the translucent substrate.
  • the approximate curved surface calculating step (S205) is performed in the same procedure as the approximate curved surface calculating step (S4) of the first embodiment, and the nth order of the approximate curved surface is obtained.
  • a polynomial An is calculated.
  • a resist film forming step (S207) is performed in the same procedure as the resist film forming step (S7) of the first embodiment, and a resist film is formed on the pattern forming thin film of the mask blank.
  • the pattern correction step (S208) is performed in the same procedure as the pattern correction step (S8) of the first embodiment, and the transfer pattern formed on the designed pattern forming thin film is corrected.
  • the resist pattern forming step (S209) is performed in the same procedure as the resist pattern forming step (S9) of the first formation, the corrected transfer pattern is drawn by a drawing apparatus, and after undergoing development processing and cleaning processing, A resist pattern is formed.
  • the pattern forming thin film is etched using the resist pattern as a mask in the same procedure as in the etching process (S10) of the first embodiment, to obtain a transfer mask. Further, using the obtained transfer mask, the transfer pattern of the transfer mask is transferred to a resist film formed on a semiconductor substrate (semiconductor wafer) using an ArF excimer laser as exposure light and using an optical lithography technique. In this way, a desired circuit pattern is formed on the semiconductor substrate, and a semiconductor device is manufactured.
  • the flatness of the main surface of the substrate is calculated in a predetermined calculation area from the information on the main surface shape after chucking. Then, it is preferable to select only those whose calculated flatness is equal to or less than a predetermined value and perform the steps after the approximate curved surface calculation step (S205) on the selected mask blank. This is because, in the case of a mask blank substrate used as a transfer mask having a finer pattern than the DRAM hp45 generation to which immersion exposure technology is applied, a substrate having a low flatness on the main surface after chucking is not suitable.
  • the flatness of the main surface shape before chucking and the flatness of the main surface shape after chucking required for the mask blank are determined from the accuracy required for the transfer pattern formed on the pattern forming thin film.
  • the mask blanks that satisfy the criteria may be selected from the mask blanks that have been determined and manufactured.
  • Translucent substrate preparation process S1
  • the main surface of the square-shaped translucent substrate synthetic quartz glass substrate
  • a data matrix having a block size of 3 mm ⁇ 3 mm was formed using a carbon dioxide laser on the end face of the translucent substrate.
  • the symbol size of the data matrix was 12 ⁇ 12 (fixed: 10 digits), and the cell size was 0.25 mm. With this individual identification mark, a 10-digit serial number was assigned to the translucent substrate.
  • the flatness was measured in a state where the translucent substrate was vertically or substantially vertical (free standing) in order to suppress bending due to its own weight as much as possible.
  • the surface shape of the main surface of the translucent substrate (the main surface on which the thin film is formed) is a shape in which the height of the main surface gradually decreases from the central region toward the peripheral edge, and 148 mm ⁇
  • the flatness at 148 mm was as good as 0.3 ⁇ m or less for both sheets.
  • a 4 (X, Y) a [0,0] + a [1,0] X + a [0,1] Y + a [2,0] X 2 + a [1,1] XY + a [0,2] Y 2 + ⁇ ⁇ + a [j, k] X j Y k + ⁇ + a [0,4] Y 4 (Where a [j, k] is a coefficient relating to each term of the polynomial (j, k; an integer from 0 to 4).)
  • V Thin film (light-shielding film) formation process
  • S6-1 A light-shielding film (pattern forming thin film) including a light-shielding layer and a surface antireflection layer was formed on the main surface of the mask blank translucent substrate on which surface shape information was obtained and simulated.
  • a MoSiN film was formed in a mixed gas atmosphere of argon and nitrogen.
  • MoSiON film is formed in a mixed gas atmosphere of argon, nitrogen, oxygen, and helium. did.
  • the light-shielding layer of the 50 nm-thickness MoSiN film (film composition ratio Mo: 14.7 atomic%, Si: 56.2 atomic%, N: 29.1 atomic%) and the 10 nm-thick MoSiON (film composition ratio)
  • a light-shielding film made of a MoSi-based material having a two-layer laminated structure of a surface antireflection layer (Mo: 2.6 atomic%, Si: 57.1 atomic%, O: 15.9 atomic%, N: 24.4 atomic%) Formed. Note that Rutherford backscattering analysis was used for elemental analysis of each layer of the light shielding film.
  • the optical density (OD) of this light shielding film was 3.0 with respect to the wavelength of the exposure light of the ArF excimer laser. Since the formed light shielding film has a film stress, a film stress control process was performed. Specifically, the mask blank substrate on which the light-shielding film is formed is subjected to a heat treatment (annealing process) at 450 ° C. for 30 minutes to reduce the film stress of the light-shielding film. was substantially zero.
  • etching mask film pattern forming thin film
  • a translucent substrate is installed in a single-wafer DC magnetron sputtering apparatus, a chromium (Cr) target is used as a sputtering target, and a CrOCN film is used as an etching mask film in a mixed gas atmosphere of argon, carbon dioxide, nitrogen, and helium.
  • the film was formed with a thickness of 10 nm. Since the formed etching mask film has a film stress, a film stress control step was performed.
  • the mask blank substrate on which the etching mask was formed was subjected to a heat treatment (annealing process) at a temperature lower than that of the light shielding film, thereby reducing the film stress of the etching mask film. Furthermore, predetermined
  • Resist film forming step (S7) A resist film (chemically amplified resist for electron beam drawing exposure: PRL009 manufactured by Fuji Film Electronics Materials Co., Ltd.) is formed on the etching mask film of the manufactured mask blank by a spin coat method, and a resist having a film thickness of 100 nm is prebaked. A film was formed to obtain a mask blank with a resist film.
  • PRL009 chemically amplified resist for electron beam drawing exposure: PRL009 manufactured by Fuji Film Electronics Materials Co., Ltd.
  • the data of the approximate curved surface is used instead of using the simulation result as it is for correcting the transfer pattern. Therefore, the approximate curved surface is also supplemented for the region between the measurement points P on the main surface of the substrate. Therefore, it is possible to easily calculate the amount of misalignment and correct the design transfer pattern for the area between the measurement points P. Further, since a quartic polynomial curved surface is selected as the approximate curved surface, the calculation time can be shortened and the approximation accuracy can be secured.
  • each transfer pattern corrected in the transfer pattern correction step (S8) is drawn on the resist film of the associated mask blank by an electron beam drawing exposure apparatus, developed and washed to form a resist pattern. Formed.
  • XII Semiconductor Device Manufacturing Process Using the produced two transfer masks (sets), a semiconductor device was manufactured by a double patterning technique (double exposure technique).
  • the first transfer mask was set (suction chuck) on the mask stage of the exposure apparatus, and the first transfer pattern was exposed and transferred to the resist film on the semiconductor substrate with ArF exposure light.
  • the second transfer mask was set (sucked) and chucked on the mask stage of the exposure apparatus, and the second transfer pattern was exposed and transferred to the same resist film on the semiconductor substrate with ArF exposure light. .
  • the exposure transfer of one fine and high-density transfer pattern corresponding to the DRAM hp 32 nm generation was performed on the resist film on the semiconductor substrate.
  • the resist film on the semiconductor substrate was subjected to predetermined development, and the circuit pattern was transferred to the thin film under the resist film pattern by dry etching.
  • the circuit pattern after the transfer was inspected, it was confirmed that there was no short circuit or disconnection and the transfer was normally performed. That is, it is proved that a transfer pattern corresponding to the change of the main surface shape when the transfer mask is chucked on the mask stage can be formed, that is, the simulation accuracy for the translucent substrate of the present invention is sufficiently high. It was done.
  • Using another transfer mask set produced in the same manner a laminated structure of circuit patterns was sequentially formed on a semiconductor substrate to produce a semiconductor device. When the obtained semiconductor device was inspected, it was confirmed that it was operating normally.
  • the coefficient a [j, k] of each term of the polynomial of degree n A n a have been a factor information is not limited thereto, e.g., X partial differential curved surface and n-th order polynomial A n
  • Each coefficient of each polynomial of the Y partial differential curved surface may be coefficient information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

 露光装置にセットしたときの透光性基板の表面形状をシミュレーションにより算出し、フォトレジスト付きのマスクブランクに転写パターンを描画する際に、表面形状のシミュレーション結果を利用して転写パターンを補正し、補正された転写パターンを描画する。 シミュレーション工程において、透光性基板の表面形態、材質及びサイズと、透光性基板の主表面に当接する領域を含むマスクステージの形状情報とに基づき、透光性基板を露光装置にセットしたときにおける複数の前記測定点の基準面からの高さ情報をシミュレーションし、シミュレーション工程で得た複数の前記測定点の基準面からの高さ情報を4次、5次又は6次曲面に近似し、得られた近似曲面を表す多項式の各項に係る係数である係数情報を透光性基板と対応付けて記憶する。

