WO2011122116A1 - 血圧測定装置、および、血圧測定装置の制御方法 - Google Patents

血圧測定装置、および、血圧測定装置の制御方法 Download PDF

Info

Publication number
WO2011122116A1
WO2011122116A1 PCT/JP2011/052632 JP2011052632W WO2011122116A1 WO 2011122116 A1 WO2011122116 A1 WO 2011122116A1 JP 2011052632 W JP2011052632 W JP 2011052632W WO 2011122116 A1 WO2011122116 A1 WO 2011122116A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
pressure
target value
control target
cuff
Prior art date
Application number
PCT/JP2011/052632
Other languages
English (en)
French (fr)
Inventor
幸哉 澤野井
義秀 東狐
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Publication of WO2011122116A1 publication Critical patent/WO2011122116A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • A61B5/02255Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds the pressure being controlled by plethysmographic signals, e.g. derived from optical sensors

Definitions

  • the present invention relates to a blood pressure measurement device and a control method of the blood pressure measurement device, and more particularly to a blood pressure measurement device that measures blood pressure using a volume compensation method and a control method of the blood pressure measurement device.
  • Blood pressure is one of the indices for analyzing cardiovascular diseases, and risk analysis based on blood pressure is effective in preventing cardiovascular diseases such as stroke, heart failure and myocardial infarction.
  • cardiovascular diseases such as stroke, heart failure and myocardial infarction.
  • early morning hypertension in which blood pressure rises in the early morning, is related to heart disease and stroke.
  • Measure blood pressure by volume compensation as follows. The pressure in the cuff wrapped around the measurement site is detected so that the arterial volume at the measurement site is detected by a photoelectric sensor, etc., and the change in the arterial volume due to the arterial pressure (blood pressure) is always maintained at a constant arterial volume (control target value V0). Control by (cuff pressure). At this time, since the blood pressure and the cuff pressure are in an equilibrium state, the blood pressure (blood pressure waveform) can be continuously measured by measuring the cuff pressure. For accurate blood pressure measurement, it is necessary to accurately determine the control target value V0.
  • FIG. 12 is a graph showing the mechanical characteristics of the artery.
  • the horizontal axis represents the difference between blood pressure and cuff pressure (intra-arterial pressure difference Ptr), and the vertical axis represents the arterial volume.
  • Non-Patent Document 1 the mechanical characteristics of the arteries are different in the increasing direction and decreasing direction of blood pressure, that is, there is hysteresis (K. Yamakoshi, H .Shimazu, M.Shibata, A.Kamiya, "New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part 1: model experiment", Medical & Biological Engineering & Computing, 1982, 20, p. 307 -313 (hereinafter referred to as “Non-Patent Document 1”).
  • the control target value is a control value for the change in arterial volume due to a decrease in blood pressure (change from systolic blood pressure to diastolic blood pressure).
  • the change in arterial volume due to an increase in blood pressure was an excessive value. Therefore, the subject that systolic blood pressure cannot be measured correctly occurred.
  • the hysteresis of the mechanical characteristics is also present in the living tissue around the artery at the measurement site, it is natural that the influence is superimposed.
  • the present invention has been made to solve the above-described problems, and one of its purposes is a blood pressure measurement device capable of more accurately measuring the blood pressure when the blood pressure rises and falls, and It is providing the control method of a blood-pressure measuring device.
  • a blood pressure measurement device is a device for measuring blood pressure according to a volume compensation method, and when the blood pressure measurement device is attached to a blood pressure measurement site, A cuff that compresses the artery of the measurement site with liquid or gas pressure, a pressure-increasing / depressurizing unit for pressurizing and depressurizing the pressure inside the cuff, and a cuff pressure that is a pressure inside the cuff
  • Pressure control means for performing the pressure control As a result of adjustment by the means, the cuff pressure detected by the pressure detecting unit when the predetermined condition for determining that the volume matches the predetermined control target value is extracted as the blood pressure of the person to be measured Extracting means.
  • the control unit is means for determining the predetermined control target value at the time of lowering blood pressure or at the time of increasing blood pressure, and when the control target value at the time of lowering blood pressure is determined, the cuff pressure is increased by the pressure increasing / decreasing unit.
  • the pressure control means is the control target value at the time of increasing blood pressure.
  • the volume indicated by the arterial volume signal detected by the volume detection unit matches the predetermined control target value determined by the first control target value determining means. And adjusting the pressure of the cuff.
  • the extracting means calculates the cuff pressure when the predetermined condition is satisfied at the time of lowering blood pressure as the blood pressure
  • the cuff pressure when the predetermined condition is satisfied when the blood pressure rises is extracted as the blood pressure when the blood pressure rises.
  • the control unit when the control target value determined by the first control target value determining means is the blood pressure lowering control target value, the control unit further reduces the cuff pressure while reducing the cuff pressure.
  • An average value of the arterial volume signal for one beat when the amplitude of the arterial volume change signal, which is an AC component of the arterial volume signal detected by the volume detector, becomes maximum is determined as the control target value at the time of increasing blood pressure.
  • the volume detection unit detects the cuff pressure while increasing the cuff pressure.
  • Value determination means Including.
  • the pressure control means determines the predetermined control target value as the predetermined control target value by the first control target value determination means or the second control target value determination means.
  • the control target value is when the blood pressure rises when descending
  • the volume indicated by the arterial volume signal detected by the volume detection unit when the blood pressure rises is the first control target value determining means or the first control target value determining means.
  • the pressure of the cuff is adjusted so as to coincide with the predetermined control target value determined by the second control target value determining means.
  • the extraction target is the control target value at the time of lowering the blood pressure that is determined by the first control target value determining unit or the second control target value determining unit
  • the cuff pressure when the blood pressure is satisfied is extracted as the blood pressure at the time of lowering the blood pressure
  • the control target value is when the blood pressure is increased
  • the cuff pressure when the predetermined condition is satisfied when the blood pressure is increased is increased. Extracted as time blood pressure.
  • control unit further detects a rising point at which the volume indicated by the arterial volume signal detected by the volume detection unit starts to increase and a falling point from which the decrease starts.
  • Point detection means is included.
  • the pressure control means is indicated by the arterial volume signal detected by the volume detection unit at the time of rising from when the rising point is detected by the change point detecting means until the falling point is detected. While adjusting the pressure of the cuff so that the volume coincides with the control target value at the time of increasing blood pressure, the volume at the time of falling from when the falling point is detected until the rising point is detected is The pressure of the cuff is adjusted so that the volume indicated by the arterial volume signal detected by the detection unit coincides with the blood pressure lowering control target value.
  • the pressure control means is configured so that the volume indicated by the arterial volume signal detected by the volume detection unit coincides with the control target value at the time of blood pressure increase during the first period.
  • the volume indicated by the arterial volume signal detected by the volume detection unit matches the control target value at the time of lowering blood pressure. And adjusting the pressure of the cuff.
  • control unit is further configured to detect the pressure detecting unit when the blood pressure lowering control target value or the blood pressure increasing control target value is determined by the first control target value determining unit.
  • first cuff pressure specifying means for specifying one cuff pressure and the first control target value determining means
  • the second cuff pressure detected by the pressure detection unit is specified when the amplitude of the arterial volume change signal, which is an AC component of the arterial volume signal detected by the volume detection unit, is maximized while reducing the pressure.
  • the pressure is detected by the volume detecting unit while increasing the cuff pressure by the pressure increasing / decreasing unit.
  • Arterial volume signal Second cuff pressure specifying means for specifying a second cuff pressure detected by the pressure detection unit when the amplitude of the arterial volume change signal, which is an AC component, becomes maximum, and the first cuff pressure.
  • Correction value calculating means for calculating a difference between the first cuff pressure specified by the specifying means and the second cuff pressure specified by the second cuff pressure specifying means as a correction value.
  • the pressure control means is determined as the predetermined control target value by the first control target value determination means is either the blood pressure lowering control target value or the blood pressure rising control target value
  • the pressure of the cuff is adjusted so that the volume indicated by the arterial volume signal detected by the volume detection unit coincides with the predetermined control target value determined by the first control target value determining means. To do.
  • the extraction means further determines the cuff pressure when the predetermined condition is satisfied when the blood pressure increases when the first control target value determination means determines the control target value when the blood pressure decreases. While the value corrected by the correction value calculated by the correction value calculation means is extracted as the blood pressure at the time of blood pressure increase, if it is the control target value at the time of blood pressure increase, the predetermined condition is satisfied at the time of blood pressure decrease A value obtained by correcting the cuff pressure at the time with the correction value calculated by the correction value calculation means is extracted as a blood pressure at the time of lowering the blood pressure.
  • a control method for controlling a blood pressure measurement device is a control method for a blood pressure measurement device for measuring blood pressure according to a volume compensation method.
  • the blood pressure measurement device includes a cuff that compresses an artery of the measurement site with the pressure of an internal liquid or gas when the blood pressure measurement device is attached to the blood pressure measurement site, and a pressure increase / decrease for increasing and reducing the pressure inside the cuff
  • a pressure detection unit for detecting a cuff pressure that is a pressure inside the cuff, a volume detection unit for detecting an arterial volume signal indicating the volume of the artery per unit length, and a control unit Have.
  • the control method of the blood pressure measuring device is a step in which the control unit determines a control target value at the time of lowering blood pressure or at the time of increasing blood pressure.
  • the average value of the arterial volume signal for one beat when the amplitude of the arterial volume change signal, which is the alternating current component of the arterial volume signal detected by the volume detector while increasing the cuff pressure is
  • the AC component of the arterial volume signal detected by the volume detecting unit while reducing the cuff pressure by the pressure increasing / decreasing unit Determining the average value of the arterial volume signal for one beat when the amplitude of the arterial volume change signal is the maximum as the control target value at the time of increasing blood pressure, and determining the control at the time of decreasing blood pressure With target value
  • the volume indicated by the arterial volume signal detected by the volume detection unit when the blood pressure rises is the blood pressure rise control target value.
  • a step of adjusting the pressure of the cuff by controlling the pressure increasing / decreasing unit based on the arterial volume signal detected by the volume detecting unit so as to coincide with a value or the control target value at the time of increasing blood pressure; If the control target value at the time of lowering blood pressure has been performed, it has been detected by the pressure detection unit when the condition for determining that the volume coincides with the control target value at lowering blood pressure when the blood pressure decreases While the cuff pressure is extracted as the blood pressure when the blood pressure of the measurement subject is decreased, if the control target value is when the blood pressure increases, it is determined that the volume coincides with the control target value when the blood pressure increases.
  • the cuff pressure detected by said pressure detection portion when filled with because of conditions, and extracting a blood pressure when blood pressure of the subject.
  • the artery that is the AC component of the arterial volume signal detected by the volume detection unit while increasing the cuff pressure by the pressure increasing / decreasing unit.
  • the mean value of the arterial volume signal for one beat when the amplitude of the volume change signal is maximized is determined as the control target value at the time of lowering the blood pressure
  • the mean value of the arterial volume signal for one beat when the amplitude of the arterial volume change signal, which is the alternating current component of the arterial volume signal detected by the volume detector while reducing the cuff pressure is controlled when the blood pressure rises. It is determined as a target value.
  • the arterial volume signal detected by the volume detection unit is detected at the time of lowering blood pressure.
  • the displayed volume is determined
  • the cuff pressure is adjusted so as to match the control target value, and when it is determined that the control target value at the time of lowering blood pressure is the predetermined value for determining that the volume matches the control target value at the time of lowering blood pressure.
  • the cuff pressure when the above condition is satisfied is extracted as the blood pressure at the time of lowering the blood pressure.
  • the control target value is when the blood pressure is increased
  • the cuff pressure when the predetermined condition is satisfied when the blood pressure is increased Extracted as the blood pressure of the hour.
  • the blood pressure measurement device measures the blood pressure when the blood pressure decreases with the control target value determined at the time of pressurization, and measures the blood pressure when the blood pressure increases with the control target value determined when the pressure is reduced.
  • the blood pressure measurement device capable of more accurately measuring the blood pressure when the blood pressure rises and falls, and the blood pressure A method for controlling the measuring apparatus can be provided.
  • FIG. 1 is an external perspective view of an electronic blood pressure monitor according to an embodiment of the present invention. It is a figure showing the concept which controls the cuff pressure for the blood pressure measurement in the electronic blood pressure monitor which concerns on embodiment of this invention. It is a block diagram showing the hardware constitutions of the electronic blood pressure monitor which concerns on embodiment of this invention. It is a flowchart which shows the flow of the blood-pressure measurement process in the 1st Embodiment of this invention. It is a flowchart which shows the flow of the control target value detection process in the 1st Embodiment of this invention. It is a graph for demonstrating the method to determine a control target value in embodiment of this invention.
