WO2011122234A1 - 光触媒繊維及びその製造方法 - Google Patents

光触媒繊維及びその製造方法 Download PDF

Info

Publication number
WO2011122234A1
WO2011122234A1 PCT/JP2011/054949 JP2011054949W WO2011122234A1 WO 2011122234 A1 WO2011122234 A1 WO 2011122234A1 JP 2011054949 W JP2011054949 W JP 2011054949W WO 2011122234 A1 WO2011122234 A1 WO 2011122234A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
phase
silica
platinum
photocatalytic
Prior art date
Application number
PCT/JP2011/054949
Other languages
English (en)
French (fr)
Inventor
宏一郎 陶山
山岡 裕幸
原田 義勝
藤井 輝昭
大谷 慎一郎
貞義 須原
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN2011800166552A priority Critical patent/CN102821851A/zh
Priority to KR1020127028146A priority patent/KR20130043626A/ko
Priority to US13/637,938 priority patent/US20130109559A1/en
Priority to JP2012508168A priority patent/JP5163833B2/ja
Priority to EP11762474A priority patent/EP2554261A1/en
Publication of WO2011122234A1 publication Critical patent/WO2011122234A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/123Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
    • B01J31/124Silicones or siloxanes or comprising such units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material

Definitions

  • the present invention relates to a highly active photocatalytic fiber in which platinum particles are supported in mesopores (pores) formed in the fiber and a method for producing the same.
  • the photocatalytic oxidative decomposition mechanism is that holes generated by excitation light oxidize OH groups to generate OH radicals, and the generated OH radicals oxidize and decompose organic impurities such as organic matter, bacteria, fungi, viruses, and algae. To do.
  • OH radicals have the strongest oxidizing power, so unlike organic, active species such as light, ozone, and chlorine, which have been used in the past, organic substances are completely decomposed, Refractory substances that could not be dealt with until now can also be decomposed.
  • a photocatalyst such as powdered titanium oxide is mainly used.
  • these powdery photocatalysts have a problem that they are difficult to handle. For example, in purification of water, it is necessary to add photocatalyst powder to water and decompose organic impurities, and then separate the photocatalyst powder from water.
  • the photocatalyst powder can be applied and supported on the base material, but there is a problem that the photocatalyst powder that has fallen out is mixed in water.
  • a photocatalytic fiber is known as a photocatalyst (Patent Document 1). If a fibrous photocatalyst is used, the above problem can be solved.
  • an object of this invention is to provide a highly active photocatalyst fiber and its manufacturing method.
  • the present inventors irradiate a platinum-containing solution containing a sacrificial agent and platinum while irradiating the silica-based composite oxide fiber with light. It has been found that highly active photocatalytic fibers can be produced. That is, the present invention mainly relates to a modified polycarbosilane having a structure in which a polycarbosilane having a main chain skeleton represented by Chemical Formula 1 and having a number average molecular weight of 200 to 10,000 is modified with an organometallic compound, or the modified polycarbosilane.
  • a first step of obtaining a spinning dope which is a mixture of a silane and an organometallic compound
  • a second step of obtaining a spun fiber from the spinning dope and heat-treating the spun fiber in an oxidizing atmosphere, thereby infusible fiber
  • a third step of obtaining a silica-based composite oxide fiber by firing the infusible fiber in an oxidizing atmosphere, and a treatment on the surface side of the silica-based composite oxide fiber.
  • the silica-based composite oxide fiber is not brought into contact with a platinum-containing solution containing a sacrificial agent and platinum in a fifth step of removing silica in the vicinity of the surface to form mesopores.
  • the present invention also provides a silica-based composite oxide fiber comprising a composite oxide phase of an oxide phase (first phase) mainly composed of a silica component and a metal oxide phase (second phase) made of a metal other than silica. And the presence ratio of at least one or more metal elements of the metal oxide constituting the metal oxide phase (second phase) increases in a gradient toward the fiber surface, and the metal oxide phase ( In the second phase), the metal constituting it is formed into particles, and mesopores having an average pore diameter of 2 to 30 nm from the fiber surface to the inside of the fiber are formed between the particles, and the average particle diameter is in the mesopores.
  • a photocatalytic fiber characterized in that platinum (Pt) particles of 0.5 to 10 nm are supported.
  • a highly active photocatalytic fiber and a method for producing the same can be provided.
  • FIG. 2 is a TEM photograph of titania / silica fiber obtained in Production Example 1.
  • FIG. 6 is a TEM photograph of platinum-supported titania / silica fibers obtained in Example 5.
  • FIG. 2 is a TEM photograph of titania / silica fiber obtained in Production Example 1.
  • the photocatalyst fiber according to the present invention is one in which platinum (Pt) particles are supported in mesopores formed on the photocatalyst fiber by further processing the photocatalyst fiber described in Patent Document 1.
  • the oxide phase (first phase) mainly composed of the silica component may be amorphous or crystalline.
  • the first phase may contain a metal element or metal oxide that can form a solid solution or a eutectic compound with silica.
  • An example of a metal element that can form a solid solution with silica is titanium.
  • Examples of the metal element of the metal oxide that can form a solid solution with silica include aluminum, zirconium, yttrium, lithium, sodium, barium, calcium, boron, zinc, nickel, manganese, magnesium, and iron.
  • the oxide phase forms the internal phase of the photocatalytic fiber according to the present invention, and plays an important role in bearing the mechanical properties.
  • the ratio of the first phase to the entire photocatalyst fiber is preferably 98 to 40% by weight. In order to effectively form mesopores on the surface of the photocatalyst fiber and to exhibit high mechanical properties, it is preferable to control the proportion of the first phase within the range of 50 to 95% by weight.
  • the metal oxide constituting the metal oxide phase plays an important role in forming mesopores on the surface of the photocatalytic fiber according to the present invention.
  • the proportion of the second phase constituting the surface layer portion of the photocatalytic fiber is preferably 2 to 60% by weight, and in order to exhibit its effect sufficiently and at the same time to develop high strength, it is within the range of 5 to 50% by weight. It is preferable to control.
  • the metal oxide constituting the metal oxide phase (second phase) is a semiconductor material that is excited when irradiated with light having a wavelength corresponding to the band gap to form an electron-hole pair.
  • titania, barium titanate, strontium titanate, zirconia, and the like are preferably used.
  • the gradient of the abundance ratio of at least one metal element of the metal oxide constituting the second phase exists at a depth of 500 nm from the surface of the photocatalyst fiber.