Description

マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法及び半導体デバイスの製造方法
 本発明は半導体分野におけるマスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法及び半導体デバイスの製造方法に関する。
 近年の半導体デバイスの微細化に伴い、光リソグラフィー技術において使用される露光光源の短波長化が進んでいる。透過型の光リソグラフィーの先端分野では露光光源としては、波長が200nm以下のArFエキシマレーザー(波長193nm)が用いられている。しかし、微細化の要求はさらに高まっており、ArFエキシマレーザー光を露光光源とするだけでは解決が困難となり、斜入射照明法等による高NA化によって解決を図ってきている。ただ、高NA化が進むことで、露光装置の焦点深度が非常に小さくなってきている。このため、転写用マスクを露光装置に真空吸着などによりセット(チャック)したときに、この転写用マスクがセット(チャック)前に比べて変形しその平坦度が低下してしまうと、転写用マスクのマスクパターンを被転写体である半導体基板へ転写する際に焦点位置がずれて、転写精度が低下する場合がある。
 そのため、マスクブランクに用いられる透光性基板を露光装置にセットしたときの当該透光性基板の形状を、有限要素法を用いてシミュレーションして平坦度を予測することが提案されている。
 しかし、有限要素法による基板形状のシミュレーションは基板主表面の形状をある程度正確に予測することはできるが、シミュレーションに要する時間が非常に長いという問題があった。
 また、DRAM hp32nm以下の世代においては、ダブルパターニング技術を適用することが検討されている。ダブルパターニング技術は、1つの微細・高密度パターンを2つの比較的疎なパターンに分割し、その2つのパターンについてそれぞれ転写用マスクを作製し、この2枚の転写用マスクで対象物上に微細・高密度パターンを形成するものである。ダブルパターニング技術には、ダブル露光技術、狭義のダブルパターニング技術等、スペーサーを用いる技術、レジストフリージングを基いる技術など、いくつかの手法が提案されているが、2枚の転写用マスクによる2回の露光処理を行って1つの微細・高密度パターンを形成することについては同じである。つまり、1回の露光処理で2枚の転写用マスクを同時に使用するのではなく、1枚の転写用マスクごとに露光装置のマスクステージにチャックさせ、露光光を照射して転写パターンを転写するプロセスを行う。よって、2つのパターンの位置合わせ精度を従来よりも大幅に高める必要がある。このため、転写用マスクの露光装置のマスクステージにチャックしたときに生じるパターンの位置ずれも考慮して、転写マスクに作製する転写パターンを設計する必要が生じている。
 そこで、露光用マスクを製造する過程において、フォトレジスト付きのマスクブランクに転写パターンを描画する際に、基板形状のシミュレーション結果を利用して、転写パターンを補正し、補正された転写パターンを描画することが検討され始めている(例えば非特許文献1)。
Proceeding of SPIE 「Mask image position correction for double patter ning lithography」、Photomask and Next-G eneration Lithography Mask Technology XV Vol.7028,2008年、p.7028D.1-p.7028D.9
 上記従来技術においては、転写パターンの補正をするために、露光装置にセットした状態における基板主表面の各点での位置をシミュレーションで予測し、その予測データがそのまま転写パターンの補正に用いられている。しかし、シミュレーションを精度よく行うためには基板主表面の多数の点におけるデータが必要であり、シミュレーションの結果をそのまま利用した場合、データ量が大きすぎて扱いづらいという課題があった。
 上記の課題を解決するために、本発明者等は、シミュレーション結果を所定の近似曲面に近似することでデータ量を削減することを考え、基板上の各点における位置の近似精度とデータ量とを考慮して適切な近似曲面を選択することを考えた。
 つまり、本発明に係るマスクブランク用基板の製造方法は、主表面が精密研磨された透光性基板を準備する準備工程と、主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、前記透光性基板を露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、前記チャック後主表面形状を基に近似曲面を算出する近似曲面算出工程と、前記近似曲面の情報を前記透光性基板と対応付けて記録装置に記録する記録工程と、を有することを特徴とするものである。尚、前記形状測定工程は、光干渉計を利用した公知の平坦度測定装置などを用いて行われ、且つ、シミュレーション工程は、コンピュータを用いて行われることは云うまでもない。
 上記本発明に係るマスクブランク用基板の製造方法において、近似曲面は、基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現されたものであり、記録工程は、前記多変数関数の各係数の情報を近似曲面の情報として記録装置に記録することを有するものであると好適である。
 また、上記本発明に係るマスクブランク用基板の製造方法において、近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであると好適である。
 また、上記本発明に係るマスクブランク用基板の製造方法において、多変数関数のXに関する偏微分を行うX偏微分関数の算出、および多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程を有し、記録工程では、前記X偏微分関数およびY偏微分関数の各係数の情報も近似曲面の情報として記録装置に記録するものであると好適である。
 本発明に係るマスクブランク用基板の製造方法において、主表面が精密研磨された透光性基板を準備する準備工程と、主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、前記透光性基板を露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状を、コンピュータを用いたシミュレーションにより得るシミュレーション工程と、前記チャック後主表面形状を基に、前記基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現された近似曲面を算出する近似曲面算出工程と、前記多変数関数のXに関する偏微分を行うX偏微分関数の算出、および前記多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程と、前記X偏微分関数およびY偏微分関数の各係数の情報を近似曲面の情報として前記透光性基板と対応付けて記録装置に記録する記録工程と、を有することを特徴とするものである。尚、近似曲面算出工程及び偏微分関数算出工程はコンピュータを用いて行われる。
 また、上記本発明に係るマスクブランク用基板の製造方法において、近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであると好適である。
 また、上記本発明に係るマスクブランク用基板の製造方法において、シミュレーション工程は、透光性基板をマスクステージに載置したときにおける主表面の重力による変形量である重力変形量と、前記透光性基板をマスクステージにチャックしたときにおける主表面のマスクステージを支点とした場合におけるてこ変形によるてこ変形量、主表面のマスクステージの形状に倣う変形による倣い変形量、および主表面の捩じれを矯正する変形による捩じれ変形量とをそれぞれ算出し、前記チャック前主表面形状へ重ね合わせてチャック後主表面形状を算出するものであると好適である。
 また、上記本発明に係るマスクブランク用基板の製造方法において、チャック後主表面形状から求められる算出領域内の平坦度が所定値以下のものをマスクブランク用基板として選定する選定工程を有すると好適である。
 また、上記本発明に係るマスクブランク用基板の製造方法において、前記算出領域は、透光性基板の中心を基準とした132mm角内の領域であると好適である。
 また、上記本発明に係るマスクブランク用基板の製造方法において、前記平坦度が所定値は、0.24μm以下であると好適である。
 また、上記本発明に係るマスクブランク用基板の製造方法において、前記チャック前主表面形状の所定領域内での平坦度が0.4μm以下である透光性基板を選定する工程を有すると好適である。なお、平坦度とは、算出領域や所定領域内における基準面からの主表面の高さが最大の値と最小の値との差を言う。
 また、本発明に係るマスクブランクの製造方法は、上記マスクブランク用基板の製造方法により製造されたマスクブランク用基板の前記主表面上に、パターン形成用薄膜を形成する薄膜形成工程を有するものである。
 また、本発明に係る転写用マスクの製造方法は、上記マスクブランクの製造方法により製造されたマスクブランクを用いて転写用マスクを製造する方法であって、前記マスクブランクの前記パターン形成用薄膜の上にレジスト膜を形成するレジスト膜形成工程と、前記近似曲面の情報を基にレジスト膜に形成する転写パターンの補正を行うパターン補正工程と、パターン補正工程で補正した転写パターンをレジスト膜に形成するレジストパターン形成工程と、を有するものである。
 また、本発明に係る半導体デバイスの製造方法は、上記転写用マスクの製造方法により製造された転写用マスクを用い、フォトリソグラフィ法により転写用マスクの転写パターンをウェハ上のレジスト膜に露光転写する工程を有するものである。
 上記した説明は、薄膜形成前の透光性基板に本発明を適用した場合について説明したが、本発明は、薄膜形成後のマスクブランクの製造方法にも同様に適用できる。即ち、本発明に係るマスクブランクの製造方法は、透光性基板の主表面上に薄膜を備えるマスクブランクを準備する準備工程と、前記マスクブランクの主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、前記マスクブランクを露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、前記チャック後主表面形状を基に近似曲面を算出する近似曲面算出工程と、前記近似曲面の情報を前記マスクブランクと対応付けて記録装置に記録する記録工程とを有することを特徴とする。
 上記本発明に係るマスクブランクの製造方法において、近似曲面は、基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現されたものであり、記録工程は、前記多変数関数の各係数の情報を近似曲面の情報として記録装置に記録することを有するものであると好適である。
 また、上記本発明に係るマスクブランクの製造方法において、近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであると好適である。
 また、上記本発明に係るマスクブランクの製造方法において、多変数関数のXに関する偏微分を行うX偏微分関数の算出、および多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程を有し、記録工程では、前記X偏微分関数およびY偏微分関数の各係数の情報も近似曲面の情報として記録装置に記録するものであると好適である。
 本発明に係るマスクブランクの製造方法は、透光性基板の主表面上に薄膜を備えるマスクブランクを準備する準備工程と、前記マスクブランクの主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、前記マスクブランクを露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、前記チャック後主表面形状を基に、前記基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現された近似曲面を算出する近似曲面算出工程と、前記多変数関数のXに関する偏微分を行うX偏微分関数の算出、および前記多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程と、前記X偏微分関数およびY偏微分関数の各係数の情報を近似曲面の情報として前記透光性基板と対応付けて記録装置に記録する記録工程とを有することを特徴とする。
