WO2011121983A1 - 回転電気機械 - Google Patents

回転電気機械 Download PDF

Info

Publication number
WO2011121983A1
WO2011121983A1 PCT/JP2011/001838 JP2011001838W WO2011121983A1 WO 2011121983 A1 WO2011121983 A1 WO 2011121983A1 JP 2011001838 W JP2011001838 W JP 2011001838W WO 2011121983 A1 WO2011121983 A1 WO 2011121983A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
rotor
stator core
stator
core
Prior art date
Application number
PCT/JP2011/001838
Other languages
English (en)
French (fr)
Inventor
近藤俊成
安田善紀
山際昭雄
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN2011800170083A priority Critical patent/CN102835004A/zh
Priority to BR112012022992A priority patent/BR112012022992B1/pt
Priority to US13/638,041 priority patent/US20130026874A1/en
Priority to AU2011233453A priority patent/AU2011233453B9/en
Priority to EP11762231.6A priority patent/EP2555389B1/en
Priority to KR1020127027220A priority patent/KR101438297B1/ko
Publication of WO2011121983A1 publication Critical patent/WO2011121983A1/ja
Priority to US14/603,771 priority patent/US9438090B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • H02K15/026Wound cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • the present invention relates to a rotary electric machine such as a motor having a coil portion distributedly wound, and particularly relates to measures for miniaturization.
  • Some rotary electric machines such as motors have a so-called distributed winding type in which a coil portion is wound so as to straddle a plurality of teeth of a stator core (for example, see Patent Document 1 below).
  • the stator and the rotor are usually assembled by inserting the rotor in the axial direction on the inner peripheral side of the stator core. At this time, the coil ends of the respective coil portions contact the rotor. The coil end is formed in a shape bulging to the outer peripheral side of the stator core so as not to contact.
  • the present invention has been made in view of the above point, and an object of the present invention is to provide a coil end while avoiding contact between the coil end and the rotor during assembly of the stator and the rotor in the distributed winding type rotary electric machine.
  • the aim is to improve efficiency by shortening.
  • the 1st invention is provided in the outer peripheral side of the rotor (40) which has a drive shaft (60), the substantially cylindrical rotor core (41) attached to this drive shaft (60), and this rotor (40).
  • a stator (20) having a substantially cylindrical stator core (30) and a plurality of coil portions (21, 22, 23) distributedly wound on the stator core (30).
  • the stator core (30) is composed of a plurality of members (31) arranged in the circumferential direction, and each of the coil portions (21, 22, 23) straddles any two of the plurality of members (31).
  • the at least one coil end (21E) of the plurality of coil portions (21, 22, 23) is configured to pass inside the inner peripheral surface of the stator core (30). .
  • the coil end (21E) of the at least one coil portion (21, 22, 23) is configured to pass inside the inner peripheral surface of the stator core (30). 30) shorter than the case where it is formed so as to bulge to the outer peripheral side.
  • the area inside the inner peripheral surface of the stator core (30) as the arrangement area of the coil ends (21E, 22E, 23E)
  • a plurality of coil ends (21E, 22E, 23E) are distributed in the radial direction without being stacked in the axial direction. Thereby, the mutual contact of these coil ends (21E, 22E, 23E) is avoided.
  • the stator core (30) is comprised by the some member (31) arranged in the circumferential direction, and each coil part (21,22,23) is each of any of the said some member (31), respectively. It is arranged not to straddle two. Therefore, the stator (20) and the rotor are assembled by assembling each member (31) of the stator core (30) to which the coil portions (21, 22, 23) are mounted from the outer peripheral side of the rotor (40) toward the radially inner side. (40) can be assembled.
  • At least one coil end (21E, 22E, 23E) of the plurality of coil portions (21, 22, 23) is formed linearly in a plan view.
  • At least one coil end (22E) of the plurality of coil portions (21, 22, 23) is formed linearly in a plan view. That is, the coil end (22E) is formed by connecting both ends located on the axial end surface of the stator core (30) through the shortest path. If the coil end (22E) is formed in this way, there is a risk of passing through the inside of the inner peripheral surface of the stator core (30). However, as described above, the stator core (30) is composed of a plurality of members (31). Therefore, the coil end (22E) does not contact the rotor (40) when the stator (20) and the rotor (40) are assembled.
  • the stator core (30) and the rotor core (41) extend alternately and continuously in the radial direction and the axial direction between the cores (30, 41). It has the uneven
  • gaps (G) extending alternately and continuously in the radial direction and the axial direction are formed between the stator core (30) and the rotor core (41).
  • the stator core (30) and the rotor core (41) each have a portion facing not only in the radial direction but also in the axial direction, and the areas of the opposing surfaces are dramatically increased. Thereby, the torque characteristic in a rotary electric machine improves.
  • 23E) can be shortened. Thereby, the electrical resistance in a coil end (21E, 22E, 23E) can be reduced, and the efficiency fall by copper loss can be suppressed.
  • a region inside the inner peripheral surface of the stator core (30) as a region for arranging the coil ends (21E, 22E, 23E), a plurality of coil ends (21E, 22E, 23E arranged at the same angular position) ) In the radial direction without being stacked in the axial direction.
  • the axial height of the coil end (21E, 22E, 23E) can be suppressed, and the coil end can be used by using a region inside the inner peripheral surface of the stator core (30) that could not be used conventionally. Since the expansion of (21E, 22E, 23E) to the outer peripheral side can be suppressed, the radial length of the stator core (30) can be reduced. Therefore, with the miniaturization of the rotating electrical machine, the coil ends (21E, 22E, 23E) can be further shortened to improve the efficiency of the rotating electrical machine.
  • the coil end (22E) is formed such that both end portions located on the axial end surface of the stator core (30) are connected by the shortest path, whereby the coil end (22E) is more The reduction in efficiency due to copper loss can be further suppressed.
  • the areas of the opposing surfaces of the stator core (30) and the rotor core (41) are dramatically increased, thereby improving the torque characteristics of the rotating electrical machine and improving the efficiency. be able to.
  • the radial dimension of the rotating electric machine itself becomes large.
  • the region inside the inner peripheral surface of the stator core (30) the expansion of the coil end (21E, 22E, 23E) to the outer peripheral side is suppressed, and the stator core (30) The radial length can be reduced. Therefore, the efficiency can be improved without increasing the size of the rotating electrical machine.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a motor according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the configuration of the motor of this embodiment.
  • FIG. 3 is a perspective view showing the configuration of the split stator core.
  • FIG. 4 is a perspective view of the rotor.
  • FIG. 5 is a side view of the rotor core.
  • FIG. 6 is an enlarged longitudinal sectional view showing a combined portion of the stator and the rotor.
  • FIG. 7 is a plan view showing a configuration of a motor according to another embodiment.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a motor (1) according to an embodiment of the present invention.
  • the motor (1) includes a stator (20), a rotor (40), and a drive shaft (60), which are accommodated in a casing (70).
  • the motor (1) is a so-called IPM (Interior Permanent Magnet) motor.