  • the size of the mesopores is controlled by the particle size of the metal oxide constituting the second phase.
  • the mesopores In order to use mesopores as a chemical reaction field, the mesopores have an average pore diameter of 2 to 30 nm, preferably 5 to 20 nm. The average pore diameter of mesopores can be measured using a gas adsorption method.
  • platinum particles are supported in the mesopores.
  • the average particle diameter of the platinum particles is 0.5 to 10 nm, and preferably 1 to 5 nm.
  • the average particle diameter can be measured using TEM.
  • the size of the platinum particles is limited by the pore size of the mesopores.
  • the weight of the supported platinum particles is preferably 0.01 to 0.5% by weight, and preferably 0.1 to 0.2% by weight with respect to the photocatalytic fiber.
  • the weight of the supported platinum particles can be measured by ICP-AES.
  • the number of the platinum particles supported in the mesopore is preferably 6 ⁇ 10 13 particles / m 2 or more per unit surface area in the mesopore.
  • the number of platinum particles can be calculated by visually counting from a TEM photograph.
  • the photocatalytic fiber according to the present invention is preferably produced by the following first to sixth steps.
  • First step In the first step, first, a modified polycarbosilane having a number average molecular weight of 1,000 to 50,000 used as a starting material for silica-based composite oxide fibers is produced.
  • the method for producing the modified polycarbosilane is similar to the method described in JP-A-56-74126, but it is necessary to carefully control the bonding state of the functional group described therein. This is outlined below.
  • the modified polycarbosilane which is a starting material, includes a polycarbosilane having a main chain skeleton represented by Chemical Formula 2 and a number average molecular weight of 200 to 10,000, and a general formula M (OR ′) n or MR ′′ m ( M is a metal element, R ′ is an alkyl or phenyl group having 1 to 20 carbon atoms, R ′′ is acetylacetonate, and m and n are integers greater than 1.) And is derived from.
  • M is a metal element
  • R ′ is an alkyl or phenyl group having 1 to 20 carbon atoms
  • R ′′ is acetylacetonate
  • m and n are integers greater than 1.
  • the lower alkyl group for R includes an alkyl group having 1 to 3 carbon atoms, and specifically includes a methyl group, an ethyl group, and a propyl group.
  • a slow reaction condition such that only a part of the organometallic compound forms a bond with polycarbosilane.
  • inert gas at the temperature of 280 degrees C or less, Preferably, it is 250 degrees C or less.
  • the modified polycarbosilane in which the organometallic compound is partially bonded plays an important role in improving the compatibility between the polycarbosilane and the organometallic compound.
  • the modified polycarbosilane and an unreacted organometallic compound or an organometallic compound of about 2 to 3 trimmers are used as starting materials, but only the modified polycarbosilane alone is used. If a very low molecular weight modified polycarbosilane component is included, it can be used as a starting material as well.
  • the obtained modified polycarbosilane or the modified polycarbosilane and a low molecular weight organometallic compound are mixed to obtain a spinning dope.
  • a stock solution is prepared by melting the spinning solution of the modified polycarbosilane obtained in the first step or the modified polycarbosilane and a low molecular weight organometallic compound (hereinafter sometimes referred to as a precursor). Is filtered to remove substances that are harmful when spinning, such as microgels and impurities, and this is spun by a commonly used apparatus for spinning synthetic fibers.
  • the temperature of the spinning dope during spinning varies depending on the softening temperature of the raw material modified polycarbosilane, but a temperature range of 50 to 200 ° C. is advantageous.
  • a humidification heating cylinder may be provided below the nozzle as necessary.
  • the fiber diameter is adjusted by changing the discharge amount from the nozzle and the winding speed of a high-speed winding device installed at the lower part of the spinning machine.
  • the fiber discharged from the nozzle may be directly molded into a felt shape by a melt blow method or a spun bond method.
  • the modified polycarbosilane obtained in the first step, or the spinning stock solution of the modified polycarbosilane and the low molecular weight organometallic compound for example, benzene, toluene, xylene or other modified polycarbosilane and low
  • a molecular weight organometallic compound is dissolved in a solvent that can be melted to prepare a stock solution. In some cases, this is filtered to remove harmful substances such as macrogel and impurities, and then the stock solution is usually used for spinning synthetic fibers. Spinning can be performed by a dry spinning method using an apparatus, and a desired fiber can be obtained by controlling a winding speed.
  • a spinning cylinder is attached to the synthetic fiber spinning device, and the atmosphere in the spinning cylinder is a mixed atmosphere with at least one gas of benzene, toluene, xylene, or the like, or , Air, inert gas, hot air, hot inert gas, steam, ammonia gas, hydrocarbon gas, and organosilicon compound gas to control the solidification of the spinning fiber in the spinning cylinder be able to.
  • the spun fiber obtained in the second step is preheated in an oxidizing atmosphere under the action of tension or no tension to infusibilize the spun fiber.
  • the third step is performed for the purpose of preventing the fibers from melting and adhering to the adjacent fibers during the firing in the fourth step.
  • the treatment temperature and treatment time vary depending on the composition and are not particularly limited. In general, the treatment temperature is 50 to 400 ° C., and the treatment time is several hours to 30 hours.
  • the oxidizing atmosphere may contain water, nitrogen oxide, ozone, or the like that enhances the oxidizing power of the spun fiber. Further, the oxygen partial pressure in the oxidizing atmosphere may be changed intentionally.
  • the softening temperature of the spun fiber may be lower than 50 ° C. In that case, at the temperature lower than the above treatment temperature in advance, the fiber surface You may give the process which accelerates
  • the transition (bleed out) of the low molecular weight compound contained in the starting material proceeds to the fiber surface, and the target inclination It is thought that the foundation of the composition is formed.
  • the infusible fiber obtained in the third step is fired in an oxidizing atmosphere under the action of tension or no tension, preferably at 500 to 1800 ° C., so that an oxide phase mainly composed of a silica component is obtained.
  • (1st phase) and the metal oxide phase (2nd phase) which consists of metals other than a silica, and the abundance ratio of at least 1 or more metal element of the metal oxide which comprises a 2nd phase Increases in a slope toward the fiber surface, and the second phase produces silica-based composite oxide fibers in which the metal constituting the second phase is formed in the form of particles.