 上記本発明に係るマスクブランクの製造方法において、近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであると好適である。
 また、上記本発明に係るマスクブランクの製造方法において、シミュレーション工程は、マスクブランクをマスクステージに載置したときにおける主表面の重力による変形量である重力変形量と、前記マスクブランクをマスクステージにチャックしたときにおける主表面のマスクステージを支点としたてこ変形によるてこ変形量、主表面のマスクステージの形状に倣う変形による倣い変形量、および主表面の捩じれを矯正する変形による捩じれ変形量とをそれぞれ算出し、前記チャック前主表面形状へ重ね合わせてチャック後主表面形状を算出するものであると好適である。
 また、上記本発明に係るマスクブランクの製造方法において、前記チャック後主表面形状から求められる算出領域内の平坦度が所定値以下のものをマスクブランクとして選定する選定工程を有するものであると好適である。
 また、上記本発明に係るマスクブランクの製造方法において、前記算出領域は、透光性基板の中心を基準とした132mm角内の領域であると好適である。
 また、上記本発明に係るマスクブランクの製造方法において、前記平坦度の所定値は、0.24μm以下であると好適である。
 また、上記本発明に係るマスクブランクの製造方法において、前記チャック前主表面形状から求められる所定領域内での平坦度が0.4μm以下であるマスクブランクを選定する工程を有するものであると好適である。
 また、本発明に係る転写用マスクの製造方法は、上記マスクブランクの製造方法により製造されたマスクブランクを用いて転写用マスクを製造する方法であって、前記マスクブランクの前記パターン形成用薄膜の上にレジスト膜を形成するレジスト膜形成工程と、前記近似曲面の情報を基にレジスト膜に形成する転写パターンの補正を行うパターン補正工程と、パターン補正工程で補正した転写パターンをレジスト膜に形成するレジストパターン形成工程と、を有するものである。
 また、本発明に係る半導体デバイスの製造方法は、上記転写用マスクの製造方法により製造された転写用マスクを用い、フォトリソグラフィ法により転写用マスクの転写パターンをウェハ上のレジスト膜に露光転写する工程を有するものである。
 本発明に係る転写用マスクの製造方法は、透光性基板の主表面上に薄膜を備えるマスクブランクを準備する準備工程と、前記マスクブランクの主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、前記マスクブランクを露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、前記チャック後主表面形状を基に近似曲面を算出する近似曲面算出工程と、前記マスクブランクの前記パターン形成用薄膜の上にレジスト膜を形成するレジスト膜形成工程と、前記近似曲面の情報を基にレジスト膜に形成する転写パターンの補正を行うパターン補正工程と、パターン補正工程で補正した転写パターンをレジスト膜に形成するレジストパターン形成工程と、を有することを特徴とするものである。
 また、上記本発明に係る転写用マスクの製造方法において、近似曲面は、基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現されたものであると好適である。
 また、上記本発明に係る転写用マスクの製造方法において、近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであると好適である。
 また、上記本発明に係る転写用マスクの製造方法において、多変数関数のXに関する偏微分を行うX偏微分関数の算出、および多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程を有するものであると好適である。
 また、上記本発明に係る転写用マスクの製造方法において、シミュレーション工程は、マスクブランクをマスクステージに載置したときにおける主表面の重力による変形量である重力変形量と、前記マスクブランクをマスクステージにチャックしたときにおける主表面のマスクステージを支点としたてこ変形によるてこ変形量、主表面のマスクステージの形状に倣う変形による倣い変形量、および主表面の捩じれを矯正する変形による捩じれ変形量とをそれぞれ算出し、前記チャック前主表面形状へ重ね合わせてチャック後主表面形状を算出するものであると好適である。
 また、上記本発明に係る転写用マスクの製造方法において、前記チャック後主表面形状から求められる算出領域内の平坦度が所定値以下のマスクブランクを選定する選定工程を有するものであると好適である。
 また、上記本発明に係る転写用マスクの製造方法において、前記算出領域は、透光性基板の中心を基準とした132mm角内の領域であると好適である。
 また、上記本発明に係る転写用マスクの製造方法において、前記平坦度の所定値は、0.24μm以下であると好適である。
 また、上記本発明に係る転写用マスクの製造方法において、前記チャック前主表面形状から求められる所定領域内での平坦度が0.4μm以下であるマスクブランクを選定する工程を有するものであると好適である。
 また、本発明に係る半導体デバイスの製造方法は、上記転写用マスクの製造方法により製造された転写用マスクを用い、フォトリソグラフィ法により転写用マスクの転写パターンをウェハ上のレジスト膜に露光転写する工程を有するものである。
 本発明では、転写パターンの補正に、シミュレーションの結果をそのまま使うのではなく、近似曲面のデータを用いたので、近似曲面は、基板主表面の高さ情報を取得する各測定点の間(隙間)の領域についても補完されるため、各測定点の間の領域についての位置ずれ量の算出や設計転写パターンの補正も容易に、精度よく行うことができる。また、近似曲面として4次から6次程度の多項式曲面を選択したので、計算時間を短縮化できると共に、近似精度を確保することができる。
本発明に係るマスクブランク用基板の製造方法、マスクブランクの製造方法および転写用マスクの製造方法を示すフローチャートである。 チャック前主表面形状を取得する際、及びシミュレーションによりチャック前主表面形状を算出する際における各測定点を説明するための透光性基板の斜視図である。 露光装置のマスクステージにセットされた透光性基板を示す図である。 近似する多項式の次数と計算時間及び近似精度との関係を示す図である。 本発明に係るマスクブランクの製造方法および転写用マスクの製造方法を示すフローチャートである。
 以下、本発明を実施するための第1形態を、図面に基づき説明する。
 図1は、本発明に係るマスクブランク用基板の製造方法を含む転写用マスクの製造工程を示すフローチャートである。
 本発明に係るマスクブランク用基板の製造方法は、図1における透光性基板(合成石英ガラス基板)の準備工程(S1)、形状測定工程(S2)、シミュレーション工程(S3)、近似曲面算出工程(S4)、記録工程(S5)までの工程を有する。続いて、製造されたマスクブランク用基板の主表面上に、薄膜形成工程(S6)によりパターン形成用薄膜を形成して、マスクブランクを製造する。
 続いて、製造されたマスクブランクを用いて、レジスト膜形成工程(S7)、パターン補正工程(S8)、レジストパターン形成工程(S9)及びエッチング工程(S10)により、転写用マスクが製造される。
 上述の各工程を、以下に順次説明する。なお、透光性基板上に形成するパターン形成用薄膜に透光性基板の変形に影響を与える膜応力が存在する場合、この膜応力を低減する目的で、膜応力制御工程を設けても良い。また、レジスト膜形成工程(S7)はマスクブランクの製造の工程に含まれる場合もある。上述の各工程を、以下に順次説明する。なお、ここでは、透光性基板として合成石英ガラスを適用したが、転写用マスクの基板として用いることができるものであれば、特に限定されない。例えば、ソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、無アルカリガラス、フッ化カルシウムガラスなどがあげられる。
 以下の説明では、透光性基板のサイズが、約152mm×約152mm×6.35mmのものについて述べられているが、特に限定されるものではない。約152mm×約152mm×6.35mmよりも大きいまたは小さい透光性基板の場合でも、同様の効果を得ることができる。また、基板主表面のチャック後主表面形状から算出する平坦度については、その平坦度を算出する領域を、透光性基板の大きさに準じて、適宜設定することができる。
(A)透光性基板の準備工程(S1)
 図2(A)に透光性基板の斜視図、同図(B)に透光性基板の外周部の断面図を示す。透光性基板は、一般的に知られている方法により作製された合成石英ガラスインゴットから、約152.4mm×約152.4mm×約6.8mmに切り出して得ることができる。得られた合成石英ガラス板に面取り加工や主表面等の研削を施し、次に、この合成石英ガラス板の表面である主表面1及び2と端面3と面取り面4とを鏡面研磨し、更に主表面1及び2を精密研磨して透光性基板(合成石英ガラス基板、約152mm×約152mm×6.35mm)5を準備する。上記主表面1に、薄膜形成工程においてパターン形成用薄膜(遮光膜、光半透過膜等)が形成される。透光性基板5の準備工程においては、透光性基板5における両主表面1及び2の表面粗さは、二乗平均平方根粗さ(Rq)で約0.2nm以下であり、端面3及び面取り面4の表面粗さは、算術平均粗さ(Ra)で約0.03μm以下とする。
 ここで、準備された透光性基板5の露光装置による露光時に影響のない部分(端面3、面取り面4、ノッチマーク部、主表面1及び2の転写パターンが形成される領域の外周領域等)の表面に、特開2006-309143号公報に記載されているようなレーザー光を照射して凹部を複数形成してなるマーカーを設け、これを個体識別マークとして、後工程で使用すると好ましい。個体識別マークとして用いる透光性基板5に設けるマーカーは、透光性基板5の表面に限らず、基板内部に焦点が集まるように複数のレーザー光源からレーザー光を照射して、局所的に変質させることで形成してもよい。
(B)形状測定工程(S2)
 透光性基板5の主表面1のマスクステージに載置する前の主表面形状であるチャック前主表面形状を取得する手段としては、公知の光干渉計を利用した平坦度測定装置(不図示)などで得ることができる。透光性基板5の自重による撓みをなるべく抑えるため透光性基板5を垂直又は略垂直に立たせた状態(フリースタンディング状態)で平坦度を測定できるものがよい。ここにいうチャック前主表面形状とは、図2に示すように、透光性基板5の主表面1内に設けられた実測領域(a×a)内における複数の測定点P(Xm、Yn)(但しm、nは整数)における基準面7(最小自乗法により算出される焦平面)からの高さ情報Zk(kは整数)をいう。そして、この高さ情報Zkは、なるべく高精度に測定できるものが良く、nmオーダーで測定できるものが良い。なお、図2において、透光性基板5の主表面1内の格子は、複数の測定点P(Xm、Yn)を表すための仮想の線であり、主表面1上に実際にある線ではない。
 チャック前主表面形状を測定する上記実測領域(a×a)は、透光性基板5のサイズや平坦度測定装置の測定精度、露光装置のマスクステージが透光性基板5の主表面1に当接する領域等により適宜選定する。後述するシミュレーションを高精度に行うためには、なるべく透光性基板5の主表面1の全面においてチャック前主表面形状を取得することが望ましいが、少なくとも露光装置のマスクステージが透光性基板5の主表面1に当接する領域(つまり、露光装置のマスクステージに透光性基板5がチャックされる領域)を含むように設定する。
