WO2011120375A1 - 下行控制信道的检测方法和系统 - Google Patents

下行控制信道的检测方法和系统 Download PDF

Info

Publication number
WO2011120375A1
WO2011120375A1 PCT/CN2011/071745 CN2011071745W WO2011120375A1 WO 2011120375 A1 WO2011120375 A1 WO 2011120375A1 CN 2011071745 W CN2011071745 W CN 2011071745W WO 2011120375 A1 WO2011120375 A1 WO 2011120375A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical resource
control channel
downlink control
resource block
information
Prior art date
Application number
PCT/CN2011/071745
Other languages
English (en)
French (fr)
Inventor
袁明
毕峰
梁枫
吴栓栓
袁弋非
夏树强
戴博
杨瑾
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011120375A1 publication Critical patent/WO2011120375A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to the field of communications, and in particular to a method and system for detecting a downlink control channel.
  • the blind detection complexity of the relay node (R-PDCCH, Relay Physical Downlink Control Channel) from the base station (eNB, Enhanced Node B) is reduced.
  • R-PDCCH Relay Physical Downlink Control Channel
  • eNB Enhanced Node B
  • the cost of system construction and maintenance is even more acute.
  • the problem of battery energy consumption becomes more prominent, and future wireless communication will use higher frequencies, resulting in more serious path loss attenuation.
  • relay technology is introduced in the wireless communication system. Therefore, relay technology is regarded as a key technology of 4G.
  • LTE Long Term Evolution
  • the design of the PDCCH Physical Downlink Control Channel
  • REG Resource Element Group According to the position of the reference symbol on each OFDM symbol, 1 REG can be composed of 4 or 6 REs.
  • Control Channel Element It consists of 36 REs and 9 REGs.
  • the information contained in the CCE is: User's downlink scheduling grant information (DL grant) and uplink scheduling ⁇ ⁇ authorized information (UL grant) ), and information related to system messages (SI, System Information), random access (RA, Random Access) response, paging (Paging). 4.
  • DL grant User's downlink scheduling grant information
  • UL grant uplink scheduling ⁇ ⁇ authorized information
  • SI System Information
  • RA Random Access
  • Paging paging
  • the combined form of CCE that is, the PDCCH can only be composed of CCEs, where J e ⁇ 1, 2, 4, 8 ⁇ , that is, the PDCCH can only be composed of 1 CCE (using 1- CCE representation), a combination of 2 CCEs (represented by 2-CCE), a combination of 4 CCEs (represented by 4-CCE) and a combination of 8 CCEs (represented by 8-CCE), and the above 4 different
  • the combination also corresponds to four different coding rates, namely, the coding rate of 1-CCE is 2/3, the coding rate of 2-CCE is 1/3, and the coding rate of 4-CCE is 1/6, 8-CCE The encoding rate is 1/12.
  • Search space (SS, Search Space): The search space is composed of a group of candidate control channels. The UE monitors the search space and performs blind detection in the search space to detect the downlink control channel associated with itself. 6. Two types of search spaces: One is a common search space (UE-common Search
  • the search space that is, the search space that all UEs should listen to, where the bearer is the public information related to SI, RA response and Paging; the other is the UE-specific search space (UE-specific Search Space) It is the uplink and downlink scheduling authorization information of the UE.
  • Different CCE aggregation levels have their corresponding number of candidate control channels, which is the maximum number of blind detections.
  • there are six candidate control channels for 1-CCE that is, the number of blind detections by one CCE-group is not more than six; the number of candidate control channels for 2-CCE is six. That is, the number of blind detections by 2 CCE-groups is not more than 6 times; the number of candidate control channels of 4-CCE is 2, that is, the number of blind detections by 4 CCE-groups is not more than 2 times; 8-CCE
  • There are two candidate control channels that is, the number of blind detections by 8 CCE-groups is not more than 2 times.
  • the sending process mainly includes the following steps: Step 1: Perform channel coding on each UE's PDCCH separately. Step 2: Connect the encoded PDCCHs of all UEs in series, and use cell-specific sequences to perform power. Oral disturbance Step 3: Perform QPSK modulation. At this time, a series of CCEs corresponding to all PDCCHs are obtained, and they are numbered starting from 0. It is assumed that the downlink control channel at this time is composed of 32 CCEs in total, that is, their numbers are CCE.
  • Step 4 The above-mentioned string of CCEs are interleaved in units of REGs and mapped to the time-frequency resources where the PDCCH is located, wherein the frequency domain occupies the entire system bandwidth, and the time domain Specifically, several symbols are occupied by the Physical Control Format Indicate Channel (PCFICH, Physical Control Format Indicate Channel);
  • PCFICH Physical Control Format Indicate Channel
  • the receiving process mainly includes the following steps: Step 1: The receiving end receives the PDCCH over the entire bandwidth, performs FFT transformation, and performs deinterleaving to obtain a series of CCEs having the same number as the eNB end; Step 2: The UE performs blind detection from the combination of the 1-CCE. First, the starting position of the 1-CCE is calculated according to the parameters of the ID (identity), the subframe number, and the like, that is, the blind detection is started from the CCE numbered several. Further, the search space is determined according to the number of candidate control channels.
  • Step 3 If the UE does not detect the UE ID that matches the UE according to the combination of 1-CCE, then the blind detection is started from the combination of 2-CCE. First, the starting position of the 2-CCE is still calculated according to the parameters of the UE-ID, the subframe number, and the like, and the search space is determined according to the number of candidate control channels.
  • the search space of the UE is ⁇ [CCE 10 CCE 11], [CCE 12 CCE 13], ..., [CCE 20 CCE 21] ⁇ . That is to say, the UE performs blind detection on [CCE 10 CCE 11], [CCE 12 CCE 13], ..., [CCE 20 CCE 21], respectively. So on and so forth.
  • Step 4 If the UE does not listen to itself during the entire blind detection process
  • the UE ID indicates that the UE does not have its own control signaling release, and the UE switches to the sleep mode. If the UE ID matches the UE ID, the UE will demodulate the corresponding service information according to the indication of the control signaling. .
  • a relay node a link between an enhanced Node B (eNB) and an RN is called a relay link (Backhaul Link, Also known as the backhaul link, the link between the RN and the user under its coverage is called the Access Link, and the link between the eNB and the UE under its coverage is called the direct link. (Direct Link).
  • the RN is equivalent to one UE; for the UE, the RN is ⁇ ! In order to avoid the RN's own transmission and reception interference, the RN cannot simultaneously perform transmission and reception operations on the same frequency resource.
  • the RN sends a downlink control channel to its subordinate UE, the downlink control channel from the eNB is not received. Therefore, during downlink transmission, the RN first sends downlink control information to its subordinate UEs on the first 1 or 2 OFDM symbols, and then performs handover from transmission to reception in a period of time. After the handover is completed, the following OFDM is performed.
  • the data from the eNB is received on the symbol, including control and traffic.
  • the downlink control channel sent by the eNB to the RN is carried on a Physical Resource Block (PRB).
  • PRB Physical Resource Block
  • the current protocol specifies that the downlink control channel that the eNB sends to the RN is called the R-PDCCH (the PDCCH of the relay), and includes information such as the uplink and downlink scheduling authorization of the RN.
  • the eNB semi-statically reserves a set of PRBs for transmitting the R-PDCCH, as shown in FIG. 2.
  • the R-PDCCH may occupy all the reserved PRBs, or may occupy only a part of the PRBs; may occupy all the OFDM symbols of the foregoing PRBs, or may occupy only the first 1 to 2 OFDM symbols of the foregoing PRBs.
  • the eNB reserves a set of PRBs semi-statically for the transmission of the R-PDCCH, and not all of them carry the R-PDCCH. Which specific PRBs actually carry the R-PDCCH, and each subframe is dynamically variable.
  • the PRBs that do not carry the R-PDCCH may be used to transmit a Physical Downlink Shared Channel (PDSCH) of the UE or a physical downlink shared channel of the RN.