  • the firing temperature in the fourth step affects the particle size of the metal constituting the second phase.
  • the firing temperature when the firing temperature is increased, the particle size of the metal constituting the second phase is increased. Since the size of the mesopores is controlled by the size of the metal particles constituting the second phase, the selection of the firing temperature is performed according to the size of the target mesopores.
  • the organic component contained in the infusible fiber is basically oxidized, but depending on the conditions to be selected, it may remain in the fiber as carbon or carbide. Even in such a state, when the target function is not hindered, it is used as it is. However, when the target function is hindered, further oxidation treatment is performed. In that case, the processing temperature and processing time which do not cause a problem in the target gradient composition and crystal structure must be selected.
  • the surface side of the silica-based composite oxide fiber obtained in the fourth step is treated to remove silica in the vicinity of the surface, and mesopores are formed on the fiber surface.
  • a physical method and a chemical method can be used. Examples thereof include a method of evaporating silica under reduced pressure and high temperature, and a method of eluting silica using an acid.
  • silica is removed by immersing the silica-based composite oxide fiber obtained in the fourth step in a 2% by weight hydrogen fluoride aqueous solution for about 10 minutes or in a 10% by weight sodium hydroxide aqueous solution for about 12 hours. Is preferred.
  • platinum is contained in the mesopores of the silica-based composite oxide fiber by irradiating light to the platinum-containing solution (electrodeposition solution) containing the sacrificial agent and platinum while contacting the silica-based composite oxide fiber.
  • the particles are supported to produce a photocatalytic fiber. Irradiating light having energy equal to or higher than the band gap of the metal oxide constituting the second phase while bringing the silica-based composite oxide fiber into contact with a platinum-containing solution obtained by adding a sacrificial agent to a platinum-containing solution.
  • platinum particles can be selectively supported on the reduction site of the metal oxide (non-light-irradiated surface, that is, inside the mesopore).
  • Examples of the sacrificial agent include formic acid, sodium hydride, and alcohol. Alcohol is preferable, and methanol and ethanol are more preferable from the viewpoint of economy and safety of handling.
  • the concentration of platinum in the platinum-containing solution can be adjusted according to the target loading amount, and is not particularly limited as long as platinum can be dissolved in the platinum-containing solution, and is 1.0 to 10.0 ppm.
  • the range is preferable, and the range of 2.0 to 5.0 ppm is more preferable. If it is less than 1.0 ppm, the desired photocatalytic activity is difficult to obtain, and even if it exceeds 10.0 ppm, it is difficult to obtain further increase in activity, which is uneconomical.
  • the concentration of the sacrificial agent in the platinum-containing solution can be adjusted according to the light irradiation time, and is preferably in the range of 0.1 to 50.0% by weight, preferably 0.5 to 20% by weight. More preferably, the range is 2.0 to 15.0% by weight. In the case of 0.5% by weight or more, shortening of the irradiation time can be expected. Even if it exceeds 50.0% by weight, it is difficult to obtain a remarkable effect of shortening the irradiation time. Therefore, it is preferably 50.0% by weight or less from the viewpoint of economy.
  • the wavelength of the irradiated light is not particularly limited as long as the light has energy equal to or higher than the energy corresponding to the band gap of the metal oxide constituting the second phase.
  • the band gap is 3.2 eV, and therefore, energy corresponding to this, that is, a wavelength of 387 nm or less can be used.
  • the light intensity is not particularly limited, but it is preferable that the light intensity is in the range of 2.5 to 7.0 mW / cm 2 because a stable increase in photocatalytic activity can be expected. Since this range can be easily achieved with a commercially available lamp, it is also economical.
  • the high performance photocatalyst fiber composed of the silica-based composite oxide fiber according to the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to the following examples, and the present invention is not limited thereto. Changes can be made without departing from the spirit of the present invention.
  • FIG. 2 shows a TEM (transmission electron microscope) photograph of a titania / silica fiber having a mesopore structure at a firing temperature of 1200 ° C.
  • Ti / Si (molar ratio) 0.12 to 0.15 in the region of 3 to 4 ⁇ m
  • Ti / Si (molar ratio) 0.03 to 0.04 in the center
  • titanium is directed toward the fiber surface. It was confirmed that the composition had an increasing gradient composition.
  • Examples 1 to 7 2.38 g of the titania / silica fiber obtained in Production Example 1 was placed in a glass container having a length of 550 mm, a width of 380 mm, a height of 25 mm, and a thickness of 3.3 mm, and 12.4 mg of potassium chloroplatinate (IV) was added in an amount of 0. It is immersed in 1 L of an electrodeposition solution (platinum concentration: 4.98 ppm) prepared by dissolving 1,0.5, 1, 2, 3, 5, and 15 wt% ethanol aqueous solution, and the black light is 5.5 mW / cm 2. For 4 hours (electrodeposition reaction).
  • platinum concentration: 4.98 ppm platinum concentration
  • the fiber was taken out from the glass container, washed with water, and further dried to obtain photocatalyst fibers according to Examples 1 to 7 in which the ethanol concentration was changed.
  • the amount of platinum supported by the photocatalyst fiber according to Example 5 was 0.1% by weight (vs. photocatalyst fiber).
  • the supported platinum is present only in the mesopores on the surface of the photocatalytic fiber as shown in FIG. 3, and the particle size of each platinum is about 2 to 5 nm. It was found to be spherical.
  • the number of platinum particles per unit surface area in the mesopore was about 1 ⁇ 10 14 particles / m 2 .
  • Comparative Example 1 A photocatalyst fiber according to Comparative Example 1 was obtained in the same manner as Example 1 except that ethanol as a sacrificial agent was not added.
  • the activity of the photocatalytic fibers according to Examples 1 to 7 and Comparative Example 1 was measured by the following method.
  • DMSO dimethyl sulfoxide
  • MSA methanesulfonic acid
  • a sample sized to ⁇ 40 mm and 50 mg was placed in a ⁇ 40 mm petri dish, a DMSO solution adjusted to a concentration of 100 ppm was poured into a 10 ml petri dish, and irradiated with a black light with an ultraviolet intensity of 2.5 mW / cm 2 and 60 min.
  • the activity of the photocatalyst was determined by measuring the amount of MSA produced in the DMSO aqueous solution by IC (ion chromatography).
  • the photocatalytic activity (MSAref) obtained by measuring the degree of activity improvement in the same manner before the electrodeposition reaction was expressed in terms of 100 minutes using the denominator. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

