WO2013097497A1 - 基于增强phich传输反馈信息的方法及装置 - Google Patents

基于增强phich传输反馈信息的方法及装置 Download PDF

Info

Publication number
WO2013097497A1
WO2013097497A1 PCT/CN2012/081698 CN2012081698W WO2013097497A1 WO 2013097497 A1 WO2013097497 A1 WO 2013097497A1 CN 2012081698 W CN2012081698 W CN 2012081698W WO 2013097497 A1 WO2013097497 A1 WO 2013097497A1
Authority
WO
WIPO (PCT)
Prior art keywords
phich
enhanced phich
enhanced
ack
feedback information
Prior art date
Application number
PCT/CN2012/081698
Other languages
English (en)
French (fr)
Inventor
赵锐
潘学明
沈祖康
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US14/364,296 priority Critical patent/US9451606B2/en
Priority to EP12862529.0A priority patent/EP2800292B1/en
Publication of WO2013097497A1 publication Critical patent/WO2013097497A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for transmitting feedback information based on enhanced PHICH resources. Background technique
  • PHICH Physical Hybrid Indicator Channel
  • the PHICH is used to carry correct/error (ACK/NACK) feedback information of the uplink service.
  • ACK/NACK correct/error
  • PHICH is an index of an orthogonal sequence.
  • the PHICH group concept refers to a set of Resource Elements (REs). In this set of REs, eight PHICHs can be transmitted, and each PHICH is distinguished by an orthogonal sequence. There are 8 orthogonal sequences for the normal cyclic prefix (Noraml CP), then 8 PHICHs in one PHICH group; and 4 orthogonal sequences for the extended cyclic prefix (Extended CP), then in a PHICH group There are 4 PHICHo
  • the number of PHICH groups can be determined in the following manner: For a Frequency Division Duplexing (FDD) system, the number of PHICH groups is fixed in all subframes, and Determined by the following formula
  • N HC P H is the total number of PHICH groups , N g e ⁇ l/ 6 , 1 / 2 , 1, 2 ⁇ , configured by the upper layer, N is
  • index ⁇ HICH number is from 0 to V PHICH
  • the number of PHICH groups may be different in each downlink subframe and is given by '' V pHICH , where 'determined according to the configuration information as shown in Table 1, TMTM is calculated by the above formula 1, and the index "TM CH number is from 0 to ' ⁇ PffiCH.
  • the network side usually maps the PHICH on a physical downlink control channel (physical downlink control channel,
  • the physical control format indicator channel (PCFICH) and the cell-specific reference signal (CRS) in the control region where the PDCCH is located are not used by the resource element group (RE group, REG).
  • the duration of the time domain mapping can be configured by the system and broadcast by the system. Referring to FIG. 1 , in the case of the normal PHICH time domain resource configuration (ie, the Normal PHICH Duration ), the PHICH mapping may be performed on the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the downlink subframe.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each PHICH group can be mapped on the first 3 OFDM symbols of the downlink subframe; and in special cases, each PHICH group The first two OFDM symbols are in the MBMS Single Frequency Network (MBSFN) subframe and the TD-LTE (TD-SCDMA Long Term Evolution, TD-SCDMA Long Term Evolution System) subframe 1 and subframe 6. Top), used to support a larger coverage radius or a larger number of users.
  • the number of PHICH groups in the cell also has four different levels of configuration (ie, e W 6 ' 1 / 2 ' 1 ' 2 ⁇ ), and the configuration is broadcasted by the system to support different user capacities.
  • Figure 1 shows a schematic diagram of a PHICH group resource mapping.
  • the time-frequency resources occupied by a PHICH group are related to the number of REGs, the cell ID, the PHICH group number, and the specific OFDM symbol number.
  • the UE when the UE sends uplink data on the Physical Uplink Shared Channel (PUSCH), the ACK/NACK feedback information corresponding to the uplink data will be downlinked by the network side.
  • the PHICH in the frame is transmitted to the UE, wherein for the PUSCH transmitted in the subframe n, the UE will receive the corresponding PHICH in the subframe "+", for the FDD system, for the TDD system, as shown in Table 2
  • the configuration information shown determines:
  • the specific location of the time-frequency resource occupied by the PHICH in the downlink subframe is the smallest PRB sequence of the PHICH resource indicated by the scheduling signaling carried in the downlink control information (Downlink Control Information, DCI) transmitted on the PDCCH on the PDCCH.
  • DCI Downlink Control Information
  • the specific location of the time-frequency resource where the PHICH is located is identified by a pair of parameters V l PHICH , "PHICH ", where yjgr up seq
  • PHICH is the number of the PHICH group; PHICH is the number of the orthogonal sequence in the PHICH group, and its specific calculation formula is shown in Equation 2: N PHICH
  • Table 3 (DMRS cyclic shift mapping between domain n DMRS is 0 and DCI format) for the PUSCH transmission in subframe n, if there is no instruction corresponding to the uplink scheduling DCI format 0, or,
  • the DMRS is set to 0. Is the spreading factor size of the PHICH modulation defined in the standard 36.211;
  • the PDCCH indicates the number of NACKs received in the case of scheduling the first transport block in the PUSCH, or in the absence of the corresponding PDCCH.
  • the PRB RA and the number of transport blocks in the PUSCH of the most recent PDCCH scheduling are not equal.
  • the case where the PRB RA + 1 PDCCH indicates that the second transport block in the PUSCH is scheduled is the smallest PRB sequence number assigned by the first time slot in the corresponding PUSCH transmission;
  • PHICH PHICH
  • the above related definitions for PHICH are currently only applicable to the LTE-REL10 system.
  • the traditional method of using single-layer coverage of macro base stations to provide access has been unable to meet user requirements. Therefore, at present, hierarchical coverage is usually used to solve the above problems, for example, deploying some low-power base stations in hotspots or indoors, such as Home eNodeB / Pico (Micro) base station / Femto Base station/relay base station, etc.
  • the low-power base station is a base station device used in a home indoor environment, an office environment, or other hotspot small coverage environment, enabling operators to provide attractive services with higher data rates and lower costs.
  • the femto base station has certain restrictions on the accessing member users, and non-member users cannot access. If the non-member user enters the coverage of the base station, the coverage hole is entered due to the strong signal of the low-power base station. , causing it to not work.
  • the pico base station is at the same frequency as the macro base station, it may also generate strong interference and become inoperable.
  • the existing method is to enable the base station to reduce the transmission of signals in the ABS by setting an interference blanking frame (ABS), so as to reduce the interference to the neighboring area, thereby realizing time-based division.
  • Inter-cell intereference coordination (ICIC) of the Time Division Multiple (TDM) method is to enable the base station to reduce the transmission of signals in the ABS by setting an interference blanking frame (ABS), so as to reduce the interference to the neighboring area, thereby realizing time-based division.
  • the interference base station will not transmit any control information on the ABS to avoid interference. Therefore, due to the introduction of the ABS mechanism, the PHICH will be controlled. The transmission of the area is limited.
  • the definition of the extended carrier is likely to be introduced.
  • the OFDM control region supported by the LTE Rel-10 system is not included in the real-time resource, and the PUSCH scheduling is performed on the extended carrier.
  • other compatible component carrier scheduling can be implemented by means of cross-carrier scheduling.
  • a new enhanced PDCCH transmission can also be defined in the extended carrier, wherein the enhanced PDCCH transmission occupies the PDSCH transmission area. Therefore, in the latter case, the PHICH transmission in the control area is also limited.
  • the embodiment of the invention provides a method and a device for transmitting feedback information based on the PHICH, which are used to solve the PHICH transmission limitation problem without increasing the system signaling overhead.
  • a method for transmitting feedback information based on enhanced PHICH includes:
  • the ACK/NACK feedback information to be transmitted is mapped to the enhanced PHICH resource group and transmitted to the terminal.
  • a method for transmitting feedback information based on enhanced PHICH includes:
  • An apparatus for transmitting feedback information based on enhanced PHICH includes:
  • a first processing unit configured to determine a time-frequency resource occupied by the enhanced PHICH configured in the physical downlink shared channel PDSCH region, and notify the terminal of the determined time-frequency resource occupied by the enhanced PHICH;
  • a second processing unit configured to determine, according to a scheduling situation of the terminal, an enhanced PHICH resource group that carries ACK/NACK feedback information in the time-frequency resource occupied by the enhanced PHICH;
  • a communication unit configured to map the ACK/NACK feedback information to be transmitted to the enhanced PHICH resource group, and transmit the information to the terminal.
  • An apparatus for transmitting feedback information based on enhanced PHICH includes:
  • a first control unit configured to determine, according to the base station notification, a time-frequency resource occupied by the enhanced PHICH configured by the network side in the physical downlink shared channel PDSCH region;
  • a second control unit configured to determine, according to a scheduling instruction of the base station, an enhanced PHICH resource group that carries correct/error ACK/NACK feedback information in the time-frequency resource occupied by the enhanced PHICH;
  • a communication unit configured to receive, according to the determined enhanced PHICH resource group, ACK/NACK feedback information transmitted by the base station.
  • a new FDM-based E-PHICH transmission method is proposed, that is, the ACK/NACK feedback information is carried by the E-PHICH resource configured in the PDSCH region, so that the PHICH can be solved on the one hand.
  • the problem that cannot be transmitted in the scenario for example, in the ABS subframe of the elCIC and the extension carrier that may be defined later; on the other hand, the signaling overhead can be saved, and the resource utilization is improved, for example, the system avoids the DCI format 0.
  • the scheduling of PUSCH retransmission is performed, thereby improving the PHICH capacity and solving the legacy PHICH resource conflict.
  • FIG. 1 is a schematic diagram of resource occupancy of a PHICH in a legacy PDCCH region in the prior art
  • FIGS. 2A and 2B are schematic diagrams showing an E-PHICH transmission mode according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of transmitting ACK/NACK feedback information by a base station according to an E-PHICH according to an embodiment of the present invention
  • FIG. 4A and FIG. 4B are schematic diagrams showing an E-PHICH resource occupation manner according to an embodiment of the present invention
  • 5 to FIG. 11 are schematic diagrams showing a manner of dividing an E-PHICH group according to an embodiment of the present invention
  • FIG. 12 is a flowchart of receiving ACK/NACK feedback information by a terminal according to an E-PHICH according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a function of a base station according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a terminal function according to an embodiment of the present invention. detailed description
  • the PHICH transmission area is used by a traditional Physical Downlink Control Channel (PDCCH) region (also referred to as a Physical Downlink Control Channel (PDCCH) region), in order to solve the PHICH transmission limitation problem without increasing the system signaling overhead.
  • the control region is transferred to the Physical Downlink Shared Channel (PDSCH) region, and the ACK/NACK feedback information is transmitted through the enhanced PHICH resource (denoted as E-PHICH) configured in the PDSCH region.
  • E-PHICH enhanced PHICH resource
  • the system may perform ACK/NACK feedback information transmission through the E-PHICH resource block configured in the PDSCH region, and the PDCCH region may be used only for transmitting the PCFICH.
  • the system may also perform ACK/NACK feedback information transmission through the E-PHICH resource block configured in the PDSCH region in the case of the extension carrier.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • the detailed process of the base station transmitting ACK/NACK feedback information based on the E-PHICH is as follows:
  • Step 300 The base station determines a time-frequency resource occupied by the E-PHICH configured in the PDSCH area by the network side.
