WO2011121663A1 - 受信装置、リモコンシステム - Google Patents

受信装置、リモコンシステム Download PDF

Info

Publication number
WO2011121663A1
WO2011121663A1 PCT/JP2010/002365 JP2010002365W WO2011121663A1 WO 2011121663 A1 WO2011121663 A1 WO 2011121663A1 JP 2010002365 W JP2010002365 W JP 2010002365W WO 2011121663 A1 WO2011121663 A1 WO 2011121663A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
rectifier
switch
clock
Prior art date
Application number
PCT/JP2010/002365
Other languages
English (en)
French (fr)
Inventor
梅田俊之
大高章二
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2010/002365 priority Critical patent/WO2011121663A1/ja
Priority to EP10848846A priority patent/EP2555422A1/en
Priority to JP2012507908A priority patent/JP5301030B2/ja
Publication of WO2011121663A1 publication Critical patent/WO2011121663A1/ja
Priority to US13/614,110 priority patent/US9219459B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3089Control of digital or coded signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers

Definitions

  • the present invention relates to a receiving apparatus that receives a radio signal, and more specifically to a receiving apparatus that rectifies and decodes a radio signal.
  • a rectifier In a receiving apparatus that receives a radio signal and processes the signal, a rectifier is widely used for signal detection.
  • a rectifier rectififier circuit
  • wireless communication with low power consumption can be realized easily.
  • a so-called RFID tag As an example of a receiving device using a rectifier, a so-called RFID tag is given.
  • the RFID tag rectifies the transmission signal from the reader / writer to obtain the operating power of the RFID tag itself and demodulates the reception signal.
  • Such an RFID tag usually has a rectifier circuit using a transistor in which a gate and a source are directly connected.
  • a rectifier circuit using a transistor cannot receive a weak signal because of the threshold voltage of the transistor. Therefore, a highly sensitive rectifier has been proposed in which a bias voltage substantially equal to the threshold voltage of the transistor is intermittently applied between the gate and source of the transistor constituting the rectifier circuit (Patent Document 1). Since the rectifier shown in Patent Document 1 can reduce the influence of the threshold voltage of the transistor, a weak signal can be received when the rectifier is applied to a receiving device.
  • the rectifier circuit described in Patent Document 1 intermittently operates the switch to apply a bias voltage to the transistor, it generates switching noise. That is, the receiving device including the rectifier has a problem that it is affected by switching noise.
  • the conventional receiver has a problem that it is affected by noise generated by the rectifier circuit itself.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a receiving apparatus in which the influence of noise is suppressed.
  • a receiving apparatus includes a rectifying unit that rectifies a received signal provided with a rectifying element, and rectifies a bias voltage corresponding to a threshold voltage of the rectifying element.
  • a bias supply unit that intermittently supplies the element, a detection unit that detects the presence or absence of a reception signal based on the output of the rectification unit, and a control unit that stops supply of a bias voltage when the detection unit detects a reception signal It has.
  • the present invention can provide a receiving apparatus in which the influence of noise is suppressed.
  • the receiving device 1 of this embodiment includes an antenna ANT, a rectifier 10, a baseband (BB) amplifier 11, a comparator 12, a signal processing unit 13, a local oscillator 14, and a frequency divider 15. ing.
  • the signal processing unit 13 includes a clock control unit 131, a signal detection unit 132, and a power detection unit 133.
  • the rectifier 10 rectifies (detects) the reception signal input from the antenna ANT.
  • the rectifier 10 includes, for example, a semiconductor element such as a rectifier diode or a rectifier transistor, and outputs a baseband signal by envelope detection of the received signal using the semiconductor element.
  • the BB amplifier 11 is an amplifier that amplifies the baseband signal obtained by rectification by the rectifier 10 to a predetermined level.
  • the rectifier 10 has a function of increasing the detection sensitivity of the received signal using the external clock signals CK1 and CK2.
  • the rectifier 10 is not limited to what is rectified by a semiconductor element. Even if it is not a semiconductor element, what is necessary is just to have a rectifier having a rectification function.
  • the comparator 12 generates a digital signal from the baseband signal amplified by the BB amplifier 11. Specifically, the comparator 12 compares the level of the baseband signal amplified by the BB amplifier 11 with the level of a predetermined reference voltage source. If the level of the baseband signal is higher than the reference voltage level as a result of the comparison, the comparator 12 outputs a high level signal. On the other hand, when the level of the baseband signal is equal to or lower than the reference voltage level, the comparator 12 outputs a low level signal. As a result, the comparator 12 outputs a digital signal in which the high level signal and the low level signal are combined.
  • the digital signal composed of the high-level signal and the low-level signal may be any voltage / specification signal as long as the signal processing unit 13 can identify both.
  • the signal detection unit 132 receives and decodes the digital signal generated by the comparator 12, and compares the ID of the received signal, for example. When the ID of the received signal matches the predetermined ID, the signal detection unit 132 executes predetermined signal processing such as activation of an external circuit (not shown).
  • the local oscillator 14 generates a reference signal for this receiving device.
  • the reference signal generates a switch signal (clock signal) for increasing the sensitivity of the rectifier 10 in addition to the reference signal that defines the processing timing of the comparator 12 and the signal processing unit 13.
  • the frequency divider 15 divides the clock signal CK generated by the local oscillator 14. At this time, the frequency divider 15 operates based on an instruction from a clock control unit 131 described later.
  • the power detection unit 133 detects the power of the received signal based on the amplified output of the BB amplifier 11. That is, the power detection unit 133 monitors the amplified output of the BB amplifier 11 and detects the presence or absence of a received signal.
  • the clock control unit 131 controls the frequency divider 15 to control the supply of the clock signals CK1 and CK2 supplied to the rectifier 10 based on the result of power detection by the power detection unit 133.
  • the rectifier 10 of this embodiment is on / off controlled by a voltage source V, switch transistors Q1 to Q4 that are on / off controlled by a clock CK1 as a switch signal, and a clock CK2 as a switch signal.
  • Switch transistors Q5 to Q8 and rectifying transistors Q9 and Q10 are provided.
  • the positive and negative electrodes of the voltage source V are connected to both ends of the capacitor C1 through the drains and sources of the transistors Q1 and Q2, respectively. That is, the voltage source V is connected / disconnected to both ends of the capacitor C1 by turning on / off the transistors Q1 and Q2 by the clock signal CK1 applied to the gates of the transistors Q1 and Q2. Similarly, the positive and negative electrodes of the voltage source V are connected to both ends of the capacitor C2 via the drains and sources of the transistors Q3 and Q4, respectively. That is, voltage source V is connected / disconnected across capacitor C2 by turning on / off transistors Q3 and Q4 by clock signal CK1 applied to the gates of transistors Q3 and Q4.
  • Both ends of the capacitor C1 are connected to both ends of the capacitor C3 via the drains and sources of the transistors Q5 and Q6, and both ends of the capacitor C3 are connected to the gate and source of the transistor Q9.
  • the connection between both ends of the capacitor C3 and both ends of the capacitor C1 is turned on and off by turning on and off the transistors Q5 and Q6 by the clock signal CK2.
  • both ends of the capacitor C2 are connected to both ends of the capacitor C4 via the drains and sources of the transistors Q7 and Q8, and both ends of the capacitor C4 are connected to the gate and source of the transistor Q10, respectively.
  • the connection between both ends of the capacitor C4 and both ends of the capacitor C2 is turned on and off by turning on and off the transistors Q7 and Q8 by the clock signal CK2.