 また、現存の光干渉計を利用した平坦度測定装置の場合、透光性基板5の外周部、つまり、図2(B)に示すように、透光性基板5の主表面1と面取り面4との境界近傍で、上記高さ情報Zkを高精度に測定することは難しい。この点を考慮すると、チャック前主表面形状を取得する主表面1の実測領域(a×a)は、透光性基板5の面取り面4から0mmを超え3mm以下の周縁部領域bを、主表面1の全面から除いた領域とすることが好ましい。特に好ましくは、透光性基板5の面取り面4から0.5mm以上2.5mm以下の周辺部領域b、さらに好ましくは透光性基板5の面取り面4から1mm以上2mm以下の周辺部領域bを、それぞれ主表面1の全面から除いた領域を、チャック前主表面形状を取得する実測領域(a×a)とすることが望ましい。例えば、透光性基板5の大きさが152mm×152mmである場合、チャック前主表面形状を取得する実測領域(a×a)を146mm×146mm、さらに好ましくは148mm×148mmとすることが望ましい。
 また、後述するシミュレーションを高精度に行うためや近似曲面を高精度に算出するには、高さ情報Zkを取得する測定点P(Xm、Yn)をなるべく多くすることが望ましい。しかし、測定点P(Xm、Yn)を多くするとより正確なシミュレーション結果が得られるが、シミュレーションの所要時間がかかってしまうので、これらの点を考慮して測定点P(Xm、Yn)を決定することが好ましい。例えば、測定点P(Xm、Yn)は256×256ポイントとすることができる。
 ここで得られたチャック前主表面形状の情報(各測定点Pとその測定点での高さ情報Zk等の基板主表面に関する各種情報)は、その測定した透光性基板5と対応付けて記録装置(PC、ネットワークサーバー、ICタグ等)に記録されてもよい。この記録されたチャック前主表面形状の情報は、後工程の転写用マスクの製造工程で使用することができる。また、透光性基板の準備工程で、透光性基板5自体に個体識別マークを形成している場合には、この個体識別マークとチャック前主表面形状の情報(各測定点Pとその測定点での高さ情報Zk等の基板主表面に関する各種情報)を対応付けて前記記録装置に記録してもよい。
(C)シミュレーション工程(S3)
 このシミュレーション工程では、透光性基板5を露光装置のマスクステージにセット(吸引チャック)した状態をシミュレーションして、透光性基板5の主表面1における複数の測定点P(Xm,Yn)で、基準面7(図2)からの高さ情報ZSk(但しkは整数)を求める。
 図3は、透光性基板5を露光装置(不図示)のマスクステージ8にセットした様子を示す図である。図3(B)が上から見た図であり、同図(A)がIII-III断面における断面図である。図3に示すとおり、マスクステージ8は、重力方向に実質的に垂直なX-Y平面上に互いに平行に配置された2つの吸引チャック部からなる。この2つの吸引チャック部は、互いにX方向に距離L1だけ離れた位置に、長手方向がY方向(X方向と垂直)に沿うように配置されている。それぞれの吸引チャック部はX方向の幅がL2であり、Y方向の長さがL3とする。
 また、図3(C)は同図(B)のIII-III断面における断面図であり、ここでは、理解を容易にするために、透光性基板5の形状が誇張して示されている。図3(C)を参照すると、マスクステージ8へのセット(吸引チャック)前の状態における透光性基板5が実線で示され、マスクステージ8へのセット(吸引チャック)後の状態における透光性基板5が破線で示されている。マスクステージ8を構成する2つの吸引チャック部は、それぞれ、透光性基板5の主表面1と平行に線状に延伸する3本の支持部9とその間に2本の吸着口10が形成されている構成でも良い。透光性基板5は、マスクステージ8の上に置いただけでは、実線で示すように、重力により撓んでいる。マスクステージ8にセット(吸引チャック)されると、破線に示すように、吸引チャックにより、マスクステージ8に当接するように変形する。
 露光装置に透光性基板5を吸引チャックしたときの、透光性基板5における複数の測定点P(Xm,Yn)の高さ情報ZSk(図2(A))をシミュレーションして得るには、例えば、上記表面形態情報取得工程で得た透光性基板5の主表面1における複数の測定点P(Xm,Yn)の基準面7からの高さ情報Zkと、露光装置のマスクステージ8が透光性基板5の主表面1に当接する領域(つまり、マスクステージ8におけるX方向の幅L2及びY方向の幅L3を有する領域)を含む当該マスクステージ8の形状情報(上記幅L2、上記幅L3、マスクステージ8間の距離L1)とを用いる。これらの情報を使い、材料力学における撓み微分方程式によって、露光装置のマスクステージ8に透光性基板5を吸引チャックしたときの、透光性基板5の主表面1における複数の測定点P(Xm,Yn)での基準面7からの高さ情報ZSkをシミュレーションして得ることができる。
 上記撓み微分方程式は、重力の方向にZ軸の正の方向をとり、例えば、次のようにして求める。
(マスクステージに吸引チャックしたときの透光性基板の主表面における高さ情報ZSk)
=(形状測定工程で取得した透光性基板の主表面における高さ情報Zk)
 +(透光性基板の重力によるX方向に沿う撓みによる変形の予測値)[重力変形量]
 +(吸引チャックによるマスクステージを支点としたX方向に沿う透光性基板の反り(てこの効果)の予測値)[てこ変形量]
 +(吸引チャックによるY方向(マスクステージの長手方向)に沿う透光性基板の変形の予測値)[倣い変形量]
 +(透光性基板をマスクステージに吸引チャックしたときに透光性基板の捩じれが矯正される方向に働く変形(捩じれ変形)の予測値)[捩じれ変形量]
 ここで、X方向及びY方向は、図3(B)におけるものであり、X方向はマスクステージ8の長手方向に直交する方向であり、Y方向はマスクステージ8の長手方向に沿う方向である。また、「透光性基板がマスクステージに当接するY方向に沿う領域」は、マスクステージ8の形状情報としての、マスクステージ8が透光性基板5の主表面1に当接する領域から求められる。
 上記シミュレーション工程においては、透光性基板は通常、捩じれ成分を有していることに着目し、透光性基板5がマスクステージ8にセット(吸着)されたときに透光性基板の捩じれが矯正される方向に働く変形(捩じれ変形)をも考慮してシミュレーションを行った場合、有限要素法によるシミュレーションの結果と比べて、遜色ないレベルの正確なシミュレーション結果が得られる。しかも、シミュレーションに要する時間は、有限要素法よりも大幅に短縮できる。
 なお、上述のマスクステージの形状情報としては、マスクステージ8が透光性基板5の主表面1に当接する領域(X方向の幅L2及びY方向の幅L3を有する領域)に加え、マスクステージ8が透光性基板5の主表面1に当接する上記領域(面)における当該マスクステージ8の平坦度の情報を含んでも良い。
 また、シミュレーションは上記の方法に限らず、有限要素法等によるシミュレーションでも構わない。
 ここで得られたチャック後主表面形状の情報(各測定点Pにおけるシミュレーション後の高さ情報Zk等のシミュレーションで得られたチャック後の主表面に関する各種情報、マスクステージ8に関する情報等)は、形状測定工程の場合と同様の要領で、その測定した透光性基板5と対応付けて記録装置(PC、ネットワークサーバー、ICタグ等)に記録されてもよい。この記録されたチャック後主表面形状の情報は、後工程の転写用マスクの製造工程で使用することができる。
(D)近似曲面算出工程(S4)
 近似曲面算出工程では、シミュレーション工程で得られた、チャック後主表面形状に関する情報である、複数の測定点P(Xm,Yn)における基準面からの高さ情報ZSkを所定の曲面に近似する工程である。この工程では、各測定点P(Xm,Yn)におけるZSkを、例えば最小自乗法により、n次多項式曲面(nは4、5又は6)にフィッティングする。
 例えば、4次多項式曲面の場合、多項式A(X,Y)は、
 A(X,Y)=a[0,0]+a[1,0]X+a[0,1]Y+a[2,0]X+a[1,1]XY+a[0,2]Y+・・・+a[j,k]X+・・・+a[0,4]Yで表わされる。
 上式において、a[j,k]は多項式の各項に係る係数である(j、k;0~4の整数)。
 ここで、近似する多項式の次数と、最小自乗法によりフィッティングするために要する計算時間及び近似精度との関係を調べた結果を図4に示す。図4において、横軸は近似する多項式の次数であり、2次から10次まで調べた。左側縦軸が近似するために要した計算時間で、4次多項式の計算に要した時間を1として示してある。右側縦軸は、近似精度であり、4次多項式における近似精度を1として示してある。ここで近似精度として、決定係数(総平方和に対するモデルの平方和の比)を指標とした。
 図4において、◆マークが、計算時間を表している。この図から、次数が上がるごとに計算時間が増加することがわかる。一方、近似精度を表す■マークをみると、4次から上の次数では、ほとんど近似精度が変わらないのがわかる。計算時間が4次の場合の3倍以上かかる7次及びそれ以上の次数の場合は、計算時間がかかる割には、近似精度が変わらない。よって、近似曲面の多項式の次数は、4次、5次又は6次が短い計算時間で、十分な近似精度が得られて、好適なことがわかった。
(E)記録工程(S5)
 記録工程では、近似工程で各測定点P(Xm,Yn)におけるZSkの近似曲面として求められたn次多項式Aの各項の係数a[j,k]を係数情報として、透光性基板と対応付けて、一般的に用いられている記録装置(例えば、PC、ネットワークサーバー、ICタグ、不揮発メモリや、CD-R、DVD-R等の各種メディア等)に記録する。例えば、透光性基板にシリアルナンバーを付し、そのシリアルナンバーと係数情報とを対応付けて記録する。また、シリアルナンバーと透光性基板の材質やサイズ等の情報も対応付けて記録しておく。
 なお、透光性基板とシリアルナンバーとを対応付けるために、例えば透光性基板の端面にシリアルナンバーを表すマーカーを付しても良い。
 上記(A)透光性基板の準備工程から(E)記録工程までが、マスクブランク用透光性基板の製造方法である。
(F)薄膜形成工程(S6)
 薄膜形成工程では、上記の各工程を経て製造されたマスクブランク用基板の主表面上にマスクパターンを形成するためのパターン形成用薄膜をスパッタリング法により形成してマスクブランクを作製する。この薄膜の成膜は、例えばDCマグネトロンスパッタリング装置を使って行う。
 パターン形成用薄膜には、遮光膜、ハーフトーン型の位相シフト膜、エンハンサマスクなどで用いられる光半透過膜、さらにはこれらの膜の上に設けられたり、クロムレス位相シフトマスクを作製するために用いられたりするエッチングマスク膜などが適用可能である。遮光膜を構成する材料としては、クロム、遷移金属とケイ素からなる材料(遷移金属シリサイド)、タンタルを挙げることができる。遮光膜は、単層である場合や、基板側から遮光層、表面反射防止層の2層積層構造や、基板側から裏面反射防止層、遮光層、表面反射防止層の3層積層構造などがあげられる。表面反射防止層や裏面反射防止層には、遮光層で用いられる材料に、酸素や窒素を添加した材料が好適である。遷移金属シリサイド中の遷移金属としては、Mo、W、Ta、Ti、Hf、Zr、Pd、Nb、Ru、Ni、V、Rh、Cr等が適用可能である。また、位相シフト膜や光半透過膜の材料としては、クロム系材料であれば、CrO、CrON、CrOCNなど、遷移金属シリサイド系材料であれば、MSiON(M:遷移金属、以下同じ)、MSiO、MSiN、MSiOC、MSiOCNなど、タンタル系材料であれば、TaO、TaON、TaBO、TaBONなどを用いることが好ましい。
 パターン形成用薄膜はスパッタリング法により成膜することができる。スパッタリング装置としては、DCマグネトロンスパッタ装置、RFマグネトロンスパッタ装置、イオンビームスパッタ装置などを用いることができる。マスクブランク用基板への遮光性膜のスパッタリングの際に、基板を回転させ、かつ、スパッタターゲットを基板の回転軸から所定角度傾斜させた位置にターゲットを配置して成膜することが好ましい。このような成膜法により、遮光膜の面内のばらつきを小さくし、均一に形成することができる。特に位相シフトマスクや光半透過膜の場合、基板を回転させ、かつ、スパッタターゲットを基板の回転軸から所定角度傾斜させた位置にターゲットを配置して成膜する場合においては、位相角および透過率の面内の分布は、基板とターゲットの位置関係によっても変化する。特開2003-280174号公報に記載されているような成膜方法を用いることが望ましい。