 高活性な光触媒繊維及びその製造方法を提供する。シリカ成分を主体とする酸化物相(第1相)とシリカ以外の金属からなる金属酸化物相(第2相)との複合酸化物相からなるシリカ基複合酸化物繊維であって、前記金属酸化物相(第2相)を構成する金属酸化物の少なくとも1以上の金属元素の存在割合が繊維表面に向かって傾斜的に増大しており、前記金属酸化物相(第2相)は、それを構成する金属が粒子状に形成され、その粒子間に繊維表面から繊維内部に向かう平均細孔径が2~30nmのメソポアが形成され、前記メソポア中に平均粒子径が0.5~10nmのプラチナ(Pt)粒子が担持されていることを特徴とする光触媒繊維である。

Description

光触媒繊維及びその製造方法
 本発明は、繊維に形成されたメソポア(細孔)中にプラチナ粒子が担持された高活性な光触媒繊維及びその製造方法に関する。
 近年、環境保全に対する関心の高まりとともに、大気中及び水中の有害物質の処理が求められている。このような状況の中で、光触媒の持つ強い酸化力による有害物質の分解に注目が集まっている。光触媒の酸化分解機構は、励起光により生成した正孔がOH基を酸化しOHラジカルを発生させ、発生したOHラジカルが、有機物、細菌、真菌、ウイルス、及び藻類などの有機性不純物を酸化分解する。種々の活性種の中でもOHラジカルは、最も強い酸化力を有しているため、従来使われてきた殺菌灯による光、オゾン、及び塩素などの活性種と違い、有機物を完全に分解し、さらに今まで対処できなかった難分解性物質も分解可能である。
 光触媒としては、粉末状の酸化チタンなどの光触媒が主として用いられている。しかし、これら粉末状の光触媒は、取り扱いが難しいという問題がある。例えば、水の浄化においては、光触媒粉末を水に加え、有機性不純物を分解した後、水から光触媒粉末を分離する必要がある。基材に光触媒粉末を塗布・担持させることもできるが、脱落した光触媒粉末が水に混入するという問題がある。
 一方、光触媒として、光触媒繊維が知られている(特許文献1)。繊維状の光触媒を用いれば、上記問題を解決することができる。
WO/JP2008/053686
 しかしながら、さらに高活性な光触媒繊維を用いて効率的に有害物質を分解することが求められている。そこで本発明は、高活性な光触媒繊維及びその製造方法を提供することを目的とする。
 以上の目的を達成するために、本発明者らは、鋭意研究を重ねた結果、犠牲剤及びプラチナを含むプラチナ含有溶液に、シリカ基複合酸化物繊維を接触させながら光を照射することにより、高活性な光触媒繊維を製造できることを見出した。すなわち、本発明は、主として化1により表される主鎖骨格を有する数平均分子量200~10,000のポリカルボシランを有機金属化合物で修飾した構造を有する変性ポリカルボシラン、又は前記変性ポリカルボシランと有機金属化合物との混合物である、紡糸原液を得る第1工程と、前記紡糸原液から紡糸繊維を得る第2工程と、前記紡糸繊維を酸化雰囲気中で加熱処理することによって、不融化繊維を得る第3工程と、前記不融化繊維を酸化雰囲気中で焼成することによって、シリカ基複合酸化物繊維を得る第4工程と、前記シリカ基複合酸化物繊維の表面側に処理を施すことで表面近傍のシリカを除去してメソポアを形成する第5工程と、犠牲剤及びプラチナを含むプラチナ含有溶液に、前記シリカ基複合酸化物繊維を接触させながら光を照射する第6工程と、を備えたことを特徴とする光触媒繊維の製造方法である。
Figure JPOXMLDOC01-appb-C000002
 また、本発明は、シリカ成分を主体とする酸化物相(第1相)とシリカ以外の金属からなる金属酸化物相(第2相)との複合酸化物相からなるシリカ基複合酸化物繊維であって、前記金属酸化物相(第2相)を構成する金属酸化物の少なくとも1以上の金属元素の存在割合が繊維表面に向かって傾斜的に増大しており、前記金属酸化物相(第2相)は、それを構成する金属が粒子状に形成され、その粒子間に繊維表面から繊維内部に向かう平均細孔径が2~30nmのメソポアが形成され、前記メソポア中に平均粒子径が0.5~10nmのプラチナ(Pt)粒子が担持されていることを特徴とする光触媒繊維である。
 以上のように、本発明によれば、高活性な光触媒繊維及びその製造方法を提供することができる。
本発明に係る光触媒繊維を模式的に示す図である。 製造例1において得られたチタニア/シリカ繊維のTEM写真である。 実施例5において得られたプラチナ担持チタニア/シリカ繊維のTEM写真である。
 本発明に係る光触媒繊維は、特許文献1に記載の光触媒繊維をさらに処理することにより、光触媒繊維に形成されたメソポア中にプラチナ(Pt)粒子を担持したものである。
 本発明に係る光触媒繊維において、シリカ成分を主体とする酸化物相(第1相)は、非晶質であっても結晶質であってもよい。第1相は、シリカと固溶体又は共融点化合物を形成し得る金属元素又は金属酸化物を含有していてもよい。シリカと固溶体を形成し得る金属元素としては、例えば、チタンが挙げられる。シリカと固溶体を形成し得る金属酸化物の金属元素としては、例えば、アルミニウム、ジルコニウム、イットリウム、リチウム、ナトリウム、バリウム、カルシウム、ホウ素、亜鉛、ニッケル、マンガン、マグネシウム、及び鉄が挙げられる。
 酸化物相(第1相)は、本発明に係る光触媒繊維の内部相を形成しており、力学的特性を負担する重要な役割を演じている。光触媒繊維全体に対する第1相の存在割合は98~40重量%であることが好ましい。光触媒繊維表面に、メソポアを効果的に形成し、且つ、高い力学的特性をも発現させるためには、第1相の存在割合を50~95重量%の範囲内に制御することが好ましい。
 金属酸化物相(第2相)を構成する金属酸化物は、本発明に係る光触媒繊維表面にメソポアを形成させる上で重要な役割を演じるものである。光触媒繊維の表層部を構成する第2相の存在割合は、2~60重量%が好ましく、その効果を十分に発揮させ、同時に高強度をも発現させるには、5~50重量%の範囲内に制御することが好ましい。
 金属酸化物相(第2相)を構成する金属酸化物は、半導体材料であって、そのバンドギャップに相当する波長の光を照射したときに励起し、電子-正孔対を形成する材料である必要があり、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、バリウム(Ba)、ストロンチウム(Sr)、カドミウム(Cd)、鉛(Pb)、鉄(Fe)、ニッケル(Ni)、アルミニウム(Al)、ガリウム(Ga)、ゲルマニウム(Ge)、インジウム(In)、スズ(Sn)、ジルコニウム(Zn)及びタングステン(W)のうち少なくとも1以上の酸化物又は複合酸化物である。このうち、チタニア、チタン酸バリウム、チタン酸ストロンチウム、及びジルコニアなどが好適に用いられる。
 本発明に係る光触媒繊維において、第2相を構成する金属酸化物の少なくとも1以上の金属元素の存在割合の傾斜は、光触媒繊維表面から500nmの深さで存在することが好ましい。
 本発明に係る光触媒繊維において、メソポアの大きさは第2相を構成する金属酸化物の粒子サイズによって制御される。メソポアを化学反応場として用いるためには、メソポアの平均細孔径が2~30nmであり、5~20nmであることが好ましい。メソポアの平均細孔径は、ガス吸着法を用いて測定することができる。
 本発明に係る光触媒繊維においては、メソポア中にプラチナ粒子が担持されている。プラチナ粒子の平均粒子径は、0.5~10nmであり、1~5nmであることが好ましい。平均粒子径は、TEMを用い測定することができる。プラチナ粒子の大きさは、メソポアの細孔径によって制限される。担持されたプラチナ粒子の重量は、光触媒繊維に対して、0.01~0.5重量%であることが好ましく、0.1~0.2重量%であることが好ましい。担持されたプラチナ粒子の重量は、ICP-AESによって測定することができる。