  • the source and the drain of the transistor Q10 of the transistor Q9 are connected to each other, an antenna ANT is connected via a capacitor C5 and a received signal input terminal RF IN to the connection point. That is, the received signal from the antenna ANT is input to the connection point between the transistors Q9 and Q10.
  • Source drain and the transistor Q10 of the transistor Q9 becomes respectively positive and negative rectification output terminal Dt + OUT ⁇ Dt- OUT.
  • the negative rectified output terminal Dt- OUT may be grounded.
  • the clock signals CK1 and CK2 are configured to be supplied alternately. That is, the transistors Q1 to Q4 and the transistors Q5 to Q8 are alternately turned on.
  • the voltage of the voltage source V is set to be substantially the same as the threshold voltage that is the rectification limit of the rectifying transistors Q9 and Q10.
  • the transistors Q1 to Q4 and the transistors Q5 to Q8 are alternately turned on under the control of the clock signals CK1 and CK2, whereby the potential of the voltage source V is transferred to the capacitors C1 and C2, and then the capacitors C1 and C2 Potentials are transferred to capacitors C3 and C4, respectively.
  • the potential supply of the voltage source V prepared in advance is controlled by the clock signals CK1 and CK2 as switch signals.
  • the present invention is not limited to this.
  • One of the clock signals CK1 and CK2 may be supplied as a bias voltage to the rectifier transistor of the rectifier 10 as a signal having a voltage corresponding to the threshold voltage value of the transistors Q9 and Q10.
  • the local oscillator 14 generates a predetermined clock signal CK.
  • the local oscillator 14 generates a clock signal CK of, for example, 32 kHz as an internal clock.
  • the local oscillator 14 supplies the generated clock signal CK to the comparator 12, the signal processing unit 13, the frequency divider 15 and the like.
  • the frequency divider 15 divides the clock signal CK, generates clock signals CK1 and CK2 that are alternately turned on, and supplies them to the rectifier 10.
  • the frequency divider 15 divides the clock signal CK by 16 to generate 2 kHz clock signals CK 1 and CK 2, and supplies them to the terminals CK 1 IN and CK 2 IN of the rectifier 10.
  • the frequency divider 15 sends the rising timing of the clock signals CK1 and CK2 to the clock control unit 131, and the clock control unit 131 stores the sent timing.
  • the transistors Q1 to Q4 and the transistors Q5 to Q8 are alternately turned on and off.
  • the potential of the voltage source V is transferred to the capacitors C3 and C4 by turning on and off the transistors Q1 to Q4 and the transistors Q5 to Q8, and becomes the bias voltage of the transistors Q9 and Q10. That is, transistors Q9 and Q10 are in a high sensitivity state each time a bias voltage is transferred to capacitors C3 and C4.
  • Transistors Q9 and Q10 rectify the received signal received via the capacitor C5 and send the obtained baseband signal to the BB amplifier 11.
  • the BB amplifier 11 amplifies the received baseband signal and sends it to the comparator 12 and the power detection unit 133.
  • the comparator 12 compares the level of the amplified baseband signal with the level of a predetermined reference voltage source, and generates a digital signal in which the high level signal and the low level signal are combined based on the comparison result.
  • the generated digital signal is sent to the signal detection unit 132.
  • the signal detection unit 132 receives and decodes the digital signal generated by the comparator 12, and compares the ID of the received signal, for example. When the ID of the received signal matches the predetermined ID, the signal detection unit 132 executes predetermined signal processing such as activation of an external circuit (not shown).
  • the power detection unit 133 monitors a baseband signal received from the BB amplifier 11.
  • the power detection unit 133 When the baseband signal exists, that is, when the baseband signal is output from the BB amplifier 11, the power detection unit 133 generates a detection signal and supplies the detection signal to the clock control unit 131.
  • the clock control unit 131 monitors the operations of the signal detection unit 132 and the power detection unit 133. That is, the clock control unit 131 determines whether the rectifier is in a signal standby state or a signal reception state at a timing several clocks before the clock signals CK1 and CK2 rise (broken arrows in FIG. 3).
  • the clock control unit 131 controls the frequency divider 15 to generate the clock signals CK1 and CK2. (Maintain). That is, by the operation of the clock signals CK1 and CK2, supply of a bias voltage corresponding to the threshold voltage of the rectifier transistor of the rectifier 10 is continued, and the high sensitivity state of the rectifier is maintained. And the receiving apparatus 1 can prepare for arrival of a weak received signal by making the rectifier 10 into a high sensitivity state. Since the output signal of the rectifier 10 when the clock signals CK1 and CK2 are supplied is affected by switching noise, the signal detector 132 receives the digital signal (high / low) received through the comparator 12. The combination of level signals) may be ignored without decoding.
  • the signal detection unit 132 When one of the signal detection unit 132 and the power detection unit 133 is operating, that is, the signal detection unit 132 receives a digital signal composed of a high / low level signal from the comparator 12, or the power detection unit 133 When the detection signal is generated by receiving the amplified output from the BB amplifier 11, the clock control unit 131 controls the frequency divider 15 to stop the generation of the clock signals CK1 and CK2. When the signal detection unit 132 is in a state where the received signal is not decoded, the clock control unit 131 instructs the signal detection unit 132 to return to the reception state.
  • the transition from the signal reception state to the standby state of the clock control unit 131 and the signal detection unit 132 is performed by the signal detection unit 132 in advance after detection of a specified format, after a specified time has elapsed, or after an error is detected. It is possible to shift by detecting the terminal data of the signal.
  • the clock signal that increases the sensitivity of the rectifier is stopped, so that the clock noise that affects the decoding process can be reduced. That is, it is possible to achieve high sensitivity and low noise while suppressing power consumption of the receiving device by a simple method.
  • the rectifier 10 detects a minute received signal as described above.
  • the switch transistors Q1 to Q8 included in the rectifier 10 operate when receiving a minute signal, for example, if the control terminal CK2 IN of the transistors Q5 to Q8 changes from low level to high level, the transistor Q5 Further, a transient voltage fluctuation occurs in the bias voltage to the rectifier transistors Q9 and Q10 due to the gate-source capacitance of Q8.
  • This voltage fluctuation becomes switching noise and is output to the output terminal Dt + OUT (and Dt ⁇ OUT ) together with the rectified signal.
  • the comparator 12 it is difficult for the comparator 12 to detect a minute signal, which causes erroneous detection. Therefore, in the receiving apparatus according to this embodiment, when it is confirmed that the received signal is in the input state, the operation of the frequency divider 15 is stopped to stop the generation of the clock signals CK1 and CK2. That is, the noise source that hinders demodulation of the received signal is stopped.
  • FIG. 4 shows a result of measuring the output noise of the rectifier 10 in a state where the switch of the rectifier 10 (switches by the transistors Q1 to Q8) is operated at the time of no signal input. As shown in FIG. 4, on the basis of the switching frequency of 2 kHz, output noise of the multiplied frequency is observed in a wide range of 0 to 100 kHz.
  • FIG. 5 shows the result of measuring the output noise of the rectifier 10 when the switch of the rectifier 10 is stopped at the time of no signal input. As shown in FIG. 5, although 16 kHz of the basic clock and its harmonic noise were observed, other switching noises were suppressed and the noise characteristics of the rectifier transistors Q9 and Q10 themselves were observed.
  • the receiving apparatus of this embodiment since the influence of the switch noise is eliminated in the signal receiving state, the signal-to-noise ratio of the rectifier can be improved and the receiving sensitivity can be improved. .
  • the local oscillator 14 generates a clock signal CK having a frequency of 32 kHz
  • the frequency divider 15 divides the clock signal CK by 16 to generate a clock signal having a frequency of 2 kHz.
  • CK1 and CK2 are generated.
  • high clock signals CK1 and CK2 increase switching noise in the rectifier. Therefore, the clock signals CK1 and CK2 that are as low as possible are effective in reducing noise.