(G)レジスト膜形成工程(S7)
 次に、マスクブランクにおける上記パターン形成用薄膜の表面にレジストをスピンコート法等の通常の方法で塗布した後、加熱処理してレジスト膜を形成する。レジストには、微細パターンを形成可能な電子線描画露光用のものが好ましく、化学増幅型のものが特に好ましい。上記(A)透光性基板の準備工程から(F)薄膜形成工程まで、あるいは(G)レジスト膜形成工程までがマスクブランクの製造方法である。
(H)パターン補正工程(S8)
 パターン補正工程では、記録工程で透光性基板のシリアルナンバーと対応付けて記憶された係数情報を用いて、設計したパターン形成用薄膜に形成する転写パターンを補正する。露光装置のマスクステージに吸引チャックされたときに生じるパターンの位置ずれ量の予測は、係数情報から近似曲面の多項式を再現し、多項式をXで偏微分した多項式と、Yで偏微分した多項式を算出し、後は、前記の先行技術文献に記載の手法でX方向、Y方向それぞれの予測位置ずれ量を算出する。そして、算出されたX方向、Y方向それぞれの予測位置ずれ量を用いて、設計した転写パターンを補正する。さらに、その補正した転写パターンから、次工程でレジストパターンを描画する際に用いる描画データを作製する。
(I)レジストパターン形成工程(S9)
 レジストパターン形成工程では、パターン補正工程(S8)で補正された転写パターンを、一般の描画装置により描画し、現像処理および洗浄処理を行い、レジストパターンを形成する。
(J)エッチング工程(S10)
 エッチング工程では、上記レジストパターンをマスクにして、薄膜形成工程(S6)で形成したパターン形成用薄膜をエッチングし、転写パターン(マスクパターン)を形成する。最後に、上記レジストパターンを除去して、マスクブランク用基板上に転写パターンが形成された転写用マスクを得る。
 上記(A)透光性基板の準備工程から(J)エッチング工程までが、転写用マスクの製造方法である。
(K)半導体デバイスの製造工程
 得られた転写用マスクを露光装置のマスクステージにセット(吸引チャック)し、この転写用マスクを使用し、ArFエキシマレーザーを露光光として光リソグラフィー技術を用い、半導体基板に形成されているレジスト膜に転写用マスクの転写パターンを転写して、この半導体基板上に所望の回路パターンを形成し、半導体デバイスを製造する。
 上記のマスクブランク用基板の製造方法において、(C)シミュレーション工程(S3)でチャック後主表面形状を算出した後に、そのチャック後主表面形状の情報から、所定の算出領域で基板主表面の平坦度を算出し、その算出した平坦度が所定値以下のもののみをマスクブランク用基板として選定し、その選定されたマスクブランク用基板に対して、(D)近似曲面算出工程(S4)以降の工程を行うようにすると好ましい。液浸露光技術が適用されるようなDRAM hp45世代よりも微細なパターンの転写用マスクに用いるマスクブランク用基板の場合、チャック後の主表面の平坦度が低いものは適さないためである。
 この場合の算出領域は、露光波長や半導体基板上に形成する微細パターン(回路パターン)の種類等によって決められる。例えば、マスクブランクの大きさが152mm×152mmの場合、転写用マスクの転写領域を含む算出領域を、基板主表面の中心を基準とした104mm×132mmの矩形状や、90度回転させて転写パターンを配置することを考慮して132mm×132mmの正方形状とすることができる。さらに、132mm×132mmの外周領域についても平坦度を保証するとなお好ましく、たとえば142mm×142mmの正方形状を算出領域とすると良い。
 チャック後主表面から算出される平坦度の所定値は、露光波長や、露光装置のマスクステージの基板チャック方式等の相違により、マスクブランク(または転写用マスク)に対して許容できる平坦度を算出して定める。例えば、露光光源がArFエキシマレーザー(露光波長:193nm)であり、基板チャック方式(透光性基板5の支持部構造)が、図3(B)に示すように、透光性基板5の主表面1と平行に線状に延伸する3本の支持部9の間に2本の吸着口10が形成され、上記支持部9に透明基板5を当接して吸引チャックで支持する構造を有する場合には、上記仕様は、転写用マスクの転写領域を含む算出領域において平坦度が0.24μm以下となる。なお、ダブルパターニング技術が適用される転写用マスクの場合には、前記と同じ算出領域において平坦度が0.12μm以下とすることが望ましい。
 また、チャック後の主表面の平坦度が所定値以下のものという基準だけでマスクブランク用基板として選定するのでは、チャック前の主表面の平坦度がよくないものも合格品となる。チャック前の主表面の平坦度がよくないが、チャック後の主表面の平坦度は所定値以下の良好なものになるというマスクブランク用基板は、チャック前後で主表面形状が大きく変化する特性を有している。主表面形状が大きく変化する透光性基板を用いて製造される転写用マスクは、パターン形成用薄膜で形成された転写パターンがチャック前後でのX-Y平面上の移動量が比較的大きくなってしまう。液浸露光技術が適用されるようなDRAM hp45世代よりも微細なパターンの転写用マスクに用いるマスクブランク用基板の場合、チャック前後の転写パターンの移動量(位置ずれ)が大きいと転写精度への影響が大きくなるため、好ましくない。特に、ダブルパターニング技術が適用される転写用マスクに用いるマスクブランク用基板の場合には、転写パターンの位置精度が厳しく、転写パターンの移動量(位置ずれ)が大きいことは特に問題となる。この点を考慮する場合においては、(B)形状測定工程で透光性基板5のチャック前主表面形状を測定した後に、所定の算出領域でチャック前の主表面の平坦度を算出し、所定値以下のものを選定して、次の工程に送ることが望ましい。この場合、(C)シミュレーション工程前に最初の選定を行うことが好ましい。
 チャック前主表面形状の平坦度を算出する所定領域は、チャック後主表面形状の平坦度を算出する算出領域と同じとしても良いが、それよりも広い領域を保証することが望ましい。透光性基板の大きさが152mm×152mmの場合、基板主表面の中心を基準とした132mm×132mmの正方形状の領域で平坦度を保証すると良く、142mm×142mmの製法形状の領域で平坦度を保証するとなお好ましい。平坦度の所定値であるが、液浸露光技術が適用されるようなDRAM hp45世代よりも微細なパターンの転写用マスクに用いるマスクブランク用基板の場合では、0.4μm以下とすることが好ましい。また、ダブルパターニング技術が適用される転写用マスクに用いるマスクブランク用基板の場合には、0.3μm以下の平坦度とすることが好ましい。
 透光性基板上に形成するパターン形成用薄膜に透光性基板の変形に寄与する膜応力が存在する場合、この膜応力を低減する目的で、膜応力制御工程を設けても良い。膜応力制御工程としては、例えば、パターン形成用の薄膜形成時及び/又は薄膜形成後にマスクブランクを150℃以上の温度で加熱処理する場合や、マスクブランク用基板上に形成するパターン形成用薄膜を複数層とし、圧縮応力を有する層と引張応力を有する層の積層構造として、各層の膜応力を相殺する場合などがある。なお、パターン補正工程(S8)は、近似曲面算出工程(S4)で、近似曲面のn次多項式Aが算出された後と、レジストパターン形成工程(S9)の前の間であれば、どの段階で行ってもよい。
 次に、本発明を実施する第2形態を図面に基づき説明する。
 図5は、本発明に係るマスクブランクの製造方法および転写用マスクの製造工程を示すフローチャートである。
 本発明のマスクブランクおよび転写用マスクの製造方法の第2形態は、透光性基板の準備工程(S201)、薄膜形成工程(S202)、形状測定工程(S203)、シミュレーション工程(S204)、近似曲面算出工程(S205)、及び記録工程(S206)までの工程を有する。続いて、製造されたマスクブランクを用いて、レジスト膜形成工程(S207)、パターン補正工程(S208)、レジストパターン形成工程(S209)、及びエッチング工程(S210)により、転写用マスクが製造される。なお、透光性基板上に形成するパターン形成用薄膜に透光性基板の変形に寄与する膜応力が存在する場合、この膜応力を低減する目的で、膜応力制御工程を設けても良い。また、レジスト膜形成工程(S207)はマスクブランクの製造の工程に含まれる場合もある。上述の各工程について、前記の図1のフローチャートと異なる部分を中心に順次説明する。なお、特に説明されない事項については、前記の本発明に係るマスクブランク用基板の製造方法の第1形態と同様である。
 この第2形態では、最初に、第1形態の透光性基板の準備工程(S1)と同様の手順で透光性基板の準備工程(S201)を行い、透光性基板5を準備する。続いて、第1形態の薄膜形成工程(S6)と同様の手順で薄膜形成工程(S202)を行い、透光性基板5の主表面1上にパターン形成用薄膜が形成されたマスクブランクを準備する(透光性基板の準備工程(S201)から薄膜形成工程(S202)までがマスクブランクの準備工程に相当)。必要な場合には、第1形態の膜応力制御工程と同様の手順で膜応力制御工程を行い、パターン形成用薄膜の応力を低減させる。パターン形成用薄膜の膜応力は、主表面1の膜形成前後の変化量の絶対値が、TIR(Total Indicated Reading)で少なくとも0.1μm以下に制御する必要があり、0.1μm未満であると好ましく、50nm以下であることが望ましい。
 次に、マスクブランクに対して、第1形態の形状測定工程(S2)と同様の手順で、形状測定工程(S203)を行い、マスクブランクの主表面のマスクステージに載置する前の主表面形状であるチャック前の主表面形状を取得する。ここで、平坦度測定装置によって取得されるマスクブランクのチャック前の主表面形状は、透光性基板5の主表面1上に形成されたパターン形成用薄膜の表面形状である。しかし、スパッタリング法で成膜されたパターン形成用薄膜11の膜厚分布は非常に高い。また、パターン形成用薄膜の膜応力は非常に低く制御されている。このため、パターン形成用薄膜の表面形状は、透光性基板5の主表面1のチャック前主表面形状と等価としてもシミュレーション精度には実質的に影響しない。
 次に、得られたマスクブランクのチャック前の主表面形状を用い、第1形態のシミュレーション工程(S3)と同様の手順で、シミュレーション工程(S204)を行い、マスクブランクのチャック後の主表面形状を取得する。このシミュレーション工程(S204)で用いられる撓み微分方程式は、透光性基板に関するものである。しかし、透光性基板の厚さが約6mmであるのに対し、パターン形成用薄膜の膜厚は100nm以下であり、断面2次モーメント等に与える影響は非常に小さい。また、パターン形成用薄膜の膜応力は非常に低く制御されている。このため、透光性基板に関する撓み微分方程式を基にしたシミュレーションでマスクブランクのチャック後の主表面形状を算出しても、シミュレーション精度には実質的に影響しない。なお、ここで得られたマスクブランクのチャック後の主表面形状は、透光性基板のチャック後主表面形状と等価とできる。
 次に、得られたマスクブランクのチャック後の主表面形状を用い、第1形態の近似曲面算出工程(S4)と同様の手順で、近似曲面算出工程(S205)を行い、近似曲面のn次多項式Aを算出する。さらに、第1形態の記録工程(S5)と同様の手順で、記録工程(S206)を行い、算出されたn次多項式Aの各項の係数a[j,k]を係数情報として、マスクブランクと対応付けて記録する。
