WO2011137696A1 - 中继节点下行控制信道的传输方法及系统 - Google Patents

中继节点下行控制信道的传输方法及系统 Download PDF

Info

Publication number
WO2011137696A1
WO2011137696A1 PCT/CN2011/072074 CN2011072074W WO2011137696A1 WO 2011137696 A1 WO2011137696 A1 WO 2011137696A1 CN 2011072074 W CN2011072074 W CN 2011072074W WO 2011137696 A1 WO2011137696 A1 WO 2011137696A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical resource
base station
downlink
pdcch
resource block
Prior art date
Application number
PCT/CN2011/072074
Other languages
English (en)
French (fr)
Inventor
袁明
毕峰
梁枫
杨瑾
吴栓栓
戴博
夏树强
袁弋非
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/634,856 priority Critical patent/US9179325B2/en
Publication of WO2011137696A1 publication Critical patent/WO2011137696A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications, and in particular to a relay node downlink control channel (R-PDCCH) for transmission.
  • R-PDCCH relay node downlink control channel
  • Method and system BACKGROUND The Long-Term Evolution (LTE) system, the LTE advance (LTE-A) system, and the advanced International Mobile Telecommunication Advanced (IMT-A) are Based on Orthogonal Frequency Division Multiplexing (OFDM), the OFDM system is a time-frequency two-dimensional data format. In an OFDM system, one subframe consists of two slots. If a normal cyclic prefix (Cyclic Prefix, CP for short) is used, each slot is composed of 7 OFDM symbols; CP, each slot consists of 6 OFDM symbols.
  • Cyclic Prefix Cyclic Prefix
  • the downlink control channel is located on the first 1 or 2 or 3 or 4 OFDM symbols.
  • the information transmitted by the PDCCH is composed of two parts: a downlink grant information (DL grant) and an uplink grant information (UL grant).
  • the mapping process of the PDCCH is: at the transmitting end, the base station (Enhanced Node B, referred to as eNB) firstly PDCCHs (including DL grant and QoS grants) of all user equipments (User Equipments, UEs) UL grant) is independent coding, that is, each UE's PDCCH can use different coding rates; then all the PDCCHs after coding are connected in series, then the cell-specific sequence is used for scrambling, and a series of control information units are obtained (Control Channel Element, abbreviated as CCE); performing QPSK modulation on the above-mentioned series of CCEs; then interleaving the above symbols in REG units, and mapping to the first 1 or 2 or 3 or 4 OFDM according to the first time domain and the latter frequency domain On the symbol.
  • CCE Control Channel Element
  • the UE demodulates the PDCCH by using Cell-specific reference signals (CRSs), and performs blind detection on the CCEs to obtain respective PDCCHs.
  • CRSs Cell-specific reference signals
  • 1 is a structural diagram of a mobile communication system in which a relay node is introduced, in which a link between an eNB and an RN is referred to as a relay link (Backhaul Link or Unlink, also referred to as a backhaul link), RN
  • the link between users under its coverage is called the access link (Access Link or Uu link )
  • the link between the eNB and the UE under its coverage is called Direct Link.
  • the RN is equivalent to one UE; for the UE, the RN is equivalent to the eNB.
  • the so-called inband relay that is, the backhaul link and the access link use the same frequency band. Therefore, when using the in-band relay, in order to avoid the RN's own transmission and reception, the RN cannot simultaneously simultaneously on the same frequency resource.
  • the operation of transmitting and receiving When the RN sends the downlink control channel to its subordinate UE, the downlink control channel from the eNB is not received. Therefore, in the downlink backhaul subframe (that is, the subframe in which the eNB transmits data to the RN)
  • the RN first sends a PDCCH to the UEs of the subordinates on the first 1 or 2 OFDM symbols, and then performs handover from transmission to reception within a period of time.
  • the data from the eNB is received on the following OFDM symbols.
  • the downlink control channel (R-PDCCH, Relay Physical Downlink Control Channel) of the Relay and the Physical Downlink Shared Channel (PDSCH) of the Relay are shown in Figure 2.
  • the eNB gives the RN
  • the sent R-PDCCH is carried on the physical resource block, including information such as the uplink/downlink scheduling grant of the RN.
  • the eNB On the downlink backhaul subframe, as shown in FIG. 3, the eNB semi-statically reserves the thousands of physical resource blocks for R. - The transmission of the PDCCH.
  • a method and system for transmitting an R-PDCCH are provided to solve at least the above problem.
  • a method for transmitting an R-PDCCH including: a base station transmitting a downlink authorization information of a relay node And the Orthogonal Frequency Division Multiplexing (OFDM) symbol of the first time slot of the physical resource block pair for preserving the R-PDCCH, and the physical resource block pair is used by the downlink information.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the available OFDM symbols outside the OFDM symbol are used to carry the PDSCH of each of the relay nodes; the base station transmits the downlink resource grant information and the physical resource block of the PDSCH to the relay node.
  • the method further includes: the relay node demodulating the R-PDCCH by using a demodulation reference symbol DMRS, to obtain the Downlink ⁇ authorization information and PDSCH of the relay node.
  • the base station carries the downlink grant information and the PDSCH of each of the relay nodes in the physical manner according to one of the following manners:
  • Resource block pair The non-precoded DMRS is used on the first time slot of the physical resource block pair, and the base station performs full or partial interleaving on the downlink grant information of each of the relay nodes, and then carries the An available OFDM symbol of the first time slot of the physical resource block pair, where the physical resource block pair uses an OFDM symbol other than the OFDM symbol used for the downlink grant information to carry the physical of each of the relay nodes.
  • a downlink shared channel PDSCH a downlink shared channel PDSCH; a non-precoded DMRS is used on a first time slot of the physical resource block pair, and the base station carries downlink authorization information of each of the relay nodes to different physical resources
  • the available OFDM symbols of the physical resource block pair except for the OFDM symbols used for the downlink grant information are used for 7 PDSCs of each of the relay nodes H; using the pre-coded DMRS, the base station respectively carrying the downlink grant information of each of the relay nodes to the available OFDM symbols of the first slot of the different physical resource block pair,
  • the available OFDM symbols of the physical resource block pair except for the OFDM symbol used for the downlink information are used to carry the PDSCH of the relay node corresponding to the first time slot of the physical resource block.
  • the method further includes: the relay node demodulating the R-PDCCH by using a cell-specific reference symbol CRS, to obtain the relay.
  • the downlink ⁇ authorization information of the node and the PDSCH is not limited to: the relay node demodulating the R-PDCCH by using a cell-specific reference symbol CRS, to obtain the relay.
  • each of the relay nodes under the base station that has only downlink grant information the base station carries the downlink grant information and the PDSCH of each of the relay nodes in the following manner Pairing the physical resource blocks: the base station performs complete interleaving or partial interleaving on the downlink grant information of each of the relay nodes, and is carried on the available OFDM symbols of the first slot of the pair of physical resource blocks, where the physical All of the resource block pairs except for the OFDM symbols used for the downlink ⁇ ⁇ weight information
  • An OFDM symbol is used to carry a PDSCH of each of the relay nodes; the base station transmits downlink information of each of the relay nodes to be available in a first time slot of the pair of physical resource blocks
  • a transmission system of an R-PDCCH including: a base station, configured to carry downlink authorization information of a relay node to a pre-allocated R-PDCCH for carrying The available OFDM symbols on the OFDM symbols of the first slot of the physical resource block pair, the OFDM symbols on the physical resource block pair except the OFDM symbols used in the downlink ⁇ ⁇ ⁇ ⁇
  • the PDSCH of the relay node the relay node is configured to demodulate the downlink ⁇ authorization information and the PDSCH of the relay node from the physical resource block.
  • the relay node demodulates the R-PDCCH by using the DMRS, and demodulates the downlink information and the PDSCH of the relay node from the physical resource block pair.
  • the relay node demodulates the R-PDCCH by using the CRS, and demodulates the downlink ⁇ authorization information and the PDSCH of the relay node from the physical resource block pair.
  • the present invention solves the problem of how to map the R-PDCCH by carrying the downlink grant information of the R-PDCCH and the PDSCH to the pre-assigned OFDM symbols for the physical resource block pair carrying the R-PDCCH. It is suitable for base-to-relay node links, while making full use of backhaul resources.
  • FIG. 1 is a schematic structural diagram of a system including an RN according to the related art
  • FIG. 2 is a schematic diagram of a frame structure according to the related art
  • FIG. 3 is a schematic diagram of a relationship between a R-PDCCH and a PDCCH according to the related art
  • FIG. 5 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a method for transmitting an R-PDCCH according to Embodiment 1 of the present invention
  • FIG. 6 is a flowchart of a method for transmitting an R-PDCCH according to the first embodiment of the present invention
  • FIG. 7 is a schematic diagram of mapping of an R-PDCCH according to Embodiment 2 of the present invention
  • FIG. 9 is a schematic diagram of mapping of another R-PDCCH according to Embodiment 3 of the present invention
  • FIG. 10 is a schematic diagram of mapping of another R-PDCCH according to Embodiment 3 of the present invention
  • FIG. 12 is a schematic diagram of mapping of an R-PDCCH according to Embodiment 4 of the present invention
  • FIG. 13 is another schematic diagram of Embodiment 4 of the present invention.
  • FIG. 14 is a schematic diagram of mapping of another R-PDCCH according to Embodiment 4 of the present invention
  • FIG. 15 is a schematic diagram of mapping of an R-PDCCH according to Embodiment 5 of the present invention
  • FIG. 16 is a schematic diagram of mapping of another R-PDCCH according to Embodiment 5 of the present invention;
  • FIG. 17 is a schematic diagram of mapping of another R-PDCCH according to Embodiment 5 of the present invention
  • FIG. FIG. 19 is a schematic diagram of mapping of another R-PDCCH according to Embodiment 6 of the present invention
  • FIG. 20 is a schematic diagram of R of the R-PDCCH according to Embodiment 6 of the present invention
  • FIG. 21 is a schematic diagram of mapping of an R-PDCCH according to Embodiment 10 of the present invention.
  • Resource element The smallest time-frequency resource block, which occupies 1 subcarrier on 1 OFDM symbol;
  • REG Resource Element Group
  • CCE Control Channel Element
  • Physical Resource Block The time i or the upper is one consecutive time slot, and the frequency domain is 12 consecutive subcarriers. 5.
  • the physical resource block pair in the time domain 1 consecutive subframes, 12 consecutive subcarriers in the frequency domain;
  • Fully interleaved means that the eNB concatenates all RN grants (or UL grants) in units of REGs (REG-level) or CCEs.
  • FIG. 4 is a schematic structural diagram of a transmission system of an R-PDCCH according to Embodiment 1 of the present invention, including: a base station 10 and a relay node 20.
  • the base station 10 is configured to carry the downlink grant information of the relay node 20 to the pre-assigned OFDM symbol of the first slot of the physical resource block pair for carrying the R-PDCCH, and/or set to
  • the uplink grant information of the relay node 20 is carried to the first time slot of the physical resource block pair or the available OFDM symbols of all time slots, and the physical resource block of the downlink authorization information and/or the uplink grant information is carried.
  • the relay node 20 is configured to demodulate the downlink authorization information and/or the uplink authorization information of the relay node from the physical resource block.
  • the base station 10 may be semi-statically allocated in advance for 20 under each relay node R-PDCCH good carrier for one or more physical resource blocks (PRB pair), and each relay node 1 ⁇ 20
  • the downlink grant information and/or the uplink grant information are carried on the first time slot and all the time slots of the one or more physical resource block pairs, where the downlink ⁇ authorization information of each relay node 20 is mapped to the one or A plurality of physical resource blocks are on the available OFDM symbols of the first slot, so that the delay of the relay node 20 to demodulate the R-PDCCH can be reduced.
  • the relay node 20 may demodulate the R-PDCCH by using a Demodulation Reference Signal (DMRS) to obtain downlink grant information and/or uplink grant information of the relay node, or The node 20 may demodulate the R-PDCCH by using Cell-specific reference signals (CRSs).
  • DMRS Demodulation Reference Signal
  • CRSs Cell-specific reference signals
  • the base station 10 can map the R-PDCCH of the relay node 20 in different manners. The specific mapping manner will be described in the following embodiments. In the related system of the present embodiment, the base station will be the relay node 20, because there is no reasonable mapping scheme when the reserved physical resource block pair is used to carry the R-PDCCH, which may cause resource conflict or overflow.
  • the downlink grant information is carried on the available OFDM symbols of the first slot of the physical resource block pair for carrying the R-PDCCH, and/or the uplink information of the relay node 20 is carried to the physical resource block. Available for the first time slot or all time slots