  • the frequency of the clock signals CK1 and CK2 is too low, the period for increasing the sensitivity of the rectifier 10 is shortened, and therefore the timing for capturing a weak received signal is reduced.
  • the bias voltage since the bias voltage is supplied to the rectifier 10 using a charged capacitor, the bias voltage can be maintained for a relatively long time in a signal standby state where there is no rectified output.
  • the period of the clock signals CK1 and CK2 should be sufficiently longer than the transmission time of one packet of the packet signal included in the received signal. Switching noise can be kept low.
  • the division ratio of the frequency divider 15 may be determined by comparing the frequency of the reference clock signal CK with the bias voltage application timing in the rectifier 10.
  • FIG. 6 shows a configuration in which the signal processing unit 13 is changed among the elements of the receiving apparatus 1 according to the embodiment shown in FIG. Therefore, elements common to the receiving apparatus of the embodiment shown in FIG. 1 are denoted by common reference numerals, and redundant description is omitted.
  • the signal processing unit 23 of this embodiment includes a clock control unit 231, a signal demodulation unit 234, a storage unit 236, a frame edge detection unit 232, a power detection unit 233, and a reference level supply unit 235. ing.
  • the clock control unit 231 and the power detection unit 233 have the same functional configuration as the clock control unit 131 and the power detection unit 133 shown in FIG.
  • the frame edge detection unit 232 corresponds to the signal detection unit 132 shown in FIG. 1 and detects the edge of the signal from the digital signal generated by the comparator 12. The frame edge detection unit 232 sends the detection result to the signal demodulation unit 234.
  • the storage unit 236 is a memory capable of storing data, such as a nonvolatile memory, for example, and stores the ID of the communication partner in advance.
  • the signal demodulator 234 decodes the digital signal based on the edge of the signal detected by the frame edge detector 232 and compares it with the communication partner ID stored in the storage unit 236. When the ID obtained from the decoded digital signal matches the storage unit 236, the signal demodulation unit 234 outputs the ID and a control signal associated with the ID to the output terminal OUT.
  • the signal demodulator 234 has a function of instructing the clock controller 231 to stop the clock signals CK1 and CK2.
  • the reference level supply unit 235 is a memory capable of storing a predetermined signal level (voltage level) as an analog value or a digital value, such as a nonvolatile memory.
  • the reference level supply unit 235 provides the power detection unit 233 with a reference level for the power detection unit 233 to determine whether there is a received signal.
  • the receiver shown in FIG. 6 has the same operation as that of the receiver shown in FIG. 1 until the comparator 12 outputs the comparison signal after the rectifier 10 rectifies the received signal from the antenna ANT. Therefore, in the following description, redundant description is omitted.
  • the comparator 12 compares the level of the amplified baseband signal with the level of a predetermined reference voltage source, and generates a digital signal in which the high level signal and the low level signal are combined based on the comparison result.
  • the generated digital signal is sent to the frame edge detection unit 232.
  • the frame edge detection unit 232 receives the digital signal generated by the comparator 12, detects the edge of the signal, and sends the detection result to the signal demodulation unit 234.
  • the signal demodulator 234 decodes the digital signal based on the detection result of the frame edge detector 232 and compares it with the ID of the communication partner stored in the storage unit 236. When the ID obtained from the decoded digital signal matches the ID stored in the storage unit 236, the signal demodulation unit 234 outputs the control signal associated with the ID and the ID to the output terminal OUT and performs clock control.
  • the unit 231 is instructed to stop supplying the clock signals CK1 and CK2.
  • the clock control unit 231 controls the frequency divider 15 to stop the supply of the clock signals CK1 and CK2.
  • the signal demodulation unit 234 instructs the clock control unit 231 to supply the clock signals CK1 and CK2.
  • the clock control unit 231 controls the frequency divider 15 to supply the clock signals CK1 and CK2.
  • the power detection unit 233 monitors the baseband signal received from the BB amplifier 11.
  • the power detection unit 233 compares the level of the signal from the BB amplifier 11 with the reference level given from the reference level supply unit 235.
  • the power detection unit 233 determines that a baseband signal is present, and sends a trigger signal to the signal demodulation unit 234.
  • the clock controller 231 controls the frequency divider 15 to stop the supply of the clock signals CK1 and CK2.
  • the power detection unit 233 determines that there is no baseband signal, and trigger signal to the signal demodulation unit 234 Stop sending.
  • the clock control unit 231 controls the frequency divider 15 to supply the clock signals CK1 and CK2.
  • the supply of the bias voltage corresponding to the threshold voltage of the semiconductor element (rectifier transistor) of the rectifier 10 is continued by the operation of the clock signals CK1 and CK2, and the high sensitivity state of the rectifier Is maintained.
  • the receiving device 2 can prepare for arrival of a weak received signal by making the rectifier 10 into a highly sensitive state.
  • the remote control system according to this embodiment is obtained by applying the receiving device of the embodiment shown in FIG. 1 or FIG. 6 to a remote control device.
  • the remote control system 3 of this embodiment includes a remote control 31 having a switch unit 311 and a transmission unit 312, and a control device 32 having a reception unit 321, a device control unit 322, and a power supply unit 323. ing.
  • the switch unit 311 has a switch and a signal generation circuit, and acts as an interface for receiving a user instruction.
  • the transmission unit 312 includes a transmission circuit that transmits, for example, a 2.4 GHz band radio wave, and transmits a radio signal that has been subjected to on / off keying modulation based on a signal from the switch unit 311.
  • the receiving unit 321 has the same configuration as that of the receiving apparatus shown in FIGS. 1 and 6, for example, and decodes the received signal into a digital signal and outputs it.
  • the device control unit 322 turns on / off the power supply from the power supply unit 323 based on the digital signal from the reception unit 321. For example, the device control unit 322 turns on the power supply if the digital signal from the reception unit 321 indicates power-on control, and turns off the power supply if it also indicates power-off control.
  • the power supply unit 323 is a power source such as AC 100 V, for example, and outputs to the output terminal PWROUT via the device control unit 322.
  • the switch unit 311 When the user operates the switch unit 311 to instruct power-on, the switch unit 311 generates a signal indicating power-on control and sends the signal to the transmission unit 312.
  • the transmission unit 312 transmits the signal transmitted from the switch unit 311 as a radio signal via the antenna ANT1.
  • the reception signal received through ANT2 is sent to the reception unit 321.
  • the receiving unit 321 decodes the received signal, and provides the digital signal indicating the obtained power-on control to the device control unit 322.
  • the device control unit 322 Upon receiving the digital signal from the receiving unit 321, the device control unit 322 turns on the power supply of the power supply unit 323.
  • the device control unit 322 turns off the power supply from the power supply unit 323 based on the digital signal from the reception unit 321.
  • the power supply output from the output terminal PWROUT can be controlled by an instruction from the remote control 31, standby power of a device (not shown) connected to the output terminal PWROUT is minimized. be able to.
  • the remote control system of this embodiment since the receiving apparatus shown in FIG. 1 or 6 is applied as the receiving unit 321, it is possible to easily realize a long distance and low power consumption for remote control.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the present invention can be used in the electrical equipment manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 この受信装置(1)は、整流素子(Q9,Q10)を備えて入力された受信信号を整流する整流部(10)と、整流素子の閾電圧に対応するバイアス電圧(V)を整流素子に間欠的に供給するバイアス供給部(Q1-Q8,C1-C4,14,15)と、整流部の出力に基づいて受信信号の有無を検出する検出部(12,132,133)と、検出部が受信信号を検出したときバイアス電圧の供給を停止させる制御部(131)とを具備する。