 本発明に係る光触媒繊維においては、前記メソポア中に担持されている前記プラチナ粒子の数が、前記メソポア中の単位表面積あたり6x1013個/m以上であることが好ましい。プラチナ粒子の数は、TEM写真から目視によって数えることにより算出することができる。
 本発明に係る光触媒繊維は、以下の第1工程乃至第6工程によって、好適に製造される。
(第1工程)
 第1工程においては、まず、シリカ基複合酸化物繊維の出発原料として使用する数平均分子量1,000~50,000の変性ポリカルボシランを製造する。この変性ポリカルボシランの製造方法は、特開昭56-74126号に記載された方法と類似しているが、その中に記載されている官能基の結合状態を注意深く制御する必要がある。これについて以下に概説する。
 出発原料である変性ポリカルボシランは、主として化2により表される主鎖骨格を有する数平均分子量200~10,000のポリカルボシランと、一般式M(OR’)n又はMR’’m(Mは金属元素、R’は炭素原子数1~20を有するアルキル基又はフェニル基、R’’はアセチルアセトナート、m及びnは1より大きい整数を示す。)を基本構造とする有機金属化合物とから誘導される。
Figure JPOXMLDOC01-appb-C000003
 化2中、Rの低級アルキル基としては、炭素数1~3のアルキル基が挙げられ、具体的には、メチル基、エチル基、及びプロピル基が挙げられる。
 本発明に係る傾斜組成を有する光触媒繊維を製造するためには、上記有機金属化合物の一部のみがポリカルボシランと結合を形成するような、緩慢な反応条件を選択する必要がある。そのためには、不活性ガス中、280℃以下、好ましくは、250℃以下の温度で反応させる必要がある。この反応条件では、上記有機金属化合物はポリカルボシランと反応したとしても、1官能性重合体として結合(すなわち、ペンダント状に結合)しており、大幅な分子量の増大は起こらない。この有機金属化合物が一部結合した変性ポリカルボシランは、ポリカルボシランと有機金属化合物との相溶性を向上させる上で重要な役割を演じる。
 2官能基以上の多くの官能基が結合した場合は、ポリカルボシランの橋掛け構造が形成されると共に、顕著な分子量の増大が認められる。この場合、反応中に急激な発熱と溶融粘度の上昇が起こる。一方、上述のように1官能基しか反応せず、未反応の有機金属化合物が残存している場合には、反対に溶融粘度の低下が観察される。
 本発明に係る光触媒繊維の製造においては、未反応の有機金属化合物を意図的に残存させる条件を選択することが望ましい。本発明においては、主として上記変性ポリカルボシランと、未反応状態の有機金属化合物又は2~3量体程度の有機金属化合物とが共存したものを出発原料として用いるが、変性ポリカルボシランのみでも、極めて低分子量の変性ポリカルボシラン成分が含まれる場合は、同様に出発原料として使用することができる。得られた変性ポリカルボシラン、あるいは変性ポリカルボシランと低分子量の有機金属化合物を混合して紡糸原液を得る。
 (第2工程)
 第1工程で得られた変性ポリカルボシラン、あるいは変性ポリカルボシランと低分子量の有機金属化合物の紡糸原液(以下、前駆体という場合がある。)を溶融させて原液を造り、場合によってはこれをろ過してミクロゲル、不純物等の紡糸に際して有害となる物質を除去し、これを通常用いられる合成繊維紡糸用装置により紡糸する。紡糸する際の紡糸原液の温度は原料の変性ポリカルボシランの軟化温度によって異なるが、50~200℃の温度範囲が有利である。上記紡糸装置において、必要に応じてノズル下部に加湿加熱筒を設けてもよい。尚、繊維径は、ノズルからの吐出量と紡糸機下部に設置された高速巻き取り装置の巻き取り速度を変えることにより調整される。また、メルトブロー法あるいはスパンボンド法により、ノズルから吐出した繊維を巻き取らずに直接フェルト形状に成型してもよい。
 前記溶融紡糸の他に、第1工程で得られた変性ポリカルボシラン、あるいは変性ポリカルボシランと低分子量の有機金属化合物の紡糸原液を、例えばベンゼン、トルエン、キシレンあるいはその他変性ポリカルボシランと低分子量有機金属化合物を溶融することのできる溶媒に溶解させ、原液を造り、場合によってはこれをろ過してマクロゲル、不純物等紡糸に際して有害な物質を除去した後、前記原液を通常用いられる合成繊維紡糸装置により乾式紡糸法により紡糸し、巻き取り速度を制御して目的とする繊維を得ることができる。
 第2工程においては、必要に応じて、合成繊維紡糸装置に紡糸筒を取り付け、紡糸筒内の雰囲気をベンゼン、トルエン、及びキシレン等のうち少なくとも1以上の気体との混合雰囲気とするか、又は、空気、不活性ガス、熱空気、熱不活性ガス、スチーム、アンモニアガス、炭化水素ガス、及び有機ケイ素化合物ガスのいずれかの雰囲気とすることによって、紡糸筒内における紡糸繊維の固化を制御することができる。
(第3工程)
 第3工程においては、第2工程で得られた紡糸繊維を酸化雰囲気中、張力又は無張力の作用下で予備加熱し、前記紡糸繊維の不融化を行う。第3工程は、第4工程の焼成の際に繊維が溶融せず、且つ、隣接繊維と接着しないことを目的に行うものである。処理温度及び処理時間は組成によって異なり、特に制限はないが、一般に、処理温度は50~400℃、処理時間は数時間~30時間である。また、上記の酸化雰囲気中には、水分、窒素酸化物、オゾン等、紡糸繊維の酸化力を高めるものが含まれていてもよい。また、酸化雰囲気中の酸素分圧を意図的に変えてもよい。第1工程で用いる出発原料中に含まれる低分子量物の割合によっては、紡糸繊維の軟化温度が50℃を下回る場合もあり、その場合は、あらかじめ上記の処理温度よりも低い温度で、繊維表面の酸化を促進する処理を施してもよい。
 本発明に係る光触媒繊維においては、第2工程及び第3工程の際に、出発原料中に含まれている低分子量化合物の繊維表面への移行(ブリードアウト)が進行して、目的とする傾斜組成の下地が形成されるものと考えられる。
(第4工程)
 第4工程においては、第3工程で得られた不融化繊維を酸化雰囲気中、張力又は無張力の作用下、好ましくは500~1800℃で焼成することによって、シリカ成分を主体とする酸化物相(第1相)と、シリカ以外の金属からなる金属酸化物相(第2相)との複合酸化物相からなり、第2相を構成する金属酸化物の少なくとも1以上の金属元素の存在割合が繊維表面に向かって傾斜的に増大しており、第2相は、それを構成する金属が粒子状に形成されているシリカ基複合酸化物繊維を作製する。第4工程における焼成温度が、第2相を構成する金属の粒子サイズに影響を及ぼす。すなわち、焼成温度を高くすると、第2相を構成する金属の粒子サイズは大きくなる。第2相を構成する金属の粒子サイズによってメソポアの大きさが制御されるため、焼成温度の選択は、目的とするメソポアの大きさに応じて行われる。第4工程において、不融化繊維中に含まれる有機物成分は基本的に酸化されるが、選択する条件によって、炭素や炭化物として繊維中に残存する場合もある。このような状態でも、目的とする機能に支障を来たさない場合はそのまま使用されるが、支障を来たす場合には、更なる酸化処理が施される。その際は、目的とする傾斜組成及び結晶構造に問題が生じない処理温度及び処理時間が選択されなければならない。
(第5工程)
 第5工程においては、第4工程で得られたシリカ基複合酸化物繊維の表面側に処理を施すことで表面近傍のシリカを除去し、繊維表面にメソポアを形成させる。このシリカを除去する方法に、特に制限はなく、物理的方法及び化学的方法を用いることができる。その例として、減圧高温下でシリカを蒸発させる方法、及び酸を用いてシリカを溶出させる方法などが挙げられる。特に、第4工程で得られたシリカ基複合酸化物繊維を、2重量%のフッ化水素水溶液に10分程度、あるいは10重量%の水酸化ナトリウム水溶液に12時間程度浸漬することによってシリカを除去する方法が好適である。