  • the casing (70) has a cylindrical tube portion (70a) and an end plate (70b) that closes both ends of the tube portion (70a) and rotatably supports the drive shaft (60). is doing.
  • the cylindrical portion (70a) is divided at intervals of 120 ° as in the stator core (30) described later.
  • the drive shaft (60) is rotatably supported by the end plate (70b) via the bearing (61).
  • the axial direction refers to the direction of the axis of the drive shaft (60), and the radial direction refers to the direction perpendicular to the axis.
  • the outer peripheral side refers to the side far from the axis, and the inner peripheral side refers to the side closer to the axis.
  • a lamination position means the position of the axial direction of the laminated board mentioned later.
  • the stator (20) includes a stator core (30) and coil portions (21, 22, 23) formed by winding the coil in a substantially rectangular shape a plurality of times.
  • the stator core (30) is configured as a laminated core in which a plurality of electromagnetic steel plates (laminated plates) are laminated in the axial direction.
  • the stator core (30) includes a substantially cylindrical core back portion (35) and a plurality of teeth portions (34) projecting radially inward from the core back portion (35).
  • the stator core (30) is composed of a plurality of members arranged in the circumferential direction.
  • the stator core (30) is composed of three arc-shaped divided stator cores (31) divided at intervals of 120 °.
  • the three split stator cores (31) are arranged so that the end faces of the split stator cores (31) adjacent in the circumferential direction are in contact with each other.
  • segmented similarly is fixed to each outer peripheral surface of three division
  • the present embodiment there are 36 teeth portions (34), and the same number of spaces are formed between the teeth portions (34).
  • the space constitutes a coil slot (37) for accommodating the coil portion (21, 22, 23).
  • twelve coil slots (37) are formed in one split stator core (31).
  • each tooth tip portion (36) is a tooth tip (36) that is quadrilateral in plan view and wider in the circumferential direction than the base end (core back (35) side) body. It is configured. As shown in FIG. 3, each tooth tip portion (36) is configured such that the radially inner end surface thereof is uneven in the axial cross section.
  • the uneven portion of each tooth tip portion (36) is referred to as a stator side uneven portion (38), and among the end surfaces on the radially inner side of the stator side uneven portion (38), the outermost surface is the bottom surface.
  • the other surface is referred to as the top surface.
  • the stator side uneven portion (38) has a first top surface (38a), a second top surface (38b), and a bottom surface (38c).
  • the stator side uneven portion (38) changes the radial length (tooth tip length) of the laminated plate (33) forming the tooth tip portion (36) according to the lamination position of the laminated plate (33). Can be formed. Specifically, the inner end of the plurality of laminated plates (33) formed to the same radial length forming the first top surface (38a) (the portion on the inner peripheral side from the second top surface (38b)) ) Constitutes the first convex portion (38A). Further, the second end surface (the portion on the inner peripheral side from the bottom surface (38c)) of the plurality of laminated plates (33) formed to the same radial length forming the second top surface (38b) The convex part (38B) is comprised.
  • each coil part (21, 22, 23) is configured such that the coil is wound around the plurality of tooth parts (34).
  • the stator (20) includes a U-phase coil portion (21), a V-phase coil portion (22), and a W-phase coil portion (23).
  • U-phase coil portions (21), V-phase coil portions (22), and W-phase coil portions (23) are provided for each of the divided stator cores (31). Two are provided.
  • a rotating magnetic field can be generated in the stator (20) by supplying predetermined power to the coils of the coil portions (21, 22, 23).
  • each coil part (21,22,23) has the coil end (21E, 22E, 23E) which protruded in the axial direction from the axial direction end surface of the stator core (30), respectively.
  • the arrangement configuration of the coil ends (21E, 22E, 23E) of the coil portions (21, 22, 23) will be described later.
  • the rotor (40) includes a rotor core (41) and a plurality of magnets (42).
  • the rotor core (41) is a laminated core obtained by laminating a plurality of electromagnetic steel plates (laminated plate (43)) in the axial direction, and is formed in a cylindrical shape.
  • a shaft hole (47) for inserting the drive shaft (60) is formed at the center of the rotor core (41).
  • the rotor core (41) is formed with a plurality of magnet slots (44) for receiving the plurality of magnets (42), respectively.
  • the magnet slots (44) are arranged at a 60 ° pitch around the axis of the shaft hole (47). That is, each magnet slot (44) is provided symmetrically with respect to the axis of the shaft hole (47).
  • Each of the magnet slots (44) is formed in a substantially U shape in plan view (viewed in the axial direction of the shaft hole (47)) and penetrates the rotor core (41) in the axial direction.
  • both end portions in the circumferential direction of each magnet slot (44) extend to the vicinity of the outer periphery of the rotor core (41).
  • a portion that forms an end portion in the circumferential direction of the magnet slot (44) is referred to as a bridge portion (44a).
  • the magnet (42) is held near the center of the magnet slot (44).
  • the total length of the magnet (42) is shorter than the total length of the magnet slot (44), and the gaps (45) with the magnets (42) accommodated in the circumferential ends of each magnet slot (44) are provided. Are formed respectively.
  • the rotor core (41) is configured such that the radially outer end face is uneven in the axial section.
  • the uneven portion of the rotor core (41) is referred to as the rotor-side uneven portion (46)
  • the innermost peripheral surface of the radially outer end surface of the rotor-side uneven portion (46) is the bottom surface, and the others. Is referred to as the top surface.
  • the rotor-side uneven portion (46) has a first top surface (46 a), a second top surface (46 b), and a bottom surface (46 c).
  • the rotor side uneven portion (46) can be formed by changing the diameter of the laminated plate (43) according to the laminated position of the laminated plate (43). Specifically, the first convex portion (the outer peripheral portion from the second top surface (46b)) of the plurality of laminated plates (43) having the same diameter forming the first top surface (46a) 46A) is configured. Further, the second convex portion (46B) is configured by the outer end portion (the portion on the outer peripheral side from the bottom surface (46c)) of the plurality of laminated plates (43) having the same diameter forming the second top surface (46b). Yes.
  • FIG. 6 is a cross-sectional view of a state in which the stator (20) and the rotor (40) are combined. As shown in FIG. 6, when the stator (20) and the rotor (40) are combined, the stator core (30) and the rotor core (41) have a gap (G) that extends alternately and continuously in the radial direction and the axial direction. Are opposed to each other in the radial direction and the axial direction.
  • the second top surface (46b) of the second convex portion (46B) of the portion (46), the second top surface (38b) of the second convex portion (38B) of the stator side uneven portion (38), the rotor side uneven portion ( 46) and the first top surface (38a) of the first convex portion (38A) of the stator side uneven portion (38) face each other, and a gap extending in the axial direction is formed therebetween. .
  • the axial end surface of the first convex portion (46A) of the rotor side uneven portion (46), the axial end surface of the second convex portion (38B) of the stator side uneven portion (38), and the rotor side uneven portion are opposed to each other, and a gap extending in the radial direction therebetween. Is forming.