Description

受信装置、リモコンシステム
 本発明は、無線信号を受信する受信装置に係わり、より具体的には、無線信号を整流して復号する受信装置に関する。
 無線信号を受信して信号を処理する受信装置において、信号検出のために整流器が広く用いられている。信号検出に整流器(整流回路)を用いた場合、簡易に低消費電力の無線通信を実現することができる。整流器を用いた受信装置の例としては、いわゆるRFIDタグが挙げられる。RFIDタグは、リーダライタからの送信信号を整流して、RFIDタグ自身の動作電力を得るとともに受信信号を復調している。
 このようなRFIDタグは、通常、ゲートとソースを直結したトランジスタを用いた整流回路を有している。しかし、トランジスタを用いた整流回路は、トランジスタが持つ閾電圧のため、微弱な信号を受信することができない。そこで、整流回路を構成するトランジスタのゲートとソースとの間に、当該トランジスタの閾電圧とほぼ等しいバイアス電圧を間欠的に印加する高感度整流器が提案されている(特許文献1)。特許文献1に示す整流器は、トランジスタの閾電圧の影響を小さくすることができるから、当該整流器を受信装置に適用した場合に微弱な信号を受信することが可能となる。
 しかし、特許文献1記載の整流回路は、スイッチを間欠的に動作させてバイアス電圧をトランジスタに与えるため、スイッチングノイズを発生する。すなわち、当該整流器を備えた受信装置は、スイッチングノイズの影響を受けるという問題があった。
特開2006-34085公報
 このように、従来の受信装置では、整流回路自身が発生するノイズの影響を受けるという問題があった。本発明はかかる問題を解決するためになされたもので、ノイズの影響を抑えた受信装置を提供することを目的とする。
 上記した目的を達成するために、本発明の一つの態様に係る受信装置は、整流素子を備えて入力された受信信号を整流する整流部と、整流素子の閾電圧に対応するバイアス電圧を整流素子に間欠的に供給するバイアス供給部と、整流部の出力に基づいて受信信号の有無を検出する検出部と、検出部が受信信号を検出したときバイアス電圧の供給を停止させる制御部とを具備している。
 本発明は、ノイズの影響を抑えた受信装置を提供することができる。
実施形態に係る受信装置の構成を示すブロック図である。 図1に示す受信装置の整流器の回路例を示す回路図である。 図2に示す整流器の動作タイミングを示す図である。 整流器のスイッチ動作時のノイズ特性を示すスペクトル図である。 整流器のスイッチ動作停止時のノイズ特性を示すスペクトル図である。 他の実施形態に係る受信装置の構成を示すブロック図である。 図1または図6に示す受信装置を適用したリモコンシステムの例を示すブロック図である。
 (第1の実施形態)
以下、図面を参照して本発明の一つの実施形態について詳細に説明する。図1に示すように、この実施形態の受信装置1は、アンテナANT、整流器10、ベースバンド(BB)アンプ11、比較器12、信号処理部13、ローカル発振器14、および分周器15を備えている。また、信号処理部13は、クロック制御部131、信号検出部132、および電力検出部133を有している。
 整流器10は、アンテナANTから入力された受信信号を整流(検波)する。整流器10は、例えば、整流ダイオードや整流トランジスタなどの半導体素子を有しており、当該半導体素子を用いて受信信号を包絡線検波してベースバンド信号を出力する。BBアンプ11は、整流器10が整流して得たベースバンド信号を所定のレベルまで増幅するアンプである。後述するように、整流器10は、外部からのクロック信号CK1およびCK2を用いて、受信信号の検波感度を高める機能を有している。なお、整流器10は、半導体素子により整流するものには限定されない。半導体素子でなくとも、整流機能をもつ整流素子を有するものであれば構わない。
 比較器12は、BBアンプ11が増幅したベースバンド信号からデジタル信号を生成する。具体的には、比較器12は、BBアンプ11が増幅したベースバンド信号のレベルと所定の基準電圧源のレベルとを比較する。比較の結果、ベースバンド信号のレベルが基準電圧レベルよりも大きい場合、比較器12は、ハイレベル信号を出力する。一方、ベースバンド信号のレベルが基準電圧レベル以下の場合、比較器12は、ローレベル信号を出力する。その結果、比較器12は、ハイレベル信号とローレベル信号とが組み合わされたデジタル信号を出力する。ハイレベル信号およびローレベル信号からなるデジタル信号は、信号処理部13が両者を識別できる信号であれば、どのような電圧・諸元の信号であってもよい。
 信号検出部132は、比較器12が生成したデジタル信号を受け取って復号し、例えば受信信号のIDの比較などを行う。信号検出部132は、受信信号のIDが所定のIDと一致した場合、図示しない外部回路の起動など所定の信号処理を実行する。
 ローカル発振器14は、この受信装置の基準信号を生成する。基準信号は、たとえば比較器12や信号処理部13の処理タイミングを規定する基準信号のほか、整流器10の感度を高めるためのスイッチ信号(クロック信号)をも生成している。分周器15は、ローカル発振器14が生成したクロック信号CKを分周する。このとき、分周器15は、後述するクロック制御部131からの指示に基づいて動作する。
 電力検出部133は、BBアンプ11の増幅出力に基づいて、受信信号の電力を検出する。すなわち、電力検出部133は、BBアンプ11の増幅出力を監視し、受信信号の存在の有無を検知している。クロック制御部131は、電力検出部133の電力検出の結果などに基づき、分周器15を制御して整流器10へ与えられるクロック信号CK1およびCK2の供給を制御する。
 (整流器の構成)図2を参照して整流器10の回路例を説明する。図2に示すように、この実施形態の整流器10は、電圧源Vと、スイッチ信号としてのクロックCK1によりオンオフ制御されるスイッチトランジスタQ1ないしQ4と、同じくスイッチ信号としてのクロックCK2によりオンオフ制御されるスイッチトランジスタQ5ないしQ8と、整流用トランジスタQ9およびQ10とを有している。
 電圧源Vの正極および負極は、トランジスタQ1およびQ2のドレイン・ソースを介して、それぞれキャパシタC1の両端と接続されている。すなわち、トランジスタQ1およびQ2のゲートに与えられるクロック信号CK1によるトランジスタQ1およびQ2のオンオフにより、キャパシタC1の両端には電圧源Vが接続・切断される。同様に、電圧源Vの正極および負極は、トランジスタQ3およびQ4のドレイン・ソースを介して、キャパシタC2の両端とそれぞれ接続されている。すなわち、トランジスタQ3およびQ4のゲートに与えられるクロック信号CK1によるトランジスタQ3およびQ4のオンオフにより、キャパシタC2の両端には電圧源Vが接続・切断される。
 キャパシタC1の両端は、トランジスタQ5およびQ6のドレイン・ソースを介して、キャパシタC3の両端と接続され、キャパシタC3の両端は、トランジスタQ9のゲート・ソースとそれぞれ接続されている。トランジスタQ1およびQ2と同様に、クロック信号CK2によるトランジスタQ5およびQ6のオンオフにより、キャパシタC3の両端とキャパシタC1の両端との接続がオンオフされる。同様に、キャパシタC2の両端は、トランジスタQ7およびQ8のドレイン・ソースを介して、キャパシタC4の両端と接続され、キャパシタC4の両端は、トランジスタQ10のゲート・ソースとそれぞれ接続されている。トランジスタQ5およびQ6と同様に、クロック信号CK2によるトランジスタQ7およびQ8のオンオフにより、キャパシタC4の両端とキャパシタC2の両端との接続がオンオフされる。
 トランジスタQ9のソースとトランジスタQ10のドレインは互いに接続されており、その接続点にはキャパシタC5および受信信号入力端RFINを介してアンテナANTが接続されている。すなわち、アンテナANTからの受信信号は、トランジスタQ9およびQ10の接続点に入力される。トランジスタQ9のドレインおよびトランジスタQ10のソースは、それぞれ正負の整流出力端Dt+OUT・Dt-OUTとなる。負の整流出力端Dt-OUTは接地されてもよい。
 図2において、クロック信号CK1およびCK2は、それぞれ交互に供給されるよう構成される。すなわち、トランジスタQ1ないしQ4とトランジスタQ5ないしQ8とは、交互にオンになることになる。電圧源Vの電圧は、整流用トランジスタQ9およびQ10の整流限界である閾電圧とほぼ同一に設定されている。そして、クロック信号CK1およびCK2の制御により、トランジスタQ1ないしQ4とトランジスタQ5ないしQ8とが交互にオンになることで、電圧源Vの電位がキャパシタC1およびC2に転送され、次いでキャパシタC1およびC2の電位がそれぞれキャパシタC3およびC4に転送される。
 キャパシタC3およびC4は、それぞれトランジスタQ9およびQ10に閾電圧のバイアス電圧を供給する作用をする。この作用は、バイアス電圧を供給する電圧源による消費電力を低減しつつ、トランジスタQ9およびQ10の閾電圧を見かけ上小さくする(=整流感度を高くする)ことに寄与する。
 なお、図2に示す整流器の例では、予め用意された電圧源Vの電位供給をスイッチ信号としてのクロック信号CK1およびCK2により制御させているが、これには限定されない。クロック信号CK1およびCK2のどちらか一方を、トランジスタQ9およびQ10の閾電圧値相当の電圧をもつ信号として、そのまま整流器10の整流トランジスタにバイアス電圧として供給するように構成してもよい。
 (第1の実施形態の動作)
次に、この実施形態の受信装置の動作を説明する。
 ローカル発振器14は、所定のクロック信号CKを生成する。図3に示す例では、ローカル発振器14は、内部クロックとして、例えば32kHzのクロック信号CKを生成している。ローカル発振器14は、生成したクロック信号CKを、比較器12、信号処理部13、分周器15などに供給する。
 分周器15は、クロック信号CKを分周し、交互にオンとなるクロック信号CK1およびCK2を生成して整流器10に供給する。図3に示す例では、分周器15は、クロック信号CKを16分周して2kHzのクロック信号CK1およびCK2を生成し、整流器10の端子CK1INおよびCK2INに供給する。このとき、分周器15は、クロック信号CK1およびCK2の立ち上がるタイミングをクロック制御部131に送り、クロック制御部131は、送られたタイミングを記憶する。
 整流器10に与えられたクロック信号CK1およびCK2により、トランジスタQ1ないしQ4およびトランジスタQ5ないしQ8は、交互にオン状態とオフ状態を繰り返している。電圧源Vの電位は、トランジスタQ1ないしQ4およびトランジスタQ5ないしQ8のオンオフによりキャパシタC3およびC4に転送され、トランジスタQ9およびQ10のバイアス電圧となる。すなわち、トランジスタQ9およびQ10は、キャパシタC3およびC4にバイアス電圧が転送される度に高感度状態となる。
 トランジスタQ9およびQ10は、キャパシタC5を介して受けた受信信号を整流し、得られたベースバンド信号をBBアンプ11に送る。BBアンプ11は、受け取ったベースバンド信号を増幅して比較器12および電力検出部133に送る。
 比較器12は、増幅されたベースバンド信号のレベルを所定の基準電圧源のレベルと比較し、比較結果に基づいてハイレベル信号およびローレベル信号が組み合わされたデジタル信号を生成する。生成されたデジタル信号は信号検出部132に送られる。
 信号検出部132は、比較器12が生成したデジタル信号を受け取って復号し、例えば受信信号のIDの比較などを行う。信号検出部132は、受信信号のIDが所定のIDと一致した場合、図示しない外部回路の起動など所定の信号処理を実行する。
 一方、電力検出部133は、BBアンプ11から受け取るベースバンド信号を監視している。ベースバンド信号が存在する場合、すなわち、BBアンプ11からベースバンド信号が出力された場合、電力検出部133は、検出信号を生成してクロック制御部131に与える。
 クロック制御部131は、信号検出部132および電力検出部133の動作を監視している。すなわち、クロック制御部131は、クロック信号CK1およびCK2が立ち上がる数クロック前のタイミング(図3中破線矢印)で、整流器が信号待受け状態か、信号受信状態かを判定する。
 信号検出部132および電力検出部133のいずれも動作していない場合、すなわち、受信信号の入力がない場合は、クロック制御部131は、分周器15を制御してクロック信号CK1およびCK2を生成(維持)させる。すなわち、クロック信号CK1およびCK2の動作により、整流器10の整流トランジスタの閾電圧に相当するバイアス電圧の供給が継続され、整流器の高感度状態が維持される。そして、整流器10を高感度状態とすることで、受信装置1は、微弱受信信号の到来に備えることができる。なお、クロック信号CK1およびCK2が供給されている時の整流器10の出力信号は、スイッチングノイズによる影響を受けているから、信号検出部132は、比較器12を経て受け取ったデジタル信号(ハイ/ローレベル信号の組合わせ)を復号せず無視してもよい。