  • PDSCH Physical Downlink Shared Channel
  • the UE is a full-bandwidth received demodulation PDCCH and blindly detects the CCE, and the RN only knows in advance which eNBs semi-statically reserve which PRBs are used to carry the R-PDCCH, but it does not know exactly in each subframe.
  • the RN needs to perform two blind detections if it wants to detect its own R-PDCCH: The first time, the R-PDCCH is actually detected blindly. PRB, and deinterleaving to get a string of R-CCE; 2nd, blindly detecting R-CCE, and finally finding its own R-PDCCH. Since the RN does not know the number of PRBs that actually carry the R-PDCCH in each subframe, the RN needs to blindly detect the number of different PRBs.
  • the total number of times the RN blindly detects the R-PDCCH is equal to: the number of times of the first blind detection X and the second blind detection.
  • eNB The semi-static allocation of 20 PRBs is used to carry the R-PDCCH, and the number of PRBs actually used by the R-PDCCH of a certain subframe is 15.
  • the RN performs blind detection it does not know how many, so it can only use the traversal method, that is, first detect 20 PRBs, and if not, detect 19 PRBs until 15 detected. PRB.
  • the RN when detecting the combination of the foregoing various PRBs, the RN needs to solve at least the CCE level, and then perform a blind detection similar to Rel-8 according to 1 or 2 CCEs to determine whether to include its own R-PDCCH. Therefore, the inventors have found that according to the detection method of the downlink control channel in the related art, the number of blind detections of the R-PDCCH is greatly increased. And the blind detection delay will be greatly lengthened.
  • the present invention has been made in view of the problem that the number of blind detections of the R-PDCCH in the related art is large and the blind detection delay is long. Therefore, the main object of the present invention is to provide a method and system for detecting a downlink control channel.
  • a method for detecting a downlink control channel which includes: a base station sends signaling to a relay node, where the signaling carries a semi-static configuration for carrying a downlink control channel. Information about the number of physical resource blocks and defining the detection set, or carrying information for carrying the number of physical resource blocks actually occupied by the downlink control channel; the relay node acquires the physical resource block to be detected according to the information; The node performs blind detection on the physical resource block allocated by the base station according to the physical resource block to be detected.
  • the signaling carries the information of the number of the physical resource blocks that are used to carry the semi-static configuration of the downlink control channel, where the relay node acquires the physical resource block to be detected according to the information, including: a detection set of physical resource blocks of the downlink control channel that is blindly detected, wherein the detection set includes at least a part of a semi-statically configured physical resource block; the relay node blinds the physical resource block allocated by the base station according to the physical resource block to be detected
  • the detecting includes: selecting a number of physical resource blocks one by one from the detection set; determining the physical resource block to be detected according to the selected number of physical resource blocks; the relay node according to the physical resource block pair to be detected The physical resource blocks allocated by the base station are blindly detected.
  • the number of physical resource blocks selected by the residence determines the physical resource block to be detected includes: the relay node searches for a physical to be detected corresponding to the selected number of physical resource blocks in the local mapping table. Resource block.
  • the sending, by the base station, the signaling to the relay node includes: transmitting the signaling carrying the common control information, where the common control information includes the number of the physical resource blocks actually occupied by the downlink control channel, and the common control information It is not interleaved with dedicated control information and mapped to fixed physical time-frequency resources.
  • the sending, by the base station, the signaling to the relay node includes: sending the signaling carrying the common control information, where the common control information includes the number of the physical resource blocks actually occupied by the downlink control channel, and the common control information Interleaved with dedicated control information and mapped to a common search space.
  • the acquiring, by the relay node, the physical resource block to be detected according to the information includes: performing blind detection on the physical resource block allocated by the base station, or performing blind detection on the detection set of the physical resource block of the downlink control channel, and obtaining common control information; Extracting, from the common control information, the number of physical resource blocks that are actually occupied by the downlink control channel; determining the physical resource block to be detected according to the number of physical resource blocks that are actually occupied by the downlink control channel.
  • determining, according to the number of physical resource blocks that are actually occupied by the downlink control channel, the physical resource block to be detected includes: the relay node searches for and is used in the local mapping table.
  • a downlink control channel detection system including: a base station and a relay node, where the base station is configured to send signaling to the relay node, where the signaling is carried
  • the signaling carries information about the number of the semi-statically configured physical resource blocks of the downlink control channel
  • the relay node includes: an obtaining module, configured to acquire physical resources of the downlink control channel that need to be blindly detected according to the information acquisition a detection set of the block, where the detection set includes at least a part of the semi-statically configured physical resource block; the selection module is configured to select one of the physical resource blocks from the detection set one by one; the determining module is set to be selected according to the selected The number of physical resource blocks determines a physical resource block to be detected; the detecting module is configured to perform blind detection on the physical resource blocks allocated by the base station according to the physical resource block to be detected.
  • the information for carrying the number of physical resource blocks actually occupied by the downlink control channel is located in the common control information, where the common control information and the dedicated control information are not interleaved and mapped. Or to a fixed physical time-frequency resource, or interleaved with dedicated control information, and mapped to a common search space.
  • the base station informs the relay node of the number of physical resource blocks that are actually used to carry the downlink control channel by signaling, and defines the detection set, thereby ensuring that the relay node is in the blind detection downlink.
  • FIG. 1 is a schematic diagram of a wireless communication system architecture of an I-in-the-relay according to the related art
  • FIG. 2 is a schematic diagram showing a relationship between a R-PDCCH and a PDCCH according to the related art;
  • FIG. A flowchart of a method for detecting a downlink control channel of an example;
  • FIG. 4 is a schematic diagram of a detection system for a downlink control channel according to an embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the embodiment of the present invention is based on the wireless communication system shown in FIG.
  • FIG. 3 is a flowchart of a method for detecting a downlink control channel according to an embodiment of the present invention.
  • the detection method of the downlink control channel mainly includes the following steps: S302: The base station sends signaling to the relay node, where the signaling carries information about the number of the semi-statically configured physical resource blocks that are used to carry the downlink control channel, and defines the detection set, or carries the actual downlink control channel. Information on the number of physical resource blocks occupied;
  • the relay node obtains the physical resource block to be detected by using the foregoing information.
  • the relay node performs blind detection on the physical resource block allocated by the base station according to the physical resource block to be detected.
  • the relay node cannot know the number of physical resource blocks actually used by the base station, so that the number of blind detections of the R-PDCCH by the relay node is greatly increased.
  • the base station informs the relay node of the number of physical resource blocks that the relay node actually uses to carry the downlink control channel, or the base station and the relay node pre-determine according to the high layer signaling.
  • the number of physical resource blocks of the downlink control channel that is semi-statically configured may obtain a set of the number of physical resource blocks used to carry the downlink control channel.
  • the number of physical resource blocks used for carrying the downlink control channel can be detected by using a small number of detection times, thereby ensuring that the relay node is in the Blind detection of the downlink control channel has lower complexity, less blind detection delay, improves the overall system efficiency, and ensures the flexibility of the PRB configuration carrying the R-PDCCH, so that the backhaul resources can be fully utilized.
  • the relay node When the signaling carries information for carrying the number of semi-statically configured physical resource blocks of the downlink control channel, the relay node acquires, according to the information, a detection set of physical resource blocks of the downlink control channel that needs to be blindly detected.
  • the detection set includes at least a part of the semi-statically configured physical resource block; then, selecting one of the physical resource blocks from the detection set one by one; and the number of physical resource blocks selected by the residence Determining the physical resource block to be detected; the relay node performs blind detection on the physical resource block allocated by the base station according to the physical resource block to be detected.
  • the base station and the relay node may predefine various conditions of the number of physical resource blocks that can be used to carry the downlink control channel, for example, the base station notifies the relay node of the semi-static reserved PRB by using high layer signaling.
  • the number of the physical resource blocks of the downlink control channel that needs to be blindly detected is 18, 16, 14 according to the pre-established agreement and the number of semi-statically reserved PRBs sent by the base station.
