WO2020210991A1 - 控制信息的传输方法、重传方法、装置、终端及存储介质 - Google Patents

控制信息的传输方法、重传方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2020210991A1
WO2020210991A1 PCT/CN2019/082918 CN2019082918W WO2020210991A1 WO 2020210991 A1 WO2020210991 A1 WO 2020210991A1 CN 2019082918 W CN2019082918 W CN 2019082918W WO 2020210991 A1 WO2020210991 A1 WO 2020210991A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
terminal
uplink data
resource location
designated
Prior art date
Application number
PCT/CN2019/082918
Other languages
English (en)
French (fr)
Inventor
李媛媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP19924865.9A priority Critical patent/EP3955498A4/en
Priority to US17/594,316 priority patent/US20220167356A1/en
Priority to PCT/CN2019/082918 priority patent/WO2020210991A1/zh
Priority to CN201980000683.1A priority patent/CN110495130B/zh
Publication of WO2020210991A1 publication Critical patent/WO2020210991A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • This application relates to the field of communications, in particular to a transmission method, retransmission method, device, terminal, and storage medium of control information.
  • Enhanced Ultra Reliable Low Latency Communication places higher requirements on transmission reliability and transmission delay. Among them, the end-to-end delay even requires 0.5ms.
  • the base station directly retransmits the uplink data by scheduling the terminal.
  • PUSCH Physical Uplink Shared Channel
  • the transmission delay requirement of eURLLC service is relatively high, and the end-to-end delay even requires 0.5ms.
  • the foregoing method of scheduling the terminal to perform retransmission by the base station cannot meet the delay requirement.
  • the embodiments of the present application provide a control information transmission method, transmission method, device, terminal, and storage medium, which can solve the problem of high retransmission delay of uplink data.
  • the technical solution is as follows:
  • a method for transmitting control information including:
  • the control information is sent to the terminal at the designated frequency domain position of the time slot n+k of the Physical Downlink Shared Channel (Physical Downlink Shared Channel, PDSCH), where n and k are both integers.
  • n and k are both integers.
  • control information includes at least one of the following information:
  • the power control information of the terminal is the power control information of the terminal.
  • the method further includes:
  • the K Configure the K to the terminal using a target PDCCH format, where the target PDCCH format is the PDCCH format 0_0 or PDCCH format 0_1 used to configure the PUSCH;
  • the K is configured to the terminal by using radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the value of K is 0.
  • the designated frequency domain position is located on both sides of the frequency domain resource position occupied by the pilot signal.
  • the method further includes:
  • the designated resource location is a resource location configured by using a physical downlink control channel PDCCH; or, the designated resource location is a pre-configured resource location for unlicensed transmission.
  • a method for transmitting control information including:
  • control information includes at least one of the following information:
  • the power control information of the terminal is the power control information of the terminal.
  • the method further includes:
  • Target PDCCH format sent by the base station, where the target PDCCH is used to configure the K, and the target PDCCH format is a PDCCH format 0_0 or PDCCH format 0_1 used to configure the PUSCH; or, receive a message sent by the base station Radio resource control RRC signaling, the RRC signaling is used to configure the K.
  • the value of K is 0.
  • the designated frequency domain position is located on both sides of the frequency domain resource position occupied by the pilot signal.
  • the method further includes:
  • control information includes ACK
  • control information includes NACK
  • the method further includes:
  • the designated resource location is a resource location configured by using a physical downlink control channel PDCCH; or, the designated resource location is a pre-configured resource location for unlicensed transmission.
  • a control information transmission device including:
  • the receiving module is configured to receive uplink data sent by the terminal on the time slot n of the PUSCH;
  • the sending module is configured to send control information to the terminal at the designated frequency domain position of the time slot n+k of the PDSCH, and both n and k are integers.
  • control information includes at least one of the following information:
  • the power control information of the terminal is the power control information of the terminal.
  • the sending module is further configured to configure the K to the terminal using a target PDCCH format, and the target PDCCH format is a PDCCH format 0_0 or PDCCH format 0_1 used to configure the PUSCH.
  • the sending module is also configured to configure the K to the terminal by using radio resource control RRC signaling.
  • the value of K is 0.
  • the designated frequency domain position is located on both sides of the frequency domain resource position occupied by the pilot signal.
  • the receiving module is further configured to receive the next uplink data sent by the terminal at a designated resource location, where the next uplink data is when the terminal receives the control information
  • the receiving module is further configured to receive the uplink data retransmitted by the terminal at the designated resource location, where the uplink data is sent by the terminal after receiving the ACK; or The control information is sent after NACK is fed back.
  • the designated resource location is a resource location configured by using a physical downlink control channel PDCCH; or, the designated resource location is a pre-configured resource location for unlicensed transmission.
  • an apparatus for transmitting control information including:
  • a sending module configured to send uplink data to the base station in time slot n of PUSCH;
  • the receiving module is configured to receive the control information sent by the base station at the designated frequency domain position of the time slot n+k of the PDSCH, where n and k are both integers
  • control information includes at least one of the following information:
  • the power control information of the terminal is the power control information of the terminal.
  • the receiving module is configured to receive a target PDCCH format sent by the base station, the target PDCCH is used to configure the K, and the target PDCCH format is used to configure the PUSCH PDCCH format 0_0 or PDCCH format 0_1; or, the receiving module is configured to receive radio resource control RRC signaling sent by the base station, where the RRC signaling is used to configure the K.
  • the value of K is 0.
  • the designated frequency domain position is located on both sides of the frequency domain resource position occupied by the pilot signal.
  • the sending module is configured to send the next uplink data at a designated resource location when the control information includes an acknowledgement feedback ACK; when the control information includes a negative feedback NACK, Retransmit the uplink data at the designated resource location.
  • the designated resource location is a resource location configured by using a physical downlink control channel PDCCH; or, the designated resource location is a pre-configured resource location for unlicensed transmission.
  • a terminal including:
  • a transceiver connected to the processor
  • a memory for storing processor executable instructions
  • the processor is configured to load and execute the executable instructions to implement the control information transmission method as described in the above aspect.
  • an access network device including:
  • a transceiver connected to the processor
  • a memory for storing processor executable instructions
  • the processor is configured to load and execute the executable instructions to implement the control information transmission method as described in the above aspect.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the at least A piece of program, the code set or the instruction set is loaded and executed by the processor to realize the control information transmission method as described in the above aspect.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the at least one instruction, the at least A piece of program, the code set or the instruction set is loaded and executed by the processor to realize the control information transmission method as described in the above aspect.
  • the control information can be feedback information (ACK or NACK) of uplink data, so that the terminal can learn the feedback information of uplink data in the shortest possible time, and The uplink data is retransmitted when the feedback information is NACK, thereby ensuring the timeliness of the retransmission process and meeting the delay requirements of the eURLLC service.
  • ACK feedback information
  • NACK NACK
  • Fig. 1 is a schematic diagram of a communication system provided by an exemplary embodiment of the present application
  • Fig. 2 is a flowchart showing a method for transmitting control information according to an exemplary embodiment of the present application
  • Fig. 3 is a flowchart showing a method for transmitting control information according to an exemplary embodiment of the present application
  • Fig. 4 is a mapping table of control information according to an exemplary embodiment of the present application.
  • Fig. 5 is a block diagram showing an apparatus for transmitting control information according to another exemplary embodiment of the present application.
  • Fig. 6 is a block diagram showing an apparatus for transmitting control information according to another exemplary embodiment of the present application.
  • Fig. 7 is a block diagram showing a terminal according to an exemplary embodiment of the present application.
  • Fig. 8 is a block diagram showing an access network device (base station) according to an exemplary embodiment of the present application.
  • Fig. 1 is a system structure diagram of a communication system shown in an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a terminal 13.
  • the access network 12 includes several access network devices 120.
  • the access network device 120 and the core network device 110 communicate with each other through a certain interface technology, such as the S1 interface in the Long-Term Evolution (LTE) system, and the NG interface in the New Radio (NR) system .
  • the access network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeB or eNB; in 5G NR systems, they are called gNodeB or gNB.
  • the description of the name "base station” may change.
  • the base station is used as an example in the embodiments of the present disclosure, the base station can be understood as an access network device used to provide user access functions in various communication systems.
  • the terminal 13 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of User Equipment (UE), mobile stations ( Mobile Station, MS), terminal (English: terminal device), etc.
  • UE User Equipment
  • MS Mobile Station
  • terminal International: terminal device
  • the access network device 120 and the terminal 13 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the foregoing communication system has higher requirements for transmission delay, for example, the uplink communication system supports eURLLC services.
  • the eURLLC service requires an end-to-end delay of 0.5 ms.
  • the downlink control channel (PDCCH) carries the downlink control information (DCI, Downlink Control information) sent by the base station to the UE.
  • DCI contains eight DCI formats: DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, DCI format 2_0, DCI format 2_1, DCI format 2_2, DCI format 2_3.
  • the functions of the DCI carried by the PDCCH include: scheduling PUSCH, scheduling PDSCH, indicating SFI (Slot Format Indicator), indicating PI (Pre-emption Indicator), power control commands, specific DCI format and information carried as follows:
  • control channel element Control-channel Element
  • Search Space Search Space
  • REG Resource-Element Group
  • REG bundle Resource unit bundle
  • CORESET control-resource Set
  • the CCE is the basic unit constituting the PDCCH and occupies 6 REGs on frequency domain resources.
  • a given PDCCH can be composed of one, two, four, eight, and 16 CCEs, and its specific value is determined by the DCI payload size (DCI payload size) and the required coding rate.
  • the number of CCEs constituting the PDCCH is called the aggregation level.
  • the base station can adjust the aggregation level of the PDCCH according to the actual transmission wireless channel state to realize link adaptive transmission.
  • the aggregation level of the PDCCH actually sent by the base station is variable over time, and because there is no related signaling to inform the UE, the UE needs to blindly detect the PDCCH under different aggregation levels, where the PDCCH to be blindly detected is called a candidate PDCCH.
  • the UE will decode all candidate PDCCHs in the search space. If the CRC check is passed, the content of the decoded PDCCH is considered valid for the UE, and uses the information obtained by decoding (such as scheduling instructions, Time slot format indication/power control command, etc.) for subsequent operations.
  • decoding such as scheduling instructions, Time slot format indication/power control command, etc.
  • the starting CCE sequence number of the candidate PDCCH needs to be divisible by the number of CCEs of the candidate PDCCH.
  • the UE detects the PDCCH in a limited CCE position, thereby avoiding the increase in the complexity of blind detection, but this is not enough.
  • control the information format/aggregation level and aggregation level The number of corresponding candidate control channels and the detection period of the search space in the time domain can be configured through high-level parameters, and the complexity of blind detection can be flexibly controlled based on these configuration information.
  • a simple summary is that, in the candidate CCE set, not every DCI format requires blind detection.
  • Fig. 2 shows a flowchart of a method for transmitting control information provided by an exemplary embodiment of the present application.
  • the feedback method may be executed by the communication system shown in FIG. 1, and the method includes:
  • Step 201 The terminal sends uplink data to the base station in time slot n of PUSCH;
  • Step 202 The base station receives the uplink data sent by the terminal on the time slot n of the PUSCH;
  • Step 203 The base station generates feedback information of uplink data, where the feedback information includes ACK or NACK;
  • the base station When the uplink data is successfully received, the base station generates an ACK; when the uplink data is not received, or when the uplink data is received and the CRC of the uplink data fails, the base station generates a NACK.
  • Step 204 The base station sends control information to the terminal at the designated frequency domain position of the time slot n+k of the PDSCH;
  • control information includes: ACK or NACK.
  • control information may also be used to carry other information, such as PUSCH channel quality information, terminal power control information, and so on.
  • k is less than a threshold.
  • Step 205 The terminal receives the control information sent by the base station at the designated frequency domain position on the time slot n+k of the PDSCH;
  • the terminal when the control information includes the NACK of the uplink data, the terminal retransmits the uplink data.
  • the method provided in this embodiment can enable the terminal to learn the uplink data in the shortest time possible by sending feedback information (ACK or NACK) of uplink data to the terminal in the time slot n+k of the PDSCH.
  • the feedback information is NACK
  • the uplink data is retransmitted, thereby ensuring the timeliness of the retransmission process and meeting the delay requirements of the eURLLC service.
  • step 201 and step 205 can be separately implemented as a method for transmitting control information on the terminal side, and the above step 202, step 203 and step 204 can be implemented as a method for transmitting control information on the base station side separately.
  • Fig. 3 shows a flowchart of a method for transmitting control information provided by an exemplary embodiment of the present application.
  • the feedback method may be executed by the communication system shown in FIG. 1, and the method includes:
  • Step 301 the base station configures k to the terminal
  • the manner in which the base station configures k to the terminal includes but is not limited to any of the following two manners:
  • the base station uses the target PDCCH format to configure K to the terminal;
  • the target PDCCH format is a PDCCH format used to configure PUSCH resources for the terminal.
  • the target PDCCH format may be PDCCH format 0_0 or PDCCH format 0_1.
  • the target PDCCH format can be understood as the downlink control information (Downlink Control Information, referred to as DCI) that adopts the target PDCCH format.
  • DCI Downlink Control Information
  • N bits are added to DCI format 0_0 and DCI format 0_1 to indicate the K value.
  • the value of K is 0 or 1
  • the value of N is 1, that is, it can be represented by 1 bit, but this application does not exclude the value of N as an integer greater than 1.
  • the base station uses RRC signaling to configure K to the terminal.
  • Step 302 the terminal receives k configured by the base station
  • the value of K can adopt a default configuration, for example, the default value is 0, that is, ACK/NACK feedback must be performed on the PDSCH in the designated time slot, which is the PUSCH used to send uplink data. The time slot in which the last symbol is located.
  • Step 303 The terminal sends uplink data to the base station in the time slot n of the PUSCH;
  • the terminal determines the time-frequency resource in time slot n on the PUSCH according to the target PDCCH, and uses the time-frequency resource in time slot n to send uplink data to the base station.
  • Step 304 The base station receives the uplink data sent by the terminal on the time slot n of the PUSCH;
  • Step 305 The base station generates feedback information of uplink data, where the feedback information includes ACK or NACK;
  • the base station When the uplink data is successfully received, the base station generates an ACK; when the uplink data is not received, or when the uplink data is received and the CRC of the uplink data fails, the base station generates a NACK.
  • Step 306 The base station sends control information to the terminal at the designated frequency domain position of the time slot n+k of the PDSCH;
  • control information includes: ACK or NACK.
  • control information may also be used to carry other information, such as PUSCH channel quality information, terminal power control information, and so on.
  • the control information includes ACK or NACK, but the specific carrying content of the control information is not limited.
  • Step 307 The terminal receives the control information sent by the base station at the designated frequency domain position of the time slot n+k of the PDSCH;
  • Step 308 When the control information includes ACK, the terminal sends the next uplink data at the designated resource location;
  • the designated resource location is a resource location configured by the base station using the PDCCH, and the resource location may be determined by; or, the designated resource location is a pre-configured resource location for unauthorized transmission.
  • Step 309 The base station receives the next uplink data sent by the terminal at the designated resource location;
  • Step 310 When the control information includes NACK, the terminal retransmits the uplink data at the designated resource location;
  • Step 311 The base station receives the uplink data retransmitted by the terminal at the designated resource location.
  • the method provided in this embodiment can enable the terminal to learn the uplink data in the shortest time possible by sending feedback information (ACK or NACK) of uplink data to the terminal in the time slot n+k of the PDSCH.
  • the feedback information is NACK
  • the uplink data is retransmitted, thereby ensuring the timeliness of the retransmission process and meeting the delay requirements of the eURLLC service.
  • the method provided in this embodiment by setting k to 0 by default, it can ensure that the ACK and NACK of the uplink data can be transmitted to the terminal in time, thereby instructing the terminal to start the retransmission of the uplink data in the shortest possible time, and can also save the base station Consumption of control signaling between the terminal and the terminal.
  • the steps performed by the terminal in the above embodiments can be individually implemented as a method for retransmitting uplink data on the terminal side, and the steps performed by the base station can be individually implemented as a feedback method for uplink data on the base station side.
  • the above-mentioned designated frequency domain position is located on both sides of the frequency domain resource position occupied by the pilot signal.
  • the PDSCH does not need to consider the bits that may be occupied by ACK/NACK when doing resource mapping; when ACK/NACK is mapped, it directly occupies the bits originally occupied by the PDSCH.
  • Fig. 5 shows a block diagram of a feedback device for uplink transmission provided by an exemplary embodiment of the present application.
  • the device can be implemented as all or part of the base station (or access network equipment) through software, hardware or a combination of the two.
  • the device includes: a receiving module 520 and a sending module 540.
  • the receiving module 520 and the sending module 540 may be hardware devices such as a radio frequency antenna.
  • the receiving module 520 is configured to receive uplink data sent by the terminal on the time slot n of the PUSCH;
  • the sending module 540 is configured to send control information to the terminal at the designated frequency domain position of the time slot n+k of the PDSCH, and both n and k are integers.
  • control information includes at least one of the following information:
  • the power control information of the terminal is the power control information of the terminal.
  • the sending module 540 is further configured to configure the K to the terminal using a target PDCCH format, and the target PDCCH format is a PDCCH format 0_0 or PDCCH used to configure the PUSCH. Format 0_1; or, the sending module 540 is also configured to configure the K to the terminal by using radio resource control RRC signaling.
  • the value of K is 0.
  • the designated frequency domain position is located on both sides of the frequency domain resource position occupied by the pilot signal.
  • the receiving module 520 is further configured to receive the next uplink data sent by the terminal at a designated resource location, and the next uplink data is when the terminal receives the The acknowledgment in the control information is sent after the ACK is fed back; or, the receiving module 520 is further configured to receive the uplink data retransmitted by the terminal at the designated resource location, and the uplink data is the terminal Sent after receiving the negative feedback NACK in the control information.
  • the designated resource location is a resource location configured by using a physical downlink control channel PDCCH;
  • the designated resource location is a pre-configured resource location for unauthorized transmission.
  • Fig. 6 shows a block diagram of an uplink transmission retransmission apparatus provided by an exemplary embodiment of the present application.
  • the device can be implemented as all or part of the terminal through software, hardware or a combination of the two.
  • the device includes: a sending module 620 and a receiving module 640.
  • the sending module 620 and the receiving module 640 may be hardware devices such as a radio frequency antenna.
  • the sending module 620 is configured to send uplink data to the base station in the time slot n of the PUSCH;
  • the receiving module 640 is configured to receive the control information sent by the base station at the designated frequency domain position of the time slot n+k of the PDSCH, where n and k are both integers
  • control information includes at least one of the following information:
  • the power control information of the terminal is the power control information of the terminal.
  • the receiving module 640 is configured to receive a target PDCCH format sent by the base station, the target PDCCH is used to configure the K, and the target PDCCH format is used to configure the The PDCCH format 0_0 or PDCCH format 0_1 of the PUSCH; or, the receiving module 660 is configured to receive radio resource control RRC signaling sent by the base station, and the RRC signaling is used to configure the K.
  • the value of K is 0.
  • the designated frequency domain position is located on both sides of the frequency domain resource position occupied by the pilot signal.
  • the sending module 620 is configured to send the next uplink data on a designated resource location when the control information includes ACK; when the control information includes NACK, in the The uplink data is retransmitted at the designated resource location.
  • the designated resource position is a resource position configured by using a physical downlink control channel PDCCH; or, the designated resource position is a pre-configured resource position for unlicensed transmission.
  • FIG. 7 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure.
  • the terminal includes: a processor 101, a receiver 102, a transmitter 103, a memory 104, and a bus 105.
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 104 is connected to the processor 101 through a bus 105.
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the control information transmission method provided by the foregoing method embodiments.
  • Fig. 8 is a block diagram showing an access network device 1000 according to an exemplary embodiment.
  • the access network device 1000 may include: a processor 1001, a receiver 1002, a transmitter 1003, and a memory 1004.
  • the receiver 1002, the transmitter 1003 and the memory 1004 are respectively connected to the processor 1001 through a bus.
  • the processor 1001 includes one or more processing cores, and the processor 1001 executes the method executed by the access network device in the transmission configuration method provided in the embodiment of the present disclosure by running software programs and modules.
  • the memory 1004 can be used to store software programs and modules. Specifically, the memory 1004 may store an operating system 10041 and an application program module 10042 required by at least one function.
  • the receiver 1002 is used to receive communication data sent by other devices, and the transmitter 1003 is used to send communication data to other devices.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the steps in the control information transmission method provided by the foregoing method embodiments.

Abstract

本公开提供了一种控制信息的传输方法、装置、设备及存储介质,属于通信领域,该方法包括:在PUSCH的时隙n上接收终端发送的上行数据;在PDSCH的时隙n+k的指定频域位置上向所述终端发送控制信息,n和k均为整数。本申请使得终端能够在尽可能短的时间内获知上行数据的反馈信息,并且在反馈信息是NACK时对该上行数据进行重传,从而保证了该重传过程的及时性,能够满足eURLLC业务的时延要求。

Description

控制信息的传输方法、重传方法、装置、终端及存储介质 技术领域
本申请涉及通信领域,特别涉及一种控制信息的传输方法、重传方法、装置、终端及存储介质。
背景技术
增强的超可靠的低延迟通信(enhanced Ultra Reliable Low Latency Communication,eURLLC)对传输可靠性以及传输时延提出较高的要求。其中,端到端的时延甚至要求到0.5ms。
在当前的协议版本中,针对物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的重传,基站直接通过调度终端的方式进行上行数据的重传。
eURLLC业务的传输时延要求较高,端到端的时延甚至要求到0.5ms。上述基站调度终端进行重传的方法,无法满足该时延要求。
发明内容
本申请实施例提供了一种控制信息的传输方法、传输方法、装置、终端及存储介质,可以解决上行数据的重传时延较高的问题。所述技术方案如下:
根据本申请的一个方面,提供了一种控制信息的传输方法,所述方法包括:
在PUSCH的时隙n上接收终端发送的上行数据;
在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的时隙n+k的指定频域位置上向所述终端发送控制信息,n和k均为整数。
在一个可能的实施方式中,所述控制信息包括如下信息中的至少一种:
所述上行数据的确认反馈(ACK);
所述上行数据的否认反馈(NACK);
所述PUSCH的信道质量信息;
所述终端的功率控制信息。
在一个可能的实施方式中,所述方法还包括:
采用目标PDCCH格式向所述终端配置所述K,所述目标PDCCH格式是用 于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;
或,
采用无线资源控制(Radio Resource Control,RRC)信令向所述终端配置所述K。
在一个可能的实施方式中,所述K的取值为0。
在一个可能的实施方式中,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
在一个可能的实施方式中,所述方法还包括:
接收所述终端在指定资源位置上发送的下一上行数据,所述下一上行数据是所述终端在接收到所述控制信息中的ACK后发送的;
或,
接收所述终端在所述指定资源位置上重传的所述上行数据,所述上行数据是所述终端在接收到所述控制信息中的NACK后发送的。
在一个可能的实施方式中,所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;或,所述指定资源位置是预配置的用于非授权传输的资源位置。
根据本公开的另一方面,提供了一种控制信息的传输方法,所述方法包括:
在PUSCH的时隙n上向基站发送上行数据;
在PDSCH的时隙n+k的指定频域位置上接收所述基站发送的控制信息,n和k均为整数
在一个可能的实施方式中,所述控制信息包括如下信息中的至少一种:
所述上行数据的ACK;
所述上行数据的NACK;
所述PUSCH的信道质量信息;
所述终端的功率控制信息。
在一个可能的实施方式中,所述方法还包括:
接收所述基站发送的目标PDCCH格式,所述目标PDCCH用于配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;或,接收所述基站发送的无线资源控制RRC信令,所述RRC信令用于配置所述K。
在一个可能的实施方式中,所述K的取值为0。
在一个可能的实施方式中,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
在一个可能的实施方式中,所述方法还包括:
当所述控制信息包括ACK时,在指定资源位置上发送下一上行数据;
当所述控制信息包括NACK时,在所述指定资源位置上重传所述上行数据。
在一个可能的实施方式中,所述方法还包括:
所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;或,所述指定资源位置是预配置的用于非授权传输的资源位置。
根据本公开的另一方面,提供了一种控制信息的传输装置,所述装置包括:
接收模块,被配置为在PUSCH的时隙n上接收终端发送的上行数据;
发送模块,被配置为在PDSCH的时隙n+k的指定频域位置上向所述终端发送控制信息,n和k均为整数。
在一个可能的实施方式中,所述控制信息包括如下信息中的至少一种:
所述上行数据的ACK;
所述上行数据的NACK;
所述PUSCH的信道质量信息;
所述终端的功率控制信息。
在一个可能的实施方式中,所述发送模块,还被配置为采用目标PDCCH格式向所述终端配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;或,所述发送模块,还被配置为采用无线资源控制RRC信令向所述终端配置所述K。
在一个可能的实施方式中,所述K的取值为0。
在一个可能的实施方式中,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
在一个可能的实施方式中,所述接收模块,还被配置为接收所述终端在指定资源位置上发送的下一上行数据,所述下一上行数据是所述终端在接收到所述控制信息中的确认反馈ACK后发送的;或,所述接收模块,还被配置为接收所述终端在所述指定资源位置上重传的所述上行数据,所述上行数据是所述终端在接收到所述控制信息中的否认反馈NACK后发送的。
在一个可能的实施方式中,所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;或,所述指定资源位置是预配置的用于非授权传输的 资源位置。
根据本公开的一个方面,提供了一种控制信息的传输装置,所述装置包括:
发送模块,被配置为在PUSCH的时隙n上向基站发送上行数据;
接收模块,被配置为在PDSCH的时隙n+k的指定频域位置上接收所述基站发送的控制信息,n和k均为整数
在一个可能的实施方式中,所述控制信息包括如下信息中的至少一种:
所述上行数据的ACK;
所述上行数据的NACK;
所述PUSCH的信道质量信息;
所述终端的功率控制信息。
在一个可能的实施方式中,所述接收模块,被配置为接收所述基站发送的目标PDCCH格式,所述目标PDCCH用于配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;或,所述接收模块,被配置为接收所述基站发送的无线资源控制RRC信令,所述RRC信令用于配置所述K。
在一个可能的实施方式中,所述K的取值为0。
在一个可能的实施方式中,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
在一个可能的实施方式中,所述发送模块,被配置为当所述控制信息包括确认反馈ACK时,在指定资源位置上发送下一上行数据;当所述控制信息包括否认反馈NACK时,在所述指定资源位置上重传所述上行数据。
在一个可能的实施方式中,所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;或,所述指定资源位置是预配置的用于非授权传输的资源位置。
根据本公开的另一方面,提供了一种终端,所述终端包括:
处理器;
与所述处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为加载并执行所述可执行指令以实现如上方面中所述的控制信息的传输方法。
根据本公开的另一方面,提供了一种接入网设备,所述接入网设备包括:
处理器;
与所述处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为加载并执行所述可执行指令以实现如上方面中所述的控制信息的传输方法。
根据本公开的另一方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上方面中所述的控制信息的传输方法。
根据本公开的另一方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上方面所述的控制信息的传输方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过在PDSCH的时隙n+k向终端发送控制信息,该控制信息可以是上行数据的反馈信息(ACK或NACK),使得终端能够在尽可能短的时间内获知上行数据的反馈信息,并且在反馈信息是NACK时对该上行数据进行重传,从而保证了该重传过程的及时性,能够满足eURLLC业务的时延要求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的一个示例性实施例提供的通信系统的示意图;
图2是根据本申请的一示例性实施例示出的控制信息的传输方法的流程图;
图3是根据本申请的一示例性实施例示出的控制信息的传输方法的流程图;
图4是根据本申请的一示例性实施例示出的控制信息的映射表;
图5是根据本申请的另一示例性实施例示出的控制信息的传输装置的框图;
图6是根据本申请的另一示例性实施例示出的控制信息的传输装置的框图;
图7是根据本申请的一示例性实施例示出的终端的框图;
图8是根据本申请的一示例性实施例示出的接入网设备(基站)的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的通信系统以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1是本公开一示例性实施例示出的通信系统的系统结构图。如图1所示,该通信系统可以包括:接入网12和终端13。
接入网12中包括若干个接入网设备120。接入网设备120与核心网设备110之间通过某种接口技术互相通信,例如长期演进(Long-Term Evolution,LTE)系统中的S1接口,新空口(New Radio,NR)系统中的NG接口。接入网设备120可以是基站,所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称的描述可能会变化。虽然本公开实施例中采用“基站”来进行举例说明,但该基站可以理解为各个通信系统中用于提供用户接入功能的接入网设备。
终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端(英文:terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
可选地,上述通信系统对传输时延的要求较高,比如上行通信系统支持eURLLC业务。在某些实施例中,该eURLLC业务要求端到端的时延要求达到0.5ms。
下行控制信道(PDCCH)承载基站发送给UE的下行控制信息(DCI,Downlink Control information)。目前DCI含有八种DCI格式(format):DCI格 式0_0、DCI格式0_1、DCI格式1_0、DCI格式1_1、DCI格式2_0、DCI格式2_1、DCI格式2_2、DCI格式2_3。
PDCCH承载的DCI的作用有:调度PUSCH,调度PDSCH,指示SFI(Slot Format Indicator),指示PI(Pre-emption Indicator),功控命令,具体的DCI格式以及携带的信息见下述:
在详细介绍下行控制信道前,需要对下行信道的一些基本概念进行定义,具体包括控制信道单元(CCE,Control-channel Element)/搜索空间(Search Space)/资源单元组(REG,Resource-Element Group)/资源单元组束(REG bundle)和控制资源集合(CORESET,control-resource Set)等。CCE是构成PDCCH的基本单位,占用频域资源上6个REG。一个给定的PDCCH可由一个,2个,4个,8个,和16个CCE构成,其具体取值由DCI载荷大小(DCI payload size)和所需的编码速率决定。构成PDCCH的CCE数量被称为聚合等级。基站可根据实际传输的无线信道状态对PDCCH的聚合等级进行调整,实现链路自适应传输。
基站实际发送的PDCCH的聚合等级随时间可变,而且由于没有相关信令告知UE,UE需要在不同聚合等级下盲检PDCCH,其中,待盲检的PDCCH称为候选PDCCH。UE会在搜索空间内对所有候选的PDCCH进行译码,如果CRC校验通过,则认为所译码的PDCCH的内容对所述UE有效,并利用译码所获得的信息(如掉调度指示,时隙格式指示/功率控制命令等)进行后续操作。为了降低UE盲检的复杂度,需要限制盲检测CCE的集合。候选PDCCH的起始CCE序号需要能够被候选PDCCH的CCE数整除。
UE在有限的CCE位置上检测PDCCH,从而避免了盲检测复杂度的增加,然而这样做并不足够,在NR中为了更好地控制盲检测的复杂度,控制信息格式/聚合等级,聚合等级对应的候选控制信道的数量,以及搜索空间在时域上的检测周期都可通过高层参数进行配置,基于这些配置信息可以灵活控制盲检测的复杂度。简单的概括为,在候选的CCE集合内,并不是每个DCI格式都需要盲检。
图2示出了本申请一个示意性实施例提供的控制信息的传输方法的流程图。该反馈方法可以由图1所示的通信系统来执行,该方法包括:
步骤201,终端在PUSCH的时隙n上向基站发送上行数据;
步骤202,基站在PUSCH的时隙n上接收终端发送的上行数据;
步骤203,基站生成上行数据的反馈信息,该反馈信息包括ACK或NACK;
当上行数据接收成功时,基站生成ACK;当未能接收到上行数据,或,接收到上行数据且该上行数据的CRC失败时,基站生成NACK。
步骤204,基站在PDSCH的时隙n+k的指定频域位置上向终端发送控制信息;
可选地,该控制信息包括:ACK或NACK。在其他实施例中,该控制信息也可以用于携带其他信息,比如,PUSCH的信道质量信息、终端的功率控制信息等。
可选地,k小于阈值。
步骤205,终端在PDSCH的时隙n+k上的指定频域位置接收基站发送的控制信息;
可选地,当控制信息包括上行数据的NACK时,终端重传上行数据。
综上所述,本实施例提供的方法,通过在PDSCH的时隙n+k上向终端发送上行数据的反馈信息(ACK或NACK),可以使得终端能够在尽可能短的时间内获知上行数据的反馈信息,并且在反馈信息是NACK时对该上行数据进行重传,从而保证了该重传过程的及时性,能够满足eURLLC业务的时延要求。
上述步骤201和步骤205可以单独实现成为终端侧的控制信息的传输方法,上述步骤202、步骤203和步骤204可以单独实现成为基站侧的控制信息的传输方法。
图3示出了本申请一个示意性实施例提供的控制信息的传输方法的流程图。该反馈方法可以由图1所示的通信系统来执行,该方法包括:
步骤301,基站向终端配置k;
基站向终端配置k的方式,包括但不限于如下两种方式中的任意一种:
1、基站采用目标PDCCH格式向终端配置K;
目标PDCCH格式是用于向终端配置PUSCH的资源的PDCCH格式。目标PDCCH格式可以是PDCCH格式0_0或PDCCH格式0_1。目标PDCCH格式可理解为采用了目标PDCCH格式的下行控制信息(Downlink Control Information,简称:DCI)。
示意性的,在DCI格式0_0和DCI格式0_1中添加N个比特,用于指示K值。一般K的取值为0或者1,因此N的取值为1,即用1个比特表征即可, 但本申请不排除N的取值为大于1的整数。
2、基站采用RRC信令向终端配置K。
步骤302,终端接收基站配置的k;
需要说明的是,上述步骤301和步骤302是可选步骤。在一些实施例中,K的取值可以采用默认配置,比如默认取值为0,也即必须在指定时隙内的PDSCH进行ACK/NACK反馈,该指定时隙是用于发送上行数据的PUSCH的最后一个符号所在的时隙。
步骤303,终端在PUSCH的时隙n上向基站发送上行数据;
终端根据目标PDCCH上确定PUSCH上的时隙n中的时频资源,采用时隙n中的时频资源向基站发送上行数据。
步骤304,基站在PUSCH的时隙n上接收终端发送的上行数据;
步骤305,基站生成上行数据的反馈信息,该反馈信息包括ACK或NACK;
当上行数据接收成功时,基站生成ACK;当未能接收到上行数据,或,接收到上行数据且该上行数据的CRC失败时,基站生成NACK。
步骤306,基站在PDSCH的时隙n+k的指定频域位置上向终端发送控制信息;
可选地,该控制信息包括:ACK或NACK。在其他实施例中,该控制信息也可以用于携带其他信息,比如,PUSCH的信道质量信息、终端的功率控制信息等。本实施例以控制信息包括ACK或NACK来表示,但不限定控制信息的具体携带内容。
步骤307,终端在PDSCH的时隙n+k的指定频域位置上接收基站发送的控制信息;
步骤308,当控制信息包括ACK时,终端在指定资源位置上发送下一上行数据;
其中,指定资源位置是基站采用PDCCH配置的资源位置,该资源位置可以由;或,指定资源位置是预配置的用于非授权传输的资源位置。
步骤309,基站接收终端在指定资源位置上发送的下一上行数据;
步骤310,当控制信息包括NACK时,终端在指定资源位置上重传上行数据;
步骤311,基站接收终端在指定资源位置上重传的上行数据。
综上所述,本实施例提供的方法,通过在PDSCH的时隙n+k上向终端发送 上行数据的反馈信息(ACK或NACK),可以使得终端能够在尽可能短的时间内获知上行数据的反馈信息,并且在反馈信息是NACK时对该上行数据进行重传,从而保证了该重传过程的及时性,能够满足eURLLC业务的时延要求。
本实施例提供的方法,通过将k默认配置为0,既能保证上行数据的ACK和NACK能及时传输至终端,从而指示终端在尽量短的时间内启动上行数据的重传,还能够节省基站和终端之间的控制信令的消耗。
需要说明的一点是,上述实施例中由终端执行的步骤可以单独实现成为终端侧的上行数据的重传方法,由基站执行的步骤可以单独实现成为基站侧的上行数据的反馈方法。
需要说明的另一点是,上述各个实施例还可以由本领域技术人员自由拆分和/或组合成为新的实施例,对此不加以限定。
在基于图3的可选实施例中,上述指定频域位置位于导频信号所占据的频域资源位置的两侧。如图4所示,PDSCH在做资源映射时,不必考虑ACK/NACK可能占用的比特;在ACK/NACK映射时,直接占据原本由PDSCH所占的比特。
以下为本申请实施例的装置实施例,对于装置实施例中未详细描述的细节,可以参考上述一一对应的方法实施例。
图5示出了本申请一个示意性实施例提供的上行传输的反馈装置的框图。该装置可以通过软件、硬件或者两者的结合实现成为基站(或接入网设备)的全部或一部分。该装置包括:接收模块520和发送模块540。其中,接收模块520和发送模块540可以为射频天线等硬件装置。
接收模块520,被配置为在PUSCH的时隙n上接收终端发送的上行数据;
发送模块540,被配置为在PDSCH的时隙n+k的指定频域位置上向所述终端发送控制信息,n和k均为整数。
在一个可选的实施例中,所述控制信息包括如下信息中的至少一种:
所述上行数据的ACK;
所述上行数据的NACK;
所述PUSCH的信道质量信息;
所述终端的功率控制信息。
在一个可选的实施例中,所述发送模块540,还被配置为采用目标PDCCH格式向所述终端配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的 PDCCH格式0_0或PDCCH格式0_1;或,所述发送模块540,还被配置为采用无线资源控制RRC信令向所述终端配置所述K。
在一个可选的实施例中,所述K的取值为0。
在一个可选的实施例中,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
在一个可选的实施例中,所述接收模块520,还被配置为接收所述终端在指定资源位置上发送的下一上行数据,所述下一上行数据是所述终端在接收到所述控制信息中的确认反馈ACK后发送的;或,所述接收模块520,还被配置为接收所述终端在所述指定资源位置上重传的所述上行数据,所述上行数据是所述终端在接收到所述控制信息中的否认反馈NACK后发送的。
在一个可选的实施例中,所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;
在一个可选的实施例中,所述指定资源位置是预配置的用于非授权传输的资源位置。
图6示出了本申请一个示意性实施例提供的上行传输的重传装置的框图。该装置可以通过软件、硬件或者两者的结合实现成为终端的全部或一部分。该装置包括:发送模块620和接收模块640。其中,发送模块620和接收模块640可以为射频天线等硬件装置。
发送模块620,被配置为在PUSCH的时隙n上向基站发送上行数据;
接收模块640,被配置为在PDSCH的时隙n+k的指定频域位置上接收所述基站发送的控制信息,n和k均为整数
在一个可选的实施例中,所述控制信息包括如下信息中的至少一种:
所述上行数据的ACK;
所述上行数据的NACK;
所述PUSCH的信道质量信息;
所述终端的功率控制信息。
在一个可选的实施例中,所述接收模块640,被配置为接收所述基站发送的目标PDCCH格式,所述目标PDCCH用于配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;或,所述接收模块660,被配置为接收所述基站发送的无线资源控制RRC信令,所述RRC 信令用于配置所述K。
在一个可选的实施例中,所述K的取值为0。
在一个可选的实施例中,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
在一个可选的实施例中,所述发送模块620,被配置为当所述控制信息包括ACK时,在指定资源位置上发送下一上行数据;当所述控制信息包括NACK时,在所述指定资源位置上重传所述上行数据。
在一个可选的实施例中,所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;或,所述指定资源位置是预配置的用于非授权传输的资源位置。
图7示出了本公开一个示例性实施例提供的终端的结构示意图,该终端包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的控制信息的传输方法。
图8是根据一示例性实施例示出的一种接入网设备1000的框图。
接入网设备1000可以包括:处理器1001、接收机1002、发射机1003和存储器1004。接收机1002、发射机1003和存储器1004分别通过总线与处理器1001连接。
其中,处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块以执行本公开实施例提供的传输配置方法中接入网设备所执行的方法。存储器1004可用于存储软件程序以及模块。具体的,存储器1004可存储操作系统10041、至少一个功能所需的应用程序模块10042。接收机1002用于接收其他设备发送的通信数据,发射机1003用于向其他设备发送通信数据。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的控制信息的传输方法中的步骤。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种控制信息的传输方法,其特征在于,所述方法包括:
    在物理上行共享信道PUSCH的时隙n上接收终端发送的上行数据;
    在物理下行共享信道PDSCH的时隙n+k的指定频域位置上向所述终端发送控制信息,n和k均为整数。
  2. 根据权利要求1所述的方法,其特征在于,所述控制信息包括如下信息中的至少一种:
    所述上行数据的确认反馈ACK;
    所述上行数据的否认反馈NACK;
    所述PUSCH的信道质量信息;
    所述终端的功率控制信息。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    采用目标PDCCH格式向所述终端配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;
    或,
    采用无线资源控制RRC信令向所述终端配置所述K。
  4. 根据权利要求1所述的方法,其特征在于,所述K的取值为0。
  5. 根据权利要求1所述的方法,其特征在于,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    接收所述终端在指定资源位置上发送的下一上行数据,所述下一上行数据是所述终端在接收到所述控制信息中的确认反馈ACK后发送的;
    或,
    接收所述终端在所述指定资源位置上重传的所述上行数据,所述上行数据是所述终端在接收到所述控制信息中的否认反馈NACK后发送的。
  7. 根据权利要求6所述的方法,其特征在于,
    所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;
    或,
    所述指定资源位置是预配置的用于非授权传输的资源位置。
  8. 一种控制信息的传输方法,其特征在于,所述方法包括:
    在物理上行共享信道PUSCH的时隙n上向基站发送上行数据;
    在物理下行共享信道PDSCH的时隙n+k的指定频域位置上接收所述基站发送的控制信息,n和k均为整数。
  9. 根据权利要求8所述的方法,其特征在于,所述控制信息包括如下信息中的至少一种:
    所述上行数据的确认反馈ACK;
    所述上行数据的否认反馈NACK;
    所述PUSCH的信道质量信息;
    所述终端的功率控制信息。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的目标PDCCH格式,所述目标PDCCH用于配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;
    或,
    接收所述基站发送的无线资源控制RRC信令,所述RRC信令用于配置所述K。
  11. 根据权利要求8所述的方法,其特征在于,所述K的取值为0。
  12. 根据权利要求8所述的方法,其特征在于,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
  13. 根据权利要求8至12任一所述的方法,其特征在于,所述方法还包括:
    当所述控制信息包括确认反馈ACK时,在指定资源位置上发送下一上行数据;
    当所述控制信息包括否认反馈NACK时,在所述指定资源位置上重传所述上行数据。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;
    或,
    所述指定资源位置是预配置的用于非授权传输的资源位置。
  15. 一种控制信息的传输装置,其特征在于,所述装置包括:
    接收模块,被配置为在物理上行共享信道PUSCH的时隙n上接收终端发送的上行数据;
    发送模块,被配置为在物理下行共享信道PDSCH的时隙n+k的指定频域位置上向所述终端发送控制信息,n和k均为整数。
  16. 根据权利要求15所述的装置,其特征在于,所述控制信息包括如下信息中的至少一种:
    所述上行数据的确认反馈ACK;
    所述上行数据的否认反馈NACK;
    所述PUSCH的信道质量信息;
    所述终端的功率控制信息。
  17. 根据权利要求15所述的装置,其特征在于,
    所述发送模块,还被配置为采用目标PDCCH格式向所述终端配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;
    或,
    所述发送模块,还被配置为采用无线资源控制RRC信令向所述终端配置所述K。
  18. [根据细则91更正 10.10.2019] 
    根据权利要求15所述的装置,其特征在于,所述K的取值为0。
  19. [根据细则91更正 10.10.2019] 
    根据权利要求15所述的装置,其特征在于,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
  20. [根据细则91更正 10.10.2019]
    根据权利要求15至19任一所述的装置,其特征在于,
    所述接收模块,还被配置为接收所述终端在指定资源位置上发送的下一上行数据,所述下一上行数据是所述终端在接收到所述控制信息中的确认反馈ACK后发送的;
    或,
    所述接收模块,还被配置为接收所述终端在所述指定资源位置上重传的所述上行数据,所述上行数据是所述终端在接收到所述控制信息中的否认反馈NACK后发送的。
  21. [根据细则91更正 10.10.2019]
    根据权利要求20所述的装置,其特征在于,
    所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;
    或,
    所述指定资源位置是预配置的用于非授权传输的资源位置。
  22. 一种控制信息的传输装置,其特征在于,所述装置包括:
    发送模块,被配置为在物理上行共享信道PUSCH的时隙n上向基站发送上行数据;
    接收模块,被配置为在物理下行共享信道PDSCH的时隙n+k的指定频域位置上接收所述基站发送的控制信息,n和k均为整数。
  23. [根据细则91更正 10.10.2019]
    根据权利要求22所述的装置,其特征在于,所述控制信息包括如下信息中的至少一种:
    所述上行数据的确认反馈ACK;
    所述上行数据的否认反馈NACK;
    所述PUSCH的信道质量信息;
    所述终端的功率控制信息。
  24. [根据细则91更正 10.10.2019]
    根据权利要求22所述的装置,其特征在于,
    所述接收模块,被配置为接收所述基站发送的目标PDCCH格式,所述目标PDCCH用于配置所述K,所述目标PDCCH格式是用于配置所述PUSCH的PDCCH格式0_0或PDCCH格式0_1;
    或,
    所述接收模块,被配置为接收所述基站发送的无线资源控制RRC信令,所述RRC信令用于配置所述K。
  25. [根据细则91更正 10.10.2019] 
    根据权利要求22所述的装置,其特征在于,所述K的取值为0。
  26. [根据细则91更正 10.10.2019] 
    根据权利要求22所述的装置,其特征在于,所述指定频域位置位于导频信号所占据的频域资源位置的两侧。
  27. [根据细则91更正 10.10.2019]
    根据权利要求22至26任一所述的装置,其特征在于,
    所述发送模块,被配置为当所述控制信息包括确认反馈ACK时,在指定资源位置上发送下一上行数据;当所述控制信息包括否认反馈NACK时,在所述指定资源位置上重传所述上行数据。
  28. [根据细则91更正 10.10.2019]
    根据权利要求27所述的装置,其特征在于,
    所述指定资源位置是采用物理下行控制信道PDCCH配置的资源位置;
    或,
    所述指定资源位置是预配置的用于非授权传输的资源位置。
  29. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至7任一所述的控制信息的传输方法。
  30. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求8至14任一所述的控制信息的传输方法。
  31. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1至14任一所述的控制信息的传输方法。
PCT/CN2019/082918 2019-04-16 2019-04-16 控制信息的传输方法、重传方法、装置、终端及存储介质 WO2020210991A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19924865.9A EP3955498A4 (en) 2019-04-16 2019-04-16 CONTROL INFORMATION TRANSMISSION METHOD, RETRANSMISSION METHOD AND DEVICE, TERMINAL AND STORAGE MEDIUM
US17/594,316 US20220167356A1 (en) 2019-04-16 2019-04-16 Control information transmission method, retransmission method and apparatus, terminal, and storage medium
PCT/CN2019/082918 WO2020210991A1 (zh) 2019-04-16 2019-04-16 控制信息的传输方法、重传方法、装置、终端及存储介质
CN201980000683.1A CN110495130B (zh) 2019-04-16 2019-04-16 控制信息的传输方法、重传方法、装置、终端及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082918 WO2020210991A1 (zh) 2019-04-16 2019-04-16 控制信息的传输方法、重传方法、装置、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2020210991A1 true WO2020210991A1 (zh) 2020-10-22

Family

ID=68544577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082918 WO2020210991A1 (zh) 2019-04-16 2019-04-16 控制信息的传输方法、重传方法、装置、终端及存储介质

Country Status (4)

Country Link
US (1) US20220167356A1 (zh)
EP (1) EP3955498A4 (zh)
CN (1) CN110495130B (zh)
WO (1) WO2020210991A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739374A (zh) * 2011-04-12 2012-10-17 中兴通讯股份有限公司 一种载波聚合下确认信息的反馈方法、用户设备和系统
US20130083748A1 (en) * 2011-09-26 2013-04-04 Innovative Sonic Corporation Method and apparatus for processing csi (channel state information) in a wireless communication system
CN107637000A (zh) * 2015-06-17 2018-01-26 英特尔Ip公司 下一代lte设备和系统的ack/nack信号

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372434C (zh) * 2004-09-08 2008-02-27 华为技术有限公司 一种多载频专用信道配置方法
CN102263616B (zh) * 2011-08-15 2018-07-20 中兴通讯股份有限公司 指示控制信道的方法及装置
RU2641666C1 (ru) * 2014-01-28 2018-01-19 Хуавэй Текнолоджиз Ко., Лтд. Способ расширенной передачи физического канала произвольного доступа, сетевое устройство и терминал
WO2017045571A1 (zh) * 2015-09-17 2017-03-23 中兴通讯股份有限公司 参考信号的发送方法及装置、接收方法及装置
KR20170112945A (ko) * 2016-04-01 2017-10-12 삼성전자주식회사 이동통신 시스템에서 기기 간 통신과 셀룰라 통신의 공존 방법 및 장치
CN107332646B (zh) * 2016-04-29 2021-05-11 中兴通讯股份有限公司 Harq-ack的发送方法及装置
WO2018018620A1 (zh) * 2016-07-29 2018-02-01 广东欧珀移动通信有限公司 反馈ack/nack信息的方法、终端设备和网络侧设备
CN115884403A (zh) * 2017-01-06 2023-03-31 中兴通讯股份有限公司 数据传输方法、设备及存储介质
US10985893B2 (en) * 2017-02-03 2021-04-20 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, and communication method for base station apparatus and terminal apparatus
CN109951265A (zh) * 2017-05-04 2019-06-28 华为技术有限公司 一种控制信息传输的方法、终端设备和网络设备
CN109152033B (zh) * 2017-06-16 2021-07-09 华为技术有限公司 发送信息以及确定信息的方法和装置
KR102338507B1 (ko) * 2017-08-04 2021-12-13 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보를 송수신하는 방법 및 장치
US10764896B2 (en) * 2017-11-08 2020-09-01 Samsung Electronics Co., Ltd. Method and apparatus for beam management in the unlicensed spectrum
CN109802819B (zh) * 2017-11-16 2024-03-05 北京三星通信技术研究有限公司 上行控制信息处理方法及终端
CN112514499A (zh) * 2018-05-21 2021-03-16 株式会社Ntt都科摩 发送装置以及接收装置
WO2020167233A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods to configure neighbor cell resynchronization signal (rss) parameters
CN116097899A (zh) * 2020-11-09 2023-05-09 Oppo广东移动通信有限公司 确定上行传输时域资源的方法、终端设备及网络设备
US20220361220A1 (en) * 2021-05-10 2022-11-10 Qualcomm Incorporated Multi-pdsch or multi-pusch grant for non-contiguous resources on multiple slots

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739374A (zh) * 2011-04-12 2012-10-17 中兴通讯股份有限公司 一种载波聚合下确认信息的反馈方法、用户设备和系统
US20130083748A1 (en) * 2011-09-26 2013-04-04 Innovative Sonic Corporation Method and apparatus for processing csi (channel state information) in a wireless communication system
CN107637000A (zh) * 2015-06-17 2018-01-26 英特尔Ip公司 下一代lte设备和系统的ack/nack信号

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955498A4 *
SONY: "Report on informal email discussion [eMTC-5] on remaining PDSCH issues for Rel-13 eMTC", 3GPP TSG RAN WG1 MEETING #83 R1-157514, 15 November 2015 (2015-11-15), XP051001066, DOI: 20200103154949X *

Also Published As

Publication number Publication date
EP3955498A1 (en) 2022-02-16
CN110495130B (zh) 2022-06-03
EP3955498A4 (en) 2022-04-27
CN110495130A (zh) 2019-11-22
US20220167356A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
US11140666B2 (en) Uplink control information transmission method and apparatus
US10708889B2 (en) Method and apparatus for indicating subframes associated with a hybrid automatic repeat request feedback
US11483096B2 (en) Method and apparatus for HARQ-ack codebook determination
US11916678B2 (en) Method and apparatus for HARQ-ACK feedback for carrier aggregation
US11444727B2 (en) Method and apparatus for HARQ-ACK payload reduction for semi-static HARQ-ACK codebook determination
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
EP3101982A1 (en) Base station, transmission method, mobile station, and retransmission control method
WO2020198952A1 (en) Method and apparatus for harq-ack codebook reduction
US11824811B2 (en) Method and apparatus for fallback operation for semi-static HARQ-ACK codebook determination
WO2017215749A1 (en) Reallocation of control channel resources for retransmission of data in wireless networks based on communications mode
CN113796032B (zh) 用于半静态harq-ack码本确定的方法及设备
CN110199495B (zh) 上行传输的反馈方法、重传方法、装置、终端及存储介质
US20230361924A1 (en) Method and apparatus for harq-ack feedback transmission
US20220201713A1 (en) Communications device, infrastructure equipment and methods
WO2020210991A1 (zh) 控制信息的传输方法、重传方法、装置、终端及存储介质
CN109983818B (zh) 用于发送/接收调度命令的方法和设备
WO2023010503A1 (en) Transmission scheduling techniques
WO2023205937A1 (en) Methods and apparatuses for determining nack-only based harq-ack codebook
FI20195875A1 (en) Common link adaptation for a downlink control channel and data channel for wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019924865

Country of ref document: EP

Effective date: 20211110