 信号検出部132および電力検出部133のどちらか一方が動作している場合、すなわち、信号検出部132が比較器12からハイ/ローレベル信号からなるデジタル信号を受けているか、あるいは電力検出部133がBBアンプ11から増幅出力を受け検出信号が生成されている場合、クロック制御部131は、分周器15を制御してクロック信号CK1およびCK2の生成を停止させる。また、信号検出部132が受け取った信号を復号しない状態にある場合には、クロック制御部131は、信号検出部132に受信状態への復帰を指示する。
 クロック信号CK1およびCK2の生成が止まると、整流器10におけるバイアス電圧の供給が止まり、整流器10はキャパシタC3およびC4に保持されたバイアス電圧によって高感度状態がしばらくの間維持される。一方、整流器10へのクロック信号CK1およびCK2の供給が止まることで、クロック信号に起因する整流器10でのスイッチングノイズの発生が止まる。そして、受信信号に混入するノイズが減少し、信号検出部132は、エラーのない復号を行うことができる。
 なお、クロック制御部131や信号検出部132の信号受信状態から待受け状態への遷移は、規定フォーマットの検出後や、規定時間経過後、エラー検知後など、信号検出部132が予め決められた受信信号の終端データなどを検出することによって移行することができる。
 このように、この実施形態の受信装置では、受信信号が到来した場合、整流器の感度を高めるクロック信号を停止させるので、復号処理に影響を及ぼすクロックノイズを低減することができる。すなわち、簡易な方法により、受信装置の消費電力を抑えつつ、高感度化、低ノイズ化を図ることができる。
 (整流器のノイズ)ここで、整流器10に供給されるクロック信号CK1およびCK2に起因するノイズについて具体的に説明する。
 整流器10は、前述の通り微小な受信信号を検出する。微小な信号を受信している時に、整流器10に含まれるスイッチトランジスタQ1ないしQ8が動作した場合、例えば、トランジスタQ5ないしQ8の制御端子CK2INがローレベルからハイレベルへ変化したとすると、トランジスタQ5ないしQ8が持つゲート・ソース間容量等により、整流器トランジスタQ9およびQ10へのバイアス電圧に過渡的な電圧変動が発生する。
 この電圧変動は、スイッチングノイズとなって整流信号と共に出力端子Dt+OUT(およびDt-OUT)へ出力される。この状態では、比較器12による微小な信号の検出は難しく、誤検出の原因となる。そこで、この実施形態の受信装置では、受信信号の入力状態であることが確認された場合、分周器15の動作を停止させてクロック信号CK1およびCK2の生成を止めている。すなわち、受信信号の復調の妨げとなるノイズ源を停止させる。一方、受信信号がなく受信待機状態の時には、整流器10での整流感度を優先し、クロック信号CK1およびCK2によるバイアス電圧供給を行う高感度状態へ移行する。
 図4は、無信号入力時において、整流器10のスイッチ(トランジスタQ1ないしQ8によるスイッチ)を動作させた状態における、整流器10の出力ノイズを測定した結果である。図4に示すように、スイッチ周波数の2kHzを基本として、その逓倍の周波数の出力ノイズが0~100kHzの広い範囲で観測されている。
 受信信号の周波数がこの周波数帯域にある場合、これらのスイッチングノイズが受信信号に妨害を与える事となり、受信特性が劣化してしまう。
 図5は、無信号入力時において、整流器10のスイッチを止めた状態における、整流器10の出力ノイズを測定した結果である。図5に示すように、基本クロックの16kHzおよびその高調波のノイズが観測されたものの、その他のスイッチングノイズは抑えられ、整流器トランジスタQ9およびQ10自体のノイズ特性が観測されている。
 これらの観測結果からもわかるように、この実施形態の受信装置によれば、信号受信状態においてスイッチノイズの影響が無くなるから、整流器の信号対ノイズ比が向上し、受信感度を向上することができる。
 (整流器に供給するクロック信号)図1ないし3に示す例では、ローカル発振器14が32kHzの周波数のクロック信号CKを生成し、分周器15がクロック信号CKを16分周して2kHzのクロック信号CK1およびCK2を生成している。整流器10に与えるクロック信号CK1およびCK2の周波数が高いほど、整流器10が高感度状態となる期間が長くなるから、整流器の整流感度を高めることが可能となる。反面、高いクロック信号CK1およびCK2は、整流器内でのスイッチングノイズを増加させることになる。そのため、クロック信号CK1およびCK2は、できるだけ低い方がノイズ低減に効果がある。一方、クロック信号CK1およびCK2の周波数が低すぎると、整流器10の感度を高める期間が短くなるから、微弱な受信信号を捉えるタイミングが少なくなることになる。
 この実施形態の受信装置では、整流器10へのバイアス電圧の供給を、チャージしたコンデンサを用いて行っているから、整流出力がない信号待ち受け状態においては比較的長い時間バイアス電圧を維持することができる。例えば、クロック信号CK1およびCK2の周期(スイッチトランジスタQ1ないしQ4およびトランジスタQ5ないしQ8の間欠動作の周期)は、受信信号に含まれるパケット信号の1パケット分の伝送時間よりも十分長くしておけば、スイッチングノイズを低く抑えることができる。
 分周器15の分周比は、基準となるクロック信号CKの周波数と整流器10におけるバイアス電圧印加のタイミングとを比較考量して決定すればよい。
 (第2の実施形態)
続いて、他の実施形態に係る受信装置について説明する。
 図6は、図1に示す実施形態に係る受信装置1の要素のうち、信号処理部13の構成を変更したものである。そこで、図1に示す実施形態の受信装置と共通する要素については共通の符号を付して示し、重複する説明を省略する。
 図6に示すように、この実施形態の信号処理部23は、クロック制御部231、信号復調部234、記憶部236、フレームエッジ検出部232、電力検出部233、基準レベル供給部235を有している。クロック制御部231および電力検出部233は、図1に示すクロック制御部131および電力検出部133と共通の機能構成を有している。
 フレームエッジ検出部232は、図1に示す信号検出部132と対応し、比較器12が生成したデジタル信号から信号のエッジを検出する。フレームエッジ検出部232は、検出結果を信号復調部234に送る。
 記憶部236は、例えば不揮発性メモリのようにデータを記憶可能なメモリであり、予め通信相手のIDが格納されている。信号復調部234は、フレームエッジ検出部232が検出した信号のエッジに基づいてデジタル信号を復号し、記憶部236に記憶された通信相手のIDと比較する。信号復調部234は、復号したデジタル信号から得られたIDと記憶部236とが一致した場合、当該IDおよびIDに付随した制御信号を出力端子OUTへ出力する。併せて、信号復調部234は、クロック制御部231にクロック信号CK1およびCK2の停止を指示する機能を持っている。