  • the PRB that is, the base station may only select one of the foregoing PRBs to carry the downlink control channel, for example, the base station uses 16 PRBs to carry the downlink control channel.
  • the determining, by the relay node, the physical resource block to be detected according to the selected number of physical resource blocks includes: the relay node searches for a number of selected physical resource blocks in a local mapping table. Corresponding physical resource block to be detected.
  • the relay node will select the number of physical resource blocks from the set one by one to perform blind detection on the physical resource blocks allocated by the base station. For example, in the case of a set of 18, 16 and 14 PRBs, the relay node first selects 18 PRBs from the 20 PRBs allocated by the base station for blind detection. If the CCE information is blindly detected, the R-PDCCH information cannot be obtained.
  • the relay node selects 16 PRBs from the 20 PRBs allocated by the base station to perform blind detection, until the R-PDCCH information is obtained according to the blindly detected CCE information.
  • the foregoing information for carrying the number of physical resource blocks actually occupied by the downlink control channel may be located in the common control information, where the common control information is not interleaved with the dedicated control information, and is mapped to a fixed physical time frequency.
  • the common control information may be interleaved with the dedicated control information and mapped to the common search space.
  • the relay node receives the signaling carried by the base station and carries the common control information.
  • the common control information may be obtained from the fixed time-frequency resource, and then the number of physical resource blocks actually used to carry the downlink control channel is extracted from the common control information. Then, the above-mentioned number of PRBs are selected from the PRBs allocated by the base station for blind detection, and the blindly detected CCE information is used to determine whether to obtain the R-PDCCH information. In this way, the number of blind detections can be further reduced.
  • the relay node In the case where the above information is located in the common control information interleaved with the dedicated control information and mapped onto the common search space, the relay node cannot know in advance the location of the common control information in the frame. Therefore, when receiving the signaling carried by the base station and carrying the common control information, the relay node may perform blind detection on the physical resource block allocated by the base station, or blindly detect the limited detection set, thereby obtaining common control information. Then, the number of physical resource blocks actually used to carry the downlink control channel is extracted from the common control information. Preferably, the relay node searches for the bearer in the local mapping table.
  • Embodiment 1 The scenario used in this embodiment is: The base station and the relay node predefine a set of the number of PRBs actually used to carry the R-PDCCH.
  • the eNB semi-statically reserves 20 PRBs for carrying the R-PDCCH, and only 14 PRBs in a certain subframe actually carry the R-PDCCH, and the remaining 6 PRBs transmit the PDSCH/R-PDSCH. Because the RN is performing blind detection, it does not know how many PRBs are actually carried.
  • the R-PDCCH can be correctly demodulated until 14 PRBs are detected.
  • the total number of blind checks is: 7 The number of blind detection CCEs. If there are only two PRBs that actually carry the R-PDCCH, then the number of blind detections is the number of 19 blind detection CCEs.
  • the eNB semi-statically reserves N PRBs for carrying the R-PDCCH, the eNB and the RN negotiate with each other, and the R-PDCCH can only be in the PRB.
  • ⁇ and 6 are positive integers, J ⁇ a. For example, only N, "2 ⁇ /3], " ⁇ /2],
  • [N/3], " ⁇ /6], " ⁇ /12] PRB uploads that is, can only be uploaded on 20, 14, 10, 7, 4, 2 PRBs. Therefore, according to the method of this embodiment, The detection combination of the RN's PRB is reduced to six, and the RN first detects 20 PRBs. If not, 14 PRBs are detected. At this point, the correct CCE can be demodulated, and then the CCE is blindly detected to obtain itself. In this case, the total number of blind detections is: 2 The number of times the CCE is blindly detected.
  • Embodiment 2 The scenario used in this embodiment is: The base station informs the relay node that the relay node is actually used to carry the R-PDCCH. The number of PRBs.
  • the base station uses independent common control information to include the number of physical resource blocks used to carry the downlink control channel, and the independent common control information may refer to a common control that is not interleaved with the dedicated control information.
  • the public control information is an independent public control area.
  • a relay resource (backhaul resource) is specifically drawn, for example, one or more PRBs as independent public control areas. For example, 20 PRBs are reserved semi-statically, and the number of PRBs carrying the R-PDCCH is 15. At this time, the common control area needs to use 5 bits to indicate the number of PRBs that actually carry the R-PDCCH.
  • the detection procedure of the RN is as follows: Step 1: The RN receives and demodulates the information in the public area, and obtains 01111, which represents the actual The number of PRBs carrying the R-PDCCH is 15. Step 2: In the semi-statically reserved PRB, receive the 15 PRBs obtained in the previous step, demodulate and deinterleave, and obtain a series of CCEs. Step 3: Perform a blind detection similar to Rel-8 on a string of CCEs obtained in step 2 to obtain its own R-PDCCH.
  • the scenario used in this embodiment is as follows: The base station informs the number of PRBs that the relay node actually uses to carry the R-PDCCH by signaling.
  • the base station uses the common search space to carry the common control information, where the common control information includes the number of physical resource blocks used to carry the downlink control channel. Since the above-mentioned common control information and the dedicated control information are interlaced, the blind detection step 4 of the RN is specifically as follows: Step 1: The RN performs blind detection on the semi-statically reserved N PRBs according to the method in Embodiment 1. In order to find the PRB where the public search space is located.
  • the number of PRBs for carrying the common control information may be predefined. For example, the number of PRBs may be limited to one type (for example, “N/2] PRBs) or two types (for example, “N/2] PRBs).
  • Step 2 In the semi-statically reserved PRB, receive the N/2 ⁇ PRBs obtained in the previous step, demodulate and deinterleave to obtain a series of CCEs.
  • Step 3 Perform a similar sequence of CCEs obtained in step 2. Blind detection of Rel-8 to obtain its own R-PDCCH. According to the method of Embodiment 3, the RN only needs to perform blind detection of the traversal of the common search space without traversing the specific search space (Specific Search Space).
  • a detection system for a downlink control channel is also provided.
  • the detection system of the downlink control channel is shown in FIG.
  • the base station 402 and the relay node 404 are included.
  • the base station includes a setting module 4021 and a sending module 4022.
  • the relay node 404 includes a receiving module 4041, an obtaining module 4042, a selecting module 4043, a determining module 4044, and a detecting module 4045.
  • the setting module 4021 sets information about the number of physical resource blocks used to carry the downlink control channel, and then, the sending module 4022
  • the relay node 404 sends the signaling carrying the above information.
  • the receiving module 4041 of the relay node 404 receives the signaling.
  • the signaling carries the semi-statically configured physical resource for carrying the downlink control channel.
  • the acquisition module 4042 obtains the detection set of the physical resource block of the downlink control channel that needs to be blindly detected, wherein the detection set includes the semi-statically configured physical resource. At least a part of the block.
  • the selection module 4043 selects the number of physical resource blocks from the detection set one by one.
  • the determining module 4044 determines the physical resource block to be detected according to the selected number of physical resource blocks. Then, the detecting module 4045 performs blind detection on the physical resource block allocated by the base station according to the physical resource block to be detected. If the corresponding downlink control channel is not detected, the selecting module 4043 reselects one physical resource block. The determining module 4044 and the detecting module 4045 repeatedly perform operations, Until the corresponding downlink control channel is detected.
  • the determining, by the relay node 404, the physical resource block to be detected according to the selected number of physical resource blocks includes: the relay node searching for the selected physical resource block in the local mapping table. The number of physical resource blocks to be detected corresponding to the number.
  • the determining module 4044 directly determines the physical resource block to be detected from the received information.
  • the relay node 404 searches for a physical resource block to be detected corresponding to the number of physical resource blocks actually used by the downlink control channel to be detected in the local mapping table.
  • the detecting module 4045 performs blind detection on the physical resource block allocated by the base station according to the physical resource block to be detected.
  • the information for carrying the number of physical resource blocks actually occupied by the downlink control channel is located in the common control information, where the common control information and the dedicated control information are not interleaved and mapped to a fixed physical time.