  • the time-frequency resource occupied by the E-PHICH may be a combination of some time domain or/and frequency domain discontinuous transmission resources.
  • the time-frequency resources occupied by the E-PHICH are the E-PHICH resource block 1, the E-PHICH resource block, and the E-PHICH resource block 3 and the E-PHICH in the PDSCH region.
  • Resource block 4 wherein the size of each E-PHICH resource block may be one subcarrier, or a combination of multiple consecutive subcarriers, or multiple PRB pairs, or a combination of multiple REs.
  • Step 310 The base station notifies the terminal of the time-frequency resources occupied by the determined E-PHICH.
  • step 310 When step 310 is performed, the following two methods are available:
  • the first mode is as follows: ⁇
  • the dedicated signaling is used to notify the terminal of the time-frequency resources occupied by the E-PHICH.
  • Radio Resource Control RRC
  • system broadcast messages For example, using Radio Resource Control (RRC) signaling or system broadcast messages will
  • the specific location of the PRB pair occupied by the E-PHICH informs the terminal.
  • the number of PRB pairs informs the terminal, wherein the PRB pair occupied by the E-PHICH is evenly distributed in the entire downlink system bandwidth. Scattered into multiple resource blocks. Specifically:
  • the RRC signaling or the system broadcast message is used to notify the terminal to use the cell identifier (Cell-ID) and the system bandwidth to calculate the PRB pair starting position occupied by the E-PHICH, and determine the occupation of the E-PHICH by using the network side agreement mode. There is an agreed relationship between the number of PRB pairs and the downlink system bandwidth of the system.
  • the second mode is: Configuring the E-PHICH resource configuration parameter to notify the terminal by using the RRC signaling or the system broadcast message, and causing the terminal to occupy part of the time-frequency resource (ie, the PRB pair) in the E-PDCCH according to the E-PHICH resource configuration parameter. .
  • the E-PDCCH may also occupy time-frequency resources in the PDSCH region for transmission, and the E-PHICH may use part of time-frequency resources in the time-frequency resources occupied by the E-PDCCH.
  • the network side usually calculates the resources reserved for the E-PHICH, and the remaining time-frequency resources can be used for the transmission of the E-PDCCH.
  • the method for reserving the time-frequency resources used by the E-PHICH may follow the reservation method of the PHICH resource similar to that in the Rel-10, that is, configure related parameters through an E-PHICH resource (for example, the PHICH configuration parameter in the Rel-10).
  • Ng) to determine the size of the time-frequency resource reserved for the E-PHICH (including the specific location of the PRB pair, or the starting position and number of the PRB pair) the method of determining may follow the determination method in Rel-10,
  • the E-PHICH resource configuration related parameter may be notified to the terminal by using RRC signaling or a system broadcast message.
  • Step 320 The base station determines, according to the scheduling situation of the terminal, the E-PHICH resource group carrying the ACK/NACK feedback information in the time-frequency resource occupied by the E-PHICH, and records it as an E-PHICH group.
  • the base station may determine the E-PHICH resource carrying the ACK/NACK feedback information in the time-frequency resource occupied by the E-PHICH according to the minimum PRB pair sequence number and the cyclic shift of the uplink DMRS indicated in the PUSCH transmission permission.
  • the base station may determine the E-PHICH resource carrying the ACK/NACK feedback information in the time-frequency resource occupied by the E-PHICH according to the minimum PRB pair sequence number and the cyclic shift of the uplink DMRS indicated in the PUSCH transmission permission.
  • step 320 when the base station determines the E-PHICH group carrying the ACK/NACK feedback information, the following operations can be performed:
  • the time-frequency resource occupied by the E-PHICH includes four PRB pairs (one E-PHICH resource block for each PRB pair), and one PRB pair (ie, PRB pair) is represented as A 14 ⁇ 12 square whose ordinate represents the frequency domain, the unit is the subcarrier, and the abscissa represents the time domain, which is OFDM symbol alone, where the legacy PDCCH is carried on the first two OFDM symbols (the traditional physical downlink control channel) Resource element)
  • the first way is: according to the scheduling situation of the terminal, all the REs included in the subcarriers of the specified location are classified into one E-PHICH group between the PRB pairs:
  • all the REs included in the subcarriers in position 1 of each PRB pair are classified into one E-PHICH group.
  • E-PHICH groups may be divided in the above manner. For example, as shown in FIG. 6, all REs included in the subcarriers in position 1 of each PRB pair may be classified as E-PHICH group 1 . All the REs included in the subcarriers in position 2 of each PRB pair are classified into E-PHICH group 2, and all REs included in the subcarriers in position 3 of each PRB pair can be classified into E-PHICH group 3, where Some REs are reserved as reserved resources in an E-PHICH group. Of course, they may not be reserved. This is only an example, and is not limited thereto.
  • the legacy PDCCH and the bearer reference signal are required to be carried.
  • the so-called reference signal may be CRS, DMRS, CSI-RS (Channel-State Information Reference Signal), and the like.
  • all the REs included in the subcarriers in different positions in each PRB pair may be classified into one E-PHICH group, for example, all the REs included in the subcarriers in the first PRB pair at the position 1 and the second All REs included in the subcarriers of position 2 in the PRB pair, all REs included in the subcarriers in position 3 in the third PRB pair, and all REs included in the subcarriers in position 4 in the fourth PRB pair are classified as In the present embodiment, only one case of the E-PHICH group will be described by taking the case shown in Figs. 5 and 6 as an example.
  • the second mode is: according to the scheduling situation of the terminal, the RE of the specified part of the subcarriers of the specified location is classified into an E-PHICH group between the PRB pairs;
  • the REs on the 3rd, 4th, and 5th OFDM symbols included in the subcarriers in position 1 of each PRB pair are classified into one E-PHICH group.
  • each PRB pair may be located on the 3rd, 4th, and 5th OFDM symbols included in the subcarrier of position 1.
  • the REs are classified into E-PHICH group 1 , and the REs on the 3rd, 4th, and 5th OFDM symbols included in the subcarriers of the position 2 in each PRB pair are classified as E-PHICH group 2, and the positions of the PRBs are in pairs.
  • the REs on the 3rd, 4th, and 5th OFDM symbols included in the subcarriers of 3 are classified as E-PHICH group 3, and the 8th, 9th, 10th, 11th, and 12th subcarriers in the position 1 of each PRB pair are included.
  • the REs on the OFDM symbols are classified into E-PHICH group 4, and the REs on the 8th, 9th, 10th, 11th, and 12th OFDM symbols included in the subcarriers of the position 2 in each PRB pair are classified as E-PHICH group 5,
  • the REs on the 8th, 9th, 10th, 11th, and 12th OFDM symbols included in the subcarriers in position 1 of each PRB pair are classified as E-PHICH group 6.
  • the RE carrying the legacy PDCCH and the bearer reference signal are also excluded.
  • the so-called reference signal may be a CRS, a DMRS, a CSI-RS, or the like.
  • the E-PHICH group for example, the RE on the 8th, 9th, 10th, 11th, and 12th OFDM symbols included in the first sub-carrier in the first PRB pair, and the sub-position 2 in the second PRB pair.
  • the REs on the 8th, 9th, 10th, 11th, and 12th OFDM symbols included in the carrier, and the REs on the 8th, 9th, 10th, 11th, and 12th OFDM symbols included in the subcarriers in the third PRB pair The RE on the 8th, 9th, 10th, 11th, and 12th OFDM symbols included in the subcarrier of the fourth position in the fourth PRB pair is classified into an E-PHICH group.
  • FIG. 7 and The case shown in Fig. 8 will be described as an example.
  • the third mode is as follows: The M REs in the specified time domain and in the intermediate frequency domain of each PRB pair are classified into one enhanced PHICH resource group, and M is a preset parameter.
  • the OFDM symbols adjacent to the DMRS in the time domain can be preferentially occupied.
  • M 4 referring to FIG. 9, the RE on the 8th OFDM symbol included in the subcarriers at position 1, position 2, position 3, and position 4 in each PRB pair is classified as an E-PHICH. Group.
  • E-PHICH groups may be divided. For example, as shown in FIG. 10, the sub-carriers in the position 1, position 2, position 3, and position 4 of each PRB pair may be included.
  • the REs on the 8 OFDM symbols are classified as E-PHICH group 1
  • the REs on the 8th OFDM symbols included in the subcarriers at position 5, position 6, position 7, and position 8 in each PRB pair can be classified as E-
  • the PHICH group 2 may classify the REs on the 8th OFDM symbol included in the subcarriers at the position 9, the position 10, the position 11, and the position 12 in each PRB pair as the E-PHICH group 3.
  • the RE carrying the legacy PDCCH and the bearer reference signal are also excluded, wherein the so-called reference signals may be CRS, DMRS, CSI-RS, and the like.
  • the so-called reference signals may be CRS, DMRS, CSI-RS, and the like.
  • Figure 11 shows how the E-PHICH group is divided in the case of two CRS antenna ports.
  • the RE carrying the legacy PDCCH and the bearer reference signal are also excluded, wherein the so-called reference signals may be CRS, DMRS, CSI-RS, and the like.
  • Step 330 The base station maps the ACK/NACK feedback information to be transmitted to the corresponding E-PHICH group, and transmits the information to the terminal.
  • the ACK/NACK information to be transmitted is single-coded
  • the 1-bit ACK/NACK feedback information is encoded into a N-bit, and the encoding method may be repeated coding, sequence coding, or other coding methods.
  • N may be a preset parameter, or may be a parameter obtained after rate matching according to available time-frequency resources.
  • Example 1 ACK: 111... , NACK: 000...
  • BPSK Binary Phase Shift Keying
  • bit-by-bit orthogonal spreading on the obtained modulation symbols.
  • the spreading factor takes 4, and the orthogonal spreading sequence of PHICH in Rel-10 is used.
  • the orthogonally spread modulated modulation symbols are respectively mapped into corresponding E-PHICH groups.
  • the orthogonally spread modulation symbols are grouped in units of rows, and each group of modulation symbols is mapped to the REs belonging to the same E-PHICH group in each PRB pair, for example, Each group of modulation symbols is respectively mapped to the RE included in the subcarrier of the position 1 in the PRB pair corresponding to the E-PHICH resource block 1, and the RE of the subcarrier corresponding to the position 1 in the PRB pair corresponding to the E-PHICH resource block 2 , the REs included in the subcarriers of the position 1 in the PRB pair corresponding to the E-PHICH resource block 3, and the REs included in the subcarriers located in the position 1 in the PRB pair corresponding to the E-PHICH resource block 4, of course, these REs
  • the RE carrying the legacy PDCCH and the bearer reference signal is not included.
  • the orthogonally spread modulation symbols are grouped in units of rows, and each group of modulation symbols is mapped to REs belonging to the same E-PHICH group in each PRB pair, for example, Each group of modulation symbols is respectively mapped to the REs of the 3rd, 4th, and 5th OFDM symbols included in the subcarriers located at position 1 in the PRB pair corresponding to the E-PHICH resource block 1, and the PRB corresponding to the E-PHICH resource block 2
  • the subcarriers located in the position 1 are located on the REs of the 3rd, 4th, and 5th OFDM symbols, and the subcarriers in the position 1 of the PRB pairs corresponding to the E-PHICH resource block 3 are located at the 3rd, 4th, and 5th.
  • the REs of the OFDM symbols and the REs of the position 1 of the PRB pairs corresponding to the E-PHICH resource block 4 are located on the REs of the 3rd, 4th, and 5th OFDM symbols. Of course, these REs do not include the legacy. PDCCH and RE carrying the reference signal.
  • the orthogonally spread modulation symbols are grouped in units of columns, and each group of modulation symbols is mapped to REs belonging to the same E-PHICH group in each PRB pair, such as And mapping each group of modulation symbols to REs on the 8th OFDM symbol included in the subcarriers of position 1, position 2, position 3, and position 4 in the PRB pair corresponding to the E-PHICH resource block 1, E-PHICH
  • the PRB pair corresponding to the resource block 2 is located on the RE on the 8th OFDM symbol included in the subcarriers of the location 5, the location 6, the location 7, and the location 8, and the PRB pair corresponding to the E-PHICH resource block 3 is in the location 9