 基準レベル供給部235は、例えば不揮発性メモリのように、所定の信号レベル(電圧レベル)をアナログ値またはデジタル値として記憶可能なメモリである。基準レベル供給部235は、電力検出部233が受信信号の有無を判定するための基準レベルを電力検出部233に与える。
 次に、図6に示す実施形態に係る受信装置の動作を説明する。図6に示す受信装置では、整流器10がアンテナANTからの受信信号を整流してから比較器12が比較信号を出力するまでは、図1に示す受信装置と動作が共通している。そこで、以下の説明においては、重複する説明を省略する。
 比較器12は、増幅されたベースバンド信号のレベルを所定の基準電圧源のレベルと比較し、比較結果に基づいてハイレベル信号とローレベル信号とが組み合わされたデジタル信号を生成する。生成されたデジタル信号はフレームエッジ検出部232に送られる。
 フレームエッジ検出部232は、比較器12が生成したデジタル信号を受け取って信号のエッジを検出し、検出結果を信号復調部234に送る。
 信号復調部234は、フレームエッジ検出部232の検出結果に基づいてデジタル信号を復号し、記憶部236に記憶された通信相手のIDと比較する。復号したデジタル信号から得られたIDと記憶部236に記憶されたIDとが一致した場合、信号復調部234は、当該IDおよびIDに付随した制御信号を出力端子OUTへ出力するとともに、クロック制御部231にクロック信号CK1およびCK2の供給停止を指示する。
 停止指示を受けると、クロック制御部231は、分周器15を制御してクロック信号CK1およびCK2の供給を停止する。
 復号したデジタル信号から得られたIDと記憶部236に記憶されたIDとが一致しない場合、信号復調部234は、クロック制御部231にクロック信号CK1およびCK2の供給を指示する。
 供給指示を受けると、クロック制御部231は、分周器15を制御してクロック信号CK1およびCK2を供給する。
 一方、電力検出部233は、BBアンプ11から受け取るベースバンド信号を監視している。BBアンプ11から信号を受けた場合、電力検出部233は、BBアンプ11からの信号のレベルと基準レベル供給部235から与えられた基準レベルとを比較する。
 BBアンプ11からの信号のレベルが基準レベル供給部235から与えられた基準レベルを越えた場合、電力検出部233は、ベースバンド信号が存在すると判定し、信号復調部234にトリガ信号を送る。
 トリガ信号を受けると、クロック制御部231は、分周器15を制御してクロック信号CK1およびCK2の供給を停止する。
 また、BBアンプ11からの信号のレベルが基準レベル供給部235から与えられた基準レベル以下の場合、電力検出部233は、ベースバンド信号が存在しないと判定し、信号復調部234へのトリガ信号送出を停止する。
 トリガ信号の送出が止まると、クロック制御部231は、分周器15を制御してクロック信号CK1およびCK2を供給する。
 このように、この実施形態の受信装置においても、クロック信号CK1およびCK2の動作により、整流器10の半導体素子(整流トランジスタ)の閾電圧に相当するバイアス電圧の供給が継続され、整流器の高感度状態が維持される。そして、整流器10を高感度状態とすることで、受信装置2は、微弱受信信号の到来に備えることができる。
 続いて、図7を参照してさらに他の実施形態に係るリモコンシステムについて説明する。この実施形態に係るリモコンシステムは、図1または図6に示す実施形態の受信装置を遠隔制御装置に適用したものである。
 図7に示すように、この実施形態のリモコンシステム3は、スイッチ部311および送信部312を有するリモコン31と、受信部321、機器制御部322および電源供給部323を有する制御装置32とを備えている。
 スイッチ部311は、スイッチおよび信号生成回路を有しており、ユーザの指示を受け付けるインタフェースの作用をする。送信部312は、例えば2.4GHz帯の電波を送信する送信回路を有しており、スイッチ部311からの信号に基づいてオンオフキーイング変調された無線信号を送信する。
 受信部321は、例えば図1や図6に示す受信装置と同様の構成を有しており、受信信号をデジタル信号に復号して出力する。
 機器制御部322は、受信部321からのデジタル信号に基づいて、電源供給部323からの電源供給をオンオフする。例えば、機器制御部322は、受信部321からのデジタル信号が電源オン制御を示すものであれば電源供給をオンとし、同じく電源オフ制御を示すものであれば電源供給をオフとする。
 電源供給部323は、例えばAC100Vなどの電源であり、機器制御部322を介して出力端PWROUTに出力する。
 ユーザがスイッチ部311を操作して電源オンを指示すると、スイッチ部311は、電源オン制御を示す信号を生成して送信部312に送る。送信部312は、スイッチ部311から送られた信号を無線信号としてアンテナANT1を介して送信する。
 ANT2を通じて受信した受信信号は、受信部321に送られる。受信部321は、受信信号を復号し、得られた電源オン制御を示すデジタル信号を機器制御部322に与える。受信部321からのデジタル信号を受けると、機器制御部322は、電源供給部323の電源供給をオンとする。
 ユーザが電源オフを指示した場合も同様であり、受信部321からのデジタル信号に基づいて、機器制御部322は、電源供給部323からの電源供給をオフとする。
 この実施形態のリモコンシステムでは、出力端PWROUTから出力される電源供給を、リモコン31からの指示によって制御できるので、出力端PWROUTに接続された機器(図示せず)の待機電力を最小限にすることができる。
 また、リモコンと制御装置との間の距離が離れている場合、受信信号の復号品質を考慮すると、受信部321の低ノイズ化が重要である。この実施形態のリモコンシステムでは、図1や図6に示す受信装置を受信部321として適用しているから、リモコン制御の長距離化、低消費電力化を容易に実現することができる。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本発明は、電気機器製造業などに利用することができる。
 1…受信装置、10…整流器、11…ベースバンドアンプ、12…比較器、13…信号処理部、14…ローカル発振器、15…分周器、ANT…アンテナ。