  • stator side uneven portion (38) and the rotor side uneven portion (46) are alternately and continuously arranged between the stator core (30) and the rotor core (41) in the radial direction and the axial direction.
  • An extending gap (solid gap) is formed.
  • the size of the gap (G) is 0.3 mm in both the radial direction and the axial direction.
  • the coil ends (21E, 22E, 23E) of the coil portions (21, 22, 23) are arranged as follows.
  • the coil end (21E) of the U-phase coil portion (21) protrudes in the axial direction from the axial end portion of the stator core (30) and immediately tilts radially inward, and the other phase coil portions (22, 23 ) Of the coil ends (22E, 23E). As shown in FIG. 2, the coil end (21E) of the U-phase coil portion (21) passes through the inner side of the inner peripheral surface of the stator core (30).
  • the coil end (22E) of the V-phase coil portion (22) protrudes in the axial direction from the axial end portion of the stator core (30).
  • the coil end (22E) of the V-phase coil portion (22) is formed so as to connect the coil slot (37) that accommodates the V-phase coil portion (22) with the shortest path, and is straight in plan view. It is formed in a shape.
  • the coil end (23E) of the W-phase coil portion (23) is curved in the circumferential direction of the stator core (30) without tilting after protruding axially from the axial end of the stator core (30). .
  • each divided stator core (31) by welding or the like (see FIG. 3).
  • each coil part (21,22,23) is attached to each division
  • each coil part (21,22,23) is shape
  • each coil part (21,22,23) is attached in order so that a several teeth part (34) may be straddled.
  • the rotor (40) is fixed to the drive shaft (60). Then, the drive shaft (60) is attached to the end plate (70b) of the casing (70).
  • each divided stator core (31) to which each coil part (21, 22, 23) is attached is assembled with the rotor (40). Specifically, each divided stator core (31) is moved radially inward from the outer peripheral side of the rotor (40) to the installation position, and the cylindrical portion (70a) of the casing (70) fixed to each divided stator core (31). ) Is fixed at a predetermined position of the end plate (70b). At this time, each of the divided stator cores (31) and the rotor (40) is formed between the stator core (30) and the rotor core (41) so that a gap (G) extending alternately and continuously in the radial direction and the axial direction is formed. And assemble. In this way, the motor (1) is assembled.
  • the stator core (30) is configured by the three divided stator cores (31) arranged in the circumferential direction, and each of the coil portions (21, 22, 23) has the three divided stator cores (31). ) Are arranged so as not to straddle any two. Therefore, the stator (20) and the rotor (31) are assembled by moving the divided stator cores (31) to which the coil portions (21, 22, 23) are attached from the outer peripheral side of the rotor (40) toward the radially inner side. 40) can be assembled with. Therefore, even if one of the coil ends (21E, 22E, 23E) passes inside the inner peripheral surface of the stator core (30), the coil end ( 21E, 22E, 23E) can be prevented from coming into contact with the rotor (40).
  • the coil end (21E) of at least one coil portion passes through the inner side of the inner peripheral surface of the stator core (30). Since it comprised so, the said coil end (21E) can be formed short compared with the case where it forms so that it may bulge to the outer peripheral side of a stator core (30). Therefore, according to the motor (1), the coil end (21E) is avoided while the coil end (21E, 22E, 23E) and the rotor (40) are prevented from contacting each other when the stator (20) and the rotor (40) are assembled. , 22E, 23E) can be shortened, and the electrical resistance at the coil ends (21E, 22E, 23E) can be reduced to suppress a reduction in efficiency due to copper loss.
  • a plurality of coils arranged at the same angular position can be obtained by using an area inside the inner peripheral surface of the stator core (30) as an arrangement area of the coil ends (21E, 22E, 23E).
  • the ends (21E, 22E, 23E) can be radially arranged without being stacked in the axial direction.
  • the axial height of the coil end (21E, 22E, 23E) can be suppressed, and the coil end can be used by using a region inside the inner peripheral surface of the stator core (30) that could not be used conventionally. Since the expansion of (21E, 22E, 23E) to the outer peripheral side can be suppressed, the radial length of the stator core (30) can be reduced. Accordingly, it is possible to improve the efficiency of the motor (1) by reducing the size of the motor (1) and further shortening the coil ends (21E, 22E, 23E).
  • At least one coil end (in this embodiment, the V-phase coil end (22E)) of the plurality of coil portions (21, 22, 23) is in the axial direction of the stator core (30). Both ends located on the end face are connected by the shortest path, and are formed in a straight line shape in plan view.
  • the stator core ( 30) is constituted by three divided stator cores (31), so that the coil end (22E) can be prevented from coming into contact with the rotor (40) when the stator (20) and the rotor (40) are assembled. it can.
  • the motor (1) there is a gap (G) in which the stator core (30) and the rotor core (41) are alternately and continuously extended in the radial direction and the axial direction between the cores (30, 41).
  • G the stator core
  • the rotor core (41) are alternately and continuously extended in the radial direction and the axial direction between the cores (30, 41).
  • the efficiency can be improved without increasing the size of the motor (1).
  • Embodiments may have the following configurations.
  • each coil part (21, 22, 23) is not limited to that of the above embodiment.
  • Each coil part (21, 22, 23) should just be arrange
  • the coil end (21E) of the U-phase coil portion (21) is configured to pass inside the inner peripheral surface of the stator core (30), but the V-phase coil portion ( The coil end (22E) of 22) or the coil end (23E) of the W-phase coil portion (23) may pass through the inner peripheral surface of the stator core (30).
  • each coil end (21E, 22E, 23E) can be shortened, so the electrical resistance at the coil end (21E, 22E, 23E) is reduced to suppress the decrease in efficiency due to copper loss. can do.
  • the size of the gap (G) in the above embodiment is an example, and may be a different size. Further, the gap (G) may have a different size in the axial direction and the radial direction.
  • grooved part (46) are two convex parts (a 1st convex part (38A, 46A) and a 2nd convex part (38B, 46B)), respectively.
  • the shape of both the uneven portions (38, 46) is not limited to this.
  • each of the stator side uneven portion (38) and the rotor side uneven portion (46) may have one convex portion, or may have three or more convex portions.
  • the motor (1) was demonstrated as an example of the rotary electric machine which concerns on this invention, the rotary electric machine which concerns on this invention is the same stator (20) and rotor (40) as the said embodiment.
  • the generator provided with may be sufficient.
  • the present invention can also be applied to a reluctance rotary electric machine in which the rotor (40) does not include a magnet.
  • the present invention is useful for a rotating electric machine such as a motor having a coil portion distributedly wound.
  • Motor (rotary electric machine) 20 Stator 21, 22, 23 Coil portion 21E, 22E, 23E Coil end 30 Stator core 31 Split stator core (member) 38 Stator-side irregularities (irregularities) 40 rotor 41 Rotor core 46 Concave and convex portions on the rotor side (concave and convex portions) 60 Drive shaft G gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 モータ(1)は、駆動軸(60)と、該駆動軸(60)に取り付けられたロータ(40)と、該ロータ(40)の外周側に設けられて略円筒形状のステータコア(30)と該ステータコア(30)に分布巻きされた複数のコイル部(21,22,23)とを有するステータ(20)とを備えている。ステータコア(30)は、周方向に並ぶ3つの分割ステータコア(31)によって構成され、各コイル部(21,22,23)は、それぞれ3つの分割ステータコア(31)のいずれの2つにも跨らないように配置されている。複数のコイル部(21,22,23)の少なくとも1つのコイルエンド(21E)を、ステータコア(30)の内周面よりも内側を通過するように構成する。