  • the base station informs the relay node of the number of physical resource blocks that the relay node actually uses to carry the downlink control channel, or the base station and the relay node pre-determine according to the upper layer.
  • the base station informs the relay node of the number of physical resource blocks that the relay node actually uses to carry the downlink control channel, or the base station and the relay node pre-determine according to the upper layer.
  • the number of physical resource blocks used for carrying the downlink control channel can be detected by using a small number of detection times, thereby ensuring that the relay node is in the Blind detection of the downlink control channel has lower complexity, less blind detection delay, improves the overall system efficiency, and ensures the flexibility of the PRB configuration carrying the R-PDCCH, so that the backhaul resources can be fully utilized.
  • the steps shown in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions, and, although the logical order is shown in the flowchart, in some cases, The steps shown or described may be performed in an order different than that herein.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device for execution by the computing device, or They are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

下^ f亍控制信道的检测方法和系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种下行控制信道的检测方法和 系统。 背景技术 在无线通信系统中引入中继节点后, 减少了中继节点对来自基站(eNB, Enhanced Node B ) 的下行控制信道 ( R-PDCCH, Relay Physical Downlink Control Channel ) 的盲检测复杂度。 由于未来无线通信或蜂窝系统要求增加覆盖范围, 支持更高速率传输, 这对无线通信技术提出了新的挑战。 同时, 系统建造和维护的费用问题更加 突出。 随着传输速率及通信距离的增加, 电池的耗能问题也变得突出, 而且 未来的无线通信将会釆用更高频率, 由此造成的路径损耗衰减更加严重。 为 了增加高数据速率、 组移动性、 临时网络部署的覆盖范围, 提高小区边缘的 吞吐量, 以及为蜂窝系统的覆盖漏洞内的用户提供服务, 无线通信系统中引 入了中继 ( Relay ) 技术, 因此中继技术被视为 4G的一项关键技术。 在长期演进 ( LTE, Long term Evolution ) 通信系统中, 下行控制信道 ( PDCCH, Physical Downlink Control Channel ) 的设计由几个不同的组成部 分构成, 每个部分都有其特定的功能。 为了方便描述, 下面定义几个术语及 约定: 1. 资源单元 (RE, Resource Element ): 最小的时频资源块, 占据 1个
OFDM符号上的 1个子载波。
2. 资源单元组(REG, Resource Element Group): 才艮据每个 OFDM符号 上参考符号位置的不同, 1个 REG可以由 4个或 6个 RE组成。
3. 控制信息单元 (CCE, Control Channel Element ): 由 36个 RE, 9个 REG组成, CCE中包含的信息有: 用户的下行调度授权信息 ( DL grant ) 和 上行调度 ·ί受权信息 (UL grant ), 以及和系统消息 ( SI, System Information ), 随机接入 (RA, Random Access ) 响应, 寻呼 (Paging ) 相关的信息。 4. Aggregation level L: CCE的组合形式, 即 PDCCH只能由 个 CCE 构成,其中 J e {1, 2, 4, 8} ,也就是说, PDCCH只能由 1个 CCE的组合(用 1-CCE 表示)、 2个 CCE的组合 (用 2-CCE表示)、 4个 CCE的组合 (用 4-CCE表 示) 和 8个 CCE的组合 (用 8-CCE表示)构成, 并且上述 4种不同的组合 又分别对应了 4种不同的编码速率, 即 1-CCE 的编码速率为 2/3 , 2-CCE 的 编码速率为 1/3 , 4-CCE 的编码速率为 1/6, 8-CCE 的编码速率为 1/12。
5. 搜索空间(SS , Search Space ): 搜索空间由若千组侯选控制信道构成, UE对搜索空间进行监听, 并在搜索空间内进行盲检测, 以便检测出与自己 相关下行控制信道。 6. 两种类型的搜索空间: 一种是公共搜索空间 ( UE-common Search
Space ) , 即所有 UE都要监听的搜索空间, 其中, 承载的是与 SI , RA响应 以及 Paging相关的公共信息; 另一种是 UE专用的搜索空间 ( UE-specific Search Space ), 其中承载的是 UE各自的上下行调度授权信息。
7. 不同的 CCE aggregation level都有其相应的侯选控制信道的个数, 即 为盲检测的最大次数。 例如, UE-specific Search Space 下: 1-CCE的侯选控 制信道为 6个, 即按 1个 CCE—组进行盲检测的次数不超过 6次; 2-CCE 的侯选控制信道为 6个, 即按 2个 CCE—组进行盲检测的次数不超过 6次; 4-CCE的侯选控制信道为 2个, 即按 4个 CCE—组进行盲检测的次数不超 过 2次; 8-CCE的侯选控制信道为 2个, 即按 8个 CCE—组进行盲检测的 次数不超过 2次。 UE- common Search Space 下, 4-CCE的侯选控制信道为 4 个, 即按 4个 CCE—组进行盲检测的次数不超过 4次; 8-CCE的侯选控制 信道为 2个, 即按 8个 CCE—组进行盲检测的次数不超过 2次。
LTE系统中 UE对 PDCCH进行盲检测的详细过程:
1 ) 在 eNB端, 发送过程主要包括以下步 4聚: 步骤 1 : 对每个 UE的 PDCCH分别进行信道编码; 步骤 2: 将编码后的所有 UE的 PDCCH串联起来, 用小区专用的序列进 行力口扰; 步骤 3:进行 QPSK调制,此时得到的是所有 PDCCH所对应的一串 CCE, 并将它们从 0开始进行编号; 假设此时的下行控制信道总共由 32个 CCE构 成, 即它们的编号为 CCE 0、 CCE 1 , ...、 CCE 31; 步骤 4: 将上述一串 CCE以 REG为单元进行交织后映射到 PDCCH所 在的时频资源上, 其中, 频域上占据整个系统带宽, 时域上具体占用了几个 符号由物理控制格式指示信道 ( PCFICH, Physical Control Format Indicate Channel ) 详细指明; 步骤 5: 进行 IFFT变换发射后出去。