  • FIG. 5 is a schematic structural diagram of a base station 10 according to the first embodiment of the present invention.
  • the base station 10 includes: a configuration module 100, configured to carry downlink authorization information of the relay node 20 to a pre-allocated physical resource block for carrying the R-PDCCH. And transmitting uplink grant information of the relay node 20 to the first OFDM symbol of the first time slot or all time slots of the physical resource block pair on the available OFDM symbols of the first time slot of the pair;
  • the module 102 is configured to transmit, to the relay node 20, a physical resource block pair carrying the downlink acknowledgement information and/or the uplink grant information.
  • the downlink grant information in the R-PDCCH of the relay node 20 can be mapped to the available OFDM symbols on the first slot of the physical resource block pair carrying the R-PDCCH, and the uplink grant is performed.
  • the information is mapped to the available OFDM symbols on the first time slot (or the first time slot and the second time slot) of the pair of physical resource blocks, so that the backhaul resources can be reasonably utilized.
  • Step S602 the base station 10 carries the downlink grant information of the relay node 20 to a pre-allocated The available OFDM symbol for the first slot of the physical resource block pair carrying the R-PDCCH, and/or the base station 10 carries the uplink grant information of the relay node 20 to the first of the pair of physical resource blocks Gap or all time slots on the available OFDM symbols;
  • the base station may only map the DL grant (downlink grant information) to part or all of the OFDM symbols of the first slot of the PRB pair carrying the R-PDCCH; if the relay node 20 With the DL and the UL grant, the UL grant is mapped to the second slot of the PRB pair.
  • the UL grant is preferentially mapped to the first slot of the PRB pair for the R-PDCCH, and then mapped to the second OFDM symbol.
  • the base station 10 may interleave the R-PDCCHs of all the relay nodes 20 and map them to the first slot of the PRB pair without distinguishing the DL/UL grant.
  • the base station 10 may also interleave the DL grants of all the relay nodes 20 to the first slot of the PRB pair, and interleave the UL grants of all the relay nodes 20 to the second of the PRB pairs. On the slot.
  • Step S604 the base station 10 transmits, to the relay node 20, a physical resource block pair that carries the downlink authorization information and/or the uplink grant information.
  • the relay node 20 may demodulate the R-PDCCH by using the DMRS or the CRS, thereby obtaining downlink authorization information and/or uplink authorization of the relay node. information.
  • Step S602' the base station 10 carries the downlink grant information of the relay node 20 to Pre-assigned an available OFDM symbol for a first slot of a physical resource block pair carrying the R-PDCCH, and the physical resource block pair is used for an available OFDM symbol other than the OFDM symbol used for the downlink grant information Carrying the PDSCH of each relay node;
  • Step S604' the base station 10 transmits the physical resource block pair carrying the downlink authorization information and the PDSCH to the relay node 20.
  • the relay node 10 transmits the foregoing physical resource block pair to the relay node 20.
  • the R-PDCCH may be demodulated by using the DMRS or the CRS to obtain downlink grant information and a PDSCH of the relay node. Since there is no reasonable mapping scheme when the reserved physical resource block pair is used to carry the R-PDCCH in the related art, problems such as resource conflict or overflow may occur, and the foregoing in this embodiment
  • the base station 10 carries the downlink grant information of the relay node 20 to the available OFDM symbols of the first slot of the physical resource block pair for carrying the R-PDCCH, and/or the uplink of the relay node 20
  • the ⁇ authorization information is carried on the first time slot of the foregoing physical resource block pair or the available OFDM symbols of all time slots, so that the downlink backhaul subframe can be reasonably utilized, so that the backhaul resource is reasonably utilized.
  • the RN 20 demodulates the R-PDCCH based on the DMRS, and the R-PDCCH of each RN 20 includes both a DL grant and a UL grant, and the DL grant and the UL grant map are used in the same Within one or more PRB pairs of the R-PDCCH.
  • Base station 10 The base station 10 semi-statically allocates one or more PRB pairs for carrying the R-PDCCH to each of the RNs 20 to which it belongs. As shown in Figure 7, the PRB pair can only be used for the only RN.
  • the base station 10 through the following ways ⁇ 1 RN is contained in the R-PDCCH PRB pair allocated for uploading lost RN RN: a mode, the base station 20 is a semi-statically allocated RN1 two discrete PRB pairs And
  • the base station After the DL grant of the RN1 is internally interleaved, it is mapped to some or all of the available OFDM symbols of the first slot of the two PRB pairs (FIG. 7 corresponds to all available OFDM symbols of the first slot;); UL of the RN1 After the internal interleaving is performed, the grant is mapped to all remaining OFDM symbols except the OFDM symbols used by the DL grant of the two PRB pairs (FIG. 7 corresponds to all available OFDM symbols of the second slot).
  • the base station allocates three consecutive PRB pairs to the RN2 semi-statically, and does not perform internal interleaving on the DL grant of the RN2, and maps to some or all of the available OFDM symbols of the first slot of the three PRB pairs.
  • FIG. 7 corresponds to all available OFDM symbols of the first slot;); after the UL grant performs internal interleaving, it maps to all remaining OFDM symbols except the OFDM symbols used by the three PRB pairs (FIG. 7). Corresponding to all available OFDM symbols of the 2nd slot).
  • the base station allocates two consecutive PRB pairs to the RN3 semi-statically, and internally interleaves the DL grant of the RN3, and maps to some or all of the available OFDM symbols of the first slot of the two PRB pairs ( Figure 7 corresponds to the available OFDM symbols for the first slot.
  • the UL grant is not internally interleaved and is mapped to all remaining OFDM symbols except the OFDM symbols used by the DL grant of the above two PRB pairs (Fig.
  • the base station allocates two discrete PRB pairs for the RN4 semi-static, and does not perform internal interleaving on the DL grant of the RN4, and maps to some or all of the available OFDM symbols of the first slot of the two PRB pairs ( Figure 7 corresponds to the partially available OFDM symbol of the first slot;); the UL grant does not perform internal interleaving, and maps to all remaining OFDM symbols except the OFDM symbols used by the two PRB pairs (Fig. 7). Corresponding to the remaining OFDM symbols on the 1st slot and all available OFDM symbols in the 2nd slot).
  • RN 20 If the base station 10 notifies each RN 20 in advance, specifically the PRB pair allocated by the RN 20 for carrying the R-PDCCH, the RN directly from the part of the first slot of the pre-allocated PRB pair or The DL grant is obtained after demodulation (deinterleaving) on all available OFDM symbols, and then the UL grant is obtained after demodulation (deinterleaving) on all remaining OFDM symbols except for the OFDM symbols used for the DL grant. Whether the step of deinterleaving depends on whether the base station end performs internal interleaving.
  • the RN does not notify each RN in advance, and specifically allocates the PRB pair for the R-PDCCH, the RN needs to perform blind detection on the PRB pair, and then finds the PRB pair belonging to the RN itself. According to the above steps, the corresponding DL grant and UL grant are demodulated.
  • the RN 20 performs demodulation based on the DMRS, and each RN under the base station 10 has only a DL grant and no UL grant.
  • the base station 10 semi-statically reserves a set of one or more PRB pairs for carrying the R-PDCCH. As shown in FIG. 8, the base station 10 reserves 8 PRB pairs for carrying the R-PDCCH.
  • the base station 10 may map the R-PDCCH of each RN in one of the following ways: Mode 1 Base station 10:
  • the base station 10 completely interleaves the first slot of the set of PRB pairs with the non-precoded DMRS, and the DL grants of the RN1, the RN2, and the RN3, and maps to part or all of the first slot of the set of PRB pairs.
  • Available on the OFDM symbol (Fig. 8 corresponds to the partially available OFDM symbol of the 1st slot;); the OFDM symbols used in addition to the DL grant on the above-mentioned set of PRB pairs are used to carry RN1 for all remaining OFDM symbols.
  • R-PDSCH of RN2 and RN3 (Fig. 8 corresponds to all available OFDM symbols of the second slot).
  • the DL grants of all RNs may also use partial interleaving and map to some or all of the available OFDM symbols of the first slot of the above-mentioned set of PRB pairs.
  • interleaving is performed between DL grants of RN1 and RN2; interleaving is performed between DL grants of RN3 and RN4; interleaving is performed between DL grants of RN5, RN6, and RN7; and mapped to different Rs for R - Part or all of the first slot of the PRB pair of the PDCCH is available on the OFDM symbol.
  • the RN 20 receives part or all of the available OFDM symbols of the first slot of the foregoing set of PRB pairs, demodulates, deinterleaves, and finally blindly detects its own DL grant, and correspondingly according to the DL grant indication to the second slot.
  • the R-PDSCH is received on the time-frequency resource.
  • Mode 2 The base station 10: The base station uses the non-precoded DMRS for the first slot of the set of PRB pairs, and the DL grants of different RNs are not interleaved, and are mapped to different PRB pairs in the set of PRB pairs.
  • Part or all of the first slot may be on the OFDM symbol; all remaining OFDM symbols on the PRB pair except the OFDM symbol used for the DL grant are used to carry the R- of the same or different RN as the first slot.
  • PDSCH Shown in Figure 10, RN1, RN2 and RN3 DL grant is not interleaved, mapped to the other points 1 J good portion of the respective dedicated reserved the PRB pair or first slot of all available on OFDM.
  • the DL grants of RN1 and RN2 are mapped to all available OFDMs of the first slot, and the DL grant of RN3 is mapped to the partially available OFDM of the first slot.
  • All remaining OFDM symbols except the OFDM symbol used by the DL grant on the PRB pair where the RN1 and the RN2 are located are used for the R-PDSCH of the RN that is different from the first slot; the OFDM symbol used for the DL grant on the PRB pair where the RN3 is located The remaining available OFDM symbols are used to carry the R-PDSCH of RN3 itself.
  • the RN grant is obtained from the part or all available OFDM symbols of the first slot of the pre-assigned PRB pair, and is used by the DL grant from the second slot according to the indication of the DL grant.
  • the R-PDSCH is received on all remaining available OFDM symbols except for the OFDM symbol. If the RN does not notify each RN in advance, specifically for the PRB pair allocated by the RN to carry the R-PDCCH, the RN needs to blindly detect the first slot of the PRB pair, and find the PRB pair that belongs to itself. According to the above steps, the corresponding DL grant is demodulated.
  • base station 10 The base station uses the precoded DMRS, and the DL grants between different RNs are not interleaved, and are mapped to different parts or all of the first slot of the PRB pair for the 7-carrier R-PDCCH. On the OFDM symbol, all remaining OFDM symbols except the OFDM symbol used by the DL grant on the PRB pair are used to carry the R-PDSCH of the same RN as the first slot. As shown in Figure 11, RN1, RN2, and RN3 each have one or more dedicated PRB pairs. The DL grants of RN1, RN2, and RN3 are located on some or all of the available OFDM symbols in the first slot of the respective PRB pair.
  • RN If the base station informs each RN in advance, and specifically allocates which PRB pairs are used to carry the R-PDCCH, the RN directly from some or all of the available OFDM symbols of the first slot of the pre-assigned PRB pair. Obtaining the DL grant, and obtaining the R-PDSCH according to the indication of the DL grant to the corresponding time-frequency resource, where all remaining available OFDM symbols except the OFDM symbol used by the DL grant on the PRB pair can only carry the DL grant Corresponding RN's R-PDSCH.
  • the base station does not notify each RN in advance, and specifically allocates which PRB pairs are used to carry the R-PDCCH, the RN needs to blindly detect the first slot of the PRB pair, and find the PRB pair that belongs to itself.
  • the above steps demodulate the corresponding DL grant.
  • the RN 20 demodulates the R-PDCCH based on the DMRS, and each RN under the base station 10 has only a UL grant and no DL grant. Similar to the third embodiment, in the embodiment, the base station 10 semi-statically reserves a group (8) of one or more PRB pairs for carrying the R-PDCCH. In this embodiment, the base station 10 can carry the R-PDCCH of the RN in the following manner.
  • the RN allocates the PRB pair to the RN: Mode 1 base station 10: The base station uses the non-precoded DMRS on the first slot, and the UL grants of all RNs are completely interleaved and mapped to the R- All available OFDM symbols of the first slot of the PRB pair of the PDCCH; all available OFDM symbols on the second slot of the PRB pair are used for carrying downlink services of other RNs.
  • This mapping method is similar to the DL grant method 1).
  • the DL grant in Figure 8 of the third embodiment can be changed to a UL grant; when partially interleaved, ⁇ !
  • the DL grant in Figure 9 of the third embodiment can be changed to a UL grant.
  • the RN receives all available OFDM symbols of the first slot of the foregoing PRB pair, performs demodulation, deinterleaves, and finally blindly detects its own UL grant.
  • the base station 10 base station does not interleave between the UL grants of different RNs, and maps to all available OFDM symbols of the first slot of different PRB pairs respectively; all available OFDMs on the second slot of each PRB pair The symbol is used for 7 downlink services of other RNs.