Description

回転電気機械
  本発明は、コイル部が分布巻きされたモータ等の回転電気機械に関し、特に小型化対策に係るものである。
  モータ等の回転電気機械の中には、コイル部がステータコアの複数のティースに跨るように巻回された所謂分布巻きタイプのものがある(例えば、下記特許文献1を参照)。この種の分布巻の回転電気機械では、通常、ステータコアの内周側にロータを軸方向に挿入することによってステータとロータとを組み立てるが、その際に、各コイル部のコイルエンドがロータに当接しないように、コイルエンドをステータコアの外周側に膨出した形状に形成している。
特開2005-12974号公報
  しかしながら、上述のように、各コイル部のコイルエンドを外周側に膨出した形状に形成すると、トルクの発生に寄与しないコイルエンドが長くなる。そのため、各コイル部における電気抵抗が大きくなり、銅損による効率低下を招いていた。
  本発明は、かかる点に鑑みてなされたものであり、その目的は、分布巻きタイプの回転電気機械において、ステータとロータとの組立時にコイルエンドとロータとの当接を回避しつつコイルエンドを短縮化して効率の向上を図ることにある。
  第1の発明は、駆動軸(60)と、該駆動軸(60)に取り付けられた略円筒形状のロータコア(41)を有するロータ(40)と、該ロータ(40)の外周側に設けられて略円筒形状のステータコア(30)と該ステータコア(30)に分布巻きされた複数のコイル部(21,22,23)とを有するステータ(20)とを備えた回転電気機械であって、上記ステータコア(30)は、周方向に並ぶ複数の部材(31)によって構成され、上記各コイル部(21,22,23)は、それぞれ上記複数の部材(31)のいずれの2つにも跨らないように配置され、上記複数のコイル部(21,22,23)の少なくとも1つのコイルエンド(21E)は、上記ステータコア(30)の内周面よりも内側を通過するように構成されている。
  第1の発明では、少なくとも1つのコイル部(21,22,23)のコイルエンド(21E)は、ステータコア(30)の内周面よりも内側を通過するように構成されているため、ステータコア(30)の外周側に膨出するように形成される場合に比べて短く形成される。また、このようにステータコア(30)の内周面よりも内側の領域をコイルエンド(21E,22E,23E)の配置領域として用いることで、同じ角度位置に配置される複数のコイルエンド(21E,22E,23E)が軸方向に積み重なることなく径方向に分散配置される。これにより、これらのコイルエンド(21E,22E,23E)の互いの当接が回避される。
  ところで、第1の発明では、ステータコア(30)が周方向に並ぶ複数の部材(31)によって構成され、各コイル部(21,22,23)が、それぞれ上記複数の部材(31)のいずれの2つにも跨らないように配置されている。そのため、コイル部(21,22,23)が装着されたステータコア(30)の各部材(31)をロータ(40)の外周側から径方向内側に向かって組付けることによってステータ(20)とロータ(40)とを組み立てることができる。よって、コイルエンド(21E)がステータコア(30)の内周面よりも内側を通過していても、ステータ(20)とロータ(40)との組付け時にコイルエンド(21E)がロータ(40)に当接することがない。
  第2の発明は、第1の発明において、上記複数のコイル部(21,22,23)の少なくとも1つのコイルエンド(21E,22E,23E)は、平面視において直線状に形成されている。
  第2の発明では、複数のコイル部(21,22,23)の少なくとも1つのコイルエンド(22E)は、平面視において直線状に形成されている。つまり、このコイルエンド(22E)は、ステータコア(30)の軸方向端面に位置する両端部を最短経路で結ぶことによって形成されている。コイルエンド(22E)をこのように形成すると、ステータコア(30)の内周面よりも内側を通過する虞があるが、上述のように、ステータコア(30)は複数の部材(31)によって構成されているため、ステータ(20)とロータ(40)との組付け時にコイルエンド(22E)がロータ(40)に当接することがない。
  第3の発明は、第1又は第2の発明において、上記ステータコア(30)及び上記ロータコア(41)は、両コア(30,41)の間に径方向及び軸方向に交互に連続して延びるギャップ(G)を形成するように対向する凹凸部(38,46)をそれぞれ有している。
  第3の発明では、ステータコア(30)とロータコア(41)の間には径方向及び軸方向に交互に連続して延びるギャップ(G)が形成されている。これにより、ステータコア(30)とロータコア(41)とは、径方向だけでなく軸方向にも対向する部分をそれぞれ有することとなり、互いの対向面の面積が飛躍的に拡大する。これにより、回転電気機械におけるトルク特性が向上する。
  第1の発明によれば、ステータ(20)とロータ(40)との組立時にコイルエンド(21E,22E,23E)とロータ(40)との当接を回避しつつコイルエンド(21E,22E,23E)の短縮化を図ることができる。これにより、コイルエンド(21E,22E,23E)における電気抵抗を低減して銅損による効率低下を抑制することができる。また、ステータコア(30)の内周面よりも内側の領域をコイルエンド(21E,22E,23E)の配置領域として用いることで、同じ角度位置に配置される複数のコイルエンド(21E,22E,23E)を軸方向に積み重ねることなく径方向に分散配置することができる。これにより、コイルエンド(21E,22E,23E)の軸方向高さを抑えることができると共に、従来使用できなかったステータコア(30)の内周面よりも内側の領域を使用することによって、コイルエンド(21E,22E,23E)の外周側への拡大を抑制することができるため、ステータコア(30)の径方向長さの小型化を図ることもできる。従って、回転電気機械の小型化と共に、コイルエンド(21E,22E,23E)をさらに短縮化して回転電気機械の効率の向上を図ることができる。
  また、第2の発明によれば、コイルエンド(22E)を、ステータコア(30)の軸方向端面に位置する両端部が最短経路で結ばれるように形成することにより、コイルエンド(22E)をより短縮化して銅損による効率低下をより抑制することができる。
  また、第3の発明によれば、ステータコア(30)とロータコア(41)とにおける対向面の面積を飛躍的に拡大することで、回転電気機械におけるトルク特性を向上させることによって効率の向上を図ることができる。
  ところで、ステータコア(30)とロータコア(41)のそれぞれに凹凸部(38,46)を設けることとすると、回転電気機械自体の径方向の寸法が大きくなってしまう。しかしながら、上述のように、ステータコア(30)の内周面よりも内側の領域を使用することによって、コイルエンド(21E,22E,23E)の外周側への拡大を抑制してステータコア(30)の径方向長さの小型化を図ることができる。従って、回転電気機械の大型化を招くことなく、効率の向上を図ることができる。
図1は、本発明の実施形態に係るモータの構成を模式的に示す縦断面図である。 図2は、本実施形態のモータの構成を示す平面図である。 図3は、分割ステータコアの構成を示す斜視図である。 図4は、ロータの斜視図である。 図5は、ロータコアの側面図である。 図6は、ステータ及びロータの組み合わせ部分を拡大して示す縦断面図である。 図7は、その他の実施形態のモータの構成を示す平面図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。
 《発明の実施形態》
  -概要-
  図1は、本発明の実施形態に係るモータ(1)の構成を模式的に示す縦断面図である。上記モータ(1)は、ステータ(20)、ロータ(40)、及び駆動軸(60)を備え、これらがケーシング(70)に収容されている。また、上記モータ(1)は、所謂IPM(Interior Permanent Magnet)モータである。
  上記ケーシング(70)は、円筒形状の筒部(70a)と、該筒部(70a)の両端部を閉塞すると共に上記駆動軸(60)を回転自在に支持する端板(70b)とを有している。筒部(70a)は、後述するステータコア(30)と同様に120°間隔で分割されている。駆動軸(60)は、軸受(61)を介して端板(70b)に回転自在に支持されている。
  なお、以下の説明において、軸方向とは駆動軸(60)の軸心の方向をいい、径方向とは上記軸心と直交する方向をいう。また、外周側とは上記軸心から遠い側をいい、内周側とは上記軸心から近い側をいう。また、積層位置とは、後述する積層板の軸方向の位置をいう。
  -ステータ(20)-