2 ) 在 UE端, 接收过程主要包括以下步骤: 步骤 1 : 接收端接收整个带宽上的 PDCCH, 进行 FFT变换后, 并经过 解交织, 得到与 eNB端具有相同编号的一串 CCE; 步骤 2: UE从组合为 1-CCE开始进行盲检测,首先根据自己的标识( ID, Identity )、 子帧序号等参数计算出 1 -CCE的起始位置, 即从编号为几的 CCE 开始进行盲检测,进而根据候选控制信道的个数确定搜索空间。例如, 1-CCE 的起始位置是 CCE 5 , 则 UE的搜索空间即为 {CCE 5、 CCE 6、 CCE 7、 CCE 8、 CCE 9、 CCE 10}。 也就是说, UE要对 [CCE 5、 CCE 6、 CCE 7、 CCE 8、 CCE 9、 CCE 10]分别进行盲检测。 步骤 3: 如果按照组合为 1-CCE进行盲检测时, UE没有检测到和自己 相匹配的 UE ID, 则再从组合为 2-CCE开始进行盲检测。 首先依然要根据自 己的 UE-ID、 子帧序号等参数计算出 2-CCE的起始位置, 进而根据候选控制 信道的个数确定搜索空间。 例如, 2-CCE起始位置是 CCE 10, 则 UE的搜索 空间即为 {[CCE 10 CCE 11]、 [CCE 12 CCE 13]、 …、 [CCE 20 CCE 21]}。 也 就是说, UE要对 [CCE 10 CCE 11]、 [CCE 12 CCE 13]、 ...、 [CCE 20 CCE 21] 分别进行盲检测。 依此类推。 步骤 4: 如果在整个盲检测过程中, UE都没有监听到和自己相匹配的
UE ID, 说明此时没有属于自己的控制信令下达, 则 UE切换到睡眠模式; 如 果监听到了和自己相匹配的 UE ID之后, UE将按照控制信令的指示去解调 相对应的业务信息。 在引入中继节点 (Relay Node, 简称 RN ) 的移动通信系统中, 如图 1 所示, 基站( Enhanced Node B , 简称 eNB )与 RN之间的链路称为中继链路 ( Backhaul Link , 也称为回程链路), RN与其覆盖范围下的用户之间的链路 称为接入链路 ( Access Link ), eNB与其覆盖范围下的 UE之间的链路称之为 直传链路( Direct Link )。 对 eNB来说, RN就相当于一个 UE; 对 UE来说, RN就^!当于 eNB。 为了避免 RN 自身的收发千扰, RN不能在同一频率资源上同时进行发 送和接收的操作。 当 RN给其下属 UE发送下行控制信道时, 就收不到来自 eNB的下行控制信道。 因此, 在下行传输时, RN首先在前 1或 2个 OFDM 符号上给其下属的 UE发送下行控制信息, 然后在一段时间范围内进行从发 射到接收的切换, 切换完成后, 在后面的 OFDM符号上接收来自 eNB的数 据, 其中包括控制和业务。 也就是说, eNB给 RN发送的下行控制信道是^ 载在物理资源块 ( Physical Resource Block, 简称为 PRB ) 上的。 目前协议中规定, eNB给 RN发送的下行控制信道称为 R-PDCCH( Relay 的 PDCCH ), 其中包括 RN的上下行调度授权等信息。 eNB半静态地预留一 组 PRB用来传输 R-PDCCH, 如图 2所示。 其中, R-PDCCH可以占满所有 预留的 PRB , 也可以只占用其中的一部分 PRB; 可以占满上述 PRB的所有 OFDM符号, 也可以只占用上述 PRB的前 1到 2个 OFDM符号。也就是说, eNB为 R-PDCCH的传输而半静态地预留一组 PRB, 并非全部都承载了 R-PDCCH, 具体哪些 PRB真正 载了 R-PDCCH, 是每个子帧动态可变的。 其中, 那些没有承载 R-PDCCH的 PRB可以用来传输 UE的物理下行共享信 道 ( Physical Downlink Shared Channel, 简称为 PDSCH ) 或者 RN的物理下 行共享信道。 由此可见, UE是全带宽的接收解调 PDCCH, 并盲检测 CCE, 而 RN事 先只知道 eNB半静态地预留了哪些 PRB用来承载 R-PDCCH,但是它并不知 道每个子帧中到底哪些 PRB真正 7 载了 R-PDCCH。 如果 R-PDCCH和 PDCCH—样, 是 4目互交织在一起的, 那么 RN要想检测出自己 R-PDCCH的 话, 要进行两次盲检测: 第 1次, 盲检测出实际 载 R-PDCCH的 PRB, 并 解交织得到一串 R-CCE; 第 2次, 盲检测 R-CCE, 最终找到属于自己的 R-PDCCH。 由于 RN并不知道每子帧中实际 载了 R-PDCCH的 PRB的个 数, 因此, RN需要对不同 PRB个数进行盲检测。 也就是说, RN盲检测 R-PDCCH的总次数等于:第 1次的盲检次数 X第 2次的盲检次数。例如, eNB 半静态的分配了 20个 PRB用于 载 R-PDCCH,而某个子帧的 R-PDCCH实 际使用的 PRB个数为 15个。 RN在进行盲检测时, 并不知道具体是多少个, 因此只能釆用遍历的方法, 即首先检测 20个 PRB的情况, 没有的话, 再检 测 19个 PRB的情况, , 直到检测到 15个 PRB。 而且 RN在检测上述各 种 PRBs组合时, 至少要解到 CCE级, 再按照 1或 2个 CCE进行类似 Rel-8 的盲检测后才能确定是否包含属于自己的 R-PDCCH。 因此, 发明人发现根据相关技术中的下行控制信道的检测方法, 会导致 R-PDCCH的盲检测次数大大增力。, 而且盲检测时延也会大大加长。 发明内容 针对相关技术中的 R-PDCCH的盲检测次数较多、 盲检测时延较长的问 题而提出本发明, 为此, 本发明的主要目的在于提供一种下行控制信道的检 测方法和系统。 为了实现上述目的, 根据本发明的一个方面, 提供了一种下行控制信道 的检测方法, 其包括: 基站向中继节点发送信令, 其中, 信令携带用于承载 下行控制信道的半静态配置的物理资源块的个数的信息并限定检测集合, 或 者携带用于承载下行控制信道实际所占用的物理资源块的个数的信息; 中继 节点根据信息获取待检测的物理资源块; 中继节点按照待检测的物理资源块 对由基站分配的物理资源块进行盲检测。 优选地, 信令携带用于承载下行控制信道的半静态配置的物理资源块的 个数的信息, 其中, 中继节点根据信息获取待检测的物理资源块包括: 中继 节点根据信息获取需要进行盲检测的下行控制信道的物理资源块的检测集 合, 其中, 检测集合包含半静态配置的物理资源块的至少一部分; 中继节点 按照待检测的物理资源块对由基站分配的物理资源块进行盲检测包括: 逐个 从检测集合中选择一种物理资源块的个数; 才艮据所选择出的物理资源块的个 数确定待检测的物理资源块; 中继节点按照待检测的物理资源块对由基站分 配的物理资源块进行盲检测。 优选地, 居所选择出的物理资源块的个数确定待检测的物理资源块包 括: 中继节点在本地的映射表中查找出与所选择出的物理资源块的个数对应 的待检测的物理资源块。 优选地, 基站向中继节点发送信令包括: 发送携带有公共控制信息的信 令, 其中, 公共控制信息包括用于承载下行控制信道实际所占用的物理资源 块的个数、 且公共控制信息与专用控制信息不交织, 并映射到固定的物理时 频资源上。 优选地, 基站向中继节点发送信令包括: 发送携带有公共控制信息的信 令, 其中, 公共控制信息包括用于承载下行控制信道实际所占用的物理资源 块的个数、且公共控制信息与专用控制信息交织, 并映射到公共搜索空间上。 优选地, 中继节点根据信息获取待检测的物理资源块包括: 对由基站分 配的物理资源块进行盲检测, 或者对下行控制信道的物理资源块的检测集合 进行盲检测, 获得公共控制信息; 从公共控制信息提取用于承载下行控制信 道实际所占用的物理资源块的个数; 根据用于承载下行控制信道实际所占用 的物理资源块的个数确定待检测的物理资源块。 优选地, 根据用于承载下行控制信道实际所占用的物理资源块的个数确 定待检测的物理资源块包括: 中继节点在本地的映射表中查找出与用于承载
为了实现上述目的, 根据本发明的另一个方面, 提供了一种下行控制信 道的检测系统, 其包括: 基站和中继节点, 基站设置为向中继节点发送信令, 其中, 信令携带用于承载下行控制信道的半静态配置的物理资源块的个数的 信息并限定检测集合, 或者, 携带用于承载下行控制信道实际所占用的物理 资源块的个数的信息; 中继节点设置为根据信息获取待检测的物理资源块、 并按照待检测的物理资源块对由基站分配的物理资源块进行盲检测。 优选地, 信令携带用于承载下行控制信道的半静态配置的物理资源块的 个数的信息, 中继节点包括: 获取模块, 设置为根据信息获取需要进行盲检 测的下行控制信道的物理资源块的检测集合, 其中, 检测集合包含半静态配 置的物理资源块的至少一部分; 选择模块, 设置为逐个从检测集合中选择一 种物理资源块的个数; 确定模块, 设置为根据所选择出的物理资源块的个数 确定待检测的物理资源块; 检测模块, 设置为按照待检测的物理资源块对由 基站分配的物理资源块进行盲检测。 优选地, 用于承载下行控制信道实际所占用的物理资源块的个数的信息 位于公共控制信息中, 其中, 公共控制信息与专用控制信息不交织、 且映射 到固定的物理时频资源上, 或者, 与专用控制信息交织、 且映射到公共搜索 空间上。 本发明具有以下有益效果: 在本发明中, 基站通过信令告知中继节点其实际用于承载下行控制信道 的物理资源块的个数并限定检测集合, 从而保证了中继节点在盲检测下行控 制信道时具有较低的复杂度, 较少的盲检测时延, 提高了整个系统效率, 而 且保证了承载 R-PDCCH的 PRB配置的灵活性,使得 backhaul资源得以充分 地利用。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的 I入后 Relay的无线通信系统构架的示意图; 图 2是才艮据相关技术的 R-PDCCH与 PDCCH位置关系的示意图; 图 3是根据本发明实施例的下行控制信道的检测方法的流程图; 图 4是根据本发明实施例的下行控制信道的检测系统的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明实施例基于图 1所示的无线通信系统, 并主要是对基站与中继节 点之间的用于下行控制信道的通信过程进行了改进, 其中, 上述无线通信系 统包括: 基站、 用户终端、 中继站 (也称中继节点)。 图 3是根据本发明实施例的下行控制信道的检测方法的流程图。 如图 3 所示, 该下行控制信道的检测方法主要包括以下步骤: S302, 基站向中继节点发送信令, 其中, 该信令携带用于承载下行控制 信道的半静态配置的物理资源块的个数的信息并限定检测集合, 或者携带用 于承载下行控制信道实际所占用的物理资源块的个数的信息;