  • the location 10, the location 11, the location 12 subcarriers include the RE on the 8th OFDM symbol.
  • the REs do not include the legacy PDCCH and the bearer reference signal based on the foregoing embodiment, and the base station transmits the ACK/NACK.
  • the transmission mode that can be
  • the specifically used DMRS port can be pre-agreed with the terminal, or the terminal can be notified by RCC signaling or system broadcast message.
  • the REs included in any one of the E-PHICH groups may carry the transmission of 8 or 4 E-PHICH channels, and the different E-PHICH channels may be multiplexed by the same E-PHICH group by code division.
  • the resources of the same E-PHICH channel can be divided into multiple parts, and different parts can occupy different time-frequency resources for transmission, thereby obtaining diversity gain.
  • Each E-PHICH channel is distinguished by an orthogonal sequence, and therefore, in steps In 320, the base station further needs to determine an orthogonal sequence used for spreading according to a minimum PRB sequence number indicated in the PUSCH transmission permission and a cyclic shift of the uplink DMRS, and notify the terminal according to the orthogonal sequence, and the terminal corresponds according to the obtained orthogonal sequence.
  • the E-PHICH channel that receives the ACK/NACK feedback information is determined in the E-PHICH group. For the specific operation, see Equation 1 and Equation 2. In this embodiment, the emphasis is on the determination of the E-PHICH group, and therefore the content related to the orthogonal sequence will not be described herein.
  • the terminal receives the ACK/NACK feedback information based on the E-PHICH as follows:
  • Step 1200 The base station informs the base station to determine the time-frequency resource occupied by the E-PHICH configured in the PDSCH area by the network side.
  • the terminal may determine the specific location of the PRB pair occupied by the E-PHICH according to the RRC signaling or the system broadcast message sent by the base station, or the starting position of the RPB occupied by the E-PHICH.
  • the E-PHICH resource configuration parameter may be obtained according to the RRC signaling or the system broadcast message sent by the base station, and part of the time-frequency resource in the E-PDCCH is occupied according to the E-PHICH resource configuration parameter.
  • Step 1210 The terminal determines, according to the scheduling signaling of the base station, the E-PHICH resource group carrying the ACK/NACK feedback information in the time-frequency resource occupied by the learned E-PHICH, and records it as an E-PHICH group.
  • the terminal may determine the E-PHICH resource carrying the ACK/NACK feedback information in the time-frequency resource occupied by the E-PHICH according to the minimum PRB sequence number indicated in the scheduling signaling and the cyclic shift of the uplink DMRS.
  • the terminal may determine the E-PHICH resource carrying the ACK/NACK feedback information in the time-frequency resource occupied by the E-PHICH according to the minimum PRB sequence number indicated in the scheduling signaling and the cyclic shift of the uplink DMRS.
  • Rel 10 For operations, refer to Rel 10, and details are not described here.
  • the terminal when performing step 810, the terminal can also perform the following operations:
  • all the resource elements RE included in the subcarriers of the specified location are classified into one enhanced PHICH resource group between the PRB pairs: or, within the subcarriers of the specified location between the PRB pairs
  • the RE of the specified part is classified into an enhanced PHICH resource group; or, the Ms that are specified in the time domain and adjacent to each other in the inner frequency domain of each PRB pair are classified into one enhanced PHICH resource group, preferably
  • the RE carrying the legacy PDCCH and the reference signal is excluded; as shown in FIG. 5, FIG. 7 and FIG. This will not be repeated here.
  • Step 1220 The terminal receives the ACK/NACK feedback information transmitted by the base station according to the determined E-PHICH group.
  • the orthogonally spread modulated symbols carrying the ACK/NACK feedback information are demapped;
  • the orthogonally spread modulation symbols of the bearer ACK/NACK feedback information belonging to the REs of the same E-PHICH group in each PRB pair are combined, wherein, as shown in FIG. 9 to FIG. 10, the above ACK/NACK Secondly, orthogonally spreading and demodulating the orthogonally spread modulated symbols carrying the ACK/NACK feedback information, and obtaining the ACK/NACK feedback information after the single encoding;
  • the ACK/NACK feedback information after the single encoding is decoded to obtain ACK/NACK feedback information.
  • the REs included in any one of the E-PHICH groups can carry the transmission of 8 or 4 E-PHICH channels, and the different E-PHICH channels can multiplex the resources of the same E-PHICH group by means of code division.
  • the transmission of the same E-PHICH channel can be divided into multiple parts, and different parts can occupy different time-frequency resources for transmission, thereby obtaining diversity gain.
  • Each of the E-PHICH channels is distinguished by an orthogonal sequence.
  • the terminal further needs to determine an orthogonal sequence used by the base station according to the minimum PRB sequence number indicated in the scheduling signaling and the cyclic shift of the uplink DMRS, and
  • the E-PHICH channel that receives the ACK/NACK feedback information is determined in the corresponding E-PHICH group according to the obtained orthogonal sequence.
  • Equation 1 and Equation 2 the focus is on the determination of the E-PHICH group, and therefore the content related to the orthogonal sequence will not be described herein.
  • the transmission modes that can be used by the terminal are: a DMRS-based single-port transmission mode, and a DMRS-based transmission diversity mode.
  • the specifically used DMRS port may be pre-agreed with the base station, or may be determined according to RCC signaling or system broadcast messages sent by the base station.
  • a device for example, a base station
  • the first processing unit 131 is configured to determine a time-frequency resource occupied by the enhanced PHICH configured in the PDSCH area by the network side, and notify the terminal of the time-frequency resource occupied by the determined E-PHICH;
  • the second processing unit 132 is configured to determine, according to a scheduling situation of the terminal, an E-PHICH resource group that carries ACK/NACK feedback information in a time-frequency resource occupied by the E-PHICH;
  • the communication unit 130 is configured to map the ACK/NACK feedback information to be transmitted to the E-PHICH resource group, and transmit the information to the terminal.
  • the first processing unit 131 notifies the terminal of the determined time-frequency resources occupied by the enhanced PHICH, including:
  • the RRC signaling or the system broadcast message is used to notify the terminal of the enhanced PHICH resource configuration parameter, so that the terminal occupies part of the time-frequency resource in the enhanced physical downlink control channel E-PDCCH according to the enhanced PHICH resource configuration parameter.
  • the second processing unit 132 determines, according to the scheduling situation of the terminal, the enhanced PHICH resource group that carries the ACK/NACK feedback information in the time-frequency resource occupied by the enhanced PHICH, including:
  • all the resource elements RE included in the subcarriers of the specified location are classified into one enhanced PHICH resource group between the PRB pairs: or, a specified part of the subcarriers of the specified location is between each PRB pair.
  • the RE is classified into an enhanced PHICH resource group; or, the M REs in the specified time domain and in the intermediate frequency domain of each PRB pair are classified into one enhanced PHICH resource group, and M is a preset parameter.
  • the second processing unit 132 excludes the RE that carries the traditional control information and the reference signal in each RE that is classified into the same enhanced PHICH resource group.
  • the communication unit 130 maps the ACK/NACK information to be transmitted to the enhanced PHICH resource group, including:
  • the ACK/NACK information to be transmitted is single-coded
  • the orthogonally spread modulated modulation symbols are mapped into the enhanced PHICH group, respectively.
  • the communication unit 130 maps the orthogonally spread modulation symbols to the enhanced PHICH resource group, respectively, including:
  • the orthogonally spread modulation symbols are grouped in units of rows or columns, and each group of modulation symbols is mapped to REs belonging to the same enhanced PHICH resource group in each PRB pair.
  • the communication unit 130 uses a single-port transmission mode based on the demodulation reference compliant DMRS, or uses a DMRS-based transmit diversity mode.
  • the device e.g., terminal
  • the device that transmits feedback information based on the enhanced physical hybrid retransmission indication channel PHICH includes a communication unit 140, a first control unit 141, and a second control unit 142, where
  • the first control unit 141 is configured to determine, according to the base station notification, a time-frequency resource occupied by the E-PHICH configured by the network side in the PDSCH area;
  • a second control unit 142 configured to determine, according to a scheduling instruction of the base station, an E-PHICH resource group that carries ACK/NACK feedback information in a time-frequency resource occupied by the E-PHICH;
  • the communication unit 140 is configured to receive ACK/NACK feedback information transmitted by the base station based on the determined E-PHICH resource group.
  • the first control unit 141 determines, according to the base station notification, the time-frequency resource occupied by the enhanced PHICH configured by the network side in the PDSCH area, including:
  • the enhanced PHICH resource configuration parameter is obtained according to the RRC signaling or the system broadcast message sent by the base station, and part of the time-frequency resource in the enhanced physical downlink control channel E-PDCCH is occupied according to the enhanced PHICH resource configuration parameter.
  • the second control unit 142 determines, according to the scheduling signaling of the base station, the enhanced PHICH resource group that carries the ACK/NACK feedback information in the time-frequency resource occupied by the enhanced PHICH, including:
  • all the resource elements RE included in the subcarriers of the specified location are classified into one enhanced PHICH resource group between the PRB pairs: or, a specified part of the subcarriers of the specified location is between each PRB pair.
  • the REs are classified into one enhanced PHICH resource group; or, the M REs in the specified time domain and adjacent to each other in the frequency domain of each PRB are classified into one enhanced PHICH resource group, and M is a preset parameter.
  • the second control unit 142 excludes the RE carrying the legacy control information and the reference signal in each RE classified as the same enhanced PHICH resource group.
  • the communication unit 140 receives the ACK/NACK feedback information transmitted by the base station, based on the determined enhanced PHICH resource group, and includes:
  • the ACK/NACK feedback information after the single encoding is decoded to obtain ACK/NACK feedback information.
  • the orthogonally spread modulated symbols carrying the ACK/NACK feedback information are demapped, including:
  • the orthogonally spread modulated modulation symbols of the bearer ACK/NACK feedback information of the bearers belonging to the same enhanced PHICH resource group in each PRB pair are combined, wherein the orthogonally spread modulated symbols of the ACK/NACK feedback information are The rows or columns are combined for unit.
  • the communication unit 140 when receiving the ACK/NACK feedback information, uses a single-port transmission mode based on the demodulation reference DMRS, or uses a DMRS-based transmit diversity mode.
  • a new FDM-based E-PHICH transmission method is proposed, that is, the E-PHICH resource configured in the PDSCH region carries ACK/NACK feedback information, so that, on the one hand, Solving the problem that the PHICH cannot be transmitted in some scenarios, for example, in the ABS subframe of the elCIC and the extension carrier that may be defined later; on the other hand, the signaling overhead can be saved, and the resource utilization is improved, for example, the system is avoided.
  • the scheduling of PUSCH retransmission is performed by DCI format 0, thereby improving the PHICH capacity and solving the legacy PHICH resource conflict.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,公开了一种基于增强PHICH传输反馈信息的方法及装置,该方法为:通过在PDSCH区域配置的E-PHICH资源向终端传输ACK/NACK反馈信息,这样,一方面可以解决PHICH在某些场景下无法传输的问题,例如在eICIC的ABS子帧以及后续可能定义的扩展载波中;另一方面也可以节省信令的开销,提高资源的利用率,如,避免了系统通过DCI format 0来进行PUSCH重传的调度,进而起到了提高PHICH容量,解决legacy PHICH资源冲突的效果。