  図2に示すように、上記ステータ(20)は、ステータコア(30)と、コイルを略矩形状に複数回巻いて形成されたコイル部(21,22,23)とを備えている。図3に示すように、ステータコア(30)は、複数の電磁鋼板(積層板)を軸方向に積層した積層コアに構成されている。
  上記ステータコア(30)は、図2に示すように、略円筒形状のコアバック部(35)と、該コアバック部(35)から径方向内側向きに突出する複数のティース部(34)とを備えている。また、ステータコア(30)は、周方向に並ぶ複数の部材からなる。具体的には、本実施形態では、ステータコア(30)は、120°間隔で分割された3つの円弧形状の分割ステータコア(31)からなる。該3つの分割ステータコア(31)は、周方向に隣り合う分割ステータコア(31)の端面同士が当接するように配置されている。また、後述するが、3つの分割ステータコア(31)のそれぞれの外周面には、同様に分割された上記ケーシング(70)の筒部(70a)が溶接等によって固定される。
  また、上記各ティース部(34)は、本実施形態では36つ設けられ、各ティース部(34)の間には同数の空間が形成されている。該空間は上記コイル部(21,22,23)を収容するコイル用スロット(37)を構成している。具体的には、1つの分割ステータコア(31)には、12個のコイル用スロット(37)が形成されている。
  また、上記各ティース部(34)の先端部は、平面視が四辺形で基端部側(コアバック部(35)側)の本体よりも周方向の幅が広い歯先部(36)に構成されている。各歯先部(36)は、図3に示すように、軸方向断面において径方向内側の端面が凹凸状に構成されている。以下では、各歯先部(36)の凹凸状の部分をステータ側凹凸部(38)と称し、該ステータ側凹凸部(38)の径方向内側の端面のうち、最も外周側の面を底面、その他の面を頂面と称する。具体的には、このステータ側凹凸部(38)は、第1頂面(38a)、第2頂面(38b)、及び底面(38c)を有している。
  上記ステータ側凹凸部(38)は、積層板(33)の積層位置に応じて、歯先部(36)を形成する積層板(33)の径方向長さ(歯先長さ)を変化させることで形成することができる。具体的には、上記第1頂面(38a)を形成する同じ径方向長さに形成された複数の積層板(33)の内側端部(第2頂面(38b)より内周側の部分)によって、第1凸部(38A)が構成されている。また、上記第2頂面(38b)を形成する同じ径方向長さに形成された複数枚の積層板(33)の内側端部(底面(38c)より内周側の部分)によって、第2凸部(38B)が構成されている。
  また、図2に示すように、上記コイル部(21,22,23)は、本実施形態では、各分割ステータコア(31)に対して6つずつ計18つ設けられ、所謂分布巻きに構成されている。また、各コイル部(21,22,23)は、それぞれコイルが複数のティース部(34)に跨るように巻回されて構成されている。
  具体的には、上記ステータ(20)は、U相のコイル部(21)、V相のコイル部(22)及びW相のコイル部(23)を備えている。本実施形態では、U相のコイル部(21)、V相のコイル部(22)及びW相のコイル部(23)は、それぞれ6つずつ設けられ、各分割ステータコア(31)に対してそれぞれ2つずつ設けられている。この各コイル部(21,22,23)のコイルに所定の電力を供給することで、ステータ(20)に回転磁界を発生させることができる。なお、各コイル部(21,22,23)は、それぞれステータコア(30)の軸方向端面から軸方向に突出したコイルエンド(21E,22E,23E)を有している。各コイル部(21,22,23)のコイルエンド(21E,22E,23E)の配置構成については後述する。
  -ロータ(40)-
  図4に示すように、上記ロータ(40)は、ロータコア(41)と、複数の磁石(42)とを備えている。上記ロータコア(41)は、複数の電磁鋼板(積層板(43))を軸方向に積層した積層コアであり、円筒状に形成されている。
  上記ロータコア(41)の中心には、駆動軸(60)を挿入する軸穴(47)が形成されている。また、ロータコア(41)には、上記複数の磁石(42)をそれぞれ収容する、複数の磁石用スロット(44)が形成されている。各磁石用スロット(44)は、軸穴(47)の軸心回りに60°ピッチで配置されている。つまり、各磁石用スロット(44)は、軸穴(47)の軸心に対して軸対称に設けられている。また、各磁石用スロット(44)は、平面視(軸穴(47)の軸方向視)において略U字状に形成され、該ロータコア(41)を軸方向に貫通している。また、各磁石用スロット(44)の周方向の両端部は、ロータコア(41)の外周付近まで延びている。なお、ロータコア(41)では、磁石用スロット(44)の周方向の端部を形成する部分(外周で細くなった部分、図4参照)をブリッジ部(44a)と称する。
  上記磁石(42)は、磁石用スロット(44)の中央付近に保持されている。この磁石(42)の全長は、磁石用スロット(44)の全長よりも短く、各磁石用スロット(44)の周方向の両端部分には、磁石(42)を収容した状態で空隙(45)がそれぞれ形成されている。
  図5に示すように、ロータコア(41)は、軸方向断面において径方向外側の端面が凹凸状に構成されている。以下では、ロータコア(41)の凹凸状の部分をロータ側凹凸部(46)と称し、該ロータ側凹凸部(46)の径方向外側の端面のうち、最も内周側の面を底面、その他の面を頂面と称する。具体的には、このロータ側凹凸部(46)は、図5に示すように、第1頂面(46a)、第2頂面(46b)、底面(46c)を有している。
  上記ロータ側凹凸部(46)は、積層板(43)の積層位置に応じて、積層板(43)の直径を変化させることで形成することができる。具体的には、第1頂面(46a)を形成する同径の複数の積層板(43)の外側端部(第2頂面(46b)より外周側の部分)によって、第1凸部(46A)が構成されている。また、第2頂面(46b)を形成する同径の複数の積層板(43)の外側端部(底面(46c)より外周側の部分)によって、第2凸部(46B)が構成されている。
  -立体ギャップ-
  図6は、ステータ(20)とロータ(40)とを組み合わせた状態の断面図である。図6に示すように、ステータ(20)とロータ(40)を組み合わせた際に、ステータコア(30)とロータコア(41)とは、径方向及び軸方向に交互に連続して延びるギャップ(G)を介して径方向及び軸方向にそれぞれ対向している。具体的には、径方向に関しては、ロータ側凹凸部(46)の第1凸部(46A)の第1頂面(46a)とステータ側凹凸部(38)の底面(38c)、ロータ側凹凸部(46)の第2凸部(46B)の第2頂面(46b)とステータ側凹凸部(38)の第2凸部(38B)の第2頂面(38b)、ロータ側凹凸部(46)の底面(46c)とステータ側凹凸部(38)の第1凸部(38A)の第1頂面(38a)がそれぞれ対向し、それぞれの間に軸方向に延びるギャップを形成している。また、軸方向に関しては、ロータ側凹凸部(46)の第1凸部(46A)の軸方向端面とステータ側凹凸部(38)の第2凸部(38B)の軸方向端面、ロータ側凹凸部(46)の第2凸部(46B)の軸方向端面とステータ側凹凸部(38)の第1凸部(38A)の軸方向端面がそれぞれ対向し、それぞれの間に径方向に延びるギャップを形成している。このような構成により、ステータコア(30)とロータコア(41)との間には、ステータ側凹凸部(38)とロータ側凹凸部(46)とによって、径方向及び軸方向に交互に連続して延びるギャップ(立体ギャップ)が形成されている。この例では、ギャップ(G)の大きさは、径方向、軸方向ともに0.3mmである。
  -コイルエンドの配置構成-
  本実施形態では、図2及び図3に示すように、上記各コイル部(21,22,23)のコイルエンド(21E,22E,23E)は、以下のように配置されている。
  U相のコイル部(21)のコイルエンド(21E)は、ステータコア(30)の軸方向端部から軸方向に突出してすぐに径方向内側へ傾倒し、他の相のコイル部(22,23)のコイルエンド(22E,23E)よりも径方向内側に設けられている。そして、図2に示すように、U相のコイル部(21)のコイルエンド(21E)は、ステータコア(30)の内周面よりも内側を通過している。
  V相のコイル部(22)のコイルエンド(22E)は、ステータコア(30)の軸方向端部から軸方向に突出している。また、V相のコイル部(22)のコイルエンド(22E)は、上記V相のコイル部(22)を収容するコイル用スロット(37)を最短経路で結ぶように形成され、平面視において直線状に形成されている。
  W相のコイル部(23)のコイルエンド(23E)は、ステータコア(30)の軸方向端部から軸方向に突出した後、傾倒することなくステータコア(30)の周方向に湾曲形成されている。
  -モータの組み立て方法-