 続いて、第1形態のレジスト膜形成工程(S7)と同様の手順で、レジスト膜形成工程(S207)を行い、マスクブランクのパターン形成用薄膜上にレジスト膜を形成する。次に、第1形態のパターン補正工程(S8)と同様の手順で、パターン補正工程(S208)を行い、設計したパターン形成用薄膜に形成する転写パターンを補正する。続いて、第1形成のレジストパターン形成工程(S9)と同様の手順で、レジストパターン形成工程(S209)を行い、補正された転写パターンを描画装置によって描画し、現像処理、洗浄処理を経て、レジスパターンを形成する。さらに、第1形態のエッチング工程(S10)と同様の手順で、レジストパターンをマスクにして、パターン形成用薄膜をエッチングし、転写用マスクを得る。さらに、得られた転写用マスクを用い、ArFエキシマレーザーを露光光として光リソグラフィー技術を用い、半導体基板(半導体ウェハ)上に形成されているレジスト膜に転写用マスクの転写パターンを転写する。このようにして、半導体基板上に所望の回路パターンを形成し、半導体デバイスを製造する。
 なお、上記のマスクブランクの製造方法において、シミュレーション工程(S204)でチャック後主表面形状を算出した後に、そのチャック後主表面形状の情報から、所定の算出領域で基板主表面の平坦度を算出し、その算出した平坦度が所定値以下のもののみを選定し、その選定されたマスクブランクに対して、近似曲面算出工程(S205)以降の工程を行うようにすると好ましい。液浸露光技術が適用されるようなDRAM hp45世代よりも微細なパターンの転写用マスクに用いるマスクブランク用基板の場合、チャック後の主表面の平坦度が低いものは適さないためである。また、上記の転写用マスクの製造方法において、パターン形成用薄膜に形成する転写パターンに求められる精度から、マスクブランクに必要なチャック前主表面形状の平坦度、チャック後主表面形状の平坦度を定め、製造された各マスクブランクの中からその基準を満たすものを選定するようにしてもよい。
(実施例)
 以下、マスクブランク用透光性基板の製造工程、マスクブランクの製造工程を含む露光用マスクの製造工程について、具体的に説明する。
(I)透光性基板の準備工程(S1)
 正方形状の透光性基板(合成石英ガラス基板)の主表面を精密研磨し、洗浄して透光性基板(約152mm×約152mm×6.35mm)を2枚準備した。このとき、個体識別マークとして、透光性基板の端面に炭酸ガスレーザーを用いて、ブロックサイズが3mm×3mmのデータマトリックスを形成した。データマトリックスのシンボルサイズは、12×12(固定:10桁)とし、セルサイズは、0.25mmとした。この個体識別マークで、透光性基板に10桁のシリアルナンバーを付与した。
(II)形状測定工程(S2)
 上記透光性基板の主表面について、光干渉計を利用した平坦度測定装置(Corning TROPEL社製 UltraFlat200M)を用いて、透光性基板の主表面(薄膜が形成される主表面)の実測領域(148mm×148mm)において、256×256の各測定点につきチャック前主表面形状の情報(最小自乗法により算出される焦平面(仮想絶対平面)からの高さ情報)を取得し、個体識別マークのシリアルナンバーと対応付けて、コンピュータ(記録装置)に保存した。なお透光性基板の自重による撓みをなるべく抑えるため透光性基板を垂直又は略垂直に立たせた状態(フリースタンディング)で平坦度を測定した。この測定の結果、透光性基板の主表面(薄膜が形成される主表面)の表面形状は、この主表面の高さが中心領域から周縁部へ向かって漸次低くなる形状であり、148mm×148mmにおける平坦度は、2枚とも0.3μm以下であり、良好であった。
(III)シミュレーション工程(S3)
 形状測定工程で得られたチャック前主表面形状の情報と、露光装置のマスクステージが透光性基板の主表面に当接する領域(透光性基板の対向する2つの端面からそれぞれ約10mm×132mm)の当該マスクステージの形状情報とから、前述の撓み微分方程式を用い各測定点について、露光装置に透光性基板を吸引チャックしたときの基準面からの高さの情報(チャック後主表面情報)を、コンピュータを用いたシミュレーションにより算出した。算出した2枚の透光性基板のチャック後主表面形状から、基板の中心を基準とした132mm角内の領域で平坦度をそれぞれ算出したところ、2枚とも0.12μm以下であり、ダブルパターニング技術が適用される転写用マスクを作製するのに使用可能な範囲であった。
(IV)近似曲面算出工程(S4)
 シミュレーション工程で得られた、複数の測定点P(Xm,Yn)における基準面からの高さ情報ZSkを、ここでは、最小自乗法により4次多項式曲面にフィッティングした。ここでは、近似曲面算出工程は、コンピュータを用いて実行した。
 つまり、下記の式で表わされる多項式A(X,Y)にフィッティングして、各項の係数a[j,k](j、k;0~4の整数)を求めた。
 A(X,Y)=a[0,0]+a[1,0]X+a[0,1]Y+a[2,0]X+a[1,1]XY+a[0,2]Y+・・・+a[j,k]X+・・・+a[0,4]Y
 (ただし、a[j,k]は多項式の各項に係る係数である(j、k;0~4の整数)。)
(V)記録工程(S5)
 続いて、近似曲面算出工程で各測定点P(Xm,Yn)におけるZSkの近似曲面として求められた4次多項式Aの各項の係数a[j,k]を係数情報として、透光性基板と対応付けて、記録装置に記憶した。また、透光性基板の材質やサイズも同様に記憶した。具体的には、透光性基板の個体識別マークでコード表現されているシリアルナンバーをデータのファイル名に含めることで、対応付けた。シミュレーションの結果をそのまま記憶するのではなく、近似曲面のデータを用いたのでデータ量を削減できた。
(VI)薄膜(遮光膜)形成工程(S6-1)
 表面形態情報を取得し、シミュレーションを行ったマスクブランク用透光性基板の主表
面上に、遮光層と表面反射防止層を備える遮光膜(パターン形成用薄膜)を形成した。
 具体的には、枚葉式DCマグネトロンスパッタ装置内に透光性基板を設置し、スパッタターゲットにモリブデン(Mo)とケイ素(Si)の混合ターゲット(原子%比 Mo:Si=21:79)を用い、アルゴンと窒素との混合ガス雰囲気で、MoSiN膜を形成した。次に、スパッタターゲットにモリブデン(Mo)とケイ素(Si)の混合ターゲット(原子%比 Mo:Si=4:96)を用い、アルゴンと窒素と酸素とヘリウムの混合ガス雰囲気で、MoSiON膜を形成した。以上により、膜厚50nmのMoSiN膜(膜組成比 Mo:14.7原子%,Si:56.2原子%,N:29.1原子%)の遮光層と膜厚10nmのMoSiON(膜組成比 Mo:2.6原子%,Si:57.1原子%,O:15.9原子%,N:24.4原子%)の表面反射防止層の2層積層構造のMoSi系材料からなる遮光膜を形成した。なお、遮光膜の各層の元素分析は、ラザフォード後方散乱分析法を用いた。この遮光膜の光学濃度(OD)は、ArFエキシマレーザーの露光光の波長に対し、3.0であった。
 成膜した遮光膜は膜応力を有するため、膜応力制御工程を行った。具体的には、遮光膜が形成されたマスクブランク用基板に対し、450℃で30分間加熱処理(アニール処理)を行い、遮光膜の膜応力を低減する処理を行い、上記遮光膜の膜応力を実質的にゼロにした。
(VII)薄膜(エッチングマスク膜)形成工程(S6-2)
 遮光膜が形成されたマスクブランク用基板に対し、遮光膜上にエッチングマスク膜(パターン形成用薄膜)を形成した。
 枚葉式DCマグネトロンスパッタ装置内に透光性基板を設置し、スパッタターゲットにクロム(Cr)ターゲットを用い、アルゴンと二酸化炭素と窒素とヘリウムとの混合ガス雰囲気で、エッチングマスク膜としてCrOCN膜を膜厚10nmで形成した。
 成膜したエッチングマスク膜は膜応力を有するため、膜応力制御工程を行った。エッチングマスクが形成されたマスクブランク用基板に対し、遮光膜のアニール処理よりも低い温度で加熱処理(アニール処理)を行うことで、エッチングマスク膜の膜応力を低減する処理を行った。さらに、所定の洗浄を行い、マスクブランクを製造した。
(VIII)レジスト膜形成工程(S7)
 製造したマスクブランクのエッチングマスク膜上にスピンコート法によりレジスト膜(電子線描画露光用化学増幅型レジスト:富士フィルムエレクトロニクスマテリアルズ社製 PRL009)を形成し、プリベーク処理して膜厚が100nmのレジスト膜を形成し、レジスト膜付きマスクブランクを得た。
(IX)転写パターン補正工程(S8)
 転写パターン補正工程では、記録工程で透光性基板のシリアルナンバーと対応付けて記録された係数情報を用いて、上記で説明したとおりの方法で、設計転写パターンの補正する処理をコンピュータを用いて行った。ただし、ここで使用する設計転写パターンは、ダブルパターニング技術を用い、DRAM hp32nm世代に相当する1つの微細・高密度な設計パターンを2つの比較的疎な設計パターンに分割したものとした。すなわち、2枚の各マスクブランクとそれに形成する転写パターンとを対応付けしてセットとし、セットごとに、設計転写パターンの補正を行った。補正した各設計転写パターンから次工程でレジストパターンを描画する際に用いる描画データをそれぞれ生成した。
 本発明では、転写パターンの補正に、シミュレーションの結果をそのまま使うのではなく、近似曲面のデータを用いたので、近似曲面は、基板主表面の各測定点Pの間の領域についても補完されるため、各測定点Pの間の領域についての位置ずれ量の算出や設計転写パターンの補正も容易に行うことができた。また、近似曲面として4次多項式曲面を選択したので、計算時間を短縮化できると共に、近似精度を確保することができた。
(X)レジストパターン形成工程(S9)
 続いて、転写パターン補正工程(S8)で補正された各転写パターンを、対応付けされているマスクブランクのレジスト膜に対して電子線描画露光装置により描画し、現像および洗浄を施してレジストパターンを形成した。
(XI)エッチング工程(S10)
 エッチング工程では、レジストパターンをマスクとし、エッチングマスク膜を塩素と酸素の混合ガスでドライエッチングを行い、エッチングマスク膜に転写パターンを転写した。次いで、エッチングマスク膜をマスクとし、遮光膜をドライエッチングして転写パターンを形成した。このとき、エッチングガスとして、SFとHeの混合ガスを用いた。最後に、エッチングマスク膜を、塩素と酸素の混合ガスによるドライエッチングで剥離し、所定の洗浄処理を施して、ダブルパターニング用の2枚の転写用マスク(セット)を作製した。
(XII)半導体デバイスの製造工程
 作製した2枚の転写用マスク(セット)を用い、ダブルパターニング技術(ダブル露光技術)による半導体デバイスの製造を行った。1枚目の転写用マスクを露光装置のマスクステージにセット(吸引チャック)し、半導体基板上のレジスト膜にArF露光光で1つ目の転写パターンの露光転写を行った。続いて、2枚目の転写用マスクを露光装置のマスクステージにセット(吸引)チャックし、半導体基板上の先ほどと同じレジスト膜にArF露光光で2つ目の転写パターンの露光転写を行った。これにより、半導体基板上のレジスト膜にDRAM hp32nm世代に相当する1つの微細・高密度な転写パターンの露光転写を行ったことになる。半導体基板上のレジスト膜に所定の現像を行い、レジスト膜のパターンの下にある薄膜にドライエッチングによって回路パターンを転写した。転写後の回路パターンを検査したところ、短絡や断線箇所もなく、正常に転写できていることが確認できた。すなわち、転写用マスクがマスクステージにチャックしたときの主表面形状の変化に対応した転写パターンが形成できていること、即ち、本発明の透光性基板に対するシミュレーションの精度が十分に高いことが証明された。同様にして作製した他の転写用マスクセットを用い、半導体基板上に順次回路パターンの積層構造を形成し、半導体デバイスを作成した。得られた半導体デバイスを検査したところ正常に動作していることが確認できた。
 以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 たとえば、近似工程(S4)で、n次多項式Aの各項の係数a[j,k]を係数情報としたが、それに限定されず、例えば、n次多項式AのX偏微分曲面及びY偏微分曲面のそれぞれの多項式の各係数を係数情報としても良い。実際に転写パターンを補正する際には微分曲面の多項式と透明基板の厚さを用いて補正することができる。
1,2 主表面
3 端面
4 面取り面
5 透光性基板
7 基準面
8 マスクステージ

Claims (37)

  1.  主表面が精密研磨された透光性基板を準備する準備工程と、
     主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、
     前記透光性基板を露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、
     前記チャック後主表面形状を基に近似曲面を算出する近似曲面算出工程と、
     前記近似曲面の情報を前記透光性基板と対応付けて記録装置に記録する記録工程と
    を有することを特徴とするマスクブランク用基板の製造方法。
  2.  近似曲面は、基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現されたものであり、
     記録工程は、前記多変数関数の各係数の情報を近似曲面の情報として記録装置に記録することを有することを特徴とする請求項1記載のマスクブランク用基板の製造方法。
  3.  近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであることを特徴とする請求項2記載のマスクブランク用基板の製造方法。
  4.  多変数関数のXに関する偏微分を行うX偏微分関数の算出、および多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程を有し、
     記録工程では、前記X偏微分関数およびY偏微分関数の各係数の情報も近似曲面の情報として記録装置に記録することを特徴とする請求項2または3に記載のマスクブランク用基板の製造方法。
  5.  主表面が精密研磨された透光性基板を準備する準備工程と、
     主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、
     前記透光性基板を露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、
     前記チャック後主表面形状を基に、前記基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現された近似曲面を算出する近似曲面算出工程と、
     前記多変数関数のXに関する偏微分を行うX偏微分関数の算出、および前記多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程と、
     前記X偏微分関数およびY偏微分関数の各係数の情報を近似曲面の情報として前記透光性基板と対応付けて記録装置に記録する記録工程と
    を有することを特徴とするマスクブランク用基板の製造方法。
  6.  近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであることを特徴とする請求項5記載のマスクブランク用基板の製造方法。
  7.  シミュレーション工程は、
     透光性基板をマスクステージに載置したときにおける主表面の重力による変形量である重力変形量と、
     前記透光性基板をマスクステージにチャックしたときにおける主表面のマスクステージを支点としたてこ変形によるてこ変形量、主表面のマスクステージの形状に倣う変形による倣い変形量、および主表面の捩じれを矯正する変形による捩じれ変形量とをそれぞれ算出し、
     前記チャック前主表面形状へ重ね合わせてチャック後主表面形状を算出することを特徴とする請求項1から6のいずれかに記載のマスクブランク用基板の製造方法。
  8.  前記チャック後主表面形状から求められる算出領域内の平坦度が所定値以下のものをマスクブランク用基板として選定する選定工程を有することを特徴とする請求項1から7のいずれかに記載のマスクブランク用基板の製造方法。
  9.  前記算出領域は、透光性基板の中心を基準とした132mm角内の領域であることを特徴とする請求項8記載のマスクブランク用基板の製造方法。
  10.  前記平坦度の所定値は、0.24μm以下であることを特徴とする請求項8または9に記載のマスクブランク用基板の製造方法。
  11.  前記チャック前主表面形状から求められる所定領域内での平坦度が0.4μm以下である透光性基板を選定する工程を有することを特徴とする請求項1から10のいずれかに記載のマスクブランク用基板の製造方法。
  12.  請求項1から11のいずれかに記載のマスクブランク用基板の製造方法により製造されたマスクブランク用基板の前記主表面上に、パターン形成用薄膜を形成する薄膜形成工程を有することを特徴とするマスクブランクの製造方法。
  13.  請求項12記載のマスクブランクの製造方法により製造されたマスクブランクを用いて転写用マスクを製造する方法であって、
     前記マスクブランクの前記パターン形成用薄膜の上にレジスト膜を形成するレジスト膜形成工程と、
     前記近似曲面の情報を基にレジスト膜に形成する転写パターンの補正を行うパターン補正工程と、
     パターン補正工程で補正した転写パターンをレジスト膜に形成するレジストパターン形成工程と
    を有することを特徴とする転写用マスクの製造方法。
  14.  請求項13記載の転写用マスクの製造方法により製造された転写用マスクを用い、フォトリソグラフィ法により転写用マスクの転写パターンをウェハ上のレジスト膜に露光転写する工程を有することを特徴とする半導体デバイスの製造方法。
  15.  透光性基板の主表面上に薄膜を備えるマスクブランクを準備する準備工程と、
     前記マスクブランクの主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、
     前記マスクブランクを露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、
     前記チャック後主表面形状を基に近似曲面を算出する近似曲面算出工程と、
     前記近似曲面の情報を前記マスクブランクと対応付けて記録装置に記録する記録工程と
    を有することを特徴とするマスクブランクの製造方法。
  16.  近似曲面は、基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現されたものであり、
     記録工程は、前記多変数関数の各係数の情報を近似曲面の情報として記録装置に記録することを有することを特徴とする請求項15記載のマスクブランクの製造方法。
  17.  近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであることを特徴とする請求項16記載のマスクブランクの製造方法。
  18.  多変数関数のXに関する偏微分を行うX偏微分関数の算出、および多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程を有し、
     記録工程では、前記X偏微分関数およびY偏微分関数の各係数の情報も近似曲面の情報として記録装置に記録することを特徴とする請求項16または17に記載のマスクブランクの製造方法。
  19.  透光性基板の主表面上に薄膜を備えるマスクブランクを準備する準備工程と、
     前記マスクブランクの主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、
     前記マスクブランクを露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、
     前記チャック後主表面形状を基に、前記基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現された近似曲面を算出する近似曲面算出工程と、
     前記多変数関数のXに関する偏微分を行うX偏微分関数の算出、および前記多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程と、
     前記X偏微分関数およびY偏微分関数の各係数の情報を近似曲面の情報として前記透光性基板と対応付けて記録装置に記録する記録工程と
    を有することを特徴とするマスクブランクの製造方法。
  20.  近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであることを特徴とする請求項19記載のマスクブランクの製造方法。
  21.  シミュレーション工程は、
     マスクブランクをマスクステージに載置したときにおける主表面の重力による変形量である重力変形量と、
     前記マスクブランクをマスクステージにチャックしたときにおける主表面のマスクステージを支点としたてこ変形によるてこ変形量、主表面のマスクステージの形状に倣う変形による倣い変形量、および主表面の捩じれを矯正する変形による捩じれ変形量とをそれぞれ算出し、
     前記チャック前主表面形状へ重ね合わせてチャック後主表面形状を算出することを特徴とする請求項15から20のいずれかに記載のマスクブランクの製造方法。
  22.  前記チャック後主表面形状から求められる算出領域内の平坦度が所定値以下のものをマスクブランクとして選定する選定工程を有することを特徴とする請求項15から21のいずれかに記載のマスクブランクの製造方法。
  23.  前記算出領域は、透光性基板の中心を基準とした132mm角内の領域であることを特徴とする請求項22記載のマスクブランクの製造方法。
  24.  前記平坦度の所定値は、0.24μm以下であることを特徴とする請求項22または23に記載のマスクブランクの製造方法。
  25.  前記チャック前主表面形状から求められる所定領域内での平坦度が0.4μm以下であるマスクブランクを選定する工程を有することを特徴とする請求項15から24のいずれかに記載のマスクブランクの製造方法。
  26.  請求項15から25のいずれかに記載のマスクブランクを用いて転写用マスクを製造する方法であって、
     前記マスクブランクの前記パターン形成用薄膜の上にレジスト膜を形成するレジスト膜形成工程と、
     前記近似曲面の情報を基にレジスト膜に形成する転写パターンの補正を行うパターン補正工程と、
     パターン補正工程で補正した転写パターンをレジスト膜に形成するレジストパターン形成工程と
    を有することを特徴とする転写用マスクの製造方法。
  27.  請求項26記載の転写用マスクの製造方法により製造された転写用マスクを用い、フォトリソグラフィ法により転写用マスクの転写パターンをウェハ上のレジスト膜に露光転写する工程を有することを特徴とする半導体デバイスの製造方法。
  28.  透光性基板の主表面上に薄膜を備えるマスクブランクを準備する準備工程と、
     前記マスクブランクの主表面の実測領域内に設定された複数の測定点について、基準面を基準とした主表面の高さ情報をそれぞれ測定してチャック前主表面形状を取得する形状測定工程と、
     前記マスクブランクを露光装置のマスクステージにチャックしたときにおける前記複数の測定点の前記基準面を基準とした主表面の高さ情報であるチャック後主表面形状をシミュレーションにより得るシミュレーション工程と、
     前記チャック後主表面形状を基に近似曲面を算出する近似曲面算出工程と、
     前記マスクブランクの前記パターン形成用薄膜の上にレジスト膜を形成するレジスト膜形成工程と、
     前記近似曲面の情報を基にレジスト膜に形成する転写パターンの補正を行うパターン補正工程と、
     パターン補正工程で補正した転写パターンをレジスト膜に形成するレジストパターン形成工程と
    を有することを特徴とする転写用マスクの製造方法。
  29.  近似曲面は、基準面にX座標軸およびY座標軸を設定し、基準面に直交する方向にZ座標軸を設定してなる3次元座標系で表わされる多変数関数で表現されたものであることを有することを特徴とする請求項28記載の転写用マスクの製造方法。
  30.  近似曲面は、XまたはYが4次以上である多変数関数で表現されたものであることを特徴とする請求項29記載の転写用マスクの製造方法。
  31.  多変数関数のXに関する偏微分を行うX偏微分関数の算出、および多変数関数のYに関する偏微分を行うY偏微分関数の算出を行う偏微分関数算出工程を有することを特徴とする請求項29または30に記載の転写用マスクの製造方法。
  32.  シミュレーション工程は、
     マスクブランクをマスクステージに載置したときにおける主表面の重力による変形量である重力変形量と、
     前記マスクブランクをマスクステージにチャックしたときにおける主表面のマスクステージを支点としたてこ変形によるてこ変形量、主表面のマスクステージの形状に倣う変形による倣い変形量、および主表面の捩じれを矯正する変形による捩じれ変形量とをそれぞれ算出し、
     前記チャック前主表面形状へ重ね合わせてチャック後主表面形状を算出することを特徴とする請求項28から31のいずれかに記載の転写用マスクの製造方法。
  33.  前記チャック後主表面形状から求められる算出領域内の平坦度が所定値以下のマスクブランクを選定する選定工程を有することを特徴とする請求項28から32のいずれかに記載の転写用マスクの製造方法。
  34.  前記算出領域は、透光性基板の中心を基準とした132mm角内の領域であることを特徴とする請求項33記載の転写用マスクの製造方法。
  35.  前記平坦度の所定値は、0.24μm以下であることを特徴とする請求項33または34に記載の転写用マスクの製造方法。
  36.  前記チャック前主表面形状から求められる所定領域内での平坦度が0.4μm以下であるマスクブランクを選定する工程を有することを特徴とする請求項28から34のいずれかに記載の転写用マスクの製造方法。
  37.  請求項28から36のいずれかに記載の転写用マスクの製造方法により製造された転写用マスクを用い、フォトリソグラフィ法により転写用マスクの転写パターンをウェハ上のレジスト膜に露光転写する工程を有することを特徴とする半導体デバイスの製造方法。
PCT/JP2011/057766 2010-03-30 2011-03-29 マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法及び半導体デバイスの製造方法 WO2011122608A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147008463A KR101746094B1 (ko) 2010-03-30 2011-03-29 마스크 블랭크의 정보기록방법, 전사용 마스크의 제조방법 및 반도체 디바이스의 제조방법
CN201180016169.0A CN102822743B (zh) 2010-03-30 2011-03-29 掩模坯料用基板的制造方法、掩模坯料的制造方法、转印用掩模的制造方法以及半导体器件的制造方法
US13/638,505 US8785085B2 (en) 2010-03-30 2011-03-29 Method of manufacturing a mask blank substrate, method of manufacturing a mask blank, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
KR1020127025357A KR101447063B1 (ko) 2010-03-30 2011-03-29 마스크 블랭크용 기판의 제조방법, 마스크 블랭크의 제조방법, 전사용 마스크의 제조방법 및 반도체 디바이스의 제조방법
JP2012508336A JP5296260B2 (ja) 2010-03-30 2011-03-29 マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法及び半導体デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010077849 2010-03-30
JP2010-077849 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122608A1 true WO2011122608A1 (ja) 2011-10-06

Family

ID=44712303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057766 WO2011122608A1 (ja) 2010-03-30 2011-03-29 マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法及び半導体デバイスの製造方法

Country Status (5)

Country Link
US (1) US8785085B2 (ja)
JP (1) JP5296260B2 (ja)
KR (2) KR101746094B1 (ja)
CN (1) CN102822743B (ja)
WO (1) WO2011122608A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203961A1 (ja) * 2013-06-21 2014-12-24 Hoya株式会社 マスクブランク用基板、マスクブランク、転写用マスク及びこれらの製造方法並びに半導体デバイスの製造方法
JP2015040985A (ja) * 2013-08-22 2015-03-02 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP2015068919A (ja) * 2013-09-27 2015-04-13 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び半導体デバイスの製造方法
WO2016098452A1 (ja) * 2014-12-19 2016-06-23 Hoya株式会社 マスクブランク用基板、マスクブランク及びこれらの製造方法、転写用マスクの製造方法並びに半導体デバイスの製造方法
JP2016151733A (ja) * 2015-02-19 2016-08-22 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、フォトマスクの検査装置、及び表示装置の製造方法
JP2016151636A (ja) * 2015-02-17 2016-08-22 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、フォトマスクの検査装置、及び表示装置の製造方法
US11037757B2 (en) 2019-02-08 2021-06-15 Nuflare Technology, Inc. Charged particle beam writing apparatus and charged particle beam writing method
WO2023091983A1 (en) * 2021-11-17 2023-05-25 Applied Materials, Inc. Mura reduction method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382257B1 (ja) * 2013-01-10 2014-01-08 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP5970021B2 (ja) * 2013-08-20 2016-08-17 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、フォトマスクの検査装置、及び表示装置の製造方法
JP6398927B2 (ja) * 2015-09-18 2018-10-03 信越化学工業株式会社 フォトマスクブランク、その製造方法及びフォトマスク
JP6681945B2 (ja) * 2018-06-27 2020-04-15 Hoya株式会社 表示装置製造用フォトマスクの製造方法、描画装置、フォトマスクの検査方法、及びフォトマスクの検査装置
JP6837633B2 (ja) * 2019-03-19 2021-03-03 学校法人近畿大学 露光装置および露光方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050458A (ja) * 2001-05-31 2003-02-21 Toshiba Corp 露光マスクの製造方法、マスク基板情報生成方法、半導体装置の製造方法、マスク基板、露光マスクおよびサーバー
JP2006039223A (ja) * 2004-07-27 2006-02-09 Toshiba Corp 露光用マスクの製造方法、露光装置、半導体装置の製造方法およびマスクブランクス製品
WO2010110139A1 (ja) * 2009-03-25 2010-09-30 Hoya株式会社 マスクブランク用基板、マスクブランク、フォトマスクおよび半導体デバイスの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3984278B2 (ja) 2001-05-31 2007-10-03 株式会社東芝 マスク基板の平坦度シミュレーションシステム
CN1264196C (zh) * 2001-05-31 2006-07-12 株式会社东芝 曝光掩模的制造方法及其应用
US6537844B1 (en) 2001-05-31 2003-03-25 Kabushiki Kaisha Toshiba Manufacturing method for exposure mask, generating method for mask substrate information, mask substrate, exposure mask, manufacturing method for semiconductor device and server
JP3673263B2 (ja) 2003-05-30 2005-07-20 株式会社東芝 露光マスク基板製造方法、露光マスク製造方法、及び半導体装置製造方法
JP5153998B2 (ja) 2005-02-25 2013-02-27 Hoya株式会社 マスクブランク用透明基板の製造方法、マスクブランクの製造方法、露光用マスクの製造方法、及び半導体デバイスの製造方法
JP4634992B2 (ja) 2005-11-04 2011-02-16 株式会社ニューフレアテクノロジー 位置計測装置及び位置ずれ量計測方法
US7643130B2 (en) 2005-11-04 2010-01-05 Nuflare Technology, Inc. Position measuring apparatus and positional deviation measuring method
TW200746259A (en) 2006-04-27 2007-12-16 Nikon Corp Measuring and/or inspecting method, measuring and/or inspecting apparatus, exposure method, device manufacturing method, and device manufacturing apparatus
JP5046394B2 (ja) * 2007-08-07 2012-10-10 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法、マスクの製造方法、及びマスクブランク用基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050458A (ja) * 2001-05-31 2003-02-21 Toshiba Corp 露光マスクの製造方法、マスク基板情報生成方法、半導体装置の製造方法、マスク基板、露光マスクおよびサーバー
JP2006039223A (ja) * 2004-07-27 2006-02-09 Toshiba Corp 露光用マスクの製造方法、露光装置、半導体装置の製造方法およびマスクブランクス製品
WO2010110139A1 (ja) * 2009-03-25 2010-09-30 Hoya株式会社 マスクブランク用基板、マスクブランク、フォトマスクおよび半導体デバイスの製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168613B2 (en) 2013-06-21 2019-01-01 Hoya Corporation Mask blank substrate, mask blank, transfer mask, and method of manufacturing semiconductor device
US9690189B2 (en) 2013-06-21 2017-06-27 Hoya Corporation Mask blank substrate, mask blank, transfer mask, and method of manufacturing semiconductor device
JP5690981B1 (ja) * 2013-06-21 2015-03-25 Hoya株式会社 マスクブランク用基板、マスクブランク、転写用マスク及びこれらの製造方法並びに半導体デバイスの製造方法
WO2014203961A1 (ja) * 2013-06-21 2014-12-24 Hoya株式会社 マスクブランク用基板、マスクブランク、転写用マスク及びこれらの製造方法並びに半導体デバイスの製造方法
KR101597186B1 (ko) 2013-06-21 2016-02-24 호야 가부시키가이샤 마스크 블랭크용 기판, 마스크 블랭크, 전사용 마스크 및 이들의 제조방법, 그리고 반도체 디바이스의 제조방법
TWI611253B (zh) * 2013-06-21 2018-01-11 Hoya Corp 遮罩基底用基板、遮罩基底、轉印用遮罩及其等之製造方法以及半導體元件之製造方法
KR20150119121A (ko) * 2013-06-21 2015-10-23 호야 가부시키가이샤 마스크 블랭크용 기판, 마스크 블랭크, 전사용 마스크 및 이들의 제조방법, 그리고 반도체 디바이스의 제조방법
JP2015040985A (ja) * 2013-08-22 2015-03-02 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP2015068919A (ja) * 2013-09-27 2015-04-13 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法、及び半導体デバイスの製造方法
WO2016098452A1 (ja) * 2014-12-19 2016-06-23 Hoya株式会社 マスクブランク用基板、マスクブランク及びこれらの製造方法、転写用マスクの製造方法並びに半導体デバイスの製造方法
JP6033987B1 (ja) * 2014-12-19 2016-11-30 Hoya株式会社 マスクブランク用基板、マスクブランク及びこれらの製造方法、転写用マスクの製造方法並びに半導体デバイスの製造方法
US10578961B2 (en) 2014-12-19 2020-03-03 Hoya Corporation Mask blank substrate, multi-layer reflective film coated substrate, and mask blank
JP2016151636A (ja) * 2015-02-17 2016-08-22 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、フォトマスクの検査装置、及び表示装置の製造方法
JP2016151733A (ja) * 2015-02-19 2016-08-22 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、フォトマスクの検査装置、及び表示装置の製造方法
US11037757B2 (en) 2019-02-08 2021-06-15 Nuflare Technology, Inc. Charged particle beam writing apparatus and charged particle beam writing method
WO2023091983A1 (en) * 2021-11-17 2023-05-25 Applied Materials, Inc. Mura reduction method

Also Published As

Publication number Publication date
KR20140047171A (ko) 2014-04-21
JPWO2011122608A1 (ja) 2013-07-08
US20130022900A1 (en) 2013-01-24
CN102822743A (zh) 2012-12-12
KR101746094B1 (ko) 2017-06-12
KR20120135289A (ko) 2012-12-12
US8785085B2 (en) 2014-07-22
JP5296260B2 (ja) 2013-09-25
CN102822743B (zh) 2014-09-03
KR101447063B1 (ko) 2014-10-06

Similar Documents

Publication Publication Date Title
JP5296260B2 (ja) マスクブランク用基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法及び半導体デバイスの製造方法
JP5683930B2 (ja) マスクブランク用基板、マスクブランク、転写用マスク及び半導体デバイスの製造方法
US8026025B2 (en) Mask blank transparent substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
KR101304811B1 (ko) 포토마스크 블랭크 및 포토마스크
JP4728414B2 (ja) マスクブランク用基板、マスクブランク、フォトマスクおよび半導体デバイスの製造方法
CN105452956A (zh) 掩模坯料、带有负型抗抗蚀膜的掩模坯料、相移掩模及使用其的图案形成体的制造方法
JP4856798B2 (ja) 反射型マスクブランクの製造方法及び反射型マスクの製造方法、並びに半導体装置の製造方法
JP5874407B2 (ja) 位相欠陥の影響を低減するeuv露光用反射型マスクの製造方法
WO2015146140A1 (ja) Euvマスクの位相欠陥評価方法、euvマスクの製造方法、euvマスクブランク及びeuvマスク
JP5881417B2 (ja) マスクブランク用合成石英ガラス基板の複屈折仕様決定方法、マスクブランク用合成石英ガラス基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
JP4819191B2 (ja) マスクブランク用基板、マスクブランク、フォトマスクおよび半導体デバイスの製造方法
US10983427B2 (en) Method for manufacturing a mask blank substrate, method for manufacturing a mask blank, method for manufacturing a transfer mask, method for manufacturing a semiconductor device, a mask blank substrate, a mask blank, and a transfer mask
JP2012124196A (ja) Euv露光用反射型位相シフトマスクの製造方法
KR20230132464A (ko) 마스크 블랭크, 전사용 마스크의 제조 방법, 및 반도체디바이스의 제조 방법
JP2022083394A (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法及び表示装置の製造方法
JP2016191822A (ja) 膜応力の評価方法、マスクブランクの製造方法および転写用マスクの製造方法
JP2013195719A (ja) マスクブランク、転写用マスク、及び半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016169.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508336

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127025357

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13638505

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762832

Country of ref document: EP

Kind code of ref document: A1