(第6工程)
 第6工程においては、犠牲剤及びプラチナを含むプラチナ含有溶液(電析溶液)に、シリカ基複合酸化物繊維を接触させながら光を照射することにより、シリカ基複合酸化物繊維のメソポア内にプラチナ粒子を担持させて、光触媒繊維を作製する。プラチナが含まれる液に犠牲剤を加えたプラチナ含有溶液にシリカ基複合酸化物繊維を接触させながら、第2相を構成する金属酸化物のバンドギャップに相当するエネルギー以上のエネルギーを有する光を照射することによって、金属酸化物の還元サイト(光の非照射面、つまりメソポア内部)に選択的に、プラチナ粒子を担持することができる。
 犠牲剤としては、例えば、ギ酸、水素化ナトリウム、及びアルコールを挙げることができ、アルコールであることが好ましく、経済性や取扱いの安全性の面からメタノール、エタノールであるであることがさらに好ましい。
 プラチナ含有溶液中のプラチナの濃度としては、目的とする担持量に応じて調整することができ、プラチナがプラチナ含有溶液に溶け得る範囲であれば特に制限はなく、1.0~10.0ppmの範囲であることが好ましく、2.0~5.0ppmの範囲であることがさらに好ましい。1.0ppmより少ない場合、所望の光触媒活性が得難く、10.0ppmを超えても更なる活性の増大が得られ難いので不経済である。
 プラチナ含有溶液中の犠牲剤の濃度としては、光の照射時間に応じて調整することができ、0.1~50.0重量%の範囲であることが好ましく、0.5~20重量%の範囲であることがさらに好ましく、2.0~15.0重量%の範囲であることが特に好ましい。0.5重量%以上の場合、照射時間の短縮が期待できる。50.0重量%を超えても、格段の照射時間短縮効果は得難いため、経済性の面から、50.0重量%以下であることが好ましい。
 照射する光の波長は、前述の通り、第2相を構成する金属酸化物のバンドギャップに相当するエネルギー以上のエネルギーを有する光であれば、特に制限は無い。例えば、第2相がアナターゼ型のチタニアの場合、バンドギャップは3.2eVであるので、これに相当するエネルギー、すなわち387nm以下の波長を用いることができる。光の強度についても特に制限は無いが、光の強度が2.5~7.0mW/cmの範囲であれば、安定した光触媒活性の上昇を期待できるため好ましい。この範囲は市販のランプで容易に達成できる為、経済性にも優れる。
 以下に、実施例を挙げて本発明に係るシリカ基複合酸化物繊維からなる高性能光触媒繊維をさらに詳しく説明するが、本発明は、下記の実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更実施することができる。
(参考例1:ポリカルボシランの製造)
 容量5リットルの三口フラスコに、無水トルエン2.5リットル及び金属ナトリウム400gを入れ、窒素ガス気流下、トルエンの沸点まで加熱し、ジメチルジクロロシラン1リットルを1時間かけて滴下した。滴下終了後、10時間加熱還流して、沈殿物を生成させた。この沈殿物をろ過し、メタノール、次いで水を用いて洗浄して、白色粉末のポリジメチルシラン420gを得た。水冷還流器を備えた三口フラスコ中に、得られたポリジメチルシラン250gを入れ、窒素ガス気流下、420℃で30時間加熱反応させて数平均分子量が1200のポリカルボシランを得た。
(製造例1)
 参考例1の方法によって合成されたポリカルボシラン50gに、トルエン100g及びテトラブトキシチタン50gを加え、100℃で1時間予備加熱した後、150℃まで緩やかに昇温してトルエンを留去させて、そのまま5時間反応させた後、更に250℃まで昇温し、5時間反応させて変性ポリカルボシランを合成した。この変性ポリカルボシランに、意図的に低分子量有機金属化合物を共存させる目的でテトラブトキシチタン5gを加えて、変性ポリカルボシランと低分子量有機金属化合物との混合物(紡糸原液)を得た。
 得られた変性ポリカルボシランと低分子量有機金属化合物との混合物をトルエンに溶解させた後、ガラス製の紡糸装置に仕込み、内部を十分に窒素置換してから昇温してトルエンを留去させて、180℃で溶融紡糸を行った。得られた紡糸繊維を、空気中、段階的に150℃まで加熱し不融化させた後、空気中、900~1300℃で1時間焼成し、チタニア/シリカ繊維を得た。この繊維を2重量%のフッ化水素水溶液に10分間浸漬することによって繊維表面のシリカを除去し、メソポア構造のチタニア/シリカ繊維(平均直径:10μm)を得た。図2に、焼成温度1200℃におけるメソポア構造のチタニア/シリカ繊維のTEM(透過電子顕微鏡)写真を示す。
 製造例1において得られたチタニア/シリカ繊維は、X線回折の結果、非晶質シリカ及びアナターゼのチタニアからなっていた。また、蛍光X線分析の結果、シリカが78重量%、チタニアが22重量%であった。さらに、EPMA(X線マイクロ・アナライザ)により構成原子の分布状態を測定したところ、繊維の最外周部から1μmの領域でTi/Si(モル比)=0.90~0.94、最外周から3~4μmの領域でTi/Si(モル比)=0.12~0.15、中心部でTi/Si(モル比)=0.03~0.04であり、繊維表面に向ってチタンが増大する傾斜組成になっていることが確認された。
(実施例1~7)
 製造例1において得られたチタニア/シリカ繊維2.38gを縦550mm×横380mm×高さ25mm、厚さ3.3mmのガラス容器に入れ、塩化白金酸(IV)カリウム12.4mgをそれぞれ0.1,0.5,1,2,3,5,及び15重量%エタノール水溶液を溶かして調製した電析溶液(プラチナ濃度:4.98ppm)1Lに浸漬し、ブラックライトを5.5mW/cmの強度で4時間照射(電析反応)した。照射後、ガラス容器から繊維を取り出し、水洗、さらに乾燥を行うことによって、エタノールの濃度を変化させた実施例1乃至7に係る光触媒繊維を得た。ICP-AESの結果から、実施例5に係る光触媒繊維のプラチナ担持量は0.1重量%(対光触媒繊維)であった。また、TEM観察の結果(実施例5)から、担持されたプラチナは、図3に示すように、光触媒繊維表面のメソポア内のみに存在しており、いずれのプラチナも粒径は2~5nm程度で球状であることがわかった。メソポア中の単位表面積あたりのプラチナ粒子の数は1x1014個/m程度であった。
(比較例1)
 犠牲剤であるエタノールを加えなかった以外は、実施例1と同様にして、比較例1に係る光触媒繊維を得た。
 実施例1乃至7及び比較例1に係る光触媒繊維の活性を次の方法により測定した。まず、光触媒の主たる活性種であるOHラジカルと反応し生成物を作るDMSO(ジメチルスルホキシド)を用い、OHラジカルとの生成物であるMSA(メタンスルホン酸)の生成量を定量した。具体的には、Φ40mmのシャーレにΦ40mm、50mgにサイジングしたサンプルを仕込み、濃度を100ppmに調整したDMSO溶液を10mlシャーレに注ぎ入れ、紫外線強度2.5mW/cm、60minブラックライトで照射を行い、DMSO水溶液中に生成したMSAの生成量をIC(イオンクロマトグラフ)で測定することで光触媒の活性(MSAm)を求めた。活性向上の度合いを電析反応前に同様に測定した光触媒活性(MSAref)を分母にとり100分率で表した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1から分かるように、犠牲剤であるエタノールを加えてプラチナを担持した繊維では、活性が大きく上昇した。一方、加えない場合では、逆に光触媒活性が大きく減少した。