  • the electronic sphygmomanometer 1 continuously measures blood pressure by the volume compensation method.
  • the electronic sphygmomanometer 1 applies an external pressure to the artery by a cuff from outside the living body, and performs servo control using the determined optimum servo gain so that the external pressure, that is, the cuff pressure, and the intra-arterial pressure, that is, blood pressure are always balanced.
  • the electronic sphygmomanometer 1 finely adjusts the cuff pressure so that the arterial wall is maintained in an unloaded state, and measures the cuff pressure at that time (unloaded state), whereby the minimum blood pressure and the maximum blood pressure, or Measure blood pressure continuously.
  • FIG. 1 is an external perspective view of an electronic sphygmomanometer 1 according to an embodiment of the present invention.
  • an electronic sphygmomanometer 1 includes a main body 10 and a cuff 20 that can be wound around the limb of a person to be measured.
  • the main body 10 is attached to the cuff 20.
  • a display unit 40 made of, for example, liquid crystal and an operation unit 41 for receiving instructions from a user (a person to be measured) are arranged.
  • the operation unit 41 includes a plurality of switches.
  • limbs represent the upper limb and the lower limb. That is, the limb includes a part from the wrist to the base of the arm and a part from the ankle to the base of the foot. In the following description, it is assumed that the cuff 20 is attached to the wrist of the measurement subject.
  • the electronic sphygmomanometer 1 will be described by taking an example in which the main body 10 is attached to the cuff 20 as shown in FIG.
  • the main body 10 and the cuff 20 may be connected by an air tube (air tube 31 in FIG. 3 described later).
  • FIG. 2 is a diagram showing the concept of controlling the cuff pressure for blood pressure measurement in electronic blood pressure monitor 1 according to the embodiment of the present invention.
  • FIG. 2 shows a state where the cuff 20 is attached to the wrist 200 of the measurement subject.
  • a cuff pressure adjusting mechanism including a pump 51 and an exhaust valve (hereinafter simply referred to as “valve”) 52 is disposed in the main body 10.
  • the air system 30 including the pump 51, the valve 52, and the pressure sensor 32 for detecting the pressure (cuff pressure) in the air bag 21 is connected to the air bag 21 contained in the cuff 20 via the air tube 31. Connected.
  • a light emitting element 71 and a light receiving element 72 are arranged at a predetermined interval.
  • the light emitting element 71 and the light receiving element 72 are arranged along the circumference of the wrist 200 when the cuff 20 is attached.
  • the present invention is not limited to such an arrangement example.
  • the cuff 20 includes the air bag 21, the fluid supplied to the cuff 20 is not limited to air, and may be a liquid or a gel, for example. Or it is not limited to fluid, Uniform microparticles, such as a microbead, may be sufficient.
  • FIG. 3 is a block diagram showing a hardware configuration of electronic blood pressure monitor 1 according to the embodiment of the present invention.
  • cuff 20 of electronic sphygmomanometer 1 includes air bag 21 and arterial volume sensor 70.
  • the arterial volume sensor 70 is a sensor for detecting the volume of the artery at the blood pressure measurement site of the measurement subject, and includes the above-described light emitting element 71 (for example, light emitting diode) and light receiving element 72 (for example, phototransistor). It is comprised by the photoelectric sensor which has.
  • the light emitting element 71 emits light to the artery, and the light receiving element 72 receives the transmitted light or reflected light of the artery irradiated by the light emitting element 71.
  • the arterial volume sensor 70 may be any sensor that can detect the volume of the artery, and may detect the volume of the artery using an impedance sensor (impedance plethysmograph). In that case, instead of the light emitting element 71 and the light receiving element 72, a plurality of electrodes (an electrode pair for applying a current and an electrode pair for detecting a voltage) for detecting the impedance of a site including an artery are included.
  • an impedance sensor impedance plethysmograph
  • the main unit 10 centrally controls each unit and performs various arithmetic processes, and a program that causes the CPU 100 to perform predetermined operations.
  • a memory unit 42 for storing various data, a nonvolatile memory for storing measured blood pressure data, for example, a flash memory 43, a power source 44 for supplying power to each unit via the CPU 100, and a current And a timer 45 for measuring time and outputting time-measured data to the CPU 100.
  • the operation unit 41 includes a power switch 41A that receives an input of an instruction for turning on or off the power supply, a measurement switch 41B that receives an instruction to start measurement, a stop switch 41C that receives an instruction to stop measurement, and a flash It has a memory switch 41D for receiving an instruction to read information such as blood pressure recorded in the memory 43, and an ID switch 41E operated to input ID (Identification) information for identifying the person to be measured.
  • a power switch 41A that receives an input of an instruction for turning on or off the power supply
  • a measurement switch 41B that receives an instruction to start measurement
  • a stop switch 41C that receives an instruction to stop measurement
  • a flash It has a memory switch 41D for receiving an instruction to read information such as blood pressure recorded in the memory 43, and an ID switch 41E operated to input ID (Identification) information for identifying the person to be measured.
  • the main body 10 further includes the air system 30, the cuff pressure adjusting mechanism 50, the oscillation circuit 33, the light emitting element drive circuit 73, and the arterial volume detection circuit 74 described above.
  • the adjusting mechanism 50 includes a pump drive circuit 53 and a valve drive circuit 54 in addition to the pump 51 and the valve 52.
  • the pump 51 supplies air to the air bladder 21 in order to increase the cuff pressure.
  • the valve 52 is opened and closed to exhaust or seal the air in the air bladder 21.
  • the pump drive circuit 53 controls the drive of the pump 51 based on a control signal given from the CPU 100.
  • the valve drive circuit 54 performs opening / closing control of the valve 52 based on a control signal given from the CPU 100.
  • the light emitting element driving circuit 73 controls the light emission amount of the light emitting element 71 in accordance with a command signal from the CPU 100.
  • the arterial volume detection circuit 74 is a volume pulse based on a transmitted light amount or a reflected light amount of light emitted from the light emitting element 71 and reaching the light receiving element 72 of light in an absorption band of hemoglobin contained in blood (red blood cells) flowing through the blood vessel.
  • An arterial volume change signal PGac which is an alternating current component of the volume pulse wave signal obtained by processing the wave signal (arterial volume signal PGdc) and the volume pulse wave signal with an HPF (High-pass filter) circuit, is output to the CPU 100. .
  • the filter constant of the HPF circuit is 0.6 Hz
  • a signal exceeding 0.6 Hz is an AC component.
  • the pressure sensor 32 is a capacitance type pressure sensor, and the capacitance value changes depending on the cuff pressure.
  • the oscillation circuit 33 outputs an oscillation frequency signal corresponding to the capacitance value of the pressure sensor 32 to the CPU 100.
  • the CPU 100 detects a pressure by converting a signal obtained from the oscillation circuit 33 into a pressure.
  • FIG. 4 is a flowchart showing the flow of blood pressure measurement processing in the first embodiment of the present invention.
  • CPU 100 waits for an input of an operation for pressing power switch 41A (step ST1).
  • the CPU 100 When the power switch 41A is pressed, the CPU 100 performs an initialization process (step ST2). Specifically, as initialization processing, the CPU 100 initializes a memory area used for this processing in the memory unit 42, exhausts air from the air bladder 21, and performs 0 mmHg correction of the pressure sensor 32.
  • the CPU 100 waits for an input of an operation for pressing the measurement switch 41B (step ST3).
  • CPU 100 executes a control target value detection process (step ST4).
  • FIG. 5 is a flowchart showing a flow of control target value detection processing in the first embodiment of the present invention.
  • CPU 100 initializes maximum value PGacmax 'and cuff pressure value Pc0' of the arterial volume change signal stored in memory unit 42 (step ST101).
  • the maximum value PGacmax 'and the cuff pressure value Pc0' of the arterial volume change signal are updated as needed, and the values until final determination are provisional values.
  • the CPU 100 controls the valve drive circuit 54 to close the valve 52 (step ST102), and controls the pump drive circuit 53 to drive the pump 51 to increase the cuff pressure (step ST103).
  • the CPU 100 detects signals (arterial volume signal PGdc, arterial volume change signal PGac) from the arterial volume detection circuit 74 (step ST104).
  • the CPU 100 determines that the amplitude of one heartbeat period of the arterial volume change signal PGac detected in step ST104 is the maximum value PGacmax ′ of the amplitude of the arterial volume change signal PGac since the start of pressurization of the cuff pressure. It is determined whether it is larger (step ST105). When determining that the value is larger, the CPU 100 updates the maximum value PGacmax 'with the amplitude value at that time, and also updates the cuff pressure Pc0' at that time (step ST106).
  • the CPU 100 determines whether or not the cuff pressure has reached a predetermined pressure (step ST107).
  • the predetermined pressure is a pressure sufficiently higher than the maximum blood pressure of the measurement subject, and is, for example, 200 mmHg.
  • the CPU 100 returns the process to step ST103 and repeats the process up to step ST106.
  • the CPU 100 determines the maximum value PGacmax ′ of the amplitude of the arterial volume change signal, and averages the arterial volume signal PGdc of one heartbeat cycle when the maximum value PGacmax ′ is reached.
  • the value is calculated as the control target value V0inf at the time of pressurization, and the cuff pressure Pc0 ′ at that time is determined as the control initial cuff pressure Pc0 (step ST108).
  • FIG. 6 is a graph for explaining a method of determining a control target value in the embodiment of the present invention.
  • the cuff pressure when the cuff pressure is increased, the difference between the intra-arterial pressure Pa (that is, blood pressure) and the cuff pressure Pc and the one heartbeat cycle are shown along the upper graph of the two graphs.
  • the arterial volume V indicated by the average value of the arterial volume signal PGdc decreases.
  • the cuff pressure Pc becomes equal to the intra-arterial pressure Pa
  • the arterial volume V becomes V0inf
  • the mechanical compliance of the arteries becomes maximum
  • the amplitude of the arterial volume change signal PGac due to blood pressure fluctuations becomes maximum.
  • V0inf can be set as a control target value at the time of blood pressure reduction.
  • the cuff pressure Pc is used as the blood pressure of the measurement subject every time the arterial volume constant control converges using the control target value V0inf (for example, every time the amplitude of the arterial volume change signal PGac becomes a predetermined threshold value or less). Can be measured.
  • the CPU 100 initializes the maximum value PGacmax 'of the amplitude of the arterial volume change signal (step ST109).
  • the CPU 100 controls the valve drive circuit 54 to gradually adjust the opening and closing of the valve 52 to reduce the cuff pressure (step ST110).
  • the CPU 100 detects signals (arterial volume signal PGdc, arterial volume change signal PGac) from the arterial volume detection circuit 74 (step ST111).
  • the CPU 100 determines that the amplitude of one heartbeat period of the arterial volume change signal PGac detected in step ST111 is from the maximum value PGacmax ′ of the amplitude of the arterial volume change signal PGac so far after the start of cuff pressure reduction. It is determined whether it is large (step ST112). When determining that the value is larger, the CPU 100 updates the maximum value PGacmax 'with the amplitude value at that time (step ST113).
  • the CPU 100 determines whether or not the cuff pressure has reached a predetermined pressure (step ST114).
  • the predetermined pressure is a pressure sufficiently lower than the minimum blood pressure of the measurement subject, and is, for example, 30 mmHg.
  • the CPU 100 returns the process to step ST110 and repeats the process up to step ST113.
  • the CPU 100 controls the valve drive circuit 54 to exhaust the cuff air to open the valve 52 (step ST115).
  • the CPU 100 determines the maximum value PGacmax ′ of the amplitude of the arterial volume change signal, and uses the average value of the arterial volume signal PGdc of one heart cycle when the maximum value PGacmax ′ is reached as the control target value V0def at the time of pressurization. Calculate (step ST116). Thereafter, the CPU 100 returns the process to be executed to the caller process of this process.
  • the difference between the intra-arterial pressure Pa (that is, blood pressure) and the cuff pressure Pc and one heartbeat cycle are shown along the lower graph of the two graphs.
  • the arterial volume V indicated by the average value of the arterial volume signal PGdc is increased.
  • the cuff pressure Pc becomes equal to the intra-arterial pressure Pa
  • the arterial volume V becomes V0def
  • the arterial mechanical compliance becomes maximum
  • the amplitude of the arterial volume change signal PGac due to blood pressure fluctuation becomes maximum.
  • V0def can be set as a control target value when blood pressure increases.
  • the cuff pressure Pc is used as the blood pressure of the person to be measured every time the arterial volume constant control converges using the control target value V0def (for example, every time the amplitude of the arterial volume change signal PGac becomes a predetermined threshold value or less). Can be measured.
  • FIG. 7 is a graph showing changes in the cuff pressure and the arterial volume signal at the time of control target value determination and blood pressure measurement in the embodiment of the present invention.
  • the cuff pressure Pc is increased from about 30 mmHg to about 130 mmHg. Pressed.
  • the value of the arterial volume signal PGdc also increases while vibrating in accordance with the heartbeat cycle.
  • the average value of the arterial volume signal PGdc of one heart cycle is the control target value V0inf when the blood pressure decreases. Is calculated as
  • step ST110 to step ST116 in FIG. 5 When the processing from step ST110 to step ST116 in FIG. 5 is executed (from about 35 seconds after the power is turned on to about 70 seconds), the cuff pressure Pc is from about 130 mmHg to about 30 mmHg. Depressurized. In response to this, the value of the arterial volume signal PGdc also decreases while vibrating in accordance with the heartbeat cycle.
  • the average value of the arterial volume signal PGdc in one heart cycle is the control target value V0def when the blood pressure increases. Is calculated as
  • the CPU 100 sets the cuff pressure to the control initial cuff pressure Pc0 determined in step ST108 of FIG. 5 (step ST5).
  • the CPU 100 controls the pump driving circuit 53 and the valve driving circuit 54 so as to change the cuff pressure Pc so that the value of the arterial volume signal PGdc matches the control target value V0inf at the time of blood pressure reduction ( Step ST6).
  • step ST7 After performing the arterial volume constant control for a predetermined time (for example, 10 msec), it is determined whether or not the amplitude of the arterial volume change signal PGac is equal to or smaller than a predetermined threshold (step ST7). If it is determined that the value is equal to or less than the predetermined threshold value, it means that the arterial volume constant control has converged. Therefore, if the cuff pressure Pc at that time is the lowest value within one heartbeat, the CPU 100 It determines as a blood pressure, and displays the determined minimum blood pressure value on the display part 40 (step ST8). The determined minimum blood pressure value may be stored in the flash memory 43.
  • the CPU 100 determines whether or not a predetermined period (for example, 40 seconds) has elapsed since the start of blood pressure measurement (step ST9). When determining that it has not elapsed, the CPU 100 returns the process to be executed to the process of step ST6. In addition, the CPU 100 causes the display unit 40 to display the average value of the minimum blood pressure values measured during a predetermined period after the start of blood pressure measurement as the final minimum blood pressure value.