Description

基于增强 PHICH传输反馈信息的方法及装置 本申请要求在 2011年 12月 29日提交中国专利局、 申请号为 201110452537.8、发明名 称为"基于增强 PHICH资源传输反馈信息的方法及装置 "的中国专利申请的优先权,其全部 内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 特别涉及一种基于增强 PHICH 资源传输反馈信息的方法及装 置。 背景技术
目前, 在长期演进(Long Term Evolution, LTE )版本 10 ( Rel-10 ) 系统中, 与物理混 合重传指示信道( Physical HARQ Indicator Channel, PHICH )相关的定义如下:
PHICH用于承载上行业务的正确 /错误(ACK/NACK )反馈信息。 通常釆用一个参数
} group
对、" ΡΗ ΗΆΗ ^来指示 pHICH的资源位置,其中 ¾iiCHPHICH组(group )的编号, seq
"PHICH是正交序列的索引。
PHICH group的概念指的是一组资源元素 (Resource Element, RE ) 的集合, 在这个 RE的集合中可以传输 8个 PHICH , 各个 PHICH之间通过正交序列进行区分。对于普通循 环前缀( Noraml CP ) 来说有 8个正交序列, 那么一个 PHICH group中有 8个 PHICH; 而 对于扩展循环前缀( Extended CP )来说有 4个正交序列, 那么一个 PHICH group中有 4个 PHICHo
通常, 在 LTE Rel - 10系统中, PHICH group的数目可以通过如下的方式进行确定: 对于频分双工(Frequency Division Duplexing, FDD ) 系统, PHICH group的数目在所 有子帧中是固定的, 并且通过以下公式一确定
for normal cyclic prefix
(普通循环前缀)
丄、 PHICH
for extended cyclic prefix
Figure imgf000003_0001
Figure imgf000003_0002
其中, N H CPH为 PHICH group的总数目, Ng e {l/6,1/2,1,2} , 由高层配置, N 为
„ group λ group _
系统带宽, 索引 ^HICH的编号是从 0到 V PHICH 对于时分双工( Time Division Duplexing, TDD ) 系统, PHICH group的数目在各个下 行子帧中可以是不同的, 并且通过 '' V pHICH给出, 其中 '根据如表 1所示的配置信息 确定, ™™通过上述公式一计算获得, 索引 "™CH的编号是从 0到 ' ^PffiCH 。
Figure imgf000004_0001
表 1 ( '因子的定义)
网络侧通常将 PHICH映射在物理下行控制信道(physical downlink control channel,
PDCCH )所在控制区域中物理控制格式指示信道( Physical control format indicator channel, PCFICH )和小区专属的参考信号 (Cell-specific Reference Signal, CRS ) 未使用的资源元 素组(RE group, REG )上, 其在时域映射的持续时间可由系统进行配置, 并由系统广播 通知。 参阅图 1所示, 常规的 PHICH时域资源配置(即 Normal PHICH Duration )情况下, PHICH 映射在下行子帧的第一个正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )符号上,可以支持较少的用户数量和小覆盖的场景;而扩展的 PHICH 时域资源配置情况下, 每个 PHICH组可以映射在下行子帧的前 3个 OFDM符号上; 而特 殊情况下, 每个 PHICH组在 MBMS单频网 ( Multimedia Broadcast multicast service Single Frequency Network , MBSFN ) 子帧和 TD-LTE ( TD-SCDMA Long Term Evolution, TD-SCDMA长期演进系统)子帧 1和子帧 6中为前 2个 OFDM符号上), 用于支持较大的 覆盖半径或较多用户数量的场景。 同时, 小区中的 PHICH组数也有 4种不同等级的配置 (即, e W6'1/2'1'2} ), 配置情况通过系统广播通知, 用于支持不同的用户容量。
一个 PHICH组在控制区域占用的 3个 REG在时频域的分布有所不同, 目标是获得最 大的时间和频率分集增益。 如图 1所示, 图 1中给出了一个 PHICH组资源映射的示意图, 展示了一个 PHICH group占用的时频资源与 REG的个数、 小区 ID、 PHICH组序号以及具 体的 OFDM符号序号等有关。
相应的,针对用户终端( User Equipment, UE )而言, UE在物理上行共享信道( Physical Uplink Shared Channel, PUSCH )发送上行数据时, 该上行数据对应的 ACK/NACK反馈信 息将由网络侧通过下行子帧中的 PHICH传输至 UE,其中,对于在子帧 n中传输的 PUSCH, UE将在子帧 " + 中接收对应的 PHICH, 对于 FDD系统而言, 对于 TDD 系统而言, 通过如表 2所示的配置信息确定:
Figure imgf000005_0001
表 2 ( TDD系统的 歷 H配置)
PHICH在下行子帧中占用的时频资源的具体位置, 是根据 PDCCH上基于格式 0传输 的下行控制信息 (Downlink Control Information, DCI ) 内携带的调度信令指示的 PHICH 资源中最小的 PRB序号以及 3bits指示的解调参考符号 ( De Modulation Reference Signal, DMRS )的 PUSCH传输许可中指示的行分配的资源中最小的物理资源块( Physical Resource Block, PRB )序号以及 3bits指示的上行 DMRS的循环移位共同决定。
PHICH 所在时频资源的具体位置由一对参数 VlPHICH , "PHICH ) 来标识, 其中 yjgr up seq
PHICH是 PHICH group的编号; PHICH是 PHICH group内的正交序列的编号, 其具体 计算公式如公式二所示: NPHICH
Figure imgf000006_0001
=i/PRB RA' H^H ¾MRS)mod 2N§ICH
Figure imgf000006_0002
是与 PHICH对应的 PUSCH中使用的 DMRS的循环移位值,通过 DCI format 0 (即基于格式 0的 DCI )中的 DMRS域中循环移位信息映射, 具体映射关系如表 3所示。
Figure imgf000006_0004
表 3 ( nDMRS和 DCI format 0中的 DMRS域的循环移位的映射关系) 对于在子帧 n中传输的 PUSCH, 如果没有对应的上行调度指令 DCI format 0 , 或者,
n
该 PUSCH传输是由随机接入响应调度时, DMRS设为 0
Figure imgf000006_0003
是在标准 36.211中定义的 PHICH调制的扩频因子大小;
PDCCH指示调度 PUSCH中的第一个传输块的情况下, 或者在没有对应的 PDCCH且收到的 NACK的数目
I lowest—i dex
PRB RA
PRB RA 与最近 PDCCH调度的 PUSCH中的传输块数目不等的情
I lowest—i dex
PRB RA + 1 PDCCH指示调度 PUSCH中的第二个传输块的情况下 是相应的 PUSCH传输中第一个时隙分配的最小的 PRB序号;
是由高层信令配置的 PHICH group的数目
1 当 TDD UL/DL配置为 0时, 并且 在子帧 n=4或 n=9
' PHICH
0 其它情况 上述关于 PHICH的相关定义目前仅适用于 LTE-REL10系统。 而随着日益增长的数据 速率以及业务负载的要求, 传统的使用宏基站单层覆盖提供接入的方法已经不能满足用户 需求。 因此, 目前, 通常会釆用分层覆盖的方式解决上述问题, 例如, 在热点地区或者室 内部署一些低功率的基站,如, 家庭基站( Home eNodeB ) /Pico (微)基站 /微微 ( Femto ) 基站 /中继(Relay )基站等等。 这种低功率的基站是一种应用在家庭室内环境、 办公环境、 或其它热点小覆盖环境下的基站设备, 能够使得运营商提供更高数据速率、 更低成本的有 吸引力的业务。但其中 femto基站对接入的成员用户有一定的限制, 非成员用户不能接入, 如果非成员用户进入该基站的覆盖范围, 则会由于低功率基站信号较强而进入覆盖空洞 ( coverage hole ), 导致不能工作。 此外, pico基站如果与宏 ( macro )基站处在同频, 也 可能会产生强千扰导致无法工作。 为了解决此类千扰, 现有的方法是通过设置千扰规避子 帧(almost Blank Subframe, ABS ), 令基站在 ABS内减少信号的发送, 以降低对邻区的千 扰,从而实现基于时分复用( Time Division Multiple, TDM )方式的小区间千扰协调( inter-cell intereference coordination, ICIC )。
然而, 目前的 TDM ICIC机制中, 千扰基站侧被配置 ABS后, 千扰基站在 ABS上为 避免千扰将不传输任何的控制信息, 因此, 由于 ABS机制的引入, 将会导致 PHICH在控 制区域的传输受限。
另一方面, 在 LTE Rel-11系统中很可能会引入扩展载波的定义, 即时频资源中不包含 LTE Rel-10系统中支持的 PDCCH控制区域, 而在扩展载波上的进行 PUSCH调度, 这样, 一方面可以通过跨载波调度的方式实现其他兼容的成员载波调度, 另一方面, 还可以在扩 展载波中定义新的增强 PDCCH的传输,其中,增强的 PDCCH的传输占用了 PDSCH传输 区域。 因此, 在后一种情况下, 也同样会导致 PHICH在控制区域的传输受限。
现有技术下, 解决 PHICH传输受限问题的一种方式为: 系统通过釆用调度信令 DCI format 0代替 PHICH向 UE通知是否需要重传 PUSCH,但是,这种方式会造成额外的系统 信令开销, 从而增加系统运行负荷, 影响系统性能。 发明内容
本发明实施例提供一种基于 PHICH传输反馈信息的方法及装置, 用以在不增加系统 信令开销的前提下, 解决 PHICH传输受限问题。
本发明实施例提供的具体技术方案如下:
一种基于增强 PHICH传输反馈信息的方法, 包括:
确定网络侧在 PDSCH区域中配置的增强 PHICH占用的时频资源;
将已确定的增强 PHICH占用的时频资源通知终端;
根据终端的调度情况,在所述增强 PHICH占用的时频资源中确定承载 ACK/NACK反 馈信息的增强 PHICH资源组;
将待传输的 ACK/NACK反馈信息映射至所述增强 PHICH资源组, 并传输至终端。 一种基于增强 PHICH传输反馈信息的方法, 包括:
根据基站通知确定网络侧在 PDSCH区域中配置的增强 PHICH占用的时频资源; 根据基站的调度指令,在所述增强 PHICH占用的时频资源中确定承载 ACK/NACK反 馈信息的增强 PHICH资源组;
基于确定的增强 PHICH资源组, 接收基站传输的 ACK/NACK反馈信息。
一种基于增强 PHICH传输反馈信息的装置, 包括:
第一处理单元, 用于确定网络侧在物理下行共享信道 PDSCH 区域中配置的增强 PHICH占用的时频资源, 并将已确定的增强 PHICH占用的时频资源通知终端;
第二处理单元, 用于根据终端的调度情况, 在所述增强 PHICH 占用的时频资源中确 定承载 ACK/NACK反馈信息的增强 PHICH资源组;
通信单元, 用于将待传输的 ACK/NACK反馈信息映射至所述增强 PHICH资源组, 并 传输至终端。
一种基于增强 PHICH传输反馈信息的装置, 包括:
第一控制单元, 用于根据基站通知确定网络侧在物理下行共享信道 PDSCH区域中配 置的增强 PHICH占用的时频资源;
第二控制单元, 用于根据基站的调度指令, 在所述增强 PHICH 占用的时频资源中确 定承载正确 /错误 ACK/NACK反馈信息的增强 PHICH资源组;
通信单元, 用于基于确定的增强 PHICH资源组, 接收基站传输的 ACK/NACK反馈信 息。
本发明实施例中,提出了一种新的基于 FDM的 E-PHICH传输的方法,即通过在 PDSCH 区域配置的 E-PHICH资源承载 ACK/NACK反馈信息, 这样, 一方面可以解决 PHICH在 某些场景下无法传输的问题, 例如在 elCIC的 ABS子帧以及后续可能定义的扩展载波中; 另一方面也可以节省信令的开销, 提高资源的利用率, 如, 避免了系统通过 DCI format 0 来进行 PUSCH重传的调度, 进而起到了提高 PHICH容量, 解决 legacy PHICH资源冲突 的效果。 附图说明
图 1为现有技术下 PHICH在传统 PDCCH区域中资源占用示意图;
图 2A和图 2B为本发明实施例中 E-PHICH传输方式示意图;
图 3为本发明实施例中基站基于 E-PHICH传输 ACK/NACK反馈信息流程图; 图 4A和图 4B为本发明实施例中 E-PHICH资源占用方式示意图; 图 5 -图 11为本发明实施例中 E-PHICH group划分方式示意图;
