WO2010032973A2 - 멀티홉 시스템에서 데이터 중계 방법 및 장치 - Google Patents

멀티홉 시스템에서 데이터 중계 방법 및 장치 Download PDF

Info

Publication number
WO2010032973A2
WO2010032973A2 PCT/KR2009/005302 KR2009005302W WO2010032973A2 WO 2010032973 A2 WO2010032973 A2 WO 2010032973A2 KR 2009005302 W KR2009005302 W KR 2009005302W WO 2010032973 A2 WO2010032973 A2 WO 2010032973A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
terminal
downlink
aggregate
pdsch
Prior art date
Application number
PCT/KR2009/005302
Other languages
English (en)
French (fr)
Other versions
WO2010032973A3 (ko
Inventor
김소연
정재훈
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20090043862A external-priority patent/KR101489517B1/ko
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Publication of WO2010032973A2 publication Critical patent/WO2010032973A2/ko
Publication of WO2010032973A3 publication Critical patent/WO2010032973A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels

Definitions

  • the present invention relates to wireless communications, and more particularly, to a data relay method and apparatus in a multi-hop system.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the wireless communication system may support multihop relay to improve coverage and / or performance.
  • multi-hop relay the base station transmits data through the relay station to the terminal.
  • the relay station receives the data from the source station and relays the data to the target station.
  • the transmission from one station to another is called a hop.
  • the relay station needs to relay the data efficiently.
  • An object of the present invention is to provide a data relay method and apparatus in a multi-hop system.
  • a method in which a relay station relays data in a multihop system.
  • the method includes receiving an aggregate Physical Downlink Control Channel (PDCCH), receiving a plurality of downlink data on an aggregate Physical Downlink Shared Channel (PDSCH) indicated by the aggregate PDCCH, and the plurality of downlink data Relaying each to a terminal.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the aggregate PDCCH may be received by blind decoding, and a unique identifier of the relay station may be masked in a cyclic redundancy check (CRC) of the aggregate PDCCH.
  • CRC cyclic redundancy check
  • a relay station in another aspect, includes a radio frequency (RF) unit for receiving and transmitting a radio signal, and a processor coupled to the RF, the processor receiving an aggregate Physical Downlink Control Channel (PDCCH), the aggregate PDCCH Receive a plurality of downlink data on the set Physical Downlink Shared Channel (PDSCH) indicated by the, and relays each of the plurality of downlink data to the terminal.
  • RF radio frequency
  • the terminal When the base station and the terminal communicates through the relay station, the terminal can transparently use the relay station, and can maintain maximum backward compatibility with the existing system that does not use the relay station.
  • An increase in link capacity can be expected by collecting control information and data for a plurality of terminals.
  • 1 shows a wireless communication system.
  • FIG. 2 shows a wireless communication system using a multi-hop relay.
  • 3 shows a wireless communication system using a multi-hop relay.
  • 5 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • FIG. 6 shows a structure of a downlink subframe.
  • FIG. 7 is a flowchart showing the configuration of a PDCCH.
  • 8 is an exemplary diagram illustrating transmission of uplink data.
  • 9 is an exemplary diagram illustrating reception of downlink data.
  • FIG. 11 shows an example of a structure of an aggregate PDCCH and an aggregate PDSCH for backward compatibility in a control region.
  • FIG. 12 shows another example of a structure of an aggregate PDCCH and an aggregate PDSCH for backward compatibility in a control region.
  • FIG 13 shows data transmission according to another embodiment of the present invention.
  • 15 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention may be implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General / Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General / Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is the evolution of 3GPP LTE.
  • the wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c. The cell can in turn be divided into a number of regions (called sectors).
  • the user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), It may be called other terms such as a wireless modem and a handheld device.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • downlink means communication from the base station to the terminal
  • uplink means communication from the terminal to the base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of a base station.
  • FIG. 2 shows a wireless communication system using a multi-hop relay.
  • the basic goal of multihop relay is to expand the service area of the base station or install it in the shadow area to facilitate service.
  • FIG. 2 shows one destination station (110), three relay stations (120, 122, 124) and two source stations (130, 132).
  • the system may include any number of destination stations, relay stations and source stations.
  • the source station In uplink transmission, the source station may be a terminal, and the target station may be a base station.
  • the source station In downlink transmission, the source station may be a base station, and the target station may be a terminal.
  • the relay station may be a terminal or a separate repeater may be arranged.
  • the base station may perform functions such as connectivity, management, control, and resource allocation between the relay station and the terminal.
  • the target station 110 communicates with the source station 130 through the relay station 120.
  • the source station 130 sends uplink data to the destination station 110 and the relay station 120, and the relay station 120 retransmits the received data.
  • the destination station 110 also communicates with the source station 132 via relay stations 122 and 124.
  • the source station 132 sends uplink data to the destination station 110 and the relay stations 122 and 124, and the relay stations 122 and 124 retransmit the received data simultaneously or sequentially.
  • the relay station may be classified into an L1 repeater, an L2 repeater, and an L3 repeater according to how much function the multi-hop relay performs.
  • the L1 repeater functions as a simple repeater and amplifies the signal from the source station and relays it to the destination station.
  • the transmission delay is reduced because the decoding is not performed.
  • the noise may be amplified and transmitted.
  • more advanced features such as power control and self-interference cancellation, may be added.
  • the L2 repeater may be represented as decode-and-forward (DF).
  • DF decode-and-forward
  • the L2 repeater decodes the received signal and then transmits the re-encoded signal to the destination station.
  • the noise is amplified and not transmitted, there is a disadvantage in that a transmission delay may occur due to decoding at the relay station.
  • the L3 repeater also called self-backhauling, transmits an Internet Protocol (IP) packet.
  • IP Internet Protocol
  • RRC radio resource control
  • the L3 repeater is when the relay station can control its own cell.
  • the relay station may be divided into a fixed repeater, a nomadic repeater and a mobile repeater.
  • Fixed repeaters are fixed and used to increase shadow area or cell coverage.
  • the function of a simple repeater is also possible.
  • Nomadic repeaters are relay stations that can be temporarily installed or moved randomly within a building when the user suddenly increases.
  • Mobile repeaters are relay stations that can be mounted on public transport such as buses and subways.
  • inband is where the network-relay station link shares the same band as the relay-terminal link.
  • Outband means that the network-relay station link does not operate in the same band as the relay-end link.
  • the terminal may be classified into a transparent mode and a non-transparent mode according to whether the terminal recognizes the presence of the relay station.
  • Transparent mode is a terminal does not know whether or not to communicate with the network through the relay station.
  • non-transparent mode the terminal knows whether the terminal communicates with the network through the relay station.
  • the operation of the relay station in downlink transmission in which the source station is a base station and the target station is a terminal will be described.
  • those skilled in the art will be able to apply the technical spirit of the present invention to uplink transmission in which a source station is a terminal and a target station is a base station.
  • the solid line indicates transmission of downlink data
  • the dotted line indicates transmission of control information for receiving downlink data.
  • the link 380 between the base station 310 and the relay station 320 is called a backhaul link or base station-relay station link.
  • the link 390 between the terminals 331, 332, 333 and the relay station 320 is called an access link or terminal-relay station link.
  • the base station 310 sends downlink data to the relay station 320 on the backhaul link, and the relay station 320 relays downlink data to the terminals 331, 332, and 333 on the access link.
  • control information is sent from the base station 310 to the relay station 320 to receive the downlink data, and is also relayed from the relay station 320 to the terminals 331, 332, and 333.
  • the control information includes downlink data scheduling information or downlink resource allocation information, and refers to information that is first received for receiving downlink data.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme. For example, when SC-FDMA is used as an uplink multiple access scheme, it may be referred to as an SC-FDMA symbol.
  • a resource block includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is called a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • the subframe 6 shows a structure of a downlink subframe.
  • the subframe includes two slots in the time domain. Up to three OFDM symbols in the first slot of the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • Downlink control channels used in 3GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and the like.
  • PCFICH Physical Control Format Indicator Channel
  • PDCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI indicates uplink resource allocation information, downlink resource allocation information, and uplink transmission power control command for arbitrary UE groups.
  • the PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
  • ACK Acknowledgement
  • NACK Not-Acknowledgement
  • PDCCH which is a downlink physical channel in 3GPP LTE.
  • the PDCCH is a resource allocation and transmission format of PDSCH (also called downlink grant), resource allocation information of PUSCH (also called uplink grant), a set of transmit power control commands for individual UEs in any UE group, and VoIP (Voice over Internet Protocol) can be activated.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of an aggregation of one or several consecutive control channel elements (CCEs).
  • the PDCCH composed of one or several consecutive CCEs may be transmitted to the control region after subblock interleaving.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the C
  • DCI Downlink control information
  • DCI format 0 indicates uplink resource allocation information
  • DCI formats 1 to 2 indicate downlink resource allocation information
  • DCI formats 3 and 3A indicate uplink transmit power control (TPC) commands for arbitrary UE groups. .
  • the following table shows information elements included in DCI format 0, which is uplink resource allocation information (or uplink grant).
  • DCI format 0 which is uplink resource allocation information (or uplink grant).
  • information elements see section 5.3.3.1 of 3GPP TS 36.212 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8)". can do.
  • FIG. 7 is a flowchart showing the configuration of a PDCCH.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH. If the PDCCH is for a specific terminal, a unique identifier of the terminal, for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • RNTI Radio Network Temporary Identifier
  • a paging indication identifier for example, P-RNTI (P-RNTI)
  • P-RNTI P-RNTI
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH carries control information for the corresponding specific terminal. If another RNTI is used, the PDCCH carries common control information received by all or a plurality of terminals in the cell.
  • step S120 the DCI to which the CRC is added is subjected to channel coding to generate coded data.
  • step S130 rate matching is performed according to the number of CCEs allocated to the PDCCH format.
  • step S140 the coded data is modulated to generate modulation symbols.
  • step S150 modulation symbols are mapped to physical resource elements.
  • a plurality of PDCCHs may be transmitted in one subframe.
  • the UE monitors the plurality of PDCCHs in every subframe.
  • monitoring means that the UE attempts to decode each of the PDCCHs according to the monitored PDCCH format.
  • the base station does not provide the UE with information about where the corresponding PDCCH is.
  • the UE finds its own PDCCH by monitoring a set of PDCCH candidates in a subframe. This is called blind decoding. For example, if the CRC error is not detected by demasking its C-RNTI in the corresponding PDCCH, the UE detects the PDCCH having its DCI.
  • the terminal In order to receive downlink data, the terminal first receives downlink resource allocation on the PDCCH. Upon successful detection of the PDCCH, the UE reads the DCI on the PDCCH. The downlink data on the PDSCH is received using the downlink resource allocation in the DCI. In addition, in order to transmit the uplink data, the terminal first receives the uplink resource allocation on the PDCCH. Upon successful detection of the PDCCH, the UE reads the DCI on the PDCCH. Uplink data is transmitted on the PUSCH by using uplink resource allocation in the DCI.
  • the terminal transmits uplink data on the PUSCH 602 indicated by the PDCCH (601).
  • the UE monitors the PDCCH 601 in a downlink subframe and receives the uplink resource allocation DCI format 0 on the PDCCH 601.
  • the terminal transmits uplink data on the PUSCH 602 configured based on the uplink resource allocation.
  • the terminal receives downlink data on the PDSCH 652 indicated by the PDCCH 651.
  • the UE monitors the PDCCH 651 in a downlink subframe and receives downlink resource allocation information on the PDCCH 651.
  • the terminal receives downlink data on the PDSCH 652 indicated by the downlink resource allocation information.
  • Aggregated PDCCH 1010 carries the DCI for the aggregate PDSCH 1020.
  • the DCI for the aggregation PDSCH 1020 includes each DCI for each PDSCH, and one CRC is added.
  • An RS ID may be masked in the CRC of the aggregation PDCCH 1010.
  • the RS ID is an ID unique to the relay station used for detecting the aggregate PDCCH. Mask the CRC using the RS ID to enable the relay station to receive the aggregated PDCCH 1010 through blind decoding. If the bit length of the RS ID is larger than the bit length of the CRC, the RS ID may be masked at a portion other than the CRC.
  • the aggregation PDSCH 1020 aggregates PDSCHs, that is, downlink data for a plurality of terminals. For example, a PDSCH for UE 1, a PDSCH for UE 2, and a PDSCH for UE 3 are aggregated to form one aggregate PDSCH 1020, and only one CRC is added to the aggregate PDSCH 1020.
  • the base station transmits PDSCHs of several terminals through the relay station
  • the PDSCHs of the various terminals are aggregated into one aggregated PDSCH 1020 without transmitting each PDSCH separately.
  • the aggregation PDSCH 1020 is indicated by one aggregation PDCCH 1010.
  • the RS detects the aggregate PDCCH 1010 by monitoring the PDCCH in the control region based on its RS ID.
  • the relay station receives the aggregate PDSCH 1020 indicated by the aggregate PDCCH 1010.
  • the PDSCH for the terminal 1, the PDSCH for the terminal 2, and the PDSCH for the terminal 3 may be received from the aggregation PDSCH 1020 at one time.
  • the relay station relays each downlink data obtained from each PDSCH in the aggregation PDSCH 1020 to each terminal.
  • Each downlink data may be relayed through the terminal-relay link on each PDSCH.
  • each PDSCH may be indicated through each PDCCH.
  • Each UE ID (UE ID) may be CRC masked on the PDCCH for each UE.
  • the relay station receives a plurality of downlink data for a plurality of terminals by using the set PDSCH 1020 and the set PDCCH 1010 masked with the RS ID therefor.
  • the relay station uses an existing PDCCH-PDSCH pair when relaying downlink data to each terminal. This may be applied to a relay station capable of scheduling or decoding such as an L2 repeater or an L3 repeater.
  • the aggregation PDCCH 1010 may use the existing DCI format of 3GPP LTE as it is, but may use a newly defined DCI format.
  • the aggregated PDCCH 1010 using the new DCI format is disposed in the control region, there may be a problem in compatibility with the terminal that does not support the relay station.
  • the upper PDCCH 1030 indicating the aggregate PDCCH 1010 may be transmitted to the control region.
  • the upper PDCCH 1030 carries resource allocation information of the aggregation PDCCH 1010.
  • the upper PDCCH 1030 may be defined through the existing DCI format.
  • the relay station first receives the upper PDCCH 1030 in the control region and then receives the aggregated PDCCH 1010 indicated by the upper PDCCH 1030.
  • the RS ID may not be masked in the CRC of the aggregation PDCCH 1010. This is because blind decoding is not used to detect the aggregate PDCCH 1010.
  • the relay station receives the aggregate PDSCH 1020 indicated by the aggregate PDCCH 1010.
  • the terminal When the base station and the terminal communicates through the relay station, the terminal can transparently use the relay station, and can maintain maximum backward compatibility with the existing system that does not use the relay station.
  • An increase in link capacity can be expected by collecting control information and data for a plurality of terminals.
  • the control region in the subframe is divided into a first control region and a second control region.
  • the first control region is a region in which the existing PDCCH is carried, and the second control region is a region in which the aggregated PDCCH 1010 is carried.
  • the first control region may be a region in which a PDCCH for a terminal is carried, and the second control region may be a region in which a PDCCH for a relay station is carried.
  • the first control region may include the preceding 3 OFDM symbols of the subframe, and the second control region may include a plurality of OFDM symbols subsequent to the first control region.
  • Positions and shapes of the first control region and the second control region are merely examples, and the positions thereof may be interchanged.
  • the first control region and the second control region may be divided in the frequency domain.
  • some subcarriers are used in the first control region, and other subcarriers are used in the second control region.
  • some subcarriers may be used for the second control region in the OFDM symbol after the preceding 3 OFDM symbols of the subframe constituting the existing control region.
  • the first control region may be an area where the DCI transmitted from the base station to the terminal is transmitted
  • the second control area may be an area where the DCI transmitted from the base station to the relay station is transmitted.
  • the second control region may be included in some of the plurality of subframes constituting the radio frame. Alternatively, some subframes may include only the first control region, and other subframes may include only the second control region.
  • the base station transmits PDSCHs of various terminals through the relay station, the PDSCH of each terminal is separately transmitted on the backhaul link.
  • the PDCCH 1110 for the first terminal carries the DCI for the first terminal, and the first terminal ID (UE ID1) is masked in the CRC.
  • the PDSCH 1115 for the first terminal is indicated by the PDCCH 1110 for the first terminal.
  • the PDCCH 1130 for the second terminal carries the DCI for the second terminal, and a second terminal ID (UE ID2) is masked on the CRC.
  • the PDSCH 1135 for the second terminal is indicated by the PDCCH 1130 for the second terminal.
  • the PDCCH 1150 for the third terminal carries the DCI for the third terminal, and a third terminal ID (UE ID3) is masked on the CRC.
  • the PDSCH 1155 for the third terminal is indicated by the PDCCH 1150 for the second terminal. Since the PDCCH and PDSCH are transmitted for each UE, this is called a relay by a PDCCH-PDSCH pair.
  • the 14 shows a relay structure by a PDCCH-PDSCH pair.
  • the PDCCH and PDSCH are transmitted to the base station for each terminal.
  • This method can be applied anywhere in the L1 repeater, L2 repeater, L3 repeater, but since the decoding of PDCCH and PDSCH is not separate, it can be more easily applied to the L1 repeater.
  • the terminal When the base station and the terminal communicates through the relay station, the terminal can transparently use the relay station, and can maintain maximum backward compatibility with the existing system that does not use the relay station.
  • the base station 1500, the relay station 1530, and the terminal 1550 communicate with each other through a radio channel.
  • the base station 1500 includes a processor 1501 and an RF unit 1502.
  • the RF unit 1502 transmits and / or receives a radio signal.
  • the processor 1501 is connected to the RF unit 1502 and transmits downlink data to the terminal 1550.
  • the processor 1501 implements a data transmission method according to the embodiments of FIGS. 10 to 14. Downlink data for a plurality of terminals may be transmitted on the aggregated PDSCH, and resource allocation information of the aggregated PDSCH may be transmitted on the aggregated PDCCH.
  • the relay station 1530 includes a processor 1531 and an RF unit 1532.
  • the RF unit 1532 transmits and / or receives a radio signal.
  • the processor 1531 is connected to the RF unit 1532 and relays downlink data received from the base station 1500 to the terminal 1550.
  • the processor 1531 implements a data transmission method according to the embodiments of FIGS. 10 to 14.
  • the relay station 1530 may monitor the aggregate PDCCH and receive downlink data for a plurality of terminals on the aggregate PDSCH indicated by the aggregate PDCCH. Downlink data for each terminal may be transmitted to each terminal on each PDSCH indicated by each PDCCH.
  • the terminal 1550 includes a processor 1551 and an RF unit 1552.
  • the RF unit 1552 transmits and / or receives a radio signal.
  • the processor 1551 is connected to the RF unit 1552 to receive downlink data relayed from the relay station 1530.
  • the invention can be implemented in hardware, software or a combination thereof.
  • an application specific integrated circuit ASIC
  • DSP digital signal processing
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the module may be implemented as a module that performs the above-described function.
  • the software may be stored in a memory unit and executed by a processor.
  • the memory unit or processor may employ various means well known to those skilled in the art.

Abstract

멀티홉 시스템에서 중계국이 데이터를 중계하는 방법이 제공된다. 상기 방법은 집합 PDCCH(Physical Downlink Control Channel)를 수신하는 단계, 상기 집합 PDCCH에 의해 지시되는 집합 PDSCH(Physical Downlink Shared Channel) 상으로 복수의 하향링크 데이터를 수신하는 단계, 및 상기 복수의 하향링크 데이터 각각을 단말로 중계하는 단계를 포함한다.

Description

멀티홉 시스템에서 데이터 중계 방법 및 장치
본 발명은 무선통신에 관한 것으로, 더욱 상세하게는 멀티홉 시스템에서 데이터 중계 방법 및 장치에 관한 것이다.
무선통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
무선통신 시스템은 커버리지(coverage) 및/또는 성능을 향상시키기 위해 멀티홉(multihop) 중계를 지원할 수 있다. 멀티홉 중계를 통해 기지국은 단말에게 중계국을 통해 데이터를 전송한다. 중계국은 소스국으로부터 데이터를 받아, 목적국으로 데이터를 중계한다. 하나의 스테이션에서 다른 스테이션으로의 전송을 홉(hop)이라 한다. 중계국은 효율적으로 데이터를 중계하는 것이 필요하다.
본 발명이 이루고자 하는 기술적 과제는 멀티홉 시스템에서 데이터 중계 방법 및 장치를 제공하는 데 있다.
일 양태에 있어서, 멀티홉 시스템에서 중계국이 데이터를 중계하는 방법이 제공된다. 상기 방법은 집합 PDCCH(Physical Downlink Control Channel)를 수신하는 단계, 상기 집합 PDCCH에 의해 지시되는 집합 PDSCH(Physical Downlink Shared Channel) 상으로 복수의 하향링크 데이터를 수신하는 단계, 및 상기 복수의 하향링크 데이터 각각을 단말로 중계하는 단계를 포함한다.
상기 집합 PDCCH는 블라인드 디코딩에 의해 수신될 수 있고, 상기 집합 PDCCH의 CRC(Cyclic Redundancy Check)에는 상기 중계국의 고유 식별자가 마스킹될 수 있다.
다른 양태에 있어서, 중계국은 무선 신호를 수신 및 송신하는 RF(radio frequency)부, 및 상기 RF와 연결되는 프로세서를 포함하되, 상기 프로세서는 집합 PDCCH(Physical Downlink Control Channel)를 수신하고, 상기 집합 PDCCH에 의해 지시되는 집합 PDSCH(Physical Downlink Shared Channel) 상으로 복수의 하향링크 데이터를 수신하고, 및 상기 복수의 하향링크 데이터 각각을 단말로 중계한다.
기지국과 단말이 중계국을 통해 통신할 때, 단말은 투명하게 중계국을 이용할 수 있고, 중계국을 사용하지 않는 기존 시스템과의 하위 호환성을 최대한 유지할 수 있다. 복수의 단말에 대한 제어정보 및 데이터를 집합하여 링크 용량의 증가를 기대할 수 있다.
도 1은 무선통신 시스템을 나타낸다.
도 2는 멀티홉 중계를 이용한 무선통신 시스템을 나타낸다.
도 3은 멀티홉 중계를 이용한 무선통신 시스템을 나타낸다.
도 4는 3GPP LTE에서 무선 프레임의 구조를 나타낸다.
도 5는 하나의 하향링크 슬롯에 대한 자원 그리드를 나타낸 예시도이다.
도 6은 하향링크 서브프레임의 구조를 나타낸다.
도 7은 PDCCH의 구성을 나타낸 흐름도이다.
도 8은 상향링크 데이터의 전송을 나타낸 예시도이다.
도 9는 하향링크 데이터의 수신을 나타낸 예시도이다.
도 10은 본 발명의 일 실시예에 따른 데이터 전송을 나타낸다.
도 11은 제어 영역에서 하위 호환성을 위한 집합 PDCCH 및 집합 PDSCH의 구조의 일 예를 나타낸다.
도 12는 제어 영역에서 하위 호환성을 위한 집합 PDCCH 및 집합 PDSCH의 구조의 다른 예를 나타낸다.
도 13은 본 발명의 다른 실시예에 따른 데이터 전송을 나타낸다.
도 14는 PDCCH-PDSCH 쌍에 의한 중계 구조를 나타낸다.
도 15는 본 발명의 실시예가 구현될 수 있는 무선 통신 시스템을 나타낸 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General /Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선통신 시스템을 나타낸다. 무선통신 시스템(10)는 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서 하향링크(downlink, DL)는 기지국에서 단말로의 통신을 의미하며, 상향링크(uplink, UL)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 전송기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 전송기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다.
도 2는 멀티홉 중계를 이용한 무선통신 시스템을 나타낸다. 멀티홉 중계의 기본적인 목표는 기지국의 서비스 영역을 확장하거나 음영 지역에 설치하여 서비스를 원활하게 하는 것이다. 설명을 간단히 하기 위해, 도 2는 하나의 목적국(destination station, 110), 3개의 중계국(relay station, 120, 122, 124) 및 2개의 소스국(source station, 130,132)를 보이고 있으나, 무선통신 시스템은 어떠한 수의 목적국, 중계국 및 소스국을 포함할 수 있다. 상향링크 전송에서 소스국은 단말이고, 목적국은 기지국일 수 있다. 하향링크 전송에서 소스국은 기지국이고, 목적국은 단말일 수 있다. 중계국은 단말일 수도 있고, 별도의 중계기가 배치될 수 있다. 기지국은 중계국과 단말간의 연결성(connectivity), 관리(management), 제어 및 자원 할당과 같은 기능을 수행할 수 있다.
도 2를 참조하면, 목적국(110)은 중계국(120)을 통해 소스국(130)과 통신한다. 상향링크 전송에서, 소스국(130)은 상향링크 데이터를 목적국(110)과 중계국(120)으로 보내고, 중계국(120)은 수신한 데이터를 재전송한다.
목적국(110)은 또한 중계국(122, 124)을 통해 소스국(132)과 통신한다. 상향링크 전송에서, 소스국(132)은 상향링크 데이터를 목적국(110)과 중계국(122, 124)으로 보내고, 중계국(122, 124)은 수신한 데이터를 동시에 또는 순차적으로 재전송한다.
중계국은 멀티홉 중계에서 얼마만큼의 기능을 수행하는 지에 따라 L1 중계기, L2 중계기, 및 L3 중계기로 구분될 수 있다. L1 중계기는 단순한 반복기(repeater)의 기능을 수행하며, 소스국으로부터의 신호를 증폭해서 목적국으로 중계한다. 디코딩을 수행하지 않기 때문에 전송 지연(transmission delay)이 줄어드는 장점이 있지만, 원하는 데이터와 잡음을 구분하지 못하기 때문에, 잡음까지 증폭되어 전달될 수 있는 단점이 있다. 이와 같은 단점을 보완하기 위해서, 전력 제어나 자기 간섭 제거(self-interference cancellation)와 같은 보다 향상된 기능이 추가되기도 한다.
L2 중계기는 DF(decode-and-forward)로 표현될 수 있다. L2 중계기는 수신된 신호를 디코딩한 후, 재-인코딩된 신호를 목적국으로 전송한다. 잡음이 증폭되어 전송되지 않는다는 장점이 있지만, 중계국에서의 디코딩으로 인한 전송 지연이 발생할 수 있는 단점이 있다.
L3 중계기는 자기-백홀링(self-backhauling)이라고도 하며, IP(internet protocol) 패킷을 전송한다. 이는 RRC(Radio Resource Control) 계층을 포함하여, 소규모의 기지국과도 같은 역할을 하는 중계국을 의미한다. L3 중계기는 중계국이 자신의 셀을 제어할 수 있는 경우이다
또한, 중계국의 이동성에 따라서 고정(fixed) 중계기, 노마딕(nomadic) 중계기 및 이동(mobile) 중계기로 구분될 수 있다. 고정 중계기는 고정되어 음영 지역이나 셀 커버리지 증대를 위해 사용된다. 단순 리피터(Repeater)의 기능도 가능하다. 노마딕 중계기는 사용자가 갑자기 증가할 때 임시로 설치하거나, 건물 내에서 임의로 옮길 수 있는 중계국이다. 이동 중계기는 버스나 지하철 같은 대중 교통에 장착 가능한 중계국이다.
또한, 중계국과 네트워크의 링크에 따라서 인밴드(inband)와 아웃밴드(outband)로 구분될 수 있다. 인밴드는 네트워크-중계국 링크가 중계국-단말 링크와 동일한 밴드를 공유하는 것이다. 아웃밴드는 네트워크-중계국 링크가 중계국-단말 링크와 동일한 밴드에서 동작하지 않는 것이다.
단말이 중계국의 존재를 인식하는지의 여부에 따라 투명(transparent) 모드와 비-투명 모드로 구분될 수 있다. 투명모드는 단말이 중계국을 통해 네트워크와 통신하는지 여부를 알지 못하는 것이다. 비-투명모드는 단말이 중계국을 통해 네트워크와 통신하는지 여부를 알고 있는 것이다.
이하에서, 소스국은 기지국이고, 목적국은 단말인 하향링크 전송에서의 중계국의 동작에 대해 기술한다. 그러나, 당업자라면 소스국은 단말이고, 목적국은 기지국인 상향링크 전송에서도 본 발명의 기술적 사상을 적용할 수 있을 것이다.
도 3은 멀티홉 중계를 이용한 무선통신 시스템을 나타낸다. 실선은 하향링크 데이터의 전송을, 점선은 하향링크 데이터의 수신을 위한 제어정보의 전송을 나타낸다. 기지국(310)과 중계국(320) 사이의 링크(380)를 백홀(backhaul) 링크 또는 기지국-중계국 링크라 한다. 단말들(331, 332, 333)과 중계국(320) 사이의 링크(390)를 액세스(access) 링크 또는 단말-중계국 링크라 한다. 기지국(310)은 하향링크 데이터를 백홀 링크로 중계국(320)으로 보내고, 중계국(320)은 액세스 링크로 하향링크 데이터를 각 단말들(331, 332, 333)로 중계한다. 또한, 하향링크 데이터의 수신을 위해 제어정보가 기지국(310)으로부터 중계국(320)으로 보내지고, 또한, 중계국(320)으로부터 각 단말들(331, 332, 333)로 중계된다. 제어정보는 하향링크 데이터의 스케줄링 정보 또는 하향링크 자원 할당 정보를 포함하며, 하향링크 데이터의 수신을 위해 먼저 수신되는 정보를 말한다.
이제 3GPP LTE/LTE-A에서 하향링크 데이터의 수신에 대해 기술한다.
도 4는 3GPP LTE에서 무선 프레임의 구조를 나타낸다. 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 다수의 RB(resource block)을 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다. 자원블록(resource block)는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심벌의 수는 다양하게 변경될 수 있다.
도 5는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다. 하향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM 심벌을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDM 심벌을 포함하고, 하나의 자원블록은 주파수 영역에서 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. 자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 하며, 하나의 자원블록은 12×7개의 자원요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다.
도 6은 하향링크 서브프레임의 구조를 나타낸다. 서브 프레임은 시간 영역에서 2개의 슬롯을 포함한다. 서브 프레임내의 첫번째 슬롯의 앞선 최대 3 OFDM 심벌들이 제어채널들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다.
3GPP LTE에서 사용되는 하향링크 제어채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. 서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 정보를 나른다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 및 임의의 UE 그룹들에 대한 상향링크 전송 파워 제어 명령 등을 가리킨다. PHICH는 상향링크 HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
이제 3GPP LTE에서 하향링크 물리채널인 PDCCH에 대해 기술한다.
PDCCH는 PDSCH의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다), PUSCH의 자원 할당 정보(이를 상향링크 그랜트라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation)으로 구성된다. 하나 또는 몇몇 연속적인 CCE의 집합으로 구성된 PDCCH는 서브블록 인터리빙(subblock interleaving)을 거친 후에 제어 영역으로 전송될 수 있다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. 다음 표은 DCI 포맷에 따른 DCI를 나타낸다.
표 1
Figure PCTKR2009005302-appb-T000001
DCI 포맷 0은 상향링크 자원 할당 정보를 가리키고, DCI 포맷 1~2는 하향링크 자원 할당 정보를 가리키고, DCI 포맷 3, 3A는 임의의 UE 그룹들에 대한 상향링크 TPC(transmit power control) 명령을 가리킨다.
다음 표는 상향링크 자원 할당 정보(또는 상향링크 그랜트)인 DCI 포맷 0에 포함되는 정보 요소들(information elements)을 나타낸다. 각 정보 요소들은 3GPP TS 36.212 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8)"의 5.3.3.1절을 참조할 수 있다.
표 2
Figure PCTKR2009005302-appb-T000002
도 7은 PDCCH의 구성을 나타낸 흐름도이다.
도 7을 참조하면, 단계 S110에서, 기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)가 마스킹된다. 특정 단말을 위한 PDCCH라면 단말의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다. 다음 표는 PDCCH에 마스킹되는 식별자들의 예를 나타낸다.
표 3
Figure PCTKR2009005302-appb-T000003
C-RNTI가 사용되면 PDCCH는 해당하는 특정 단말을 위한 제어정보를 나르고, 다른 RNTI가 사용되면 PDCCH는 셀내 모든 또는 복수의 단말이 수신하는 공용 제어정보를 나른다.
단계 S120에서, CRC가 부가된 DCI를 채널 코딩을 수행하여 부호화된 데이터(coded data)를 생성한다. 단계 S130에서, PDCCH 포맷에 할당된 CCE의 수에 따른 전송률 매칭(rate matching)을 수행한다. 단계 S140에서, 부호화된 데이터를 변조하여 변조 심벌들을 생성한다. 단계 S150에서, 변조심벌들을 물리적인 자원 요소에 맵핑한다.
하나의 서브프레임내에서 복수의 PDCCH가 전송될 수 있다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 모니터링되는 PDCCH 포맷에 따라 PDCCH들의 각각의 디코딩을 시도하는 것을 말한다. 서브프레임내에서 할당된 제어영역에서 기지국은 단말에게 해당하는 PDCCH가 어디에 있는지에 관한 정보를 제공하지 않는다. 단말은 서브프레임내에서 PDCCH 후보(candidate)들의 집합을 모니터링하여 자신의 PDCCH를 찾는다. 이를 블라인드 디코딩(blind decoding)이라 한다. 예를 들어, 만약 해당하는 PDCCH에서 자신의 C-RNTI를 디마스킹하여 CRC 에러가 검출되지 않으면 단말은 자신의 DCI를 갖는 PDCCH로 검출하는 것이다.
하향링크 데이터를 수신하기 위해, 단말은 먼저 PDCCH 상으로 하향링크 자원 할당을 수신한다. PDCCH의 검출에 성공하면, 단말은 PDCCH 상의 DCI를 읽는다. DCI 내의 하향링크 자원 할당을 이용하여 PDSCH 상의 하향링크 데이터를 수신한다. 또한, 상향링크 데이터를 전송하기 위해, 단말은 먼저 PDCCH 상으로 상향링크 자원 할당을 수신한다. PDCCH의 검출에 성공하면, 단말은 PDCCH 상의 DCI를 읽는다. DCI 내의 상향링크 자원 할당을 이용하여 PUSCH 상으로 상향링크 데이터를 전송한다.
도 8은 상향링크 데이터의 전송을 나타낸 예시도이다. 단말은 PDCCH(601)에 의해 지시되는 PUSCH(602) 상으로 상향링크 데이터를 전송한다. 단말은 하향링크 서브프레임에서 PDCCH(601)를 모니터링하여, 상향링크 자원 할당인 DCI format 0 를 PDCCH(601) 상으로 수신한다. 단말은 상기 상향링크 자원 할당을 기반으로 하여 구성되는 PUSCH(602) 상으로 상향링크 데이터를 전송한다.
도 9는 하향링크 데이터의 수신을 나타낸 예시도이다. 단말은 PDCCH(651)에 의해 지시되는 PDSCH(652) 상으로 하향링크 데이터를 수신한다. 단말은 하향링크 서브프레임에서 PDCCH(651)를 모니터링하여, 하향링크 자원 할당 정보를 PDCCH(651) 상으로 수신한다. 단말은 상기 하향링크 자원 할당 정보가 가리키는 PDSCH(652)상으로 하향링크 데이터를 수신한다.
이하에서는, PDCCH-PDSCH 쌍(pair)를 통한 하향링크 데이터 수신을 멀티홉 시스템에 적용하기 위한 방법에 대해 기술한다.
도 10은 본 발명의 일 실시예에 따른 데이터 전송을 나타낸다. 집합(aggregated) PDCCH(1010)은 집합 PDSCH(1020)에 대한 DCI를 나른다. 집합 PDSCH(1020)에 대한 DCI는 각 PDSCH를 위한 각 DCI를 포함하고, 하나의 CRC가 부가된다. 집합 PDCCH(1010)의 CRC에는 중계국 ID(RS ID)가 마스킹될 수 있다. RS ID는 집합 PDCCH의 검출에 사용되는 중계국 고유의 ID이다. 블라인드 디코딩을 통해 중계국이 집합 PDCCH(1010)을 수신할 수 있도록 하기 위해 RS ID를 사용하여 CRC에 마스킹한다. RS ID의 비트 길이가 CRC의 비트 길이보다 클 경우에는, CRC 이외의 부분에 RS ID가 마스킹될 수 있다.
집합 PDSCH(1020)는 복수의 단말들에 대한 PDSCH 즉, 하향링크 데이터가 집합된다. 예를 들어, 단말 1에 대한 PDSCH, 단말 2에 대한 PDSCH 및 단말 3에 대한 PDSCH가 집합되어 하나의 집합 PDSCH(1020)를 구성하고, 집합 PDSCH(1020)에는 하나의 CRC만 부가된다.
기지국이 중계국을 통해 여러 단말의 PDSCH를 전송할 때, 각각의 PDSCH를 따로 전송하지 않고 여러 단말의 PDSCH를 하나의 집합 PDSCH(1020)에 집합시킨다. 집합 PDSCH(1020)는 하나의 집합 PDCCH(1010)에 의해 지시된다.
중계국은 자신의 RS ID를 기초로 제어영역내에서 PDCCH를 모니터링하여, 집합 PDCCH(1010)를 검출한다. 중계국은 집합 PDCCH(1010)에 의해 지시되는 집합 PDSCH(1020)을 수신한다. 집합 PDSCH(1020)으로부터 단말 1에 대한 PDSCH, 단말 2에 대한 PDSCH 및 단말 3에 대한 PDSCH을 한번에 수신할 수 있다.
중계국은 각 단말에게 집합 PDSCH(1020)내의 각 PDSCH 상으로부터 얻어지는 각 하향링크 데이터를 중계한다. 각각의 하향링크 데이터는 각각의 PDSCH상으로 단말-중계국 링크를 통해 중계될 수 있다. 이때, 각 PDSCH는 각각의 PDCCH를 통해 지시될 수 있다. 각 단말에 대한 PDCCH에는 각 단말 ID(UE ID)가 CRC 마스킹될 수 있다.
중계국은 집합 PDSCH(1020)와 이를 위한 RS ID로 마스킹된 집합 PDCCH(1010)를 이용하여 복수의 단말에 대한 복수의 하향링크 데이터를 수신한다. 3GPP LTE와 하위 호환성(backward compatibility)을 보장하기 위해, 중계국은 하향링크 데이터를 각 단말로 중계할 때는, 기존의 PDCCH-PDSCH 쌍을 이용한다. 이는 L2 중계기나L3 중계기와 같이 스케줄링이나 디코딩이 가능한 중계국에 적용될 수 있다.
도 11은 제어 영역에서 하위 호환성을 위한 집합 PDCCH 및 집합 PDSCH의 구조의 일 예를 나타낸다. 집합 PDCCH(1010)는 3GPP LTE의 기존 DCI 포맷을 그대로 사용할 수 있으나, 새로이 정의된 DCI 포맷을 사용할 수도 있다. 새로운 DCI 포맷을 사용한 집합 PDCCH(1010)가 제어 영역에 배치될 경우 중계국을 지원하지 않는 단말과의 호환성에 문제가 있을 수 있다.