  • a predetermined period for example, 40 seconds
  • the CPU 100 advances the process to be performed to the process of step ST10.
  • the CPU 100 controls the pump drive circuit 53 and the valve drive circuit 54 so as to change the cuff pressure Pc so that the value of the arterial volume signal PGdc matches the control target value V0def when blood pressure increases ( Step ST10).
  • step ST11 After performing the arterial volume constant control for a predetermined time (for example, 10 msec), it is determined whether or not the amplitude of the arterial volume change signal PGac is equal to or smaller than a predetermined threshold (step ST11). When the predetermined threshold value or less is reached, it means that the arterial volume constant control has converged. Therefore, if the cuff pressure Pc at that time is the maximum value within one heartbeat, the CPU 100 determines the maximum blood pressure of the subject. The determined systolic blood pressure value is displayed on the display unit 40 (step ST12). The determined systolic blood pressure value may be stored in the flash memory 43.
  • a predetermined time for example, 10 msec
  • the CPU 100 determines whether or not a stop signal is input (turned on) by operating the stop switch 41C (step ST13). When determining that the stop signal is not input (in the off state), the CPU 100 returns the process to be executed to the process of step ST6. In addition, the CPU 100 causes the display unit 40 to display the average value of the highest blood pressure values measured after a predetermined period has elapsed since the start of blood pressure measurement as the final highest blood pressure value.
  • the CPU 100 controls the valve drive circuit 54 to exhaust the cuff air to open the valve 52 (step ST14). Thereafter, the CPU 100 ends the blood pressure measurement process, and turns off the electronic sphygmomanometer 1.
  • step ST6 to step ST9 in FIG. 4 when the processing from step ST6 to step ST9 in FIG. 4 is executed (from about 80 seconds after the power is turned on to about 120 seconds), the blood pressure is reduced.
  • the arterial volume constant control is performed using the control target value V0inf. For this reason, the minimum blood pressure side is measured as a value close to the true minimum blood pressure.
  • step ST10 to step ST13 in FIG. 4 when executed (after about 120 seconds after the power is turned on, the control target value V0def at the time of blood pressure increase is used to perform constant arterial volume control. For this reason, the systolic blood pressure is measured as a value close to the true systolic blood pressure.
  • the electronic sphygmomanometer 1 performs the arterial volume constant control using the control target value V0inf at the time of blood pressure reduction determined at the time of increasing the cuff pressure.
  • the minimum blood pressure is measured among the blood pressures, and the arterial volume constant control is performed using the control target value V0def at the time of blood pressure increase determined when the cuff pressure is reduced, and the blood pressure at the time of blood pressure increase is measured. .
  • the influence of mechanical hysteresis on the artery and the surrounding living tissue can be reduced, so that the blood pressure when the blood pressure increases and when the blood pressure decreases can be measured more accurately.
  • the minimum blood pressure is measured among the blood pressures at the time of blood pressure decrease, and a second period (for example, a predetermined period of time) is different from the first period.
  • the highest blood pressure is measured among the blood pressures when the blood pressure increases.
  • FIG. 8 is a flowchart showing a part of the blood pressure measurement process in the modification of the first embodiment of the present invention.
  • CPU 100 determines whether or not the blood pressure is decreasing after the falling point of arterial volume signal PGdc is detected until the rising point is detected. Judgment is made (step ST21).
  • step ST6 and step ST7 the CPU 100 executes the same processing as in step ST6 and step ST7 in FIG.
  • step ST10 and step ST11 of FIG. 4 the same processing as step ST10 and step ST11 of FIG. 4 is executed.
  • step ST7 or step ST11 When it is determined in step ST7 or step ST11 that the amplitude of the arterial volume change signal PGac has become equal to or less than a predetermined threshold by the constant arterial volume control in step ST6 or step ST10, the CPU 100 determines the cuff pressure Pc at that time as It determines as a to-be-measured person's blood pressure, and displays the determined blood pressure value on the display part 40 (step ST22).
  • the determined blood pressure value may be stored in the flash memory 43.
  • the CPU 100 executes the same process as step ST13 of FIG.
  • the electronic sphygmomanometer 1 performs the arterial volume constant control using the control target value V0inf at the time of the blood pressure decrease determined when the cuff pressure is increased, and the blood pressure The blood pressure at the time of decrease is measured, and the control target value V0def at the time of blood pressure increase determined at the time of decreasing the cuff pressure is used to perform constant arterial volume control, and the blood pressure at the time of blood pressure increase is measured.
  • the influence of mechanical hysteresis on the artery and the surrounding living tissue can be reduced, so that the blood pressure when the blood pressure increases and when the blood pressure decreases can be measured more accurately.
  • the control target value can be switched more accurately, so that the blood pressure when the blood pressure increases and decreases can be measured more accurately.
  • control target value V0inf at the time of blood pressure decrease determined at the time of increasing the cuff pressure is used to measure the blood pressure at the time of blood pressure decrease, and the blood pressure at the time of increasing blood pressure determined at the time of decreasing the cuff pressure
  • the control target value V0def is used to measure the blood pressure when the blood pressure increases.
  • the blood pressure measured using the control target value V0inf at the time of blood pressure reduction determined at the time of increasing the cuff pressure is used as the blood pressure of the measurement subject as it is at the time of blood pressure reduction.
  • the increase is corrected by the difference between the cuff pressure when the control target value V0inf is determined when the cuff pressure is increased and the cuff pressure when the amplitude of the arterial volume change signal PGac is maximized when the cuff pressure is decreased.
  • the blood pressure of the subject is corrected by the difference between the cuff pressure when the control target value V0inf is determined when the cuff pressure is increased and the cuff pressure when the amplitude of the arterial volume change signal PGac is maximized when the cuff pressure is decreased.
  • FIG. 9 is a flowchart showing a blood pressure measurement process according to the second embodiment of the present invention.
  • the blood pressure measurement process in the second embodiment includes steps ST4 and ST10 to ST12 of the blood pressure measurement process in the first embodiment described in FIG. 'And steps ST15 to ST17 are changed. For this reason, a changed part is demonstrated here and the overlapping description is not repeated.
  • step ST3 When the measurement switch 41B is pressed in step ST3, the CPU 100 executes a control target value detection process (step ST4 ').
  • FIG. 10 is a flowchart showing a flow of control target value detection processing in the second embodiment of the present invention.
  • the blood pressure measurement process in the second embodiment includes steps S109, ST113, and ST116 of the blood pressure measurement process in the first embodiment described in FIG. These steps are changed to step ST113 ′ and step ST117. For this reason, a changed part is demonstrated here and the overlapping description is not repeated.
  • step S108 the CPU 100 initializes the maximum value PGacmax 'and the cuff pressure value Pc0' of the arterial volume change signal (step ST109 ').
  • step ST112 When determining in step ST112 that the amplitude of one heartbeat period of the arterial volume change signal PGac is larger than the maximum value PGacmax ′ of the amplitude of the arterial volume change signal PGac since the start of the cuff pressure reduction, the CPU 100 The maximum value PGacmax ′ is updated with the amplitude value at that time, and the cuff pressure Pc0 ′ at that time is also updated (step ST113 ′).
  • step ST115 the CPU 100 determines the maximum value PGacmax ′ of the amplitude of the arterial volume change signal, determines the cuff pressure Pc0 ′ when the maximum value PGacmax ′ is reached during decompression, and the pressurization determined in step ST106.
  • the difference between the cuff pressure Pc0 when the amplitude of the arterial volume change signal is maximized and the cuff pressure Pc0 ′ during decompression is calculated as a correction value (step ST117).
  • the CPU 100 when it is determined that a predetermined period has elapsed since the start of the measurement of the minimum blood pressure, the CPU 100 performs control when the value of the arterial volume signal PGdc is a blood pressure decrease, as in arterial volume constant control, as in step ST6.
  • the pump drive circuit 53 and the valve drive circuit 54 are controlled to change the cuff pressure Pc so as to coincide with the target value V0inf (step ST15).
  • step ST16 After performing arterial volume constant control for a predetermined time (for example, 10 msec), it is determined whether or not the amplitude of the arterial volume change signal PGac is equal to or smaller than a predetermined threshold (step ST16). If it is determined that the value is equal to or less than the predetermined threshold, it means that the arterial volume constant control has converged. Therefore, if the cuff pressure Pc at that time is the highest value within one heartbeat, The sum of the correction values calculated in step ST117 of FIG. 10 is determined as the measurement subject's systolic blood pressure, and the determined systolic blood pressure value is displayed on the display unit 40 (step ST17). The determined systolic blood pressure value may be stored in the flash memory 43.
  • Step ST13, Step ST14 the CPU 100 executes the same processing as Step ST13 and Step ST14 in FIG. 4 (Step ST13, Step ST14).
  • the CPU 100 causes the display unit 40 to display the average value of the highest blood pressure values measured after a predetermined period has elapsed since the start of blood pressure measurement as the final highest blood pressure value.
  • the arterial volume constant control is performed using the control target value V0inf at the time of the blood pressure reduction determined when the cuff pressure is increased.
  • the minimum blood pressure is directly used as the minimum blood pressure of the measurement subject, and when the blood pressure increases, the control target value V0inf at the time of blood pressure decrease determined when the cuff pressure is increased is
  • the arterial volume constant control is performed, and the maximum blood pressure among the measured blood pressures when increasing the blood pressure is the cuff pressure when the control target value V0inf is determined when the cuff pressure is increased and the artery when the cuff pressure is reduced Correction is made by the difference from the cuff pressure when the amplitude of the volume change signal PGac is maximum, and the maximum blood pressure of the measurement subject is obtained.
  • the minimum blood pressure is measured among the blood pressures at the time of blood pressure decrease, and a second period (for example, a predetermined period of time) different from the first period is measured.
  • the highest blood pressure is measured among the blood pressures when the blood pressure increases.
  • FIG. 11 is a flowchart showing a part of the blood pressure measurement process in the modification of the second embodiment of the present invention.
  • CPU 100 executes a process similar to steps ST ⁇ b> 6 and ST ⁇ b> 7 in FIG. 9.
  • step ST7 If it is determined in step ST7 that the amplitude of the arterial volume change signal PGac has become equal to or smaller than a predetermined threshold, the CPU 100 is in the process of lowering blood pressure from when the falling point of the arterial volume signal PGdc is detected until the rising point is detected. It is determined whether or not there is (step ST23).
  • the CPU 100 determines the cuff pressure Pc at that time as the blood pressure of the measurement subject, and displays the determined blood pressure value on the display unit 40 (step ST24).
  • the determined blood pressure value may be stored in the flash memory 43. Thereafter, the process to be executed is advanced to the process of step ST13.
  • step ST117 of FIG. 10 the CPU 100 adds the correction value calculated in step ST117 of FIG. 10 to the cuff pressure Pc at that time to be measured.
  • the determined blood pressure value is displayed on the display unit 40 (step ST25).
  • the determined blood pressure value may be stored in the flash memory 43.
  • the process to be executed is advanced to the process of step ST13.
  • step ST13 the same process as step ST13 of FIG. 4 is executed.
  • the electronic sphygmomanometer 1 uses the control target value V0inf at the time of blood pressure reduction determined when the cuff pressure is increased to reduce the arterial volume at the time of blood pressure reduction. Control is performed, and the measured blood pressure when the blood pressure is decreased is directly used as the blood pressure of the measurement subject. When the blood pressure increases, the control target value V0inf when the blood pressure decreases determined when the cuff pressure is increased is used.
  • the arterial volume constant control is performed and the measured blood pressure when the blood pressure increases is the cuff pressure when the control target value V0inf is determined when the cuff pressure is increased and the amplitude of the arterial volume change signal PGac when the cuff pressure is reduced Is corrected by the difference from the cuff pressure at which the pressure becomes maximum, and is taken as the blood pressure of the subject.
  • the influence of mechanical hysteresis on the artery and the surrounding living tissue can be reduced, so that the blood pressure when the blood pressure increases and when the blood pressure decreases can be measured more accurately.
  • the control target value can be switched more accurately, so that the blood pressure when the blood pressure increases and decreases can be measured more accurately.
  • the blood pressure measured using the control target value V0inf at the time of blood pressure reduction determined at the time of increasing the cuff pressure is expressed as The blood pressure of the measurement subject is used as it is, and when the blood pressure increases, the cuff pressure when the control target value V0inf is determined when the cuff pressure is increased and when the amplitude of the arterial volume change signal is maximized when the cuff pressure is reduced
  • the blood pressure of the measurement subject was corrected by the difference from the cuff pressure.
  • the present invention is not limited to this, and the blood pressure measured using the control target value V0def at the time of blood pressure increase determined when the cuff pressure is reduced is used as the blood pressure of the measurement subject as it is when the blood pressure increases, and when the blood pressure decreases Is measured by correcting the difference between the cuff pressure when the control target value V0def is determined when the cuff pressure is reduced and the cuff pressure when the amplitude of the arterial volume change signal is maximized when the cuff pressure is increased.
  • the blood pressure of the person may be used.
  • 1 electronic blood pressure monitor 10 body part, 20 cuff, 21 air bag, 30 air system, 31 air tube, 32 pressure sensor, 33 oscillation circuit, 40 display part, 41 operation part, 41A power switch, 41B measurement switch, 41C stop Switch, 41D memory switch, 41E ID switch, 42 memory unit, 43 flash memory, 44 power supply, 45 timer, 50 adjustment mechanism, 51 pump, 52 valve, 53 pump drive circuit, 54 valve drive circuit, 70 arterial volume sensor, 71 Light emitting element, 72 light receiving element, 73 light emitting element driving circuit, 74 arterial volume detection circuit, 100 CPU.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 血圧下降時制御目標値を決定する場合は、加減圧部でカフ圧を加圧させながら容積検出部で検出された動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の動脈容積信号の平均値が、血圧下降時制御目標値として決定され(ステップST4)、血圧下降時に、容積検出部で検出される動脈容積信号で示される容積が、決定された制御目標値に一致するように、カフの圧力が調整され(ステップST6)、血圧下降時に容積が制御目標値と一致すると判断するための所定の条件を満たしたときのカフ圧が、血圧下降時の血圧として抽出される(ステップST7,ステップST8)。血圧上昇時制御目標値を用いて同様に(ステップST10~ステップST12)、または、血圧下降時制御目標値を用いて抽出した血圧を補正して、血圧上昇時の血圧を抽出する。これにより、血圧の上昇時および下降時の血圧をより正確に測定することができる。