Claims (7)

  1.  主として化1により表される主鎖骨格を有する数平均分子量200~10,000のポリカルボシランを有機金属化合物で修飾した構造を有する変性ポリカルボシラン、又は前記変性ポリカルボシランと有機金属化合物との混合物である、紡糸原液を得る第1工程と、
     前記紡糸原液から紡糸繊維を得る第2工程と、
     前記紡糸繊維を酸化雰囲気中で加熱処理することによって、不融化繊維を得る第3工程と、
     前記不融化繊維を酸化雰囲気中で焼成することによって、シリカ基複合酸化物繊維を得る第4工程と、
     前記シリカ基複合酸化物繊維の表面側に処理を施すことで表面近傍のシリカを除去してメソポアを形成する第5工程と、
     犠牲剤及びプラチナを含むプラチナ含有溶液に、前記シリカ基複合酸化物繊維を接触させながら光を照射する第6工程と、
    を備えたことを特徴とする光触媒繊維の製造方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記犠牲剤がメタノール又はエタノールであることを特徴とする請求項1記載の光触媒繊維の製造方法。
  3.  前記プラチナ含有溶液の前記プラチナの濃度が1.0~10.0ppmであることを特徴とする請求項1又は2記載の光触媒繊維の製造方法。
  4.  前記プラチナ含有溶液の前記犠牲剤の濃度が0.1~50.0重量%であることを特徴とする請求項1乃至3いずれか記載の光触媒繊維の製造方法。
  5.  前記光の強度が2.5~7.0mW/cmであることを特徴とする請求項1乃至4いずれか記載の光触媒繊維の製造方法。
  6.  シリカ成分を主体とする酸化物相(第1相)とシリカ以外の金属からなる金属酸化物相(第2相)との複合酸化物相からなるシリカ基複合酸化物繊維であって、
     前記金属酸化物相(第2相)を構成する金属酸化物の少なくとも1以上の金属元素の存在割合が繊維表面に向かって傾斜的に増大しており、前記金属酸化物相(第2相)は、それを構成する金属が粒子状に形成され、その粒子間に繊維表面から繊維内部に向かう平均細孔径が2~30nmのメソポアが形成され、前記メソポア中に平均粒子径が0.5~10nmのプラチナ(Pt)粒子が担持されていることを特徴とする光触媒繊維。
  7.  前記メソポア中に担持されている前記プラチナ粒子の数が、前記メソポア中の単位表面積あたり6x1013個/m以上であることを特徴とする請求項6記載の光触媒繊維。
PCT/JP2011/054949 2010-03-31 2011-03-03 光触媒繊維及びその製造方法 WO2011122234A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800166552A CN102821851A (zh) 2010-03-31 2011-03-03 光催化剂纤维及其制造方法
KR1020127028146A KR20130043626A (ko) 2010-03-31 2011-03-03 광촉매 섬유 및 그 제조방법
US13/637,938 US20130109559A1 (en) 2010-03-31 2011-03-03 Photocatalyst fiber and production method thereof
JP2012508168A JP5163833B2 (ja) 2010-03-31 2011-03-03 光触媒繊維及びその製造方法
EP11762474A EP2554261A1 (en) 2010-03-31 2011-03-03 Photocatalyst fibers and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010082890 2010-03-31
JP2010-082890 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122234A1 true WO2011122234A1 (ja) 2011-10-06