图 12为本发明实施例中终端基于 E-PHICH接收 ACK/NACK反馈信息流程图; 图 13为本发明实施例中基站功能结构示意图;
图 14为本发明实施例中终端功能结构示意图。 具体实施方式
为了能够在不增加系统信令开销的前提下, 解决 PHICH传输受限问题, 本发明实施 例中, 将 PHICH 的传输区域由传统的物理下行控制信道 ( Physical Downlink Control Channel, PDCCH )区域(也称控制区域)转移至物理下行共享信道( Physical Downlink Shared Channel, PDSCH )区域,通过在 PDSCH区域内配置的增强型的 PHICH资源(记为 E-PHICH ) 进行 ACK/NACK反馈信息的传输。
例如, 参阅图 2A和图 2B所示, 系统可以在兼容载波的情况下, 通过 PDSCH区域内 配置的 E-PHICH资源块进行 ACK/NACK反馈信息的传输, 而 PDCCH区域可以仅用于传 输 PCFICH,或者, 系统也可以在扩展载波的情况下,通过 PDSCH区域内配置的 E-PHICH 资源块进行 ACK/NACK反馈信息的传输。
通过 E-PHICH资源进行 ACK/NACK反馈信息的传输时,可以釆用时分复用( TDM )、 频分复用 (FDM )和码分复用 (CDM ) 中的一种或任意组合的方式进行复用传输。
下面结合附图对本发明优选的实施方式进行详细说明。
参阅图 3所示, 本发明实施例中, 基站基于 E-PHICH传输 ACK/NACK反馈信息的详 细流程如下:
步骤 300: 基站确定网络侧在 PDSCH区域中配置的 E-PHICH占用的时频资源。
E-PHICH占用的时频资源可以是一些时域或 /和频域不连续的传输资源的组合。 例如, 参阅图 2A和图 2B所示, E-PHICH占用的时频资源即是 PDSCH区域中的 E-PHICH资源 块 1、 E-PHICH资源块和 2、 E-PHICH资源块 3和 E-PHICH资源块 4,其中,每个 E-PHICH 资源块的大小可以是一个子载波, 或者是多个连续的子载波的组合, 或者是多个 PRB对, 或者是多个 RE的组合。
步骤 310: 基站将已确定的 E-PHICH占用的时频资源通知终端。
在执行步骤 310时, 可以釆用但不限于以下两种方式:
第一种方式为: 釆用专属信令将 E-PHICH占用的时频资源通知终端。
例如, 釆用无线资源控制 (Radio Resource Control, RRC )信令或系统广播消息将
E-PHICH占用的 PRB对的具体位置通知终端。
又例如, 釆用 RRC信令或广播消息将 E-PHICH占用的 PRB对的起始位置和占用的
PRB对的数目通知终端, 其中, E-PHICH占用的 PRB对在整个下行系统带宽中均匀的分 散为多个资源块。 具体为:
1、 通过 RRC信令或者系统广播消息将 E-PHICH占用的 PRB对的起始位置, 以及占 用的 PRB对数目直接通知给终端。
2、 通过 RRC信令或者系统广播消息将 E-PHICH占用的 PRB对的起始位置通知给终 端, 并通知终端釆用与网络侧约定方式确定 E-PHICH占用的 PRB对数目, 其中, 可以约 定 E-PHICH占用的 PRB对数目与系统的下行带宽存在约定的关联关系。
3、 通过 RRC信令或者系统广播消息通知终端釆用小区标识(Cell-ID )和系统带宽计 算 E-PHICH占用的 PRB对起始位置, 以及釆用与网络侧约定方式确定 E-PHICH占用的 PRB对数目与系统的下行系统带宽存在约定的关联关系。
第二种方式为: 釆用 RRC信令或系统广播消息将 E-PHICH资源配置参数通知终端, 令终端根据该 E-PHICH资源配置参数占用 E-PDCCH中的部分时频资源 (即 PRB对)。
参阅图 4A和图 4B所示, 实际应用中, E-PDCCH也可以占用 PDSCH区域中的时频 资源进行传输, 而 E-PHICH可以使用 E-PDCCH占用的时频资源中的部分时频资源, 网络 侧通常先计算预留给 E-PHICH的资源, 剩余的时频资源可以用于 E-PDCCH的传输。
本实施例中, 当 E-PHICH使用 E-PDCCH 占用的时频资源中的部分时频资源时,
E-PHICH使用的时频资源的预留方法, 可以沿用与 Rel-10中相似的 PHICH资源的预留方 法, 即通过一个 E-PHICH资源配置相关参数 (例如, Rel-10中的 PHICH配置参数 Ng )来 确定预留给 E-PHICH的时频资源的大小 (包括 PRB对的具体位置, 或者, PRB对的起始 位置和数目 ), 其确定的方法可以沿用 Rel-10中的确定方法, 其中, 上述 E-PHICH资源配 置相关参数可以通过 RRC信令或系统广播消息通知给终端。
步骤 320: 基站根据终端的调度情况, 在上述 E-PHICH 占用的时频资源中确定承载 ACK/NACK反馈信息的 E-PHICH资源组, 记为 E-PHICH group。
在执行步骤 320时, 基站可以根据 PUSCH传输许可中指示的最小 PRB对序号以及上 行 DMRS的循环移位, 在 E-PHICH占用的时频资源中确定承载 ACK/NACK反馈信息的 E-PHICH资源, 相关操作可参考 Rel 10, 在此不再赘述。
另一方面,在执行步骤 320时,基站确定的承载 ACK/NACK反馈信息的 E-PHICH group 时, 可以执行以下操作:
首先, 确定 E-PHICH占用的时频资源包含的每一个 PRB对;
例如, 参阅图 5所示, 在常规 CP下, E-PHICH占用的时频资源包含 4个 PRB对(每 一个 PRB对对应一个 E-PHICH资源块), 一个 PRB对(即 PRB pair )表示为一个 14 χ 12 的方格, 其纵坐标表示频域, 单位为子载波, 横坐标表示时域, 单为 OFDM符号, 其中, 在前两个 OFDM符号上承载 Legacy PDCCH RE (传统物理下行控制信道资源元素)
其次, 可以选用以下三种方式之一来划分 E-PHICH group: 第一种方式为:根据终端的调度情况,在各 PRB对之间将指定位置的子载波包含的全 部 RE归为一个 E-PHICH group:
例如, 参阅图 5所示, 将各 PRB对内处于位置 1 的子载波包含的全部 RE归为一个 E-PHICH group。
进一步地, 釆用上述方式也可以划分出多个 E-PHICH group, 例如, 参阅图 6所示, 可以将各 PRB对内处于位置 1的子载波包含的全部 RE归为 E-PHICH group 1 , 将各 PRB 对内处于位置 2的子载波包含的全部 RE归为 E-PHICH group 2, 可以将各 PRB对内处于 位置 3的子载波包含的全部 RE归为 E-PHICH group 3 , 其中, 可以某一个 E-PHICH group 中将部分 RE作为预留资源保留, 当然, 也可以不保留, 此处仅为举例, 并不局限于此。
较佳的, 在上述各 E-PHICH group中, 需要将承载 legacy PDCCH和承载参考信号的
RE排除, 其中, 所谓的参考信号可以是 CRS、 DMRS、 CSI-RS ( Channel-State Information Reference Signal, 信道状态信息参考符号)等等。
当然,也可以将各 PRB对内处于不同位置的子载波包含的全部 RE归为一个 E-PHICH group, 例如, 将第一个 PRB对内处于位置 1的子载波包含的全部 RE、 第二个 PRB对内 处于位置 2的子载波包含的全部 RE,第三个 PRB对内处于位置 3的子载波包含的全部 RE, 第四个 PRB对内处于位置 4的子载波包含的全部 RE, 归为一个 E-PHICH group, 本实施 例中, 仅以图 5和图 6所示的情况为例进行说明。
第二种方式为: 也可以根据终端的调度情况,在各 PRB对之间将指定位置的子载波内 指定部分的 RE归为一个 E-PHICH group;
例如, 参阅图 7所示, 将各 PRB对内处于位置 1的子载波包含的第 3、 4、 5个 OFDM 符号上的 RE归为一个 E-PHICH group。
进一步地, 釆用上述方式也可以划分出多个 E-PHICH group, 例如, 参阅图 8所示, 可以将各 PRB对内处于位置 1 的子载波包含的第 3、 4、 5个 OFDM符号上的 RE归为 E-PHICH group 1 , 将各 PRB对内处于位置 2的子载波包含的第 3、 4、 5个 OFDM符号上 的 RE归为 E-PHICH group 2,将各 PRB对内处于位置 3的子载波包含的第 3、4、5个 OFDM 符号上的 RE归为 E-PHICH group 3 , 将各 PRB对内处于位置 1的子载波包含的第 8、 9、 10、 11、 12个 OFDM符号上的 RE归为 E-PHICH group 4, 将各 PRB对内处于位置 2的子 载波包含的第 8、 9、 10、 11、 12个 OFDM符号上的 RE归为 E-PHICH group 5 , 将各 PRB 对内处于位置 1的子载波包含的第 8、 9、 10、 11、 12个 OFDM符号上的 RE归为 E-PHICH group 6。
较佳的, 在上述各 E-PHICH group中, 也需要将承载 legacy PDCCH和承载参考信号 的 RE排除, 其中, 所谓的参考信号可以是 CRS、 DMRS、 CSI-RS等等。
当然, 也可以将各 PRB对内处于不同位置的子载波包含的指定位置的 RE 归为一个 E-PHICH group, 例如, 将第一个 PRB对内处于位置 1的子载波包含的第 8、 9、 10、 11、 12个 OFDM符号上的 RE、 第二个 PRB对内处于位置 2的子载波包含的第 8、 9、 10、 11、 12个 OFDM符号上的 RE, 第三个 PRB对内处于位置 3的子载波包含的第 8、 9、 10、 11、 12个 OFDM符号上的 RE, 第四个 PRB对内处于位置 4的子载波包含的第 8、 9、 10、 11、 12个 OFDM符号上的 RE, 归为一个 E-PHICH group, 本实施例中, 仅以图 7和图 8所示 的情况为例进行说明。
第三种方式为: 在各 PRB对之间将指定时域且在每个 PRB对中频域上相邻的 M个 RE归为一个增强 PHICH资源组, M为预设参数。
划分 E-PHICH group时, 可以优先占用时域上与 DMRS相邻的 OFDM符号。 例如, 假设 M = 4, 则参阅图 9所示, 将各 PRB对内处于位置 1、 位置 2、 位置 3、 位置 4的子载 波包含的第 8个 OFDM符号上的 RE归为一个 E-PHICH group。
进一步地, 釆用上述方式也可以划分出多个 E-PHICH group, 例如, 参阅图 10所示, 可以将各 PRB对内处于位置 1、 位置 2、 位置 3、 位置 4的子载波包含的第 8个 OFDM符 号上的 RE归为 E-PHICH group 1 , 可以将各 PRB对内处于位置 5、 位置 6、 位置 7、 位置 8 的子载波包含的第 8个 OFDM符号上的 RE归为 E-PHICH group 2 , 可以将各 PRB对内处 于位置 9、 位置 10、 位置 11、 位置 12的子载波包含的第 8个 OFDM符号上的 RE归为 E-PHICH group 3。
较佳的, 在上述各 E-PHICH group中, 也需要将承载 legacy PDCCH和承载参考信号 的 RE排除, 其中, 所谓的参考信号可以是 CRS、 DMRS, CSI-RS等等。 例如, 参阅图 11 所示, 图 11给出了在 2个 CRS天线端口情况下的 E-PHICH group的划分方式。
较佳的, 在上述各 E-PHICH group中, 也需要将承载 legacy PDCCH和承载参考信号 的 RE排除, 其中, 所谓的参考信号可以是 CRS、 DMRS, CSI-RS等等。
步骤 330: 基站将待传输的 ACK/NACK反馈信息映射至相应的 E-PHICH group, 并传 输至终端。
具体为:
A, 将待传输的 ACK/NACK信息进行筒单编码,
例如, 将 1比特的 ACK/NACK反馈信息进行筒单编码后变为 N比特, 其编码方式可 以是重复编码, 也可以是序列编码, 还可以为其它的编码方式。 其中 N可以是预设参数, 也可以是根据可用的时频资源进行速率匹配后获得的参数。
经筒单编码后的 ACK/NACK反馈信息的示例如下:
示例 1 : ACK: 111... , NACK: 000...
示例 2: ACK: 1010..., NACK: 0101...
B、 对经筒单编码后的 ACK/NACK反馈信息进行 BPSK ( Binary Phase Shift Keying, 二进制相移键控)调制, 并对获得的调制符号进行逐比特的正交扩频, 较佳的, 扩频因子 取值为 4 , 且沿用 Rel-10中 PHICH的正交扩频序列。
C、 将正交扩频后的调制符号分别映射至相应的 E-PHICH group中。
例如, 参阅图 5所示, 将正交扩频后的调制符号以行为单位进行分组, 并将各组调制 符号分别映射至各 PRB对中归属于同一 E-PHICH group的 RE上, 如, 将各组调制符号分 别映射至 E-PHICH资源块 1对应的 PRB对中处于位置 1的子载波包含的 RE上, E-PHICH 资源块 2对应的 PRB对中处于位置 1的子载波包含的 RE上, E-PHICH资源块 3对应的 PRB对中处于位置 1的子载波包含的 RE上, 以及 E-PHICH资源块 4对应的 PRB对中处 于位置 1的子载波包含的 RE上, 当然, 这些 RE中不包含承载 legacy PDCCH和承载参考 信号的 RE。