Description

血圧測定装置、および、血圧測定装置の制御方法
 本発明は、血圧測定装置、および、血圧測定装置の制御方法に関し、特に、容積補償法を用いて血圧を測定する血圧測定装置、および、血圧測定装置の制御方法に関する。
 血圧は循環器疾患を解析する指標の一つであり、血圧に基づいてリスク解析を行うことは、たとえば脳卒中や心不全や心筋梗塞などの心血管系の疾患の予防に有効である。特に、早朝に血圧が上昇する早朝高血圧は、心臓病や脳卒中などに関係している。
 さらに、早朝高血圧の中でも、モーニングサージと呼ばれる起床後1時間から1時間半ぐらいの間に急激に血圧が上昇する症状は、脳卒中との因果関係があることが判明している。そこで、時間(生活習慣)と血圧変化の相互関係を把握することが、心血管系の疾患のリスク解析に有用である。従って、長期間にわたり、連続的に血圧測定することが必要となってきている。
 また、手術中・手術後の患者の監視、および、降圧薬治療時の薬効確認等においては、1心拍ごとに連続的に血圧を測定し、血圧変化を監視することが非常に重要である。
 容積補償法による血圧測定は次のようにして行う。光電センサなどにより測定部位の動脈容積を検出し、動脈内圧(血圧)による動脈容積の変化を常に一定の動脈容積(制御目標値V0)に保たれるよう、測定部位に巻き付けたカフ内の圧力(カフ圧)により制御する。このとき、血圧とカフ圧は平衡状態になるため、カフ圧を計測することで、連続的に血圧(血圧波形)を測定することが可能である。正確な血圧測定のためには、前記制御目標値V0を正確に決定する必要がある。
 従来の容積補償法を利用した血圧測定では制御目標値V0を次のようにして決定していた。図12は、動脈の力学的特性を示すグラフである。この図は、横軸に血圧とカフ圧の差(動脈内外圧差Ptr)を、縦軸に動脈容積をプロットしたものである。
 制御目標値V0は、図12に示すように、血圧とカフ圧が平衡した点(図中のPtr=0の点)での動脈容積である。図12に示すように、Ptr=0の点では動脈の力学的コンプライアンスが最大となる。そのため、この点での血圧変動による動脈容積の変化が最大となる。そこで、カフ圧を徐々に加圧しながら動脈容積および動脈容積変化を検出し、動脈容積変化が最大となった点での1心拍の動脈容積の平均値を制御目標値V0として決定していた(特公平1-31370号公報(以下、「特許文献1」という)参照)。
 ところが、動脈の力学的特性は、図13(非特許文献1のFig.2より引用)に示すように血圧の増加方向と減少方向で異なっている、つまり、ヒステリシスがある(K.Yamakoshi,H.Shimazu,M.Shibata,A.Kamiya,"New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part 1: model experiment",Medical & Biological Engineering & Computing,1982,20,p.307-313(以下、「非特許文献1」という)参照)。
 図14の血圧波形において、血圧の増加・減少を動脈内外圧差Ptrに置き換えると、カフ圧を一定とした場合、血圧が増加するとき(拡張期血圧から収縮期血圧へ変化するとき)はPtrが増加する方向に、逆に血圧が減少するとき(収縮期血圧から拡張期血圧へ変化するとき)はPtrが減少する方向になる。
 一方、カフ圧の増加・減少を動脈内外圧差Ptrに置き換えると、血圧を一定とした場合、カフ圧が減少するとき(減圧されるとき)はPtrが増加する方向へ、逆にカフ圧が増加するとき(加圧されるとき)はPtrが減少する方向へになる。すなわち、血圧の増加(拡張期血圧から収縮期血圧への変化)はカフ圧減圧に、血圧の減少(収縮期血圧から拡張期血圧への変化)はカフ圧加圧に等価である。
特公平1-31370号公報
K.Yamakoshi,H.Shimazu,M.Shibata,A.Kamiya,"New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part 1: model experiment",Medical & Biological Engineering & Computing,1982,20,p.307-313
 このことより、図15に示すように、従来の制御目標値V0の決定方法では、血圧の減少(収縮期血圧から拡張期血圧への変化)における動脈容積の変化に対する制御目標値となっており、血圧の増加(拡張期血圧から収縮期血圧への変化)における動脈容積の変化に対しては過大な値となっていた。そのため、収縮期血圧が正確に測定できないという課題があった。また、この力学的特性のヒステリシスは測定部位の動脈周囲の生体組織にも存在しているため、その影響が重畳していることは当然のことである。
 この発明は、上述の問題を解決するためになされたものであり、その目的の1つは、血圧の上昇時および下降時の血圧をより正確に測定することが可能な血圧測定装置、および、血圧測定装置の制御方法を提供することである。
 上述の目的を達成するために、この発明のある局面によれば、血圧測定装置は、容積補償法に従い血圧を測定するための装置であって、血圧の測定部位に装着された場合に内部の液体または気体の圧力で前記測定部位の動脈を圧迫するカフと、前記カフの内部の圧力を加圧および減圧するための加減圧部と、前記カフの内部の圧力であるカフ圧を検出するための圧力検出部と、単位長当りの前記動脈の容積を示す動脈容積信号を検出するための容積検出部と、制御部とを有し、前記制御部は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が所定の制御目標値と一致するように、前記容積検出部で検出された前記動脈容積信号に基づいて、前記加減圧部を制御して前記カフの圧力を調整する圧力制御手段と、前記圧力制御手段による調整の結果、前記容積が前記所定の制御目標値と一致すると判断するための所定の条件を満たしたときの前記圧力検出部で検出された前記カフ圧を、被測定者の血圧として抽出する抽出手段とを含む。
 前記制御部は、さらに、血圧下降時または血圧上昇時の前記所定の制御目標値を決定する手段であって、血圧下降時制御目標値を決定する場合は、前記加減圧部で前記カフ圧を加圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧下降時制御目標値として決定する一方、血圧上昇時制御目標値を決定する場合は、前記加減圧部で前記カフ圧を減圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧上昇時制御目標値として決定する第1の制御目標値決定手段を含む。
 前記圧力制御手段は、前記第1の制御目標値決定手段によって前記所定の制御目標値として決定されたのが前記血圧下降時制御目標値である場合は血圧下降時に、前記血圧上昇時制御目標値である場合は血圧上昇時に、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記第1の制御目標値決定手段によって決定された前記所定の制御目標値に一致するように、前記カフの圧力を調整する。
 前記抽出手段は、前記第1の制御目標値決定手段によって決定されたのが前記血圧下降時制御目標値である場合は、血圧下降時に前記所定の条件を満たしたときの前記カフ圧を、血圧下降時の血圧として抽出する一方、前記血圧上昇時制御目標値である場合は、血圧上昇時に血圧上昇時に前記所定の条件を満たしたときの前記カフ圧を、血圧上昇時の血圧として抽出する。
 好ましくは、前記制御部は、さらに、前記第1の制御目標値決定手段によって決定されるのが前記血圧下降時制御目標値である場合は、前記加減圧部で前記カフ圧を減圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧上昇時制御目標値として決定する一方、前記第1の制御目標値決定手段によって決定されるのが前記血圧上昇時制御目標値である場合は、前記加減圧部で前記カフ圧を加圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧下降時制御目標値として決定する第2の制御目標値決定手段を含む。
 前記圧力制御手段は、前記第1の制御目標値決定手段または前記第2の制御目標値決定手段によって前記所定の制御目標値として決定されたのが前記血圧下降時制御目標値である場合は血圧下降時に、前記血圧上昇時の制御目標値である場合は血圧上昇時に、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記第1の制御目標値決定手段または前記第2の制御目標値決定手段によって決定された前記所定の制御目標値に一致するように、前記カフの圧力を調整する。
 前記抽出手段は、前記第1の制御目標値決定手段または前記第2の制御目標値決定手段によって決定されたのが前記血圧下降時制御目標値である場合は、血圧下降時に前記所定の条件を満たしたときの前記カフ圧を、血圧下降時の血圧として抽出する一方、前記血圧上昇時制御目標値である場合は、血圧上昇時に前記所定の条件を満たしたときの前記カフ圧を、血圧上昇時の血圧として抽出する。
 さらに好ましくは、前記制御部は、さらに、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、増加を開始する立上がり点と、減少を開始する立下がり点とを検出する変化点検出手段を含む。
 前記圧力制御手段は、前記変化点検出手段によって前記立上がり点が検出されてから前記立下がり点が検出されるまでの立上がり時は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記血圧上昇時制御目標値に一致するように、前記カフの圧力を調整する一方、前記立下がり点が検出されてから前記立上がり点が検出されるまでの立下がり時は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記血圧下降時制御目標値に一致するように、前記カフの圧力を調整する。
 また好ましくは、前記圧力制御手段は、第1の期間は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記血圧上昇時制御目標値に一致するように、前記カフの圧力を調整する一方、前記第1の期間と異なる第2の期間は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記血圧下降時制御目標値に一致するように、前記カフの圧力を調整する。
 好ましくは、前記制御部は、さらに、前記第1の制御目標値決定手段によって前記血圧下降時制御目標値または前記血圧上昇時制御目標値が決定されたときに前記圧力検出部で検出される第1のカフ圧を特定する第1のカフ圧特定手段と、前記第1の制御目標値決定手段によって決定されるのが前記血圧下降時制御目標値である場合は、前記加減圧部で前記カフ圧を減圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときに前記圧力検出部で検出される第2のカフ圧を特定する一方、前記第1の制御目標値決定手段によって決定されるのが前記血圧上昇時制御目標値である場合は、前記加減圧部で前記カフ圧を加圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときになるときに前記圧力検出部で検出される第2のカフ圧を特定する第2のカフ圧特定手段と、前記第1のカフ圧特定手段によって特定された前記第1のカフ圧と、前記第2のカフ圧特定手段によって特定された前記第2のカフ圧との差を補正値として算出する補正値算出手段とを含む。
 前記圧力制御手段は、前記第1の制御目標値決定手段によって前記所定の制御目標値として決定されたのが前記血圧下降時制御目標値および前記血圧上昇時制御目標値のいずれであっても、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記第1の制御目標値決定手段によって決定された前記所定の制御目標値に一致するように、前記カフの圧力を調整する。
 前記抽出手段は、さらに、前記第1の制御目標値決定手段によって決定されたのが前記血圧下降時制御目標値である場合は、血圧上昇時に前記所定の条件を満たしたときの前記カフ圧を前記補正値算出手段によって算出された前記補正値で補正した値を、血圧上昇時の血圧として抽出する一方、前記血圧上昇時制御目標値である場合は、血圧下降時に前記所定の条件を満たしたときの前記カフ圧を前記補正値算出手段によって算出された前記補正値で補正した値を、血圧下降時の血圧として抽出する。
 この発明の他の局面によれば、血圧測定装置を制御する制御方法は、容積補償法に従い血圧を測定するための血圧測定装置の制御方法である。血圧測定装置は、血圧の測定部位に装着された場合に内部の液体または気体の圧力で前記測定部位の動脈を圧迫するカフと、前記カフの内部の圧力を加圧および減圧するための加減圧部と、前記カフの内部の圧力であるカフ圧を検出するための圧力検出部と、単位長当りの前記動脈の容積を示す動脈容積信号を検出するための容積検出部と、制御部とを有する。
 血圧測定装置の制御方法は、前記制御部が、血圧下降時または血圧上昇時の制御目標値を決定するステップであって、血圧下降時制御目標値を決定する場合は、前記加減圧部で前記カフ圧を加圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧下降時制御目標値として決定する一方、血圧上昇時制御目標値を決定する場合は、前記加減圧部で前記カフ圧を減圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧上昇時制御目標値として決定するステップと、決定されたのが前記血圧下降時制御目標値である場合は血圧下降時に、前記血圧上昇時制御目標値である場合は血圧上昇時に、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、決定された前記血圧下降時制御目標値または前記血圧上昇時制御目標値と一致するように、前記容積検出部で検出された前記動脈容積信号に基づいて、前記加減圧部を制御して前記カフの圧力を調整するステップと、決定されたのが前記血圧下降時制御目標値である場合は、血圧下降時に前記容積が前記血圧下降時制御目標値と一致すると判断するための条件を満たしたときの前記圧力検出部で検出された前記カフ圧を、被測定者の血圧下降時の血圧として抽出する一方、前記血圧上昇時制御目標値である場合は、血圧上昇時に前記容積が前記血圧上昇時制御目標値と一致すると判断するための条件を満たしたときの前記圧力検出部で検出された前記カフ圧を、被測定者の血圧上昇時の血圧として抽出するステップとを含む。
 この発明に従えば、血圧測定装置によって、血圧下降時制御目標値を決定する場合は、加減圧部でカフ圧を加圧させながら容積検出部で検出された動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の動脈容積信号の平均値が、血圧下降時制御目標値として決定される一方、血圧上昇時制御目標値を決定する場合は、加減圧部でカフ圧を減圧させながら容積検出部で検出された動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の動脈容積信号の平均値が、血圧上昇時制御目標値として決定され、決定されたのが血圧下降時制御目標値である場合は血圧下降時に、血圧上昇時制御目標値である場合は血圧上昇時に、容積検出部で検出される動脈容積信号で示される容積が、決定された制御目標値に一致するように、カフの圧力が調整され、決定されたのが血圧下降時制御目標値である場合は、血圧下降時に容積が制御目標値と一致すると判断するための所定の条件を満たしたときのカフ圧が、血圧下降時の血圧として抽出される一方、血圧上昇時制御目標値である場合は、血圧上昇時に所定の条件を満たしたときのカフ圧が、血圧上昇時の血圧として抽出される。
 このため、血圧測定装置によって、加圧時に決定された制御目標値で血圧下降時の血圧が測定され、減圧時に決定された制御目標値で血圧上昇時の血圧が測定される。その結果、動脈およびその周辺の生体組織の力学的ヒステリシスの影響を少なくすることができるため、血圧の上昇時および下降時の血圧をより正確に測定することが可能な血圧測定装置、および、血圧測定装置の制御方法を提供することができる。
本発明の実施の形態に係る電子血圧計の外観斜視図である。 本発明の実施の形態に係る電子血圧計における血圧測定のためのカフ圧を制御する概念を表わした図である。 本発明の実施の形態に係る電子血圧計のハードウェア構成を表わすブロック図である。 本発明の第1の実施の形態における血圧測定処理の流れを示すフローチャートである。 本発明の第1の実施の形態における制御目標値検出処理の流れを示すフローチャートである。 本発明の実施の形態において制御目標値を決定する方法を説明するためのグラフである。 本発明の実施の形態における制御目標値決定時および血圧測定時のカフ圧および動脈容積信号の変化を示すグラフである。 本発明の第1の実施の形態の変形例における血圧測定処理の一部の流れを示すフローチャートである。 本発明の第2の実施の形態における血圧測定処理の流れを示すフローチャートである。 本発明の第2の実施の形態における制御目標値検出処理の流れを示すフローチャートである。 本発明の第2の実施の形態の変形例における血圧測定処理の一部の流れを示すフローチャートである。 動脈の力学的特性を示すグラフである。 動脈のヒステリシスを示すグラフである。 血圧波形を示す図である。 ヒステリシスを考慮した動脈の力学的特性を示すグラフである。
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
 本実施の形態に係る電子血圧計1は、容積補償法により連続的に血圧を測定する。電子血圧計1は、生体外からカフにより動脈に外圧を加え、生体外圧すなわちカフ圧と動脈内圧すなわち血圧とが常時平衡するように、決定した最適なサーボゲインを用いてサーボ制御する。つまり、電子血圧計1は、動脈壁が無負荷状態に維持されるようにカフ圧を微調整し、そのとき(無負荷状態)のカフ圧を測定することにより、最低血圧および最高血圧、または、連続的に血圧を測定する。
 [第1の実施の形態]
 図1は、本発明の実施の形態に係る電子血圧計1の外観斜視図である。図1を参照して、電子血圧計1は、本体部10と、被測定者の四肢に巻き付け可能なカフ20とを備える。本体部10はカフ20に取り付けられている。本体部10の表面には、たとえば液晶等により構成される表示部40と、ユーザ(被測定者)からの指示を受付けるための操作部41とが配置されている。操作部41は、複数のスイッチを含む。
 本実施の形態において、「四肢」とは、上肢および下肢を表わす。つまり、四肢は、手首から腕の付け根までの部位と、足首から足の付け根までの部位とを含む。以下の説明においては、カフ20は、被測定者の手首に装着されるものとする。
 なお、本実施の形態における電子血圧計1は、図1に示されるように、本体部10がカフ20に取り付けられた形態を例に説明するが、上腕式の血圧計で採用されているような、本体部10とカフ20とがエアチューブ(後述の図3においてエアチューブ31)によって接続される形態のものであってもよい。
 図2は、本発明の実施の形態に係る電子血圧計1における血圧測定のためのカフ圧を制御する概念を表わした図である。図2には、カフ20が、被測定者の手首200に装着された様子が示される。
 図2を参照して、本体部10には、ポンプ51および排気弁(以下、単に「弁」という)52を含むカフ圧の調整機構が配置される。
 ポンプ51、弁52、および、空気袋21内の圧力(カフ圧)を検出するための圧力センサ32を含むエア系30は、エアチューブ31を介して、カフ20に内包される空気袋21と接続される。
 空気袋21の内側には発光素子71と受光素子72とが所定の間隔に配置される。本実施の形態では、カフ20の装着状態における手首200の周に沿って発光素子71と受光素子72とが並べられるが、このような配置例に限定されるものではない。
 また、カフ20には空気袋21が含まれることとしたが、カフ20に供給される流体は空気に限定されるものではなく、たとえば液体やゲルであってもよい。あるいは、流体に限定されるものではなく、マイクロビーズなどの均一な微粒子であってもよい。
 図3は、本発明の実施の形態に係る電子血圧計1のハードウェア構成を表わすブロック図である。図3を参照して、電子血圧計1のカフ20は、空気袋21と、動脈容積センサ70とを含む。
 動脈容積センサ70は、被測定者の血圧測定部位の動脈の容積を検出するためのセンサであり、上述した発光素子71(たとえば、発光ダイオード)と、受光素子72(たとえば、フォトトランジスタ)とを有する光電センサによって構成される。発光素子71は、動脈に対して光を照射し、受光素子72は、発光素子71によって照射された光の動脈の透過光または反射光を受光する。
 なお、動脈容積センサ70は、動脈の容積が検出できるものであればよく、インピーダンスセンサ(インピーダンスプレスチモグラフ)により動脈の容積を検出するものであってもよい。その場合、発光素子71および受光素子72に代えて、動脈を含む部位のインピーダンスを検出するための複数の電極(電流印加用の電極対、および、電圧検知用の電極対)が含まれる。
 本体部10は、上述の表示部40および操作部41に加え、各部を集中的に制御し、各種の演算処理を行なうためのCPU(Central Processing Unit)100と、CPU100に所定の動作をさせるプログラムや各種データを記憶するためのメモリ部42と、測定された血圧データを記憶するための不揮発性メモリ、たとえば、フラッシュメモリ43と、CPU100を介し各部に電力を供給するための電源44、および現在時間を計時して計時データをCPU100に出力するタイマ45とを含む。
 操作部41は、電源をONまたはOFFするための指示の入力を受付ける電源スイッチ41Aと、測定開始の指示を受付けるための測定スイッチ41Bと、測定停止の指示を受付けるための停止スイッチ41Cと、フラッシュメモリ43に記録された血圧などの情報を読出す指示を受付けるためのメモリスイッチ41Dと、被測定者を識別するためのID(Identification)情報を入力するために操作されるIDスイッチ41Eを有する。
 本体部10は、さらに、上述したエア系30と、カフ圧の調整機構50と、発振回路33と、発光素子駆動回路73と、動脈容積検出回路74とを含む。
 調整機構50は、ポンプ51および弁52の他、ポンプ駆動回路53と弁駆動回路54とを有する。
 ポンプ51は、カフ圧を加圧するために、空気袋21に空気を供給する。弁52は、空気袋21の空気を排出しまたは封入するために開閉される。ポンプ駆動回路53は、ポンプ51の駆動をCPU100から与えられる制御信号に基づいて制御する。弁駆動回路54は弁52の開閉制御をCPU100から与えられる制御信号に基づいて行なう。
 発光素子駆動回路73は、CPU100からの指令信号に応じて、発光素子71の発光量を制御する。
 動脈容積検出回路74は、発光素子71の発する光であって、血管を流れる血液(赤血球)に含まれるヘモグロビンの吸収帯の光の、受光素子72に到達する透過光量または反射光量に基づく容積脈波信号(動脈容積信号PGdc)、および、容積脈波信号をHPF(High-pass filter)回路で処理することにより得られる容積脈波信号の交流成分の動脈容積変化信号PGacを、CPU100に出力する。たとえば、HPF回路のフィルタ定数を0.6Hzとして、0.6Hzを超える信号は交流成分とする。
 圧力センサ32は、静電容量型の圧力センサでありカフ圧により容量値が変化する。発振回路33は、圧力センサ32の容量値に応じた発振周波数の信号をCPU100に出力する。CPU100は、発振回路33から得られる信号を圧力に変換し圧力を検知する。
 図4は、本発明の第1の実施の形態における血圧測定処理の流れを示すフローチャートである。図4を参照して、まず、CPU100は、電源スイッチ41Aが押下される操作の入力を待つ(ステップST1)。
 電源スイッチ41Aが押下されると、CPU100は、初期化処理を行なう(ステップST2)。具体的には、CPU100は、初期化処理として、メモリ部42のこの処理に用いられるメモリ領域を初期化し、空気袋21の空気を排気し、圧力センサ32の0mmHg補正を行なう。
 次に、CPU100は、測定スイッチ41Bが押下される操作の入力を待つ(ステップST3)。測定スイッチ41Bが押下されると、CPU100は、制御目標値検出処理を実行する(ステップST4)。
 図5は、本発明の第1の実施の形態における制御目標値検出処理の流れを示すフローチャートである。図5を参照して、まず、CPU100は、メモリ部42に記憶される、動脈容積変化信号の最大値PGacmax’およびカフ圧値Pc0’を初期化する(ステップST101)。なお、以下の処理において動脈容積変化信号の最大値PGacmax’およびカフ圧値Pc0’は、随時更新されるものであるので、最終的に確定するまでの値は仮の値である。
 次に、CPU100は、弁駆動回路54を制御して弁52を閉鎖し(ステップST102)、ポンプ駆動回路53を制御してポンプ51を駆動することで、カフ圧を加圧する(ステップST103)。カフ圧を加圧する段階において、CPU100は、動脈容積検出回路74からの信号(動脈容積信号PGdc,動脈容積変化信号PGac)を検出する(ステップST104)。
 次に、CPU100は、ステップST104で検出された動脈容積変化信号PGacの1心拍周期の振幅が、カフ圧の加圧を開始してからこれまでの動脈容積変化信号PGacの振幅の最大値PGacmax’より大きいか否かを判断する(ステップST105)。大きいと判断した場合、CPU100は、そのときの振幅の値で最大値PGacmax’を更新し、そのときのカフ圧Pc0’も更新する(ステップST106)。
 CPU100は、カフ圧が所定圧に達したか否かを判断する(ステップST107)。所定圧は、被測定者の最高血圧より十分に高い圧力であって、たとえば、200mmHgである。所定圧に達していないと判断した場合、CPU100は、ステップST103に処理を戻し、ステップST106までの処理を繰返す。
 カフ圧が所定圧に達したと判断した場合、CPU100は、動脈容積変化信号の振幅の最大値PGacmax’を確定し、最大値PGacmax’となったときの1心拍周期の動脈容積信号PGdcの平均値を加圧時の制御目標値V0infとして算出し、そのときのカフ圧Pc0’を制御初期カフ圧Pc0として確定する(ステップST108)。
 図6は、本発明の実施の形態において制御目標値を決定する方法を説明するためのグラフである。図6を参照して、カフ圧を加圧していくと、2本のグラフのうち上のグラフに沿って、動脈内圧Pa(つまり血圧)とカフ圧Pcとの差、および、1心拍周期の動脈容積信号PGdcの平均値で示される動脈容積Vが、減少する。そして、カフ圧Pcが動脈内圧Paと等しくなったときに、動脈容積VがV0infになるとともに、動脈の力学的コンプライアンスが最大となり、血圧変動による動脈容積変化信号PGacの振幅が最大となる。
 カフ圧に対して血圧つまり動脈内圧Paが減少するときは、動脈内圧Paに対してカフ圧が増加するときと同じように考えることができる。つまり、V0infを、血圧減少時の制御目標値とすることができる。血圧減少時には、この制御目標値V0infを用いて動脈容積一定制御が収束するごと(たとえば、動脈容積変化信号PGacの振幅が所定の閾値以下となるごと)にカフ圧Pcを被測定者の血圧として測定することができる。
 図5に戻って、CPU100は、動脈容積変化信号の振幅の最大値PGacmax’を初期化する(ステップST109)。次いで、CPU100は、弁駆動回路54を制御して弁52の開閉を徐々に調整して、カフ圧を減圧する(ステップST110)。カフ圧を減圧する段階において、CPU100は、動脈容積検出回路74からの信号(動脈容積信号PGdc,動脈容積変化信号PGac)を検出する(ステップST111)。
 次に、CPU100は、ステップST111で検出された動脈容積変化信号PGacの1心拍周期の振幅が、カフ圧の減圧を開始してからこれまでの動脈容積変化信号PGacの振幅の最大値PGacmax’より大きいか否かを判断する(ステップST112)。大きいと判断した場合、CPU100は、そのときの振幅の値で最大値PGacmax’を更新する(ステップST113)。
 CPU100は、カフ圧が所定圧に達したか否かを判断する(ステップST114)。所定圧は、被測定者の最低血圧より十分に低い圧力であって、たとえば、30mmHgである。所定圧に達していないと判断した場合、CPU100は、ステップST110に処理を戻し、ステップST113までの処理を繰返す。
 カフ圧が所定圧に達したと判断した場合、CPU100は、カフの空気を排気するよう弁駆動回路54を制御して弁52を開く(ステップST115)。
 そして、CPU100は、動脈容積変化信号の振幅の最大値PGacmax’を確定し、最大値PGacmax’となったときの1心拍周期の動脈容積信号PGdcの平均値を加圧時の制御目標値V0defとして算出する(ステップST116)。その後、CPU100は、実行する処理をこの処理の呼出元の処理に戻す。
 図6を再度参照して、カフ圧を減圧していくと、2本のグラフのうち下のグラフに沿って、動脈内圧Pa(つまり血圧)とカフ圧Pcとの差、および、1心拍周期の動脈容積信号PGdcの平均値で示される動脈容積Vが、増加する。そして、カフ圧Pcが動脈内圧Paと等しくなったときに、動脈容積VがV0defになるとともに、動脈の力学的コンプライアンスが最大となり、血圧変動による動脈容積変化信号PGacの振幅が最大となる。
 カフ圧に対して血圧つまり動脈内圧Paが増加するときは、動脈内圧Paに対してカフ圧が減少するときと同じように考えることができる。つまり、V0defを、血圧増加時の制御目標値とすることができる。血圧増加時には、この制御目標値V0defを用いて動脈容積一定制御が収束するごと(たとえば、動脈容積変化信号PGacの振幅が所定の閾値以下となるごと)にカフ圧Pcを被測定者の血圧として測定することができる。
 図7は、本発明の実施の形態における制御目標値決定時および血圧測定時のカフ圧および動脈容積信号の変化を示すグラフである。図7を参照して、図5のステップST103からステップST108までの処理が実行されるとき(電源がオン状態にされてから約35秒まで)は、カフ圧Pcが30mmHg付近から130mmHg付近まで加圧される。これに応じて、動脈容積信号PGdcの値も、心拍周期に合わせて振動しながら増加する。
 そして、動脈容積変化信号PGacの振幅が最大となるとき、つまり、動脈容積信号PGdcの振幅も最大となるときの1心拍周期の動脈容積信号PGdcの平均値が、血圧減少時の制御目標値V0infとして算出される。
 また、図5のステップST110からステップST116までの処理が実行されるとき(電源がオン状態にされて約35秒経過したときから約70秒まで)は、カフ圧Pcが130mmHg付近から30mmHg付近まで減圧される。これに応じて、動脈容積信号PGdcの値も、心拍周期に合わせて振動しながら減少する。
 そして、動脈容積変化信号PGacの振幅が最大となるとき、つまり、動脈容積信号PGdcの振幅も最大となるときの1心拍周期の動脈容積信号PGdcの平均値が、血圧増加時の制御目標値V0defとして算出される。
 図4に戻って、CPU100は、カフ圧を図5のステップST108で確定された制御初期カフ圧Pc0に設定する(ステップST5)。
 CPU100は、動脈容積一定制御として、動脈容積信号PGdcの値が血圧減少時の制御目標値V0infと一致するように、ポンプ駆動回路53および弁駆動回路54を制御してカフ圧Pcを変更させる(ステップST6)。
 所定時間(たとえば、10msec)動脈容積一定制御を行なった後、動脈容積変化信号PGacの振幅が所定の閾値以下となったか否かを判断する(ステップST7)。所定の閾値以下となったと判断した場合、動脈容積一定制御が収束したということであるので、CPU100は、そのときのカフ圧Pcが1心拍内での最低値であれば、被測定者の最低血圧として決定して、決定した最低血圧値を表示部40に表示させる(ステップST8)。決定した最低血圧値は、フラッシュメモリ43に記憶されるようにしてもよい。
 そして、CPU100は、血圧の測定が開始されてから所定期間(たとえば、40秒)経過したか否かを判断する(ステップST9)。経過していないと判断した場合、CPU100は、実行する処理をステップST6の処理に戻す。また、CPU100は、血圧の測定を開始してから所定期間に測定した最低血圧値の平均値を、最終的な最低血圧値として表示部40に表示させる。
 一方、血圧の測定が開始されてから所定期間経過したと判断した場合、CPU100は、実行する処理をステップST10の処理に進める。CPU100は、動脈容積一定制御として、動脈容積信号PGdcの値が血圧増加時の制御目標値V0defと一致するように、ポンプ駆動回路53および弁駆動回路54を制御してカフ圧Pcを変更させる(ステップST10)。
 所定時間(たとえば、10msec)動脈容積一定制御を行なった後、動脈容積変化信号PGacの振幅が所定の閾値以下となったか否かを判断する(ステップST11)。所定の閾値以下となった場合、動脈容積一定制御が収束したということであるので、CPU100は、そのときのカフ圧Pcが1心拍内での最高値であれば、被測定者の最高血圧として決定して、決定した最高血圧値を表示部40に表示させる(ステップST12)。決定した最高血圧値は、フラッシュメモリ43に記憶されるようにしてもよい。
 そして、CPU100は、停止スイッチ41Cが操作されることによって停止信号が入力された(オン状態となった)か否かを判断する(ステップST13)。停止信号が入力されていない(オフ状態である)と判断した場合、CPU100は、実行する処理をステップST6の処理に戻す。また、CPU100は、血圧の測定が開始されてから所定期間が経過した後に測定した最高血圧値の平均値を、最終的な最高血圧値として表示部40に表示させる。
 一方、停止信号が入力された(オン状態となった)と判断した場合、CPU100は、CPU100は、カフの空気を排気するよう弁駆動回路54を制御して弁52を開く(ステップST14)。その後、CPU100は、この血圧測定処理を終了し、電子血圧計1の電源をオフ状態にする。
 図7を再度参照して、図4のステップST6からステップST9までの処理が実行されるとき(電源がオン状態にされて約80秒経過したときから約120秒まで)は、血圧減少時の制御目標値V0infが用いられて動脈容積一定制御が行なわれる。このため、最低血圧側が真の最低血圧に近い値として測定されている。
 また、図4のステップST10からステップST13までの処理が実行されるとき(電源がオン状態にされて約120秒以降は、血圧増加時の制御目標値V0defが用いられて動脈容積一定制御が行なわれる。このため、最高血圧側が真の最高血圧に近い値として測定されている。
 このように、第1の実施の形態の電子血圧計1によって、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて動脈容積一定制御が行なわれ、血圧減少時の血圧のうち最低血圧が測定され、カフ圧の減圧時に決定された血圧増加時の制御目標値V0defが用いられて動脈容積一定制御が行なわれ、血圧増加時の血圧のうち最高血圧が測定される。その結果、動脈およびその周辺の生体組織の力学的ヒステリシスの影響を少なくすることができるため、血圧の増加時および減少時の血圧をより正確に測定することができる。
 また、第1の期間(たとえば、血圧の測定が開始されたから所定期間)は、血圧減少時の血圧のうち最低血圧が測定され、第1の期間と異なる第2の期間(たとえば、所定期間の後の期間)は、血圧増加時の血圧のうち最高血圧が測定されるようにする。その結果、さらに正確に最低血圧および最高血圧を測定することができる。
 [第1の実施の形態の変形例]
 第1の実施の形態においては、最低血圧および最高血圧を測定する場合について説明した。第1の実施の形態の変形例においては、連続的に血圧を測定する場合について説明する。第1の実施の形態と変形例とは、図4のステップST6からステップST13までの処理が異なる。このため、第1の実施の形態の変形例の説明としては、異なる処理について説明し、重複する説明は繰返さない。
 図8は、本発明の第1の実施の形態の変形例における血圧測定処理の一部の流れを示すフローチャートである。図8を参照して、図4で説明したステップST5の後、CPU100は、動脈容積信号PGdcの立下がり点が検出されてから立上がり点が検出されるまでの血圧下降中であるか否かを判断する(ステップST21)。
 血圧下降中であると判断した場合、CPU100は、図4のステップST6およびステップST7と同様の処理を実行する。一方、血圧下降中でないと判断した、つまり、血圧上昇中である場合、図4のステップST10およびステップST11と同様の処理を実行する。
 ステップST6またはステップST10の動脈容積一定制御によって、それぞれ、ステップST7またはステップST11で動脈容積変化信号PGacの振幅が所定の閾値以下となったと判断した場合、CPU100は、そのときのカフ圧Pcを、被測定者の血圧として決定して、決定した血圧値を表示部40に表示させる(ステップST22)。決定した血圧値は、フラッシュメモリ43に記憶されるようにしてもよい。次に、CPU100は、図4のステップST13と同様の処理を実行する。
 このように、第1の実施の形態の変形例の電子血圧計1によって、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて動脈容積一定制御が行なわれ、血圧減少時の血圧が測定され、カフ圧の減圧時に決定された血圧増加時の制御目標値V0defが用いられて動脈容積一定制御が行なわれ、血圧増加時の血圧が測定される。その結果、動脈およびその周辺の生体組織の力学的ヒステリシスの影響を少なくすることができるため、血圧の増加時および減少時の血圧をより正確に測定することができる。
 また、動脈容積信号PGdcの立下がり点および立上がり点が検出されるようにして、立上がり点が検出されてから立下がり点が検出されるまでは、血圧増加時とされ、血圧増加時の血圧が測定され、立下がり点が検出されてから立上がり点が検出されるまでは、血圧減少時とされ、血圧減少時の血圧が測定される。その結果、より正確に制御目標値を切替えることができるので、血圧の増加時および減少時の血圧をさらに正確に測定することができる。
 [第2の実施の形態]
 第1の実施の形態においては、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて血圧減少時の血圧が測定され、カフ圧の減圧時に決定された血圧増加時の制御目標値V0defが用いられて血圧増加時の血圧が測定されるようにした。
 第2の実施の形態においては、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて測定された血圧を、血圧減少時は、そのまま被測定者の血圧とし、血圧増加時については、カフ圧の加圧時に制御目標値V0infが決定されたときのカフ圧とカフ圧の減圧時に動脈容積変化信号PGacの振幅が最大となるときのカフ圧との差で補正して被測定者の血圧とする。
 図9は、本発明の第2の実施の形態における血圧測定処理の流れを示すフローチャートである。図9を参照して、第2の実施の形態における血圧測定処理は、図4で説明した第1の実施の形態における血圧測定処理のステップST4およびステップST10からステップST12までを、それぞれ、ステップST4’およびステップST15からステップST17までに変更したものである。このため、ここでは変更箇所について説明し、重複する説明は繰返さない。
 ステップST3で測定スイッチ41Bが押下されると、CPU100は、制御目標値検出処理を実行する(ステップST4’)。
 図10は、本発明の第2の実施の形態における制御目標値検出処理の流れを示すフローチャートである。図5を参照して、第2の実施の形態における血圧測定処理は、図5で説明した第1の実施の形態における血圧測定処理のステップS109、ステップST113およびステップST116を、それぞれ、ステップS109’、ステップST113’およびステップST117に変更したものである。このため、ここでは変更箇所について説明し、重複する説明は繰返さない。
 ステップS108の後、ステップST101と同様、CPU100は、動脈容積変化信号の振幅の最大値PGacmax’ およびカフ圧値Pc0’を初期化する(ステップST109’)。
 ステップST112で動脈容積変化信号PGacの1心拍周期の振幅が、カフ圧の減圧を開始してからこれまでの動脈容積変化信号PGacの振幅の最大値PGacmax’より大きいと判断した場合、CPU100は、そのときの振幅の値で最大値PGacmax’を更新し、そのときのカフ圧Pc0’も更新する(ステップST113’)。
 ステップST115の後、CPU100は、動脈容積変化信号の振幅の最大値PGacmax’を確定し、減圧時に最大値PGacmax’となったときのカフ圧Pc0’を確定し、ステップST106で確定された加圧時に動脈容積変化信号の振幅が最大となったときのカフ圧Pc0と減圧時のカフ圧Pc0’との差を、補正値として算出する(ステップST117)。
 図9に戻って、最低血圧の測定が開始されてから所定期間経過したと判断した場合、CPU100は、ステップST6と同様、動脈容積一定制御として、動脈容積信号PGdcの値が血圧減少時の制御目標値V0infと一致するように、ポンプ駆動回路53および弁駆動回路54を制御してカフ圧Pcを変更させる(ステップST15)。
 所定時間(たとえば、10msec)動脈容積一定制御を行なった後、動脈容積変化信号PGacの振幅が所定の閾値以下となったか否かを判断する(ステップST16)。所定の閾値以下となったと判断した場合、動脈容積一定制御が収束したということであるので、CPU100は、そのときのカフ圧Pcが1心拍内での最高値であれば、その最高値に、図10のステップST117で算出された補正値を加算したものを、被測定者の最高血圧として決定して、決定した最高血圧値を表示部40に表示させる(ステップST17)。決定した最高血圧値は、フラッシュメモリ43に記憶されるようにしてもよい。
 その後、CPU100は、図4のステップST13およびステップST14と同様の処理を実行する(ステップST13、ステップST14)。また、CPU100は、血圧の測定が開始されてから所定期間が経過した後に測定した最高血圧値の平均値を、最終的な最高血圧値として表示部40に表示させる。
 このように、第2の実施の形態の電子血圧計1によって、血圧減少時においては、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて動脈容積一定制御が行なわれ、測定された血圧減少時の血圧のうち最低血圧が、そのまま被測定者の最低血圧とされ、血圧増加時においては、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて動脈容積一定制御が行なわれ、測定された血圧増加時の血圧のうち最高血圧が、カフ圧の加圧時に制御目標値V0infが決定されたときのカフ圧とカフ圧の減圧時に動脈容積変化信号PGacの振幅が最大となるときのカフ圧との差で補正されて、被測定者の最高血圧とされる。その結果、動脈およびその周辺の生体組織の力学的ヒステリシスの影響を少なくすることができるため、血圧の増加時および減少時の血圧をより正確に測定することができる。
 また、第1の期間(たとえば、血圧の測定が開始されたから所定期間)は、血圧減少時の血圧のうち最低血圧が測定され、第1の期間と異なる第2の期間(たとえば、所定期間の後の期間)は、血圧増加時の血圧のうち最高血圧が測定されるようにする。その結果、さらに正確に最低血圧および最高血圧を測定することができる。
 [第2の実施の形態の変形例]
 第2の実施の形態においては、最低血圧および最高血圧を測定する場合について説明した。第2の実施の形態の変形例においては、連続的に血圧を測定する場合について説明する。第2の実施の形態と変形例とは、図9のステップST6からステップST13までの処理が異なる。このため、第2の実施の形態の変形例の説明としては、異なる処理について説明し、重複する説明は繰返さない。
 図11は、本発明の第2の実施の形態の変形例における血圧測定処理の一部の流れを示すフローチャートである。図11を参照して、図9で説明したステップST5の後、CPU100は、図9のステップST6およびステップST7と同様の処理を実行する。
 ステップST7で動脈容積変化信号PGacの振幅が所定の閾値以下となったと判断した場合、CPU100は、動脈容積信号PGdcの立下がり点が検出されてから立上がり点が検出されるまでの血圧下降中であるか否かを判断する(ステップST23)。
 血圧下降中であると判断した場合、CPU100は、そのときのカフ圧Pcを、被測定者の血圧として決定して、決定した血圧値を表示部40に表示させる(ステップST24)。決定した血圧値は、フラッシュメモリ43に記憶されるようにしてもよい。その後、実行する処理をステップST13の処理に進める。
 一方、血圧下降中でないと判断した場合、つまり、血圧上昇中である場合、CPU100は、そのときのカフ圧Pcに、図10のステップST117で算出された補正値を加算したものを、被測定者の血圧として決定して、決定した血圧値を表示部40に表示させる(ステップST25)。決定した血圧値は、フラッシュメモリ43に記憶されるようにしてもよい。その後、実行する処理をステップST13の処理に進める。ステップST13では、図4のステップST13と同様の処理を実行する。
 このように、第2の実施の形態の変形例の電子血圧計1によって、血圧減少時においては、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて動脈容積一定制御が行なわれ、測定された血圧減少時の血圧が、そのまま被測定者の血圧とされ、血圧増加時においては、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて動脈容積一定制御が行なわれ、測定された血圧増加時の血圧が、カフ圧の加圧時に制御目標値V0infが決定されたときのカフ圧とカフ圧の減圧時に動脈容積変化信号PGacの振幅が最大となるときのカフ圧との差で補正されて、被測定者の血圧とされる。その結果、動脈およびその周辺の生体組織の力学的ヒステリシスの影響を少なくすることができるため、血圧の増加時および減少時の血圧をより正確に測定することができる。
 また、動脈容積信号PGdcの立下がり点および立上がり点が検出されるようにして、立上がり点が検出されてから立下がり点が検出されるまでは、血圧増加時とされ、血圧増加時の血圧が測定され、立下がり点が検出されてから立上がり点が検出されるまでは、血圧減少時とされ、血圧減少時の血圧が測定される。その結果、より正確に制御目標値を切替えることができるので、血圧の増加時および減少時の血圧をさらに正確に測定することができる。
 次に、上述した実施の形態の変形例について説明する。
 (1) 前述した第2の実施の形態およびその変形例においては、カフ圧の加圧時に決定された血圧減少時の制御目標値V0infが用いられて測定された血圧を、血圧減少時は、そのまま被測定者の血圧とし、血圧増加時については、カフ圧の加圧時に制御目標値V0infが決定されたときのカフ圧とカフ圧の減圧時に動脈容積変化信号の振幅が最大となるときのカフ圧との差で補正して被測定者の血圧とした。
 しかし、これに限定されず、カフ圧の減圧時に決定された血圧増加時の制御目標値V0defが用いられて測定された血圧を、血圧増加時は、そのまま被測定者の血圧とし、血圧減少時については、カフ圧の減圧時に制御目標値V0defが決定されたときのカフ圧とカフ圧の加圧時に動脈容積変化信号の振幅が最大となるときのカフ圧との差で補正して被測定者の血圧とするようにしてもよい。
 (2) 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 電子血圧計、10 本体部、20 カフ、21 空気袋、30 エア系、31 エアチューブ、32 圧力センサ、33 発振回路、40 表示部、41 操作部、41A 電源スイッチ、41B 測定スイッチ、41C 停止スイッチ、41D メモリスイッチ、41E IDスイッチ、42 メモリ部、43 フラッシュメモリ、44 電源、45 タイマ、50 調整機構、51 ポンプ、52 弁、53 ポンプ駆動回路、54 弁駆動回路、70 動脈容積センサ、71 発光素子、72 受光素子、73 発光素子駆動回路、74 動脈容積検出回路、100 CPU。