  • This mapping method is similar to the second method in the third embodiment. The only difference is that the DL grant alone can occupy part of the available OFDM symbols of the first slot, and the UL grant alone occupies all available OFDM symbols of the first slot.
  • the DL grant in Figure 10 of the third embodiment is changed to a UL grant, and the first slot is occupied.
  • the RN side If the RN is notified to each RN in advance, specifically for the PRB pair allocated by the RN 20 to carry the R-PDCCH, the RN directly obtains the UL from all available OFDM symbols of the first slot of the pre-assigned PRB pair. Grant. If the base station does not notify each RN in advance, specifically for the PRB pair allocated by the RN 20 to carry the R-PDCCH, the RN needs to blindly detect the first slot of the PRB pair and find the PRB pair that belongs to itself. Then, according to the above steps, the corresponding UL grant is demodulated.
  • the mode 3 base station 10 uses the non-precoded DMRS for the first slot and the second slot, and the UL grants of all the RNs are completely interleaved and mapped to all available OFDM symbols for the PRB pair carrying the R-PDCCH. . As shown in FIG. 12, after the UL grants of RN1, RN2, and RN3 are fully interleaved, they are mapped to all available OFDM symbols of a pre-assigned set of PRB pairs. In partial interleaving, as shown in FIG.
  • interleaving is performed between DL grants of RN1 and RN2; interleaving is performed between DL grants of RN3 and RN4; interleaving is performed between DL grants of RN5, RN6, and RN7; and mapped to different All available OFDM symbols for the PRB pair carrying the R-PDCCH.
  • the mode 4 base station 10 uses the pre-coded DMRS, and the UL grants of different RNs are not interleaved, and are respectively mapped to all available OFDM symbols of different PRB pairs. As shown in FIG. 14, the UL grants of RN1, RN2, and RN3 are not interleaved, and occupy all available OFDM symbols of different PRB pairs, respectively.
  • Embodiment 5 the RN 20 demodulates the R-PDCCH based on the DMRS, and in this embodiment, some RNs 20 under the base station 10 have only DL grants, and other RNs 20 have only UL grants. Similar to the third embodiment, in the embodiment, the base station 10 semi-statically reserves a group (8) of one or more PRB pairs for carrying the R-PDCCH.
  • the base station 10 ⁇ 1 RN may be the R-PDCCH carrier by way PRB pair allocated for uploading lost RN RN: a way to the first base station 10 1 with a DMRS slot preclude non-precoded, the After all DL grants and UL grants are all interleaved or partially interleaved, they are mapped to all available OFDM symbols of the first slot of the PRB pair carrying the R-PDCCH; for the PRB pair carrying the R-PDCCH All available OFDM symbols on the 2 slots are used to carry the downlink service of the RN. As shown in FIG.
  • the DL grants of RN1 and RN3 and the UL grants of RN2 and RN4 are all interleaved and mapped to all available OFDM symbols of the first slot of the reserved set of PRB pairs.
  • Each RN only needs to demodulate and deinterleave the first slot of the PRB pair, and perform blind detection to obtain respective R-PDCCHs.
  • the DL grants of RN1 and RN3 are interleaved; the UL grants of RN2 and RN4 are interleaved, and mapped to the first of the different PRB pairs for the R-PDCCH. All of the slots are available on OFDM symbols.
  • the second base station 10 uses the pre-coded DMRS.
  • the DL grant and the UL grant are not interleaved and are mapped to different PRB pairs.
  • the DL grant is mapped to the first PRB pair for the R-PDCCH. Some or all of the slots may be on the OFDM symbol, and the remaining OFDM symbols are uploaded with the corresponding R-PDSCH; the UL grant is mapped to all OFDM symbols of the first slot of the PRB pair or to all available OFDM symbols of the PRB pair.
  • each RN has its own dedicated PRB pair.
  • the DL grant of RN1 is located on the first slot of two pre-assigned two discrete PRB pairs, and only the second slot can be placed.
  • R-PDSCH of RN1 itself.
  • the DL grant of the RN3 is located on the partially available OFDM symbol of the first slot of the three consecutive PRB pairs, and the remaining available OFDM symbols of the three PRB pairs can only carry the R-PDSCH of the RN3.
  • the UL grant of the RN2 is located on all available OFDM symbols of the first slot of the two consecutive PRB pairs allocated in advance, and the remaining resources are used to carry other downlink services.
  • the UL grant of RN4 is located in the pre-allocated 1 A portion of the first slot of the PRB pair may be used on the OFDM symbol, and the remaining resources are used to carry the R-PDSCH of the RN4.
  • the RN 20 demodulates the R-PDCCH based on the CRS, and the R-PDCCH of the RN 20 managed by the base station 20 includes both the DL grant and the UL grant, and the DL grant and the UL grant of each RN 20 Can be mapped in the same or different 1 or more PRB pairs.
  • the DL grant and the UL grant of the same RN 20 are mapped in the same one or more PRB pairs.
  • the specific mapping method is the same as that in the second embodiment.
  • the DL grant and the UL grant of the same RN 20 are mapped in one or more PRB pairs, and the base station 10 semi-statically reserves a set of one or more PRB pairs for carrying the R-PDCCH.
  • the R-PDCCH is transmitted in the following manner: a) After the base station completely or partially interleaves the DL grants of all the RNs 20, the base station maps to some or all of the available OFDM symbols of the first slot of the PRB pair for the R-PDCCH. After all UL grants are fully or partially interleaved, they are mapped to all remaining OFDM symbols except for the OFDM symbols used by the PRB pair carrying the R-PDCCH. As shown in FIG. 18, the DL grants of RN1, RN2, and RN3 are fully interleaved and mapped to all available OFDM symbols of the first slot, and the UL grant performs full interleaving and mapping to all available OFDM symbols of the second slot.
  • RN6, RN7 and RN8 The base station does not distinguish between the DL grant and the UL grant, and completely interleaves the R-PDCCHs of all the RNs 20 and maps them to all available OFDM symbols of the first slot of a group of PRB pairs, as shown in FIG. Embodiment 7
  • the RN 20 demodulates the R-PDCCH based on the CRS, and each RN under the base station 10 has only a DL grant and no UL grant.
  • the base station 10 semi-statically reserves a group (8) of one or more PRB pairs for carrying the R-PDCCH.
  • the R-PDCCH is transmitted in the following manner:
  • the mode 1 base station 10 performs full or partial interleaving on the DL grants of all the RNs 20, and then maps to the part of the first slot of the PRB pair for carrying the R-PDCCH or All available OFDM symbols; all remaining OFDM symbols on the PRB pair except for the OFDM symbols used for the DL grant are used for the R-PDSCH carrying the RN.
  • the port is shown in FIG. Partially interleaved, ;; mouth shown in Figure 9.
  • the second base station 10 does not interleave the DL grants between the different RNs, and maps them to all available OFDM symbols of the first slot of the PRB pair for the R-PDCCH, and the second slot of the PRB pair. All available OFDM symbols are used for the R-PDSCH carrying the same or different RN as the first slot.
  • the method of the fourth embodiment is similar to that of the fourth embodiment, as shown in FIG. Embodiment 8
  • the RN 20 demodulates the R-PDCCH based on the CRS, and the RN under the base station 10 has only a UL grant and no DL grant.
  • the base station 10 semi-statically reserves a group (8) of one or more PRB pairs for carrying the R-PDCCH.
  • the base station 10 may be a ⁇ 1 RN RN R-PDCCH contained in the assigned PRB pair in the following way upload lost RN: a way After the base station 10 completely or partially interleaves the UL grants of all the RNs 20, it maps to some or all of the available OFDM symbols of the first slot of the PRB pair for carrying the R-PDCCH; All remaining OFDM symbols except OFDM symbols are used to carry downlink traffic of other RNs. As shown in FIG. 8, the DL grant is changed to a UL grant, and the first slot is occupied.
  • the DL grant in FIG. 9 is changed to a UL grant, and the first slot is occupied.
  • the second base station 10 does not interleave the UL grants between the different RNs, and maps them to all available OFDM symbols of the first slot of the PRB pair for the R-PDCCH, and the second slot of the PRB pair. All available OFDM symbols are used to carry downlink services of other RNs.
  • the DL grant is changed to a UL grant, and the first slot is occupied.
  • the R-PDSCH is that the other RNs are downlink services.
  • the mode 3 base station 10 performs full or partial interleaving on the UL grants of all RNs, and maps to all available OFDM symbols for the PRB pair carrying the R-PDCCH.
  • the mode 4 base station 10 does not interleave the UL grants of different RNs, and maps them to all available OFDM symbols of different PRB pairs, that is, each RN has its own dedicated PRB pair, as shown in FIG. Embodiment 9
  • the RN 20 demodulates the R-PDCCH based on the CRS.
  • Some RNs under the base station 10 have only DL grants, and other RNs 20 have only UL grants.
  • the base station 10 semi-statically reserves a group (8) of one or more PRB pairs for carrying the R-PDCCH.
  • the base station 10 may be a ⁇ 1 RN RN R-PDCCH contained in the assigned PRB pair in the following way upload lost RN: a way Similar to the first method in the fifth embodiment, the base station 10 interleaves all the DL grants and the UL grants into all or part of the OFDM symbols for the first slot of the PRB pair carrying the R-PDCCH. All available OFDM symbols on the second slot of the above PRB pair are used for the downlink service carrying the RN. When all interleaved, as shown in Figure 15. Partially interleaved, as shown in Figure 16.
  • all DL grants of the base station 10 are all interleaved or partially interleaved and mapped to all available OFDM symbols of the first slot of the PRB pair carrying the R-PDCCH; all UL grants are interleaved or partially interleaved and mapped to the All available OFDM symbols on the second slot of the PRB pair.
  • the DL grant and the UL grant are not interleaved and are mapped to different PRB pairs, where the DL grant is mapped to part or all of the available OFDM symbols of the first slot of the PRB pair carrying the R-PDCCH.
  • the following available OFDM symbols are uploaded with the corresponding R-PDSCH; the UL grant is mapped to all available OFDM symbols of the first slot of the PRB pair or to all available OFDM symbols of the PRB pair.
  • DL grant and the UL grant are not interleaved and are mapped to the same PRB pair, where the DL grant is mapped to all available OFDM symbols of the first slot of the PRB pair carrying the R-PDCCH; UL grant mapping Go to all available OFDM symbols of the 2nd slot of the PRB pair.
  • a downlink backhaul subframe is demodulated based on precoding DMRS, wherein the above four combinations are included.
  • RN1 and RN2 have both DL grant and UL grant; RN3 and RN4 have only DL grant; RN5 and RN6 have only UL grant.
  • the mapping principle of the base station is as follows: Since the DMRS is demodulated based on the precoding, the base station is semi-statically assigned a dedicated PRB pair for each RN to carry the R-PDCCH, that is, no interlace is performed between different R-PDCCHs.
  • the same DL/UL grant can be interleaved internally. For the DL grant, it can only be mapped to the available OFDM symbols of the first slot of the PRB pair. For the UL grant, if the DL/UL grant is available, the available OFDM is mapped to the second slot of the PRB pair. On the symbol; otherwise, it is preferentially mapped to the first slot of the PRB pair, and then mapped to the entire subframe of the PRB pair.
  • the DL grants of RN 1 and RN 2 are mapped to the available OFDM symbols of the first slot of their respective PRB pair, and the UL grants are mapped to the available OFDM symbols of the second slot of their respective PRB pair.
  • the DL grants of RN3 and RN4 are mapped to the available OFDM symbols of the 1st slot of their respective PRB pair, and the available OFDM symbols of the 2nd slot are uploaded to their respective R-PDSCHs.
  • the UL grant of the RN5 is mapped to the available OFDM symbols of the first slot of the PRB pair in which it is located, and the second slot carries other downlink services.
  • the UL grant of RN6 is mapped to the available OFDM symbols of the entire subframe of the PRB pair in which it is located.
  • Embodiment 11 In this embodiment, a downlink backhaul subframe is demodulated based on precoding CRS, wherein the above four combinations are included.
  • RN1 and RN2 have both DL grant and UL grant;
  • RN3 and RN4 have only DL grant;
  • RN5 and RN6 have only UL grant.
  • the mapping at the base station includes:
  • the R-PDCCHs of all RNs are interleaved or partially interleaved without being distinguished from the DL/UL grant, and mapped to the available OFDM symbols of the first slot of the PRB pair, as shown in FIG. 2.
  • All DL grants are interleaved or partially interleaved and mapped to the available OFDM symbols of the first slot of the PRB pair, and all UL grants are interleaved or partially interleaved and mapped to the second of the PRB pairs.
  • the available OFDM symbols of the slot are as shown in Figure 20.
  • the downlink grant information and/or the uplink grant information of the R-PDCCH are carried to the pre-assigned physical resource block pair for carrying the R-PDCCH.
  • the base-to-relay node link which not only ensures backward compatibility (compatible with LTE system), but also solves the problem of how R-PDCCH is mapped, and makes full use of backhaul resources.
  • the various modules or steps of the present invention described above can be implemented with a general purpose computing device, which can be centralized on a single computing device, or distributed.
  • the computing devices may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, The steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of the modules or steps may be implemented as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Description