又例如, 参阅图 7所示, 将正交扩频后的调制符号以行为单位进行分组, 并将各组调 制符号分别映射至各 PRB对中归属于同一 E-PHICH group的 RE上, 如, 将各组调制符号 分别映射至 E-PHICH资源块 1对应的 PRB对中处于位置 1的子载波包含的位于第 3、 4、 5个 OFDM符号的 RE上, E-PHICH资源块 2对应的 PRB对中处于位置 1的子载波包含 的位于第 3、 4、 5个 OFDM符号的 RE上, E-PHICH资源块 3对应的 PRB对中处于位置 1的子载波包含的位于第 3、 4、 5个 OFDM符号的 RE上, 以及 E-PHICH资源块 4对应的 PRB对中处于位置 1的子载波包含的位于第 3、 4、 5个 OFDM符号的 RE上, 当然, 这些 RE中不包含承载 legacy PDCCH和承载参考信号的 RE。
又例如, 参阅图 9所示, 将正交扩频后的调制符号以列为单位进行分组, 并将各组调 制符号分别映射至各 PRB对中归属于同一 E-PHICH group的 RE上, 如, 将各组调制符号 分别映射至 E-PHICH资源块 1对应的 PRB对内处于位置 1、 位置 2、 位置 3、 位置 4的子 载波包含的第 8个 OFDM符号上的 RE上, E-PHICH资源块 2对应的 PRB对内处于位置 5、 位置 6、 位置 7、 位置 8的子载波包含的第 8个 OFDM符号上的 RE上, 以及 E-PHICH 资源块 3对应的 PRB对内处于位置 9、 位置 10、 位置 11、 位置 12的子载波包含的第 8个 OFDM符号上的 RE上, 当然, 这些 RE中不包含承载 legacy PDCCH和承载参考信号的 基于上述实施例, 基站在传输 ACK/NACK反馈信息时, 可以釆用的传输模式有 基于
DMRS的单端口传输模式, 以及基于 DMRS的发射分集模式。 具体使用的 DMRS端口可 以和终端进行预先约定, 也可以通过 RCC信令或系统广播消息通知终端。
在上述实施例中,任意一个 E-PHICH group中包含的 RE可以承载 8个或 4个 E-PHICH 信道的传输,不同的 E-PHICH信道可以通过码分的方式复用相同的 E-PHICH group的资源, 同一 E-PHICH信道的传输可以分为多个部分,不同的部分可以占用不同的时频资源进行传 输, 从而获得分集增益。 各个 E-PHICH信道之间通过正交序列进行区分, 因此, 在步骤 320中,基站还需要根据 PUSCH传输许可中指示的最小 PRB序号以及上行 DMRS的循环 移位确定扩频使用的正交序列, 并将该正交序列通知终端, 终端根据获得的正交序列在相 应的 E-PHICH group中确定接收 ACK/NACK反馈信息的 E-PHICH信道,具体操作参见公 式一及公式二。 本实施例中, 重点在于 E-PHICH group的确定, 因此关于正交序列相关内 容在此不再赘述。
与上述实施例相对应, 参阅图 12 所示, 本发明实施例中, 终端基于 E-PHICH接收 ACK/NACK反馈信息的详细如下:
步骤 1200:终端才 居基站通知确定网络侧在 PDSCH区域中配置的 E-PHICH占用的时 频资源。
与步骤 310同理, 在执行步骤 800时, 终端可以根据基站发送的 RRC信令或系统广 播消息, 确定 E-PHICH占用的 PRB对的具体位置, 或者, E-PHICH占用的 RPB的起始位 置和数目;也可以根据基站发送的 RRC信令或系统广播消息获得 E-PHICH资源配置参数, 并根据该 E-PHICH资源配置参数占用 E-PDCCH中的部分时频资源。
步骤 1210: 终端根据基站的调度信令, 在获知的 E-PHICH占用的时频资源中确定承 载 ACK/NACK反馈信息的 E-PHICH资源组, 记为 E-PHICH group。
在执行步骤 810时, 终端可以根据调度信令中指示的最小 PRB序号以及上行 DMRS 的循环移位, 在 E-PHICH 占用的时频资源中确定承载 ACK/NACK反馈信息的 E-PHICH 资源, 相关操作可参考 Rel 10, 在此不再赘述。
另一方面, 在执行步骤 810时, 终端也可以执行以下操作:
首先, 确定 E-PHICH占用的时频资源包含的每一个 PRB对;
其次,根据基站的调度信令,在各 PRB对之间将指定位置的子载波包含的全部资源元 素 RE归为一个增强 PHICH资源组: 或者, 在各 PRB对之间将指定位置的子载波内指定 部分的 RE归为一个增强 PHICH资源组;或者,在各 PRB对之间将指定时域且在每个 PRB 对内频域上相邻的 M个 RE归为一个增强 PHICH资源组,较佳的,确定各 E-PHICH group 的过程中, 在归为同一个 E-PHICH group的各 RE内, 排除承载 Legacy PDCCH和参考信 号的 RE; 具体参阅图 5、 图 7和图 9所示, 在此不再赘述。
步骤 1220:终端基于确定的 E-PHICH group,接收网络侧接收基站传输的 ACK/NACK 反馈信息。
具体为:
首先, 在确定的 E-PHICH group中, 对承载 ACK/NACK反馈信息的正交扩频后的调 制符号进行解映射;
如, 将在各 PRB对中归属于同一 E-PHICH group的 RE上的承载的 ACK/NACK反馈 信息的正交扩频后的调制符号进行合并, 其中, 参阅图 9 -图 10所示, 上述 ACK/NACK 其次,对承载 ACK/NACK反馈信息的正交扩频后的调制符号进行解正交扩频和解调, 获得筒单编码后的 ACK/NACK反馈信息;
最后,再对筒单编码后的 ACK/NACK反馈信息进行译码,从而获得 ACK/NACK反馈 信息。
实际应用中,任意一个 E-PHICH group中包含的 RE可以承载 8个或 4个 E-PHICH信 道的传输, 不同的 E-PHICH信道可以通过码分的方式复用相同的 E-PHICH group的资源, 同一 E-PHICH信道的传输可以分为多个部分,不同的部分可以占用不同的时频资源进行传 输, 从而获得分集增益。 各个 E-PHICH信道之间通过正交序列进行区分, 因此, 在步骤 320中,终端还需要根据调度信令中指示的最小 PRB序号以及上行 DMRS的循环移位确定 基站使用的正交序列, 并根据获得的正交序列在相应的 E-PHICH group 中确定接收 ACK/NACK反馈信息的 E-PHICH信道, 具体操作参见公式一及公式二。 本实施例中, 重 点在于 E-PHICH group的确定, 因此关于正交序列相关内容在此不再赘述。
另一方面, 本实施例中, 终端在接收 ACK/NACK反馈信息时, 可以釆用的传输模式 有:基于 DMRS的单端口传输模式,以及基于 DMRS的发射分集模式。具体使用的 DMRS 端口可以和基站进行预先约定, 也可以根据基站发送的 RCC信令或系统广播消息确定。
综上所述, 参阅图 13和图 14所示, 本发明实施例中, 基于增强物理混合重传指示信 道 PHICH传输反馈信息的装置(例如基站)包括通信单元 130、 第一处理单元 131和第二 处理单元 132, 其中,
第一处理单元 131 , 用于确定网络侧在 PDSCH区域中配置的增强 PHICH占用的时频 资源, 并将已确定的 E-PHICH占用的时频资源通知终端;
第二处理单元 132, 用于根据终端的调度情况, 在 E-PHICH占用的时频资源中确定承 载 ACK/NACK反馈信息的 E-PHICH资源组;
通信单元 130, 用于将待传输的 ACK/NACK反馈信息映射至所述 E-PHICH资源组, 并传输至终端。
进一步的, 所述第一处理单元 131将已确定的增强 PHICH占用的时频资源通知终端, 包括:
通过所述通信单元 130 釆用无线资源控制协议 RRC 信令或系统广播消息将增强 PHICH占用的物理资源块 PRB对的具体位置通知终端, 或者, 将增强 PHICH占用的 RPB 对的起始位置和数目通知终端;
或者,
釆用 RRC信令或系统广播消息将增强 PHICH资源配置参数通知终端, 令终端根据该 增强 PHICH资源配置参数占用增强物理下行控制信道 E-PDCCH中的部分时频资源。 进一步的, 所述第二处理单元 132根据终端的调度情况, 在所述增强 PHICH占用的 时频资源中确定承载 ACK/NACK反馈信息的增强 PHICH资源组, 包括:
确定所述增强 PHICH占用的时频资源包含的每一个物理资源块 PRB对;
根据终端的调度情况, 在各 PRB对之间将指定位置的子载波包含的全部资源元素 RE 归为一个增强 PHICH资源组: 或者, 在各 PRB对之间将指定位置的子载波内指定部分的 RE归为一个增强 PHICH资源组; 或者, 在各 PRB对之间将指定时域且在每个 PRB对中 频域上相邻的 M个 RE归为一个增强 PHICH资源组, M为预设参数。
进一步的, 所述第二处理单元 132确定各增强 PHICH资源组的过程中, 在归为同一 个增强 PHICH资源组的各 RE内, 排除承载传统控制信息和参考信号的 RE。
进一步的,所述通信单元 130将待传输的 ACK/NACK信息映射至所述增强 PHICH资 源组, 包括:
将待传输的 ACK/NACK信息进行筒单编码;
对经筒单编码后的 ACK/NACK反馈信息进行二进制相位调制, 并对获得的调制符号 进行正交扩频;
将正交扩频后的调制符号分别映射至所述增强 PHICH group中。
进一步的所述通信单元 130将正交扩频后的调制符号分别映射至所述增强 PHICH资 源组中, 包括:
将正交扩频后的调制符号以行或列为单位进行分组, 并将各组调制符号分别映射至各 PRB对中归属于同一增强 PHICH资源组的 RE上。
进一步的, 所述通信单元 130在传输 ACK/NACK反馈信息时, 釆用基于解调参考符 合 DMRS的单端口传输模式, 或者, 釆用基于 DMRS的发射分集模式。
基于增强物理混合重传指示信道 PHICH传输反馈信息的装置 (例如终端) 包括通信 单元 140、 第一控制单元 141和第二控制单元 142, 其中,
第一控制单元 141 , 用于根据基站通知确定网络侧在 PDSCH区域中配置的 E-PHICH 占用的时频资源;
第二控制单元 142, 用于根据基站的调度指令, 在 E-PHICH占用的时频资源中确定承 载 ACK/NACK反馈信息的 E-PHICH资源组;
通信单元 140, 用于基于确定的 E-PHICH资源组, 接收基站传输的 ACK/NACK反馈 信息。
进一步的, 所述第一控制单元 141根据基站通知确定网络侧在 PDSCH区域中配置的 增强 PHICH占用的时频资源, 包括:
通过所述通信单元 140根据基站发送的无线资源控制协议 RRC信令或系统广播消息, 确定增强 PHICH占用的物理资源块 PRB对的具体位置, 或者, 确定增强 PHICH占用的 RPB对的起始位置和数目;
或者,
根据基站发送的 RRC信令或系统广播消息获得增强 PHICH资源配置参数, 并根据该 增强 PHICH资源配置参数占用增强物理下行控制信道 E-PDCCH中的部分时频资源。
进一步的, 所述第二控制单元 142根据基站的调度信令, 在所述增强 PHICH占用的 时频资源中确定承载 ACK/NACK反馈信息的增强 PHICH资源组, 包括:
确定所述增强 PHICH占用的时频资源包含的每一个物理资源块 PRB对;
根据基站的调度信令, 在各 PRB对之间将指定位置的子载波包含的全部资源元素 RE 归为一个增强 PHICH资源组: 或者, 在各 PRB对之间将指定位置的子载波内指定部分的 RE归为一个增强 PHICH资源组; 或者, 在各 PRB对之间将指定时域且在每个 PRB中频 域上相邻的 M个 RE归为一个增强 PHICH资源组, M为预设参数。
进一步的, 所述第二控制单元 142确定各增强 PHICH资源组的过程中, 在归为同一 个增强 PHICH资源组的各 RE内, 排除承载传统控制信息和参考信号的 RE。
进一步的, 所述通信单元 140 基于确定的增强 PHICH 资源组, 接收基站传输的 ACK/NACK反馈信息, 包括:
在所述增强 PHICH资源组中,对承载 ACK/NACK反馈信息的正交扩频后的调制符号 进行解映射;
对承载 ACK/NACK反馈信息的正交扩频后的调制符号进行解正交扩频和解调, 获得 筒单编码后的 ACK/NACK反馈信息;
对筒单编码后的 ACK/NACK反馈信息进行译码, 获得 ACK/NACK反馈信息。
进一步的, 在增强 PHICH资源组中, 对承载 ACK/NACK反馈信息的正交扩频后的调 制符号进行解映射, 包括:
各 PRB对中归属于同一增强 PHICH资源组的 RE上的承载的 ACK/NACK反馈信息的 正交扩频后的调制符号进行合并, 其中 ACK/NACK反馈信息的正交扩频后的调制符号以 行或列为单位进行合并。
进一步的, 所述通信单元 140在接收 ACK/NACK反馈信息时, 釆用基于解调参考符 合 DMRS的单端口传输模式, 或者, 釆用基于 DMRS的发射分集模式。
综上所述, 本发明实施例中, 提出了一种新的基于 FDM的 E-PHICH传输的方法, 即 通过在 PDSCH区域配置的 E-PHICH资源承载 ACK/NACK反馈信息, 这样, 一方面可以 解决 PHICH在某些场景下无法传输的问题, 例如在 elCIC的 ABS子帧以及后续可能定义 的扩展载波中; 另一方面也可以节省信令的开销, 提高资源的利用率, 如, 避免了系统通 过 DCI format 0来进行 PUSCH重传的调度, 进而起到了提高 PHICH容量, 解决 legacy PHICH资源冲突的效果。 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种基于增强物理混合重传指示信道 PHICH传输反馈信息的方法, 其特征在于, 包括:
确定网络侧在物理下行共享信道 PDSCH区域中配置的增强 PHICH占用的时频资源; 将已确定的增强 PHICH占用的时频资源通知终端;
根据终端的调度情况, 在所述增强 PHICH 占用的时频资源中确定承载正确 /错误 ACK/NACK反馈信息的增强 PHICH资源组;
将待传输的 ACK/NACK反馈信息映射至所述增强 PHICH资源组, 并传输至终端。
2、 如权利要求 1所述的方法, 其特征在于, 将已确定的增强 PHICH占用的时频资源 通知终端, 包括:
釆用无线资源控制协议 RRC信令或系统广播消息将增强 PHICH 占用的物理资源块 PRB对的具体位置通知终端, 或者, 将增强 PHICH占用的 RPB对的起始位置和数目通知 终端;
或者,
釆用 RRC信令或系统广播消息将增强 PHICH资源配置参数通知终端, 令终端根据该 增强 PHICH资源配置参数占用增强物理下行控制信道 E-PDCCH中的部分时频资源。
3、 如权利要求 1或 2所述的方法, 其特征在于, 根据终端的调度情况, 在所述增强 PHICH占用的时频资源中确定承载 ACK/NACK反馈信息的增强 PHICH资源组, 包括: 确定所述增强 PHICH占用的时频资源包含的每一个物理资源块 PRB对;
根据终端的调度情况, 在各 PRB对之间将指定位置的子载波包含的全部资源元素 RE 归为一个增强 PHICH资源组: 或者, 在各 PRB对之间将指定位置的子载波内指定部分的 RE归为一个增强 PHICH资源组; 或者, 在各 PRB对之间将指定时域且在每个 PRB对中 频域上相邻的 M个 RE归为一个增强 PHICH资源组, M为预设参数。
4、 如权利要求 3所述的方法, 其特征在于, 确定各增强 PHICH资源组的过程中, 在 归为同一个增强 PHICH资源组的各 RE内 , 排除承载传统控制信息和参考信号的 RE。
5、 如权利要求 3所述的方法, 其特征在于, 将待传输的 ACK/NACK信息映射至所述 增强 PHICH资源组, 包括:
将待传输的 ACK/NACK信息进行筒单编码;
对经筒单编码后的 ACK/NACK反馈信息进行二进制相位调制, 并对获得的调制符号 进行正交扩频;
将正交扩频后的调制符号分别映射至所述增强 PHICH资源组中。
6、 如权利要求 5 所述的方法, 其特征在于, 将正交扩频后的调制符号分别映射至所 述增强 PHICH 资源组中, 包括: 将正交扩频后的调制符号以行或列为单位进行分组, 并将各组调制符号分别映射至各 PRB对中归属于同一增强 PHICH 资源组的 RE上。
7、 如权利要求 1或 2所述的方法, 其特征在于, 在传输 ACK/NACK反馈信息时, 釆 用基于解调参考符合 DMRS的单端口传输模式, 或者, 釆用基于 DMRS的发射分集模式。
8、 一种基于增强物理混合重传指示信道 PHICH传输反馈信息的方法, 其特征在于, 包括:
根据基站通知确定网络侧在物理下行共享信道 PDSCH区域中配置的增强 PHICH占用 的时频资源;
根据基站的调度指令, 在所述增强 PHICH 占用的时频资源中确定承载正确 /错误 ACK/NACK反馈信息的增强 PHICH资源组;
基于确定的增强 PHICH资源组, 接收基站传输的 ACK/NACK反馈信息。
9、 如权利要求 8所述的方法, 其特征在于, 根据基站通知确定网络侧在 PDSCH区域 中配置的增强 PHICH占用的时频资源, 包括:
根据基站发送的无线资源控制协议 RRC信令或系统广播消息, 确定增强 PHICH占用 的物理资源块 PRB对的具体位置, 或者, 确定增强 PHICH占用的 RPB对的起始位置和数 目;
或者,
根据基站发送的 RRC信令或系统广播消息获得增强 PHICH资源配置参数, 并根据该 增强 PHICH资源配置参数占用增强物理下行控制信道 E-PDCCH中的部分时频资源。
10、 如权利要求 8或 9所述的方法, 其特征在于, 根据基站的调度信令, 在所述增强
PHICH占用的时频资源中确定承载 ACK/NACK反馈信息的增强 PHICH资源组, 包括: 确定所述增强 PHICH占用的时频资源包含的每一个物理资源块 PRB对;
根据基站的调度信令, 在各 PRB对之间将指定位置的子载波包含的全部资源元素 RE 归为一个增强 PHICH资源组: 或者, 在各 PRB对之间将指定位置的子载波内指定部分的 RE归为一个增强 PHICH资源组; 或者, 在各 PRB对之间将指定时域且在每个 PRB中频 域上相邻的 M个 RE归为一个增强 PHICH资源组, M为预设参数。
11、 如权利要求 10所述的方法, 其特征在于, 确定各增强 PHICH资源组的过程中, 在归为同一个增强 PHICH资源组的各 RE内 , 排除承载传统控制信息和参考信号的 RE。
12、 如权利要求 10所述的方法, 其特征在于, 基于确定的增强 PHICH资源组, 接收 基站传输的 ACK/NACK反馈信息, 包括:
在所述增强 PHICH资源组中,对承载 ACK/NACK反馈信息的正交扩频后的调制符号 进行解映射;
对承载 ACK/NACK反馈信息的正交扩频后的调制符号进行解正交扩频和解调, 获得 筒单编码后的 ACK/NACK反馈信息;
对筒单编码后的 ACK/NACK反馈信息进行译码, 获得 ACK/NACK反馈信息。
13、 如权利要求 12 所述的方法, 其特征在于, 在增强 PHICH 资源组中, 对承载 ACK/NACK反馈信息的正交扩频后的调制符号进行解映射, 包括:
将各 PRB对中归属于同一增强 PHICH资源组的 RE上的承载的 ACK/NACK反馈信息 的正交扩频后的调制符号进行合并, 其中 ACK/NACK反馈信息的正交扩频后的调制符号 以行或列为单位进行合并。
14、 如权利要求 8或 9所述的方法, 其特征在于, 在接收 ACK/NACK反馈信息时, 釆用基于解调参考符合 DMRS的单端口传输模式, 或者, 釆用基于 DMRS的发射分集模 式。
15、 一种基于增强物理混合重传指示信道 PHICH传输反馈信息的装置, 其特征在于, 包括:
第一处理单元, 用于确定网络侧在物理下行共享信道 PDSCH 区域中配置的增强 PHICH占用的时频资源, 并将已确定的增强 PHICH占用的时频资源通知终端;
第二处理单元, 用于根据终端的调度情况, 在所述增强 PHICH 占用的时频资源中确 定承载正确 /错误 ACK/NACK反馈信息的增强 PHICH资源组;
通信单元, 用于将待传输的 ACK/NACK反馈信息映射至所述增强 PHICH资源组, 并 传输至终端。
16、如权利要求 15所述的装置,其特征在于,所述第一处理单元将已确定的增强 PHICH 占用的时频资源通知终端, 包括:
通过所述通信单元釆用无线资源控制协议 RRC信令或系统广播消息将增强 PHICH占 用的物理资源块 PRB对的具体位置通知终端, 或者, 将增强 PHICH占用的 RPB对的起始 位置和数目通知终端;
或者,
釆用 RRC信令或系统广播消息将增强 PHICH资源配置参数通知终端, 令终端根据该 增强 PHICH资源配置参数占用增强物理下行控制信道 E-PDCCH中的部分时频资源。
17、 如权利要求 15或 16所述的装置, 其特征在于, 所述第二处理单元根据终端的调 度情况, 在所述增强 PHICH 占用的时频资源中确定承载 ACK/NACK反馈信息的增强 PHICH资源组, 包括:
确定所述增强 PHICH占用的时频资源包含的每一个物理资源块 PRB对;
根据终端的调度情况, 在各 PRB对之间将指定位置的子载波包含的全部资源元素 RE 归为一个增强 PHICH资源组: 或者, 在各 PRB对之间将指定位置的子载波内指定部分的
RE归为一个增强 PHICH资源组; 或者, 在各 PRB对之间将指定时域且在每个 PRB对中 频域上相邻的 M个 RE归为一个增强 PHICH资源组, M为预设参数。
18、 如权利要求 17所述的装置, 其特征在于, 所述第二处理单元确定各增强 PHICH 资源组的过程中, 在归为同一个增强 PHICH资源组的各 RE内 , 排除承载传统控制信息和 参考信号的 RE。
19、 如权利要求 18所述的装置, 其特征在于, 所述通信单元将待传输的 ACK/NACK 信息映射至所述增强 PHICH资源组, 包括:
将待传输的 ACK/NACK信息进行筒单编码;
对经筒单编码后的 ACK/NACK反馈信息进行二进制相位调制, 并对获得的调制符号 进行正交扩频;
将正交扩频后的调制符号分别映射至所述增强 PHICH group中。
20、 如权利要求 19 所述的装置, 其特征在于, 所述通信单元将正交扩频后的调制符 号分别映射至所述增强 PHICH资源组中, 包括:
将正交扩频后的调制符号以行或列为单位进行分组, 并将各组调制符号分别映射至各 PRB对中归属于同一增强 PHICH资源组的 RE上。
21、如权利要求 15或 16所述的装置, 其特征在于, 所述通信单元在传输 ACK/NACK 反馈信息时, 釆用基于解调参考符合 DMRS 的单端口传输模式, 或者, 釆用基于 DMRS 的发射分集模式。
22、 一种基于增强物理混合重传指示信道 PHICH传输反馈信息的装置, 其特征在于, 包括:
第一控制单元, 用于根据基站通知确定网络侧在物理下行共享信道 PDSCH区域中配 置的增强 PHICH占用的时频资源;
第二控制单元, 用于根据基站的调度指令, 在所述增强 PHICH 占用的时频资源中确 定承载正确 /错误 ACK/NACK反馈信息的增强 PHICH资源组;
通信单元, 用于基于确定的增强 PHICH资源组, 接收基站传输的 ACK/NACK反馈信 息。
23、 如权利要求 22 所述的装置, 其特征在于, 所述第一控制单元根据基站通知确定 网络侧在 PDSCH区域中配置的增强 PHICH占用的时频资源, 包括:
通过所述通信单元根据基站发送的无线资源控制协议 RRC信令或系统广播消息, 确 定增强 PHICH占用的物理资源块 PRB对的具体位置,或者,确定增强 PHICH占用的 RPB 对的起始位置和数目;
或者,
根据基站发送的 RRC信令或系统广播消息获得增强 PHICH资源配置参数, 并根据该 增强 PHICH资源配置参数占用增强物理下行控制信道 E-PDCCH中的部分时频资源。
24、 如权利要求 22或 23所述的装置, 其特征在于, 所述第二控制单元根据基站的调 度信令, 在所述增强 PHICH 占用的时频资源中确定承载 ACK/NACK反馈信息的增强 PHICH资源组, 包括:
确定所述增强 PHICH占用的时频资源包含的每一个物理资源块 PRB对;
根据基站的调度信令, 在各 PRB对之间将指定位置的子载波包含的全部资源元素 RE 归为一个增强 PHICH资源组: 或者, 在各 PRB对之间将指定位置的子载波内指定部分的 RE归为一个增强 PHICH资源组; 或者, 在各 PRB对之间将指定时域且在每个 PRB中频 域上相邻的 M个 RE归为一个增强 PHICH资源组, M为预设参数。
25、 如权利要求 24所述的装置, 其特征在于, 所述第二控制单元确定各增强 PHICH 资源组的过程中, 在归为同一个增强 PHICH资源组的各 RE内, 排除承载传统控制信息和 参考信号的 RE。
26、 如权利要求 22所述的装置, 其特征在于, 所述通信单元基于确定的增强 PHICH 资源组, 接收基站传输的 ACK/NACK反馈信息, 包括:
在所述增强 PHICH资源组中,对承载 ACK/NACK反馈信息的正交扩频后的调制符号 进行解映射;
对承载 ACK/NACK反馈信息的正交扩频后的调制符号进行解正交扩频和解调, 获得 筒单编码后的 ACK/NACK反馈信息;
对筒单编码后的 ACK/NACK反馈信息进行译码, 获得 ACK/NACK反馈信息。
27、 如权利要求 23 所述的装置, 其特征在于, 在增强 PHICH 资源组中, 对承载 ACK/NACK反馈信息的正交扩频后的调制符号进行解映射, 包括:
各 PRB对中归属于同一增强 PHICH资源组的 RE上的承载的 ACK/NACK反馈信息的 正交扩频后的调制符号进行合并, 其中 ACK/NACK反馈信息的正交扩频后的调制符号以 行或列为单位进行合并。
28、如权利要求 22或 23所述的装置, 其特征在于, 所述通信单元在接收 ACK/NACK 反馈信息时, 釆用基于解调参考符合 DMRS 的单端口传输模式, 或者, 釆用基于 DMRS 的发射分集模式。
PCT/CN2012/081698 2011-12-29 2012-09-20 基于增强phich传输反馈信息的方法及装置 WO2013097497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/364,296 US9451606B2 (en) 2011-12-29 2012-09-20 Method and device for feedback information transmission based on enhanced PHICH
EP12862529.0A EP2800292B1 (en) 2011-12-29 2012-09-20 Method and device for feedback information transmission based on enhanced phich