  まず、各分割ステータコア(31)に、3分割されたケーシング(70)の筒部(70a)の分割片をそれぞれ溶接等によって固定する(図3参照)。そして、各コイル部(21,22,23)を各分割ステータコア(31)に取り付ける。なお、各コイル部(21,22,23)は、予めコイルを複数回巻いた状態で成形されている。そして、各コイル部(21,22,23)は、複数のティース部(34)に跨るように順に取り付けられる。
  一方、上述の工程と同時に、ロータ(40)が駆動軸(60)に固定される。そして、該駆動軸(60)をケーシング(70)の端板(70b)に取り付ける。
  そして、次に、各コイル部(21,22,23)が取り付けられた各分割ステータコア(31)とロータ(40)とを組付ける。具体的には、各分割ステータコア(31)を、ロータ(40)の外周側から設置位置まで径方向内側に移動させ、各分割ステータコア(31)に固定されたケーシング(70)の筒部(70a)の分割片を端板(70b)の所定位置に固定する。このとき、ステータコア(30)とロータコア(41)との間に、径方向及び軸方向に交互に連続して延びるギャップ(G)が形成されるように各分割ステータコア(31)とロータ(40)とを組付ける。このようにして、モータ(1)は組み立てられる。
  -実施形態の効果-
  以上により、上記モータ(1)では、ステータコア(30)が周方向に並ぶ3つの分割ステータコア(31)によって構成され、各コイル部(21,22,23)が、それぞれ上記3つの分割ステータコア(31)のいずれの2つにも跨らないように配置されている。そのため、コイル部(21,22,23)が装着された各分割ステータコア(31)をロータ(40)の外周側から径方向内側に向かって移動させて組付けることによってステータ(20)とロータ(40)とを組み立てることができる。よって、いずれかのコイルエンド(21E,22E,23E)がステータコア(30)の内周面よりも内側を通過していても、ステータ(20)とロータ(40)との組付け時にコイルエンド(21E,22E,23E)がロータ(40)に当接することを回避することができる。
  また、上記モータ(1)では、少なくとも1つのコイル部(本実施形態では、U相のコイル部(21))のコイルエンド(21E)を、ステータコア(30)の内周面よりも内側を通過するように構成したため、上記コイルエンド(21E)を、ステータコア(30)の外周側に膨出するように形成される場合に比べて短く形成することができる。従って、本モータ(1)によれば、ステータ(20)とロータ(40)との組立時にコイルエンド(21E,22E,23E)とロータ(40)との当接を回避しつつコイルエンド(21E,22E,23E)の短縮化を図ることができ、コイルエンド(21E,22E,23E)における電気抵抗を低減して銅損による効率低下を抑制することができる。
  また、上記モータ(1)では、ステータコア(30)の内周面よりも内側の領域をコイルエンド(21E,22E,23E)の配置領域として用いることで、同じ角度位置に配置される複数のコイルエンド(21E,22E,23E)を軸方向に積み重ねることなく径方向に分散配置することができる。これにより、コイルエンド(21E,22E,23E)の軸方向高さを抑えることができると共に、従来使用できなかったステータコア(30)の内周面よりも内側の領域を使用することによって、コイルエンド(21E,22E,23E)の外周側への拡大を抑制することができるため、ステータコア(30)の径方向長さの小型化を図ることもできる。従って、モータ(1)の小型化と共に、コイルエンド(21E,22E,23E)をさらに短縮化してモータ(1)の効率の向上を図ることができる。
  さらに、上記モータ(1)では、複数のコイル部(21,22,23)の少なくとも1つのコイルエンド(本実施形態では、V相のコイルエンド(22E))は、ステータコア(30)の軸方向端面に位置する両端部が最短経路で結ばれて平面視において直線状に形成されいる。コイルエンド(22E)をこのように形成することにより、コイルエンド(22E)をより短縮化して銅損による効率低下をより抑制することができる。また、コイルエンド(22E)をこのように形成することにより、該コイルエンド(22E)がステータコア(30)の内周面よりも内側を通過することとなっても、上述のように、ステータコア(30)は3つの分割ステータコア(31)によって構成されているため、ステータ(20)とロータ(40)との組付け時にコイルエンド(22E)がロータ(40)に当接することを回避することができる。
  また、上記モータ(1)によれば、ステータコア(30)とロータコア(41)とを、両コア(30,41)の間に径方向及び軸方向に交互に連続して延びるギャップ(G)が形成されるように構成することにより、両コア(30,41)における対向面の面積を飛躍的に拡大することができる。これにより、モータ(1)におけるトルク特性を向上させることができ、効率の向上を図ることができる。また、上述のようにステータコア(30)とロータコア(41)のそれぞれに凹凸部(38,46)を設けることとすると、モータ(1)自体の径方向の寸法が大きくなってしまうが、上述のように、ステータコア(30)の内周面よりも内側の領域を使用することによって、コイルエンド(21E,22E,23E)の外周側への拡大を抑制してステータコア(30)の径方向長さの小型化を図ることができる。従って、モータ(1)の大型化を招くことなく、効率の向上を図ることができる。
 《その他の実施形態》
  上記実施形態及び各変形例は、以下のような構成としてもよい。
  上記各コイル部(21,22,23)の配置構成は、上記実施形態のものに限られない。各コイル部(21,22,23)は、それぞれ上記3つの分割ステータコア(31)のいずれの2つにも跨らないように配置されていればよい。
  また、上記実施形態では、U相のコイル部(21)のコイルエンド(21E)がステータコア(30)の内周面よりも内側を通過するように構成されていたが、V相のコイル部(22)のコイルエンド(22E)又はW相のコイル部(23)のコイルエンド(23E)がステータコア(30)の内周面よりも内側を通過するように構成されていてもよい。
  また、上記実施形態では、V相のコイル部(22)のコイルエンド(22E)のみが平面視において直線状に形成されていたが、図7に示すように、U相のコイル部(21)のコイルエンド(21E)を平面視において直線状に形成することとしてもよく、さらにW相のコイル部(23)のコイルエンド(23E)を平面視において直線状に形成することとしてもよい。このような構成によっても、各コイルエンド(21E,22E,23E)の短縮化を図ることができるため、コイルエンド(21E,22E,23E)における電気抵抗を低減して銅損による効率低下を抑制することができる。
  なお、上記実施形態におけるギャップ(G)の大きさは一例であって、異なる大きさであってもよい。さらに、上記ギャップ(G)は、軸方向と径方向とで大きさが異なっていてもよい。
  また、上記実施形態では、ステータ側凹凸部(38)及びロータ側凹凸部(46)は、それぞれ2つの凸部(第1凸部(38A,46A)及び第2凸部(38B,46B))を有するように形成されていたが、両凹凸部(38,46)の形状はこれに限られない。例えば、ステータ側凹凸部(38)及びロータ側凹凸部(46)は、凸部をそれぞれ1つずつ有するものであってもよく、3つ以上の凸部をそれぞれ有するものであってもよい。
  また、上記実施形態では、本発明に係る回転電気機械の例としてモータ(1)について説明したが、本発明に係る回転電気機械は、上記実施形態と同様のステータ(20)及びロータ(40)を備えた発電機であってもよい。
  さらに、本発明は、ロータ(40)が磁石を備えていないリラクタンス型回転電気機械にも適用可能である。
  なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  以上説明したように、本発明は、コイル部が分布巻きされたモータ等の回転電気機械について有用である。
      1          モータ(回転電気機械)
     20          ステータ
     21、22、23    コイル部
     21E、22E、23E コイルエンド
     30          ステータコア
     31          分割ステータコア(部材) 
     38          ステータ側凹凸部(凹凸部) 
     40          ロータ 
     41          ロータコア 
     46          ロータ側凹凸部(凹凸部)
     60          駆動軸 
      G          ギャップ

Claims (3)

  1.   駆動軸(60)と、該駆動軸(60)に取り付けられた略円筒形状のロータコア(41)を有するロータ(40)と、該ロータ(40)の外周側に設けられて略円筒形状のステータコア(30)と該ステータコア(30)に分布巻きされた複数のコイル部(21,22,23)とを有するステータ(20)とを備えた回転電気機械であって、
      上記ステータコア(30)は、周方向に並ぶ複数の部材(31)によって構成され、
      上記各コイル部(21,22,23)は、それぞれ上記複数の部材(31)のいずれの2つにも跨らないように配置され、
      上記複数のコイル部(21,22,23)の少なくとも1つのコイルエンド(21E)は、上記ステータコア(30)の内周面よりも内側を通過するように構成されている
    ことを特徴とする回転電気機械。
  2.   請求項1において、
      上記複数のコイル部(21,22,23)の少なくとも1つのコイルエンド(21E,22E,23E)は、平面視において直線状に形成されている
    ことを特徴とする回転電気機械。
  3.   請求項1又は2において、
      上記ステータコア(30)及び上記ロータコア(41)は、両コア(30,41)の間に径方向及び軸方向に交互に連続して延びるギャップ(G)を形成するように対向する凹凸部(38,46)をそれぞれ有している
    ことを特徴とする回転電気機械。
PCT/JP2011/001838 2010-03-31 2011-03-28 回転電気機械 WO2011121983A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2011800170083A CN102835004A (zh) 2010-03-31 2011-03-28 回转电机
BR112012022992A BR112012022992B1 (pt) 2010-03-31 2011-03-28 máquina elétrica rotativa
US13/638,041 US20130026874A1 (en) 2010-03-31 2011-03-28 Rotary electric machine
AU2011233453A AU2011233453B9 (en) 2010-03-31 2011-03-28 Rotary electric machine
EP11762231.6A EP2555389B1 (en) 2010-03-31 2011-03-28 Rotating electric machine
KR1020127027220A KR101438297B1 (ko) 2010-03-31 2011-03-28 회전 전기 기계의 조립 방법
US14/603,771 US9438090B2 (en) 2010-03-31 2015-01-23 Method of assembling a rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-080760 2010-03-31
JP2010080760A JP5617313B2 (ja) 2010-03-31 2010-03-31 回転電気機械の組み立て方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/638,041 A-371-Of-International US20130026874A1 (en) 2010-03-31 2011-03-28 Rotary electric machine
US14/603,771 Continuation US9438090B2 (en) 2010-03-31 2015-01-23 Method of assembling a rotary electric machine

Publications (1)

Publication Number Publication Date
WO2011121983A1 true WO2011121983A1 (ja) 2011-10-06

Family

ID=44711746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001838 WO2011121983A1 (ja) 2010-03-31 2011-03-28 回転電気機械

Country Status (8)

Country Link
US (2) US20130026874A1 (ja)
EP (1) EP2555389B1 (ja)
JP (1) JP5617313B2 (ja)
KR (1) KR101438297B1 (ja)
CN (2) CN104201831B (ja)
AU (1) AU2011233453B9 (ja)
BR (1) BR112012022992B1 (ja)
WO (1) WO2011121983A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718435A (zh) * 2011-08-08 2014-04-09 丰田自动车株式会社 旋转电机
US20140125152A1 (en) * 2012-11-08 2014-05-08 Johnson Electric S.A. Electromagnetic drive mechanism