Claims (7)

  1.  整流素子を備えて入力された受信信号を整流する整流部と、
     前記整流素子の閾電圧に対応するバイアス電圧を前記整流素子に間欠的に供給するバイアス供給部と、
     前記整流部の出力に基づいて前記受信信号の有無を検出する検出部と、
     前記検出部が前記受信信号を検出したとき前記バイアス電圧の供給を停止させる制御部と
    を具備したことを特徴とする受信装置。
  2.  前記検出部は、
      前記整流部の出力に基づいてデジタル信号を生成する比較部と、
      前記デジタル信号を復号し、復号結果に基づいて前記受信信号の有無を判定する復調部と
    を備えたことを特徴とする請求項1記載の受信装置。
  3.  前記バイアス供給部は、
      前記整流素子への前記バイアス電圧の供給を制御するスイッチ部と、
      前記スイッチ部を制御するスイッチ信号を生成するスイッチ信号生成部と
    を備え、
     前記制御部は、
      前記検出部が前記受信信号を検出した場合に前記スイッチ信号生成部を制御して前記スイッチ信号の生成を停止させること
    を特徴とする請求項2記載の受信装置。
  4.  前記スイッチ信号生成部は、前記スイッチ信号としてクロック信号を生成することを特徴とする請求項3記載の受信装置。
  5.  前記スイッチ信号生成部が生成するクロック信号の周期は、前記受信信号に含まれるパケット信号の1パケットを伝送するのに要する時間よりも充分長いことを特徴とする請求項3記載の受信装置。
  6.  前記整流素子が半導体素子であることを特徴とする請求項5記載の受信装置。
  7.  ユーザの指示を受け付ける入力部と、
     前記指示に基づいて信号を送信する送信部と
    を有するリモート送信機と、
     前記送信部が送信した信号を受信して復号し、該復号結果を出力する請求項4記載の受信装置と、
     前記復号結果に基づいて電源の供給を制御する機器制御装置と
    を有するリモート制御器と
    を備えたことを特徴とするリモコンシステム。
PCT/JP2010/002365 2010-03-31 2010-03-31 受信装置、リモコンシステム WO2011121663A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/002365 WO2011121663A1 (ja) 2010-03-31 2010-03-31 受信装置、リモコンシステム
EP10848846A EP2555422A1 (en) 2010-03-31 2010-03-31 Receiver device and remote control system
JP2012507908A JP5301030B2 (ja) 2010-03-31 2010-03-31 受信装置、リモコンシステム
US13/614,110 US9219459B2 (en) 2010-03-31 2012-09-13 Receiving device and remote control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002365 WO2011121663A1 (ja) 2010-03-31 2010-03-31 受信装置、リモコンシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/614,110 Continuation US9219459B2 (en) 2010-03-31 2012-09-13 Receiving device and remote control system

Publications (1)

Publication Number Publication Date
WO2011121663A1 true WO2011121663A1 (ja) 2011-10-06

Family

ID=44711461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002365 WO2011121663A1 (ja) 2010-03-31 2010-03-31 受信装置、リモコンシステム

Country Status (4)

Country Link
US (1) US9219459B2 (ja)
EP (1) EP2555422A1 (ja)
JP (1) JP5301030B2 (ja)
WO (1) WO2011121663A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073028A (ja) * 2012-09-28 2014-04-21 Toshiba Corp 整流回路とこれを用いた無線通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049643A (ja) * 1996-08-08 1998-02-20 Hitachi Ltd 電子カードおよび情報機器
JP2006034085A (ja) 2004-06-17 2006-02-02 Toshiba Corp 整流回路とこれを用いた無線通信装置
JP2006166415A (ja) * 2004-11-09 2006-06-22 Toshiba Corp 高利得整流回路とそれを用いたrfidタグ
JP2009302652A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 復調装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544624A (en) * 1978-09-25 1980-03-29 Nec Corp Information input/output unit
CN100466443C (zh) 2004-06-17 2009-03-04 株式会社东芝 整流器电路和无线电通信装置
US7424266B2 (en) 2004-11-09 2008-09-09 Kabushiki Kaisha Toshiba Rectifier circuit and RFID tag
US7561866B2 (en) * 2005-02-22 2009-07-14 Impinj, Inc. RFID tags with power rectifiers that have bias
US7368955B2 (en) * 2006-03-28 2008-05-06 Intel Corporation Current-balanced logic circuit
JP4314258B2 (ja) * 2006-09-28 2009-08-12 株式会社東芝 整流回路およびこれを用いた無線通信装置
JP5364270B2 (ja) * 2008-01-22 2013-12-11 株式会社東芝 充電装置
US20100223147A1 (en) * 2009-03-02 2010-09-02 Toshiba Tec Kabushiki Kaisha Commodity settlement system, method therefor and mobil terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049643A (ja) * 1996-08-08 1998-02-20 Hitachi Ltd 電子カードおよび情報機器
JP2006034085A (ja) 2004-06-17 2006-02-02 Toshiba Corp 整流回路とこれを用いた無線通信装置
JP2006166415A (ja) * 2004-11-09 2006-06-22 Toshiba Corp 高利得整流回路とそれを用いたrfidタグ
JP2009302652A (ja) * 2008-06-10 2009-12-24 Toshiba Corp 復調装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073028A (ja) * 2012-09-28 2014-04-21 Toshiba Corp 整流回路とこれを用いた無線通信装置
US9325362B2 (en) 2012-09-28 2016-04-26 Kabushiki Kaisha Toshiba Rectification circuit and wireless communication apparatus using the same

Also Published As

Publication number Publication date
JPWO2011121663A1 (ja) 2013-07-04
US9219459B2 (en) 2015-12-22
JP5301030B2 (ja) 2013-09-25
US20130249676A1 (en) 2013-09-26
EP2555422A1 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
KR102196172B1 (ko) 자동 간섭 방지 웨이크업 수신기
TWI626856B (zh) 喚醒信號發送與接收之方法、存取點以及Wi-Fi裝置
US20130039230A1 (en) Method and Device for Wireless Broadcast Power-up Sequence in Wireless Sensor Network
JP2012114676A (ja) 半導体装置
GB2435365A (en) On-off switching of a low noise amplifier in sleep and receive modes to detect and validate a wake up signal
JP2010118855A (ja) 無線通信装置
US7177621B2 (en) Wireless communication medium and method for operating the same
US10057848B2 (en) Methods of operating near field communication devices
US8379155B2 (en) Operation terminal communicating with an information processing apparatus using electric power of the information processing apparatus
US20090031147A1 (en) Apparatus for waking up a device
US10873358B1 (en) Card read response method, apparatus, and system, and signal transceiving device
JP5301030B2 (ja) 受信装置、リモコンシステム
KR100616660B1 (ko) 저전력 무선 송수신기
KR20100019129A (ko) 저전력용 rf 직류 정류기
US8588708B2 (en) Communication device and detection period correction method
JP2004304768A (ja) 高周波無線機
JP2010067075A (ja) Icチップ、情報処理装置、情報処理システム、およびプログラム
JPH1013293A (ja) アンテナスイッチ付き受信機
JP5172651B2 (ja) 起動装置および起動方法
JP2009187518A (ja) 電池不要なアクティブ発射回路とその応用
JP7249211B2 (ja) 無線デバイスのウェイクアップ回路
US7155181B2 (en) High sensitivity RF receiver and method for forming the same
US20230379821A1 (en) Wireless communication system, wireless communication method and terminal device
US10476400B1 (en) Dual-comparator current-mode rectifier
JP2011239340A (ja) 無線通信装置及び無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507908

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010848846

Country of ref document: EP