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110452537.8A CN102546134B (zh) 2011-12-29 2011-12-29 基于增强phich传输反馈信息的方法及装置
CN201110452537.8 2011-12-29

Publications (1)

Publication Number Publication Date
WO2013097497A1 true WO2013097497A1 (zh) 2013-07-04

Family

ID=46352159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081698 WO2013097497A1 (zh) 2011-12-29 2012-09-20 基于增强phich传输反馈信息的方法及装置

Country Status (4)

Country Link
US (1) US9451606B2 (zh)
EP (1) EP2800292B1 (zh)
CN (1) CN102546134B (zh)
WO (1) WO2013097497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479216A (zh) * 2016-10-20 2019-03-15 Oppo广东移动通信有限公司 传输上行数据的方法、网络侧设备和终端设备

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546134B (zh) 2011-12-29 2015-07-22 电信科学技术研究院 基于增强phich传输反馈信息的方法及装置
US9485062B2 (en) * 2012-03-16 2016-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for configuring redundant transmissions in a wireless network
CN103580834B (zh) * 2012-07-31 2018-06-22 中兴通讯股份有限公司 ePDCCH发送、接收方法及装置、基站、用户设备
EP2896240B1 (en) 2012-09-11 2017-12-27 LG Electronics Inc. Method and apparatus for transmitting channel state information-reference signals in wireless communication system
KR101562699B1 (ko) * 2012-09-13 2015-10-22 주식회사 케이티 하향링크 제어채널의 수신 방법 및 그 단말, 하향링크 제어채널의 설정 방법, 그 송수신포인트
CN103687007B (zh) * 2012-09-18 2017-10-20 电信科学技术研究院 一种时隙分配信息的通知、接收的方法和装置
WO2014051360A1 (ko) * 2012-09-26 2014-04-03 엘지전자 주식회사 무선통신 시스템에서 ack/nack 수신 방법 및 장치
EP3136806B8 (en) * 2012-09-27 2022-08-31 Sun Patent Trust Wireless communication terminal, base station device, and resource allocation method
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
JP6121124B2 (ja) * 2012-09-28 2017-04-26 株式会社Nttドコモ 無線通信システム、無線通信方法、ユーザ端末及び無線基地局
EP3474579B1 (en) 2012-10-05 2020-12-09 InterDigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (mtc) devices
US8811332B2 (en) * 2012-10-31 2014-08-19 Sharp Laboratories Of America, Inc. Systems and methods for carrier aggregation
CN103795510A (zh) * 2012-11-02 2014-05-14 北京三星通信技术研究有限公司 传输harq指示信息的方法和设备
CN103795509A (zh) * 2012-11-02 2014-05-14 北京三星通信技术研究有限公司 一种传输harq指示信息的方法和设备
CN103873215B (zh) * 2012-12-17 2017-12-05 中兴通讯股份有限公司 增强物理混合自动重传请求指示信道传输方法及装置
US9031002B2 (en) * 2013-01-11 2015-05-12 Sharp Laboratories Of America, Inc. Devices for sending and receiving feedback information
US9031090B2 (en) * 2013-01-11 2015-05-12 Sharp Laboratories Of America, Inc. Devices for sending and receiving feedback information
CN103944692A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 ePHICH的发送方法及装置、接收方法及装置
CN104104482B (zh) * 2013-04-02 2018-05-22 上海诺基亚贝尔股份有限公司 配置增强的物理混合自动重传指示信道的方法
CN104105204B (zh) * 2013-04-03 2018-07-03 上海诺基亚贝尔股份有限公司 在nct下配置增强的物理混合自动重传指示信道的方法
EP2787679A3 (en) * 2013-04-04 2016-04-06 Nokia Technologies Oy Methods and apparatus for resource element mapping
CN104144510B (zh) * 2013-05-10 2018-08-24 上海诺基亚贝尔股份有限公司 用于下行链路传输的方法和装置
CN105229960A (zh) * 2013-08-09 2016-01-06 富士通株式会社 反馈信息的资源映射方法、检测方法、装置和系统
CN104811280B (zh) * 2014-01-28 2019-01-08 中国移动通信集团公司 一种通过物理混合自动重传指示信道进行反馈的方法及设备
JP6321815B2 (ja) * 2014-03-03 2018-05-09 華為技術有限公司Huawei Technologies Co.,Ltd. 情報を送信するための方法および装置、ならびに情報を受信するための方法および装置
CN106031276A (zh) * 2014-03-20 2016-10-12 富士通株式会社 负载平衡方法、装置和系统
CN105763295B (zh) * 2014-12-19 2019-09-13 深圳市中兴微电子技术有限公司 一种数据处理方法及装置
CN106535333B (zh) * 2015-09-11 2019-12-13 电信科学技术研究院 一种物理下行控制信道传输方法及装置
CN105356981B (zh) * 2015-11-20 2019-05-10 上海华为技术有限公司 一种通信的方法、设备及系统
CN106850163B (zh) * 2015-12-03 2020-08-07 华为技术有限公司 一种phich反馈信息的传输方法和相关设备
US11202282B2 (en) * 2015-12-16 2021-12-14 Qualcomm Incorporated Contention-based physical uplink shared channel
JP6743160B2 (ja) * 2016-02-04 2020-08-19 華為技術有限公司Huawei Technologies Co.,Ltd. データ送信方法、データ受信方法、ユーザー装置および基地局
MY194546A (en) * 2016-04-07 2022-12-01 Ericsson Telefon Ab L M Radio-network node, wireless device and methods performed therein
US20190158249A1 (en) 2016-05-06 2019-05-23 Ntt Docomo, Inc. User terminal and radio communication method
CA3022919C (en) * 2016-05-12 2024-05-07 Ntt Docomo, Inc. User terminal and radio communication method
US10512065B2 (en) 2016-05-31 2019-12-17 Qualcomm Incorporated Flexible control information reporting
CN107529225A (zh) * 2016-06-22 2017-12-29 电信科学技术研究院 一种发送和接收反馈信息的方法及设备
CN107733564A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 Phich资源的确定方法及装置、基站、终端
CN107769896B (zh) * 2016-08-18 2020-10-16 上海诺基亚贝尔股份有限公司 无线网络中向用户设备提供接收反馈的方法、装置和基站
EP3488549A4 (en) 2016-09-30 2020-03-18 Lenovo Innovations Limited (Hong Kong) RETURN DISPLAY
CN108023687B (zh) * 2016-11-01 2022-08-02 中兴通讯股份有限公司 信息的发送、接收方法及装置、基站、终端
EP3681084B1 (en) * 2016-11-04 2024-04-17 Telefonaktiebolaget LM Ericsson (publ) Short physical downlink control channel (spdcch) mapping design
CN108365934A (zh) * 2017-01-26 2018-08-03 索尼公司 无线通信方法和无线通信设备
CN108400848B (zh) * 2017-02-04 2024-01-19 华为技术有限公司 一种指示方法及装置
CN108667586B (zh) 2017-04-01 2019-08-27 华为技术有限公司 传输dmrs的方法和装置
EP3595354B1 (en) * 2017-04-07 2021-02-24 Huawei Technologies Co., Ltd. Transmission method for control channel
CN108811150B (zh) * 2017-05-05 2023-04-07 中兴通讯股份有限公司 一种信息传输方法及装置
CN109963336B (zh) * 2017-12-22 2023-08-01 夏普株式会社 用户设备、基站和相关方法
US11324066B2 (en) * 2018-04-23 2022-05-03 Qualcomm Incorporated Dynamic downlink monitoring techniques for communication systems
CN111247856B (zh) * 2018-09-28 2023-05-05 联发科技股份有限公司 侧边链路车联网通信方法及其用户设备
CN111147216B (zh) * 2018-11-03 2022-08-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11695777B2 (en) * 2019-02-26 2023-07-04 Vmware, Inc. Hybrid access control model in computer systems
WO2020210992A1 (zh) 2019-04-16 2020-10-22 北京小米移动软件有限公司 上行传输的反馈方法、重传方法、装置、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527623A (zh) * 2009-04-08 2009-09-09 中兴通讯股份有限公司 物理混合自动请求重传指示信道中信息的传输方法和系统
CN102076094A (zh) * 2009-11-24 2011-05-25 北京三星通信技术研究有限公司 一种频带扩展系统中phich资源的确定方法和设备
CN102202400A (zh) * 2011-05-31 2011-09-28 电信科学技术研究院 一种资源占用方式的指示及处理方法及装置
CN102546134A (zh) * 2011-12-29 2012-07-04 电信科学技术研究院 基于增强phich传输反馈信息的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410120B1 (ko) * 2007-08-21 2014-06-25 삼성전자주식회사 이동통신시스템에서 복합 자동 재전송을 지원하는 응답 신호를 송수신하는 장치 및 방법
KR100943908B1 (ko) * 2008-02-19 2010-02-24 엘지전자 주식회사 Pdcch를 통한 제어 정보 송수신 방법
CN101272232B (zh) * 2008-05-14 2013-11-06 中兴通讯股份有限公司 物理混合重传指示信道的加扰方法
KR101749108B1 (ko) * 2009-04-17 2017-06-21 엘지전자 주식회사 중계기에서 harq ack/nack 피드백 신호 검출 방법
KR101787097B1 (ko) 2009-11-18 2017-10-19 엘지전자 주식회사 무선 통신 시스템에서 harq 수행 방법 및 장치
US20110151910A1 (en) * 2009-12-18 2011-06-23 Electronics And Telecommunications Research Institute Method and apparatus for allocating resources for physical channel in mobile communication system
US20110235534A1 (en) * 2010-03-23 2011-09-29 Motorola, Inc. Uplink ack/nack signaling for aggregated carriers in a communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527623A (zh) * 2009-04-08 2009-09-09 中兴通讯股份有限公司 物理混合自动请求重传指示信道中信息的传输方法和系统
CN102076094A (zh) * 2009-11-24 2011-05-25 北京三星通信技术研究有限公司 一种频带扩展系统中phich资源的确定方法和设备
CN102202400A (zh) * 2011-05-31 2011-09-28 电信科学技术研究院 一种资源占用方式的指示及处理方法及装置
CN102546134A (zh) * 2011-12-29 2012-07-04 电信科学技术研究院 基于增强phich传输反馈信息的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2800292A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479216A (zh) * 2016-10-20 2019-03-15 Oppo广东移动通信有限公司 传输上行数据的方法、网络侧设备和终端设备
CN109479216B (zh) * 2016-10-20 2023-10-13 Oppo广东移动通信有限公司 传输上行数据的方法、网络侧设备和终端设备

Also Published As

Publication number Publication date
EP2800292A4 (en) 2015-07-29
US20150289234A1 (en) 2015-10-08
EP2800292B1 (en) 2019-08-07
US9451606B2 (en) 2016-09-20
EP2800292A1 (en) 2014-11-05
CN102546134A (zh) 2012-07-04
CN102546134B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2013097497A1 (zh) 基于增强phich传输反馈信息的方法及装置
US20200358563A1 (en) Method for uplink transmission in wireless communication system, and device therefor
JP6987905B2 (ja) 動的時分割複信システムのためのアップリンク制御リソース割り振り
JP6464234B2 (ja) 情報送信方法及び装置
JP6368975B2 (ja) 端末装置、集積回路および無線通信方法
CN105940754B (zh) 通信装置
JP7385044B2 (ja) Nrにおけるマルチキャストのためのハイブリッド自動再送要求(harq)機構
TWI683557B (zh) 通訊裝置及方法
US9258086B2 (en) Allocating physical hybrid ARQ indicator channel (PHICH) resources
US9826515B2 (en) Methods, systems and apparatus for defining and using PHICH resources for carrier aggregation
CN102804675B (zh) 针对多载波操作的资源映射的方法及装置
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
JP6446743B2 (ja) 端末、基地局、および、通信方法
CN105453685A (zh) 用于采用未许可频谱的lte/lte-a通信系统的上行链路过程
KR20140052029A (ko) 기계형 통신 네트워크에서의 멀티캐스트 arq
JP2014533050A (ja) 再送信リソースを管理するための方法および装置
JPWO2016002441A1 (ja) 移動局装置、および基地局装置
WO2013056593A1 (zh) 一种传输控制信息的方法、系统及设备
JPWO2014203964A1 (ja) 端末装置、基地局装置、集積回路、および、無線通信方法
EP3179801B1 (en) Interference mitigation between device-to-device communication and cellular communication
WO2016070675A1 (zh) 下行信息发送、下行信息接收方法及装置
JPWO2016017621A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2016017672A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2014000618A1 (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14364296

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012862529

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE