WO2013056593A1 - 一种传输控制信息的方法、系统及设备 - Google Patents

一种传输控制信息的方法、系统及设备 Download PDF

Info

Publication number
WO2013056593A1
WO2013056593A1 PCT/CN2012/080048 CN2012080048W WO2013056593A1 WO 2013056593 A1 WO2013056593 A1 WO 2013056593A1 CN 2012080048 W CN2012080048 W CN 2012080048W WO 2013056593 A1 WO2013056593 A1 WO 2013056593A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
control information
resource block
network side
Prior art date
Application number
PCT/CN2012/080048
Other languages
English (en)
French (fr)
Inventor
赵锐
潘学明
肖国军
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013056593A1 publication Critical patent/WO2013056593A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, system, and device for transmitting control information. Background technique
  • the physical hybrid automatic request retransmission indicator channel (PHICH) is used to carry the feedback information of the uplink service, that is, the correct response command (ACKnowledge). , ACK ) / Negative ACKnowledge (NACK).
  • PHICH group refers to a set of Resource Element (RE).
  • RE Resource Element
  • 8 or 4 PHICHs can be transmitted, and each PHICH is distinguished by orthogonal sequences.
  • CP Cyclic Prefix
  • the PHICH is mapped to a Resource Element Group (REG) that is not used by a Physical Control Format Indication Channel (PCFICH) in a Physical Downlink Control Channel (PDCCH) control region.
  • REG Resource Element Group
  • PCFICH Physical Control Format Indication Channel
  • PDCCH Physical Downlink Control Channel
  • the duration of the time domain mapping can be configured by the system and broadcast by the system. In the case of the normal PHICH Duration configuration, the PHICH group mapping can support a small number of users on the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the downlink subframe.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each PHICH group is mapped on the first 3 OFDM symbols of the downlink subframe (in the multimedia broadcast multicast service single frequency network ( Multimedia Broadcast multicast service Single Frequency Network (MBSFN) in sub-frame and time-division synchronous code division multiple access (TD-SCDMA Long Term Evolution, TD-LTE) is used in the first 2 OFDM symbols in subframe 1 and subframe 6)
  • MMSFN Multimedia Broadcast multicast service Single Frequency Network
  • TD-SCDMA Long Term Evolution, TD-LTE time-division synchronous code division multiple access
  • FIG. 1 is a schematic diagram of a PHICH group resource mapping.
  • the time-frequency resource occupied by a PHICH group and the number of REGs, the cell identifier (ID), the PHICH group number, and the specific The OFDM symbol number and the like are related.
  • the low-power base station is a base station device used in a home indoor environment, an office environment or other hotspot small coverage environment, enabling operators to provide attractive services with higher data rates and lower costs.
  • the Femto base station has certain restrictions on the access member users, and non-member users cannot access.
  • the coverage hole is entered due to the strong signal of the low power base station. , causing it to not work.
  • the Pico base station is at the same frequency as the macro base station, it may also generate strong interference and become inoperable.
  • ABS Almost Blank Subframe
  • ICIC Inter-cell intereference coordination
  • TDM Time Division Multiple
  • the ABS subframe is configured on the side of the interference base station, that is, the interference base station does not transmit any control information on the subframe such as ABS to avoid interference. Due to the introduction of the ABS mechanism, the transmission of the PHICH is limited.
  • the definition of the extended carrier may be included, which does not include the LTE Rel-10 compatible PDCCH control region, and the scheduling of the PUSCH on the extended carrier may be performed by means of cross-carrier scheduling.
  • Compatible component carrier scheduling it is possible to define a new enhanced PDCCH transmission in the extension carrier, where the enhanced PDCCH transmission occupies the PDSCH region. Therefore, in the latter case, the issue of PHICH transmission also needs to be considered.
  • the embodiments of the present invention provide a method, a system, and a device for transmitting control information, which are used to solve the problem that the PHICH cannot be transmitted in a carrier that uses the ABS configured subframe and the control region without the LTE R10 in the prior art.
  • the network side determines a time-frequency resource block in the PDSCH region of the physical downlink shared channel carrying the control information; and the network side sends the control information to the user equipment by using the time-frequency resource block.
  • the user equipment determines a time-frequency resource block in a PDSCH region that carries control information
  • a network side device for transmitting control information provided by the embodiment of the present invention includes:
  • a first determining module configured to determine a time-frequency resource block in a PDSCH region that carries control information
  • a sending module configured to send, by using the time-frequency resource block, control information to the user equipment.
  • a second determining module configured to determine a time-frequency resource block in a PDSCH region that carries control information
  • a receiving module configured to receive control information by using the determined time-frequency resource block.
  • a network side device configured to determine a time-frequency resource block in a PDSCH region that carries control information, and send control information to the user equipment by using the time-frequency resource block;
  • a user equipment configured to determine a time-frequency resource block in a PDSCH region that carries control information, and receive control information by using the determined time-frequency resource block.
  • the PHICH can be transmitted even in the case of the subframe configured with the ABS and the carrier without the control region of the LTE R10, thereby improving system performance.
  • FIG. 1 is a schematic diagram of resource mapping of a PHICH group in a control area in the prior art
  • FIG. 2 is a schematic structural diagram of a system for transmitting control information according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for sending control information by a network side according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for a user equipment to receive control information according to an embodiment of the present disclosure
  • FIG. 7A is a schematic diagram of compatible carrier transmission control information according to an embodiment of the present invention.
  • FIG. 7B is a schematic diagram of extended carrier transmission control information according to an embodiment of the present invention.
  • FIG. 8A is a schematic diagram of resource mapping of a control region time-frequency resource block number of 3 according to an embodiment of the present invention
  • FIG. 8B is a schematic diagram of resource mapping of a control region time-frequency resource block number 2 according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a resource mapping of a time domain domain block with a number of control regions according to an embodiment of the present invention
  • FIG. 9A is a schematic diagram of a time domain domain and a frequency domain mapping according to an embodiment of the present invention
  • FIG. 9B is a schematic diagram of a pre-frequency domain post-time domain mapping according to an embodiment of the present invention. detailed description
  • the network side uses the physical downlink shared channel (Physical side)
  • the time-frequency resource block in the Downlink Shared Channel, PDSCH area sends control to the user equipment.
  • Information Since the control information is transmitted through the time-frequency resource block in the PDSCH region, the PHICH can also be transmitted in the case of the subframe configured with the ABS and the carrier without the control region of the LTE R10, thereby improving system performance.
  • the time-frequency resource block in the PDSCH region carrying the control information may be a compatible carrier (see Fig. 7A), and may also be an extension carrier (see Fig. 7B).
  • the control information includes: E-PHICH information that is automatically carried by the enhanced physical hybrid retransmission indication channel (E-PHICH) and/or information carried by the enhanced physical downlink control channel (E-PDCCH), that is, E - PDCCH information.
  • E-PHICH enhanced physical hybrid retransmission indication channel
  • E-PDCCH enhanced physical downlink control channel
  • the information carried by the E-PHICH is ACK or NACK; the information carried by the E-PDCCH includes similar control information in the Rel-8/Rel-lO, such as uplink scheduling information, downlink scheduling information, paging indication information, and common control information.
  • RACH Random Access Channel
  • the control information carried by the E-PDCCH has information for reflecting whether the PUSCH data is correctly received (for example, a new data indication (NDI)), even if the control information includes only the E-PDCCH information, the user equipment can be guaranteed to know the PUSCH. Whether the reception is correct or not can achieve the purpose of correcting whether the PUSCH reception is correct or not when the subframe configured by the ABS and the carrier of the control region without the LTE R10 are used.
  • NDI new data indication
  • the network side transmits the information carried by the E-PHICH through the time-frequency resource block mapped to the E-PHICH, and transmits the information carried by the E-PDCCH through the time-frequency resource block mapped to the E-PDCCH.
  • An time-frequency resource block in the embodiment of the present invention may be a PRB resource, or may be a PRB pair resource (ie, a pair of PRB resources), or may be a group (more than two) PRB resources.
  • the system for transmitting control information in the embodiment of the present invention includes: a network side device 10 and a user equipment 20.
  • the network side device 10 is configured to determine a time-frequency resource block in the PDSCH region that carries the control information, and send the control information to the user equipment 20 by using the time-frequency resource block.
  • the user equipment 20 is configured to determine a time-frequency resource block in a PDSCH region that carries control information, and receive control information by using the determined time-frequency resource block.
  • the user equipment 20 may also notify the time-frequency resource block in the PDSCH region that carries the control information before sending the control information by using the time-frequency resource block. .
  • the network side device 10 can send the configuration information by using a system broadcast message or a high layer signaling.
  • the user equipment 20 receives the corresponding notification through the system broadcast message or the high layer signaling.
  • the network side device 10 to notify the user equipment 20 to carry the time-frequency resource block in the PDSCH region of the control information. Several types are listed below.
  • Notification mode 1 The network side device 10 notifies the user equipment 20 that each time-frequency resource block in the PDSCH region carrying the control information;
  • the user equipment 20 uses the time-frequency resource block notified by the network side device 10 as a time-frequency resource block in the PDSCH region carrying the control information.
  • a bit bitmap can be used, that is, each bit corresponds to one time-frequency resource block or several consecutive time-frequency resource blocks, and whether the corresponding time-frequency resource block is a bearer control is determined according to the value of the bit.
  • the time-frequency resource block in the PDSCH area of the information such as "0" means no, "1" means yes.
  • the network side device 10 can make the time-frequency resource block in the PDSCH region carrying the control information uniform in the downlink bandwidth of the system when determining each time-frequency resource block in the PDSCH region carrying the control information (or try to Evenly distributed.
  • Notification mode 2 The network side device 10 notifies the user equipment 20 of the number of time-frequency resource blocks in the time-frequency resource block of the PDSCH region carrying the control information and the time-frequency resource block carrying the control information;
  • the user equipment 20 determines the bearer control according to the number of the start time-frequency resource block and the time-frequency resource block in the time-frequency resource block of the PDSCH region of the PDSCH region received from the network-side device 10 Each time-frequency resource block in the PDSCH region of the information.
  • the time-frequency resource blocks in the PDSCH region carrying the control information may be evenly distributed (or as uniformly distributed) as possible in the downlink bandwidth of the system.
  • the initial time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information needs to be determined.
  • the method for determining the time-frequency starting position according to the cell identifier of the cell may be:
  • An example of PRB as the frequency domain resource granularity may be (Cell_ID*offset) mod N, where N represents the number of PRBs of the system downlink bandwidth, Cell_ID is the cell identifier, and offset represents the offset used to calculate the starting position. value.
  • the embodiment of the present invention is not limited to the foregoing manner of determining a starting time-frequency resource block, and other methods capable of determining a starting time-frequency resource block according to a cell identifier of a cell in which the user equipment is located and a system bandwidth are applicable to the present invention.
  • the embodiment of the present invention is not limited to the foregoing method for determining a time-frequency resource block, and other manners for determining a time-frequency resource block according to the initial time-frequency resource block and the number of time-frequency resource blocks are applicable to the embodiment of the present invention. .
  • the network side device 10 and the user equipment 20 need to determine each time-frequency resource block in the PDSCH region that carries the control information in the same manner, so that the time-frequency resource block determined by the network-side device 10 and the user equipment 20 can be ensured.
  • the same, and the time-frequency resource blocks are evenly distributed (or as evenly distributed) as possible in the downlink bandwidth of the system.
  • the manner in which the user equipment 20 determines each of the time-frequency resource blocks in the PDSCH region that carries the control information may be referred to the manner in which the network-side device 10 determines each time-frequency resource block, and details are not described herein.
  • Notification mode 3 The network side device 10 notifies the user equipment of the time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information and the number of time-frequency resource blocks carrying the control information;
  • the user equipment 20 determines the number of time-frequency resource blocks of the bearer control information corresponding to the current downlink bandwidth of the system according to the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks of the bearer control information, according to the bearer notified by the network side.
  • the number of the start time-frequency resource block and the time-frequency resource block in the time-frequency resource block of the PD SCH region of the control information determines each time-frequency resource block in the PDSCH region carrying the control information.
  • the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying control information can be set as follows: When the system bandwidth is 6 PRBs, the number of PRBs occupied by the control information is 2; when the system bandwidth is 50 PRBs, the control is performed. The number of PRBs occupied by the information is 5.
  • the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying the control information may be specified in the protocol, or the user equipment 20 may be notified by the network side. Regardless of which method is used, it is necessary to ensure that the network side device 10 and the user equipment 20 use the same correspondence to determine the number of time-frequency resource blocks.
  • the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying control information may be modified as needed.
  • the time-frequency resource blocks in the PDSCH region carrying the control information may be evenly distributed (or as uniformly distributed) as possible in the downlink bandwidth of the system.
  • the initial time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information needs to be determined.
  • the network side device 10 and the user equipment 20 need to determine the number of time-frequency resource blocks in the same manner, and determine each time-frequency resource block in the PDSCH region that carries the control information in the same manner, so that the network-side device 10 and the network-side device 10 can be secured.
  • the time-frequency resource blocks determined by the user equipment 20 are the same, and the time-frequency resource blocks are evenly distributed (or as evenly distributed) as possible in the downlink bandwidth of the system.
  • the manner in which the network side device 10 and the user equipment 20 determine the starting time-frequency resource block can be referred to the notification mode.
  • the network side device 10 and the user equipment 20 determine each time-frequency resource block in the PDSCH region that carries the control information according to the number of the start time-frequency resource block and the time-frequency resource block, refer to the network side device 10 in the notification mode 2
  • the manner of each time-frequency resource block will not be described here.
  • the embodiments of the present invention are not limited to the foregoing manners, and other manners that can notify the user equipment 20 to transmit time-frequency resource blocks in the PDSCH region of the control information are applicable to the embodiments of the present invention.
  • both parties determine the number of starting time-frequency resource blocks and time-frequency resource blocks in the same manner, and determine the number of starting time-frequency resource blocks and time-frequency resource blocks in the same manner.
  • the network side device 10 and the user equipment 20 determine, according to the cell identifier and the system bandwidth of the cell where the user equipment 20 is located, the initial time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information, and the downlink bandwidth according to the system.
  • Corresponding relationship between the number of time-frequency resource blocks and the number of time-frequency resource blocks carrying the control information determines the number of time-frequency resource blocks of the bearer control information corresponding to the current downlink bandwidth of the system, and determines the bearer according to the starting time-frequency resource block and the number of time-frequency resource blocks.
  • Each time-frequency resource block in the PDSCH region of the control information is based on the cell identifier and the system bandwidth of the cell where the user equipment 20 is located.
  • the time-frequency resource blocks in the PDSCH region carrying the control information may be evenly distributed (or as uniformly distributed) as possible in the downlink bandwidth of the system.
  • the network side device 10 and the user equipment 20 determine the number of starting time-frequency resource blocks and time-frequency resource blocks in the same manner, and determine each time-frequency resource block in the PDSCH region carrying the control information in the same manner, It can be ensured that the time-frequency resource blocks determined by the network side device 10 and the user equipment 20 are the same.
  • the network side device 10 and the user equipment 20 cause the determined time-frequency resource blocks to be evenly distributed (or as evenly distributed) as possible in the downlink bandwidth of the system.
  • the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying the control information may be specified in the protocol, or the user equipment 20 may be notified by the network side. Regardless of which method is used, it is necessary to ensure that the network side device 10 and the user equipment 20 use the same correspondence to determine the number of time-frequency resource blocks.
  • the corresponding relationship between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying control information can be modified as needed.
  • the network side device 10 and the user equipment 20 determine each time-frequency resource block in the PDSCH region that carries the control information according to the number of the start time-frequency resource block and the time-frequency resource block, refer to the network side device 10 in the notification mode 2
  • the manner of each time-frequency resource block will not be described here.
  • control information includes E-PHICH information (which may include only E-PHICH information, may also include both E-PHICH information and E-PDCCH information), and time-frequency resource blocks carrying E-PHICH information
  • E-PHICH information which may include only E-PHICH information, may also include both E-PHICH information and E-PDCCH information
  • time-frequency resource blocks carrying E-PHICH information The resource mapping is performed by the E-PHICH group, and the manner of resource reservation can be reserved by the PHICH in Rel-10. Method. specific:
  • the network side device 10 notifies the configuration of the user equipment Ng through a Physical Broadcast Channel (PBCH) or higher layer signaling.
  • PBCH Physical Broadcast Channel
  • the user equipment 20 determines the number of E-PHICH groups according to the configuration of the Ng of the network side device 10 (Ng represents the parameter used in the system for calculating the number of E-PHICH groups. For details, refer to section 6.9 of the LTE protocol 36.211. description).
  • all E-PHICH groups are evenly distributed (or as evenly distributed) as possible in the time and frequency domains.
  • the network side device 10 and the user equipment 20 need to know which REG belongs to the E-PHICH group.
  • the network side device 10 and the user equipment 20 can determine the REG of the E-PHICH group for resource mapping according to Equation 1 and Equation 2:
  • the first occupied REG is: , JJ ⁇ mij ' formula one;
  • the Yth occupied REG is ⁇ L ⁇ ”.
  • Equation 2 where ⁇ is the number of time-frequency resource blocks in the system, N REG is the number of REGs in each time-frequency resource block, m is
  • the number of the E-PHICH group, m 2 ( ⁇ - ⁇ ) ⁇ ⁇ is the number of E-PHICH groups, and Offset is the offset value of the E-PHICH group (the offset value can be a preset value, or by signaling
  • the network side is configured, or may be associated with a Cell-ID (cell identity)
  • Y is a positive integer greater than 1 and less than X
  • X is the total number of REGs included in one E-PHICH group.
  • the E-PHICH resource is a resource mapping by the E-PHICH group. Following the basic principle in Rel-10, an E-PHICH group is divided into three parts, which are respectively carried by different REGs (here REG refers to the present invention).
  • REG refers to the present invention.
  • the defined REG (which may be part or all) in the time-frequency resource carrying the control information transmission is configured, and the number thereof is related to the number of reference signals (RS) configured by the system (for example: cell-specific guide) Cell-specific reference signals (CRS), Demodulation Reference Symbol (DMRS), and CSI RS channel state information reference signal (CSI RS).
  • RS reference signals
  • CRS Cell-specific reference signals
  • DMRS Demodulation Reference Symbol
  • CSI RS channel state information reference signal
  • the main principle of the E-PHICH group resource mapping is to spread the three REGs of the E-PHICH group in the time domain and the frequency domain as much as possible.
  • the size of the different control regions is shown in FIG. 8A to FIG. 8C. Schematic diagram of the occupied E-PHICH group resource.
  • E-PHICH group occupies 3 REGs in the control area, and then E-PHICH is determined according to Equation 1 and Equation 2 above.
  • the three REGs that the group performs resource mapping are:
  • the first occupied REG is: G
  • the second occupied REG is:
  • the third occupied REG is; mapping mode 2, first, the location of the frequency domain of each time-frequency resource block in which each REG of an E-PHICH group is selected, which is dispersed as much as possible in the frequency domain, and then each The location of the time domain resource in which each REG is located is determined in the time-frequency resource block.
  • the calculation of the frequency domain position can be as follows:
  • the frequency domain location where the first REG is located m + offset) oAM .
  • the frequency domain location where the first REG is located m + offset) oAM .
  • the frequency domain location where the second REG is located m + offset + l)mod .
  • the frequency domain location where the third REG is located m + offset + 2) mod .
  • M is the configured number of time-frequency resource blocks, that is, The number of PRBs.
  • the location of the time domain can be determined as follows:
  • E-PHICH group refers to a set of REs
  • E-PHICH resources are mapped by E-PHICH group, and the basic principle of Rel-10 is used.
  • E-PHICH group is also a set of REs.
  • the RE needs to be mapped to the REG.
  • the embodiment of the present invention can perform RE to REG mapping by using the first time domain post-frequency domain (see FIG. 9A) or the pre-frequency domain back time domain (see FIG. 9B).
  • the network side device 10 preferably transmits E-PDCCH information through the remaining idle REGs other than the REGs carrying the E-PHICH information in the PDSCH region. That is, except for the E-PHICH transmission For REG resources, the remaining idle REG resources can be used for E-PDCCH transmission.
  • resource mapping of the E-PDCCH may be performed by using a REG inter-based mode.
  • the E-PDCCH information of the remaining idle REG transmission is E-PDCCH information scrambled by using a Radio Network Temporary Identifier (RNTI) and/or a common RNTI, for example, for paging.
  • RNTI Radio Network Temporary Identifier
  • P-RNTI Indicated RNTI
  • RA-RNTI RNTI
  • SI-RNTI scheduling system broadcast control information
  • TPC-RNTI for power control Scrambled PDCCH information.
  • the network side device 10 may determine which transmission mode and which antenna port to use before transmitting the control information.
  • the network side device 10 determines whether to use the single port mode of the CRS or the transmit diversity mode of the CRS according to the number of antenna ports of the CRS, and then sends the control information according to the determined mode; for example, according to the CRS
  • the number of antenna ports is less than 3, the single port mode of CRS is used, and the transmit diversity mode of CRS is not less than 3, and the number of antenna ports of the current CRS is 2, then it is determined that the control information is transmitted by the single port mode of CRS;
  • the network side device 10 determines whether to use the single port mode of the DMRS or the transmit diversity mode of the DMRS according to the number of antenna ports of the DMRS, and then sends the control information according to the determined mode; for example, the number of antenna ports according to the CRS is smaller than 3.
  • Use the single port mode of DMRS, not less than 3 DMRS transmit diversity mode, the current DMRS antenna port number is 2, then determine the
  • the user equipment 20 determines the single port mode of the CRS or the transmit diversity mode of the CRS according to the number of antenna ports of the CRS, and receives the control information according to the determined mode;
  • the single port mode of the DMRS or the transmit diversity mode of the DMRS is determined according to the number of antenna ports of the DMRS, and the control information is received according to the determined mode.
  • the specific antenna port may be configured by the network side device 10 through the PBCH or the high layer signaling for the user equipment 20; correspondingly, the user equipment 20 determines the network side through PBCH or RRC signaling.
  • the antenna port configured for itself, and then further determines the corresponding mode according to the number of ports.
  • E-PDCCH information and E-PHICH information transmission may follow the definitions of PDCCH and PHICH in Rel-10.
  • PDCCH and PHICH in other versions can also be used.
  • the network side device in the embodiment of the present invention may be a station (such as a macro base station, a home base station, etc.), a relay (RN) device, or other network side devices.
  • a station such as a macro base station, a home base station, etc.
  • RN relay
  • the embodiment of the present invention further provides a network side device, a user equipment, a method for transmitting control information by the network side, and a method for the user equipment to receive control information, and the principle of solving the problem by the device and the method and the present invention
  • the system for transmitting control information is similar in the embodiment, and therefore the implementation of these devices and methods can be referred to the implementation of the system, and the repeated description will not be repeated.
  • the network side device of the embodiment of the present invention includes: a first determining module 300 and a sending module 310.
  • the first determining module 300 is configured to determine a time-frequency resource block in the PDSCH region that carries the control information
  • the sending module 310 is configured to send the control information to the user equipment by using the time-frequency resource block.
  • the sending module notifies the user equipment of the time-frequency resource in the PDSCH region that carries the control information before sending the control information by using the time-frequency resource block. Piece.
  • the first determining module 300 notifies the user equipment that each time-frequency resource block in the PDSCH region of the control information is carried.
  • the first determining module 300 notifies the user equipment of the number of the starting time-frequency resource block and the time-frequency resource block carrying the control information in the time-frequency resource block of the PDSCH region of the control information.
  • the first determining module 300 notifies the user equipment of the starting time-frequency resource block in the time-frequency resource block of the PDSCH region of the control information.
  • the first determining module 300 determines the number of time-frequency resource blocks carrying the control information according to the following manner: determining the current downlink bandwidth corresponding to the system according to the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks of the bearer control information. The number of time-frequency resource blocks that carry control information.
  • the first determining module 300 determines, according to the cell identifier and the system bandwidth of the cell where the user equipment is located, the initial time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information, and the downlink bandwidth and bearer control according to the system.
  • the correspondence between the number of time-frequency resource blocks of the information determines the number of time-frequency resource blocks of the bearer control information corresponding to the current downlink bandwidth of the system; and determines the PDSCH of the bearer control information according to the starting time-frequency resource block and the number of time-frequency resource blocks.
  • Each time-frequency resource block in the region is determining, according to the cell identifier and the system bandwidth of the cell where the user equipment is located, the initial time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information, and the downlink bandwidth and bearer control according to the system.
  • the correspondence between the number of time-frequency resource blocks of the information determines the number of time-frequency resource blocks of the bearer control information corresponding
  • the time-frequency resource blocks in the PDSCH region carrying the control information are evenly distributed in the downlink bandwidth of the system.
  • the first determining module 300 notifies the user equipment of the time-frequency resource block in the PDSCH region of the control information by using the system broadcast message or the high layer signaling.
  • control information includes: E-PHICH information, and the time-frequency resource block carrying the E-PHICH information is resource mapped by the E-PHICH group; preferably, the first determining module 300 notifies the user equipment by using PBCH or higher layer signaling.
  • the configuration of the Ng is used to indicate that the user equipment determines the number of E-PHICH groups according to the configuration of the Ng.
  • the REG resources in each E-PHICH group are evenly distributed in the time domain and the frequency domain.
  • the first determining module 300 performs resource mapping on the E-PHICH group according to Equation 1 and Equation 2.
  • the first determining module 300 performs RE to REG mapping by using a pre-time domain post-frequency domain or a pre-frequency domain post-time domain.
  • the transmitting module 310 transmits the E-PDCCH information through the remaining idle REGs other than the REG carrying the E-PHICH information in the PDSCH region.
  • the sending module 310 uses the REG interleaving based mode to carry the remaining idleness of the E-PDCCH information.
  • REG is mapped.
  • the remaining idle REG transmitted E-PDCCH information is E-PDCCH information scrambled using a user-specific RNTI and/or a common RNTI.
  • the sending module 310 determines, according to the number of antenna ports of the CRS, the single port mode of the CRS or the transmit diversity mode of the CRS, and sends the control information according to the determined mode; or determines the DMRS according to the number of antenna ports of the DMRS.
  • the sending module 310 configures the antenna port for the user equipment by using PBCH or higher layer signaling.
  • the user equipment in the embodiment of the present invention includes: a second determining module 400 and a receiving module 410.
  • the second determining module 400 is configured to determine a time-frequency resource block in the PDSCH region that carries the control information
  • the receiving module 410 is configured to receive the control information by using the determined time-frequency resource block.
  • the time-frequency resource block notified by the network side is used as a time-frequency resource block in the PDSCH region carrying the control information;
  • the second determining module 400 determines the PDSCH carrying the control information according to the received start time-frequency resource block in the time-frequency resource block of the PDSCH region of the bearer control information of the network side and the number of time-frequency resource blocks of the bearer control information. Each time-frequency resource block in the region; or
  • the second determining module 400 determines the number of time-frequency resource blocks of the bearer control information corresponding to the current downlink bandwidth of the system according to the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks of the bearer control information, according to the bearer control information notified by the network side. Determining the number of starting time-frequency resource blocks and time-frequency resource blocks in the time-frequency resource block of the PDSCH region, and determining each time-frequency resource block in the PDSCH region carrying the control information; or
  • the second determining module 400 determines, according to the cell identifier and the system bandwidth, a starting time-frequency resource block in a time-frequency resource block of the PDSCH region that carries the control information, and a correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks of the bearer control information.
  • the relationship determines the number of time-frequency resource blocks of the bearer control information corresponding to the current downlink bandwidth of the system, and determines each time-frequency resource block in the PDSCH region of the bearer control information according to the starting time-frequency resource block and the number of time-frequency resource blocks.
  • the time-frequency resource blocks in the PDSCH region carrying the control information are evenly distributed in the downlink bandwidth of the system.
  • the control information includes E-PHICH information and the time-frequency resource block carrying the E-PHICH information is resource mapped by the E-PHICH group; preferably, the second determining module 400 determines the E-PHICH according to the configuration of the Ng on the network side. The number of groups.
  • the REG resources in each E-PHICH group are evenly distributed in the time domain and the frequency domain.
  • the second determining module 400 performs resource mapping on the E-PHICH group according to Equation 1 and Equation 2.
  • the receiving module 410 determines, according to the number of antenna ports of the CRS, a single port mode of the CRS or a transmit diversity mode of the CRS, and receives control information according to the determined mode; or
  • the receiving module 410 determines the single port mode of the DMRS or the transmit diversity mode of the DMRS according to the number of antenna ports of the DMRS, and receives the control information according to the determined mode. Preferably, the receiving module 410 determines the antenna end ⁇ configured by the network side for the user equipment by using PBCH or RRC signaling.
  • the method for sending control information on the network side of the embodiment of the present invention includes the following steps:
  • Step 501 The network side determines a time-frequency resource block in a PDSCH region that carries control information.
  • Step 502 The network side sends control information to the user equipment by using a time-frequency resource block.
  • step 501 and step 502 may further include:
  • the network side notifies the user equipment of the time-frequency resource block in the PDSCH region carrying the control information.
  • the network side may send the configuration information by using a system broadcast message or a high layer signaling.
  • Notification mode 1 The network side notifies the user equipment of each time-frequency resource block in the PDSCH region carrying the control information.
  • the network side can make the time-frequency resource block in the PDSCH region carrying the control information uniform (or as uniform as possible) in the downlink bandwidth of the system when determining each time-frequency resource block in the PDSCH region that carries the control information. distributed.
  • Notification mode 2 The network side notifies the user equipment of the number of time-frequency resource blocks in the time-frequency resource block of the PDSCH region carrying the control information and the time-frequency resource block in the control information.
  • the time-frequency resource blocks in the PDSCH region carrying the control information may be evenly distributed (or as uniformly distributed) as possible in the downlink bandwidth of the system.
  • the initial time-frequency resource block and the bearer control in the time-frequency resource block of the PDSCH region carrying the control information need to be determined.
  • the network side and the user equipment need to determine each time-frequency resource block in the PDSCH area that carries the control information in the same manner, so that the time-frequency resource block determined by the network side and the user equipment is the same, and the time-frequency resource is
  • the blocks are evenly distributed (or as evenly distributed) as possible in the downstream bandwidth of the system.
  • Notification mode 3 The network side notifies the user equipment of the time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information and the number of time-frequency resource blocks carrying the control information.
  • the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying the control information may be specified in the protocol, or the user equipment may be notified by the network side. Regardless of which method is used, it is necessary to ensure that the network side and the user equipment use the same correspondence to determine the number of time-frequency resource blocks.
  • the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying control information may be modified as needed.
  • the time-frequency resource block in the PDSCH region carrying the control information can be uniform in the downlink bandwidth of the system. (or as evenly as possible) distribution.
  • the initial time-frequency resource block and the bearer control in the time-frequency resource block of the PDSCH region carrying the control information need to be determined.
  • the network side and the user equipment need to determine the number of time-frequency resource blocks in the same manner, and determine each time-frequency resource block in the PDSCH area that carries the control information in the same manner, so as to ensure the network side and the user.
  • the time-frequency resource blocks determined by the device are the same, and the time-frequency resource blocks are evenly distributed (or as evenly distributed) as possible in the downlink bandwidth of the system.
  • the embodiments of the present invention are not limited to the foregoing manners, and other manners that can notify a user of a time-frequency resource block in a PDSCH region that carries control information are applicable to the embodiments of the present invention.
  • both parties determine the number of starting time-frequency resource blocks and time-frequency resource blocks in the same manner, and determine the number of starting time-frequency resource blocks and time-frequency resource blocks in the same manner.
  • the network side and the user equipment determine, according to the cell identifier and the system bandwidth of the cell where the user equipment is located, the initial time-frequency resource block in the time-frequency resource block of the PDSCH region that carries the control information, and the downlink bandwidth and bearer control information according to the system.
  • Corresponding relationship between the number of time-frequency resource blocks determines the number of time-frequency resource blocks of the bearer control information corresponding to the current downlink bandwidth of the system, and determines the PDSCH of the bearer control information according to the starting time-frequency resource block and the number of time-frequency resource blocks.
  • Each time-frequency resource block in the region is based on the cell identifier and the system bandwidth of the cell where the user equipment is located.
  • the time-frequency resource blocks in the PDSCH region carrying the control information may be evenly distributed (or as uniformly distributed) as possible in the downlink bandwidth of the system.
  • the network side and the user equipment determine the number of the starting time-frequency resource block and the time-frequency resource block in the same manner, and determine the time-frequency resource block in the PDSCH region carrying the control information in the same manner, the network can be guaranteed.
  • the side is the same as the time-frequency resource block determined by the user equipment.
  • the network side and the user equipment cause the determined time-frequency resource blocks to be evenly distributed (or as evenly distributed) as possible in the downlink bandwidth of the system.
  • the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying the control information may be specified in the protocol, or the user equipment may be notified by the network side. Regardless of which method is used, it is necessary to ensure that the network side and the user equipment use the same correspondence to determine the number of time-frequency resource blocks.
  • the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks carrying control information may be modified as needed.
  • control information includes E-PHICH information (which may include only E-PHICH information, may also include both E-PHICH information and E-PDCCH information), and time-frequency resource blocks carrying E-PHICH information
  • E-PHICH information which may include only E-PHICH information, may also include both E-PHICH information and E-PDCCH information
  • time-frequency resource blocks carrying E-PHICH information The resource mapping is performed by the E-PHICH group, and the manner of resource reservation can be reserved by the PHICH in Rel-10. Method. specific:
  • the network side notifies the configuration of the user equipment Ng through PBCH or high layer signaling.
  • all E-PHICH groups are evenly (or as evenly distributed) distributed over the time and frequency domains.
  • the network side can determine the REG of the E-PHICH group for resource mapping according to Equation 1 and Equation 2.
  • the E-PHICH resource is a resource mapping by the E-PHICH group.
  • an E-PHICH group is divided into three parts, which are respectively carried by different REGs (here REG refers to the present invention).
  • REG refers to the present invention.
  • the defined REG (which may be part or all) in the time-frequency resource carrying the control information transmission is configured, and the number thereof is related to the number of RSs configured by the system (for example: CRS, DMRS, and CSI RS) Wait).
  • the main principle of the E-PHICH group resource mapping is to spread the three REGs of the E-PHICH group in the time domain and the frequency domain as much as possible.
  • the size of the different control regions is shown in FIG. 8A to FIG. 8C. Schematic diagram of the occupied E-PHICH group resource.
  • mapping mode 2 refers to mapping mode 2 in Figure 2, and details are not described here.
  • mapping method it is necessary to ensure that the network side and the user equipment use the same mapping method.
  • mapping manners that can ensure uniform (or as uniform) distribution of the E-PHICH group in the time domain and the frequency domain are applicable to the embodiments of the present invention.
  • E-PHICH group refers to a set of REs
  • E-PHICH resources are mapped by E-PHICH group, and the basic principle of Rel-10 is used.
  • E-PHICH group is also a set of REs.
  • the RE needs to be mapped to the REG.
  • the embodiment of the present invention can perform RE to REG mapping by using the first time domain post-frequency domain (see FIG. 9A) or the pre-frequency domain back time domain (see FIG. 9B).
  • the network side transmits E-PDCCH information through the remaining idle REGs other than the REG carrying the E-PHICH information in the PDSCH region. That is to say, except for the REG resources occupied by the E-PHICH transmission, the remaining idle REG resources can be used for the transmission of the E-PDCCH.
  • resource mapping of the E-PDCCH may be performed by using a REG interleaving based mode.
  • the E-PDCCH information of the remaining idle REG transmission is E-PDCCH information scrambled using a user-specific RNTI and/or a common RNTI, such as a scrambled PDCCH such as P-RNTI/RA-RNTI/SI-RNTI. information.
  • the network side may determine which transmission mode and which antenna port to use before transmitting the control information. Specifically, if the antenna port of the CRS is used, the network side determines whether to use the single port mode of the CRS or the transmit diversity mode of the CRS according to the number of antenna ports of the CRS, and then sends control information according to the determined mode; for example, an antenna according to the CRS The number of ports is less than 3, the single port mode of CRS, and the transmit diversity mode of CRS is not less than 3 ⁇ . If the number of antenna ports of the current CRS is 2, it is determined that the control information is transmitted in the single port mode of the CRS. If the antenna port of the DMRS is used, the network side determines whether to use the single port mode of the DMRS according to the number of antenna ports of the DMRS. The transmit diversity mode of the DMRS, and then send control information according to the determined mode;
  • the number of antenna ports of the CRS is less than 3.
  • the single port mode of the DMRS is not less than the transmit diversity mode of the DMRS. If the number of antenna ports of the current DMRS is 2, it is determined that the control information is transmitted in the single port mode of the CRS.
  • the specific antenna port may be configured by the network side through the PBCH or the high layer signaling for the user equipment; correspondingly, the user equipment determines, by using PBCH or RRC signaling, that the network side configures itself. The antenna port, and then further determines the corresponding mode according to the number of ports.
  • E-PDCCH information and E-PHICH information transmission may follow the definitions of PDCCH and PHICH in Rel-10.
  • PDCCH and PHICH in other versions can also be used.
  • the method for the user equipment to receive the control information in the embodiment of the present invention includes:
  • Step 601 The user equipment determines a time-frequency resource block in a PDSCH region that carries control information.
  • Step 602 The user equipment receives the control information by using the determined time-frequency resource block.
  • the network side notifies the user equipment of the time-frequency resource block in the PDSCH area of the control information.
  • the user equipment determines the time-frequency resource block in the PDSCH area that carries the control information according to the notification of the network side.
  • the user equipment determines the time-frequency resource block in the PDSCH area of the bearer control information according to the notification of the network side.
  • the way is different, here are a few:
  • Notification mode 1 The network side notifies the user equipment of each time-frequency resource block in the PDSCH area that carries the control information.
  • the user equipment uses the time-frequency resource block notified by the network side as the time-frequency resource in the PDSCH area of the bearer control information. Piece.
  • Notification mode 2 The network side notifies the user equipment of the time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information and the number of time-frequency resource blocks carrying the control information;
  • the user equipment determines the PDSCH carrying the control information according to the number of the start time-frequency resource block and the time-frequency resource block in the time-frequency resource block of the PDSCH region of the PDSCH region received from the network-side bearer control information. Each time-frequency resource block in the region.
  • Notification mode 3 The network side notifies the user equipment of the time-frequency resource block in the time-frequency resource block of the PDSCH region carrying the control information and the number of time-frequency resource blocks carrying the control information;
  • the user equipment determines the number of time-frequency resource blocks of the bearer control information corresponding to the current downlink bandwidth of the system according to the correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks of the bearer control information, according to the bearer control information notified by the network side.
  • it can also be agreed by both parties. That is, without notification, both parties determine the number of starting time-frequency resource blocks and time-frequency resource blocks in the same manner, and determine the number of starting time-frequency resource blocks and time-frequency resource blocks in the same manner.
  • Each time-frequency resource block in the PDSCH region carrying control information.
  • the user equipment determines, according to the cell identifier and the system bandwidth, a start time-frequency resource block in a time-frequency resource block of the PDSCH region that carries the control information, and a correspondence between the downlink bandwidth of the system and the number of time-frequency resource blocks of the bearer control information.
  • the relationship determines the number of time-frequency resource blocks of the bearer control information corresponding to the current downlink bandwidth of the system, and determines each time-frequency resource block in the PDSCH region of the bearer control information according to the starting time-frequency resource block and the number of time-frequency resource blocks.
  • control information includes E-PHICH information (which may include only E-PHICH information, may also include both E-PHICH information and E-PDCCH information), and time-frequency resource blocks carrying E-PHICH information
  • E-PHICH information which may include only E-PHICH information, may also include both E-PHICH information and E-PDCCH information
  • time-frequency resource blocks carrying E-PHICH information The resource mapping is performed by the E-PHICH group, and the method of resource reservation may follow the PHICH reservation method in Rel-10. specific:
  • the network side notifies the configuration of the user equipment Ng through the PBCH or the high layer signaling;
  • the user equipment determines the number of E-PHICH groups according to the configuration of the Ng on the network side.
  • mapping mode 1 The user equipment can determine the mapping mode of the resource mapping by the E-PHICH group according to the formula 1 and formula 2. See the mapping mode 2 in Figure 2, and no further details are provided here.
  • the user equipment may determine which transmission mode and which antenna terminal ⁇ to use before receiving the control information.
  • the user equipment determines, according to the number of antenna ports of the CRS, the single port mode of the CRS or the transmit diversity mode of the CRS, and receives the control information according to the determined mode;
  • the single port mode of the DMRS or the transmit diversity mode of the DMRS is determined according to the number of antenna ports of the DMRS, and the control information is received according to the determined mode.
  • the specific antenna port may be configured by the network side through the PBCH or the high layer signaling for the user equipment; correspondingly, the user equipment determines, by using PBCH or RRC signaling, that the network side configures itself. The antenna port, and then further determines the corresponding mode according to the number of ports.
  • step 501 is performed first, then step 502 is performed, and step 602 is finally executed.
  • step 601 and step 501 and step 502 have no necessary timing relationship. It is only necessary to ensure that step 601 is before step 602.
  • embodiments of the present invention can be provided as a method, system, or computer program.
  • Product may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • present invention is in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术领域,特别涉及一种传输控制信息的方法、系统及设备,用以解决现有技术存在的对于采用 ABS配置的子帧以及没有 LTE R10的控制区域的载波中, PHICH无法传输的问题。本申请实施例提供的一种传输控制信息的方法包括:网络侧确定承载控制信息的 PDSCH区域中的时频资源块;所述网络侧通过所述时频资源块向用户设备发送控制信息。由于通过 PDSCH区域中的时频资源块发送控制信息,对于采用 ABS配置的子帧以及没有 LTE R10的控制区域的载波的情况下也可以传输 PHICH,从而提高了系统性能。

Description

一种传输控制信息的方法、 系统及设备 本申请要求在 2011年 10月 17日提交中国专利局、 申请号为 201110314961.6、发明名 称为 "一种传输控制信息的方法、 系统及设备"的中国专利申请的优先权, 其全部内容通过 引用结合在本申请中。 技术领域
本发明涉及无线通信技术领域, 特别涉及一种传输控制信息的方法、 系统及设备。 背景技术
在长期演进 ( Long Term Evolution, LTE ) Rel-10 (版本 10 ) 系统中, 物理混合自动请 求重传指示信道( Physical HARQ Indication Channel, PHICH )用于承载上行业务的反馈信 息即正确应答指令 ( ACKnowledge, ACK ) /错误应答指令 ( Negative ACKnowledge, NACK )。
PHICH组(group )的概念指的是一组资源单元( Resource Element, RE )的集合, 在 这个 RE的集合中可以传输 8个或 4个 PHICH , 各个 PHICH之间通过正交序列进行区分。 对于常规的( Normal )循环前缀( Cyclic Prefix, CP )来说有 8个正交序列,那么一个 PHICH group中有 8个 PHICH信道。 对于扩展的( Extended ) CP来说有 4个正交序列, 那么一个 PHICH group中有 4个 PHICH信道。
PHICH映射在物理下行控制信道(Physical Downlink Control Channel, PDCCH )控制 区域中的物理控制格式指示信道( Physical Control Format Indication Channel, PCFICH )未 使用的资源单元组(Resource Element Group, REG )上, 其在时域映射的持续时间可由系 统进行配置, 并由系统广播通知。 常规的 PHICH时域资源配置( Normal PHICH Duration ) 情况下, PHICH组映射在下行子帧的第一个正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )符号上,可以支持较少的用户数量和小覆盖的场景;而扩展的 PHICH 时域资源配置( Extended PHICH Duration )情况下, 每个 PHICH组映射在下行子帧的前 3 个 OFDM符号上(在多媒体广播多播业务单频网络( Multimedia Broadcast multicast service Single Frequency Network , MBSFN ) 子帧中以及时分同步码分多址 -长期演进 ( TD-SCDMALong Term Evolution, TD-LTE )子帧 1和子帧 6中为前 2个 OFDM符号上), 用于支持较大的覆盖半径或较多用户数量的场景。
一个 PHICH组在控制区域占用的 3个 REG在时频域的分布有所不同, 目标是获得最 大的时间和频率分集增益, 如图 1所示。 图 1为一个 PHICH组资源映射的示意图。 一个 PHICH group占用的时频资源与 REG的个数、 小区标识( ID )、 PHICH组序号以及具体的 OFDM符号序号等有关。
随着日益增长的数据速率以及业务负载的要求, 传统的用宏基站单层覆盖提供接入的 方法已经不能满足需求。 釆用分层覆盖, 在热点地区或者室内部署一些低功率的基站, 如 家庭基站( He B ) /微基站( Pico NodeB ) /毫微微蜂窝式基站( Femto NodeB ) /中继基站 ( Relay NodeB ), 能够很好的解决这种问题。 这种低功率的基站是一种应用在家庭室内环 境、 办公环境或其它热点小覆盖环境下的基站设备, 能够使得运营商提供更高数据速率、 更低成本的有吸引力的业务。 但其中 Femto基站对接入的成员用户有一定的限制, 非成员 用户不能接入, 如果非成员用户进入该基站的覆盖范围, 则会由于低功率基站信号较强而 进入覆盖空洞 ( coverage hole ), 导致不能工作。 此外, Pico基站如果与宏基站处在同频, 也可能会产生强千扰导致无法工作。
现有解决此类千扰的办法是釆用千扰规避子帧 (almost Blank Subframe, ABS ), 即基 站在 ABS 子帧内减少信号的发送, 以降低对邻区的千扰的方式进行时分复用 ( Time Division Multiple, TDM )方式的小区间千扰十办调( inter-cell intereference coordination, ICIC )。 目前 TDM ICIC机制中, 千扰基站侧被配置 ABS子帧, 即千扰基站在 ABS这类子帧上为 避免千扰不传输任何的控制信息。 由于 ABS机制的引入, 导致 PHICH的传输受限。
同时,在 LTE Rel- 11可能会弓 I入扩展载波的定义,其不包含 LTE Rel- 10兼容的 PDCCH 控制区域, 在扩展载波上的 PUSCH的调度, 一方面可以通过跨载波调度的方式通过其他 兼容的成员载波调度, 另一方面, 可能在扩展载波中定义新的增强 PDCCH的传输, 其中 增强的 PDCCH的传输占用 PDSCH区域。 因此, 在后一种情况下也需要考虑 PHICH传输 的问题。
综上所述, 目前对于釆用 ABS配置的子帧以及没有 LTE R10的控制区域的载波中, PHICH无法传输。 发明内容
本发明实施例提供一种传输控制信息的方法、 系统及设备, 用以解决现有技术存在的 对于釆用 ABS配置的子帧以及没有 LTE R10的控制区域的载波中, PHICH无法传输的问 题。
本发明实施例提供的一种传输控制信息的方法, 包括:
网络侧确定承载控制信息的物理下行链路共享信道 PDSCH区域中的时频资源块; 所述网络侧通过所述时频资源块向用户设备发送控制信息。
本发明实施例提供的另一种传输控制信息的方法, 包括:
用户设备确定承载控制信息的 PDSCH区域中的时频资源块;
所述用户设备通过确定的时频资源块接收控制信息。 本发明实施例提供的一种传输控制信息的网络侧设备, 包括:
第一确定模块, 用于确定承载控制信息的 PDSCH区域中的时频资源块;
发送模块, 用于通过所述时频资源块向用户设备发送控制信息。
本发明实施例提供的一种传输控制信息的用户设备, 包括:
第二确定模块, 用于确定承载控制信息的 PDSCH区域中的时频资源块;
接收模块, 用于通过确定的时频资源块接收控制信息。
本发明实施例提供的一种传输控制信息的系统, 包括:
网络侧设备, 用于确定承载控制信息的 PDSCH区域中的时频资源块, 通过所述时频 资源块向用户设备发送控制信息;
用户设备, 用于确定承载控制信息的 PDSCH区域中的时频资源块, 通过确定的时频 资源块接收控制信息。
由于通过 PDSCH区域中的时频资源块发送控制信息,对于釆用 ABS配置的子帧以及 没有 LTE R10的控制区域的载波的情况下也可以传输 PHICH, 从而提高了系统性能。 附图说明
图 1为现有技术中一个 PHICH组在控制区域的资源映射示意图;
图 2为本发明实施例提供的传输控制信息的系统结构示意图;
图 3为本发明实施例提供的网络侧设备的结构示意图;
图 4为本发明实施例提供的用户设备的结构示意图;
图 5为本发明实施例提供的网络侧发送控制信息的方法流程示意图;
图 6为本发明实施例提供的用户设备接收控制信息的方法流程示意图;
图 7A为本发明实施例提供的兼容载波传输控制信息的示意图;
图 7B为本发明实施例提供的扩展载波传输控制信息的示意图;
图 8A为本发明实施例提供的控制区域时频资源块个数为 3的资源映射示意图; 图 8B为本发明实施例提供的控制区域时频资源块个数为 2的资源映射示意图; 图 8C为本发明实施例提供的控制区域时频资源块个数为 1的资源映射示意图; 图 9A为本发明实施例提供的先时域后频域映射的示意图;
图 9B为本发明实施例提供的先频域后时域映射的示意图。 具体实施方式
针对现有技术存在的对于釆用 ABS配置的子帧以及没有 LTE R10的控制区域的载波 中, PHICH无法传输的问题, 本发明实施例提供如下方案: 网络侧通过物理下行链路共享 信道( Physical Downlink Shared Channel, PDSCH )区域中的时频资源块向用户设备发送控 制信息。 由于通过 PDSCH区域中的时频资源块发送控制信息, 对于釆用 ABS配置的子帧 以及没有 LTE R10的控制区域的载波的情况下也可以传输 PHICH, 从而提高了系统性能。
承载控制信息的 PDSCH区域中的时频资源块可以是兼容载波(参见图 7A ), 还可以 是扩展载波(参见图 7B )。
其中, 控制信息包括: 通过增强的物理混合自动请求重传指示信道(E-PHICH )承载 的信息即 E-PHICH信息和 /或通过增强的物理下行控制信道(E-PDCCH )承载的信息即 E-PDCCH信息。
通过 E-PHICH 承载的信息是 ACK 或 NACK; 通过 E-PDCCH 承载的信息包括 Rel-8/Rel-lO中相似的控制信息, 比如上行调度信息、 下行调度信息、 寻呼指示信息、公共 控制信息 (其包括: 随机接入信道 ( Random Access Channel, RACH ) 响应指示信息、 功 率控制信息、 系统广播控制信息等), 具体可以参见 LTE协议 36.213中的描述。
由于通过 E-PDCCH承载的控制信息中有用于反映 PUSCH数据是否正确接收的信息 (例如: 新数据指示 (NDI ) ), 所以即便控制信息中只包括 E-PDCCH信息, 也能保证用 户设备获知 PUSCH接收正确与否, 从而达到对于釆用 ABS配置的子帧以及没有 LTE R10 的控制区域的载波的情况下也可以获知 PUSCH接收正确与否的目的。
在实施中,网络侧通过映射为 E-PHICH的时频资源块发送通过 E-PHICH承载的信息, 以及通过映射为 E-PDCCH的时频资源块发送通过 E-PDCCH承载的信息。
本发明实施例的一个时频资源块可以是一个 PRB资源,也可以是一个 PRB对资源(即 一对 PRB资源), 也可以是一组(大于两个) PRB资源。
下面结合说明书附图对本发明实施例作进一步详细描述。
在下面的说明过程中, 先从网络侧和用户设备侧的配合实施进行说明, 最后分别从网 络侧与用户设备侧的实施进行说明, 但这并不意味着二者必须配合实施, 实际上, 当网络 侧与用户设备侧分开实施时, 也解决了分别在网络侧、 用户设备侧所存在的问题, 只是二 者结合使用时, 会获得更好的技术效果。
如图 2所示, 本发明实施例传输控制信息的系统包括: 网络侧设备 10和用户设备 20。 网络侧设备 10, 用于确定承载控制信息的 PDSCH区域中的时频资源块, 通过时频资 源块向用户设备 20发送控制信息;
用户设备 20, 用于确定承载控制信息的 PDSCH区域中的时频资源块, 并通过确定的 时频资源块接收控制信息。
在实施中, 网络侧设备 10确定承载控制信息的 PDSCH区域中的时频资源块之后, 通 过时频资源块发送控制信息之前还可以通知用户设备 20承载控制信息的 PDSCH区域中的 时频资源块。
较佳地, 网络侧设备 10可以通过系统广播消息或高层信令发送配置信息; 相应的, 用户设备 20通过系统广播消息或高层信令接收对应的通知。
其中, 网络侧设备 10通知用户设备 20承载控制信息的 PDSCH区域中的时频资源块 的方式有多种, 下面列举几种。
通知方式一、 网络侧设备 10通知用户设备 20承载控制信息的 PDSCH区域中的每个 时频资源块;
相应的,用户设备 20将网络侧设备 10通知的时频资源块作为承载控制信息的 PDSCH 区域中的时频资源块。
比如可以釆用比特位图 (bitmap ) 的方式, 即每个比特位对应一个时频资源块或者连 续的几个时频资源块, 根据比特位的数值确定对应的时频资源块是否是承载控制信息的 PDSCH区域中的时频资源块, 比如 "0" 表示不是, " 1 " 表示是。
较佳地, 网络侧设备 10在确定承载控制信息的 PDSCH区域中的每个时频资源块时, 可以使承载控制信息的 PDSCH区域中的时频资源块在系统的下行带宽中均匀 (或尽量均 匀)分布。
通知方式二、 网络侧设备 10通知用户设备 20承载控制信息的 PDSCH区域的时频资 源块中的起始时频资源块和承载控制信息的时频资源块的数量;
相应的, 用户设备 20根据收到的来自网络侧设备 10的承载控制信息的 PDSCH区域 的时频资源块中的起始时频资源块和承载控制信息的时频资源块的数量, 确定承载控制信 息的 PDSCH区域中的每个时频资源块。
较佳地, 承载控制信息的 PDSCH区域中的时频资源块可以在系统的下行带宽中均匀 (或尽量均匀 )分布。
针对通知方式二, 在实施中, 网络侧设备 10确定承载控制信息的 PDSCH区域中的时 频资源块时, 需要确定承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块和 承载控制信息的时频资源块的数量, 然后根据起始时频资源块和时频资源块的数量, 确定 承载控制信息的 PDSCH区域中的时频资源块。
具体的, 网络侧设备 10确定承载控制信息的 PDSCH区域的时频资源块中的起始时频 资源块时, 一种筒单的根据小区的小区标识确定时频起始位置的方法可以是: 以 PRB作为 频域资源粒度的例子可以是, (Cell_ID*offset) mod N,其中 N表示的是系统下行带宽的 PRB 个数, Cell_ID为小区标识, offset表示的是用于计算起点位置的偏移值。 需要说明的是, 本发明实施例并不局限于上述确定起始时频资源块的方式, 其他能够根据用户设备所在小 区的小区标识和系统带宽确定起始时频资源块的方式都适用本发明实施例。
网络侧设备 10根据起始时频资源块和时频资源块的数量确定承载控制信息的 PDSCH 区域中 的每个时频资源块时, 一种筒单的频域分散的方法可以表示 为 (^rt + z xLw/M」mGdN) , 其中 start表示的 点位置, i表示的是第几个时频资源 块, 1>=0且1< , M表示的是 PRB的个数。 需要说明的是, 本发明实施例并不局限于上 述确定时频资源块的方式, 其他能够根据起始时频资源块和时频资源块数量确定时频资源 块的方式都适用本发明实施例。
在实施中, 网络侧设备 10 和用户设备 20 需要使用相同的方式确定承载控制信息的 PDSCH区域中的每个时频资源块,这样可以保证网络侧设备 10和用户设备 20确定的时频 资源块相同, 且时频资源块在系统的下行带宽中均匀 (或尽量均匀)分布。
基于此,用户设备 20确定承载控制信息的 PDSCH区域中的每个时频资源块的方式可 以参见上述网络侧设备 10确定每个时频资源块的方式, 在此不再赘述。
通知方式三、 网络侧设备 10通知用户设备承载控制信息的 PDSCH区域的时频资源块 中的起始时频资源块和承载控制信息的时频资源块的数量;
相应的, 用户设备 20根据系统的下行带宽和承载控制信息的时频资源块数量的对应 关系, 确定系统当前的下行带宽对应的承载控制信息的时频资源块的数量, 根据网络侧通 知的承载控制信息的 PD SCH区域的时频资源块中的起始时频资源块和时频资源块的数量, 确定承载控制信息的 PDSCH区域中的每个时频资源块。
例如系统的下行带宽和承载控制信息的时频资源块数量的对应关系可以设定为: 系统 带宽为 6个 PRB时, 控制信息占用的 PRB个数为 2; 系统带宽为 50个 PRB时, 控制信息 占用的 PRB个数为 5。
在实施中, 系统的下行带宽和承载控制信息的时频资源块数量的对应关系可以在协议 中规定, 也可以由网络侧通知用户设备 20。 不管釆用哪种方式, 都需要保证网络侧设备 10和用户设备 20釆用相同的对应关系确定时频资源块的数量。
较佳地, 根据需要还可以对系统的下行带宽和承载控制信息的时频资源块数量的对应 关系进行修改。
较佳地, 承载控制信息的 PDSCH区域中的时频资源块可以在系统的下行带宽中均匀 (或尽量均匀 )分布。
针对通知方式三, 在实施中, 网络侧设备 10确定承载控制信息的 PDSCH区域中的时 频资源块时, 需要确定承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块和 承载控制信息的时频资源块的数量, 然后根据起始时频资源块和时频资源块的数量, 确定 承载控制信息的 PDSCH区域中的时频资源块。
网络侧设备 10和用户设备 20需要使用相同的方式确定时频资源块的数量, 以及使用 相同的方式确定承载控制信息的 PDSCH区域中的每个时频资源块, 这样可以保证网络侧 设备 10和用户设备 20确定的时频资源块相同,且时频资源块在系统的下行带宽中均匀(或 尽量均匀)分布。
基于此, 网络侧设备 10和用户设备 20确定起始时频资源块的方式可以参见通知方式 二中网络侧设备 10确定起始时频资源块的方式, 在此不再赘述;
网络侧设备 10和用户设备 20根据起始时频资源块和时频资源块的数量确定承载控制 信息的 PDSCH区域中的每个时频资源块的方式可以参见通知方式二中网络侧设备 10确定 每个时频资源块的方式, 在此不再赘述。
需要说明的是, 本发明实施例并不局限于上述几种方式, 其他能够通知用户设备 20 承载控制信息的 PDSCH区域中的时频资源块的方式都适用本发明实施例。
除了上面的通知方式, 还可以由双方进行约定。 即, 不进行通知, 双方都釆用相同的 方式确定起始时频资源块和时频资源块的数量, 并釆用相同的方式根据起始时频资源块和 时频资源块的数量, 确定承载控制信息的 PDSCH区域中的每个时频资源块。
具体的, 网络侧设备 10和用户设备 20根据用户设备 20所在小区的小区标识和系统 带宽确定承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块, 以及根据系统 的下行带宽和承载控制信息的时频资源块数量的对应关系确定系统当前的下行带宽对应 的承载控制信息的时频资源块的数量, 并根据起始时频资源块和时频资源块的数量, 确定 承载控制信息的 PDSCH区域中的每个时频资源块。
较佳地, 承载控制信息的 PDSCH区域中的时频资源块可以在系统的下行带宽中均匀 (或尽量均匀 )分布。
由于网络侧设备 10和用户设备 20使用相同的方式确定起始时频资源块和时频资源块 的数量, 以及使用相同的方式确定承载控制信息的 PDSCH区域中的每个时频资源块, 这 样可以保证网络侧设备 10和用户设备 20确定的时频资源块相同。 较佳地, 网络侧设备 10 和用户设备 20使确定的时频资源块在系统的下行带宽中均匀 (或尽量均匀)分布。
在实施中, 系统的下行带宽和承载控制信息的时频资源块数量的对应关系可以在协议 中规定, 也可以由网络侧通知用户设备 20。 不管釆用哪种方式, 都需要保证网络侧设备 10和用户设备 20釆用相同的对应关系确定时频资源块的数量。
较佳地, 根据需要还可以对系统的下行带宽和承载控制信息的时频资源块的数量的对 应关系进行修改。
其中, 网络侧设备 10和用户设备 20确定起始时频资源块的方式可以参见通知方式二 中网络侧设备 10确定起始时频资源块的方式, 在此不再赘述;
网络侧设备 10和用户设备 20根据起始时频资源块和时频资源块的数量确定承载控制 信息的 PDSCH区域中的每个时频资源块的方式可以参见通知方式二中网络侧设备 10确定 每个时频资源块的方式, 在此不再赘述。
若控制信息包括 E-PHICH信息 (其中可以是只包括 E-PHICH信息, 还可以是即包括 E-PHICH信息又包括 E-PDCCH信息两种情况), 并且承载 E-PHICH信息的时频资源块是 通过 E-PHICH组进行资源映射的, 则资源预留的方式可以沿用 Rel-10中的 PHICH预留的 方法。 具体的:
网络侧设备 10通过物理广播信道( Physical Broadcast Channel , PBCH )或高层信令通 知用户设备 Ng的配置;
相应的, 用户设备 20根据网络侧设备 10的 Ng的配置确定 E-PHICH组的数量( Ng 表示系统中用于计算 E-PHICH组个数的参数, 具体可以参见 LTE协议 36.211中 6.9章节 中的描述)。
较佳地, 所有 E-PHICH组在时域和频域上均匀 (或尽量均匀)分布
由于一个 E-PHICH组在控制区域占用多个 REG, 所以网络侧设备 10和用户设备 20 需要知道哪个 REG属于 E-PHICH组。
在实施中, 保证 E-PHICH组在时域和频域上均匀 (或尽量均匀)分布的方式有很多, 下面列举几种:
映射方式一、网络侧设备 10和用户设备 20可以根据公式一和公式二确定 E-PHICH组 进行资源映射的 REG:
m + Offset ) mod ( TV x NPFr
第一个占用的 REG为: 、 JJ } mij ' 公式一;
(Y - l)x Nx N I、
m + Offset + ' REG mow d(N NK
X
第 Y个占用的 REG为 Λ L Λ 」 ....公式二; 其中, Ν为系统中时频资源块的数量, NREG为每个时频资源块中 REG的数量, m是
E-PHICH组的编号, m二 (Μ -ΐ) ^ Μ是 E-PHICH组的数量, Offset是 E-PHICH 组的偏移值(该偏移值可以为预设值,或通过信令由网络侧进行配置,或可以与 Cell-ID (小 区标识)相关), Y是大于 1且小于 X的正整数, X是一个 E-PHICH组包含的 REG的总 数。
E-PHICH资源是通过 E-PHICH group进行资源的映射, 沿用 Rel-10中的基本原则,一 个 E-PHICH group分为三个部分, 分别由不同的 REG承载(这里的 REG指的是本发明实 施例中配置承载控制信息传输的时频资源中的定义的 REG (可以是部分也可以是全部)), 其个数与系统配置的参考信号(RS )的个数有关(例如: 小区专属导频信号(Cell-specific reference signals, CRS )、 解调参考符号( Demodulation Reference Symbol , DMRS )以及信 道状态信息参考符号 (CSI RS channel state information reference signal , CSI RS )等)。
较佳地, E-PHICH group资源映射的主要的原则是将 E-PHICH group的 3个 REG在时 域和频域尽量的分散开,图 8A ~图 8C中给出了对于不同控制区域大小情况下的 E-PHICH group资源占用的示意图。
一个 E-PHICH组在控制区域占用 3个 REG,则根据上述公式一和公式二确定 E-PHICH 组进行资源映射的 3个 REG分别是:
m + Offset) mod (NxN REG
第一个占用的 REG为: G
第二个占用的 REG为:
Figure imgf000010_0001
2xNxN
m + Offset + R,EG mod(7Vx7\^ REG
3
第三个占用的 REG为; 映射方式二、 首先, 选定一个 E-PHICH group的每个 REG其所在的时频资源块频域 的位置, 其在频域上尽量分散开, 然后再每个时频资源块中确定每个 REG所在的时域资 源的位置。
如果釆用先频域后时域的 RE到 REG的映射原则,
频域位置的计算可以如下:
对于 M不等于 2的情况:
第一个 REG所在的频域位置: m + offset) oAM .
m + offset + \_M / 3 ^jmodM .
第二个 REG所在的频域位置:
m + offset + [2x /3j)mod
第三个 REG所在的频域位置:
对于 M等于 2的情况:
第一个 REG所在的频域位置: m + offset) oAM .
第二个 REG所在的频域位置: m + offset + l)mod . 第三个 REG所在的频域位置: m + offset + 2)mod . 其中, M为配置的时频资源块数, 也就是 PRB个数。
其时域位置的确定可以如下:
m
第一个 REG所在的时域位置:
m
第二个 REG所在的时域位置:
第三个 REG所在的时域位置:
Figure imgf000010_0002
由于 PHICH group的概念指的是一组 RE的集合, E-PHICH资源是通过 E-PHICH group 进行资源的映射, 沿用 Rel-10中的基本原则, 则 E-PHICH group也是一组 RE的集合。 在 实施中, 需要将 RE映射到 REG上。 本发明实施例可以釆用釆用先时域后频域(参见图 9A )或先频域后时域(参见图 9B ) 的方式进行 RE到 REG的映射。
为了节省资源, 较佳地, 网络侧设备 10通过 PDSCH区域中除承载 E-PHICH信息的 REG之外的剩余的空闲 REG传输 E-PDCCH信息。 也就是说, 除了 E-PHICH传输占用的 REG 资源, 剩余的空闲 REG 资源都可以用于 E-PDCCH 的传输。 较佳地, 针对这部分 E-PDCCH可以釆用基于 REG交织的模式进行 E-PDCCH的资源映射。
较佳地,剩余的空闲 REG传输的 E-PDCCH信息是使用用户专属的无线网络临时标识 符( Radio Network Temporary Identifier, RNTI )和 /或公共 RNTI加扰的 E-PDCCH信息, 例如用于寻呼指示的 RNTI ( P-RNTI ) /用于随机接入响应的 RNTI ( RA-RNTI ) /用于调 度系统广播控制信息的 RNTI ( SI-RNTI ) /用于功率控制的 RNTI ( TPC-RNTI )等加扰 的 PDCCH信息。
其中, 网络侧设备 10在发送控制信息之前可以先确定釆用哪种传输模式以及哪种天 线端口。
具体的, 若釆用 CRS的天线端口, 则网络侧设备 10根据 CRS的天线端口数, 确定釆 用 CRS的单端口模式还是 CRS的发射分集模式, 然后根据确定的模式发送控制信息; 比 如根据 CRS的天线端口数小于 3釆用 CRS的单端口模式, 不小于 3釆用 CRS的发射分集 模式, 当前的 CRS的天线端口数是 2, 则确定釆用 CRS的单端口模式发送控制信息; 若釆用 DMRS的天线端口, 则网络侧设备 10根据 DMRS的天线端口数, 确定釆用 DMRS的单端口模式还是 DMRS的发射分集模式, 然后根据确定的模式发送控制信息; 比 如根据 CRS的天线端口数小于 3釆用 DMRS的单端口模式, 不小于 3釆用 DMRS的发射 分集模式,当前的 DMRS的天线端口数是 2,则确定釆用 CRS的单端口模式发送控制信息。
相应的, 若釆用 CRS的天线端口, 用户设备 20根据 CRS的天线端口数, 确定釆用 CRS的单端口模式或 CRS的发射分集模式, 并根据确定的模式接收控制信息;
若釆用 DMRS的天线端口, 根据 DMRS的天线端口数, 确定釆用 DMRS的单端口模 式或 DMRS的发射分集模式, 并根据确定的模式接收控制信息。
在实施中,具体釆用哪种天线端口( CRS或 DMRS )可以由网络侧设备 10通过 PBCH 或高层信令为用户设备 20进行配置; 相应的, 用户设备 20通过 PBCH或 RRC信令确定 网络侧为自身配置的天线端口, 然后进一步根据端口数量确定对应的模式。
对于 E-PDCCH信息和 E-PHICH信息传输中的编码、 调制、 扩频、 加扰、 层映射以及 预编码的处理本发明实施例可以沿用 Rel-10中的 PDCCH和 PHICH的定义。 当然, 也可 以釆用其他版本中 PDCCH和 PHICH的定义。
其中, 本发明实施例的网络侧设备可以^ &站(比如宏基站、 家庭基站等), 也可以 是中继 ( RN )设备, 还可以是其它网络侧设备。
基于同一发明构思, 本发明实施例中还提供了一种网络侧设备、 用户设备、 网络侧发 送控制信息的方法及用户设备接收控制信息的方法, 由于这些设备和方法解决问题的原理 与本发明实施例传输控制信息的系统相似, 因此这些设备和方法的实施可以参见系统的实 施, 重复之处不再赘述。 如图 3所示, 本发明实施例的网络侧设备包括: 第一确定模块 300和发送模块 310。 第一确定模块 300, 用于确定承载控制信息的 PDSCH区域中的时频资源块; 发送模块 310, 用于通过时频资源块向用户设备发送控制信息。
较佳地, 第一确定模块 300确定承载控制信息的 PDSCH区域中的时频资源块之后, 发送模块通过时频资源块发送控制信息之前, 通知用户设备承载控制信息的 PDSCH区域 中的时频资源块。
较佳地, 第一确定模块 300通知用户设备承载控制信息的 PDSCH区域中的每个时频 资源块。
较佳地, 第一确定模块 300通知用户设备承载控制信息的 PDSCH区域的时频资源块 中的起始时频资源块和承载控制信息的时频资源块的数量。
较佳地, 第一确定模块 300通知用户设备承载控制信息的 PDSCH区域的时频资源块 中的起始时频资源块。
较佳地, 第一确定模块 300根据下列方式确定承载控制信息的时频资源块的数量: 根 据系统的下行带宽和承载控制信息的时频资源块数量的对应关系, 确定系统当前的下行带 宽对应的承载控制信息的时频资源块的数量。
较佳地, 第一确定模块 300根据用户设备所在小区的小区标识和系统带宽确定承载控 制信息的 PDSCH区域的时频资源块中的起始时频资源块, 以及根据系统的下行带宽和承 载控制信息的时频资源块数量的对应关系确定系统当前的下行带宽对应的承载控制信息 的时频资源块的数量; 根据起始时频资源块和时频资源块的数量, 确定承载控制信息的 PDSCH区域中的每个时频资源块。
较佳地,承载控制信息的 PDSCH区域中的时频资源块在系统的下行带宽中均匀分布。 较佳地, 第一确定模块 300通过系统广播消息或高层信令通知用户设备承载控制信息 的 PDSCH区域中的时频资源块。
若控制信息包括: E-PHICH信息,且承载 E-PHICH信息的时频资源块是通过 E-PHICH 组进行资源映射的; 较佳地, 第一确定模块 300通过 PBCH或高层信令通知用户设备 Ng 的配置, 用于指示用户设备根据 Ng的配置确定 E-PHICH组的数量。
较佳地, 每个 E-PHICH group中的 REG资源在时域和频域上均匀分布。
较佳地, 第一确定模块 300根据公式一和公式二对 E-PHICH组进行资源映射。
较佳地, 第一确定模块 300釆用先时域后频域或先频域后时域的方式进行 RE到 REG 的映射。
较佳地, 发送模块 310通过 PDSCH区域中除承载 E-PHICH信息的 REG之外的剩余 的空闲 REG传输 E-PDCCH信息。
较佳地,发送模块 310釆用基于 REG交织的模式对承载 E-PDCCH信息的剩余的空闲 REG进行映射。
较佳地, 剩余的空闲 REG传输的 E-PDCCH信息是使用用户专属的 RNTI和 /或公共 RNTI加扰的 E-PDCCH信息。
较佳地, 发送模块 310根据 CRS的天线端口数, 确定釆用 CRS的单端口模式或 CRS 的发射分集模式, 并根据确定的模式发送控制信息; 或根据 DMRS的天线端口数, 确定釆 用 DMRS的单端口模式或 DMRS的发射分集模式, 并根据确定的模式发送控制信息。
较佳地, 发送模块 310通过 PBCH或高层信令为用户设备配置天线端口。
如图 4所示, 本发明实施例的用户设备包括: 第二确定模块 400和接收模块 410。 第二确定模块 400, 用于确定承载控制信息的 PDSCH区域中的时频资源块; 接收模块 410, 用于通过确定的时频资源块接收控制信息。
较佳地, 将网络侧通知的时频资源块作为承载控制信息的 PDSCH区域中的时频资源 块; 或
第二确定模块 400根据收到的来自网络侧的承载控制信息的 PDSCH区域的时频资源 块中的起始时频资源块和承载控制信息的时频资源块的数量,确定承载控制信息的 PDSCH 区域中的每个时频资源块; 或
第二确定模块 400根据系统的下行带宽和承载控制信息的时频资源块数量的对应关系 确定系统当前的下行带宽对应的承载控制信息的时频资源块的数量, 根据网络侧通知的承 载控制信息的 PDSCH区域的时频资源块中的起始时频资源块和时频资源块的数量, 确定 承载控制信息的 PDSCH区域中的每个时频资源块; 或
第二确定模块 400根据小区标识和系统带宽确定承载控制信息的 PDSCH区域的时频 资源块中的起始时频资源块, 以及根据系统的下行带宽和承载控制信息的时频资源块数量 的对应关系确定系统当前的下行带宽对应的承载控制信息的时频资源块的数量, 并根据起 始时频资源块和时频资源块的数量确定承载控制信息的 PDSCH区域中的每个时频资源块。
较佳地,承载控制信息的 PDSCH区域中的时频资源块在系统的下行带宽中均匀分布。 若控制信息包括 E-PHICH信息且承载 E-PHICH信息的时频资源块是通过 E-PHICH组 进行资源映射的; 较佳地, 第二确定模块 400根据网络侧的 Ng的配置确定 E-PHICH组的 数量。
较佳地, 每个 E-PHICH group中的 REG资源在时域和频域上均匀分布。
较佳地, 第二确定模块 400根据公式一和公式二对 E-PHICH组进行资源映射。
较佳地, 接收模块 410根据 CRS的天线端口数, 确定釆用 CRS的单端口模式或 CRS 的发射分集模式, 并根据确定的模式接收控制信息; 或
接收模块 410根据 DMRS的天线端口数, 确定釆用 DMRS的单端口模式或 DMRS的 发射分集模式, 并根据确定的模式接收控制信息。 较佳地, 接收模块 410通过 PBCH或 RRC信令确定网络侧为用户设备配置的天线端 α。
如图 5所示, 本发明实施例网络侧发送控制信息的方法包括下列步骤:
步骤 501、 网络侧确定承载控制信息的 PDSCH区域中的时频资源块;
步骤 502、 网络侧通过时频资源块向用户设备发送控制信息。
在实施中, 步骤 501和步骤 502之间还可以进一步包括:
网络侧通知用户设备承载控制信息的 PDSCH区域中的时频资源块。
较佳地, 网络侧可以通过系统广播消息或高层信令发送配置信息。
其中, 网络侧通知用户设备承载控制信息的 PDSCH区域中的时频资源块的方式有多 种, 下面列举几种。
通知方式一、 网络侧通知用户设备承载控制信息的 PDSCH区域中的每个时频资源块。 较佳地, 网络侧在确定承载控制信息的 PDSCH区域中的每个时频资源块时, 可以使 承载控制信息的 PDSCH区域中的时频资源块在系统的下行带宽中均匀 (或尽量均匀)分 布。
通知方式二、 网络侧通知用户设备承载控制信息的 PDSCH区域的时频资源块中的起 始时频资源块和承载控制信息的时频资源块的数量。
较佳地, 承载控制信息的 PDSCH区域中的时频资源块可以在系统的下行带宽中均匀 (或尽量均匀 )分布。
针对通知方式二, 在实施中, 网络侧确定承载控制信息的 PDSCH区域中的时频资源 块时, 需要确定承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块和承载控 制信息的时频资源块的数量, 然后根据起始时频资源块和时频资源块的数量, 确定承载控 制信息的 PDSCH区域中的时频资源块。
在实施中, 网络侧和用户设备需要使用相同的方式确定承载控制信息的 PDSCH区域 中的每个时频资源块, 这样可以保证网络侧和用户设备确定的时频资源块相同, 且时频资 源块在系统的下行带宽中均匀 (或尽量均匀)分布。
通知方式三、 网络侧通知用户设备承载控制信息的 PDSCH区域的时频资源块中的起 始时频资源块和承载控制信息的时频资源块的数量。
在实施中, 系统的下行带宽和承载控制信息的时频资源块数量的对应关系可以在协议 中规定, 也可以由网络侧通知用户设备。 不管釆用哪种方式, 都需要保证网络侧和用户设 备釆用相同的对应关系确定时频资源块的数量。
较佳地, 根据需要还可以对系统的下行带宽和承载控制信息的时频资源块数量的对应 关系进行修改。
较佳地, 承载控制信息的 PDSCH区域中的时频资源块可以在系统的下行带宽中均匀 (或尽量均匀 )分布。
针对通知方式三, 在实施中, 网络侧确定承载控制信息的 PDSCH区域中的时频资源 块时, 需要确定承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块和承载控 制信息的时频资源块的数量, 然后根据起始时频资源块和时频资源块的数量, 确定承载控 制信息的 PDSCH区域中的时频资源块。
在实施中, 网络侧和用户设备需要使用相同的方式确定时频资源块的数量, 以及使用 相同的方式确定承载控制信息的 PDSCH区域中的每个时频资源块, 这样可以保证网络侧 和用户设备确定的时频资源块相同,且时频资源块在系统的下行带宽中均匀(或尽量均匀) 分布。
需要说明的是, 本发明实施例并不局限于上述几种方式, 其他能够通知用户承载控制 信息的 PDSCH区域中的时频资源块的方式都适用本发明实施例。
除了上面的通知方式, 还可以由双方进行约定。 即, 不进行通知, 双方都釆用相同的 方式确定起始时频资源块和时频资源块的数量, 并釆用相同的方式根据起始时频资源块和 时频资源块的数量, 确定承载控制信息的 PDSCH区域中的每个时频资源块。
具体的, 网络侧和用户设备根据用户设备所在小区的小区标识和系统带宽确定承载控 制信息的 PDSCH区域的时频资源块中的起始时频资源块, 以及根据系统的下行带宽和承 载控制信息的时频资源块数量的对应关系确定系统当前的下行带宽对应的承载控制信息 的时频资源块的数量, 并根据起始时频资源块和时频资源块的数量, 确定承载控制信息的 PDSCH区域中的每个时频资源块。
较佳地, 承载控制信息的 PDSCH区域中的时频资源块可以在系统的下行带宽中均匀 (或尽量均匀 )分布。
由于网络侧和用户设备使用相同的方式确定起始时频资源块和时频资源块的数量, 以 及使用相同的方式确定承载控制信息的 PDSCH区域中的每个时频资源块, 这样可以保证 网络侧和用户设备确定的时频资源块相同。 较佳地, 网络侧和用户设备使确定的时频资源 块在系统的下行带宽中均匀 (或尽量均匀)分布。
在实施中, 系统的下行带宽和承载控制信息的时频资源块数量的对应关系可以在协议 中规定, 也可以由网络侧通知用户设备。 不管釆用哪种方式, 都需要保证网络侧和用户设 备釆用相同的对应关系确定时频资源块的数量。
较佳地, 根据需要还可以对系统的下行带宽和承载控制信息的时频资源块数量的对应 关系进行修改。
若控制信息包括 E-PHICH信息 (其中可以是只包括 E-PHICH信息, 还可以是即包括 E-PHICH信息又包括 E-PDCCH信息两种情况), 并且承载 E-PHICH信息的时频资源块是 通过 E-PHICH组进行资源映射的, 则资源预留的方式可以沿用 Rel-10中的 PHICH预留的 方法。 具体的:
网络侧通过 PBCH或高层信令通知用户设备 Ng的配置。
较佳地, 所有 E-PHICH组在时域和频域上均匀 (或尽量均匀)分布。
由于一个 E-PHICH组在控制区域占用多个 REG,所以网络侧需要知道哪个 REG属于
E-PHICH组。
在实施中, 保证 E-PHICH组在时域和频域上均匀 (或尽量均匀)分布的方式有很多, 下面列举几种:
映射方式一、 网络侧可以根据公式一和公式二确定 E-PHICH组进行资源映射的 REG。 E-PHICH资源是通过 E-PHICH group进行资源的映射, 沿用 Rel-10中的基本原则,一 个 E-PHICH group分为三个部分, 分别由不同的 REG承载(这里的 REG指的是本发明实 施例中配置承载控制信息传输的时频资源中的定义的 REG(可以是部分也可以是全部)), , 其个数与系统配置的 RS的个数有关 (例如: CRS、 DMRS以及 CSI RS等)。
较佳地, E-PHICH group资源映射的主要的原则是将 E-PHICH group的 3个 REG在时 域和频域尽量的分散开,图 8A ~图 8C中给出了对于不同控制区域大小情况下的 E-PHICH group资源占用的示意图。
映射方式二参见图 2中的映射方式二, 在此不再赘述。
不管釆用哪种映射方式, 需要保证网络侧和用户设备釆用相同的映射方式。
需要说明的是,本发明并不局限于上述几种映射方式,其他能够保证 E-PHICH组在时 域和频域上均匀 (或尽量均匀)分布的映射方式都适用本发明实施例。
由于 PHICH group的概念指的是一组 RE的集合, E-PHICH资源是通过 E-PHICH group 进行资源的映射, 沿用 Rel-10中的基本原则, 则 E-PHICH group也是一组 RE的集合。 在 实施中, 需要将 RE映射到 REG上。 本发明实施例可以釆用釆用先时域后频域(参见图 9A )或先频域后时域(参见图 9B ) 的方式进行 RE到 REG的映射。
为了节省资源, 较佳地, 网络侧通过 PDSCH区域中除承载 E-PHICH信息的 REG之 外的剩余的空闲 REG传输 E-PDCCH信息。 也就是说, 除了 E-PHICH传输占用的 REG资 源, 剩余的空闲 REG资源都可以用于 E-PDCCH的传输。 较佳地, 针对这部分 E-PDCCH 可以釆用基于 REG交织的模式进行 E-PDCCH的资源映射。
较佳地, 剩余的空闲 REG传输的 E-PDCCH信息是使用用户专属的 RNTI和 /或公共 RNTI加扰的 E-PDCCH信息, 例如 P-RNTI/RA-RNTI/SI-RNTI等加扰的 PDCCH信息。
其中, 网络侧在发送控制信息之前可以先确定釆用哪种传输模式以及哪种天线端口。 具体的, 若釆用 CRS的天线端口, 则网络侧根据 CRS的天线端口数, 确定釆用 CRS 的单端口模式还是 CRS 的发射分集模式, 然后根据确定的模式发送控制信息; 比如根据 CRS的天线端口数小于 3釆用 CRS的单端口模式, 不小于 3釆用 CRS的发射分集模式, 当前的 CRS的天线端口数是 2, 则确定釆用 CRS的单端口模式发送控制信息; 若釆用 DMRS的天线端口, 则网络侧根据 DMRS的天线端口数, 确定釆用 DMRS的 单端口模式还是 DMRS 的发射分集模式, 然后根据确定的模式发送控制信息; 比如根据
CRS的天线端口数小于 3釆用 DMRS的单端口模式, 不小于 3釆用 DMRS的发射分集模 式, 当前的 DMRS的天线端口数是 2, 则确定釆用 CRS的单端口模式发送控制信息。
在实施中, 具体釆用哪种天线端口 (CRS或 DMRS )可以由网络侧通过 PBCH或高层 信令为用户设备进行配置; 相应的, 用户设备通过 PBCH或 RRC信令确定网络侧为自身 配置的天线端口, 然后进一步根据端口数量确定对应的模式。
对于 E-PDCCH信息和 E-PHICH信息传输中的编码、 调制、 扩频、 加扰、 层映射以及 预编码的处理本发明实施例可以沿用 Rel-10中的 PDCCH和 PHICH的定义。 当然, 也可 以釆用其他版本中 PDCCH和 PHICH的定义。
如图 6所示, 本发明实施例用户设备接收控制信息的方法包括:
步骤 601、 用户设备确定承载控制信息的 PDSCH区域中的时频资源块;
步骤 602、 用户设备通过确定的时频资源块接收控制信息。
较佳地, 网络侧通知用户设备承载控制信息的 PDSCH区域中的时频资源块, 则步骤 601中用户设备根据网络侧的通知确定承载控制信息的 PDSCH区域中的时频资源块。
由于网络侧通知用户设备承载控制信息的 PDSCH区域中的时频资源块的方式有很多 种, 针对不同的通知方式, 用户设备根据网络侧的通知确定承载控制信息的 PDSCH区域 中的时频资源块的方式也不相同, 下面列举几种:
通知方式一、 网络侧通知用户设备承载控制信息的 PDSCH区域中的每个时频资源块; 相应的, 用户设备将网络侧通知的时频资源块作为承载控制信息的 PDSCH区域中的 时频资源块。
通知方式二、 网络侧通知用户设备承载控制信息的 PDSCH区域的时频资源块中的起 始时频资源块和承载控制信息的时频资源块的数量;
相应的, 用户设备根据收到的来自网络侧的承载控制信息的 PDSCH区域的时频资源 块中的起始时频资源块和承载控制信息的时频资源块的数量,确定承载控制信息的 PDSCH 区域中的每个时频资源块。
通知方式三、 网络侧通知用户设备承载控制信息的 PDSCH区域的时频资源块中的起 始时频资源块和承载控制信息的时频资源块的数量;
相应的, 用户设备根据系统的下行带宽和承载控制信息的时频资源块数量的对应关系 确定系统当前的下行带宽对应的承载控制信息的时频资源块的数量, 根据网络侧通知的承 载控制信息的 PDSCH 区域的时频资源块中的起始时频资源块和确定承载控制信息的 PDSCH区域中的每个时频资源块。 除了上面的通知方式, 还可以由双方进行约定。 即, 不进行通知, 双方都釆用相同的 方式确定起始时频资源块和时频资源块的数量, 并釆用相同的方式根据起始时频资源块和 时频资源块的数量, 确定承载控制信息的 PDSCH区域中的每个时频资源块。
具体的, 用户设备根据小区标识和系统带宽确定承载控制信息的 PDSCH区域的时频 资源块中的起始时频资源块, 以及根据系统的下行带宽和承载控制信息的时频资源块数量 的对应关系确定系统当前的下行带宽对应的承载控制信息的时频资源块的数量, 并根据起 始时频资源块和时频资源块的数量确定承载控制信息的 PDSCH区域中的每个时频资源块。
若控制信息包括 E-PHICH信息 (其中可以是只包括 E-PHICH信息, 还可以是即包括 E-PHICH信息又包括 E-PDCCH信息两种情况), 并且承载 E-PHICH信息的时频资源块是 通过 E-PHICH组进行资源映射的, 则资源预留的方式可以沿用 Rel-10中的 PHICH预留的 方法。 具体的:
网络侧通过 PBCH或高层信令通知用户设备 Ng的配置;
相应的, 用户设备根据网络侧的 Ng的配置确定 E-PHICH组的数量。
由于一个 E-PHICH组在控制区域占用多个 REG,所以用户设备需要知道哪个 REG属 于 E-PHICH组。
在实施中, 保证 E-PHICH组在时域和频域上均匀 (或尽量均匀)分布的方式有很多, 下面列举几种:
映射方式一、 用户设备可以根据公式一和公式二确定 E-PHICH 组进行资源映射的 映射方式二参见图 2中的映射方式二, 在此不再赘述。
其中, 用户设备在接收控制信息之前可以先确定釆用哪种传输模式以及哪种天线端 α。
具体的, 若釆用 CRS的天线端口, 用户设备根据 CRS的天线端口数, 确定釆用 CRS 的单端口模式或 CRS的发射分集模式, 并根据确定的模式接收控制信息;
若釆用 DMRS的天线端口, 根据 DMRS的天线端口数, 确定釆用 DMRS的单端口模 式或 DMRS的发射分集模式, 并根据确定的模式接收控制信息。
在实施中, 具体釆用哪种天线端口 (CRS或 DMRS )可以由网络侧通过 PBCH或高层 信令为用户设备进行配置; 相应的, 用户设备通过 PBCH或 RRC信令确定网络侧为自身 配置的天线端口, 然后进一步根据端口数量确定对应的模式。
其中, 图 5和图 6可以合成一个流程, 形成一个传输控制信息的方法, 即先执行步骤 501 , 再执行步骤 502, 最后执行步骤 602, 其中步骤 601与步骤 501和步骤 502没有必然 的时序关系, 只需要保证步骤 601在步骤 602之前即可。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种传输控制信息的方法, 其特征在于, 该方法包括:
网络侧确定承载控制信息的物理下行链路共享信道 PDSCH区域中的时频资源块; 所述网络侧通过所述时频资源块向用户设备发送控制信息。
2、 如权利要求 1 所述的方法, 其特征在于, 所述控制信息包括: 增强的物理混合自 动请求重传指示信道 E-PHICH信息和 /或增强的物理下行控制信道 E-PDCCH信息。
3、 如权利要求 1所述的方法, 其特征在于, 所述网络侧确定承载控制信息的 PDSCH 区域中的时频资源块之后, 通过所述时频资源块发送控制信息之前还包括:
所述网络侧通知所述用户设备承载控制信息的 PDSCH区域中的时频资源块。
4、 如权利要求 3 所述的方法, 其特征在于, 所述网络侧通知所述用户设备承载控制 信息的 PDSCH区域中的时频资源块包括:
所述网络侧通知所述用户设备承载控制信息的 PDSCH区域中的每个时频资源块。
5、 如权利要求 3 所述的方法, 其特征在于, 所述网络侧通知所述用户设备承载控制 信息的 PDSCH区域中的时频资源块包括:
所述网络侧通知所述用户设备承载控制信息的 PDSCH区域的时频资源块中的起始时 频资源块和承载控制信息的时频资源块的数量。
6、 如权利要求 3 所述的方法, 其特征在于, 所述网络侧通知所述用户设备承载控制 信息的 PDSCH区域中的时频资源块包括:
所述网络侧通知所述用户设备承载控制信息的 PDSCH区域的时频资源块中的起始时 频资源块。
7、 如权利要求 6 所述的方法, 其特征在于, 所述网络侧根据下列方式确定承载控制 信息的时频资源块的数量:
所述网络侧根据系统的下行带宽和承载控制信息的时频资源块数量的对应关系, 确定 系统当前的下行带宽对应的承载控制信息的时频资源块的数量。
8、 如权利要求 1所述的方法, 其特征在于, 所述网络侧确定承载控制信息的 PDSCH 区域中的时频资源块包括:
所述网络侧根据用户设备所在小区的小区标识和系统带宽, 确定承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块,以及根据系统的下行带宽和承载控制信息 的时频资源块数量的对应关系, 确定系统当前的下行带宽对应的承载控制信息的时频资源 块的数量;
所述网络侧根据起始时频资源块和时频资源块的数量, 确定承载控制信息的 PDSCH 区域中的每个时频资源块。
9、 如权利要求 5 ~ 8任一所述的方法, 其特征在于, 承载控制信息的 PDSCH区域中 的时频资源块在系统的下行带宽中均匀分布。
10、 如权利要求 1 ~ 6任一所述的方法, 其特征在于, 所述网络侧向用户设备通知所 述用户设备承载控制信息的 PDSCH区域中的时频资源块包括:
所述网络侧通过系统广播消息或高层信令,通知所述用户设备承载控制信息的 PDSCH 区域中的时频资源块。
11、 如权利要求 3所述的方法, 其特征在于, 所述控制信息包括: E-PHICH信息, 且 承载 E-PHICH信息的时频资源块是通过 E-PHICH组 group进行资源映射的;
所述网络侧通知所述用户设备承载控制信息的 PDSCH区域中的时频资源块之前还包 括:
所述网络侧通过物理广播信道 PBCH或高层信令通知用户设备 Ng的配置, 用于指示 所述用户设备根据 Ng的配置确定 E-PHICH组的数量, Ng表示系统中用于计算 E-PHICH 组个数的参数。
12、 如权利要求 11所述的方法, 其特征在于, 每个 E-PHICH group中的资源单元组 REG资源在时域和频域上均匀分布。
13、 如权利要求 12所述的方法, 其特征在于, 所述网络侧根据下列公式对 E-PHICH 组进行资源映射:
( m + Offset ) mod ( T X NRFr 第一个占用的资源单元组 REG为: 、 } 、 第 Y个占用的 REG为:
Figure imgf000021_0001
其中, Ν为系统中时频资源块的数量, NREG为每个时频资源块中 REG的数量, m是
E-PHICH组的编号, m二 (Μ-ΐ) ^ Μ是 E-PHICH组的数量, Offset是 E-PHICH 组的偏移值, Y是大于 1且小于 X的正整数, X是一个 E-PHICH组包含的 REG的总数。
14、如权利要求 11所述的方法, 其特征在于, 所述网络侧釆用先时域后频域或先频域 后时域的方式进行资源单元 RE到 REG的映射。
15、 如权利要求 11 ~ 14任一所述的方法, 其特征在于, 该方法还包括:
所述网络侧通过 PDSCH区域中除承载 E-PHICH信息的 REG之外的剩余的空闲 REG 传输 E-PDCCH信息。
16、 如权利要求 15所述的方法, 其特征在于, 所述网络侧釆用基于 REG交织的模式 对承载 E-PDCCH信息的剩余的空闲 REG进行映射。
17、 如权利要求 16所述的方法, 其特征在于, 剩余的空闲 REG传输的 E-PDCCH信 息是使用用户专属的无线网络临时标识符 RNTI和 /或公共 RNTI加扰的 E-PDCCH信息。
18、 如权利要求 1 ~ 8、 11 ~ 14任一所述的方法, 其特征在于, 所述网络侧发送控制信 息包括:
所述网络侧根据小区专属导频信号 CRS的天线端口数, 确定釆用 CRS的单端口模式 或 CRS的发射分集模式, 并根据确定的模式发送控制信息; 或
所述网络侧根据解调参考符号 DMRS的天线端口数, 确定釆用 DMRS的单端口模式 或 DMRS的发射分集模式, 并根据确定的模式发送控制信息。
19、 如权利要求 18所述的方法, 其特征在于, 所述网络侧发送控制信息之前还包括: 所述网络侧通过 PBCH或高层信令为所述用户设备配置天线端口。
20、 一种传输控制信息的方法, 其特征在于, 该方法包括:
用户设备确定承载控制信息的 PDSCH区域中的时频资源块;
所述用户设备通过确定的时频资源块接收控制信息。
21、 如权利要求 20所述的方法, 其特征在于, 所述控制信息包括: E-PHICH信息和 /或 E-PDCCH信息。
22、 如权利要求 20 所述的方法, 其特征在于, 所述用户设备确定承载控制信息的 PDSCH区域中的时频资源块包括:
所述用户设备将网络侧通知的时频资源块作为承载控制信息的 PDSCH区域中的时频 资源块; 或
所述用户设备根据收到的来自网络侧的承载控制信息的 PDSCH区域的时频资源块中 的起始时频资源块和承载控制信息的时频资源块的数量, 确定承载控制信息的 PDSCH区 域中的每个时频资源块; 或
所述用户设备根据系统的下行带宽和承载控制信息的时频资源块数量的对应关系, 确 定系统当前的下行带宽对应的承载控制信息的时频资源块的数量, 根据网络侧通知的承载 控制信息的 PDSCH区域的时频资源块中的起始时频资源块和该时频资源块的数量, 确定 承载控制信息的 PDSCH区域中的每个时频资源块; 或
所述用户设备根据小区标识和系统带宽确定承载控制信息的 PDSCH区域的时频资源 块中的起始时频资源块, 以及根据系统的下行带宽和承载控制信息的时频资源块数量的对 应关系, 确定系统当前的下行带宽对应的承载控制信息的时频资源块的数量, 并根据起始 时频资源块和时频资源块的数量确定承载控制信息的 PDSCH区域中的每个时频资源块。
23、 如权利要求 22所述的方法, 其特征在于, 承载控制信息的 PDSCH区域中的时频 资源块在系统的下行带宽中均匀分布。
24、 如权利要求 22所述的方法, 其特征在于, 所述控制信息包括 E-PHICH信息且承 载 E-PHICH信息的时频资源块是通过 E-PHICH组进行资源映射的;
所述用户设备接收控制信息之前还包括: 所述用户设备根据所述网络侧的 Ng的配置确定 E-PHICH组的数量, Ng表示系统中 用于计算 E-PHICH组个数的参数。
25、 如权利要求 24所述的方法, 其特征在于, 每个 E-PHICH group中的 REG资源在 时域和频域上均匀分布。
26、如权利要求 25所述的方法,其特征在于,所述用户设备根据下列公式对 E-PHICH 组进行资源映射:
( m + Offset ) mod ( TV x NPFr
第一个占用的 REG为: 、 , 、 mG
第 Y个占用的 REG为:
Figure imgf000023_0001
其中, Ν为系统中时频资源块的数量, NREG为每个时频资源块中 REG的数量, m是
E-PHICH组的编号, m二 (Μ-ΐ) ^ Μ是 E-PHICH组的数量, Offset是 E-PHICH 组的偏移值, Y是大于 1且小于 X的正整数, X是一个 E-PHICH组包含的 REG的总数。
27、 如权利要求 20 - 26任一所述的方法, 其特征在于, 所述用户设备接收控制信息 包括:
所述用户设备根据 CRS的天线端口数,确定釆用 CRS的单端口模式或 CRS的发射分 集模式, 并根据确定的模式接收控制信息; 或
所述用户设备根据 DMRS的天线端口数, 确定釆用 DMRS的单端口模式或 DMRS的 发射分集模式, 并根据确定的模式接收控制信息。
28、 如权利要求 27 所述的方法, 其特征在于, 所述用户设备接收控制信息之前还包 括:
所述用户设备通过 PBCH或 RRC信令确定所述网络侧为所述用户设备配置的天线端
V
29、 一种传输控制信息的网络侧设备, 其特征在于, 该网络侧设备包括:
第一确定模块, 用于确定承载控制信息的 PDSCH区域中的时频资源块;
发送模块, 用于通过所述时频资源块向用户设备发送控制信息。
30、 如权利要求 29 所述的网络侧设备, 其特征在于, 所述控制信息包括: E-PHICH 信息和 /或 E-PDCCH信息。
31、 如权利要求 29所述的网络侧设备, 其特征在于, 所述第一确定模块还用于: 确定承载控制信息的 PDSCH区域中的时频资源块之后, 所述发送模块通过所述时频 资源块发送控制信息之前, 通知所述用户设备承载控制信息的 PDSCH区域中的时频资源 块。
32、 如权利要求 31所述的网络侧设备, 其特征在于, 所述第一确定模块还用于: 通知所述用户设备承载控制信息的 PDSCH区域中的每个时频资源块。
33、 如权利要求 31所述的网络侧设备, 其特征在于, 所述第一确定模块还用于: 通知所述用户设备承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块和 承载控制信息的时频资源块的数量。
34、 如权利要求 31所述的网络侧设备, 其特征在于, 所述第一确定模块还用于: 通知所述用户设备承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块。
35、 如权利要求 34 所述的网络侧设备, 其特征在于, 所述第一确定模块根据下列方 式确定承载控制信息的时频资源块数量:
根据系统的下行带宽和承载控制信息的时频资源块数量的对应关系, 确定系统当前的 下行带宽对应的承载控制信息的时频资源块的数量。
36、 如权利要求 29所述的网络侧设备, 其特征在于, 所述第一确定模块还用于: 根据用户设备所在小区的小区标识和系统带宽, 确定承载控制信息的 PDSCH区域的 时频资源块中的起始时频资源块, 以及根据系统的下行带宽和承载控制信息的时频资源块 数量的对应关系, 确定系统当前的下行带宽对应的承载控制信息的时频资源块的数量; 根 据起始时频资源块和时频资源块的数量, 确定承载控制信息的 PDSCH区域中的每个时频 资源块。
37、如权利要求 33 ~ 36任一所述的网络侧设备,其特征在于,承载控制信息的 PDSCH 区域中的时频资源块在系统的下行带宽中均匀分布。
38、 如权利要求 29 ~ 34任一所述的网络侧设备, 其特征在于, 所述第一确定模块还 用于:
通过系统广播消息或高层信令, 通知所述用户设备承载控制信息的 PDSCH区域中的 时频资源块。
39、 如权利要求 31 所述的网络侧设备, 其特征在于, 所述控制信息包括: E-PHICH 信息, 且承载 E-PHICH信息的时频资源块是通过 E-PHICH组进行资源映射的;
所述第一确定模块还用于:
通过 PBCH或高层信令通知用户设备 Ng的配置, 用于指示所述用户设备根据 Ng的 配置确定 E-PHICH组的数量, Ng表示系统中用于计算 E-PHICH组个数的参数。
40、 如权利要求 39所述的网络侧设备, 其特征在于, 每个 E-PHICH group中的 REG 资源在时域和频域上均匀分布。
41、 如权利要求 40 所述的网络侧设备, 其特征在于, 所述第一确定模块根据下列公 式对 E-PHICH组进行资源映射: m + Offset ) mod ( TV x NPFr
第一个占用的 REG为: 、 ) 、
第 Y个占用的 REG为:
Figure imgf000025_0001
其中, Ν为系统中时频资源块的数量, NREG为每个时频资源块中 REG的数量, m是
E-PHICH组的编号, m二 (Μ-ΐ) ^ Μ是 E-PHICH组的数量, Offset是 E-PHICH 组的偏移值, Y是大于 1且小于 X的正整数, X是一个 E-PHICH组包含的 REG的总数。
42、 如权利要求 39 所述的网络侧设备, 其特征在于, 所述第一确定模块釆用先时域 后频域或先频域后时域的方式进行 RE到 REG的映射。
43、 如权利要求 39 ~ 42任一所述的网络侧设备, 其特征在于, 所述发送模块还用于: 通过 PDSCH 区域中除承载 E-PHICH信息的 REG之外的剩余的空闲 REG传输
E-PDCCH信息。
44、 如权利要求 43所述的网络侧设备, 其特征在于, 所述发送模块釆用基于 REG交 织的模式对承载 E-PDCCH信息的剩余的空闲 REG进行映射。
45、如权利要求 44所述的网络侧设备,其特征在于,剩余的空闲 REG传输的 E-PDCCH 信息是使用用户专属的无线网络临时标识符 RNTI和 /或公共 RNTI加扰的 E-PDCCH信 息。
46、 如权利要求 29 ~ 36、 39 ~ 42任一所述的网络侧设备, 其特征在于, 所述发送模 块具体用于:
根据 CRS的天线端口数, 确定釆用 CRS的单端口模式或 CRS的发射分集模式, 并根 据确定的模式发送控制信息; 或根据 DMRS的天线端口数, 确定釆用 DMRS的单端口模 式或 DMRS的发射分集模式, 并根据确定的模式发送控制信息。
47、 如权利要求 46所述的网络侧设备, 其特征在于, 所述发送模块还用于: 通过 PBCH或高层信令为所述用户设备配置天线端口。
48、 一种传输控制信息的用户设备, 其特征在于, 该用户设备包括:
第二确定模块, 用于确定承载控制信息的 PDSCH区域中的时频资源块;
接收模块, 用于通过确定的时频资源块接收控制信息。
49、 如权利要求 48所述的用户设备, 其特征在于, 所述控制信息包括: E-PHICH信 息和 /或 E-PDCCH信息。
50、 如权利要求 48所述的用户设备, 其特征在于, 所述第二确定模块具体用于: 将网络侧通知的时频资源块作为承载控制信息的 PDSCH区域中的时频资源块; 或 根据收到的来自网络侧的承载控制信息的 PDSCH区域的时频资源块中的起始时频资 源块和承载控制信息的时频资源块的数量, 确定承载控制信息的 PDSCH区域中的每个时 频资源块; 或
根据系统的下行带宽和承载控制信息的时频资源块数量的对应关系确定系统当前的 下行带宽对应的承载控制信息的时频资源块的数量, 根据网络侧通知的承载控制信息的 PDSCH区域的时频资源块中的起始时频资源块和该时频资源块的数量,确定承载控制信息 的 PDSCH区域中的每个时频资源块; 或
根据小区标识和系统带宽确定承载控制信息的 PDSCH区域的时频资源块中的起始时 频资源块, 以及根据系统的下行带宽和承载控制信息的时频资源块数量的对应关系, 确定 系统当前的下行带宽对应的承载控制信息的时频资源块的数量, 并根据起始时频资源块和 时频资源块的数量确定承载控制信息的 PDSCH区域中的每个时频资源块。
51、 如权利要求 50所述的用户设备, 其特征在于, 承载控制信息的 PDSCH区域中的 时频资源块在系统的下行带宽中均匀分布。
52、 如权利要求 50所述的用户设备, 其特征在于, 所述控制信息包括 E-PHICH信息 且承载 E-PHICH信息的时频资源块是通过 E-PHICH组进行资源映射的;
所述第二确定模块还用于:
根据所述网络侧的 Ng 的配置确定 E-PHICH 组的数量, Ng 表示系统中用于计算 E-PHICH组个数的参数。
53、 如权利要求 52所述的用户设备, 其特征在于, 每个 E-PHICH group中的 REG资 源在时域和频域上均匀分布。
54、 如权利要求 53 所述的用户设备, 其特征在于, 所述第二确定模块根据下列公式 对 E-PHICH组进行资源映射:
( m + Offset ) mod ( TV x NPFr
第一个占用的 REG为: 、 , 、 m j m + Offset +
Figure imgf000026_0001
mod(Nx N
X
第 Y个占用的 REG为:
其中, Ν为系统中时频资源块的数量, NREG为每个时频资源块中 REG的数量, m是
E-PHICH组的编号, m二 (Μ-ΐ) ^ Μ是 E-PHICH组的数量, Offset是 E-PHICH 组的偏移值, Y是大于 1且小于 X的正整数, X是一个 E-PHICH组包含的 REG的总数。
55、 如权利要求 48 ~ 54任一所述的用户设备, 其特征在于, 所述接收模块具体用于: 根据 CRS的天线端口数, 确定釆用 CRS的单端口模式或 CRS的发射分集模式, 并根 据确定的模式接收控制信息; 或
根据 DMRS的天线端口数,确定釆用 DMRS的单端口模式或 DMRS的发射分集模式, 并根据确定的模式接收控制信息。
56、 如权利要求 55所述的用户设备, 其特征在于, 所述接收模块还用于: 通过 PBCH或 RRC信令确定所述网络侧为所述用户设备配置的天线端口。
57、 一种传输控制信息的系统, 其特征在于, 该系统包括:
网络侧设备, 用于确定承载控制信息的 PDSCH区域中的时频资源块, 通过所述时频 资源块向用户设备发送控制信息;
用户设备, 用于确定承载控制信息的 PDSCH区域中的时频资源块, 通过确定的时频 资源块接收控制信息。
PCT/CN2012/080048 2011-10-17 2012-08-13 一种传输控制信息的方法、系统及设备 WO2013056593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110314961.6 2011-10-17
CN201110314961.6A CN102438314B (zh) 2011-10-17 2011-10-17 一种传输控制信息的方法、系统及设备

Publications (1)

Publication Number Publication Date
WO2013056593A1 true WO2013056593A1 (zh) 2013-04-25

Family

ID=45986131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080048 WO2013056593A1 (zh) 2011-10-17 2012-08-13 一种传输控制信息的方法、系统及设备

Country Status (2)

Country Link
CN (1) CN102438314B (zh)
WO (1) WO2013056593A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438934B2 (en) * 2018-04-28 2022-09-06 Huawei Technologies Co., Ltd. Random access method and apparatus

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438314B (zh) * 2011-10-17 2014-04-16 电信科学技术研究院 一种传输控制信息的方法、系统及设备
EP2892264B1 (en) 2012-09-24 2021-03-31 Huawei Technologies Co., Ltd. Method, base station and user equipment for transmitting broadcast message
CN103891372A (zh) * 2012-09-25 2014-06-25 华为技术有限公司 一种控制信道的处理方法及装置
US9497012B2 (en) * 2012-09-26 2016-11-15 Lg Electronics Inc. Method and apparatus for receiving ACK/NACK in wireless communication system
CN103795510A (zh) * 2012-11-02 2014-05-14 北京三星通信技术研究有限公司 传输harq指示信息的方法和设备
CN103916349B (zh) * 2012-12-31 2018-03-23 中国移动通信集团公司 增强公共搜索空间的解调参考符号的配置方法和装置
CN104303568B (zh) 2013-01-11 2019-03-08 华为技术有限公司 调度信令的传输方法和设备
US9031090B2 (en) * 2013-01-11 2015-05-12 Sharp Laboratories Of America, Inc. Devices for sending and receiving feedback information
CN104104482B (zh) * 2013-04-02 2018-05-22 上海诺基亚贝尔股份有限公司 配置增强的物理混合自动重传指示信道的方法
CN104105204B (zh) * 2013-04-03 2018-07-03 上海诺基亚贝尔股份有限公司 在nct下配置增强的物理混合自动重传指示信道的方法
CN104168610B (zh) * 2013-05-17 2017-12-15 华为技术有限公司 一种传输下行信号的方法、装置及终端设备
CN107710844B (zh) * 2015-07-17 2020-06-26 华为技术有限公司 一种信号发送、接收的方法及相关设备
CN108135031B (zh) * 2016-12-01 2022-11-29 中兴通讯股份有限公司 资源调度方法、装置及系统
CN108633038B (zh) * 2017-03-24 2020-05-08 电信科学技术研究院 下行资源集合的确定、资源位置信息的发送方法和设备
CN109152041B (zh) * 2017-06-16 2023-11-03 华为技术有限公司 信息传输的方法、终端设备和网络设备
WO2019000180A1 (en) * 2017-06-26 2019-01-03 Motorola Mobility Llc DEMODULATION REFERENCE SIGNAL CONFIGURATION
CN109391391B (zh) * 2017-08-08 2020-04-17 维沃移动通信有限公司 一种用于传输参考信号的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714892A (zh) * 2009-11-02 2010-05-26 中兴通讯股份有限公司 一种下行控制信息的传输方法及系统
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
CN102438314A (zh) * 2011-10-17 2012-05-02 电信科学技术研究院 一种传输控制信息的方法、系统及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714892A (zh) * 2009-11-02 2010-05-26 中兴通讯股份有限公司 一种下行控制信息的传输方法及系统
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
CN102438314A (zh) * 2011-10-17 2012-05-02 电信科学技术研究院 一种传输控制信息的方法、系统及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Common RS for DL high-order MIMO.", 3GPP TSG RAN WG 1#56., pages 20090209 *
"Considerations on DL/UL Transmission in Asymmetric Carrier Aggregation.", 3GPP TSG RAN WG1 MEETING#55., 10 November 2008 (2008-11-10) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438934B2 (en) * 2018-04-28 2022-09-06 Huawei Technologies Co., Ltd. Random access method and apparatus

Also Published As

Publication number Publication date
CN102438314B (zh) 2014-04-16
CN102438314A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2013056593A1 (zh) 一种传输控制信息的方法、系统及设备
CN104769857B (zh) 在无线通信系统中支持设备特性的调度组的方法和装置
CN104854811B (zh) 动态tdd上行链路/下行链路配置方法
CN105409135B (zh) 用于无线通信的方法和设备
JP6568066B2 (ja) 移動局装置、基地局装置、および方法
JP6296614B2 (ja) 端末装置、通信方法および集積回路
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
US10149288B2 (en) Method and device for receiving or transmitting downlink data in wireless communication system
TW201838459A (zh) 用於窄頻通訊的窄頻分時雙工訊框結構
BR112019016782A2 (pt) Estrutura de quadro de duplexação por divisão de tempo de banda estreita para comunicações de banda estreita
WO2013127371A1 (zh) 信息传输方法、基站和用户设备
WO2014047927A1 (zh) 控制信息发送方法、接收方法和设备
CN107534895A (zh) 终端装置、基站装置、通信方法以及集成电路
WO2013097497A1 (zh) 基于增强phich传输反馈信息的方法及装置
WO2015018246A1 (zh) 一种物理下行共享信道传输的方法、系统和网络侧设备
WO2014173334A1 (zh) 上下行配置信息通知、获取方法以及基站和用户设备
WO2014077577A1 (ko) 데이터 전송 방법 및 장치와, 데이터 전송 방법 및 장치
EP4055944A1 (en) Updating active tci state for single-pdcch based multi-trp pdsch or multi-pdcch based multi-trp pdsch
JP6439883B2 (ja) 端末装置、基地局装置および通信方法
WO2013139197A1 (zh) 一种增强的下行控制信道的传输方法及装置
TW201811084A (zh) 通訊裝置、通訊方法、及程式
CN109565709B (zh) 通信设备、通信方法和记录介质
WO2017130500A1 (ja) 端末装置、基地局装置および通信方法
EP3179801B1 (en) Interference mitigation between device-to-device communication and cellular communication
WO2015139328A1 (zh) 一种利用非授权频谱的数据调度方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842286

Country of ref document: EP

Kind code of ref document: A1