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103568A1 (de) 2014-03-14 2015-09-17 Xylem Ip Holdings Llc Stator-Rotor-Vorrichtung für eine elektrische Maschine
US9825513B2 (en) 2014-06-09 2017-11-21 Nissan Motor Co., Ltd. Rectangular wire stator coil manufacturing method
DE102014111239B4 (de) * 2014-08-07 2016-07-21 Schuler Pressen Gmbh Blechpaket eines Stators oder eines Läufers sowie eine elektrische Maschine
JP2016103869A (ja) * 2014-11-27 2016-06-02 日本オイルポンプ株式会社 電動モータ
DE112016002338T9 (de) * 2015-08-28 2018-05-17 Aisin Aw Co., Ltd. Verfahren zum Herstellen eines Stators und Verfahren zum Herstellen einer rotierenden elektrischen Maschine
CN107925291B (zh) * 2015-08-28 2020-03-06 爱信艾达株式会社 定子线圈、定子的制造方法以及旋转电机
JP6745202B2 (ja) * 2016-11-25 2020-08-26 株式会社Soken 回転電機
DE102017119530A1 (de) 2017-08-25 2019-02-28 Wobben Properties Gmbh Generatorläufer und Generatorstator sowie Generator und Windenergieanlage damit und Verfahren zum Transportieren eines Generators
JP7449657B2 (ja) * 2019-08-29 2024-03-14 株式会社小松製作所 モータ
CN112751432A (zh) * 2019-10-31 2021-05-04 罗伯特·博世有限公司 转子和电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289726A (ja) * 1998-03-31 1999-10-19 Nissan Motor Co Ltd レラクタンスモータ
JP2005012974A (ja) 2003-06-20 2005-01-13 Toyota Motor Corp ステータ、モータ、ステータの製造方法、ステータ鉄心の巻線装置、およびその使用方法
JP2009189078A (ja) * 2008-02-01 2009-08-20 Toyota Industries Corp 回転電機の固定子及び回転電機
JP2009273216A (ja) * 2008-05-06 2009-11-19 Denso Corp モータ
WO2010007950A1 (ja) * 2008-07-14 2010-01-21 アイシン・エィ・ダブリュ株式会社 ステータ及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460062A1 (de) * 1974-12-19 1976-06-24 Ernst Lerche Elektrische maschine
JPS5942541B2 (ja) * 1977-01-21 1984-10-16 芝浦メカトロニクス株式会社 細型電動機の固定子
JPS61218355A (ja) * 1985-03-22 1986-09-27 Res Dev Corp Of Japan 回転位置決め機能を有する磁気浮上アクチユエ−タ
JPS6146139A (ja) * 1985-08-09 1986-03-06 Shibaura Eng Works Co Ltd 細型電動機の固定子
US4968911A (en) * 1985-11-20 1990-11-06 Allied-Signal Inc. Clam-shell stator construction for electrical machines
US5567999A (en) * 1992-02-20 1996-10-22 Dana Corporation Bobbin structure for electromagnetic coil assembly
US5485046A (en) * 1992-02-20 1996-01-16 Dana Corporation Variable reluctance electric motor
CN101079556A (zh) * 2006-05-25 2007-11-28 哈尔滨理工大学 新型发电机定子结构
WO2009025144A1 (ja) * 2007-08-17 2009-02-26 Kabushiki Kaisha Yaskawa Denki 固定子およびこれを用いた回転電機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289726A (ja) * 1998-03-31 1999-10-19 Nissan Motor Co Ltd レラクタンスモータ
JP2005012974A (ja) 2003-06-20 2005-01-13 Toyota Motor Corp ステータ、モータ、ステータの製造方法、ステータ鉄心の巻線装置、およびその使用方法
JP2009189078A (ja) * 2008-02-01 2009-08-20 Toyota Industries Corp 回転電機の固定子及び回転電機
JP2009273216A (ja) * 2008-05-06 2009-11-19 Denso Corp モータ
WO2010007950A1 (ja) * 2008-07-14 2010-01-21 アイシン・エィ・ダブリュ株式会社 ステータ及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718435A (zh) * 2011-08-08 2014-04-09 丰田自动车株式会社 旋转电机
US20140125152A1 (en) * 2012-11-08 2014-05-08 Johnson Electric S.A. Electromagnetic drive mechanism
US9444291B2 (en) * 2012-11-08 2016-09-13 Johnson Electric S.A. Electromagnetic drive mechanism

Also Published As

Publication number Publication date
CN104201831A (zh) 2014-12-10
EP2555389A4 (en) 2017-05-03
CN104201831B (zh) 2017-03-15
US20130026874A1 (en) 2013-01-31
AU2011233453B9 (en) 2015-04-02
JP5617313B2 (ja) 2014-11-05
CN102835004A (zh) 2012-12-19
AU2011233453B2 (en) 2014-11-20
US9438090B2 (en) 2016-09-06
BR112012022992A2 (pt) 2017-12-12
JP2011217444A (ja) 2011-10-27
EP2555389A1 (en) 2013-02-06
US20150135519A1 (en) 2015-05-21
AU2011233453A1 (en) 2012-11-08
KR20130008053A (ko) 2013-01-21
EP2555389B1 (en) 2019-02-20
KR101438297B1 (ko) 2014-09-05
BR112012022992B1 (pt) 2019-12-31

Similar Documents

Publication Publication Date Title
JP5617313B2 (ja) 回転電気機械の組み立て方法
JP6090987B2 (ja) 回転電機
JP5958502B2 (ja) 回転子およびそれを用いた回転電機
JP4286829B2 (ja) 回転機の製造方法
JP5446406B2 (ja) 電機における固定子
JP6461381B2 (ja) 回転電機の固定子、回転電機、および、回転電機の固定子の製造方法
JP6044382B2 (ja) マルチギャップ型回転電機
JP2007159170A5 (ja)
JP5248048B2 (ja) 回転電機の回転子及び回転電機
JP2015057012A (ja) 回転電機
JP2019088033A (ja) 電機子
US20220263356A1 (en) Motor
JP5593787B2 (ja) 回転電気機械
CN111630752B (zh) 旋转电机的定子和旋转电机的定子的制造方法
JP7280070B2 (ja) ステータ及びブラシレスモータ
JP5256835B2 (ja) 回転電機の固定子及び回転電機
JP2009095070A (ja) 回転電動機
JP6302698B2 (ja) 回転電機ユニット
JP2011217454A (ja) 回転電気機械
WO2024162233A1 (ja) モータ及びコイルの巻き付け方法
WO2022065345A1 (ja) ステータ及びモータ
JP2010284028A (ja) スイッチング素子一体型回転電機
JP7122831B2 (ja) アウターロータ型回転電機
JP5401753B2 (ja) 回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017008.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13638041

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2999/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011762231

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127027220

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011233453

Country of ref document: AU

Date of ref document: 20110328

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012022992

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012022992

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012022992

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120912