하위 호환성을 보장하기 위해, 제어영역에는 집합 PDCCH(1010)를 지시하는 상위 PDCCH(1030)을 전송할 수 있다. 상위 PDCCH(1030)는 집합 PDCCH(1010)의 자원 할당 정보를 나른다. 상위 PDCCH(1030)는 기존의 DCI 포맷을 통해 정의될 수 있다. 중계국은 먼저 제어영역내에서 상위 PDCCH(1030)를 수신하고, 상위 PDCCH(1030)에 의해 지시되는 집합 PDCCH(1010)를 수신한다. 이때, 집합 PDCCH(1010)의 CRC에는 RS ID가 마스킹되지 않을 수 있다. 집합 PDCCH(1010)의 검출에 블라인드 디코딩이 사용되지 않기 때문이다. 중계국은 집합 PDCCH(1010)에 의해 지시되는 집합 PDSCH(1020)를 수신한다.
기지국과 단말이 중계국을 통해 통신할 때, 단말은 투명하게 중계국을 이용할 수 있고, 중계국을 사용하지 않는 기존 시스템과의 하위 호환성을 최대한 유지할 수 있다. 복수의 단말에 대한 제어정보 및 데이터를 집합하여 링크 용량의 증가를 기대할 수 있다.
도 12는 제어영역에서 하위 호환성을 위한 집합 PDCCH 및 집합 PDSCH의 구조의 다른 예를 나타낸다. 서브프레임내의 제어영역은 제1 제어영역과 제2 제어영역으로 나누어진다. 제1 제어영역은 기존 PDCCH가 실리는 영역이고, 제2 제어영역은 집합 PDCCH(1010)가 실리는 영역이다. 제1 제어영역은 단말을 위한 PDCCH가 실리는 영역이고, 제2 제어영역은 중계국을 위한 PDCCH가 실리는 영역일 수 있다. 제1 제어영역은 서브프레임의 앞선 3 OFDM 심벌을 포함할 수 있고, 제2 제어영역은 제1 제어영역에 후속하는 복수의 OFDM 심벌을 포함할 수 있다. 제1 제어영역과 제2 제어영역의 위치나 형태는 예시에 불과하며, 그 위치는 서로 바뀔 수 있다. 또는, 제1 제어영역과 제2 제어영역은 주파수 영역에서 구분될 수 있다. 예를 들어, 기존 제어영역을 구성하는 서브프레임의 앞선 3 OFDM 심벌에서 일부 부반송파들은 제1 제어영역에 사용되고, 다른 부반송파들은 제2 제어영역에 사용되는 것이다. 또는, 기존 제어영역을 구성하는 서브프레임의 앞선 3 OFDM 심벌 이후의 OFDM 심벌에서 일부 부반송파들을 제2 제어영역에 사용할 수 있다.
제1 제어영역은 기지국이 단말에게 보내는 DCI가 전송되는 영역이고, 제2 제어영역은 기지국이 중계국에게 보내는 DCI가 전송되는 영역이라 할 수 있다. 무선 프레임을 구성하는 복수의 서브프레임 중 일부에 제2 제어영역은 포함될 수 있다. 또는 어떤 서브프레임은 제1 제어영역만 포함하고, 다른 서브프레임은 제2 제어영역만 포함할 수 있다.
도 13은 본 발명의 다른 실시예에 따른 데이터 전송을 나타낸다. 기지국이 중계국을 통해 여러 단말의 PDSCH를 전송할 때, 백홀 링크에서 각 단말의 PDSCH를 각각 따로 전송한다. 제1 단말에 대한 PDCCH(1110)는 제1 단말에 대한 DCI를 나르고, CRC에는 제1 단말 ID(UE ID1)가 마스킹된다. 제1 단말에 대한 PDSCH(1115)는 제1 단말에 대한 PDCCH(1110)에 의해 지시된다. 제2 단말에 대한 PDCCH(1130)는 제2 단말에 대한 DCI를 나르고, CRC에는 제2 단말 ID(UE ID2)가 마스킹된다. 제2 단말에 대한 PDSCH(1135)는 제2 단말에 대한 PDCCH(1130)에 의해 지시된다. 제3 단말에 대한 PDCCH(1150)는 제3 단말에 대한 DCI를 나르고, CRC에는 제3 단말 ID(UE ID3)가 마스킹된다. 제3 단말에 대한 PDSCH(1155)는 제2 단말에 대한 PDCCH(1150)에 의해 지시된다. 각 단말별로 PDCCH 및 PDSCH가 각각 전송되므로, PDCCH-PDSCH 쌍에 의한 중계라 한다.
도 14는 PDCCH-PDSCH 쌍에 의한 중계 구조를 나타낸다. 기지국에 중계국으로 PDCCH 및 PDSCH를 각 단말별로 전송한다. 이 방법은 L1 중계기, L2 중계기, L3 중계기 어디에나 적용될 수 있으나, PDCCH 및 PDSCH의 디코딩이 별도로 별도없어 L1 중계기에 보다 용이하게 적용할 수 있다.
기지국과 단말이 중계국을 통해 통신할 때, 단말은 투명하게 중계국을 이용할 수 있고, 중계국을 사용하지 않는 기존 시스템과의 하위 호환성을 최대한 유지할 수 있다.
도 15는 본 발명의 실시예가 구현될 수 있는 무선 통신 시스템을 나타낸 블록도이다. 기지국(1500), 중계국(1530) 및 단말(1550)은 각각 무선채널을 통해 통신한다.
기지국(1500)은 프로세서(1501)과 RF부(1502)를 포함한다. RF부(1502)는 무선 신호를 송신 및/또는 수신한다. 프로세서(1501)은 RF부(1502)와 연결되어, 단말(1550)로 하향링크 데이터를 전송한다. 프로세서(1501)은 도 10 내지 14의 실시예들에 따른 데이터 전송 방법을 구현한다. 복수의 단말에 대한 하향링크 데이터는 집합 PDSCH 상으로 전송되고, 집합 PDSCH의 자원 할당 정보는 집합 PDCCH 상으로 전송될 수 있다.
중계국(1530)은 프로세서(1531)과 RF부(1532)를 포함한다. RF부(1532)는 무선 신호를 송신 및/또는 수신한다. 프로세서(1531)은 RF부(1532)와 연결되어, 기지국(1500)으로부터 수신한 하향링크 데이터를 단말(1550)로 중계한다. 프로세서(1531)은 도 10 내지 14의 실시예들에 따른 데이터 전송 방법을 구현한다. 중계국(1530)은 집합 PDCCH를 모니터링하여, 집합 PDCCH에 의해 지시되는 집합 PDSCH 상으로 복수의 단말에 대한 하향링크 데이터를 수신할 수 있다. 각 단말에 대한 하향링크 데이터는 각 PDCCH에 의해 지시되는 각 PDSCH 상으로 각 단말로 전송될 수 있다.
단말(1550)은 프로세서(1551)과 RF부(1552)를 포함한다. RF부(1552)는 무선 신호를 송신 및/또는 수신한다. 프로세서(1551)은 RF부(1552)와 연결되어, 중계국(1530)으로부터 중계되는 하향링크 데이터를 수신한다.
본 발명은 하드웨어, 소프트웨어 또는 이들의 조합으로 구현될 수 있다. 하드웨어 구현에 있어, 상술한 기능을 수행하기 위해 디자인된 ASIC(application specific integrated circuit), DSP(digital signal processing), PLD(programmable logic device), FPGA(field programmable gate array), 프로세서, 제어기, 마이크로 프로세서, 다른 전자 유닛 또는 이들의 조합으로 구현될 수 있다. 소프트웨어 구현에 있어, 상술한 기능을 수행하는 모듈로 구현될 수 있다. 소프트웨어는 메모리 유닛에 저장될 수 있고, 프로세서에 의해 실행된다. 메모리 유닛이나 프로세서는 당업자에게 잘 알려진 다양한 수단을 채용할 수 있다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.