S304 , 中继节点 居上述信息获取待检测的物理资源块; S306 , 中继节点按照待检测的物理资源块对由基站分配的物理资源块进 行盲检测。 在相关技术中, 中继节点无法获知基站实际使用的物理资源块的个数, 这样中继节点对于 R-PDCCH的盲检测次数大大增加。 而根据本发明实施例 的方法, 基站通过信令告知中继节点其实际用于承载下行控制信道的物理资 源块的个数, 或者, 基站与中继节点预先预定好, 根据高层信令通知的半静 态配置的下行控制信道的物理资源块的个数, 就可以获得用于承载下行控制 信道的物理资源块的个数的集合。 这样, 中继节点在获知上述个数或上述个 数的集合之后, 可以通过较少的检测次数即可以检测出用于承载下行控制信 道的物理资源块的个数, 从而保证了中继节点在盲检测下行控制信道时具有 较低的复杂度, 较少的盲检测时延, 提高了整个系统效率, 而且保证了承载 R-PDCCH的 PRB配置的灵活性, 使得 backhaul资源得以充分地利用。 当信令携带用于承载下行控制信道的半静态配置的物理资源块的个数的 信息时, 所述中继节点根据所述信息获取需要进行盲检测的下行控制信道的 物理资源块的检测集合, 其中, 所述检测集合包含所述半静态配置的物理资 源块的至少一部分; 然后, 逐个从所述检测集合中选择一种物理资源块的个 数; 居所选择出的物理资源块的个数确定所述待检测的物理资源块; 所述 中继节点按照所述待检测的物理资源块对由所述基站分配的物理资源块进行 盲检测。 具体的, 基站可以与中继节点预先限定了能够被用于承载下行控制信道 的物理资源块的个数的各种情况, 例如, 基站通过高层信令通知中继节点半 静态预留的 PRB的个数为 20, 则中继节点可以根据预先的约定和基站发送 的半静态预留的 PRB的个数来获知需要进行盲检测的下行控制信道的物理 资源块的检测集合为 18、 16、 14个 PRB, 即, 基站只可能在上述检测集合 中选择一种 PRB的个数承载下行控制信道, 例如, 基站釆用 16个 PRB来承 载下行控制信道。 优选的, 中继节点根据所选择出的物理资源块的个数确定所述待检测的 物理资源块包括: 中继节点在本地的映射表中查找出与所选择出的物理资源 块的个数对应的待检测的物理资源块。 在这种情况下, 中继节点将逐个从集合中选择一种物理资源块的个数来 对由基站分配的物理资源块进行盲检测。 例如, 在集合为 18、 16、 14个 PRB 的情况下, 中继节点首先从基站分配的 20个 PRB选择 18个 PRB进行盲检 测, 如果根据盲检测出的 CCE信息, 无法获得 R-PDCCH信息, 则中继节点 重新从基站分配的 20个 PRB选择 16个 PRB进行盲检测, 直到才艮据盲检测 出的 CCE信息可以获得 R-PDCCH信息为止。 通过这种方式, 在不增加开销 的情况下, 可以减少盲检测的次数。 优选的, 上述用于承载下行控制信道实际所占用的物理资源块的个数的 信息可以位于公共控制信息中, 其中, 该公共控制信息与专用控制信息不交 织、 且映射到固定的物理时频资源上, 或者, 上述该共控制信息也可以与专 用控制信息交织、 且映射到公共搜索空间上。 在上述信息位于与专用控制信息不交织、 J |载在帧中固定的时频资源 上的公共控制信息中的情况下, 中继节点在接收到基站发送的携带有公共控 制信息的信令时,可以先从上述固定的时频资源中获知公共控制信息, 然后, 从公共控制信息提取实际用于承载下行控制信道的物理资源块的个数。然后, 从基站分配的 PRB中选择上述个数的 PRB进行盲检测,通过盲检测出的 CCE 信息确定是否获得 R-PDCCH信息。 通过这种方式, 可以进一步减少盲检测 的次数。 在上述信息位于与专用控制信息交织、 且映射到公共搜索空间上的公共 控制信息中的情况下, 中继节点无法预先获知公共控制信息在帧中的位置。 因此, 在接收到基站发送的携带有公共控制信息的信令时, 中继节点可以先 对由基站分配的物理资源块进行盲检测,或者对限定的检测集合进行盲检测, 从而获得公共控制信息, 然后, 从公共控制信息提取实际用于承载下行控制 信道的物理资源块的个数。 优选的, 然后, 所述中继节点在本地的映射表中查找出与所述用于承载 然后, 从基站分配的 PRB中选择待检测的物理资源块进行盲检测, 通过 盲检测出的 CCE信息确定是否获得 R-PDCCH信息。 通过这种方式, 可以在 不增加开销的情况下, 进一步减少盲检测的次数。 下面通过具体参数来详细描述上述不同检测方式下的实施例。 实施例 1 本实施例所釆用的场景为: 基站和中继节点预先限定了实际用于承载 R-PDCCH的 PRB的个数的集合。 假设 eNB半静态地预留了 20个 PRB用于承载 R-PDCCH, 而某子帧上 只有 14个 PRB实际承载了 R-PDCCH,剩余 6个 PRB传输 PDSCH/R-PDSCH。 因为 RN在进行盲检测时, 并不知道具体有多少个 PRB实际承载了
R-PDCCH, 因此如果按照常规的方法, 即不限定 PRB的检测组合的话, 就 只能釆用遍历法, 即首先检测 20个 PRB的情况, 没有的话, 再检测 19个
PRB的情况, , 直到检测到 14个 PRB, 才能正确解调出 R-PDCCH。 这 样的话, 盲检总次数就是: 7χ盲检测 CCE的次数。 如果实际承载 R-PDCCH 的 PRB只有 2个的话, 那么盲检次数就是 19χ盲检测 CCE的次数。 按照本实施例的方法, 例如, 如果 eNB半静态地预留了 N个 PRB用于 载 R-PDCCH,那么 eNB和 RN相互协商好, R-PDCCH只能在 个 PRB
Figure imgf000012_0001
上承载, 其中, α和 6均为正整数, J ≤a。例如,只能在 N, 「2Ν/3] , 「Ν/2] ,
[N/3] , 「Ν/6] , 「Ν/12]个 PRB上 载, 即只能 载在 20, 14, 10, 7, 4, 2 个 PRB上 载。 因此, 按照本实施例的方法, 将 RN的 PRB的检测组合减 少到了 6个, RN首先检测 20个 PRB的情况, 没有的话, 检测 14个 PRB, 此时便可以解调出正确的 CCE, 进而对 CCE进行盲检测, 以获得自己的 R-PDCCH。 这时, 盲检总次数是: 2χ盲检测 CCE的次数。 实施例 2 本实施例所釆用的场景为: 基站通过信令告知中继节点实际用于承载 R-PDCCH的 PRB的个数。 在本实施例中, 基站使用独立的公共控制信息来包括所述用于承载下行 控制信道的物理资源块的个数, 该独立的公共控制信息可以指的是与专用控 制信息不交织的公共控制信息。 具体的, 上述公共控制信息为一块独立的公共控制区域。 专门划出一块 中继资源 ( backhaul资源), 例如 1个或者多个 PRB作为独立的公共控制区 域。 例如, 半静态预留了 20个 PRB, 实际 载 R-PDCCH的 PRBs的个数为 15。 此时, 公共控制区域需要用 5比特来指示实际 载 R-PDCCH的 PRBs 的个数, RN的检测步骤如下: 步骤 1 : RN接收并解调公共区域中的信息, 将获取 01111 , 就代表实际 载 R-PDCCH的 PRBs的个数为 15。 步骤 2: 在半静态预留的 PRB中, 接收上一步得到的 15个 PRB, 经过 解调并解交织, 得到一串 CCE。 步骤 3: 对步骤 2得到的一串 CCE进行类似 Rel-8的盲检测, 以获得自 己的 R-PDCCH。 实施例 3 本实施例所釆用的场景为: 基站通过信令告知中继节点实际用于承载 R-PDCCH的 PRB的个数。 在本实施例中, 基站使用公共搜索空间 ( Common Search Space )承载公 共控制信息, 其中, 该公共控制信息包括所述用于承载下行控制信道的物理 资源块的个数。 由于上述公共控制信息与专用控制信息是交织在一起的, 因此, RN的 盲检测步 4聚具体如下: 步骤 1 : RN按照实施例 1中的方法对半静态预留的 N个 PRBs进行盲检 测, 以便找到公共搜索空间所在的 PRB。 优选的, 可以预先限定用于承载公 共控制信息的 PRB的个数集合, 例如可以将 PRB的个数集合限定为 1种个 数(如, 「N/2]个 PRB ) 或 2种个数 (如, 「N/2]个 PRB, 「N/3]个 PRB ), 从而 RN接收并解调出公共控制信息, 并从所述公共控制信息获得实际用于 载 R-PDCCH的 PRB的个数, 例 ¾。「N/2」个。 步骤 2: 在半静态预留的 PRB中, 接收上一步得到的「N/2^个 PRB, 经 过解调并解交织, 得到一串 CCE。 步骤 3: 对步骤 2得到的一串 CCE进行类似 Rel-8的盲检测, 以获得自 己的 R-PDCCH。 根据实施例 3的方法, RN只需要对公共搜索空间要进行遍历的盲检测, 而不用对专用搜索空间 ( Specific Search Space ) 进行遍历的盲检测。 从而在 没有额外的开销情况下, 减少了盲检测的次数。 根据本发明实施例, 还提供了一种下行控制信道的检测系统。 如图 4所 示, 该下行控制信道的检测系统包括: 基站 402和中继节点 404。 优选的, 上述基站包括设置模块 4021和发送模块 4022。 而中继节点 404 包括接收模块 4041、 获取模块 4042、 选择模块 4043、 确定模块 4044和检测 模块 4045。 在工作状态下, 设置模块 4021设置与用于承载下行控制信道的物理资 源块的个数相关的信息, 然后, 发送模块 4022向中继节点 404发送携带有 上述信息的信令。 在接收端, 中继节点 404的接收模块 4041接收上述信令。 在上述信令 携带的是用于承载下行控制信道的半静态配置的物理资源块的个数的信息并 限定检测集合的情况下, 获取模块 4042 居上述信息获取需要进行盲检测 的下行控制信道的物理资源块的检测集合, 其中, 上述检测集合包含上述半 静态配置的物理资源块的至少一部分。 然后, 选择模块 4043逐个从上述检 测集合中选择一种物理资源块的个数。 然后, 确定模块 4044根据所选择出 的物理资源块的个数确定上述待检测的物理资源块。 然后, 检测模块 4045 按照上述待检测的物理资源块对由上述基站分配的物理资源块进行盲检测, 如果没有检测出相应的下行控制信道, 则选择模块 4043重新选择一种物理 资源块的个数, 确定模块 4044与检测模块 4045重复执行操作, 直到检测出 相应的下行控制信道。 优选的, 中继节点 404才艮据所选择出的物理资源块的个数确定上述待检 测的物理资源块包括: 中继节点在本地的映射表中查找出与所选择出的物理 资源块的个数对应的待检测的物理资源块。 在上述信令携带的是用于承载下行控制信道实际所占用的物理资源块的 个数的信息的情况下, 确定模块 4044直接从接收到的信息中确定上述待检 测的物理资源块。 优选的, 中继节点 404在本地的映射表中查找出与上述用 于承载下行控制信道实际所占用的物理资源块的个数对应的待检测的物理资 源块。 然后, 检测模块 4045按照上述待检测的物理资源块对由上述基站分配 的物理资源块进行盲检测。 优选的, 所述用于承载下行控制信道实际所占用的物理资源块的个数的 信息位于公共控制信息中, 其中, 所述公共控制信息与专用控制信息不交织、 且映射到固定的物理时频资源上, 或者, 与所述专用控制信息交织、 且映射 到公共搜索空间上。 根据本发明实施例的下行控制信道的检测系统, 基站通过信令告知中继 节点其实际用于承载下行控制信道的物理资源块的个数, 或者, 基站与中继 节点预先预定好, 根据高层信令通知的半静态配置的下行控制信道的物理资 源块的个数,就可以获得用于^载下行控制信道的物理资源块的个数的集合。 这样, 中继节点在获知上述个数或上述个数的集合之后, 可以通过较少的检 测次数即可以检测出用于承载下行控制信道的物理资源块的个数, 从而保证 了中继节点在盲检测下行控制信道时具有较低的复杂度,较少的盲检测时延, 提高了整个系统效率, 而且保证了承载 R-PDCCH的 PRB配置的灵活性, 使 得 backhaul资源得以充分地利用。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执 行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是 在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种下行控制信道的检测方法, 包括:
基站向中继节点发送信令, 其中, 所述信令携带用于承载下行控 制信道的半静态配置的物理资源块的个数的信息并限定检测集合, 或 者携带用于承载下行控制信道实际所占用的物理资源块的个数的信 息;
所述中继节点才艮据所述信息获取待检测的物理资源块; 所述中继节点按照所述待检测的物理资源块对由所述基站分配的 物理资源块进行盲检测。
2. 根据权利要求 1所述的方法, 其中, 所述信令携带用于承载下行控制 信道的半静态配置的物理资源块的个数的信息, 其中,
所述中继节点 艮据所述信息获取待检测的物理资源块包括: 所述中继节点根据所述信息获取需要进行盲检测的下行控制信道 的物理资源块的检测集合, 其中, 所述检测集合包含所述半静态配置 的物理资源块的至少一部分;
所述中继节点按照所述待检测的物理资源块对由所述基站分配的 物理资源块进行盲检测包括:
逐个从所述检测集合中选择一种物理资源块的个数; 才艮据所选择出的物理资源块的个数确定所述待检测的物理资源 块;
所述中继节点按照所述待检测的物理资源块对由所述基站分配的 物理资源块进行盲检测。
3. 根据权利要求 2所述的方法, 其中, 根据所选择出的物理资源块的个 数确定所述待检测的物理资源块包括:
所述中继节点在本地的映射表中查找出与所选择出的物理资源块 的个数对应的待检测的物理资源块。
4. 根据权利要求 1所述的方法, 其中, 基站向中继节点发送信令包括: 发送携带有公共控制信息的信令, 其中, 所述公共控制信息包括 所述用于承载下行控制信道实际所占用的物理资源块的个数、 且所述 公共控制信息与专用控制信息不交织, 并映射到固定的物理时频资源 上。
5. 根据权利要求 1所述的方法, 其中, 基站向中继节点发送信令包括: 发送携带有公共控制信息的信令, 其中, 所述公共控制信息包括 所述用于承载下行控制信道实际所占用的物理资源块的个数、 且所述 公共控制信息与专用控制信息交织, 并映射到公共搜索空间上。
6. 根据权利要求 4或 5所述的方法, 其中, 所述中继节点根据所述信息 获取待检测的物理资源块包括:
对由所述基站分配的物理资源块进行盲检测, 或者对下行控制信 道的物理资源块的检测集合进行盲检测, 获得所述公共控制信息; 从所述公共控制信息提取所述用于承载下行控制信道实际所占用 的物理资源块的个数;
根据所述用于承载下行控制信道实际所占用的物理资源块的个数 确定所述待检测的物理资源块。
7. 根据权利要求 6所述的方法, 其中, 根据所述用于承载下行控制信道 所述中继节点在本地的映射表中查找出与所述用于承载下行控制
一种下行控制信道的检测系统, 包括基站和中继节点,
所述基站设置为向中继节点发送信令, 其中, 所述信令携带用于 7 载下行控制信道的半静态配置的物理资源块的个数的信息并限定检 测集合, 或者, 携带用于承载下行控制信道实际所占用的物理资源块 的个数的信息;
所述中继节点设置为才艮据所述信息获取待检测的物理资源块、 并 按照所述待检测的物理资源块对由所述基站分配的物理资源块进行盲 检测。
. 根据权利要求 8所述的系统, 其中, 所述信令携带用于承载下行控制 信道的半静态配置的物理资源块的个数的信息, 所述中继节点包括: 获取模块, 设置为根据所述信息获取需要进行盲检测的下行控制 信道的物理资源块的检测集合, 其中, 所述检测集合包含所述半静态 配置的物理资源块的至少一部分;
选择模块, 设置为逐个从所述检测集合中选择一种物理资源块的 个数;
确定模块, 设置为根据所选择出的物理资源块的个数确定所述待 检测的物理资源块;
检测模块, 设置为按照所述待检测的物理资源块对由所述基站分 配的物理资源块进行盲检测。
10. 根据权利要求 8所述的系统, 其中, 所述用于承载下行控制信道实际 所占用的物理资源块的个数的信息位于公共控制信息中, 其中, 所述 公共控制信息与专用控制信息不交织、 且映射到固定的物理时频资源 上, 或者, 与所述专用控制信息交织、 且映射到公共搜索空间上。
PCT/CN2011/071745 2010-04-02 2011-03-11 下行控制信道的检测方法和系统 WO2011120375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010156581.X 2010-04-02
CN201010156581.XA CN102215507B (zh) 2010-04-02 2010-04-02 下行控制信道的检测方法和系统

Publications (1)

Publication Number Publication Date
WO2011120375A1 true WO2011120375A1 (zh) 2011-10-06

Family

ID=44711354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071745 WO2011120375A1 (zh) 2010-04-02 2011-03-11 下行控制信道的检测方法和系统

Country Status (2)

Country Link
CN (1) CN102215507B (zh)
WO (1) WO2011120375A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788929B (zh) * 2012-01-09 2020-01-17 华为技术有限公司 一种控制信道资源映射方法、基站及用户设备
WO2013117014A1 (en) * 2012-02-10 2013-08-15 Nokia Siemens Networks Oy Identifying a subset of a plurality of radio resources of a downlink control channel
WO2013139011A1 (zh) * 2012-03-21 2013-09-26 富士通株式会社 下行控制信道的搜索空间的映射方法和装置
CN103427948B (zh) * 2012-04-19 2018-07-31 马维尔国际有限公司 用于解码物理下行链路控制信道的方法和设备
CN104137463B (zh) * 2012-07-31 2017-04-12 华为技术有限公司 控制信道传输方法及基站、终端
BR112015006774A8 (pt) * 2012-09-26 2019-09-17 Huawei Tech Co Ltd método de detecção de canal de controle e equipamento de usuário e estação base
CN104303569B (zh) * 2013-01-18 2018-10-30 华为技术有限公司 公共控制信道的检测方法、传输方法及装置
CN105577317A (zh) * 2014-10-15 2016-05-11 中兴通讯股份有限公司 下行控制消息dci检测方法及装置
US10764879B2 (en) * 2016-01-11 2020-09-01 Apple Inc. Apparatus and method for IoT control channel
CN108365928B (zh) * 2017-01-26 2023-04-07 北京三星通信技术研究有限公司 配置信息的发送方法、控制信道资源的检测方法和装置
CN109451852B (zh) * 2017-08-09 2020-06-02 北京小米移动软件有限公司 传输控制信息的方法、装置和存储介质
CN109644099B (zh) * 2017-09-25 2021-01-12 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101404526A (zh) * 2008-11-03 2009-04-08 中兴通讯股份有限公司 下行控制信息处理方法
CN101478808A (zh) * 2009-01-21 2009-07-08 中兴通讯股份有限公司 一种下行控制信息的发送及检测方法
CN101516104A (zh) * 2009-04-01 2009-08-26 华为技术有限公司 控制信令传输方法及系统、基站和用户设备
WO2009118393A1 (en) * 2008-03-28 2009-10-01 Nokia Siemens Networks Oy Method for transmitting signals in uplink direction in a 3g mobile radio communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468490B1 (ko) * 2007-05-02 2014-12-10 삼성전자주식회사 무선 통신 시스템에서 제어 채널들의 집합을 한정하여 송수신하는 방법 및 장치
US8326292B2 (en) * 2008-06-03 2012-12-04 Innovative Sonic Limited Method and apparatus for determining dedicate searching space in physical downlink control channel
CN101505498B (zh) * 2009-03-17 2014-02-05 中兴通讯股份有限公司 下行控制信息发送方法及相关系统、装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118393A1 (en) * 2008-03-28 2009-10-01 Nokia Siemens Networks Oy Method for transmitting signals in uplink direction in a 3g mobile radio communication system
CN101404526A (zh) * 2008-11-03 2009-04-08 中兴通讯股份有限公司 下行控制信息处理方法
CN101478808A (zh) * 2009-01-21 2009-07-08 中兴通讯股份有限公司 一种下行控制信息的发送及检测方法
CN101516104A (zh) * 2009-04-01 2009-08-26 华为技术有限公司 控制信令传输方法及系统、基站和用户设备

Also Published As

Publication number Publication date
CN102215507A (zh) 2011-10-12
CN102215507B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
US11101971B2 (en) Narrowband time-division duplex frame structure for narrowband communications
WO2011120375A1 (zh) 下行控制信道的检测方法和系统
US8804641B2 (en) Method and device for detecting downlink control information
AU2016264077B2 (en) Terminal device, base station device, and communication method
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
TWI730976B (zh) 用於在未許可頻譜中的基於crs和基於dm-rs的傳輸模式之間進行協調的技術
US20110310829A1 (en) Method and apparatus for grouping control channel resource in mobile communication system
TW201637472A (zh) 針對基於爭用的共享頻譜的排程增強
JP2020205615A (ja) 基地局及び無線端末
WO2013097497A1 (zh) 基于增强phich传输反馈信息的方法及装置
WO2013091414A1 (zh) 一种传输信息的方法、系统及设备
WO2010105536A1 (zh) 一种中继链路控制信道传输方法及系统
WO2014048184A1 (zh) 基站设备、终端设备及通信系统
WO2018171618A1 (zh) 资源处理方法和装置
WO2011137696A1 (zh) 中继节点下行控制信道的传输方法及系统
WO2014000618A1 (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置
WO2011120320A1 (zh) 中继链路边界的指示及确定方法、基站
WO2012174913A1 (zh) 一种确定搜索空间的方法及装置
WO2013139246A1 (zh) 一种控制信令的发送、解调方法与系统及终端
US20230057016A1 (en) Master Information Block (MIB) Type Determination
WO2012051911A1 (zh) 一种中继节点的公共搜索空间的映射方法及装置
JP2015070342A (ja) 基地局、端末、および通信方法
WO2013139271A1 (zh) 控制信令的发送、接收方法、基站和用户设备
WO2012022195A1 (zh) 一种检测中继物理下行控制信道的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11761949

Country of ref document: EP

Kind code of ref document: A1