中继节点下^ f亍控制信道的传输方法及系统 技术领域 本发明涉及通信领域,具体而言,涉及一种中继节点下行控制信道( Relay Physical Downlink Control Channel , 简称为 R-PDCCH ) 的传输方法及系统。 背景技术 长期演进 ( Long-Term Evolution , 简称为 LTE )系统、 高级长期演进( LTE advance , 简称为 LTE- A ) 系统和高级的国际移动通信系统 ( International Mobile Telecommunication Advanced, 简称为 IMT-A ) 是以正交频分复用 ( Orthogonal Frequency Division Multiplexing,简称为 OFDM )为基石出, OFDM 系统为时频两维的数据形式。 在 OFDM系统中, 1个子帧 (subframe ) 由 2 个时隙 (slot ) 组成, 如果釆用正常循环前缀(Cyclic Prefix, 简称为 CP ), 每个 slot由 7个 OFDM符号组成;如果釆用扩展 CP,每个 slot由 6个 OFDM 符号组成。 其中, 下行控制信道 ( Physical Downlink Control Channel, 简称 为 PDCCH )位于前 1或 2或 3或 4个 OFDM符号上。 在 LTE通信系统中, PDCCH传输的信息由下行授权信息( DL grant )和上行授权信息( UL grant ) 两部分构成。 目前,在 LTE系统中, PDCCH的映射过程为:在发射端,基站( Enhanced Node B , 简称为 eNB ) 首先将其下属所有的用户设备 ( User Equipment, 简 称为 UE ) 的 PDCCH (包括 DL grant和 UL grant ) 进行独立编码, 即每个 UE的 PDCCH可以釆用不同的编码速率; 然后将编码后所有的 PDCCH进行 串联, 再用小区专用序列进行加扰, 并得到一串控制信息单元 (Control Channel Element, 简称为 CCE ); 再对上述一串 CCE进行 QPSK调制; 然后 对上述符号以 REG为单元进行交织, 并按照先时域后频域的方式映射到前 1 或 2或 3或 4个 OFDM符号上。 在接收端, UE利用小区专用参考符号 ( Cell-specific reference signals, 简称为 CRS )对 PDCCH进行解调, 并对 CCE进行盲检测, 最终得到各自的 PDCCH。 图 1为引入中继节点的移动通信系统架构图, 在该移动通信系统中 eNB 与 RN之间的链路称为中继链路 ( Backhaul Link或者 Un link, 也称为回程链 路), RN与其覆盖范围下的用户之间的链路称为接入链路( Access Link或者 Uu link ), eNB与其覆盖范围下的 UE之间的链路称之为直传链路( Direct Link )„对 eNB来说, RN就相当于一个 UE;对 UE来说, RN就相当于 eNB。 所谓带内中继( inband relay ), 即 backhaul link和 access link使用相同的 频带, 因此, 在釆用带内中继时, 为了避免 RN 自身的收发千扰, RN不能 在同一频率资源上同时进行发送和接收的操作。 当 RN给其下属 UE发送下 行控制信道时, 就收不到来自 eNB的下行控制信道。 因此, 在下行 backhaul 子帧(即 eNB给 RN传输数据所在的子帧)上, RN首先在前 1或 2个 OFDM 符号上给其下属的 UE发送 PDCCH,然后在一段时间范围内进行从发射到接 收的切换, 切换完成后, 在后面的 OFDM符号上接收来自 eNB的数据, 其 中包括 Relay的下行控制信道 ( R-PDCCH, Relay Physical Downlink Control Channel )和 Relay的物理下行共享信道( PDSCH, Physical Downlink Shared Channel ), 如图 2所示。 eNB给 RN发送的 R-PDCCH承载在物理资源块上, 包括 RN的上 /下行 调度授权等信息。 在下行 backhaul子帧上, 如图 3所示, eNB半静态地预留 若千物理资源块用于 R-PDCCH的传输。 发明人发现相关技术中, 使用物理 资源块承载 R-PDCCH时没有合理的映射方案, 导致可能发生资源冲突或者 溢出等, 从而无法有效地利用回程资源。 发明内容 本发明的主要目的在于提供一种 R-PDCCH的传输方法及系统, 以至少 解决上述问题。 根据本发明的一个方面, 提供了一种 R-PDCCH的传输方法, 包括: 基 站将中继节点的下行授权信息承载到预先分配的用于承载 R-PDCCH的物理 资源块对的第一个时隙的可用正交频分复用 OFDM符号上,且所述物理资源 块对上除所述下行 ·ί受权信息所用 OFDM符号外的可用 OFDM符号用于 7 载 各个所述中继节点的 PDSCH;基站向中继节点传输承载下行授权信息和所述 PDSCH的物理资源块对。 优选地, 在所述基站向所述中继节点传输所述物理资源块对之后, 所述 方法还包括:所述中继节点利用解调参考符号 DMRS对 R-PDCCH进行解调, 得到该中继节点的下行 ·ί受权信息和 PDSCH。 优选地, 对于所述基站下的只具有下行授权信息的各个所述中继节点, 所述基站按照以下方式之一将各个所述中继节点的所述下行授权信息和 PDSCH 载在所述物理资源块对上: 在所述物理资源块对的第一个时隙上釆用非预编码的 DMRS , 所述基站 将各个所述中继节点的下行授权信息进行完全或部分交织后, 承载到所述物 理资源块对的第一个时隙的可用 OFDM符号上,所述物理资源块对上除所述 下行授权信息所用 OFDM符号外的可用 OFDM符号用于承载各个所述中继 节点的物理下行共享信道 PDSCH;在所述物理资源块对的第一个时隙上釆用 非预编码的 DMRS , 所述基站将各个所述中继节点的下行授权信息分别承载 到不同的所述物理资源块对的第一个时隙的可用 OFDM符号上,该物理资源 块对上除所述下行 ·ί受权信息所用 OFDM符号外的可用 OFDM符号用于 7 载 各个所述中继节点的 PDSCH; 釆用预编码的 DMRS , 所述基站将各个所述 中继节点的下行 ·ί受权信息分别 7 载到不同的所述物理资源块对的第一个时隙 的可用 OFDM符号上, 该物理资源块对上除所述下行 ·ί受权信息所用 OFDM 符号外的可用 OFDM符号用于 7 载该物理资源块对第一个时隙所对应的中 继节点的 PDSCH。 优选地, 在所述基站向所述中继节点传输所述物理资源块之后, 所述方 法还包括:所述中继节点利用小区专用参考符号 CRS对 R-PDCCH进行解调, 得到该中继节点的下行 ·ί受权信息和 PDSCH。 优选地, 所述基站下的只具有下行 ·ί受权信息的各个所述中继节点; 所述 基站按照以下方式之一将各个所述中继节点的所述下行授权信息和 PDSCH 载在所述物理资源块对上: 所述基站将各个所述中继节点的下行授权信息进行完全交织或部分交织 后 载在所述物理资源块对的第一个时隙的可用 OFDM符号上,所述物理资 源块对的除所述下行 ·ί受权信息所用的 OFDM符号以外的其余所有可用
OFDM符号用于 载各个所述中继节点的 PDSCH; 所述基站将各个所述中 继节点的下行 ·ί受权信息^载在所述物理资源块对的第一个时隙的可用
OFDM符号上, 所述物理资源块对的第二个时隙用于 载各个所述中继节点 的 PDSCH。 根据本发明的另一方面, 提供了一种 R-PDCCH的传输系统, 包括: 基 站,设置为将中继节点的下行授权信息承载到预先分配的用于承载 R-PDCCH 的物理资源块对的第一个时隙的可用正交频分复用 OFDM符号上,所述物理 资源块对上除所述下行 ·ί受权信息所用 OFDM符号外的可用 OFDM符号用于 承载各个所述中继节点的 PDSCH; 中继节点,设置为从物理资源块中解调出 该中继节点的下行 ·ί受权信息和 PDSCH。 优选地, 所述中继节点利用 DMRS对 R-PDCCH进行解调, 从所述物理 资源块对中解调出该中继节点的下行 ·ί受权信息和 PDSCH。 优选地, 所述中继节点利用 CRS对 R-PDCCH进行解调, 从所述物理资 源块对中解调出该中继节点的下行 ·ί受权信息和 PDSCH。 通过本发明, 通过将 R-PDCCH的下行授权信息和 PDSCH承载到预先 分配的用于 载 R-PDCCH的物理资源块对的可用 OFDM符号上, 解决了 R-PDCCH如何映射的问题, 可以很好地适用于基站到中继节点链路, 同时 使得 backhaul资源得以充分的利用。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为根据相关技术的包含 RN的系统的架构示意图; 图 2为根据相关技术的帧结构示意图; 图 3为根据相关技术中的 R-PDCCH与 PDCCH位置关系示意图; 图 4为根据本发明实施例一的 R-PDCCH的传输系统的结构示意图; 图 5为根据本发明实施例一的基站的结构示意图; 图 6为根据本发明实施例一的 R-PDCCH的传输方法的结构示意图; 图 6'为才艮据本发明实施例一的 R-PDCCH的传输方法的另一流程图; 图 7为才艮据本发明实施例二的 R-PDCCH的映射示意图; 图 8为才艮据本发明实施例三的一种 R-PDCCH的映射示意图; 图 9为才艮据本发明实施例三的另一种 R-PDCCH的映射示意图; 图 10为才艮据本发明实施例三的又一种 R-PDCCH的映射示意图; 图 11为才艮据本发明实施例三的再一种 R-PDCCH的映射示意图; 图 12为才艮据本发明实施例四的一种 R-PDCCH的映射示意图; 图 13为才艮据本发明实施例四的另一种 R-PDCCH的映射示意图; 图 14为才艮据本发明实施例四的又一种 R-PDCCH的映射示意图; 图 15为才艮据本发明实施例五的 R-PDCCH的映射示意图; 图 16为才艮据本发明实施例五的另一种 R-PDCCH的映射示意图; 图 17为才艮据本发明实施例五的又一种 R-PDCCH的映射示意图; 图 18为才艮据本发明实施例六的一种 R-PDCCH的映射示意图; 图 19为才艮据本发明实施例六的另一种 R-PDCCH的映射示意图; 图 20为才艮据本发明实施例九的 R-PDCCH的映射示意图; 图 21为才艮据本发明实施例十的 R-PDCCH的映射示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在对本发明实施例提供的技术方案进行描述之前, 为了便于描述, 在本 发明实施例中对下面几个术语进行了如下的定义和约定:
1. 资源单元 (Resource Element, 简称为 RE ): 最小的时频资源块, 占 据 1个 OFDM符号上的 1个子载波;
2. 资源单元组( Resource Element Group,简称为 REG):才艮据每个 OFDM 符号上参考符号位置的不同, 1个 REG可以由 4个或 6个 RE组成; 3. 控制信息单元(Control Channel Element, 简称为 CCE ): 由 36个 RE, 9个 REG组成, CCE中包含的信息有: 用户的 DL grant和 UL grant;
4. 物理资源块 (Physical Resource Block, 简称为 PRB ): 时间 i或上为连 续 1个时隙, 频率域上为连续 12个子载波; 5. 物理资源块对(PRB pair ): 时间域上为连续 1个子帧, 频率域上为连 续 12个子载波;
6. 内部交织是指 RN的 DL grant (或者 UL grant ) 自身进行交织, 交织 单元以 REG为单元, 或以 CCE为单元;
7. 完全交织 (或全部交织)是指 eNB将所有 RN的 DL grant (或者 UL grant ) 串联在一起, 并以 REG为单元 ( REG-level ) 或者以 CCE为单元
( CCE-level ) 进行交织;
8.部分交织是指 eNB将 RN进行分组,只有位于同一组的 RN的 DL grant (或者 UL grant ) 串联在一起, 并以 REG为单元 ( REG-level ) 或者以 CCE 为单元 (CCE-level ) 进行交织。 实施例一 图 4为根据本发明实施例一的 R-PDCCH的传输系统的结构示意图, 包 括: 基站 10和中继节点 20。 其中, 基站 10, 设置为将中继节点 20的下行 授权信息承载到预先分配的用于承载 R-PDCCH的物理资源块对的第一个时 隙的可用 OFDM符号上, 和 /或, 设置为将中继节点 20的上行授权信息承载 到上述物理资源块对的第一个时隙或所有时隙的可用 OFDM符号上,并将 7 载上述下行授权信息和 /或上行授权信息的物理资源块传输给中继节点 20; 中继节点 20 ,设置为从上述物理资源块中解调出该中继节点的下行授权信息 和 /或上行授权信息。 例如, 基站 10可以半静态地为其下属的每个中继节点 20预先分配好用 于 载 R-PDCCH的一个或多个物理资源块对 ( PRB pair ), 然后^ 1各个中继 节点 20的下行授权信息和 /或上行授权信息承载在该一个或多个物理资源块 对的第一个时隙和所有时隙上, 其中, 各个中继节点 20的下行 ·ί受权信息映 射到该一个或多个物理资源块对第一个时隙的可用 OFDM符号上,从而可以 减少中继节点 20解调 R-PDCCH的时延。 例如, 中继节点 20可以利用解调参考符号 ( Demodulation reference signal, 简称为 DMRS )对 R-PDCCH进行解调, 从而得到该中继节点的下行 授权信息和 /或上行授权信息, 或者, 中继节点 20可以利用专用小区参考符 号 (Cell-specific reference signals, 简称为 CRS )对 R-PDCCH进行解调。 针 对中继节点 20的不同解调方式,基站 10可以按照不同的方式对中继节点 20 的 R-PDCCH进行映射, 具体的映射方式将在下面的实施例中进行描述。 由于相关技术中在使用预留的物理资源块对承载 R-PDCCH时没有合理 的映射方案, 导致可能发生资源冲突或者溢出等问题, 而在本实施例的上述 系统中,基站将中继节点 20的下行授权信息承载到用于承载 R-PDCCH的物 理资源块对的第一个时隙的可用 OFDM符号上, 和 /或, 将中继节点 20的上 行 ·ί受权信息 载到上述物理资源块对的第一个时隙或所有时隙的可用
OFDM符号上, 从而可以合理的利用下行回程子帧, 使得回程资源得到了合 理的利用。 图 5为根据本发明实施例一的基站 10的结构示意图, 基站 10包括: 配 置模块 100,设置为将中继节点 20的下行授权信息承载到预先分配的用于承 载 R-PDCCH的物理资源块对的第一个时隙的可用 OFDM符号上, 和 /或, 将中继节点 20的上行授权信息承载到该物理资源块对的第一个时隙或所有 时隙的可用 OFDM符号上; 传输模块 102 , 设置为将向中继节点 20传输 7 载上述下行 ·ί受权信息和 /或上行 ·ί受权信息的物理资源块对。 利用本实施例的基站 10可以将中继节点 20的 R-PDCCH中的下行授权 信息映射到 载 R-PDCCH的物理资源块对的第一个时隙上的可用 OFDM符 号上, 而将上行授权信息映射到该物理资源块对的第一个时隙上 (或第一个 时隙和第二个时隙上) 的可用 OFDM符号, 从而可以合理的利用回程资源。 图 6为根据本发明实施例一的 R-PDCCH的传输方法的流程图, 该方法 包括 (步骤 S602 -步骤 S604 ): 步骤 S602,基站 10将中继节点 20的下行授权信息承载到预先分配的用 于承载 R-PDCCH的物理资源块对的第一个时隙的可用 OFDM符号上, 和 / 或, 基站 10将中继节点 20的上行授权信息承载到上述物理资源块对的第一 个时隙或所有时隙的可用 OFDM符号上; 例如, 对基于 DMRS解调的情况, 基站将 DL grant (下行授权信息)只 能映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot的部分或全部 OFDM 符号上; 如果中继节点 20具有 DL和 UL grant, 则 UL grant映射到 PRB pair 的第 2个 slot上,否则, UL grant优先映射到用于 载 R-PDCCH的 PRB pair 的第 1个 slot全部 OFDM符号上,其次映射到用于 载 R-PDCCH的 PRB pair 的全部 OFDM符号上。 对基于 CRS解调的情况,基站 10可以不区分 DL/UL grant, 将所有中继 节点 20的 R-PDCCH全部交织在一起, 并映射到 PRB pair的第 1个 slot上。 或者,基站 10也可以将所有中继节点 20的 DL grant交织在一起映射到 PRB pair的第 1个 slot上,将所有中继节点 20的 UL grant交织在一起映射到所述 PRB pair的第 2个 slot上。 步骤 S604, 基站 10向中继节点 20传输承载上述下行授权信息和 /或上 行 ·ί受权信息的物理资源块对。 例如, 在基站 10向中继节点 20传输上述物理资源块对后, 中继节点 20 可以利用 DMRS或 CRS对 R-PDCCH进行解调, 从而得到该中继节点的下 行授权信息和 /或上行授权信息。 图 6'为才艮据本发明实施例一的 R-PDCCH的传输方法的另一流程图, 该 方法包括如下步 4聚: 步骤 S602' , 基站 10将中继节点 20的下行授权信息承载到预先分配的 用于承载 R-PDCCH的物理资源块对的第一个时隙的可用 OFDM符号上,且 该物理资源块对上除上述下行 ·ί受权信息所用 OFDM符号外的可用 OFDM符 号用于承载各个中继节点的 PDSCH; 步骤 S604' ,基站 10向中继节点 20传输承载上述下行授权信息和 PDSCH 的物理资源块对。 优选地, 在基站 10向中继节点 20传输上述物理资源块对后, 中继节点
20可以利用 DMRS或 CRS对 R-PDCCH进行解调, 从而得到该中继节点的 下行授权信息和 PDSCH。 由于相关技术中在使用预留的物理资源块对承载 R-PDCCH时没有合理 的映射方案, 导致可能发生资源冲突或者溢出等问题, 而在本实施例的上述 方法中, 基站 10将中继节点 20的下行授权信息承载到用于承载 R-PDCCH 的物理资源块对的第一个时隙的可用 OFDM符号上, 和 /或, 将中继节点 20 的上行 ·ί受权信息^载到上述物理资源块对的第一个时隙或所有时隙的可用 OFDM符号上, 从而可以合理的利用下行回程子帧, 使得回程资源得到了合 理的利用。 实施例二 在本实施例, RN 20基于 DMRS对 R-PDCCH进行解调, 各个 RN 20的 R-PDCCH既包含 DL grant, 又包含 UL grant, 并且 DL grant和 UL grant映 射在相同的用于 载 R-PDCCH的一个或多个 PRB pair内。 基站 10端: 基站 10半静态地为其下属的每个 RN 20预先分配好用于承载 R-PDCCH 的一个或多个 PRB pair, ;。图 7所示, 即 PRB pair只能用于唯 个 RN。 在本实施例,基站 10可以通过以下方式^ 1 RN的 R-PDCCH 载在为该 RN分配的 PRB pair上传输给 RN: 方式一, 基站 20为 RN1半静态的分配了 2个离散的 PRB pairs, 并将
RN1的 DL grant进行内部交织后, 映射到上述 2个 PRB pair的第 1个 slot 的部分或全部可用 OFDM符号上(图 7对应的是第 1个 slot的全部可用 OFDM 符号;); RN1的 UL grant进行内部交织后, 映射到上述 2个 PRB pair的除 DL grant所用 OFDM符号以外的剩余的所有可用 OFDM符号上(图 7对应的是 第 2个 slot的所有可用 OFDM符号)。 方式二, 基站为 RN2半静态的分配了 3个连续的 PRB pairs, 并将 RN2 的 DL grant不进行内部交织,映射到上述 3个 PRB pair的第 1个 slot的部分 或全部可用 OFDM符号上 (图 7对应的是第 1个 slot的全部可用 OFDM符 号;); UL grant进行内部交织后, 映射到上述 3个 PRB pair的除 DL grant所 用 OFDM符号以外的剩余的所有可用 OFDM符号上 (图 7对应的是第 2个 slot的所有可用 OFDM符号)。 方式三, 基站为 RN3半静态的分配了 2个连续的 PRB pairs, 并将 RN3 的 DL grant进行内部交织后,映射到上述 2个 PRB pair的第 1个 slot的部分 或全部可用 OFDM符号上 (图 7对应的是第 1个 slot的部分可用 OFDM符 号;); UL grant不进行内部交织, 映射到上述 2个 PRB pair的除 DL grant所 用 OFDM符号以外的剩余的所有可用 OFDM符号上 (图 7对应的是第 1个 slot上剩下的 OFDM符号以及第 2个 slot的所有可用 OFDM符号)。 方式四, 基站为 RN4半静态的分配了 2个离散的 PRB pairs, 并将 RN4 的 DL grant不进行内部交织,映射到上述 2个 PRB pair的第 1个 slot的部分 或全部可用 OFDM符号上 (图 7对应的是第 1个 slot的部分可用 OFDM符 号;); UL grant不进行内部交织, 映射到上述 2个 PRB pair的除 DL grant所 用 OFDM符号以外的剩余的所有可用 OFDM符号上 (图 7对应的是第 1个 slot上剩下的 OFDM符号以及第 2个 slot的所有可用 OFDM符号)。 RN 20端: 如果基站 10端预先通知每个 RN 20, 具体为各个 RN 20分配的用于承 载 R-PDCCH的 PRB pair,则 RN直接从预先分配好的 PRB pair的第 1个 slot 的部分或全部可用 OFDM符号上解调 (解交织) 后获得 DL grant, 再从除 DL grant所用 OFDM符号以外的剩余的所有可用 OFDM符号上解调 (解交 织) 后获得 UL grant。 其中, 是否有解交织的步骤取决于基站端是否进行了 内部交织。 如果基站端事先并没有通知每个 RN, 具体为它们分配的用于承载 R-PDCCH的 PRB pair, 则 RN需要对 PRB pair进行盲检测, 先找到属于该 RN本身的 PRB pair后,再才艮据上述步骤解调出相应的 DL grant和 UL grant。 实施例三 在本实施例中, RN 20基于 DMRS进行解调, 基站 10下的各个 RN只 有 DL grant, 没有 UL grant。 基站 10半静态地预留了一组用于承载 R-PDCCH的 1个或多个 PRB pair, 如图 8所示, 基站 10预留了 8个 PRB pair用于 载 R-PDCCH。 基站 10可 以釆用以下方式之一映射各个 RN的 R-PDCCH: 方式一 基站 10端:
10 替换页 (细则第 26条 基站 10对上述一组 PRB pair的第 1个 slot釆用非预编码的 DMRS , RN1、 RN2和 RN3的 DL grant进行完全交织后, 映射到上述一组 PRB pair的第 1 个 slot的部分或全部可用 OFDM符号上(图 8对应的是第 1个 slot的部分可 用 OFDM符号;); 上述一组 PRB pair上除 DL grant所用的 OFDM符号以夕卜 的剩余的所有可用 OFDM符号用于 载 RN1、 RN2和 RN3的 R-PDSCH (图 8对应的是第 2个 slot的全部可用 OFDM符号)。 此外,所有 RN的 DL grant也可以釆用部分交织,并映射到上述一组 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上。 如图 9所示, RN1和 RN2的 DL grant之间进行交织; RN3和 RN4的 DL grant之间进行交织; RN5、 RN6和 RN7的 DL grant之间进行交织; 并映射到不同的用于 载 R-PDCCH 的 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上。
RN 20端:
RN 20接收上述一组 PRB pair的第 1个 slot的部分或全部可用 OFDM符 号, 进行解调, 解交织, 最后盲检测出自己的 DL grant, 并根据 DL grant的 指示到第 2个 slot上相应的时频资源上接收 R-PDSCH。 方式二 基站 10端: 基站对上述一组 PRB pair的第 1个 slot釆用非预编码的 DMRS , 不同 RN的 DL grant之间不进行交织,分别映射到上述一组 PRB pair中不同的 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上;该 PRB pair上除 DL grant 所用的 OFDM符号以外的剩余的所有可用 OFDM符号用于承载与第 1个 slot 目同或不同的 RN的 R-PDSCH。 如图 10所示, RN1、 RN2和 RN3的 DL grant不进行交织, 分另1 J映射到 上述预留好的各自专用的 PRB pair的第 1个 slot的部分或全部可用 OFDM 上。其中, RN1和 RN2的 DL grant映射到第 1个 slot的全部可用 OFDM上, RN3的 DL grant映射到第 1个 slot的部分可用 OFDM上。 RN1和 RN2所在 PRB pair上除 DL grant所用的 OFDM符号以外的剩余的所有可用 OFDM符 号用于 载与第 1个 slot不同的 RN的 R-PDSCH; RN3所在 PRB pair上 DL grant所用的 OFDM符号以外的剩余的所有可用 OFDM符号用于 载 RN3 本身的 R-PDSCH。
11 替换页 (细则第 26条) RN端: 如果基站端事先通知每个 RN, 具体为各个 RN分配的用于承载
R-PDCCH的 PRB pair, 则 RN直接从预先分配好的 PRB pair的第 1个 slot 的部分或全部可用 OFDM符号上获取 DL grant,再根据 DL grant的指示从第 2个 slot的除 DL grant所用 OFDM符号以外的剩余的所有可用 OFDM符号 上接收 R-PDSCH。 如果基站端事先并没有通知每个 RN, 具体为各个 RN分配的用于承载 R-PDCCH的 PRB pair, 则 RN需要对 PRB pair的第 1个 slot进行盲检测, 找到属于自己的 PRB pair后再才艮据上述步骤解调出相应的 DL grant。 方式三 基站 10端: 基站釆用预编码的 DMRS, 不同 RN之间的 DL grant不进行交织, 并映 射到不同的用于 7 载 R-PDCCH的 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上; 所述 PRB pair上除 DL grant所用的 OFDM符号以外的剩余 的所有可用 OFDM符号用于承载与第 1个 slot相同的 RN的 R-PDSCH。 如图 11所示, RN1、 RN2和 RN3都有各自专用的 1个或多个 PRB pair, RN1、 RN2和 RN3的 DL grant均位于各自 PRB pair的第 1个 slot的部分或 全部可用 OFDM符号上, 而剩下的可用 OFDM符号上不能放置其它 RN的 R-PDSCH, 只能放置自己的 R-PDSCH。 RN端: 如果基站端事先通知每个 RN, 具体为它们分配了哪些 PRB pair用于承 载 R-PDCCH, 那么 RN直接从预先分配好的 PRB pair的第 1个 slot的部分 或全部可用 OFDM符号上获取 DL grant,再才艮据 DL grant的指示到相应的时 频资源上获取 R-PDSCH, 其中上述 PRB pair上 DL grant所用的 OFDM符号 以外的所有剩余可用 OFDM符号上只能 载该 DL grant所对应的 RN的 R-PDSCH。 如果基站端事先并没有通知每个 RN, 具体为它们分配了哪些 PRB pair 用于 载 R-PDCCH, 则 RN需要对 PRB pair的第 1个 slot进行盲检测, 找 到属于自己的 PRB pair后才能根据上述步骤解调出相应的 DL grant。 实施例四 在本实施例中, RN 20基于 DMRS解调 R-PDCCH, 基站 10下的各个 RN只有 UL grant, 没有 DL grant。 与实施例三相似, 在本实施例中, 基站 10半静态地预留了一组( 8个)用于 载 R-PDCCH的 1个或多个 PRB pair。 在本实施例,基站 10可以通过以下方式将 RN的 R-PDCCH 载在为该
RN分配的 PRB pair上传输给 RN: 方式一 基站 10端: 基站对第 1个 slot上釆用非预编码的 DMRS , 所有 RN的 UL grant之间 进行完全交织后, 映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot的全 部可用 OFDM符号上; PRB pair的第 2个 slot上所有可用 OFDM符号用于 载其它 RN的下行业务。 这种映射方式和 DL grant alone的方法 1)类似, 完全交织时, 将实施例三的图 8中的 DL grant改成 UL grant即可; 部分交织 时, ^!夺实施例三的图 9中的 DL grant改成 UL grant即可。 RN端:
RN接收上述一组 PRB pair的第 1个 slot的全部可用 OFDM符号, 进行 解调, 解交织, 最后盲检测出自己的 UL grant。 方式二 基站 10端 基站对不同 RN的 UL grant之间不进行交织,分别映射到不同的 PRB pair 的第 1个 slot的全部可用 OFDM符号上; 各个 PRB pair的第 2个 slot上的 所有可用 OFDM符号用于 7 载其它 RN的下行业务。这种映射方式和实施例 三中的方式二类似, 唯一不同的是 DL grant alone可以占用第 1个 slot的部 分可用 OFDM符号, 而 UL grant alone要占用第 1个 slot的全部可用 OFDM 符号。 实施例三的图 10中的 DL grant改成 UL grant, 并且占满第 1个 slot 即可。
RN端: 如果基站端事先通知了每个 RN, 具体为各个 RN 20分配的用于承载 R-PDCCH的 PRB pair, 则 RN直接从预先分配好的 PRB pair的第 1个 slot 的全部可用 OFDM符号上获取 UL grant。 如果基站端事先并没有通知每个 RN, 具体为各个 RN 20分配的用于承 载 R-PDCCH的 PRB pair,则 RN需要对 PRB pair的第 1个 slot进行盲检测, 找到属于自己的 PRB pair后再根据上述步骤解调出相应的 UL grant。 方式三 基站 10对第 1个 slot和第 2个 slot均釆用非预编码的 DMRS , 所有 RN 的 UL grant进行完全交织后, 映射到用于 载 R-PDCCH的 PRB pair的所有 可用 OFDM符号上。 如图 12所示, RN1、 RN2和 RN3的 UL grant进行完全交织后, 映射到 预先分配好的一组 PRB pair的所有可用 OFDM符号上。 部分交织时,如图 13所示, RN1和 RN2的 DL grant之间进行交织; RN3 和 RN4的 DL grant之间进行交织; RN5、 RN6和 RN7的 DL grant之间进行 交织;并映射到不同的用于 载 R-PDCCH的 PRB pair的全部可用 OFDM符 号上。 方式四 基站 10釆用预编码的 DMRS , 不同 RN的 UL grant之间不进行交织, 分别映射到不同的 PRB pair的所有可用 OFDM符号上。 如图 14所示, RN1、 RN2和 RN3的 UL grant不交织, 且分别占用不同 的 PRB pair的所有可用 OFDM符号上。 实施例五 在本实施例中, RN 20基于 DMRS解调 R-PDCCH, 并且, 在本实施例 中, 基站 10下的某些 RN 20只有 DL grant, 而另一些 RN 20只有 UL grant。 与实施例三相似, 在本实施例中, 基站 10半静态地预留了一组( 8个)用于 载 R-PDCCH的 1个或多个 PRB pair。 在本实施例,基站 10可以通过以下方式^ 1 RN的 R-PDCCH 载在为该 RN分配的 PRB pair上传输给 RN: 方式一 基站 10对第 1个 slot釆用非预编码的 DMRS ,将所有的 DL grant和 UL grant全部交织或部分交织在一起后, 映射到用于 载 R-PDCCH的 PRB pair 的第 1个 slot的全部可用 OFDM符号上; 用于 载 R-PDCCH的 PRB pair 的第 2个 slot上的所有可用 OFDM符号用于承载 RN的下行业务。 如图 15所示, RN1、 RN3的 DL grant和 RN2、 RN4的 UL grant全部交 织在一起, 并映射到预留的一组 PRB pair的第 1个 slot的全部可用 OFDM 符号上。 每个 RN只需对上述 PRB pair的第 1个 slot进行解调解交织, 并进行盲 检测后, 即可获得各自的 R-PDCCH。 部分交织时,如图 16所示, RN1和 RN3的 DL grant之间进行交织; RN2 和 RN4的 UL grant之间进行交织, 并映射到不同的用于 载 R-PDCCH的 PRB pair的第 1个 slot的全部可用 OFDM符号上。 方式二 基站 10釆用预编码的 DMRS , DL grant与 UL grant之间不进行交织, 分别映射到不同的 PRB pair上, 其中, DL grant映射到用于 载 R-PDCCH 的 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上, 剩下的 OFDM 符号上 载与之相应的 R-PDSCH; UL grant映射到 PRB pair的第 1个 slot 的全部 OFDM符号上或者 PRB pair的全部可用 OFDM符号上。 如图 17所示,每个 RN都有各自专用的 PRB pair,其中, RN1的 DL grant 位于预先分配好的 2个离散的 PRB pair的第 1个 slot上, 而第 2个 slot上只 能放置 RN1本身的 R-PDSCH。 RN3的 DL grant位于预先分配好的 3个连续 的 PRB pair的第 1个 slot的部分可用 OFDM符号上, 这 3个 PRB pair的剩 下的可用 OFDM符号上只能 载 RN3的 R-PDSCH。 RN2的 UL grant位于 预先分配好的 2个连续的 PRB pair的第 1个 slot的全部可用 OFDM符号上, 剩下的资源用于 载其它的下行业务。 RN4的 UL grant位于预先分配好的 1 个 PRB pair的第 1个 slot的部分可用 OFDM符号上, 剩下的资源用于承载 RN4的 R-PDSCH。 实施例六 在本实施例中, RN 20基于 CRS解调 R-PDCCH, 基站 20管理下的 RN 20的 R-PDCCH既包含 DL grant,又包含 UL grant,并且各个 RN 20的 DL grant 和 UL grant可以映射在相同或者不同的 1个或多个 PRB pair内。 方式一 同一个 RN 20的 DL grant和 UL grant映射在相同的 1个或多个 PRB pair 内, 具体的映射方法与实施例二中的各种方式完全相同。 方式二 同一个 RN 20的 DL grant和 UL grant映射在 1个或多个 PRB pair内, 基站 10半静态地预留了一组用于承载 R-PDCCH的 1个或多个 PRB pair,则 可以釆用以下方式传输 R-PDCCH: a) 基站将所有 RN 20的 DL grant进行完全或部分交织后, 映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上; 所有的 UL grant进行完全或部分交织后, 映射到用于 载 R-PDCCH的 PRB pair的除 DL grant所用的 OFDM符号以外的剩余的所有可用 OFDM符号上。 如图 18所示, RN1、 RN2和 RN3的 DL grant进行完全交织并映射到第 1个 slot的所有可用 OFDM符号上, UL grant进行完全交织并映射到第 2个 slot 的所有可用 OFDM符号上。 b) 不同 RN的 DL grant之间不进行交织, 映射到用于承载 R-PDCCH的 PRB pair的第 1个 slot的全部可用 OFDM符号上; 所有 RN 20的 UL grant 进行完全交织或部分后,映射到上述 PRB pair的第 2个 slot的所有可用 OFDM 符号上。 ^图 18中的 RN4和 RN5。 c) 所有的 DL grant进行完全交织或部分后, 映射到用于 载 R-PDCCH 的 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上; 不同 RN的 UL grant之间不进行交织, 映射到所述 PRB pair的除 DL grant所用 OFDM符号 以外的剩余的所有可用 OFDM符号上。 如图 18中的 RN6、 RN7和 RN8。 d) 基站不区分 DL grant和 UL grant,将所有 RN 20的 R-PDCCH完全交 织在一起, 并同一映射在一组 PRB pair的第 1个 slot的全部可用 OFDM符 号上, 如图 19所示。 实施例七 在本实施例中, RN 20基于 CRS解调 R-PDCCH, 基站 10下的各个 RN 只有 DL grant, 没有 UL grant。 与实施例三相似, 在本实施例中, 基站 10半 静态地预留了一组 ( 8个) 用于 载 R-PDCCH的 1个或多个 PRB pair。 在本实施例中传输 R-PDCCH包括以下方式: 方式一 基站 10将所有 RN 20的 DL grant进行完全或部分交织后, 映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上; 上述 PRB pair上除 DL grant所用的 OFDM符号以外的剩余的所有可用 OFDM符号用于 载 RN的 R-PDSCH。 与实施例四的方式一相似, 全部交 织时, ;;口图 8所示。 部分交织时, ;;口图 9所示。 方式二 基站 10对不同 RN之间的 DL grant不进行交织, 分别映射到不同的用 于 载 R-PDCCH的 PRB pair的第 1个 slot的全部可用 OFDM符号上;上述 PRB pair的第 2个 slot的所有可用 OFDM符号用于 载与第 1个 slot相同或 不同的 RN的 R-PDSCH。 与实施例四的方式二 ^目似、, 如图 10所示。 实施例八 在本实施例中, RN 20基于 CRS解调 R-PDCCH, 基站 10下的 RN只有 UL grant, 没有 DL grant。 与实施例三相似, 在本实施例中, 基站 10半静态 地预留了一组 ( 8个) 用于 载 R-PDCCH的 1个或多个 PRB pair。 在本实施例,基站 10可以通过以下方式^ 1 RN的 R-PDCCH 载在为该 RN分配的 PRB pair上传输给 RN: 方式一 基站 10将所有 RN 20的 UL grant进行完全或部分交织后, 映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot的部分或全部可用 OFDM符号上; 上述 PRB pair上除 UL grant所用的 OFDM符号以外的剩余的所有可用 OFDM符号用于 载其它 RN的下行业务。 如图 8所示, 其中将 DL grant改 成 UL grant, 且占满第 1个 slot即可。 部分交织时, 将图 9中的 DL grant改 成 UL grant, 且占满第 1个 slot即可。 方式二 基站 10对不同 RN之间的 UL grant不进行交织, 分别映射到不同的用 于 载 R-PDCCH的 PRB pair的第 1个 slot的全部可用 OFDM符号上;上述 PRB pair的第 2个 slot的所有可用 OFDM符号用于 载其它 RN的下行业务。 如图 10所示, 其中将 DL grant改成 UL grant, 且占满第 1个 slot即可, 其中 的 R-PDSCH是其它 RN是下行业务。 方式三 基站 10对所有 RN的 UL grant进行完全或部分交织后, 映射到用于 载 R-PDCCH的 PRB pair的所有可用 OFDM符号上, 完全交织时, 如图 12 所示。 部分交织时, 如图 13所示。 方式四 基站 10对不同 RN的 UL grant之间不进行交织,分别映射到不同的 PRB pair的所有可用 OFDM符号上, 即每个 RN都有各自专用的 PRB pair, 如图 14所示。 实施例九 在本实施例中, RN 20基于 CRS解调 R-PDCCH, 基站 10下的某些 RN 只有 DL grant, 而另一些 RN 20只有 UL grant。 与实施例三相似, 在本实施 例中, 基站 10半静态地预留了一组( 8个)用于承载 R-PDCCH的 1个或多 个 PRB pair。 在本实施例,基站 10可以通过以下方式^ 1 RN的 R-PDCCH 载在为该 RN分配的 PRB pair上传输给 RN: 方式一 与实施例五中的方式一相似, 基站 10将所有的 DL grant和 UL grant全 部或部分交织在一起后,映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot 的全部可用 OFDM符号上;上述 PRB pair的第 2个 slot上的所有可用 OFDM 符号用于 载 RN的下行业务。 全部交织时, 如图 15所示。 部分交织时, 如 图 16所示。 方式二 基站 10所有 DL grant全部交织或部分交织在一起映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot的全部可用 OFDM符号上;所有 UL grant 全部交织或部分交织在一起映射到所述 PRB pair的第 2个 slot上的所有可用 OFDM符号。 全部交织时, 如图 17所示。 方式三
DL grant与 UL grant之间不进行交织, 分别映射到不同的 PRB pair上, 其中, DL grant映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot的部分 或全部可用 OFDM符号上, 剩下的可用 OFDM符号上 载与之相应的 R-PDSCH; UL grant映射到 PRB pair的第 1个 slot的全部可用 OFDM符号 上或者 PRB pair的全部可用 OFDM符号上。 方式四
DL grant与 UL grant之间不进行交织, 并且映射到相同的 PRB pair上, 其中, DL grant映射到用于 载 R-PDCCH的 PRB pair的第 1个 slot的全部 可用 OFDM符号上; UL grant映射到所述 PRB pair的第 2个 slot的所有可用 OFDM符号上。 实施例十 在本实施例中, 某个下行 backhaul子帧是基于预编码的 DMRS解调的, 其中, 上述 4种组合均包括。 RN1和 RN2既有 DL grant又有 UL grant; RN3 和 RN4只有 DL grant; RN5和 RN6只有 UL grant。 基站端的映射原则如下: 由于是基于预编码的 DMRS解调的, 因此, 基站半静态的为每个 RN分 配专用的 PRB pair用于 载 R-PDCCH, 即不同 R-PDCCH之间不进行交织, 相同 DL/UL grant内部可以交织。 对 DL grant来说只能映射到 PRB pair的第 1个 slot的可用 OFDM符号上, 对 UL grant来说, 如果 DL/UL grant都有, 则映射到 PRB pair的第 2个 slot上的可用 OFDM符号上; 否则的话, 优先 映射到 PRB pair的第 1个 slot, 其次映射到 PRB pair的整个子帧上。 如图 21所示, RN 1和 RN2的 DL grant映射到它们各自所在 PRB pair 的第 1个 slot的可用 OFDM符号上, UL grant映射到它们各自所在 PRB pair 的第 2个 slot的可用 OFDM符号上。 RN3和 RN4的 DL grant映射到它们各 自所在 PRB pair的第 1个 slot的可用 OFDM符号上, 并且第 2个 slot的可 用 OFDM符号上 载它们各自的 R-PDSCH。 RN5的 UL grant映射到其所在 PRB pair的第 1个 slot的可用 OFDM符号上,第 2个 slot上承载其它的下行 业务。 RN6的 UL grant映射到其所在 PRB pair的整个子帧的可用 OFDM符 号上。 实施例十一 在本实施例中, 某个下行 backhaul子帧是基于预编码的 CRS解调的, 其中, 上述 4种组合均包括。 RN1和 RN2既有 DL grant又有 UL grant; RN3 和 RN4只有 DL grant; RN5和 RN6只有 UL grant。 基站端的映射包括:
1. 不区分 DL/UL grant,将所有 RN的 R-PDCCH全部交织或部分交织在 一起,并映射到 PRB pair的第 1个 slot的可用 OFDM符号上,如图 19所示。 2. 将所有的 DL grant全部交织或部分交织在一起映射到 PRB pair的第 1 个 slot的可用 OFDM符号上,将所有的 UL grant全部交织或部分交织在一起 映射到上述 PRB pair的第 2个 slot的可用 OFDM符号上, 如图 20所示。 从以上的描述中, 可以看出, 在本发明实施例中, 通过将 R-PDCCH的 下行授权信息和 /或上行授权信息承载到预先分配的用于承载 R-PDCCH的物 理资源块对的可用 OFDM符号上, 可以很好地适用于基站到中继节点链路, 既保证了后项兼容性 (兼容 LTE系统), 也解决了 R-PDCCH如何映射的问 题, 同时使得 backhaul资源得以充分的利用。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种中继节点下行控制信道 R-PDCCH的传输方法, 包括:
基站将中继节点的下行授权信息承载到预先分配的用于承载 R-PDCCH的物理资源块对的第一个时隙的可用正交频分复用 OFDM 符号上, 且所述物理资源块对上除所述下行授权信息所用 OFDM符号 外的可用 OFDM符号用于承载各个所述中继节点的 PDSCH;
所述基站向所述中继节点传输承载所述下行授权信息和所述 R-PDSCH的所述物理资源块对。 根据权利要求 1所述的方法, 其中, 在所述基站向所述中继节点传输 所述物理资源块对之后, 所述方法还包括: 所述中继节点利用解调参 考符号 DMRS对 R-PDCCH进行解调, 得到该中继节点的下行授权信 息和 PDSCH。 根据权利要求 2所述的方法, 其中, 对于所述基站下的只具有下行授 权信息的各个所述中继节点, 所述基站按照以下方式之一将各个所述 中继节点的所述下行授权信息和 PDSCH承载在所述物理资源块对上: 在所述物理资源块对的第一个时隙上釆用非预编码的 DMRS , 所 述基站将各个所述中继节点的下行授权信息进行完全或部分交织后, 7 载到所述物理资源块对的第一个时隙的可用 OFDM符号上, 所述物 理资源块对上除所述下行授权信息所用 OFDM符号外的可用 OFDM 符号用于承载各个所述中继节点的物理下行共享信道 PDSCH;
在所述物理资源块对的第一个时隙上釆用非预编码的 DMRS , 所 述基站将各个所述中继节点的下行授权信息分别承载到不同的所述物 理资源块对的第一个时隙的可用 OFDM符号上, 该物理资源块对上除 所述下行 ·ί受权信息所用 OFDM符号外的可用 OFDM符号用于 7 载各 个所述中继节点的 PDSCH;
釆用预编码的 DMRS , 所述基站将各个所述中继节点的下行授权 信息分别 载到不同的所述物理资源块对的第一个时隙的可用 OFDM 符号上, 该物理资源块对上除所述下行 ·ί受权信息所用 OFDM符号外的 可用 OFDM符号用于 7 载该物理资源块对第一个时隙所对应的中继节 点的 PDSCH。
4. 根据权利要求 1所述的方法, 其中, 在所述基站向所述中继节点传输 所述物理资源块之后, 所述方法还包括: 所述中继节点利用小区专用 参考符号 CRS对 R-PDCCH进行解调, 得到该中继节点的下行授权信 息和 PDSCH。
5. 根据权利要求 4所述的方法, 其中, 所述基站下的只具有下行授权信 息的各个所述中继节点; 所述基站按照以下方式之一将各个所述中继 节点的所述下行 ·ί受权信息和 PDSCH 7 载在所述物理资源块对上: 所述基站将各个所述中继节点的下行授权信息进行完全交织或部 分交织后 7 载在所述物理资源块对的第一个时隙的可用 OFDM符号 上, 所述物理资源块对的除所述下行 ·ί受权信息所用的 OFDM符号以外 的其余所有可用 OFDM符号用于承载各个所述中继节点的 PDSCH; 所述基站将各个所述中继节点的下行授权信息承载在所述物理资 源块对的第一个时隙的可用 OFDM符号上, 所述物理资源块对的第二 个时隙用于 载各个所述中继节点的 PDSCH。
6. —种 R-PDCCH的传输系统, 包括:
基站, 设置为将中继节点的下行授权信息承载到预先分配的用于 承载 R-PDCCH的物理资源块对的第一个时隙的可用正交频分复用 OFDM符号上, 所述物理资源块对上除所述下行授权信息所用 OFDM 符号外的可用 OFDM符号用于承载各个所述中继节点的 PDSCH; 所述中继节点, 设置为从所述物理资源块对中解调出该中继节点 的下行授权信息和 PDSCH。
7. 根据权利要求 6所述的系统, 其中, 所述中继节点利用 DMRS对 R-PDCCH进行解调,从所述物理资源块对中解调出该中继节点的下行 •ί受权信息和 PDSCH。
8. 根据权利要求 6所述的系统, 其中, 所述中继节点利用 CRS对
R-PDCCH进行解调,从所述物理资源块对中解调出该中继节点的下行 •ί受权信息和 PDSCH。
PCT/CN2011/072074 2010-05-05 2011-03-23 中继节点下行控制信道的传输方法及系统 WO2011137696A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/634,856 US9179325B2 (en) 2010-05-05 2011-03-23 Transmission method and system for relay physical downlink control channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010173436.2 2010-05-05
CN2010101734362A CN102238650A (zh) 2010-05-05 2010-05-05 中继节点下行控制信道的传输方法及系统

Publications (1)

Publication Number Publication Date
WO2011137696A1 true WO2011137696A1 (zh) 2011-11-10

Family

ID=44888726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072074 WO2011137696A1 (zh) 2010-05-05 2011-03-23 中继节点下行控制信道的传输方法及系统

Country Status (3)

Country Link
US (1) US9179325B2 (zh)
CN (1) CN102238650A (zh)
WO (1) WO2011137696A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201000449D0 (en) * 2010-01-12 2010-02-24 Nec Corp Relay communication system
CN102468910B (zh) * 2010-11-10 2015-07-22 中兴通讯股份有限公司 一种中继节点rn下行控制信道的检测方法和装置
WO2012153994A2 (ko) * 2011-05-10 2012-11-15 엘지전자 주식회사 복수의 안테나 포트를 이용하여 신호를 전송하는 방법 및 이를 위한 송신단 장치
WO2012173530A1 (en) * 2011-06-13 2012-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Sub-carrier allocation in a wireless communication system using relays
US9532350B2 (en) * 2012-01-30 2016-12-27 Zte (Usa) Inc. Method and system for physical downlink control channel multiplexing
CN103327629B (zh) * 2012-03-21 2016-12-14 中国移动通信集团公司 生成dmrs序列、发送dmrs序列初始值的方法和终端、基站
CN103391550A (zh) * 2012-05-09 2013-11-13 中兴通讯股份有限公司 回程链路下行传输实现方法、本地服务无线设备及基站
WO2014019144A1 (zh) * 2012-07-31 2014-02-06 华为技术有限公司 控制信道传输方法及基站、终端
WO2014019181A1 (zh) * 2012-08-01 2014-02-06 华为技术有限公司 一种控制信道传输方法及装置
CN105577498B (zh) * 2015-12-31 2019-01-25 北京格林伟迪科技股份有限公司 一种板间串行通信方法和装置
CN107040347B (zh) * 2016-02-03 2021-05-25 电信科学技术研究院 一种上行传输方法及装置
US10225821B2 (en) 2016-09-28 2019-03-05 Sprint Communications Company L.P. Wireless communication system control of carrier aggregation for a wireless relay
US10531457B1 (en) * 2017-01-26 2020-01-07 Sprint Communications Company L.P. Wireless access point control over Carrier Aggregation (CA) through a wireless repeater chain
CN116961833A (zh) * 2017-05-05 2023-10-27 苹果公司 新无线电控制信道资源集合设计
CN110167174B (zh) * 2018-02-14 2023-07-28 华为技术有限公司 一种中继传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516104A (zh) * 2009-04-01 2009-08-26 华为技术有限公司 控制信令传输方法及系统、基站和用户设备
KR20090128323A (ko) * 2008-06-10 2009-12-15 한국전자통신연구원 중계기를 사용하는 이동 통신 시스템에서 동적으로 자원을 할당하여 데이터를 전송하는 방법
WO2010032973A2 (ko) * 2008-09-18 2010-03-25 엘지전자주식회사 멀티홉 시스템에서 데이터 중계 방법 및 장치
CN101868033A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 一种中继链路下行子帧的控制和数据传输方法和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489517B1 (ko) 2008-09-18 2015-02-06 엘지전자 주식회사 멀티홉 시스템에서 데이터 중계 방법 및 장치
EP2448147A4 (en) * 2009-06-26 2016-06-01 Lg Electronics Inc DEVICE FOR TRANSMITTING AND RECEIVING CONTROL DATA FOR A REPEATER, AND ASSOCIATED METHOD
KR101339477B1 (ko) * 2009-08-31 2013-12-10 엘지전자 주식회사 다중 반송파 시스템에서 중계국의 단위 반송파 이용 방법 및 중계국
KR101647378B1 (ko) * 2009-09-21 2016-08-10 엘지전자 주식회사 무선 통신 시스템에서 기지국으로부터 신호를 수신하기 위한 중계기 및 그 방법
US9059818B2 (en) * 2009-10-16 2015-06-16 Lg Electronics Inc. Method and apparatus for transmitting multi-user MIMO reference signal in wireless communication system for supporting relay
KR101789326B1 (ko) * 2009-10-21 2017-10-24 엘지전자 주식회사 중계국을 포함하는 무선 통신 시스템에서 참조 신호 전송 방법 및 장치
US8797941B2 (en) * 2009-10-28 2014-08-05 Lg Electronics Inc. Relay node device for receiving control information from a base station and method therefor
CN105763299B (zh) * 2010-01-18 2019-11-15 Lg电子株式会社 用于在无线通信系统中提供信道质量信息的方法和设备
KR101861661B1 (ko) * 2010-03-15 2018-05-28 엘지전자 주식회사 무선통신 시스템에서 제어정보를 송신 및 수신하기 위한 장치 및 그 방법
EP2549667B1 (en) * 2010-03-19 2017-05-03 LG Electronics Inc. Apparatus and method for transmitting/receiving control information in a wireless communication system that supports carrier aggregation
AU2011241273B2 (en) * 2010-04-13 2014-03-13 Lg Electronics Inc. Method and device for receiving downlink signal
US8730903B2 (en) * 2010-04-22 2014-05-20 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
WO2011132946A2 (ko) * 2010-04-22 2011-10-27 엘지전자 주식회사 무선 통신 시스템에서 기지국과 릴레이 노드 간의 신호 송수신 방법 및 이를 위한 장치
AU2011243372B2 (en) * 2010-04-23 2014-10-23 Lg Electronics Inc. Method for transceiving signals between a base station and a relay node in a multiuser multi-antenna wireless communication system, and apparatus for same
US8705468B2 (en) * 2010-05-03 2014-04-22 Qualcomm Incorporated System, apparatus and method for downlink and uplink grant design in wireless communication systems
US9237583B2 (en) * 2010-05-03 2016-01-12 Qualcomm Incorporated Resource availability for PDSCH in relay backhaul transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090128323A (ko) * 2008-06-10 2009-12-15 한국전자통신연구원 중계기를 사용하는 이동 통신 시스템에서 동적으로 자원을 할당하여 데이터를 전송하는 방법
WO2010032973A2 (ko) * 2008-09-18 2010-03-25 엘지전자주식회사 멀티홉 시스템에서 데이터 중계 방법 및 장치
CN101516104A (zh) * 2009-04-01 2009-08-26 华为技术有限公司 控制信令传输方法及系统、基站和用户设备
CN101868033A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 一种中继链路下行子帧的控制和数据传输方法和装置

Also Published As

Publication number Publication date
US20130201899A1 (en) 2013-08-08
US9179325B2 (en) 2015-11-03
CN102238650A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
WO2011137696A1 (zh) 中继节点下行控制信道的传输方法及系统
JP6260880B2 (ja) 送信装置及び送信方法
JP5859136B2 (ja) 制御情報の伝送方法および装置
EP2471231B1 (en) Method and apparatus for configuring control channel in ofdm system
US8804641B2 (en) Method and device for detecting downlink control information
KR101647378B1 (ko) 무선 통신 시스템에서 기지국으로부터 신호를 수신하기 위한 중계기 및 그 방법
JP5630620B2 (ja) 中継通信システム
US9265033B2 (en) Method for receiving downlink signal and method for transmitting same, and device for receiving same and device for transmitting same
US8755326B2 (en) Repeater apparatus for simultaneously transceiving signals in a wireless communication system, and method for same
WO2012062178A1 (zh) 用于确定中继链路资源单元组的方法及装置
KR101861661B1 (ko) 무선통신 시스템에서 제어정보를 송신 및 수신하기 위한 장치 및 그 방법
JP2013502166A (ja) 中継用dlバックホール制御チャネル設計
WO2011066793A1 (zh) 用于传输中继链路下行控制信息的方法、基站与中继站及其资源映射方法
CN102474378A (zh) 用于发送和接收针对中继器的控制信息和系统信息的装置及其方法
WO2011160536A1 (zh) 回程链路控制信道信息的资源配置方法和设备
JP2013527677A (ja) ダウンリンク信号を受信する方法及びダウンリンク信号を受信する装置
WO2010139217A1 (zh) 一种回程链路下行信息传输方法及设备
WO2011038687A1 (zh) 中继系统控制信道发送方法、检测方法及设备
WO2011009371A1 (zh) 下行解调参考信号的发送方法、基站及中继站
WO2011120320A1 (zh) 中继链路边界的指示及确定方法、基站
WO2011120375A1 (zh) 下行控制信道的检测方法和系统
KR102040614B1 (ko) 복수의 안테나 포트를 이용하여 신호를 전송하는 방법 및 이를 위한 송신단 장치
JP6030694B2 (ja) ダウンリンク信号を受信する方法及びダウンリンク信号を受信する装置
WO2012051911A1 (zh) 一种中继节点的公共搜索空间的映射方法及装置
WO2013013538A1 (zh) 一种实现pcfich映射的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777117

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13634856

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11777117

Country of ref document: EP

Kind code of ref document: A1