Claims (8)

  1. 멀티홉 시스템에서 중계국이 데이터를 중계하는 방법에 있어서,
    집합 PDCCH(Physical Downlink Control Channel)를 수신하는 단계;
    상기 집합 PDCCH에 의해 지시되는 집합 PDSCH(Physical Downlink Shared Channel) 상으로 복수의 하향링크 데이터를 수신하는 단계; 및
    상기 복수의 하향링크 데이터 각각을 단말로 중계하는 단계를 포함하는 방법.
  2. 제 1 항에 있어서, 상기 집합 PDCCH는 블라인드 디코딩에 의해 수신되는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서, 상기 집합 PDCCH의 CRC(Cyclic Redundancy Check)에는 상기 중계국의 고유 식별자가 마스킹되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 집합 PDCCH는 상위 PDCCH에 의해 지시되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서, 상기 복수의 하향링크 반송파 중 하나의 하향링크 반송파를 통해 하나의 PDCCH가 전송되고, 상기 하나의 PDCCH는 상기 복수의 하향링크 반송파 각각의 PDSCH를 지시하는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 복수의 하향링크 데이터 각각을 각 단말로 중계하는 단계는
    상기 복수의 하향링크 데이터 각각에 대한 PDCCH를 각 단말로 전송하는 단계; 및
    상기 PDCCH에 의해 지시되는 PDSCH 상으로 상기 복수의 하향링크 데이터 각각을 각 단말로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서, 서브프레임은 각 단말에 대한 PDCCH가 전송되는 제1 제어영역, 상기 집합 PDCCH가 전송되는 제2 제어영역 및 상기 복수의 하향링크 데이터가 전송되는 데이터영역을 포함하고, 상기 중계국은 상기 제2 제어영역을 통해 상기 집합 PDCCH를 수신하는 것을 특징으로 하는 방법.
  8. 무선 신호를 수신 및 송신하는 RF(radio frequency)부; 및
    상기 RF와 연결되는 프로세서를 포함하되,
    상기 프로세서는
    집합 PDCCH(Physical Downlink Control Channel)를 수신하고,
    상기 집합 PDCCH에 의해 지시되는 집합 PDSCH(Physical Downlink Shared Channel) 상으로 복수의 하향링크 데이터를 수신하고, 및
    상기 복수의 하향링크 데이터 각각을 단말로 중계하는 중계국.
PCT/KR2009/005302 2008-09-18 2009-09-17 멀티홉 시스템에서 데이터 중계 방법 및 장치 WO2010032973A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9787608P 2008-09-18 2008-09-18
US61/097,876 2008-09-18
KR10-2009-0043862 2009-05-20
KR20090043862A KR101489517B1 (ko) 2008-09-18 2009-05-20 멀티홉 시스템에서 데이터 중계 방법 및 장치