Claims (6)

  1.  血圧の測定部位に装着された場合に内部の液体または気体の圧力で前記測定部位の動脈を圧迫するカフ(20)と、前記カフの内部の圧力を加圧および減圧するための加減圧部(21,30,31,51~54)と、前記カフの内部の圧力であるカフ圧を検出するための圧力検出部(32)と、単位長当りの前記動脈の容積を示す動脈容積信号を検出するための容積検出部(70~72)と、制御部(100)とを有し、前記制御部は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が所定の制御目標値と一致するように、前記容積検出部で検出された前記動脈容積信号に基づいて、前記加減圧部を制御して前記カフの圧力を調整する圧力制御手段(図4,図8のステップST6,ST10、図9のステップST6,ST15、図11のステップST6)と、前記圧力制御手段による調整の結果、前記容積が前記所定の制御目標値と一致すると判断するための所定の条件を満たしたときの前記圧力検出部で検出された前記カフ圧を、被測定者の血圧として抽出する抽出手段(図4のステップST7,ST8,ST11,ST12、図8のステップST21,ST7,ST11,ST22,図9のステップST7,ST8,ST16,ST17、図11のステップST7,ST23~ST25)とを含む、容積補償法に従い血圧を測定するための血圧測定装置(1)であって、
     前記制御部は、さらに、
      血圧下降時または血圧上昇時の前記所定の制御目標値を決定する手段であって、血圧下降時制御目標値を決定する場合は、前記加減圧部で前記カフ圧を加圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧下降時制御目標値として決定する一方、血圧上昇時制御目標値を決定する場合は、前記加減圧部で前記カフ圧を減圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧上昇時制御目標値として決定する第1の制御目標値決定手段(図4のステップST4、図5のステップST101~ST116、図9のステップST4’、図10のステップST101~ST117)を含み、
     前記圧力制御手段は、前記第1の制御目標値決定手段によって前記所定の制御目標値として決定されたのが前記血圧下降時制御目標値である場合は血圧下降時に、前記血圧上昇時制御目標値である場合は血圧上昇時に、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記第1の制御目標値決定手段によって決定された前記所定の制御目標値に一致するように、前記カフの圧力を調整し(図4,図8のステップST6,ST10、図9のステップST6,ST15、図11のステップST6)、
     前記抽出手段は、前記第1の制御目標値決定手段によって決定されたのが前記血圧下降時制御目標値である場合は、血圧下降時に前記所定の条件を満たしたときの前記カフ圧を、血圧下降時の血圧として抽出する一方、前記血圧上昇時制御目標値である場合は、血圧上昇時に前記所定の条件を満たしたときの前記カフ圧を、血圧上昇時の血圧として抽出する(図4のステップST7,ST8,ST11,ST12、図8のステップST21,ST7,ST11,ST22,図9のステップST7,ST8,ST16,ST17、図11のステップST7,ST23~ST25)、血圧測定装置。
  2.  前記制御部は、さらに、
      前記第1の制御目標値決定手段によって決定されるのが前記血圧下降時制御目標値である場合は、前記加減圧部で前記カフ圧を減圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧上昇時制御目標値として決定する一方、前記第1の制御目標値決定手段によって決定されるのが前記血圧上昇時制御目標値である場合は、前記加減圧部で前記カフ圧を加圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧下降時制御目標値として決定する第2の制御目標値決定手段(図4のステップST4、図5のステップST101~ST116)を含み、
     前記圧力制御手段は、前記第1の制御目標値決定手段または前記第2の制御目標値決定手段によって前記所定の制御目標値として決定されたのが前記血圧下降時制御目標値である場合は血圧下降時に、前記血圧上昇時の制御目標値である場合は血圧上昇時に、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記第1の制御目標値決定手段または前記第2の制御目標値決定手段によって決定された前記所定の制御目標値に一致するように、前記カフの圧力を調整し(図4,図8のステップST6,ST10)、
     前記抽出手段は、前記第1の制御目標値決定手段または前記第2の制御目標値決定手段によって決定されたのが前記血圧下降時制御目標値である場合は、血圧下降時に前記所定の条件を満たしたときの前記カフ圧を、血圧下降時の血圧として抽出する一方、前記血圧上昇時制御目標値である場合は、血圧上昇時に前記所定の条件を満たしたときの前記カフ圧を、血圧上昇時の血圧として抽出する(図4のステップST7,ST8,ST11,ST12、図8のステップST21,ST7,ST11,ST22)、請求項1に記載の血圧測定装置。
  3.  前記制御部は、さらに、
      前記容積検出部で検出される前記動脈容積信号で示される前記容積が、増加を開始する立上がり点と、減少を開始する立下がり点とを検出する変化点検出手段(図8のステップST21)を含み、
     前記圧力制御手段は、前記変化点検出手段によって前記立上がり点が検出されてから前記立下がり点が検出されるまで(ステップST21での判断がNOとなってからYESとなるまで)の立上がり時は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記血圧上昇時制御目標値に一致するように、前記カフの圧力を調整する一方、前記立下がり点が検出されてから前記立上がり点が検出されるまで(ステップST21での判断がYESとなってからNOとなるまで)の立下がり時は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記血圧下降時制御目標値に一致するように、前記カフの圧力を調整する(図8のステップST6,ST10)、請求項2に記載の血圧測定装置。
  4.  前記圧力制御手段は、第1の期間(図4のステップST9で所定期間が経過したと判断されるまでの期間)は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記血圧上昇時制御目標値に一致するように、前記カフの圧力を調整する一方、前記第1の期間と異なる第2の期間(図4のステップST9で所定期間が経過したと判断されてからの期間)は、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記血圧下降時制御目標値に一致するように、前記カフの圧力を調整する(図4のステップST6,ST10)、請求項2に記載の血圧測定装置。
  5.  前記制御部は、さらに、
      前記第1の制御目標値決定手段によって前記血圧下降時制御目標値または前記血圧上昇時制御目標値が決定されたときに前記圧力検出部で検出される第1のカフ圧を特定する第1のカフ圧特定手段(図10のステップST103~ST108)と、
      前記第1の制御目標値決定手段によって決定されるのが前記血圧下降時制御目標値である場合は、前記加減圧部で前記カフ圧を減圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときに前記圧力検出部で検出される第2のカフ圧を特定する一方、前記第1の制御目標値決定手段によって決定されるのが前記血圧上昇時制御目標値である場合は、前記加減圧部で前記カフ圧を加圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときになるときに前記圧力検出部で検出される第2のカフ圧を特定する第2のカフ圧特定手段(図10のステップST110~ST114)と、
      前記第1のカフ圧特定手段によって特定された前記第1のカフ圧と、前記第2のカフ圧特定手段によって特定された前記第2のカフ圧との差を補正値として算出する補正値算出手段(図10のステップST117)とを含み、
     前記圧力制御手段は、前記第1の制御目標値決定手段によって前記所定の制御目標値として決定されたのが前記血圧下降時制御目標値および前記血圧上昇時制御目標値のいずれであっても、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、前記第1の制御目標値決定手段によって決定された前記所定の制御目標値に一致するように、前記カフの圧力を調整し(図9のステップST6,ST15、図11のステップST6)、
     前記抽出手段は、さらに、前記第1の制御目標値決定手段によって決定されたのが前記血圧下降時制御目標値である場合は、血圧上昇時に前記所定の条件を満たしたときの前記カフ圧を前記補正値算出手段によって算出された前記補正値で補正した値を、血圧上昇時の血圧として抽出する一方、前記血圧上昇時制御目標値である場合は、血圧下降時に前記所定の条件を満たしたときの前記カフ圧を前記補正値算出手段によって算出された前記補正値で補正した値を、血圧下降時の血圧として抽出する(図9のステップST7,ST8,ST16,ST17、図11のステップST7,ST23~ST25)、請求項1に記載の血圧測定装置。
  6.  血圧の測定部位に装着された場合に内部の液体または気体の圧力で前記測定部位の動脈を圧迫するカフ(20)と、前記カフの内部の圧力を加圧および減圧するための加減圧部(21,30,31,51~54)と、前記カフの内部の圧力であるカフ圧を検出するための圧力検出部(32)と、単位長当りの前記動脈の容積を示す動脈容積信号を検出するための容積検出部(70~72)と、制御部(100)とを有し、容積補償法に従い血圧を測定するための血圧測定装置(1)を制御する制御方法であって、
     前記制御部が、
      血圧下降時または血圧上昇時の制御目標値を決定するステップであって、血圧下降時制御目標値を決定する場合は、前記加減圧部で前記カフ圧を加圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧下降時制御目標値として決定する一方、血圧上昇時制御目標値を決定する場合は、前記加減圧部で前記カフ圧を減圧させながら前記容積検出部で検出された前記動脈容積信号の交流成分である動脈容積変化信号の振幅が最大になるときの1拍分の前記動脈容積信号の平均値を、前記血圧上昇時制御目標値として決定するステップ(図4のステップST4、図5のステップST101~ST116、図9のステップST4’、図10のステップST101~ST117)と、
      決定されたのが前記血圧下降時制御目標値である場合は血圧下降時に、前記血圧上昇時制御目標値である場合は血圧上昇時に、前記容積検出部で検出される前記動脈容積信号で示される前記容積が、決定された前記血圧下降時制御目標値または前記血圧上昇時制御目標値と一致するように、前記容積検出部で検出された前記動脈容積信号に基づいて、前記加減圧部を制御して前記カフの圧力を調整するステップ(図4,図8のステップST6,ST10、図9のステップST6,ST15、図11のステップST6)と、
      決定されたのが前記血圧下降時制御目標値である場合は、血圧下降時に前記容積が前記血圧下降時制御目標値と一致すると判断するための条件を満たしたときの前記圧力検出部で検出された前記カフ圧を、被測定者の血圧下降時の血圧として抽出する一方、前記血圧上昇時制御目標値である場合は、血圧上昇時に前記容積が前記血圧上昇時制御目標値と一致すると判断するための条件を満たしたときの前記圧力検出部で検出された前記カフ圧を、被測定者の血圧上昇時の血圧として抽出するステップ(図4のステップST7,ST8,ST11,ST12、図8のステップST21,ST7,ST11,ST22,図9のステップST7,ST8,ST16,ST17、図11のステップST7,ST23~ST25)とを含む、血圧測定装置の制御方法。
PCT/JP2011/052632 2010-03-30 2011-02-08 血圧測定装置、および、血圧測定装置の制御方法 WO2011122116A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010077393A JP5540829B2 (ja) 2010-03-30 2010-03-30 血圧測定装置、および、血圧測定装置の制御方法
JP2010-077393 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122116A1 true WO2011122116A1 (ja) 2011-10-06

Family

ID=44711858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052632 WO2011122116A1 (ja) 2010-03-30 2011-02-08 血圧測定装置、および、血圧測定装置の制御方法

Country Status (2)

Country Link
JP (1) JP5540829B2 (ja)
WO (1) WO2011122116A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016030232A1 (en) * 2014-08-28 2016-03-03 Koninklijke Philips N.V. Method for oscillatory non-invasive blood pressure (nibp) measurement and control unit for an nibp apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179131A (ja) * 1985-02-05 1986-08-11 株式会社エー・アンド・ディ 非観血式連続血圧計
JPH08581A (ja) * 1994-04-21 1996-01-09 Omron Corp 電子血圧計

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431370A (en) * 1987-07-27 1989-02-01 Matsushita Electric Ind Co Ltd Cooling fin for semiconductor component
TWI409051B (zh) * 2007-12-10 2013-09-21 Univ Nat Yang Ming 一種以壓脈帶測量肱動脈脈波震盪訊號以估算中央動脈血壓的測量裝置及其方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179131A (ja) * 1985-02-05 1986-08-11 株式会社エー・アンド・ディ 非観血式連続血圧計
JPH08581A (ja) * 1994-04-21 1996-01-09 Omron Corp 電子血圧計

Also Published As

Publication number Publication date
JP5540829B2 (ja) 2014-07-02
JP2011206296A (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
JP4702216B2 (ja) 電子血圧計およびその制御方法
JP5045514B2 (ja) 電子血圧計
US9149194B2 (en) Electronic sphygmomanometer
JP5152153B2 (ja) 電子血圧計
JP5499832B2 (ja) 血圧測定装置、および、血圧測定装置の制御方法
WO2010106994A1 (ja) 血圧情報測定装置
WO2010053009A1 (ja) 血圧情報測定装置
JP5200956B2 (ja) 血圧情報測定装置
JP5169631B2 (ja) 血圧情報測定装置
JP5540829B2 (ja) 血圧測定装置、および、血圧測定装置の制御方法
JP2009153843A (ja) 血圧測定装置
JP2010131247A (ja) 血圧測定装置
JP5083037B2 (ja) 電子血圧計
JP2009285029A (ja) 電子血圧計
JP5239640B2 (ja) 血圧情報測定装置
JP2009285027A (ja) 電子血圧計
JP2014068824A (ja) 電子血圧計及び電子血圧計の制御方法
JP2011200266A (ja) 動脈硬化指標測定装置
JP2011200265A (ja) 動脈硬化指標測定装置
JP2014014555A (ja) 電子血圧計および血圧測定方法
JP2012196322A (ja) 血圧測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762357

Country of ref document: EP

Kind code of ref document: A1