Family

ID=44711963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054949 WO2011122234A1 (ja) 2010-03-31 2011-03-03 光触媒繊維及びその製造方法

Country Status (6)

Country Link
US (1) US20130109559A1 (ja)
EP (1) EP2554261A1 (ja)
JP (1) JP5163833B2 (ja)
KR (1) KR20130043626A (ja)
CN (1) CN102821851A (ja)
WO (1) WO2011122234A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048528A (ja) * 2013-09-04 2015-03-16 株式会社東芝 白金微粒子製造方法およびその製造装置
JP2015188847A (ja) * 2014-03-28 2015-11-02 宇部興産株式会社 多孔質光触媒体およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365290B2 (en) 2019-11-22 2022-06-21 Raytheon Technologies Corporation Modified preceramic polymers, method of making and ceramic matrix composite formed therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674126A (en) 1979-11-21 1981-06-19 Tokushu Muki Zairyo Kenkyusho Novel polytitanocarbosilane and its preparation
JP2002066333A (ja) * 2000-08-28 2002-03-05 Japan Science & Technology Corp 可視光応答性を有する金属オキシナイトライドからなる光触媒
JP2003328236A (ja) * 2002-05-01 2003-11-19 Ube Ind Ltd 可視光活性を有するシリカ基光触媒繊維及びその製造方法
WO2008114597A1 (ja) * 2007-03-19 2008-09-25 Ube Industries, Ltd. シリカ基複合酸化物繊維及びそれを用いた触媒繊維並びにその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674126A (en) 1979-11-21 1981-06-19 Tokushu Muki Zairyo Kenkyusho Novel polytitanocarbosilane and its preparation
JP2002066333A (ja) * 2000-08-28 2002-03-05 Japan Science & Technology Corp 可視光応答性を有する金属オキシナイトライドからなる光触媒
JP2003328236A (ja) * 2002-05-01 2003-11-19 Ube Ind Ltd 可視光活性を有するシリカ基光触媒繊維及びその製造方法
WO2008114597A1 (ja) * 2007-03-19 2008-09-25 Ube Industries, Ltd. シリカ基複合酸化物繊維及びそれを用いた触媒繊維並びにその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. SCLAFANI ET AL.: "Influence of platinum on catalytic activity of polycrystalline W03 employed for phenol photodegradation in aqueous suspension", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 51, 1998, pages 203 - 219, XP004111825 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048528A (ja) * 2013-09-04 2015-03-16 株式会社東芝 白金微粒子製造方法およびその製造装置
JP2015188847A (ja) * 2014-03-28 2015-11-02 宇部興産株式会社 多孔質光触媒体およびその製造方法

Also Published As

Publication number Publication date
CN102821851A (zh) 2012-12-12
EP2554261A1 (en) 2013-02-06
JP5163833B2 (ja) 2013-03-13
US20130109559A1 (en) 2013-05-02
JPWO2011122234A1 (ja) 2013-07-08
KR20130043626A (ko) 2013-04-30

Similar Documents

Publication Publication Date Title
Rajavel et al. Photocatalytic and bactericidal properties of MXene-derived graphitic carbon-supported TiO2 nanoparticles
Jiang et al. Natural leaves-assisted synthesis of nitrogen-doped, carbon-rich nanodots-sensitized, Ag-loaded anatase TiO 2 square nanosheets with dominant {001} facets and their enhanced catalytic applications
JP5077236B2 (ja) シリカ基複合光触媒及びその製造方法
JP5163833B2 (ja) 光触媒繊維及びその製造方法
JP3465706B1 (ja) 可視光活性を有するシリカ基光触媒繊維及びその製造方法
He et al. Insight into the nature of Au-Au2O3 functionalized palygorskite
JP4924709B2 (ja) シリカ基複合酸化物繊維及びそれを用いた触媒繊維並びにその製造方法
JP2007326043A (ja) 浄化装置および光触媒カートリッジ
JP2012200672A (ja) 水浄化装置
JP2012200674A (ja) ルテニウム担持触媒繊維及びその製造方法
JP2010227841A (ja) エンドトキシン分解装置、それを備える精製水製造システム、人工透析用精製水製造システム、及びエンドトキシンの分解方法
JP5277688B2 (ja) 水浄化装置および水浄化方法
JP4946224B2 (ja) メッキ洗浄水の再利用方法
JP3436267B2 (ja) 浄化装置及び光触媒カートリッジ
JPWO2009063737A1 (ja) 水浄化装置及び水浄化方法
JP2016073963A (ja) 二酸化炭素光還元触媒及びその製造方法
Lim et al. Synthesis of Hybrid Cu-Doped TiO2 Photocatalyst for Dye Removal
JP2015188847A (ja) 多孔質光触媒体およびその製造方法
JP2012200671A (ja) 純水製造装置
JP2013193052A (ja) 光触媒シート
WO2013146363A1 (ja) 浄化装置並びにそれに用いられる浄化装置用光触媒フィルタカートリッジ及び多段光触媒フィルタカートリッジ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016655.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762474

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012508168

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13637938

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127028146

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011762474

Country of ref document: EP