Publications (2)

Publication Number Publication Date
WO2010032973A2 true WO2010032973A2 (ko) 2010-03-25
WO2010032973A3 WO2010032973A3 (ko) 2010-06-24

Family

ID=42040011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005302 WO2010032973A2 (ko) 2008-09-18 2009-09-17 멀티홉 시스템에서 데이터 중계 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2010032973A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132988A2 (en) * 2010-04-22 2011-10-27 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
WO2011137696A1 (zh) * 2010-05-05 2011-11-10 中兴通讯股份有限公司 中继节点下行控制信道的传输方法及系统
WO2011145864A3 (ko) * 2010-05-17 2012-02-23 엘지전자 주식회사 중계기에 대한 하향링크 제어 정보 송수신 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069848A2 (en) * 2005-12-13 2007-06-21 Lg Electronics Inc. Communication method using relay station in mobile communication system
US20080212514A1 (en) * 2007-01-11 2008-09-04 Qualcomm Incorporated Collision-free group hopping in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069848A2 (en) * 2005-12-13 2007-06-21 Lg Electronics Inc. Communication method using relay station in mobile communication system
US20080212514A1 (en) * 2007-01-11 2008-09-04 Qualcomm Incorporated Collision-free group hopping in a wireless communication system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439180B2 (en) 2010-04-22 2016-09-06 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
CN105634708A (zh) * 2010-04-22 2016-06-01 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
CN105634708B (zh) * 2010-04-22 2019-01-18 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
CN102859900A (zh) * 2010-04-22 2013-01-02 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
US9730210B2 (en) 2010-04-22 2017-08-08 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
WO2011132988A2 (en) * 2010-04-22 2011-10-27 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
US8730903B2 (en) 2010-04-22 2014-05-20 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
US10306619B2 (en) 2010-04-22 2019-05-28 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
WO2011132988A3 (en) * 2010-04-22 2012-03-08 Lg Electronics Inc. Method and apparatus for channel estimation for radio link between a base station and a relay station
US9179325B2 (en) 2010-05-05 2015-11-03 Zte Corporation Transmission method and system for relay physical downlink control channel
WO2011137696A1 (zh) * 2010-05-05 2011-11-10 中兴通讯股份有限公司 中继节点下行控制信道的传输方法及系统
WO2011145864A3 (ko) * 2010-05-17 2012-02-23 엘지전자 주식회사 중계기에 대한 하향링크 제어 정보 송수신 방법 및 장치
AU2011255792B2 (en) * 2010-05-17 2013-09-19 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control information for repeater
US9615363B2 (en) 2010-05-17 2017-04-04 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control information for repeater
CN103109471A (zh) * 2010-05-17 2013-05-15 Lg电子株式会社 传输和接收中继器的下行链路控制信息的方法和装置
US9894646B2 (en) 2010-05-17 2018-02-13 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control information for repeater
CN103109471B (zh) * 2010-05-17 2015-11-25 Lg电子株式会社 传输和接收中继器的下行链路控制信息的方法和装置
US9191159B2 (en) 2010-05-17 2015-11-17 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink control information for repeater

Also Published As

Publication number Publication date
WO2010032973A3 (ko) 2010-06-24

Similar Documents

Publication Publication Date Title
US8842617B2 (en) Method and device for wireless subframe resource allocation
JP5118253B2 (ja) 中継局を含む無線通信システムにおけるバックホールリンク及びアクセスリンクのためのリソース割当方法
WO2010101432A2 (ko) 중계국의 제어신호 전송 방법 및 장치
WO2010101366A2 (ko) 무선통신 시스템에서 중계국의 데이터 수신방법 및 장치
WO2010151093A2 (ko) 중계기를 위한 제어 정보를 송수신하는 장치 및 그 방법
EP2306661B1 (en) Relay station in radio communication system and operating method for the relay station
WO2010039003A2 (ko) 무선통신 시스템에서 중계기를 위한 무선 자원 할당 방법 및 장치
WO2011096699A2 (ko) 사운딩 참조 신호를 전송하는 방법 및 장치
WO2011034384A2 (ko) 무선 통신 시스템에서 기지국으로부터 신호를 수신하기 위한 중계기 및 그 방법
WO2011031080A2 (ko) 릴레이 시스템에서 통신을 수행하는 방법 및 장치
WO2010117200A2 (en) Design of control and data channels for advanced relay operation
WO2010079951A2 (en) Method for relaying data in wireless communication system based on time division duplex
WO2011053009A2 (ko) 기지국으로부터 제어정보를 수신하는 중계기 장치 및 그 방법
WO2011122894A2 (ko) 무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치
WO2011068358A2 (ko) 경쟁기반 물리 상향링크 데이터 채널을 통한 데이터의 송수신 방법 및 이를 위한 장치
WO2010093143A2 (ko) 무선통신 시스템에서 데이터 중계 방법 및 장치
KR101489517B1 (ko) 멀티홉 시스템에서 데이터 중계 방법 및 장치
WO2010044564A2 (ko) 다중 반송파 시스템에서 harq 수행 방법
WO2011105857A2 (en) Method and apparatus of transmitting control information in a wireless communication system
WO2017034125A1 (ko) 무선통신 시스템에서 flexible fdd 프레임을 이용하여 통신을 수행하는 방법 및 이를 위한 장치
WO2011115396A2 (ko) 무선통신 시스템에서 제어정보를 송신 및 수신하기 위한 장치 및 그 방법
WO2011132945A2 (en) Method for transmitting control channel to relay node in wireless communication system and apparatus thereof
WO2012023835A2 (ko) 전송 포맷의 변경에 관련된 신호를 송신하는 방법
KR20110066108A (ko) 무선통신 시스템에서 동시에 신호를 송수신하는 중계기 장치 및 그 방법
WO2012124922A2 (ko) 하향링크 신호 수신 방법 및 전송 방법과, 사용자기기 및 기지국

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814789

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814789

Country of ref document: EP

Kind code of ref document: A2